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Problem set 17 for Cosmology (ns-tp430m)

Problems are due at Thu July 3. In total 10 points

32. Spectrum of a massless minimally coupled scalar field. (10 points)

Consider a massless minimally coupled real scalar field with the action,

S =

∫
d4x
√
−g
(1

2
gµν(∂µφ)(∂νφ)

)
, (1)

where g = det(gµν) is the determinant of the metric. In a FLRW cosmology the metric tensor, when

expressed in conformal coordinates, is of the form,

gµν = a2ηµν , ηµν = diag(1,−1,−1,−1) , (2)

where a = a(η) denotes the scale factor, and η is conformal time.

Consider the evolution of vacuum fluctuations of a scalar field given by the action (1) during

de Sitter inflationary epoch, and then match it onto radiation era. Take the scale factor during de

Sitter inflation to be of the form,

a = − 1

HIη
(−∞ < η ≤ −1/HI) , (3)

such that a = 1 at the end of inflation. Here HI denotes the Hubble parameter during inflation.

(a) (1 point) By varying the action (1) in the space-time (2), show that the equation of motion

for the scalar field reads,

∂2ηφ+ 2
a′

a
∂ηφ−∇2φ = 0 , (4)

where ∇2 =
∑3

i=1 ∂
2/∂x2i , a

′ = da/dη and ∂η = ∂/∂η.

The scalar field φ can be promoted to an operator, φ→ φ̂, by the canonical quantisation,

[φ̂(~x, η), π̂φ(~x ′, η)] = i~δ3(~x− ~x ′) (5)

where π̂φ = a2dφ̂/dη denotes the canonical momentum of φ̂. This can be achieved by the following

decomposition,

φ̂(~x, η) =
1

a

∫
d3k

(2π)3
ei
~k·~x
[
ϕk(η)â~k + ϕ∗k(η)â†

−~k

]
, (6)

where â~k and â†~k denote the annihilation and creation operators, and ϕk and ϕ∗k are the mode

functions, which due to the homogeneity of the background space (one assumes a spatial translation

invariance of the state), depend only on the modulus k = ‖~k ‖. The annihilation and creation

operators satisfy the commutation relations,

[â~k, â
†
~k ′

] = ~(2π)3δ3(~k − ~k ′) , [â~k, â~k ′ ] = 0 , [â†~k, â
†
~k ′

] = 0 , (7)
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and the mode functions ϕ~k = and ϕ†~k obey the following Wronskian normalisation condition,

W
[
ϕk, ϕ

∗
k

]
= ϕk

( d
dη
ϕ∗k

)
−
(d
η
ϕk

)
ϕ∗k = i . (8)

In particular, the annihilation operator â~k annihilates the vacuum, â~k|0〉 = 0, while the creation

operator â†~k creates one particle excitation of momentum ~k out of the vacuum, â†~k|0〉 = |1~k〉.

(b) (1 point) Show that the mode functions ϕk in a FLRW space-time (2) obey the following

equation of motion,

ϕ′′k +
(
k 2 − a′′

a

)
ϕk = 0 , (k = ‖~k‖) . (9)

(c) (2 points) Show that during de Sitter inflation Eq. (9) reduces to

ϕ′′k +
(
k 2 − 2

η2

)
ϕk = 0 , (10)

and show further that the fundamental positive and negative frequency solutions are (the

Bunch-Davies vacuum) are

ϕk =
1√
2k

(
1− i

kη

)
e−ikη , ϕ∗k =

1√
2k

(
1 +

i

kη

)
eikη . (11)

Note that the mode normalisation, 1/
√

2k, follows from the Wronskian (8).

(d) (1 point) Show by the appropriate matching that during radiation era, the scale factor is of

the form,

a = HIη (η ≥ 1/HI) , (12)

where one assumes that the end time of inflation, η = −1/HI , is identified with the beginning

time of radiation era, η = +1/HI .

(e) (1 point) Show that during radiation era Eq. (9) simplifies to

ϕ′′k + k 2ϕk = 0 , (13)

and that its (most general, translationally invariant) solution can be written as,

ϕrad
k =

αk√
2k

e−ikη +
βk√
2k

eikη , (14)

where αk and βk are (time independent, but k-dependent) complex constants. Notice that,

due to the assumed spatial homogeneity, αk and βk are functions of the modulus k = ‖~k‖

only. Show that the Wronskian condition (8) implies,

|αk|2 − |βk|2 = 1 . (15)
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(f) (2 points) By making use of the matching conditions at the end of inflation/beginning of

radiation,

ϕk

∣∣∣
η=−H−1

I

= ϕrad
k

∣∣∣
η=H−1

I

;
dϕk
dη

∣∣∣
η=−H−1

I

=
dϕrad

k

dη

∣∣∣
η=H−1

I

, (16)

show that the coefficients αk and βk are given by,

αk = −1

2

H2
I

k2

(
1− 2i

k

HI

− 2
k2

H2
I

)
e2ik/HI ; βk =

1

2

H2
I

k2
. (17)

(g) (2 points) The power spectrum Pφ of the scalar field can be defined by

〈0|φ̂(~x, η)2|0〉 =
1

a2

∫
d3k

(2π)3
|ϕk|2 ≡

∫
dk

k
Pφ(k, η) . (18)

Show that the power spectrum in radiation era, defined in (18), is given by,

Pφ =
H4
I

8π2a2k2

{(
1 + 2

k4

H4
I

)
+ 2

k

HI

sin
(

2k(η − 1/HI)
)
−
(

1− 2
k2

H2
I

)
cos
(

2k(η − 1/HI)
)}

=
H4
I

4π2a2k2
sin2

(
kη − k/HI

)(
1 +O(k/HI)

)
. (19)

This spectrum is scale invariant on super-Hubble scales, and exhibits Sakharov oscillations on

sub-Hubble scales, with the maxima at, ηmax(n) = (n+1/2)π/k (n = 0, 1, 2, ..) and the minima

(zeros) at, ηmin(n) = nπ/k (n = 1, 2, ..), where we neglected the contribution, 1/HI � η.

In slow roll inflation the power spectrum of a massless minimally coupled scalar field can be

used to calculate the power spectrum of the gauge invariant spatial curvature perturbation,

R(x) = ψ(x)− H(t)

φ̇(t)
δφ(x) , (20)

in the ψ = 0 gauge, where ψ(x) = Tr[δgij(x)]/(6a(t)2) is the Newtonian potential perturbation

and φ(x) = φ(t) + δφ(x). The result is

PR(k, η) =
H2

φ̇2
Pφ(k, η) , (21)

where, for a mode k, H(t) and φ(t) are to be evaluated at the Hubble crossing of that mode

during inflation, i.e. at the time t when k = aH(t). The relation (21) can be then used to

calculate the spectrum of scalar cosmological perturbations both in radiation and matter era,

as it is explained in the last lecture. The perturbations inR then source the CMB temperature

fluctuations and also provide the seeds for the large scale structure of the Universe.


