Problemset 2 for Cosmology (ns-tp430m)

Problems are due at Thu Feb 20. (9 points in total)

4. Thermal sphere. (5 points)

Newtonian spherically symmetric gravitating systems of many particles satisfy the Poisson equation for the gravitational Newton potential ϕ_N ,

$$
\nabla^2 \phi_N = 4\pi G_N \rho_N \,,\tag{1}
$$

where ρ_N denotes the mass density, which in a spherically symmetric system is a function of the distance r from the center of mass, $\phi_N = \phi_N(r)$. In an equilibrated system, the distribution of particles can be approximated by the thermal distribution function $f = f(r, v)$, which is a function of $v = ||\vec{v}||$ and $r = ||\vec{r}||$ only,

$$
f = \frac{\rho_1}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{v^2/2 + \phi_N}{\sigma^2}\right),
$$
 (2)

where v is particle's velocity, $\phi_N = \phi_N(r)$ Newton's gravitational potential, $\sigma^2 = \langle \vec{v}^2 \rangle/3 \equiv k_B T/m$ and

$$
\rho_N(r) = \int d^3v f \,. \tag{3}
$$

(a) (2 points)

Show that ϕ_N satisfies the following (mean field) equation of motion,

$$
\frac{d^2}{dr^2}\phi_N + \frac{2}{r}\frac{d}{dr}\phi_N = 4\pi G_N \rho_1 \exp\left(-\frac{\phi_N(r)}{\sigma^2}\right). \tag{4}
$$

(b) (3 points)

Show that the following *Ansatz* solves equation (1)

$$
\rho_N(r) = \frac{\sigma^2}{2\pi G_N r^2}; \qquad \phi_N(r) = -\sigma^2 \ln\left(\frac{\sigma^2}{2\pi G_N \rho_1 r^2}\right). \tag{5}
$$

This solution is known as the thermal sphere, and it is the only known analytic solution of Eq. (1). Next, show that the mass inside radius r reads,

$$
M(r) = \frac{2k_B T}{m G_N} r.
$$
\n⁽⁶⁾

Discuss the limits $r \to 0$ and $r \to \infty$.

5. Light deflection off a thermal sphere. (4 points)

Calculate the deflection angle of light in the presence of a mass distribution of a thermal sphere, given by the thermal sphere potential $\phi_N = -\sigma^2 \ln[\sigma^2/(2\pi G_N \rho_1 r^2)]$, $\sigma^2 = k_B T/m$ (see problem 4 above), by making use of the formula,

$$
\vec{\alpha}(d) = -\frac{2}{c^2} \int d\ell \, \nabla_{\perp} \phi_N(\vec{x}) \tag{7}
$$

where ∇_{\perp} is the gradient operator in the lens plane, whose two components are transversal (perpendicular) to the photon path, ℓ is the distance along the light geodesic, and d is the impact parameter, which is the shortest distance from the center of mass $(\vec{x} = 0)$ to the geodesic. Assume that the photon path can be approximated by an almost straight line, $\vec{x} \simeq (d, 0, z)$, $(z \in \{-\infty, \infty\})$. In this case Eq. (7) reduces to,

$$
\alpha(d) = -\frac{2}{c^2} \int_{-\infty}^{\infty} dz \partial_x \phi_N(\vec{x}). \tag{8}
$$

Assume that the mass distribution of an elliptical galaxy can be well approximated by a thermal sphere, with a typical dispersion of a velocity component $\sigma = 300$ km/s. Calculate the light deflection angle originating at a distant point source (quasar or galaxy). Express your answer in arc-seconds. Comment on the dependence of the deflection angle α on d!