Problemset 3 for Cosmology (ns-tp430m)
Problems are due at Thu Feb 27. (15 plus 8 bonus points in total)

6. A particle in an expanding universe (7 points plus 3 bonus points)
Consider a massive test particle in a (spatially) flat FLRW space-time in conformal coordinates

x* = (cn, xt) (recall that conformal time 1 = 22/c is related to physical time by adn = dt),
ds* = a*(n)nyudfdz; (1)

(a) (1 point) Show that the Christoffel connection in the space-time (1) is given by,
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where H denotes a conformal Hubble rate, which is related to the physical Hubble (expansion)

rate H as, H = a'H.

(b) (2 points) Show that the geodesic equation for the four velocity u# = cdx#/ds = dz* /dr can be

written as
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(c) (2 points) Solve the spatial geodesic equation (3) and show that
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such that u.; = —a?d;;ul is conserved, i.e. that u’ scales as 1/a. Is there is a Killing vector

associated to the conservation of wu.;? If yes, which one?

(d) (2 points) Show that the equation for u? in (3) can be recast as,
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Solve this equation for u?. Make sure that you properly fix the integration constant. Hint: Use

the line element in (3).

(e) (1 point) Introduce a 4-momentum, p* = mu#, and show that the solution for p? can be written
as, , .
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atc2 = (p2>2 = (pc)2 + 2 (EC/C = (12p2 = pcO) . (6)

The Einstein’s relation for the physical energy E and momentum pppys is then obtained by simply

multiplying (7) by a?,
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from where we conclude, -
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such that in an expanding universe the physical momentum ||pynys|| of particles scales as «x 1/a.
When taken in the nonrelativistic limit, this relation then implies that physical velocities of

particles scale due to the Universe’s expansion as o« 1/a. This phenomenon of the redshift of

physical momenta and velocities of particles is also known as the Hubble damping.

(f) (3" bonus points) Repeat the above analysis for a photon in an expanding universe.

7. Kination. (8 points)

Consider a real scalar massless field minimally coupled to gravitation, whose action reads,
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in a homogeneous FLRW background,
v = diag(l, —a?, —ad?, —a2> . (10)

(a) (2 points) Derive the equation of motion for the homogeneous mode of the scalar field, ¢ = ¢(t),
and discuss its dependence on the scale factor, ¢ = ¢(a).

(b) (2 points) How does the energy density of ¢ scales with the scale factor a, and what is the
equation of state, Py = wepe, i.e. what is wy?

Recall that the stress energy is defined as,
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Assume an ideal fluid form,
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and take the fluid to be in its rest-frame, in which u, = ¢d).
(c) (4 points) Assume that the Universe’s energy density is dominated by the kinetic energy of a
scalar field, p ~ p,. The Friedmann equation (with A = 0) reads
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where @ = da/dt is a time derivative of the scale factor. Solve for ¢ = ¢(t) and determine how the
scale factor depends on time t.
An epoch of the Universe, in which the kinetic energy of a scalar field dominates, is called kination,

and it is not known whether such an epoch existed.



