
ADVANCED TOPICS IN THEORETICAL PHYSICS II
Tutorial problem set 3, 25.09.2017.

(20 points in total)
The in-class exercise is problem 7. Problem 8 is due at Monday, 02.10.2017.

� PROBLEM 7 Transition amplitude. (11 points)

The transition amplitude for a particle in one dimension to go from position xi at time ti to position xf
at time tf (a matrix element of the evolution operator in the position basis) can be written as a path
integral,

F (xf , tf ;xi, ti) = 〈xf , tf |xi, ti〉 = 〈xf |U(tf , ti)|xi〉

=
∫
Dp(t)

x(tf )=xf∫
x(ti)=xi

Dx(t) exp
{
i

~

∫ tf

ti

dt
[
p(t)ẋ(t)−H

(
x(t), p(t), t

)]}
, (7.1)

where this path integral is properly defined as the limit N →∞ of the discretized expression,[
N∏
n=1

∫ ∞
−∞

dxn

][
N+1∏
n=1

∫ ∞
−∞

dpn
2π~

]
exp

{
iδt

~

N+1∑
n=1

[
pn

(
xn−xn−1

δt

)
−H

(
pn, xn, tn

)]}
, (7.2)

where x0 = xi and xN+1 = xf , and δt = (tf − ti)/N , tn = nδt. This is a general result following from
the canonical quantization procedure.

Given a system of a harmonic oscillator coupled to and external time-dependent source,

L(x, ẋ, J) = m

2 ẋ
2(t)− mω2

2 x2(t)− J(t)x(t) , (7.3)

calculate the transition amplitude (7.1) following the steps below.

(a) (1 point) Define the conjugate momentum and construct the Hamiltonian from (7.3).

Now you will perform all the momentum integrals in the path integral.

(b) (2 points) Complete the square for the momentum in the exponent of (7.2) and perform all the
Gaussian integrals over the momenta. Make use of the following result for Gaussian integrals
(α > 0, β ∈ R),∫ ∞

−∞
dx e−(α+iβ)x2 =

√
π

α + iβ
,

∫ ∞
−∞

dx e−iβx
2 = lim

α→0+

∫ ∞
−∞

dx e−(α+iβ)x2 =
√

π

iβ
. (7.4)

Be careful to define what the new measure is (what is meant by Dx(t)) and the overall normaliza-
tion. The result for the transition amplitude is of the form

FJ(xf , tf ;xi, ti) = N
∫
Dx(t) exp

{
i

~

∫ tf

ti

dt L(x, ẋ, J)
}

= N
∫
Dx(t) exp

{
i

~
S[x, J ]

}
. (7.5)

Note that this form of the path integral follows from the Hamiltonian being at most quadratic in
momenta so that the momentum integrals are just Gaussian ones and can be performed exactly.

Next you will perform all the position integrals. That is possible since the Hamiltonian is also quadratic
in position so that all the integrals are again Gaussian.
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(c) (1 point) Make a variable substitution in (7.5) which is a just a shift of the variable,

x(t) = x(t) + δx(t) , (7.6)

(or in the discretized form xn = xn + δxn, xn = x(tn)) where x(t) is defined to satisfy the classical
equation of motion,

δS[x, J ]
δx(t)

∣∣∣∣
x=x

= 0 , (7.7)

and the boundary conditions x(ti) = xi, x(tf ) = xf . Show that the path integral can now be
written as

F (xi, ti;xf , tf ) = exp
[
i

~
S[x, J ]

]
×F(tf , ti) , (7.8)

where the fluctuating factor is

F(ti, tf ) = N
δx(tf )=0∫
δx(ti)=0

Dδx(t) exp
[
i

~
S[δx, 0]

]
. (7.9)

.

(d) (1 point) The classical path of the particle x(t) satisfies the classical equation of motion. It is
possible to find a (formal) solution of that equation for arbitrary external source J(t). Separate
the solution x = xh + xp into the homogeneous part xh(t) that satisfy a homogeneous equation,[

d2

dt2
+ ω2

]
xh(t) = 0 (7.10)

with the boundary conditions, xh(ti) = xi and xh(tf ) = xf and the particular part xp(t) satisfying
an inhomogeneous equation, [

d2

dt2
+ ω2

]
xp(t) = −J(t)

m
(7.11)

with the boundary conditions xp(ti) = 0 = xp(tf ). Solve for the homogeneous part. Show that the
solution for the inhomogeneous part can be written as,

xp(t) = −
∫ tf

ti

dt′G(t, t′)J(t′)
m

, (7.12)

where G(t, t′) is the appropriate Green function satisfying the same boundary conditions as the
particular part, i.e. G(ti, t′) = 0 = G(tf , t′),

G(t, t′) = −Θ(t′ − t) sinω(tf − t′) sinω(t− ti)
ω sinω(tf − ti)

−Θ(t− t′) sinω(tf − t) sinω(t′ − ti)
ω sinω(tf − ti)

. (7.13)

(e) (2 points) Show that S[x, J ] that appears in the phase in (7.8) is

S[x, J ] = 1
2m

tf∫
ti

dtdt′ J(t)G(t, t′)J(t′)− xf

tf∫
ti

dt
sinω(t− ti)
sinω(tf − ti)

J(t)− xi

tf∫
ti

dt
sinω(tf − t)
sinω(tf − ti)

J(t)

+ mω

2 (x2
f + x2

i ) cotω(tf − ti)−
mω xixf

sinω(tf − ti)
. (7.14)
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(f) (4 points) Show that the fluctuating factor is

F(ti, tf ) =
√

mω

2πi~ sinω(tf − ti)
. (7.15)

Make use of the following result for N -dimensional Gaussian integrals∫ ∞
−∞

dx1dx2 . . . dxN exp
[
−x>A x

]
= πN/2
√

detA
, (7.16)

where x> = (x1 x2 . . . xN) and A is an N × N symmetric matrix, A> = A. The problem of
evaluating the path integral for the fluctuating factor then reduces to evaluating the determinant
of the operator in the action. This determinant can be evaluated in multiple ways. Here we will
do it by calculating the determinant in the discretized form and taking the continuum limit in the
end. Matrix AN is of the form

AN =


a b 0 . . .
b a b . . .
0 b a . . .
... ... ... . . .

 . (7.17)

Find what a and b are. Show that recurrence relation satisfied by the determinant of this matrix
is

DN+2 = aDN+1 − b2DN , DN = detAN (7.18)
by expanding the determinant in minoras. Find the initial conditions for this recurrence relation
(D2 and D3 and from them infer D1 and D0 by extension). Next, find α and β such that the
recurrence relation can be cast into

DN+2 − αDN+1 = β(DN+1 − αDN) , (7.19)

which implies
DN+2 − αDN+1 = βN+1(D1 − αD0) . (7.20)

Derive a similar result for the combination DN+2 − βDn+1 and show that

DN = βN − αN

β − α
. (7.21)

Show that, in the limit when δt→ 0 (or equivalently when N →∞), this leads to

det AN =
[ m

2i~δt

]N sinω(tf − ti)
ωδt

, (7.22)

from where (7.15) follows.

� PROBLEM 8 Transition amplitudes, transition probabilities and expectation values. (9 points)

The most general pure Gaussian state (in position representation) can be written as

ψ(x) = N exp
[
−(1 + 2iη)(x− x0)2

4~σ + i
p0x

~

]
, (8.1)

where the four parameters x0, p0, σ, η specify the physical properties of the Gaussian state.

(a) (1point) Find the normalization N . Relate parameters x0, p0, σ, η to physical quantities by calcu-
lating all the 1-point and coincidence 2-point functions.
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(b) (4 points) Use the result of Problem 7 to find the transition amplitude for a particle that starts
out in the ground state of a harmonic oscillator at ti to be found again in the ground state at some
tf , i.e. calculate,

Z[J ] = 〈0, tf |0, ti〉 = 〈0|U(tf , ti)|0〉 . (8.2)
The harmonic oscillator ground state wave function is given by

ψ0(x) = 〈x|0〉 =
(mω
π~

)1/4
exp

[
−mωx

2

2~

]
. (8.3)

This exercise is on the longer side, but involves just evaluating Gaussian integrals and the use of
trigonometric identities. The final result is of the form

Z[J ] = eiϕ exp
{
− 1

2~2

∫ tf

ti

dtdt′ J(t)i∆F (t, t′)J(t′)
}
. (8.4)

Determine what ∆F (t, t′) is and which equation it satisfies. Can you say what is the meaning of
the phase ϕ?

One can use the functional above to generate proper vacuum expectation values. The following trick
is encountered in almost every treatment of path integrals. It can be shown that Z[J ] generates the
following quantities[

1
i

δ

δJ(t1)

]
. . .

[
1
i

δ

δJ(tn)

]
Z[J ]

∣∣∣∣
J=0

= 〈0, tf |T
[
x̂(t1) . . . x̂(tn)

]
|0, ti〉

= 〈0, ti|U(tf , ti)T
[
x̂(t1) . . . x̂(tn)

]
|0, ti〉 . (8.5)

This is not exactly the expectation value of the time-ordered product of position operators, there is
an extra evolution operator there. But, since the ground state |0, ti〉 is an eigenstate of the (time-
independent) Hamiltonian, the action of the evolution operator on it is trivial,

〈0, ti|U(tf , ti) = e−
i
~E0(tf−ti)〈0, ti| = 〈0, tf |0, ti〉〈0, ti| = Z[0]〈0, ti| , (8.6)

where E0 is the energy of the ground state. Therefore, this extra evolution operator just factors out as
a phase, and the normalized generating functional does indeed generate proper expectation values[

1
i

δ

δJ(t1)

]
. . .

[
1
i

δ

δJ(tn)

]
Z[J ]
Z[0]

∣∣∣∣
J=0

= 〈0, ti|T
[
x̂(t1) . . . x̂(tn)

]
|0, ti〉 . (8.7)

Note that this works only for eigenstates of the Hamiltonian. Had we chosen some other non-stationary
states or different initial and final states then Z[J ]/Z[0] would not generate expectation values.

(c) (4 points) There is a way to construct a generating functional for the n-point functions that works
for an arbitrary state which goes under the name of the Schwinger-Keldysh (or in-in, or closed-
time-path) generating functional, and it was defined in the lecture. Using the transition amplitude
from Problem 7 it can be written as

Z[J+, J−] =
∞∫

−∞

dx1dx2dx∗ ψ
∗(x2)ψ(x1)F ∗J−(x∗, t∗;x2, ti)FJ+(x∗, t∗, x1, ti) , (8.8)

where ti is the initial time. Calculate these three integrals to obtain the generating functional for
an arbitrary Gaussian state (8.1). Hint: Calculate the integral over the return point (x = x∗) first.

The Schwinger-Keldysh generating functional generates the following expectation values[
−1
i

δ

δJ−(t1)

]
. . .

[
−1
i

δ

δJ−(tn)

] [
1
i

δ

δJ+(tn+1)

]
. . .

[
1
i

δ

δJ+(tn+m)

]
Z[J+, J−]

∣∣∣∣
J+=J−=0

= 〈ψ|T
[
x̂(t1) . . . x̂(tn)

]
T
[
x̂(tn+1) . . . x̂(tn+m)

]
|ψ〉 , (8.9)

and this is true for an arbitrary state |ψ〉 (it need not be Gaussian, but if it is non-Gaussian we do not
know how to calculate it exactly).
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