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Due to the growing popularity of scientific evidence, such as DNA and 
fingerprint matching, the communication and interpretation of legal 
evidence has become a real challenge [1, 2, 3]. This is illustrated by 
some of the recent miscarriages of justice (like the notorious cases of 
Sally Clark and Lucia de Berk). The automated extraction of rules, 
arguments and counter-arguments from Bayesian networks will 
facilitate the communication between lawyers and judges on the one 
hand and forensic experts on the other.  
We propose a method that unifies models of legal proof from two 
different approaches to legal reasoning: Argumentation [4, 5] and 
Bayesian networks (BNs) [6]. Argumentation models are closer to the 
natural way of human reasoning, while BNs can represent uncertain 
information better than the qualitative argumentative models can. One 
of the goals of our research is to automatically generate arguments 
from a given BN. We follow the ASPIC+ [5] definition of an argument 
where every argument is either a simple variable instantiation or the 
application of a rule. The ASPIC+ framework resolves conflicts 
between arguments by means of an ordering on those rules. Our 
method of identifying rules is based on a notion of strength which 
implies that this ordering follows naturally from the strength of the 
rules. We use a strength measure that equals the probability of the 
conclusion given the premise divided by the prior probability of the 
conclusion. This particular measure of strength, also known as the 
normalized likelihood [7], corresponds with the intuition of positive 
influence. A rule, contrary to a BN arc, represents a reasoning step 
and therefore rules in both directions (along and against the direction 
of the arc in the BN) can exists simultaneously. We calculate the 
strength of every candidate rule and discard the rules that have a 
strength less than or equal to one. With the remaining rules and their 
ordering the ASPIC+ argumentation framework defines the applicable 
arguments and their attack relation. We explicitly disallow the 
application of rules against the direction of the corresponding arc in 
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the BN after rules along the direction of an arc. This has the effect that 
a reasoning error that was identified by Pearl [8] can no longer be 
made. The described method can be used to explain the probabilistic 
results of the Network in terms of arguments. 
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