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1 Introduction

A Hidden Markov model (HMM) is a frequently applied statistical model for capturing processes that evolve
over time. The parameters specified in a HMM are often inaccurate, and sensitivity analyses can be em-
ployed to study the effects of these inaccuracies on the output of a model. In the context of HMMs, sensi-
tivity analysis is usually performed by means of a perturbation analysis where a small change is applied to
the parameters, upon which the output of interest is re-computed [2]. Recently, however, it was shown that
a simple mathematical function describes the relation between HMM parameters and an output probability
of interest [1]. This result was established by representing the HMM as a (Dynamic) Bayesian network;
for determining the so-called sensitivity function, it wassuggested to use existing algorithms for sensitivity
analysis in Bayesian networks. The drawback of this approach is that the repetitive character of the HMM,
with the same parameters occurring for each time step, is notexploited in the computations. We present a
new and efficient algorithm for computing sensitivity functions in HMMs; it is the first algorithm to this end
which exploits the recursive properties of an HMM, while notrelying on a Bayesian network representation.

2 Hidden Markov Models

For each timet, an HMM consists of a hidden variableXt, which can be indirectly observed through some
test or sensorY t. The noise in the observation is captured in a matrixO containing observation probabilities.
The transitions between the states ofX in subsequent time steps are described by a matrixA with transition
probabilities. BothO andA are time-invariant, and we assumeX andY to be discrete. The prior for the
initial state of the system is given by vectorΓ. An HMM thus has three types of probability parameters:
initial (θγ), observation (θo), and transition (θa). The following shows a Bayesian network representation of
an HMM unrolled for three time steps:
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Inference in temporal models typically amounts to computing the distributionp(Xt | y1:T
e ), wherey1:T

e

is short for the sequence of observationsy1

e , . . . , yT
e for Y 1, . . . , Y T . If T = t, this inference task is known

asfiltering, T < t concernspredictionof a future state, andsmoothingis the task of inferring the past, that
is T > t. For exact inference in an HMM, the efficient Forward-Backward algorithm is available, which
builds on the following recursive properties (see for details [3, Chapter 15]):
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wherev equals one of then states ofX, et denotes the state ofY observed at timet, ov,et
= p(yt

e | xt
v) is

an observation probability, andaz,v = p(xt
v | xt−1

z ) is a transition probability.



3 An Algorithm for Establishing Sensitivity Functions

Our algorithm builds upon the above mentioned recursive properties and the polynomial form of the sensi-
tivity function p(xt

v, y1:T
e )(θ) = ct

v,N ·θN + . . .+ ct
v,1·θ + ct

v,0, to establish its coefficients. HereN depends
on the type ofθ (θγ , θo or θa), andct

v,N , . . . ,ct
v,0 are constants with respect to theθ under consideration.

The basic idea We sketch ourCoefficient-Matrix-Fill procedurefor establishing the sensitivity function
p(xt

v , y1:t
e )(θa) for transition probabilityθa. For each time stepk = 1, . . . , t we construct ann × k matrix

F k and fill this matrix with the coefficients of all polynomial functions relevant for that time step. A row
i in F k then contains exactly the coefficients for the functionp(xk

i , y1:k
e )(θa); a columnj in F k contains

all coefficients of the(j − 1)th-order terms of then polynomials. More specifically, entryfk
i,j equals the

coefficientck
i,j−1

of the sensitivity functionp(xk
i , y1:k

e )(θa).

Example Consider an HMM with binaryX and binaryY . Let Γ = [0.20, 0.80] be the initial vector for
X1, and let transition matrixA and observation matrixO be as follows:

A =

[

0.95 0.05
0.15 0.85

]

andO =

[

0.75 0.25
0.90 0.10

]

We are interested in the functionsp(X3, y1:3

e )(θa) for the two states ofX3 and parameterθa = a2,1 =
p(xt

1
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2
) = 0.15. The following observations are obtained:y1
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1
. To compute the coefficients

of the functions, three matrices are constructed by the Coefficient-Matrix-Fill procedure. First, the entries
of matrixF 1 are set to their correct values in the initialisation phase of the procedure (see(1)):

F 1 =

[

o1,2 ·γ1

o2,2 ·γ2

]

=

[

0.25·0.20
0.10·0.80

]

=

[

0.05
0.08

]

The remaining matricesF k for k > 1 are built solely from the entries inF k−1, the transition matrixA and
the observation matrixO; their fill contents is based on(2):
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[
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0.07425 −0.072
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=

[

0.02538 0.09844 −0.054
0.06843 −0.12893 0.0648

]

From the above we can conclude

p(x3

1
, y1:3

e )(θa) = −0.054·θ2

a + 0.098·θa + 0.025, but also p(x2

2
, y1:2

e )(θa) = −0.072·θa + 0.074

In addition, for each columnj of F k, the sum
∑n

i=1
fk

i,j of entries equals a coefficient ofp(y1:k
e )(θ).

Complexity For each of thek time steps, ann × k matrix is filled with the coefficients for the functions
p(xk

i , y1:k
e )(θa) for all i. The procedure thus computes the coefficients for the sensitivity functions for

all hidden statesandall time stepsup to and includingt. The run-time complexity for a straightforward
implementation of the algorithm isO(n2 · t2), which is t times that of the Forward-Backward algorithm.
This is due to the fact that per hidden state we need to computek numbers per time step rather than one.
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