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1 Introduction

A Hidden Markov model (HMM) is a frequently applied statisti model for capturing processes that evolve
over time. The parameters specified in a HMM are often inateyrand sensitivity analyses can be em-
ployed to study the effects of these inaccuracies on theubvuatipa model. In the context of HMMSs, sensi-
tivity analysis is usually performed by means of a pertudratinalysis where a small change is applied to
the parameters, upon which the output of interest is re-edeth[2]. Recently, however, it was shown that
a simple mathematical function describes the relation betnHMM parameters and an output probability
of interest [1]. This result was established by represgntire HMM as a (Dynamic) Bayesian network;
for determining the so-called sensitivity function, it wagggested to use existing algorithms for sensitivity
analysis in Bayesian networks. The drawback of this apgréathat the repetitive character of the HMM,
with the same parameters occurring for each time step, iexmubited in the computations. We present a
new and efficient algorithm for computing sensitivity fuiocts in HMMs; it is the first algorithm to this end
which exploits the recursive properties of an HMM, while nelying on a Bayesian network representation.

2 Hidden Markov Models

For each time, an HMM consists of a hidden variahi?, which can be indirectly observed through some
test or sensoYt. The noise in the observation is captured in a mafricontaining observation probabilities.
The transitions between the states\dfn subsequent time steps are described by a mdtiith transition
probabilities. BothO and A are time-invariant, and we assumeandY to be discrete. The prior for the
initial state of the system is given by vectdr An HMM thus has three types of probability parameters:
initial (6.,), observationd,), and transitiond,). The following shows a Bayesian network representation of
an HMM unrolled for three time steps:
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Inference in temporal models typically amounts to computhre distributionp(X? | y2:7), whereyl™
is short for the sequence of observatigis. ..,y for Y, ... YT, If T = ¢, this inference task is known
asfiltering, T' < t concerngredictionof a future state, angmoothings the task of inferring the past, that

isT > t. For exact inference in an HMM, the efficient Forward-Backivalgorithm is available, which
builds on the following recursive properties (see for dstgd, Chapter 15]):

for t=1: p(al, yl)=pllz}) ) =ove M (1)
for t >1: p(at, ylt) = = Oper Doy Gz P(@h, Yl (2)

wherev equals one of the states ofX, e, denotes the state af observed at time, o, ., = p(y_. | z%) is
an observation probability, and. , = p(z! | x.~1) is a transition probability.



3 An Algorithm for Establishing Sensitivity Functions

Our algorithm builds upon the above mentioned recursive@riies and the polynomial form of the sensi-
tivity function p(a!,, y2)(0) = ¢}, -0V +...+¢cl -0+l , to establish its coefficients. Heé depends
on the type ob (0., 6, or 0,), andcf)_,N, .. ,01;70 are constants with respect to theinder consideration.

The basic idea We sketch ouCoefficient-Matrix-Fill procedurdor establishing the sensitivity function
p(xt, yLt)(6,) for transition probabilityd,. For each time step = 1,...,¢ we construct am x k matrix
F* and fill this matrix with the coefficients of all polynomialriations relevant for that time step. A row
i in F* then contains exactly the coefficients for the functign’, y1:*)(6,); a columnj in F* contains
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all coefficients of thg; — 1)th-order terms of the: polynomials. More specifically, entrﬂfj equals the
coefficientc; ; , of the sensitivity functiom(z}, y:™)(6a).

Example Consider an HMM with binaryX and binaryY. LetI' = [0.20,0.80] be the initial vector for
X1, and let transition matrixi and observation matri® be as follows:

A:[0.95 0.05 0.75 0.25}

0.15 0.85] a”dO:[o.go 0.10

We are interested in the functiopg X3, y13)(6,) for the two states of{® and parametef, = a>; =
p(x} | 2571 = 0.15. The following observations are obtaineg, y7 andy;. To compute the coefficients
of the functions, three matrices are constructed by the fiegait-Matrix-Fill procedure. First, the entries
of matrix F'! are set to their correct values in the initialisation phasthe procedure (sef)):

gt _ [oreem] _ [025-0.20] _ [0.05
- ~ 10.10-0.80| ~ |0.08

02,2°72
The remaining matrice8”* for & > 1 are built solely from the entries iR*~!, the transition matrix4 and
the observation matrig; their fill contents is based of2):
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or1-a1,1 fis o1 f31 ] B [0.03563 0.06 }
021 (fhy +ara fly) —osa-fl,] 007425 —0.072

=

or1-a11-fia or1-(fiatani-ffa)  onfia ] [0.02538 0.09844  —0.054
02,1-(f21 +ara-fin) o201 (=fE1 + fa+ar-fl2) —o02,1-f3z 0.06843 —0.12893 0.0648

From the above we can conclude
(3, yt3)(0,) = —0.054-0% + 0.098-6, + 0.025, butalso p(z3, y2?)(0,) = —0.072-6, + 0.074

In addition, for each column of F*, the sumy_""_, fF, of entries equals a coefficient pfy™*)(0).

Complexity For each of thé: time steps, am x k& matrix is filled with the coefficients for the functions
p(z¥, yL*)(0,) for all i. The procedure thus computes the coefficients for the s@tsitunctions for
all hidden statesindall time stepsup to and including. The run-time complexity for a straightforward
implementation of the algorithm i©(n? - t), which ist times that of the Forward-Backward algorithm.
This is due to the fact that per hidden state we need to conipotenbers per time step rather than one.
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