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Abstract

Bayesian networks are often used in problem domains that include variables of a continuous nature. For
capturing such variables, their value ranges basically have to be modelled as finite sets of discrete values.
While the output probabilities and conclusions established from a network are dependent of the actual
discretisations used for its variables, the effects of choosing alternative discretisations are largely unknown
as yet. This paper describes the first steps of a study into the effects of changing discretisations on the
probability distributions computed from a Bayesian network. We focus more specifically on the feature
variables of a naive Bayesian network and demonstrate how insights from the research area of sensitivity
analysis can be exploited for studying how the network’s output is affected by alternative discretisations.

1 Introduction

Bayesian networks are being used in an ever increasing range of problem domains. A Bayesian network in
essence is a compact representation of a joint probability distribution over a set of stochastic variables. Mod-
ern Bayesian-network tools provide various algorithms for probabilistic inference with a network, which
basically allow computing any prior or posterior probability of interest over the network’s variables [ 2].
Most of these inference algorithms assume the variables of a network to be discrete. The knowledge in a
problem domain under study, however, may involve variables which are of a continuous nature. For cap-
turing such variables in a network, their value ranges should be modelled as finite sets of discrete values.
Several different methods are available for automated discretisation of variables in general, each of which
requires for its input the number of intervals into which a value range is to be split, and possibly also the
boundaries of these intervals; for an overview of methods, we refer to [3]]. For Bayesian-network modelling,
these general methods unfortunately tend to yield unsatisfactory results [4]. Yet, while the output probabil-
ities and conclusions established from a network are dependent of the actual ways in which its continuous
variables are discretised [5], the effects of choosing alternative discretisations are largely unknown.

As a first step in studying the effects of changing discretisations on the posterior probability distribu-
tions computed from a Bayesian network, we focus in this paper on the class of naive Bayesian networks.
Naive Bayesian networks are networks of highly restricted topology, composed of a single class variable of
interest and multiple feature variables which are directly connected with this class variable and unconnected
otherwise. For ease of exposition, we will consider binary discretisations only for the feature variables,
splitting their value ranges into two intervals. Choosing an alternative discretisation for a variable then
amounts to choosing a different threshold value to separate the two intervals. We will argue that a change of
threshold value will result in changes in the values of all parameter probabilities specified for the variable at
hand. Building upon this observation, we will then demonstrate how recent insights from the research area
of sensitivity analysis of Bayesian networks in general [6} [7] can be used to study the effects of different
discretisations on the output probability distributions established from a naive Bayesian network. We fur-
ther establish conditions under which a change in discretisation can affect the conclusions drawn from the
network. Throughout the paper, we will illustrate our findings using real-life data from which various naive
Bayesian networks were constructed [8]].



The paper is organised as follows. In Section 2, we provide some preliminaries on Bayesian networks
and on sensitivity analysis. In Section 3, we establish functions that describe the effects of changing the
discretisation of a feature variable on the probability distribution computed from a naive Bayesian network.
Whether or not choosing another discretisation can lead to a different conclusion for the class variable is
discussed briefly in Section 4. The paper ends with our concluding observations in Section 5.

2 Preliminaries

We briefly review concepts from Bayesian networks and insights from sensitivity analysis.

2.1 Bayesian networks

A Bayesian network is a probabilistic graphical model, which describes a joint probability distribution
Pr(V) over a set V of discrete stochastic variables. The variables and their interrelationships are mod-
elled as nodes and arcs respectively, in an acyclic directed graph. Associated with each variable V' in this
graph is a set of parameter probabilities p(V | 7(V')) from the distribution Pr which describe the influence of
the possible values of the parents 7(V') of V on the probabilities over V' itself; this set is commonly termed
the conditional probability table of V. For computing prior and posterior probabilities over the separate
variables of a Bayesian network, efficient algorithms are available [2]].

Over the years, several restricted types of Bayesian network have been distinguished, among which is the
rather popular naive Bayesian network. A naive Bayesian network consists of a single class variable C' and
one or more feature variables E;. In the network’s graphical structure, the feature variables are all connected
directly with the class variable and not connected otherwise; the feature variables thereby are modelled
as being mutually independent given the class variable. Naive Bayesian networks are commonly used for
computing posterior probability distributions Pr(C' | E) over the various values of the class variable, given
joint values for the set E of feature variables. When used as a classification model, the most likely value of
the class variable given a specific joint value e of E is established from the computed probability distribution
Pr(C | e) and returned as the model’s output. In the sequel, we will focus on naive Bayesian networks and
consider binary-valued class variables C' only, with values ¢ and ¢.

2.2 Sensitivity analysis

Sensitivity analysis is a general technique for studying the effects of parameter variation on the output of a
mathematical model. For Bayesian networks, tailored techniques for sensitivity analysis have been devel-
oped, which provide for investigating the effects of varying the values of one or more parameter probabilities
on an output probability of interest; for an overview of recent insights, we refer to [9]. The research area
of sensitivity analysis of Bayesian networks so far focused mainly on one-way analyses in which a single
parameter probability p is varied. The effects of varying this parameter are captured by a mathematical func-
tion which describes the output probability as a function of the parameter. When a parameter probability p is
being varied as z in such an analysis, its complement 1 — p from the same distribution varies as 1 — x. Given
this co-variation, a one-way sensitivity function f(z) for a marginal or joint probability of interest is linear
in the parameter being varied. For a conditional probability of interest, the effects of parameter variation
are described by a fraction of two linear functions. This sensitivity function f(x) essentially is a fragment
of one of the branches of a rectangular hyperbola [9]. We note that both the parameter under study and
the probability of interest are restricted to values from the range [0, 1], thereby effectively constraining the
two-dimensional space of feasible points to the so-termed unit window. For computing sensitivity functions
from a Bayesian network, efficient algorithms are available [10]].

In the sequel, we will use a higher-order sensitivity analysis in which multiple parameter probabilities
are being varied simultaneously. In general, in an n-way sensitivity analysis in which n parameters are
varied, a marginal or joint probability of interest is described by a multi-linear function in these parameters;
for a conditional probability, the sensitivity function is a fraction of two such functions. For example, a
two-way sensitivity function that expresses some posterior probability of interest Pr(c | e) in terms of two
parameter probabilities which are being varied as = and y, has the following form:
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where the constants a;, b;,2 = 1, ..., 4, are built from the non-varied parameters of the network under study.
The two parameter probabilities and the output probability of interest again are restricted to the [0, 1]-range,
which defines a three-dimensional space of feasible points called the unit cube.

For studying the effects of changing a variable’s discretisation in a naive Bayesian network, we will
consider in the sequel the parameters from the conditional probability table of a single feature variable only.
We will the argue that the parameter probabilities to be varied stem from different conditional distributions,
that is, conditioned on different values of the class variable. We now observe that the x - y terms in a general
two-way sensitivity function describe the interaction effects of the two parameters being varied as = and y.
If the two parameters stem from different conditional probability distributions however, as in our study, the
constants a; and by in the interaction terms are equal to zero. For the parameters in our study, we can thus
simplify the general form of a two-way sensitivity function to [11]:
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As long as ambiguity cannot arise, we will write f(z) instead of fpy(cje)(2), for short. In our analyses, we
will further assume that none of the parameter probabilities specified in a naive Bayesian network equal zero.
We assume moreover that the parameter probabilities for the feature variable under study are not varied to be
equal to 0 or 1, that is, we assume that =, y € (0, 1): although in theory it is possible to generate a parameter
probability equal to O or 1 by discretisation, such a discretisation would not be very useful in practice.

fPr(c|e) (LU, y) =

3 Studying the Effects of Discretisation

The basic formalism of Bayesian networks requires all included variables to be discrete. Upon modelling do-
main knowledge, variables which take their value from an intrinsically continuous value range will therefore
have to be discretised before they can be captured in a network. Such a discretisation in essence amounts to
splitting the variable’s value range into two or more intervals and associating each interval with a value of a
(newly defined) discrete variable. We consider a single continuous variable F; and address its discretisation.
For ease of exposition, we assume that the value range of this variable is split into two intervals by means of
a threshold value ¢; note that choosing a different discretisation for E; amounts to changing this threshold
value. Slightly abusing notation, we will write e, = FE; < tand e; = FE; > t for the two values of the
(now discretised) variable E;; we will write ¢} to indicate either of the two values.

Upon including a discretised variable E; as a feature variable in a naive Bayesian network, a conditional
probability table is constructed which includes the parameter probability p(E; < t | ¢) and its complement
p(F; > t | ¢), as well as the probabilities p(E; < t | ¢) and p(E; > t | ¢). It is now readily seen that
changing the discretisation of E; by choosing a different threshold value ¢, will affect all parameters from
the probability table for F2;. Since these parameter probabilities do not stem all from the same conditional
distribution, we must conclude that we cannot study the effects of changing F;’s discretisation by conducting
a one-way sensitivity analysis in terms of the parameters involved. But it is not necessary to use a four-way
sensitivity analysis either. We observe that by varying the parameter probability p(E; < t | ¢), the variation
of p(E; > t | ¢) is covered by standard co-variation; similarly, variation of p(E; > t | ¢) is handled by
varying p(E; < t | ¢). A two-way sensitivity analysis thus in essence suffices for studying the effects of
changing the discretisation for E; on the output probabilities computed from a naive Bayesian network.

In Section 2, we reviewed the general form of a two-way sensitivity function. In previous research, we
showed that the independence properties underlying a naive Bayesian network allow for simplifying the
general form of a one-way sensitivity function [12]. We now show that naive Bayesian networks also yield
two-way sensitivity functions of a constrained form.

Proposition 1. Let C' be the class variable of a binary naive Bayesian network which further includes the
set E of feature variables. Let Pr(c | ) be the network’s probability of interest, for a joint combination of
values e for E. Now, let x = p(el/ | ¢) and y = p(e} | €) be parameter probabilities for some value e/
of the feature variable E; € E, and let €} be the actually observed value for E; in e. Then, the two-way
sensitivity function expressing Pr(c | ) as a function of x and y has the following form:
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where a and o' are constants.

Proof. We consider the probability of interest Pr(c | ). Using Bayes’ theorem and exploiting the indepen-
dence properties of a naive Bayesian network, we find that
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We note that the constants ¢ and o’ in the sensitivity function stated above are readily computed from
the parameter probabilities of the feature variables in the naive Bayesian network; the two-way sensitivity
function can in fact be established without the need of any propagation. We further note that if the probability
of interest pertains to the value ¢ of C, a similar property holds, with ¢ and ¢ interchanged.

We illustrate the two-way sensitivity function derived above by means of a naive Bayesian network for
a real-life problem in dairy-farming practice.

Example 1. To distinguish between false positive (fp) and true positive (¢p) alerts for clinical mastitis (an
udder infection) in cows issued by an automatic milking system, various naive Bayesian networks were
constructed [8]. These networks use information from milkings and information about the cows themselves
to classify the issued alerts. Several of the variables involved are continuous by nature, and were discretised
into two intervals each based upon domain knowledge. Among these variables is the somatic cell count
(SCC'), which indicates the number of white blood cells per ml milk. Now suppose that we construct a
naive Bayesian network with just the feature variable SC'C, and further suppose that we are interested in
the output probability Pr(tp | SCC < t) for some threshold value ¢. Given that the automatic milking
system issues a true positive alert with a prior probability of Pr(¢p) = 0.014, we can now readily determine
the two-way sensitivity function that describes how the probability of interest is affected by varying the two
parameter probabilities x = p(SCC < t | tp) and y = p(SCC < t | fp):

; (1) = 0.014 - x
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Figure 1(a) shows the part of the function fp,(|scc<¢)(w,y) that lies within the unit cube; the function
fer(fplsco<t) (2, y) describing the effects of varying the same parameter probabilities = and y on the com-
plementary output probability Pr(fp | SCC < t) is shown in Figure 1(b). From Figure 1(a), we read for
example that a large probability Pr(¢p | SCC < t) of an alert being truly positive given a small SCC value
can be found only for relatively small values of the parameter y. g

In Proposition 1, we derived the general form of a two-way sensitivity function which expresses an out-
put probability computed from a naive Bayesian network in terms of two parameter probabilities from the
conditional probability table of one of the network’s feature variables. This two-way function specifies a
value for the output probability of interest for each combination of values for the two parameters. We now
recall that our aim is to use two-way sensitivity analysis as a means for studying the effects of changing the
discretisation of a feature variable. In view of a variable’s discretisation, the two parameters under study are
not unrelated, as is assumed in a two-way sensitivity function in general. Since varying the threshold value
t in a discretisation affects all parameter probabilities for a feature variable, the two parameters under study
are dependent of ¢ and are actually varied as «(¢) and y(t); through the threshold value ¢ moreover, the pa-
rameters are related as y(t) = g(x(t)) for some function g. Studying the effects of changing a discretisation
thus requires the function o (1))
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where the constants a;, b;, i = 1, ..., 3, again are built from the non-varied parameters of the network under
study. Note that while this function essentially is a function in a single parameter probability, the effects of
a change in discretisation cannot be described by a one-way sensitivity function in one of the parameters
under study. To simplify our notations in the sequel, we will omit the explicit dependence of the parameter
probabilities x(¢) and y(t) on ¢ and once again write  and y for short.
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Figure 1: Two-way sensitivity functions for the alert variable given an SCC' value smaller than ¢, for the
parameter probabilities x = p(SCC < ¢ | tp) and y = p(SCC < t | fp) assuming functional independence.

We now observe that the sensitivity function in  and g(x) described above can only be detailed if we can
formally specify the function g which describes the relation between the parameters = and y through ¢. From
the way in which discretisations are formalised, we have that the function g cannot be any arbitrary function:
we know that the function is either monotonically non-decreasing or monotonically non-increasing.

Lemma 1. Ler E; be a binary discretised feature variable in a naive Bayesian network with the class
variable C. Now, let x = p(e} | ¢) and y = p(e] | &) be parameter probabilities for the values ¢}, e}
of E;, and let g be the function with y = g(z). Then, g is monotonically non-decreasing if e, = el and

monotonically non-increasing otherwise.

Proof. The property stated in the lemma is closely related to the well-known interdependence of test char-
acteristics from the field of epidemiology [13]]. The property can be easily verified by observing that as the
threshold ¢ is shifted to larger values of the continuous variable E;, the probability p(E; < ¢ | C) cannot
decrease regardless of the value of C'; similarly, the probability p(E; > t | C') cannot increase. O

From Lemma 1 we have that the function g which relates the two parameter probabilities = and y through
the discretisation under study, is monotonically non-decreasing if x and y pertain to the same feature value;
the function g is monotonically non-increasing otherwise. The precise form of the function g is defined by
further knowledge of the problem domain at hand.

Example 2. We consider again our problem of classifying alerts for clinical mastitis in cows. For construct-
ing our naive Bayesian networks, we had available a large number of real data from milkings on dairy farms.
These data show that the true function which relates the parameter probabilities z = p(SCC < t | tp) and
y = p(SCC < t| fp) through ¢, can be approximated by a linear function. By means of linear regression of
y on z, we found that the function y = 1.1700 - x — 0.0478 fitted the available data best. We now recall that
the surface fpy(sp|scc<t)(z,y) from Figure a) described the probability of interest Pr(tp | SCC < t)
in terms of the two parameters x and y under the assumption of functional independence. By intersect-
ing this surface with the plane y = 1.1700 - x — 0.0478, we can now find the function that expresses
Pr(tp | SCC < t) in terms of x taking its actual relationship with y into consideration. The intersection
curve thus describes the sensitivity of the probability of interest Pr(tp | SCC < t) to changes occasioned
in z as a result of varying the discretisation threshold value ¢. The curve is defined as:

_ 0.014 - x
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Figure [2{a) displays this function, along with the function for the complement of the probability of interest.
We observe that the depicted functions do not specify a value for the probability of interest for very small
values of the parameter x. This finding originates from the functional dependence of y on x: for very small
values for z, there are no matching values for y within the range (0, 1). The finding underlines our previous
observation that the depicted functions are no one-way sensitivity functions, but two-sensitivity functions
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Figure 2: The dimension-reduced sensitivity functions for the alert variable given an SCC' value smaller
than ¢, taking into account the functional dependence between x and y.

instead that are reduced in dimension as a result of the functional dependence of y on z. In Figure 2|b), the
two functions are shown again, this time from the perspective of the parameter y; the function describing
the dependence of x on y was approximated by linear regression to z = 0.845 - y + 0.0448. g

4 Studying the Effects of Discretisation on the Most Likely Class Value

In the previous section, we established sensitivity functions that describe the effects of changing the discreti-
sation of a continuous-valued feature variable on an output probability of interest computed from a naive
Bayesian network. In practice now, we are often not so much interested in an exact output probability, but in
the most likely value of the output variable instead. Of particular interest then becomes the question whether
changing the discretisation of a feature variable can result in a change of the output value. In general, we
have that parameter variation can result in such a change only if the sensitivity functions for the different
values of the class variable intersect. For the binary class variable and parameters presently under study, we
thus have that if the sensitivity functions for the complementary class probabilities intersect within the unit
cube, then a shift in value for the parameters can occasion a change in the most likely class value.

To address the question whether choosing an alternative discretisation for a feature variable E; can
result in a change in the most likely value of the class variable C, we consider the two sensitivity functions
Jrr(cle)(z,y) and fp(zle) (2, y) expressing the complementary probabilities Pr(c | e) and Pr(¢ | e) in terms
of the parameters 2 = p(e} | ¢) and y = p(e} | €). As before, we disregard at first the functional dependence
between the two parameter probabilities. For ease of exposition we further assume that the joint combination
of observed values e includes the value e} for E;. We now observe that the two class probabilities are equal
for values of the parameters = and y for which fp,(cje)(2,¥) = frr(ge) (¥, y) = 0.5. From this observation,
we have that the intersection of the two sensitivity functions is located in the horizontal plane f(x,y) = 0.5.
Using Proposition 1, we further find that the two functions intersect by a linear line:
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Recall that we have assumed that the prior probabilities of the class values are non-zero and that z, y € (0, 1).
Our assumption of non-zero parameter probabilities in general further guarantees that the constants a and
a’ are greater than zero, from which we conclude that the intersection line has a positive gradient. The
following lemma now shows that the intersection line passes through the unit cube.

Lemma 2. Let E; be a binary discretised feature variable in a naive Bayesian network with the class
variable C' and feature variables E. Let e be the combination of actually observed values for E and let ¢
be the value of E; in e. Now, let x = p(e} | ¢) and y = p(e} | ¢) be parameter probabilities for E;. Then,
the sensitivity functions fpy(c|e)(%,y) and fpr(ze) (T, y) intersect within the unit cube.



Proof. As argued above, the intersection of the sensitivity functions for the two class probabilities Pr(c | e)
and Pr(¢ | e) is a line with the constant (a - Pr(c))/(a’ - Pr(¢)) for its gradient. We further have seen
that the gradient of the intersection line is positive. Since the constants a,a’ and Pr(c), Pr(¢) involved are
all smaller than one, we find that there exists at least one feasible combination of values for the parameter
probabilities = and y with z,y € (0, 1): an example of such a combination is = a’ - Pr(¢), y = a - Pr(c).
We thus have that the intersection line has a point within the unit cube from which we conclude that the two
sensitivity functions intersect within the cube. O

So far we have not taken into consideration the functional relationship y = g(x) which exists between the
parameter probabilities  and y as a result of the discretisation. To study the effects of this relationship, we
now consider a specific discretisation of the feature variable E; under study; we suppose that this discreti-
sation is defined by the threshold value to and has associated the values xg, yo with yo = g(xq) for the
parameter probabilities  and y respectively. Without loss of generality, we assume that with the parame-
ter values xg, yo and with the evidence under consideration, the most likely value of the class variable is
equal to c. We observe that a change of this value can occur only if there exists a discretisation threshold
t; with associated parameter values z1,y; with y; = g(21), with which € is the most likely class value.
Note that the two pairs of parameter values (g, yo) and (z1,y;) would then lie on opposite sides of the
intersection line of the two sensitivity functions established above, when projected onto the horizontal plane
f(z,y) = 0.5 within the unit cube. We now observe that a discretisation threshold ¢; for which ¢ is the
most likely class value exists only if the intersection of the two sensitivity functions intersects itself with the
function y = g(x) within the unit cube, that is, if there exist values z, g(z) € (0, 1) for which
_a-Pr(c)
9(x) = a’ - Pr(e)
If such values exist, then a discretisation threshold ¢; exists, with associated parameter values x1, y1, with
which a change in the most likely class value will result; otherwise, the most likely class value returned
by the naive Bayesian network cannot be changed by choosing a different discretisation. We would like to
note that although an appropriate pair x1, y; of parameter values can be readily determined from the various
functions involved, a method for effectively establishing an associated discretisation threshold is yet to be
designed. The following example moreover shows that existence of an appropriate pair of values in theory
may not always make a realistic discretisation in practice.

Example 3. We consider again our problem of classifying alerts for clinical mastitis in dairy cows. In the
naive Bayesian network under consideration, we consider the parameter probabilities z = p(SCC < t | tp)
and y = p(SCC < t | fp) for the feature variable SCC. By setting the discretisation threshold for SCC at
to = 500,000 cells per ml milk, the values for the parameters = and y were established from the available
data to be zop = 0.67 and yo = 0.76, respectively. With these parameter values, an alert for a milking
with SCC < t is most likely to be false, that is, fp is the most likely class value. To study whether this
most likely value can be changed by choosing another threshold value for the variable SCC' in our simple
network, we first consider the intersection line of the two sensitivity functions fp,(s| Scc<t)($, y) and
fre(fplscc<t) (®,y). This line is found to be equal to
Pr(c) 0.014
YT Pre) " T 0086

located at f(x,y) = 0.5 within the unit cube. We now recall that the functional dependence between the
parameter probabilities x and y was approximated by the linear function y = 1.1700 - £ — 0.0478. The
intersection line of the two sensitivity functions intersects with this linear function at

0.0140

0.9860
that is, at x = 0.0414. Given the functional relationship between x and y, the corresponding value for the
parameter y is found to be 0.0006. We conclude that, in theory, it is possible to set a threshold value ¢,
with the associated parameter values x, y with x < xg and y < o, that changes the most likely class value
from fp to tp. Actually finding such a threshold value may be a challenge, however: to establish it from
data would require a very large dataset in order for such small values of = and y to be estimated reliably. In
addition, small values for x and y could be achieved only by setting the threshold value to an unrealistically
low level of SCC. We conclude that in our domain of application, there exists no acceptable alternative
discretisation for the feature variable SCC' that would change the most likely class value in the presence of
observed small SCC values. O

T

cx=1.17-2 —0.0478




5 Conclusions and Further Research

Focusing on binary naive Bayesian networks, we initiated a study into the effects of changing the discreti-
sations of a network’s feature variables on the posterior probabilities computed for its class variable. We
showed that recent insights from the field of sensitivity analysis of Bayesian networks serve to analytically
describe the effects of changing discretisations. We argued more specifically that changing the discretisa-
tion of a feature variable occasions shifts in the values of all its parameter probabilities. We showed how the
functional relationship that is thus induced between these parameters, can be explicitly taken into account
upon establishing the required sensitivity functions. We further described a method for establishing whether
or not an alternative discretisation can change the class values established from a naive Bayesian network.
This method has theoretical value, but currently is not yet practically applicable. So far moreover, we fo-
cused on binary discretisations and binary class variables, which were reasonable restrictions for our domain
of application. More generally, we envision a similar approach for studying the effects of discretisations in
more than two intervals and for non-binary class variables, which will involve higher-dimensional sensitiv-
ity functions. In the near future, we will focus on these issues and hope to arrive at a general, practically
applicable method for studying the effects of discretisations in Bayesian networks.
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