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Abstract. Bayesian networks typically require thousands of probability param-
eters for their specification, many of which are bound to be inaccurate. Knowl-
edge of the direction of change in an output probability of a network occasioned
by changes in one or more of its parameters, i.e. the qualitative effect of pa-
rameter changes, has been shown to be useful both for parameter tuning and in
pre-processing for inference in credal networks. In this paper we identify classes
of parameter for which the qualitative effect on a given output of interest can be
identified based upon graphical considerations.

1 Introduction

A Bayesian network defines a unique joint probability distribution over a set
of discrete random variables [8]. It combines an acyclic directed graph, repre-
senting the independences among the variables, with a quantification of local
discrete distributions. The individual probabilities of these local distributions
are called the parameters of the network. A Bayesian network can be used to
infer any probability from the represented distribution.

The effect of possible parameter inaccuracies on the output probabilities of
a network can be studied with a sensitivity analysis. An output can be described
as a fraction of two functions that are linear in any network parameter; the
coefficients of the functions are determined by the non-varied parameters [6].
Depending on the coefficients, such so-called sensitivity functions are either
monotone increasing or monotone decreasing functions in each parameter. In-
terestingly, as we showed in previous research, for some outputs and parameters,
the sensitivity function is even always increasing (or decreasing) regardless of
the specific values of the other network parameters [1]. That is, regardless of the
specific quantification of a network, the coefficients of the sensitivity function
for a certain parameter can be such that the gradient is always positive (or al-
ways negative). In such a case, the qualitative effect of a parameter change on
an output probability can be predicted from properties of the network structure,
without considering the values of the other network parameters.



Knowledge of the qualitative effect of parameter changes can be exploited
for different purposes. Examples of applications can be found in pre-processing
for inference in credal networks [1] and in multi-parameter tuning of Bayesian
networks [2].

In this paper we present a complete categorisation of a network’s parameters
with respect to their qualitative effect on some output, where we assume that
the network is pruned before hand to a sub-network that is computationally
relevant to the output. The paper extends the work in [1] in which only a partial
categorisation of the network parameters was given. Compared to our previous
results, the present results also enable a meaningful categorisation for a wider
range of parameters.

2 Preliminaries

2.1 Bayesian Networks and Notation

A Bayesian network B = (G,Pr) represents a joint probability distribution Pr
over a set of random variables W as a factorisation of conditional distribu-
tions [5]. The independences underlying this factorisation are read from the
directed acyclic graph G by means of the well-known d-separation criterion.
In this paper we use upper case W to denote a single random variable, writing
lowercase w ∈W to indicate a value of W . For binary-valued W , we use w and
w to denote its two possible value assignments. Boldfaced capitals are used to
indicate sets of variables or sets of value assignments, the distinction will be
clear from the context; boldface lower cases are used to indicate a joint value
assignment to a set of variables.

Two value assignments are said to be compatible, denoted by ∼, if they
agree on the values of the shared variables; otherwise they are said to be incom-
patible, denoted by �. We use Wpa(V ) = W∩ pa(V ) to indicate the subset of W
that is among the parents of V , and Wpa(V ) = W\Wpa(V ) to indicate its comple-
ment in W; descendants of V are captured by de(V ). To conclude, 〈T,U|V〉d ,
T,U,V ⊆W, denotes that all variables in T are d-separated from all variables
in U given the variables in V, where we assume that 〈T, /0|V〉d = True.

A Bayesian network specifies for each variable W ∈W exactly one local
distribution Pr(W |π) over the values of W per value assignment π to its parents
pa(W ) in G, such that

Pr(w) = ∏
W∈W

Pr(w|π)
∣∣
wπ∼w

where the notation |prop is used to indicate the properties the arguments in the
preceding formula adhere to. The individual probabilities in the local distri-
butions are termed the network’s parameters. A Bayesian network allows for



computing any probability over its variables W. A typical query is Pr(h|f), in-
volving two disjoint subsets of W, often referred to as hypothesis variables (H)
and evidence variables (F); W can also include variables not involved in the
output query of interest.

Fig. 1: An example
Bayesian network (with
just two of its CPTs).

Fig. 2: The example network from Figure 1 after
query dependent preprocessing given the output
probability Pr(ghk |de f ).

An example Bayesian network is shown in Figure 1. For output Pr(ghk |de f )
we identify hypothesis variables H = {G,H,K} (double circles), evidence vari-
ables F = {D,E,F} (shaded), and remaining variables {R,S}. In addition to the
graph, conditional probability tables (CPTs) need to be specified for each node.

2.2 Query Dependent Pre-Processing

Prior to computing the result of a query, the Bayesian network can be pre-
processed by removing parts of its specification that are easily identified as
being irrelevant to the computations. Sets of nodes that can be removed based
upon graphical considerations only are nodes d-separated from H given F, ir-
relevant evidence nodes (effects blocked by other evidence), and barren nodes,
that is, nodes in W \ (H∪F) which are leafs or have only barren descendants;
the remaining nodes coincide with the so-called parameter sensitivity set [3,7].
In addition, evidence absorption can be applied, where the outgoing arcs of
variables with evidence are removed and the CPTs of the former children are
reduced by removing the parameters that are incompatible with the observed
value(s) of their former parent(s) [4]. After evidence absorption, all variables
with evidence correspond to leafs in the graph and the CPT parameters of their
former children will all be compatible with the evidence.

From here on we consider Bayesian networks that are reduced to what we
call its query-dependent backbone Bq, using the above-mentioned pre-processing



options1. Bq, tailored to the original query Pr(h|f), is assumed to be a Bayesian
network over variables V ⊆W from which the now equivalent query Pr(h|e)
is computed for evidence variables E ⊆ F; the remaining variables V\ (H∪E)
will be denoted by R.

The backbone given output Pr(ghk |de f ) in our example network from Fig-
ure 1 is depicted in Figure 2. After evidence absorption, the arc from F to K and
the last two rows of K’s CPT are removed. The node S is removed since it is
barren, and D is removed, since it is d-seperated from the variables in H given
F. In the backbone network we have the hypothesis variables H = {G,H,K},
the evidence variables E = {E,F} and the remaining variable R = {R}.

2.3 Relating Queries to Parameters

It is well-known that an output of a Bayesian network relates to a network pa-
rameter x as a fraction of two functions linear in that parameter:

Pr(h|e)(x) = Pr(he)(x)
Pr(e)(x)

=
τ1 · x+ τ2

κ1 · x+κ2

where the constants τ1,τ2,κ1 and κ2 are composed of network parameters in-
dependent of x [3]. The above function can be generalised to multiple param-
eters [6] and is typically exploited in the context of sensitivity analysis, to de-
termine how a change in one or more parameters affects Pr(h|e). We note that
upon varying a parameter x of a distribution, the other parameters of the same
distribution have to be co-varied to let the distribution sum to 1. If the distribu-
tion is associated with a binary variable, the co-varying parameter equals 1− x.
If a variable is multi-valued, however, different co-variation schemes are possi-
ble [9]. Sensitivity functions are monotonic functions in each parameter, and are
either increasing or decreasing functions in such a parameter. Here we consider
increasing (decreasing) in a non-strict sense, that is, increasing (decreasing) in-
cludes non-decreasing (non-increasing).

3 Categorisation of Parameters in a Backbone Network Bq

We will discuss the parameters of the variables in R, H and E of a backbone
network and categorise these parameters according to their qualitative effect on
Pr(h|e) as summarised in Table 1. In the proofs of our propositions we repeat-
edly use the definition of conditional probability and the factorisation defined

1 Note that the parameters of the local distributions that are in B but not in Bq do not affect the
output of interest in any way.



by Bq:

Pr(h|e) = Pr(he)
Pr(e)

in which for the numerator Pr(he) we find

Pr(he) = ∑
r∈R

Pr(rhe) = ∑
r∈R

∏
V ∗∈V

Pr(v∗ |π∗)
∣∣
v∗π∗∼rhe (1)

and for the denominator Pr(e) we find that

Pr(e) = ∑
r∈R,h∗∈H

Pr(rh∗e) = ∑
r∈R,h∗∈H

∏
V ∗∈V

Pr(v∗ |π∗)
∣∣
v∗π∗∼rh∗e (2)

Parameters which are not present in Equation (1) and (2) cannot affect the out-
put directly and are categorised as ’∗’. The effect of all other parameters is
investigated by studying properties of their sensitivity functions Pr(h|e)(x). Pa-
rameters that are guaranteed to give a monotone increasing sensitivity function
are classified as ’+’; parameters that are guaranteed to give monotone decreas-
ing sensitivity functions as ’−’. Parameters for which the sign of the derivative
of the sensitivity function depends on the actual quantification of the network
will be categorised as ’?’. Note that sensitivity functions for parameters of cate-
gory ’∗’ are not necessarily constant: variation of such a parameter may result
in co-variation of a parameter from the same local distribution which is present
in Equation (1) or (2). As such, parameters of category ’∗’ may be indirectly af-
fecting output Pr(h|e), yet for its computation it suffices to know the values of
parameters outside category ’∗’ only. In the relation between parameter changes
and output changes therefore these latter parameters are pivotal.

For the backbone network of our example in Figure 2, the categories of its
parameters are indicated in the CPTs.

4 Categorisation of the Parameters of Variables in R and H

4.1 Parameters of Variables in R

For a variable R ∈ R the qualitative effect of a change in one of its parameters
x cannot be predicted without additional information: the sensitivity function
Pr(h|e)(x) can be either monotone increasing or decreasing. Therefore, these
parameters are categorised as ’?’.

Proof of the above claim, and of all further propositions concerning parame-
ters in the category ’?’, is omitted due to space restrictions. All these proofs are
based on demonstrating that additional knowledge—for example the specific
network quantification—is required to determine whether the one-way sensitiv-
ity function is increasing or decreasing.



Table 1: Categorisation of parameters x = Pr(v|π) of a Bayesian network Bq

with respect to the output probability Pr(h|e).
V ∈ R cat ’?’

V ∈H

E∩de(V ) = /0
v∼ h, π ∼ h cat ’+’

v � h or π � h cat ’∗’

E∩de(V ) 6= /0

non-binary V cat ’?’

binary V

π � h cat ’?’

π ∼ h

¬〈Hpa(V ),Rpa(V ) |E∪Hpa(V )∪V 〉d cat ’?’

〈Hpa(V ),Rpa(V ) |E∪Hpa(V )∪V 〉d
v∼ h cat ’+’

v � h cat ’−’

V ∈ E

v � e cat ’∗’

v∼ e

π � h cat ’−’

π ∼ h
¬〈Hpa(V ),Rpa(V ) |E∪Hpa(V )〉d cat ’?’

〈Hpa(V ),Rpa(V ) |E∪Hpa(V )〉d cat ’+’

4.2 Parameters of Variables in H without Descendants in E

The propositions in this section concern parameters x = Pr(v|π) of nodes V ∈
H without descendants in E. The parameters of such a node which are fully
compatible with h have a monotone increasing sensitivity function Pr(h|e)(x)
and therefore are classified as ’+’. The parameters not fully compatible with h
are not used in the computation of Pr(h|e) and therefore are classified ’∗’.

Proposition 1 Consider a query-dependent backbone Bayesian network Bq

with probability of interest Pr(h|e). Let x = Pr(v|π) be a parameter of a vari-
able V ∈ H such that de(V )∩E = /0. If both v ∼ h and π ∼ h, then Pr(h|e)(x)
is a monotone increasing function.

Proof Let rπ denote the configuration of Rpa(V ) compatible with π . In addition,
let h = vhπhπ , where hπ and hπ are assignments, compatible with h, to Hpa(V )

and Hpa(V ), respectively. First consider the general form of Pr(he) given by
Equation (1). We observe that under the given conditions we can write:

Pr(he)(x) = x·Pr(hπ |vhπerπ) ·
Pr(vhπerπ)

Pr(v|π)
+ ∑

r+∈Rpa(V )

Pr(vhπhπer+)
∣∣
r+ 6=rπ

where Pr(vhπerπ)/Pr(v|π) represents a sum of products of parameters no longer
including Pr(v|π). This expression thus is of the form x·τ1 ·τ2 + τ3, for non-
negative constants τ1,τ2,τ3.



For Pr(e), as given in Equation (2), we observe that since V has no descen-
dants in E, this node in fact is barren with respect to Pr(e). As a result, none of
V ’s parameters are relevant to the computation and Pr(e)(x) therefore equals a
constant κ1 > 0.

The sensitivity function for parameter x thus is of the form Pr(h|e)(x) =
(x ·τ1 ·τ2 + τ3)/κ1 with τ1,τ2,τ3 ≥ 0 and κ1 > 0. The first derivative of this
function equals (τ1·τ2)/κ1, which is always non-negative. 2

Proposition 2 Let Bq and Pr(h|e) be as before. Let Pr(v|π) be a parameter of
a variable V ∈ H such that de(V )∩E = /0. If v � h or π � h, then Pr(v|π) is
not used in the computation of Pr(h|e).

Proof We again consider Pr(he) as given by Equation (1) and observe that a
parameter Pr(v|π) with v � h or π � h is not included in this expression. More-
over, as argued in the proof of Proposition 1, no parameter of V is used in com-
puting Pr(e) from Equation (2). Pr(v|π) is therefore not used in the computation
of Pr(h|e). 2

4.3 Parameters of Variables in H with Descendants in E

For a parameter of a non-binary variable V ∈H with at least one descendant in
E, we cannot predict without additional knowledge whether the sensitivity func-
tion Pr(h|e)(x) is monotone increasing or monotone decreasing. These param-
eters therefore are classified as ’?’. The same observation applies to a parameter
of a binary variable V ∈H with descendants in E for which π � h or for which
Hpa(V ) and Rpa(V ) are not d-separated given Hpa(V ), V itself and the evidence.

If V ∈ H is binary, π ∼ h and Hpa(V ) and Rpa(V ) are d-separated given
Hpa(V ), V itself and the evidence, then we do have sufficient knowledge to de-
termine the qualitative effect of varying parameter x = Pr(v|π) of V . If v ∼ h
then Pr(h|e)(x) is monotone increasing, and the parameter is classified as ’+’.
If v � h then Pr(h|e)(x) is monotone decreasing, and the parameter is classified
as ’−’ These observations are captured by Proposition 3. This proposition ex-
tends Proposition 2 in [1] by replacing the condition that Rpa(V ) = /0 by the less
strict d-separation condition mentioned above.

Proposition 3 Let Bq and Pr(h|e) be as before. Let Pr(v|π) with π ∼ h be
a parameter of a binary variable V ∈ H and let 〈Hpa(V ),Rpa(V ) |E∪Hpa(V ) ∪
V 〉d . If v ∼ h then Pr(h|e)(x) is a monotone increasing function; if v � h then
Pr(h|e)(x) is a monotone decreasing function.

Proof First consider the case where v∼ h. Under the given conditions we have
from the proof of Proposition 1 that Pr(he) takes on the form Pr(he)(x) = x·τ1·
τ2 + τ3, for constants τ1,τ2,τ3 ≥ 0.



For Pr(e) and binary V we note that Equation (2) can be written as

Pr(e)(x) = x·Pr(vhπrπe)
Pr(v|π)

+(1− x)·Pr(vhπrπe)
Pr(v|π)

+ ∑
r+∈Rpa(V )

Pr(vhπr+e)
∣∣
r+ 6=rπ

+ ∑
r+∈Rpa(V )

Pr(vhπr+e)
∣∣
r+ 6=rπ

+ ∑
h+∈Hpa(V )

Pr(h+e)
∣∣
h+ 6=hπ

which takes on the following form: Pr(e)(x) = x·τ2 +(1−x)·κ2 +κ1 +κ3 +κ4,
with constants κi ≥ 0, i = 1, . . . ,4.

The sign of the derivative of the sensitivity function is determined by the
numerator τ1·τ2·(κ1 +κ2 +κ3 +κ4)− τ3·(τ2−κ2) of Pr(h|e)′(x). We observe
that given 〈Hpa(V ),Rpa(V ) |E∪Hpa(V )∪V 〉d we find that τ1·κ1 = τ3 which guar-
antees the derivative to be non-negative. This implies that, for v∼ h, Pr(h|e)(x)
is a monotone increasing function.

Now consider the case where v � h. Since V is binary, this implies that
v∼ h. The proof for this case follows by replacing, in the above formulas, every
occurrence of v by v and, hence, every x with 1− x. As a result we find that in
this case Pr(h|e)(x) is a monotone decreasing function. 2

5 Categorisation of the Parameters of the Variables in E

5.1 Parameters Pr(v|π) of a Variable V ∈ E with v � e

Recall that after evidence absorption all parameters with π � e are removed
from the network. For a parameter Pr(v|π) of a variable in V ∈ E, however, we
may still find that v � e; these parameters are in category ’∗’.

Proposition 4 Let Bq and Pr(h|e) be as before. Let Pr(v|π) be a parameter
of a variable V ∈ E. If v � e, then Pr(v|π) is not used in the computation of
Pr(h|e).

Proof This proposition is equivalent to Proposition 3 in [1], but stated for Bq

rather than for B. 2

5.2 Parameters Pr(v|π) of a Variable V ∈ E with v∼ e and π � h

We now consider the parameters Pr(v|π) of V ∈ E, with v ∼ e and π � h.
The one-way sensitivity functions of such parameters are monotone decreasing.
These parameters therefore are categorised as ’−’.

Proposition 5 Let Bq and Pr(h|e) be as before. Let x= Pr(v|π) be a parameter
of V ∈ E such that v ∼ e. If π � h, then Pr(h|e)(x) is a monotone decreasing
function.



Proof This proposition is equivalent to Proposition 1 in [1], but stated for Bq

rather than for B. 2

5.3 Parameters Pr(v|π) of a Variable V ∈ E with v∼ e and π ∼ h

We now consider parameters Pr(v|π) of V ∈ E with v∼ e and π ∼ h. The one-
way sensitivity functions of such parameters are monotone increasing under the
condition that Hpa(V ) is d-separated from Rpa(V ) given Hpa(V ) and the evidence.
Under this condition, these parameters therefore can be categorised as ’+’. This
proposition extends Proposition 1 in [1] by replacing the condition that Rpa(V ) =
/0 by the less strict d-separation condition mentioned above.

Proposition 6 Let Bq and Pr(h|e) be as before. Let x = Pr(v|π) with v ∼ e
and π ∼ h be a parameter of V ∈ E and let 〈Hpa(V ),Rpa(V ) |Hpa(V )∪E〉d . Then
Pr(h|e)(x) is a monotone increasing function.

Proof For Pr(he) we observe that Equation (1) can be written as the expression
in the proof of Proposition 1, but with v included in e rather than in h. We
therefore have that Pr(he)(x) = x·τ1·τ2 + τ3 for constants τ1,τ2,τ3 ≥ 0.

For Pr(e), given by Equation (2), we observe that we can write

Pr(e)(x) = x·Pr(hπrπe)
Pr(v|π)

+ ∑
r+∈Rpa(V )

Pr(hπer+)
∣∣
r+ 6=rπ

+ ∑
h+∈Hpa(V )

Pr(h+e)
∣∣
h+ 6=hπ

which is of the form x·τ2 +κ1 +κ2, for constants κ1,κ2 ≥ 0.
We now find that the numerator of the first derivative of the sensitivity func-

tion equals τ1·τ2·(κ1+κ2)−τ2·τ3. We observe that given 〈Hpa(V ),Rpa(V ) |Hpa(V )∪
E〉d we find that τ1·κ1 = τ3 which guarantees the derivative to be non-negative.
This implies that Pr(h|e)(x) is a monotone increasing function.

2

In case the above mentioned d-separation property does not hold, we need
additional information to predict whether the sensitivity function Pr(h|e)(x) of
a parameter x of a variable V ∈ E with v∼ e and π ∼ h is monotone increasing
or monotone decreasing, without additional knowledge. If the property does not
hold, therefore, these parameters are in category ’?’.

6 Discussion

In this paper we presented fundamental results concerning the qualitative ef-
fect of parameter changes on the output probabilities of a Bayesian network.
Based on the graph structure and the query at hand, we categorised all network



parameters into one of four categories: parameters not included in the computa-
tion of the output, parameters with guaranteed monotone increasing sensitivity
functions, parameters with guaranteed monotone decreasing sensitivity func-
tions, and parameters of which the qualitative effect cannot be predicted with-
out additional information. Previously we demonstrated that knowledge of the
qualitative effects can be exploited in inference in credal networks [1] and in
multiple-parameter tuning of Bayesian networks [2]. In our previous research
only a partial categorisation of the parameters was given. Our present paper al-
locates a wider range of parameters into one of the meaningful categories ’+’,
’−’ and ’∗’. For future research we would like to further study properties of the
additional information required to predict the qualitative effect of the parameters
in category ’?’.
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