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Abstract. Normative monitoring of black-box AI systems entails de-
tecting whether input-output combinations of AI systems are acceptable
in speci�c contexts. To this end, we build on an existing approach that
uses Bayesian networks and a tailored con�ict measure called IOcon�.
In this paper, we argue that the default �xed threshold associated with
this measure is not necessarily suitable for the purpose of normative
monitoring. We subsequently study the bounds imposed on the measure
by the normative setting and, based upon our analyses, propose a dy-
namic threshold that depends on the context in which the AI system
is applied. Finally, we show the measure and threshold are e�ective by
experimentally evaluating them using an existing Bayesian network.

Keywords: Bayesian Networks · Con�ict Measures · Responsible AI ·
Normative Monitoring.

1 Introduction

Given the omnipresence of AI systems, it is important to be able to guarantee
their safety and reliability within their context of use, especially when the AI
system is a black-box that is not easily interpretable or su�ciently transparent.
To this end, we previously introduced a novel framework for model-agnostic
normative monitoring under uncertainty [8,9]. Since the exact design underlying
the system being monitored is irrelevant, we simply refer to it as the `AI system';
our only assumption is that this system has excellent general performance on the
task for which it is designed. However, the AI system can be employed in di�erent
environments in each of which additional context-speci�c rules, protocols, or
other types of values or norms exist or emerge, which need to be adhered to. To
determine whether the AI system operates acceptably in the context of a given
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environment, we need to monitor the system for adhering at run-time, preferably
using interpretable and model-agnostic methods.

The framework for normative monitoring under uncertainty includes, in ad-
dition to the AI system, a normative model and a monitoring process [8,9]. The
normative model captures the input-output pairs of the AI system, as well as
variables that describe information that is relevant to the speci�c environment
and context in which the AI system operates. In some situations, this context
may dictate that the output provided by the AI system is undesirable or un-
acceptable. In that case, a warning has to be issued by the monitoring process
when it compares the input-output pair of the AI system against the normative
model.

Previously, we proposed the use of Bayesian Networks (BNs) to implement
the normative model and we adjusted a con�ict measure for BNs to compare
the in-context behaviour of the AI system against the normative model [9]. The
adjusted measure, IOcon�, comes with an intrinsic threshold that can be used
to determine whether or not to �ag an input-output pair of the AI system as
possibly unacceptable in the current context. However, the suitability of this
threshold for the purpose of normative monitoring was not investigated.

In the current paper, we therefore further study and evaluate the adjusted
measure and the intrinsic threshold for the normative monitoring setting. We
analyse the bounds imposed on the IOcon� measure by our normative setting
and propose a new dynamic, context-speci�c, threshold. In addition, we com-
pare di�erent measures and thresholds in a controlled experimental setting and
demonstrate that our proposed measure and threshold serve to take context into
account and result in �agging behaviour that is di�erent from the considered
alternatives.

Our paper is organised as follows. After providing preliminaries in Section 2,
we further review di�erent measures in Section 3. In this section, we also dis-
cuss the suitability of the related thresholds for the purpose of monitoring. In
Sections 4 and 5, we analyse the bounds on the IOcon� measure and de�ne the
dynamic threshold. We experimentally evaluate the use of the measure and im-
pact of the chosen threshold in Section 6 and conclude the paper with Section 7.

2 Preliminaries

In this section we introduce our notations and provide formal de�nitions of the
di�erent components in our framework. A schematic overview of the framework is
given in Fig. 1 (see [9] for further details). The framework assumes that both the
AI system and the normative model can be interpreted as probabilistic models
that somehow represent or re�ect a probability distribution Pr over a set of
random variables, that is, both models capture the dependencies along with
their uncertainties as present in a part of the real world (the target system).

We use capital letters to denote variables, bold-faced in case of sets, and
consider distributions Pr(V) over a set of random variables V. Each variable
V ∈ V can be assigned a value v from its domain Ω(V ); a joint value assignment
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Fig. 1. Overview of the framework for normative monitoring under uncertainty, includ-
ing (1) a normative model, (2) an AI system, and (3) a monitoring process.

(or con�guration) v1∧ . . .∧vn to a set of n variables V = {V1, . . . , Vn} is denoted
by v ∈ Ω(V) =×n

i=1
Ω(Vi). The normative model and AI system can now be

de�ned as follows (generalised from [9]):

� the AI system represents a joint distribution PrS(VS) over a set of variables
VS = IS ∪OS , where IS and OS are non-empty sets of input variables and
output variables, respectively;

� the normative model represents a joint distribution PrN (VN ) over a set
of variables VN = IN ∪ ON ∪ A, where IN and ON result from (easy)
mappings IS → IN and OS → ON , and A = C ∪H is a set of additional
variables, including a non-empty set of context variables C and possibly
other hypothesis or hidden variables H.

Superscripts indicate the type of model that the variables and distributions
belong to, where S refers to the AI system and N to the normative model.
Without loss of generality and for ease of exposition, we take IS = IN and
OS = ON = {O} in this paper.

In the current paper we assume that the normative model is implemented
by a Bayesian network. Bayesian networks (BNs) are probabilistic graphical
models that are interpretable and can be handcrafted [6]. Interpretability and
transparency of (part of) the normative model is important since it includes
variables speci�c to the context in which the AI system operates, and we assume
that expert knowledge is needed to design and interact with it. To be precise, a
BN B = (G,Pr) is a compact representation of a joint probability distribution
Pr(V) that combines an acyclic directed graph G, with nodes V and directed
edges that describe the (in)dependences among V, with local distributions spec-
i�ed for each variable, conditional on its parents in the graph G [3]. As such, BNs
allow for computing any probability of interest from their distribution, which fa-
cilitates the computation of various measures that could be employed in the
monitoring process to �ag for unacceptable input-output pairs.
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3 Measures and Thresholds

In our normative monitoring setting we want to �ag an input-output pair of the
AI system when the input-output combination is considered to be undesirable
or unacceptable in the current context, according to the normative model. To
determine the extent to which the AI system's input-output pair is acceptable, a
measure and a corresponding threshold are required to determine when to raise
a �ag. In this section we review two measures used for the purpose of Anomaly
Detection (AD), a setting related to ours. In addition, we consider a measure
proposed explicitly for the normative monitoring setting. Subsequently we will
discuss the associated thresholds and argue that the choice of such a threshold,
even for measures that have a seemingly intrinsic one, is not trivial.

3.1 Measures

The purpose of AD is to determine whether a set of observations in the real
world should be classi�ed as anomalous [1]. To this end, the observed behaviour
is typically compared against a model of normal behaviour using one of many
anomaly detection techniques. Among such techniques are Bayesian networks,
used in combination with a likelihood measure [4] or a measure of con�ict [7].

Johansson and Falkman [4], for example, train a BN to represent normal
maritime vessel behaviour and use the likelihood Pr(v) of an instance of ves-
sel behaviour v to detect anomalous behaviour. An instance is �agged when
its probability of occurrence is low. However, rare behaviour is not necessarily
anomalous [5]. To overcome this issue, likelihood of an instance v = v1∧ . . .∧vn,
n ≥ 2, can be compared to the probability of the observations occurring inde-
pendently: (Pr(v1) · . . . · Pr(vn))/Pr(v). This con�ict measure, introduced by
Jensen et al. [2], was used by Nielsen and Jensen [7] to detect anomalies in pro-
duction plants based upon sensor readings. In case of normal behaviour, again
captured by a BN, the sensor readings should be positively correlated, regardless
of whether their combination is rare. An instance is �agged when the combina-
tion of observations seems internally incoherent.

In the normative monitoring setting, we want to detect input-output pairs
for which the output seems inconsistent with the input in the context prescribed
by the normative model. For this it does not matter whether or not the input-
output pair is rare. To this end we proposed an adapted version of the con�ict
measure, IOconfl(o, i | c) [9]:

IOconfl(o, i | c) = log
PrNc (o) · PrNc (i1 ∧ . . . ∧ in)

PrNc (o ∧ i1 ∧ . . . ∧ in)
(1)

where i = i1 ∧ . . . ∧ in, n ≥ 1, is input for the AI system, o is the associated
output returned by the AI system, and PrNc (·) is a short hand for PrN (· | c)
with c a con�guration for one or more of the context variables C from the
normative model. Note that the IOcon� measure di�ers from the original con�ict
measure by separating only the marginal over the output o from the joint over
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the inputs i1, . . . , in, which e�ectively eliminates the e�ect of con�ict within the
input of the AI system [9]. Moreover, the IOcon� measure takes into account the
speci�c context prescribed by the normative model. The probabilities in Eq. 1
are therefore computed from the normative model, and conditioned on a speci�c
context c.

3.2 Thresholds

In the monitoring process, any measure needs a threshold to decide between
�agging or not �agging. The likelihood measure, aside from only detecting rare
cases, requires a threshold δ to be set to capture when a case is rare enough to
�ag: Pr(v) ≤ δ. The choice of threshold must be based on expert knowledge,
taking into account the cost of false positives and false negatives in the domain
of application [4]. A bene�t of the Jensen con�ict measure is that the choice of
threshold appears easy, since it has an intrinsic threshold of 0: if the measure
exceeds log 1 = 0 then it is more likely to �nd the combination of observations
assuming they are independent (the product of marginals) rather than by as-
suming their dependencies as captured in the BN's joint distribution. According
to the BN, therefore, the instance is incoherent if its con�ict value exceeds 0.

The same intrinsic threshold of log 1 = 0 seems an intuitively appealing
default threshold for the adjusted con�ict measure IOcon�. Using this threshold
would entail that an input-output pair of the AI system is �agged when the
input and its associated output are not correlated positively according to the
normative model. This situation is, however, not necessarily what we want to
�ag. Instead, we want to �nd a threshold that enables �agging for a situation
where, according to the context prescribed by the normative model, the output
is not acceptable given the input. To reconsider the choice for this intrinsic
threshold, we study how the constraints imposed by the normative monitoring
setting a�ect the values of the IOcon� measure.

4 Bounding IOcon�

To better understand the IOcon� measure from Eq. 1, we will study its bound-
aries under various conditions speci�c to the normative monitoring setting.
Firstly, we assume that the AI system returns the output that is most likely,
according to PrS , given the input, i.e. the AI system returns (ties disregarded):

o∗ = arg max
ok∈Ω(O)

PrS(ok | i)

Thus, if outcome variable O has r values, then PrS(o∗ | i) ∈ [ 1r , 1].
To facilitate our analysis of IOconfl(o, i | c) with o = o∗, we disregard the

log term and rewrite the remaining expression using the de�nition of conditional
probability. Recall that {O} = OS = ON ; we thus consider boundaries on α as
de�ned by:

α
def

=
PrNc (o∗) · PrNc (i)

PrNc (o∗ ∧ i)
=

PrNc (o∗)

PrNc (o∗ | i)
(2)
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Fig. 2. The range of values for PrNc (o | i) for which o is or is not guaranteed to be the
most likely value of O given i in context c.

In general, the IOcon� measure can take on any value in the interval (−∞,∞),
and therefore α ∈ (0,∞). Here we exclude the possibility of a degenerate `prior'
where PrNc (o∗) = 0 or PrNc (o∗) = 1, since in that case PrNc (o∗ | i) = PrNc (o∗) for
all i. Given that PrNc (o∗ | i) ≤ 1, we now in fact �nd a lower bound: PrNc (o∗) ≤ α.

To �nd an upper bound, we �rst consider the special case where the AI system
and the normative model have the same distribution over the shared variables,
and no context variables are observed. That is, PrNc = PrN and PrN (o∗ | i) =
PrS(o∗ | i) ∈ [ 1r , 1] too. We now �nd the following boundaries on α:

α =
PrN (o∗)

PrN (o∗ | i)
=

PrN (o∗)

PrS(o∗ | i)
∈ [PrN (o∗), r · PrN (o∗)] (3)

In this case, the con�ict between o and i as computed from the normative model
is equivalent to the con�ict we would compute for the AI system, had we known
the distribution PrS . This is however not the aim of normative monitoring.

Upon including context we must generally assume that PrNc 6= PrS and
PrNc (o∗ | i) 6= PrS(o∗ | i). In fact, o∗ need not be the most likely value of O given
i according to PrNc .

1 We will distinguish three cases where according to PrNc
o∗ is (1) de�nitely not the most likely value, (2) not guaranteed to be the most
likely value, and (3) de�nitely the most likely value. These three cases, together
with the associated range of posterior probabilities, are illustrated in Fig. 2.

In the �rst case, we have that PrNc (o∗ | i) < 1
r . As a result, we may �nd

values of α > r · PrNc (o∗), which means that the upper-bound in Eq. 3 may no
longer hold and all we know is that α ∈ [PrNc (o∗),∞). In the second case, we
have that PrNc (o∗ | i) ∈ [ 1r ,

1
2 ) and, as a result, α ∈ (2 PrNc (o∗), r · PrNc (o∗)]. In

this case we either have that o∗ is the most likely value given i in PrNc too, or
there exists an o ∈ Ω(O), o 6= o∗, with PrNc (o | i) > PrNc (o∗ | i). Note that
for binary-valued output variables (r = 2), this case does not exist. Finally, in
the third case, PrNc (o∗ | i) ≥ 1

2 , resulting in α ∈ [PrNc (o∗), 2 PrNc (o∗)]. Here o∗

is the most likely value (disregarding ties) given i in both PrNc and PrS . Fig. 3
summarises the intervals found for α in the di�erent cases.

1 Even without including context, there can be various reasons why o∗ need not be
the most likely value of O given i in PrN , for one thing because the normative model
is not designed to make predictions regarding the value of O.
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Fig. 3. Bounds on α, depending on PrNc (o∗) and r = |Ω(O)|. The top line corresponds
to cases (2) and (3); the second line to case (1). r ·PrNc (o∗) and 2PrNc (o∗) coincide for
binary-valued O.

5 Choosing a threshold

Recall that the IOcon� measure has an intrinsic threshold of 0 = log 1 which cor-
responds to α = 1. We will now use our above analyses to propose an alternative
threshold on α, and hence on IOcon�.

From our analyses above we have that in the absence of context-speci�c
information, α ∈ [PrN (o∗), r · PrN (o∗)] for an r-ary output variable, under the
assumption that PrN = PrS (Eq. 3). Whether or not α can exceed the default
�agging threshold of 1, therefore depends on the number of possible values of
output variable O and the prior PrN (o∗). More speci�cally, α can only exceed 1
if PrN (o∗) > 1

r > PrN (o∗ | i). That is, it can only �ag cases for which the output
from the AI system is a priori the most likely, or possibly most likely, according
to both the AI system and the normative model (see Fig. 2), and becomes less
likely upon observing input i.

The above case captures a situation in which the normative model is not truly
exploiting any context-speci�c information and hence does not add anything on
top of what the AI system is doing. Assuming that the AI system is in essence
an accurate model for the task it is designed to perform, we should therefore
refrain from �agging in cases where PrNc and PrS agree. This suggests that an
appropriate threshold on α for this case is r · PrNc (o∗).

For the cases in which the provided context actually makes a di�erence in
the normative model, we expect to �nd that PrNc 6= PrS . As a result, α can
become larger than r · PrNc (o∗), which happens when PrNc (o∗ | i) < 1

r , i.e. the
normative model considers the combination o∗∧i less likely than the combination
o′ ∧ i for some o′ ∈ Ω(O), o′ 6= o∗. In the given context, therefore, the output
returned by the AI system may not be acceptable, which should be a reason for
the monitoring system to �ag. We note that di�erences between PrNc and PrS

can of course also be due to the AI system and the normative model representing
di�erent joint distributions over their shared variables; however, this is not easily
veri�ed since PrS is in fact unknown to us.

Given the above, we propose to �ag an input-output instance o∗∧ i whenever
α > r · PrNc (o∗), that is, for

IOconfl(o∗, i) > τ, where τ
def

= log(r · PrNc (o∗)) (4)

Note that τ is in fact below the default threshold of 0 whenever PrNc (o∗) < 1
r .
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The proposed threshold τ is a dynamic threshold, which depends on the
output predicted by the AI system and additional context taken into account by
the normative model. Since the normative model is a transparent BN, both the
number of values r for O and PrNc (o∗) are known, so we can easily determine
this context-speci�c threshold.

6 Experimental Evaluation

The adjusted con�ict measure, IOcon�, and the corresponding dynamic thresh-
old are speci�cally designed for monitoring input-output pairs in a context. In
this experiment, we evaluate the �agging behaviour of di�erent monitoring pro-
cesses, that is, combinations of measures and thresholds, to qualitatively estab-
lish the impact of varying contexts.

6.1 Experimental Set-up

For our experiment we need a normative model, an AI system, a monitoring
process and test cases. As normative model we use an existing Bayesian net-
work, the CHILD network2 [10], which was manually elicited from medical ex-
perts at the Great Ormond Street Hospital for Sick Children in London, and
developed for preliminary diagnosis of congenital heart diseases using informa-
tion reported over the phone. In this network, we let O = {Disease}, I =
{GruntingReport, CO2Report, XrayReport, LVHreport}, and the context vari-
ables be C = {BirthAsphyxia, Age}; H consists of the remaining 13 variables.

To simulate an AI system with IS = I and OS = O, we construct a BN
with PrS(OS , IS) = PrN (O, I) by using GeNIe3 to marginalise out the variables
C∪H from the original CHILD network. Although in practice the distributions
PrS and PrN over the shared variables might not be exactly the same, they both
approximate part of the target system and should therefore be rather similar.
Assuming PrS and PrN to be equivalent in the experiment, allows us to evaluate
the impact of the context on �agging behaviour in isolation.

The monitoring process computes the measure and decides for a given input-
output instance and context whether or not to �ag, based upon the thresholds;
we implemented a script for these computations using SMILE. In this experi-
ment, we compare three monitoring processes: J0, the original Jensen con�ict
measure with its intrinsic threshold of 0; I0, the IOcon� measure with the in-
trinsic threshold 0; and Iτ , the IOcon� measure with dynamic threshold τ .

As test cases we use 240 con�gurations from Ω(I) × Ω(O) × Ω(C): each
of the 40 possible value assignments i ∈ Ω(I) is paired with its most likely
value o∗ ∈ Ω(O) according to the AI system (PrS), and every resulting input-
output instance is subsequently considered in each of 6 possible contexts ck ∈
Ω(C). For each of the 240 con�gurations, we compute both the IOcon� and

2 Available from https://www.bnlearn.com/bnrepository/discrete-medium.html.
3 The experiment was executed using the GeNIe Modeler and the SMILE Engine by
BayesFusion, LLC (http://www.bayesfusion.com/).

https://www.bnlearn.com/bnrepository/discrete-medium.html.
http://www.bayesfusion.com/
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Table 1. Number of contexts in which a speci�c input-output instance is �agged by a
process; the remaining 40− 13 = 27 instances are never �agged.

Instance ID 1 2 3 4 5 6 7 8 9 10 11 12 13 # cases

Process J0 2 4 1 0 2 0 0 1 6 6 4 1 1 28
I0 0 0 3 1 0 3 1 0 0 0 0 3 1 12
Iτ 0 0 0 1 1 0 1 0 0 1 0 0 1 5

the original con�ict measure, as well as the dynamic threshold, using PrNck
from

the original CHILD network. Note that context is also included for the original
con�ict measure to enable a fair comparison. For both measures, we determined
how many and which test cases were �agged using the intrinsic threshold and,
for IOcon�, our dynamic threshold.

6.2 Results and Discussion

For the three monitoring processes J0, I0 and Iτ , we �nd the following �agging
results for the 240 test cases. There are 38 cases in which at least one monitoring
process �ags: process J0 �ags 28 times; process I0 �ags 12 times; and process
Iτ �ags �ve times (see Table 1). Six cases are �agged by two processes and
only a single case is �agged by all three monitoring processes. We conclude that
what these monitoring processes measure and �ag di�ers notably. In addition, we
note that the frequency with which they �ag di�ers: the original con�ict measure
�ags far more often than the IOcon� measure, even when using the same intrinsic
threshold, and the fewest cases are �agged with the dynamic threshold.

To consider the e�ect of context, we look at which instances were �agged
and in which contexts. A total of 13 input-output instances are �agged by the
monitoring processes, in at least one context (see Table 1). For each 0 and 6 in
Table 1 the context did not matter, since a process either �ags in none of the
contexts or in all. In all other cases, we �nd that context a�ects the �agging
behaviour. Let F (Iτ ) = {4, 5, 7, 10, 13} denote the set of all instances (IDs)
�agged by process Iτ , and let F (I0 ) and F (J0 ) be likewise de�ned. We then
�nd that none of these three sets is a subset of either of the other two sets,
and that each set partly overlaps with both other sets. This shows that the
three processes truly di�er in the way they take context into account for a given
instance. Consider e.g. the instance GruntingReport = no ∧ CO2Report = x7_5

∧ XrayReport = Asy_Patchy ∧ LVHreport = no ∧ Disease = Fallot (ID 10

Table 2. Example of �agging behaviour of the monitoring processes for one input-
output instance (ID 10) in six di�erent contexts.

Context Age x_3_days x_3_days x_10_days x_10_days x1_30_days x1_30_days
Variables BirthAsphyxia yes no yes no yes no

Flagged J0 yes yes yes yes yes yes
by I0 no no no no no no

Iτ yes no no no no no
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in Table 1), this instance is �agged in all six contexts by process J0, and in
none of the contexts by process I0. However, IOcon� in combination with the
dynamic threshold (process Iτ ) �ags in one speci�c context only (see Table 2).
We conclude that for this input-output instance only process Iτ �ags context-
speci�cally. It indicates that for babies younger than 3 days with birth asphyxia,
diagnosing fallot should be questioned, despite the input indicating this output.

Note that we cannot determine whether any combination of measure and
threshold is better than another from this experiment, since we have no ground
truth available. Such an assessment would require insight into the quality of the
CHILD network as well as the expertise of a paediatric cardiologist.

Overall, we conclude that the choice between measures and thresholds mat-
ters and is not trivial, and that the IOcon� measure in combination with the
dynamic threshold seems to be a conservative combination that evidently suc-
ceeds in �agging context-speci�cally.

7 Conclusion and Future Research

In monitoring processes, any measure must be accompanied by a threshold in
order to determine whether to �ag an observed instance. We considered several
measures for �agging input-output instances from an AI system in a norma-
tive monitoring setting. In particular, we reconsidered the default threshold for
the BN-speci�c IOcon� measure and studied the measure's boundary conditions
to arrive at a new dynamic threshold. This dynamic threshold depends on the
context in which the input-output pair of the AI system is observed and the
distribution over the output variable, both according to the normative model.
As such it is capable of taking context of use into account, as intended. We com-
pared the use of the IOcon� measure with both default and dynamic thresholds
in a small controlled experiment; in addition, we compared the IOcon� mea-
sure against the original con�ict measure from which it was derived. We found
that each combination of measure and threshold results in di�erent �agging be-
haviour, con�rming that decisions about which to use are indeed not trivial.

The actual choice for a suitable measure and threshold will depend on the
domain and the costs of false positive and false negative warnings. We can there-
fore not conclude that one is necessarily better than the other. In future research,
we would like to further study theoretical di�erences between the measures and
evaluate their use with domain experts for realistic tasks. Moreover, we can study
to what extent the attribution method by Kirk et al. [5] can be employed to ex-
plain the reason for �agging in terms of violation of the rule, protocol or other
type of norm captured by the normative modelled. Finally, to ful�ll all steps
in our framework for monitoring under uncertainty, future research is necessary
into methods for eliciting norms from domain experts and for capturing these in
models such as Bayesian networks.
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