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Abstract
In the context of evidence evaluation, where the probability of evidence given a certain hypothesis is
considered, different pieces of evidence are often combined in a naive way by assuming conditional
independence. In this paper we present a number of results that can be used to assess both the
importance of a reliable likelihood-ratio estimate and the impact of neglecting dependencies among
pieces of evidence for the purpose of evidence evaluation. We analytically study the effect of
changes in dependencies between pieces of evidence on the likelihood ratio, and provide both
theoretical and empirical bounds on the error in likelihood occasioned by assuming independences
that do not hold in practice. In addition, a simple measure of influence strength between pieces of
evidence is proposed.
Keywords: Evidence evaluation; Independence violations; Error in overall likelihood; Influence
measures.

1. Introduction

The evaluation of evidence is the investigation of how evidence changes the relation between com-
peting hypotheses. In various domains where ultimately a choice between competing hypotheses
is required, the evaluation of evidence is not only an intermediate step of the process, but con-
veys important information in itself. In evidence-based medicine, for example, likelihood ratios
Pr(t | d)/Pr(t | d) of the sensitivity and (1−) the specificity of a diagnostic test for a disease are
used for assessing the value of performing that diagnostic test (Thornbury et al., 1975) and thus for
evaluating potential evidence. In forensic science, findings such as for example DNA matches in
criminal cases are reported in terms of likelihoods or likelihood ratios (Aitken and Taroni, 2004);
incorporating hypothesis priors to arrive at conclusions concerning for example whether or not the
evidence shows that the suspect is guilty is left to a judge or jury.

In determining the overall likelihood Pr(e | h) of an hypothesis h, often likelihoods for multiple
separate pieces of evidence need to be combined. In practice this is (still) often done in a naive way
by simply multiplying the individual likelihoods Pr(ei | h) and neglecting any possible conditional
dependencies among the pieces of evidence. That is, for computing the overall likelihood the same
independence assumptions are made as in a naive Bayesian classifier. The performance of a naive
Bayesian classifier is known to suffer very little from the unrealistic independence assumptions it
makes, in the sense that classification accuracy tends to be quite high. This is repeatedly demon-
strated in practical applications (see Hand and Yu (2001) for an overview) and can generally be
explained by the fact that a naive Bayesian classifier is optimal as long as the true hypothesis for a
set of evidence has the highest posterior in the model (Domingos and Pazzani, 1997); an overview
of explanations for special cases can be found in Kuncheva and Hoare (2008).

In this paper we are not interested in classification accuracy, but rather in the effects of neglecting
dependencies on likelihoods Pr(e | h), Pr(e | h) and their ratio. Moreover we are interested in
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the extent to which the posterior probability can be affected by the likelihood ratio. To address
these questions we assume that the true probability distribution over the hypothesis and evidence
variables is represented in a Bayesian network (BN). We can then study the effects of changes in
probability parameters specified in the network on our outcomes of interest. Moreover, the effects
of neglecting dependencies can be studied both theoretically and empirically by comparing the true
Bayesian network to a naive Bayesian network approximation. We will propose a new measure to
quantify the dependencies neglected by the naive approach and derive bounds on the error in overall
likelihood caused by neglecting these dependencies.

This paper is organised as follows. In Section 2 we present the necessary technical background
for this paper. In Section 3 we study the impact of the likelihood ratio on the relation between
prior and posterior probabilities, followed by an analysis of the effects of parameter changes on the
likelihood ratio in Section 4. The errors in overall likelihood as a result of neglecting dependencies
is studied both theoretically and empirically in Sections 5 and 6, respectively. We conclude the
paper in Section 7.

2. Preliminaries

In this paper we consider a joint probability distribution Pr(V) over a finite set of discrete stochastic
variables V; the cardinality of V is denoted #V. We assume all variables V ∈ V to be binary-
valued, with v and v ∈ cf(V ) indicating the possible configurations of V . Boldfaced letters are
used to indicate sets of variables (upper case) or value-assignments to such sets (lower case).

This paper concerns likelihoods, and likelihood ratios, that basically link prior distributions
over an hypothesis variable H to posterior distributions. More specifically, the posterior odds for
hypotheses h and h, given evidence e for a set of evidence variables E, equals the likelihood ratio
(LR) times the prior odds for the hypotheses:

Pr(h | e)
Pr(h | e)

=
Pr(e | h) · Pr(h)/Pr(e)
Pr(e | h) · Pr(h)/Pr(e)

=
Pr(e | h)
Pr(e | h)

· Pr(h)
Pr(h)

We will assume that the likelihood ratio, as well as Pr(e) and any other probability used in the
denominator of a fraction, is and remains strictly positive.

The joint probability distribution Pr(V) under consideration can be captured in a Bayesian
network B = (G,Pr), where G = (V,A) is a directed acyclic graph representing the indepen-
dence relation among the variables by means of the well-known concept of d-separation (Jensen
and Nielsen, 2007). The nodes in the graph have a one-to-one correspondence with the stochastic
variables V. For a given node V ∈ V, πV indicates its set of parents in G. A joint probability for
v ∈ cf(V) is now uniquely defined as the product of the local probabilities associated with each
node in the graph and compatible with v:

Pr(v) =
∏
V ∈V

Pr(v | πV )

The local distributions are typically specified as conditional probability tables (CPTs). The proba-
bilities specified in these tables are termed the network’s parameters and are bound to be inaccurate.

The robustness of outcomes of a Bayesian network (BN) to parameter inaccuracies can be stud-
ied using a sensitivity analysis. Such an analysis investigates the effects of changing one or more
network parameters on an output probability of interest. One approach to performing a sensitivity
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analysis is to compute sensitivity functions (Kjærulff and van der Gaag, 2000). One-way sensitiv-
ity functions fPr(h|e)(x) that describe a posterior probability Pr(h | e) as a function of a single
network parameter x are fractions of two linear expressions in x, taking the form of a rectangular
hyperbola (van der Gaag and Renooij, 2001).

The effects of arc removal on an output probability can be studied using sensitivity functions that
capture the effect of multiple simultaneous parameter changes (Renooij, 2010). Parameter changes
that result in simulating the removal of an arc V1 → V2 are those that effectuate a zero qualitative
influence S0(V1, V2) between the two variables (Wellman, 1990); such a zero influence is defined
by Pr(v2 | v1 z)− Pr(v2 | v1 z) = 0 for all z ∈ cf(Z) where Z = πV2 \ {V1}.

3. Likelihood-ratio Impact on Relation between Prior and Posterior Probability

In this section we investigate how much impact the likelihood ratio (LR) can have on the relation
between a prior probability Pr(h) and the posterior Pr(h | e). To this end we construct a function
that relates the posterior to the prior for a given value of LR and study some of its properties. Since
the hypothesis variable H is assumed to be binary-valued, this function allows for establishing
conclusions concerning prior and posterior odds for H as well.

Proposition 1 Consider probability Pr(h | e) and likelihood ratio LR = Pr(e | h)/Pr(e | h).
Then the function fPr(h|e)(x) relating Pr(h | e) to x = Pr(h) is given by

fPr(h|e)(x) =
LR · x

(LR− 1) · x+ 1
(1)

and has the following properties:

• f(0) = 0 and f(1) = 1, regardless of the value of LR, and f(x) = x if LR = 1;
• it is an increasing function in x, convex for LR ∈ 〈0, 1〉, and concave for LR ∈ 〈1,∞〉.

Proof Let y denote Pr(h | e) then

Pr(h | e)
Pr(h | e)

=
Pr(e | h)
Pr(e | h)

· Pr(h)
Pr(h)

⇐⇒ y

1− y
= LR · x

1− x

⇐⇒ y = LR · x

1− x
− y · LR · x

1− x

⇐⇒ y =
LR · x/(1− x)

(1− x+ LR · x)/(1− x)

The first property1 follows immediately from this equation; as a result the function is obviously
increasing for any LR. Like one-way sensitivity functions in BNs, the function takes the form of a
rectangular hyperbola. More specifically, for x ∈ [0, 1] the function is part of one of the hyperbola’s
branches, whose shape is determined by its asymptotes. The vertical asymptote x = s of the func-
tion is found at s = −1

LR−1 and the horizontal asymptote y = t at t = LR
LR−1 . Now for LR ∈ 〈0, 1〉 we

have that s > 1, with increasing values for increasing LR, and t < 0 with decreasing values for in-
creasing LR. As a result, the function is convex, with an upper bound of f(x) = x. For LR ∈ 〈1,∞〉

1. We note that the odds version used in the derivation requires that x, y 6= 1; the final function f , however, is no longer
based on these odds and can be safely used for probabilities x, y = 1.
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(a) (b)

Figure 1: Functions fPr(h|e)(x), x = Pr(h), for different values of (a) LR ∈ 〈0, 1〉 and (b)
LR ∈ 〈1,∞〉.

we have that s < 0, with increasing values for increasing LR, and t > 1 with decreasing values for
increasing LR. As a result, the function is concave, with f(x) = x as lower bound.

We note that the function in Equation (1) corresponds to a BN sensitivity function if in the BN
under consideration H has no parents, and therefore x is an actual network parameter.

Figure 1 illustrates the function fPr(h|e)(x) for different values of the likelihood ratio LR. We
observe that the closer LR becomes to zero, the smaller the impact of the prior is on the posterior
probability, for all but large values of x. In fact, the posterior odds will now typically be below 1.
Similarly, the larger LR becomes, the smaller the impact of the prior is on the posterior probability,
for all but small values of x. In this case, the posterior odds will typically be above 1. For a
given value or order-of-magnitude for LR the function in Equation (1) thus provides insight in how
important an accurate prior is for drawing reliable conclusions about the posterior.

4. Likelihood-ratio Sensitivity to Evidence Parameters

In the naive likelihood-ratio approach typically individual likelihood ratios for different pieces of
evidence are multiplied to establish an overall likelihood ratio. That is, if e captures n pieces of
evidence ei, i = 1, . . . , n, then the overall likelihood ratio is computed from n individual likelihood
ratios as follows:

Pr(e | h)
Pr(e | h)

=
Pr(en | h)
Pr(en | h)

· . . . · Pr(e1 | h)
Pr(e1 | h)

(2)

The above computation is only correct if all pieces of evidence are mutually independent given
hypothesis h. Now, suppose e1 and e2 are in fact not conditionally independent given h, then we
should include Pr(e2 | e1 h) rather than Pr(e2 | h) in the above factorisation. The effect of this
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error can be studied by interpreting Pr(e2 | h) as a parameter x of a naive Bayesian network and
changing x to a value corresponding with Pr(e2 | e1 h).2

Proposition 2 Consider a BN B and likelihood ratio of interest LR = Pr(e | h)/Pr(e | h). Let
ER = {Ek ∈ E | H ∈ πEk

⊂ E ∪ {H}}. Let x = Pr(ei | πi h) and y = Pr(ej | πj h) be
parameters for Ei, Ej ∈ ER, where ek and πk ∈ cf(πEk

\ {H}), k = i, j are compatible with e.
Then the function fLR(x, y) relating LR to x and y has the following properties:

• ∂

∂x
fLR(x, y) > 0 and

∂

∂y
fLR(x, y) < 0;

• ∂

∂y
fLR(x, y) = −x

y
· ∂
∂x
fLR(x, y).

Proof Note that changes in x only affect the numerator of LR; likewise y only affects the denomi-
nator. The relation between Pr(e | h) and x, where x0 denotes the value of x as specified in B, is
now given by:

fPr(e|h)(x) =
fPr(eh)(x)

fPr(h)(x)
=
x · Pr(eh)x0

Pr(h)
= c1 · x

for constant c1 > 0. We similarly find fPr(e|h)(y) = c2 · y for constant c2 > 0. As a result we find:

∂

∂x
fLR(x, y) =

c1
c2 · y

and
∂

∂y
fLR(x, y) =

−c1 · x
c2 · y2

which proves the proposition.

We can use the above proposition, for example, to determine for specific values x0 and y0 what
the direction and amount of change in LR will be for different parameter changes. For a change in
direction (x, y) = (1, 1), for example, the directional derivative for fLR in (x0, y0) equals c1 · (y0−
x0)/c2 · y20 ·

√
2, which is strictly positive iff y0 > x0. As such, we can investigate the effects of

compensating for neglecting the dependencies between both ei and πi, and ej and πj . Since the
numerator and denominator of fLR are both linear expressions in any of the evidence parameters,
the above proposition and analysis generalises to multiple xs and ys.

The proposition also shows us that the error in LR due to neglecting one dependency can be
compensated for by neglecting another one. Using the naive approach to computing an overall
likelihood ratio therefore doesn’t necessarily result in large errors in the overall likelihood ratio,
even if independence assumptions are clearly violated in practice. A similar observation was done
with respect to the optimality of naive Bayes classifiers: dependencies between evidence variables
may cancel each other out without affecting the classification (Zhang, 2004).

We note that the above proposition applies to parameters of evidence variables that have H as
direct parent and all remaining parents, if any, among E. Such constrained topology is typical for
various Bayesian network classifiers, such as naive Bayes and TAN (Friedman et al., 1997).

2. We note that a change of Pr(e2 | h) will require a change in Pr(e2 | h) as well; the latter change, however, will not
affect the computation of the likelihood ratio under consideration and is therefore disregarded.

5



RENOOIJ

5. Combining Individual Likelihoods: Theoretical Error

Since the numerator and denominator of the likelihood ratio represent probabilities from different
conditional distributions, the error as a result of neglecting dependencies among evidence variables
in the numerator is in essence independent of the error in the denominator. Information about the
error in computing both Pr(e | h) and Pr(e | h) provides insight in the error in LR, as well as in
the posteriors Pr(h | e) and Pr(h | e) and their ratio.

In the following two sections our analyses will focus on the error in Pr(e | h); results for
Pr(e | h) will be equivalent if h is replaced by h. The error Err(e|h) under consideration is now
defined as

Err(e|h) = Pr(e | h)−
n∏

i=1

Pr(ei | h) (3)

where #E = n and each ei is compatible with e. We first study the error in overall likelihood
caused by neglecting the dependency between exactly two pieces of evidence.

Proposition 3 Consider likelihood Pr(e | h) > 0 for hypothesis h and evidence e ∈ cf(E),
#E = n ≥ 2. Let e include exactly two dependent pieces of evidence, for binary-valued variables
Ei and Ej . Then |Err(e|h)| ≤ c · 14 with 0 < c ≤ 1, where c = 1 if n = 2.

Proof Without loss of generality, take i = 1 and j = 2. Then, taking into account the (single!)
dependency, we have for ei, i = 1, . . . , n, compatible with e that

Pr(e | h) = Pr(e1 e2 | h) · Pr(e3 . . . en | h) = Pr(e2 | e1 h) · Pr(e1 | h) ·
n∏

i=3

Pr(ei | h)

Moreover, we have that Pr(e2 | h) = Pr(e2 | e1 h) · Pr(e1 | h) + Pr(e2 | e1 h) · Pr(e1 | h). Now
let’s introduce the following short-hand notation:

α = Pr(e1 | h), β1 = Pr(e2 | e1 h), β2 = Pr(e2 | e1 h), γ =
n∏

i=3

Pr(ei | h)

Then Err(e|h) =
(
Pr(e2 | e1 h)− Pr(e2 | h)

)
· Pr(e1 | h) ·

n∏
i=3

Pr(ei | h)

=
(
β1 − (β1 · α+ β2 · (1− α))

)
· α · γ = γ · α · (1− α) · (β1 − β2)

We thus find that Err(e|h) = 0 whenever Pr(e1 | h) = 1 or Pr(e2 | e1 h) = Pr(e2 | e1 h), where
the latter indeed indicates independence of the two pieces of evidence given h. α·(1−α) is maximal
for α = 0.5, therefore the error is bounded by Err(e|h) ≥ −1

4 · γ when β1 = 0 and β2 = 1, and
Err(e|h) ≤ 1

4 ·γ when β1 = 1 and β2 = 0. Note that γ is absent for n = 2; otherwise, taking c = γ
completes the proof.

Figure 2 shows the error in the likelihood Pr(e1 e2 | h) as a result of disregarding the dependency
between e1 and e2 for different values of Pr(e1 | h) and different values of Pr(e2 | e1 h)− Pr(e2 |
e1 h). Note that the latter difference can be interpreted as a measure of the strength of dependence
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Figure 2: Error Err in likelihood Pr(e1 e2 | h) as a function of α = Pr(e1 | h) and β1 − β2 =
Pr(e2 | e1 h)− Pr(e2 | e1 h).

between E1 and E2 in the context of h, since Pr(e2 | e1 h) = Pr(e2 | e1 h) implies independence
of E1 and E2 in the context h.

We note from the proof of the above proposition that the error in overall likelihood is reduced
upon including more evidence for which the independence assumption is not violated. The question
now is what happens to the error in overall likelihood when dependencies exist between more than
two pieces of evidence. A theoretical analysis of the general case is complicated by the dimen-
sionality of the problem and the fact that it is not clear-cut how exactly to quantify dependencies.
Therefore, we take an experimental approach.

6. Combining Individual Likelihoods: Empirical Error

In this section we present an empirical analysis of the error Err(e|h) defined in Equation (3).

6.1 Experimental set-up

We performed experiments with BNs of restricted topology with 2, 3 and 4 binary evidence variables
and varying densities. In addition to computing Err(e|h), we analysed the relation between the error
and different measures of dependency, or influence.

6.1.1 NETWORKS

Let Bcn denote a Bayesian network with graph G = ({H} ∪E,A), where

• E = {Ei | i = 1, . . . , n}

• A =

{
for c = ‘F ’ : AF = {Ei → Ej | j > i, 1 ≤ i, j ≤ n} ∪ {H → Ei | 1 ≤ i ≤ n}
for c = ‘− C ’ : AF \ {Ei → Ej | ij ∈ C}

then we used the following network types defined by 10 different graph structures:

BF2 ,BF3 ,BF4 ,B
–{13}
3 ,B–{23}

3 ,B–{14}
4 ,B–{14,24}

4 ,B–{14,24,13}
4 ,B–{14,24,23}

4 ,B–{14,24,13,23}
4
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For example, BF4 has four evidence variables in a fully connected subgraph; in B–{14,24}
4 the two

arcs E1 → E4 and E2 → E4 are removed from this subgraph.
Furthermore for each of the networks BF2 , BF3 , and BF4 , distributions Pr(E′ | h), E′ ⊆ E, were

defined to be the same for the variables shared by the networks. That is, Pr(E1E2 | h) was the same
in all three networks, and Pr(E1E2E3 | h) was the same in BF3 and BF4 . This was accomplished by
generating random numbers for the following probabilities:

Pr(ej | e∗j−1 . . . e∗1 h) for all e∗j−1 . . . e
∗
1 ∈ cf(Ej . . . E1), for j = 2, 3, 4.

For each of these probabilities we generated 1000 random numbers, thus obtaining 1000 differ-
ent distributions Pr(E4E3E2E1 | h). None of the generated probabilities equaled zero or one.
Moreover, no two pieces of evidence were conditionally independent in the generated distributions.

The removal of an arc Ei → Ej was subsequently implemented by enforcing a zero qualitative
influence in the CPT ofEj in the fully connected network, that is, by setting Pr(ej | ei zh∗) equal to
Pr(ej | ei zh∗), for each h∗ ∈ cf(H) and each z ∈ cf(Z), Z = πEj \{Ej , H}. We thus obtained a
total of 1000×10 = 10, 000 models for which we computed Err(e|h) where e was compatible with
Ei = ei for each of the evidence variables under consideration. Note that probabilities conditioned
on h are irrelevant for these computations and hence are not further discussed.

6.1.2 MEASURES OF INFLUENCE STRENGTH

In studying the accuracy of naive Bayes classifiers, previous studies have employed mutual infor-
mation I , and Yule’s Q statistic as measures of dependency or influence between evidence vari-
ables (Domingos and Pazzani, 1997; Rish et al., 2001; Kuncheva and Hoare, 2008). In that context,
all available hypotheses are taken into account by computing expected values of the measures over
all possible values of H . In this paper we employ the same measures. However, since we focus
on the error in overall likelihood for a specific hypothesis h, rather than on classification error, no
expected values over H need to be considered, so the measures are simply defined by:

• Iij = I(Ei, Ej |h) =
∑

e∗i∈cf(Ei)

∑
e∗j∈cf(Ej)

Pr(e∗i e
∗
j | h) · log

Pr(e∗i e
∗
j | h)

Pr(e∗i | h) · Pr(e∗j | h)

• Qij =
Pr(ei ej | h) · Pr(ei ej | h)− Pr(ei ej | h) · Pr(ei ej | h)
Pr(ei ej | h) · Pr(ei ej | h) + Pr(ei ej | h) · Pr(ei ej | h)

We note that Iij is non-negative (see Cover and Thomas (2006)); Qij can be positive or negative
(see Yule and Kendall (1940)).

In Section 5 we showed that for two evidence variables Err(e1 e2 |h) can be expressed as a
function of Pr(e2 | e1 h) − Pr(e2 | e1 h), where this difference can be interpreted as a measure
of dependency, or influence, between E1 and E2 given h. Exploiting the similarity with the defini-
tion of positive (negative) qualitative influences S+ (S−), we will now define another measure of
influence strength based upon such differences. Since evidence variables can have multiple other
variables as parents, we require our measure to aggregate these contexts of ‘other parents’. To this
end an aggregation operator is used, represented by placeholder � in the following definition.

Definition 4 Consider a BN and probability of interest Pr(h | e). Then the influence strength
R�ij(e|h) associated with arc Ei → Ej is defined by

R�ij(e|h) = �k(Pr(ej | ei zk h)− Pr(ej | ei zk h))
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correlation with Err (for R, Q) or |Err| (for I)
Bcn max |Err| avg|Err| Ravg

tot Rsum
tot Qtot Itot

BF2 0.234 0.057 0.917 0.917 0.878 0.932
BF3 0.261 0.056 0.726 0.712 0.759 0.471
BF4 0.263 0.037 0.580 0.510 0.400 0.180

B–{13}
3 0.256 0.048 0.816 0.796 0.813 0.554

B–{23}
3 0.273 0.043 0.826 0.789 0.816 0.643

B–{14}
4 0.273 0.036 0.625 0.557 0.429 0.232

B–{14,24}
4 0.282 0.033 0.675 0.614 0.151 0.275

B–{14,24,13}
4 0.300 0.030 0.726 0.659 0.517 0.320

B–{14,24,23}
4 0.288 0.028 0.738 0.658 0.575 0.454

B–{14,24,13,23}
4 0.185 0.022 0.709 0.609 0.678 0.469

Table 1: For 1000 distributions for each of the 10 different network structures we show: maximum
and average absolute overall error |Err| in the likelihood, and correlations between Err and
strengths of dependency among the variables according to 4 influence measures.

where ei and ej are compatible with e, zk ∈ cf(Z), where Z = πEj \ {Ei, H}, and � is an n-ary
operator, n = #Z.

We note that our definition of influence strength is specifically tailored to our problem at hand:

• it fixes the value of H to the one under consideration;
• it is explicitly defined for an arcEi → Ej and depends on its direction by including all parents

of Ej , and is therefore asymmetric;
• its evidence variables are assumed to be binary-valued, and their specific values used in the

minuend and subtrahend of the subtraction are determined by their values in e.3

To capture the total influence strength among the evidence variables, we sum over all the arcs
Ei → Ej among the variables E:

R�tot =
∑
ij

R�ij , Itot =
∑
ij

Iij , Qtot =
∑
ij

Qij

For each of the 10 types of network we then computed the correlation between Err(e|h) and these
measures of total influence strength. Note that due to the restricted topology of the used networks,
measure R�ij requires only probabilities available in the CPT of Ej .

6.2 Results

We will first consider the differences in Err(e|h) for the different types of network, and then discuss
the correlations with the influence measures.

3. That is, for e = e1 e2 we use Pr(e2 | e1 h)−Pr(e2 | e1 h) and for e = e1 e2 we take Pr(e2 | e1 h)−Pr(e2 | e1 h).
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(a) (b)

Figure 3: Error Err(e|h) as a function of total mean influence Ravg
tot for 1000 distributions for (a)

BF4 and (b) B–{23}
3 .

6.2.1 ERRORS: DEPENDENT VERSUS INDEPENDENT EVIDENCE

Since the error in overall likelihood can be positive or negative we report the maximum and arith-
metic mean for the absolute values of the error. Results for the 10 types of network are presented
in Table 1. Indeed for the networks with only two evidence variables, the maximum absolute error
|Err| is below the theoretical bound of 0.25. For the networks including more than two evidence
variables and varying dependencies, the maximum absolute error has an empirical bound of 0.30
(we note that the maximum of 0.300 reported for networks B–{14,24,13}

4 was in fact rounded up).
The average absolute error is rather small, indicating that among the 1000 distributions enough had
such small errors that they can compensate for those with larger errors. Introducing more evidence
variables and more independencies seems to have a positive effect on the average error, but no true
effect on the maximum error. For the networks with 3 evidence variables, the average error de-
creases upon introducing conditional independencies by arc removal, but the maximum error in fact
increases upon removing E2 → E3. For the networks with 4 evidence variables we see similar
behaviour. Only upon removing 4 out of 6 arcs from BF4 do we see a clear decrease in maximum
error: in that case only E1 → E2 and E3 → E4 remain.

6.2.2 ERROR VERSUS INFLUENCE STRENGTH

In the previous subsection we have compared the maximum and average absolute errors for different
network structures. For a given structure, however, the strength of the dependencies captured by the
arcs among the evidence variables vary over the 1000 distributions considered. In this section we
investigate if we can relate error to influence strength.

For our influence measure R�tot(e|h) we used two different operators � to incorporate the con-
text provided by ‘other’ evidence parents: summation (sum) and arithmetic mean (avg). Figure 3
shows the overall error in likelihood as a function of the total average influence strength Ravg

tot (e|h)
for the 1000 different networks of type BF4 (3(a)) and of type B–{23}

3 (3(b)). Moreover, Table 1
shows the correlations between the overall error in likelihood and the different measures of in-
fluence strength. More precisely, it shows the correlations between Err(e|h) and our total mean
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influence strength, our total summed influence strength (Rsum
tot (e|h)), and Qtot; for Itot it gives the

correlations with the absolute values |Err(e|h)| of the error, since I is always positive.
The plot in Figure 3(a) displays Err(e|h) for the fully connected networks with four evidence

variables. The correlation with the used influence measure Ravg
tot (e|h) is 0.580, which is the lowest

correlation among all correlations with this same influence measure (see Table 1). Note that this
network type has the lowest correlation for all influence measures; nonetheless the correlation is
higher with Ravg

tot (e|h) than with the other measures. The plot in Figure 3(b) displays Err(e|h)
for the networks of type B–{23}

3 with three evidence variables and two arcs among them. Here, the
correlation with the used influence measure Ravg

tot (e|h) is 0.826, which is quite high. From Table 1
we have that all influence measures show similar patterns with correlations decreasing with the
addition of more evidence variables, and increasing with the introduction of independences by arc
removal. Overall, measure Ravg

tot (e|h) results in the highest correlations with Err(e|h) compared
to the other measures, with two exceptions: for BF2 , the measure Itot has a higher correlation and
for BF3 , measure Qtot results in higher correlation. It seems that our tailored measure of influence
strength is better at capturing the influences that affect the error than the other influence measures.
This observation can partly be attributed to the fact that our measure incorporates ‘other parents’ of
the relations Ei → Ej under consideration.

7. Conclusions and Further Research

In this paper we have presented a number of results that can be used to assess both the importance
of a reliable LR estimate and the impact on overall likelihood of neglecting dependencies among
pieces of evidence. Since likelihood is an ingredient used in naive Bayesian network classification,
our results also serve to further study optimality conditions for naive Bayes. The plots in Figure 1
show the relation between prior and posterior probabilities of an hypothesis for different values of
the LR and give insight in the importance of accuracy of both the LR and the prior for drawing
robust conclusions concerning the hypothesis. The properties concerning the sensitivity of the LR
to evidence parameter changes show that dependencies between pieces of evidence can cancel each
other out in the overall likelihood; the exact effects can be analysed.

We have proven that the error in overall likelihood due to neglecting dependencies has a theoret-
ical bound of 0.25 when exactly two pieces of evidence are dependent. We established a preliminary
empirical bound of 0.30 for networks with more than two dependent pieces of evidence, where our
experiments show a decrease in average absolute error upon introducing more evidence variables
and/or more independences. Our experiments moreover show that our proposed influence measure,
tailored to the problem at hand, can provide an indication for the error in overall likelihood that can
be expected from neglecting independences. Even without exact values for the numbers involved,
the measure is simple enough to obtain an indication of its value from rough estimates.

We have experimented with 10 types of network, with at most four evidence variables. We
would therefore like to further experiment with larger networks to see if our empirical bound is
preserved. Moreover, we would like to compare our bound to a bound on the error that results from
replacing an extreme joint distribution by the product of marginals (Rish et al., 2001). Our random
distributions did not include extreme distributions, nor do they adhere to the typical monotonicity
properties often found in practice. Therefore we would like to run experiments with real networks as
well. Finally, we would like to further fine-tune our influence measure and investigate if a theoretical
error bound can be formulated in terms of such a measure.
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