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Abstract

Multi-dimensional Bayesian network classifiers (MDCs) generalise the popular robustly performing
one-dimensional classifiers (ODCs) to application domains that require an instance to be classified
into a combination of classes. In previous work we compared the sensitivity of MDC and ODC
output probabilities to small parameter inaccuracies. In this paper we extend our analyses and study
the robustness of the classification performance of MDCs.

1 Introduction
Bayesian networks are powerful tools for supporting decisions under uncertainty. A Bayesian network
defines a joint probability distribution over a set of stochastic variables by combining a directed acyclic
graph and a set of (conditional) probability distributions [10]. Bayesian networks are often used in the
context of classification, where an input instance is classified into one of several distinct classes. For
such classification tasks, one-dimensional Bayesian network classifiers (ODCs) are very popular [8]. An
ODC is a Bayesian network of restricted topology, consisting of a single class variable and several fea-
ture variables. More recently, multi-dimensional Bayesian network classifiers (MDCs) were introduced
to generalise ODCs to application domains that require an instance to be classified into a combination
of classes [7, 13], represented by a set of class variables. MDCs have gained a growing interest as tool
for multi-dimensional classification [1, 3].

Classification performance of ODCs is known to be rather good. This claim is supported by exper-
imental results and further substantiated theoretically in among others [5, 11]. In this paper we address
the robustness of MDCs. We extend our previous paper [2] in which we studied the effects of local
parameter changes on the output probabilities of MDCs and argued that MDCs in general can be ex-
pected to be even more robust with respect to such changes than ODCs. Since, in classification tasks,
we are often more interested in the most likely combination of classes as output than in exact output
probabilities, in this paper we study the robustness of the classification output of MDCs. To this end we
use sensitivity functions for MDCs, thereby providing an insightful alternative to [4] where arithmetic
circuits where used to assess classification robustness. We express intervals of parameter values for
which an original classification remains unchanged in just a few meaningful probabilities and we show
that a classification can change at most once given an increasing or decreasing parameter value.

The paper is organised as follows. In Section 2 we provide some preliminaries on Bayesian networks
for multi-dimensional classification and on sensitivity analysis. In Section 3 we review our sensitivity
functions for MDCs from [2] and include our proofs for their validity. In section 4.1 we review our
conclusions with respect to the relative sensitivity of MDCs and in Section 4.2 we give intervals for
admissible deviation for their feature parameters and root class parameters. We end our paper with an
example and a concluding section.



2 Preliminaries

2.1 Bayesian Networks, ODCs and MDCs
A Bayesian network is a graphical model of a joint probability distribution Pr over a set of stochastic
variables V = {Vi, . . . , Vn}. We will denote some value assignment to Vi by vi and a joint value assign-
ment to V by v. In the sequel we will use Vi and V also to indicate the set of possible assignments to
Vi and V, respectively. In a Bayesian network, each variable of the modelled distribution is represented
by a node in a directed acyclic graph1. Independences between the variables are, as far as possible,
captured by the digraph’s set of arcs according to the d-separation criterion [10]. Moreover, for each
variable Vi, conditional probability distributions Pr(Vi | πVi

) are specified, where πVi
denotes a joint

value assignment to the set of parents of Vi in the digraph. These (conditional) probabilities, or network
parameters, together define the joint probability distribution

Pr(V) =
∏
Vi∈V

Pr(Vi | πVi
)

where each assignment to Vi and πVi is compatible with the joint assignment to V under consideration.
We will use the signs ∼ and � to indicate compatibility and non-compatibility of variable assignments,
respectively. For example, abc ∼ ab and ab � ab̄c. Furthermore we will use x0 to indicate original
parameter values and Pr0 for probabilities computed with the original values of all parameters involved.

An MDC is a Bayesian network in which the variables are divided into a set of class variables
C = {C1, . . . , Cn} and a set of feature variables F = {F1, . . . , Fm}. For a variable Vi, we use πFi

to
denote those parents of Vi that are in F, and πCi

to denote those parents of Vi that are in C; instantiations
to these sets are indicated by πfi and πci

, respectively. In an MDC the relationship between the set of
class variables and the set of feature variables is restricted in the sense that class variables are not
allowed to have feature parents [7, 13], that is, πFi

= ∅ for Vi ∈ C. In case of a naive classifier feature
variables do not have feature parents either, that is, πFi

= ∅ for Vi ∈ F as well and class variables
do not have class parents, that is πCi

= ∅ for Vi ∈ C. In this paper we consider MDCs in which
no further assumptions are made concerning the relationships among the class variables, or among the
feature variables. An ODC is an MDC with just a single class variable.

An MDC can be used to assign some instance f , that is, a joint value assignment to the feature
variables, to a most likely combination of classes. As such, it computes argmaxc Pr(c | f); note that
this is not necessarily the combination of most likely ci’s from the marginals Pr(Ci | f).

2.2 Sensitivity analysis
The parameters of a network are elicited from data or experts and are inevitable inaccurate. To investi-
gate the effects of inaccuracies in its parameters, a Bayesian network can be subjected to a sensitivity
analysis. In a sensitivity analysis, network parameters are varied and some probability of interest as a
function of the varied parameters is computed. If just one parameter xi = Pr(v | πV ) for a variable V
is varied, the effects on a probability of interest Pr(y | e) are captured by a function of the form:

fPr(y|e)(xi) =
a · xi + b

c · xi + d

where the constants a, b, c and d are constructed from the non-varied parameters. Note that the other
parameters xj 6= xi of the same conditional distribution over V need to be co-varied to ensure that the
distribution sums to 1. In this paper we will, as is standard, co-vary these parameters proportionally, that
is, xj = xoj · (1− xi)/(1− xoi ). Moreover we will assume that deterministic parameters are not varied
and that varied parameters will not adopt deterministic values.

From a sensitivity function various properties can be computed. The sensitivity value [9] is the
absolute value of the first derivative of the sensitivity function at the original assessment x0 of the
parameter, that is,

∣∣ δf
δx (x0)

∣∣. High values indicate a high sensitivity of the outcome of the probability of
interest to parameter changes. Sensitivity values above 1 are considered to express a higher sensitivity.
The admissible deviation [6] describes the interval [α, β] of parameter values for which the original most

1From now on, the terms node and variable will be used interchangeably.



likely (joint) value remains unchanged. Not only the classification of some instance may be of interest, it
may also be of importance how well the classifier can discriminate between different outcomes. Change
in discrimination ability can also be expressed by a sensitivity function [12].

3 One-way Sensitivity functions of MDCS
In previous work we introduced, without proofs, one-way sensitivity functions for outcomes Pr(c | f)
of MDCs [2]. Here we review the results necessary for our further analyses and include the proofs.

Proposition 1. Let Pr(c | f) be an outcome probability of an MDC(C,F), that is, an MDC with class
variables C and feature variables F and let x = Pr(fi | πfiπci

) be a feature parameter with πfi ∼ f 2.
The sensitivity function fPr(c|f)(x) has one of the following forms

πci
∼ c πci

� c

fi ∼ f x·Pr0(c|f)
(x−x0)·Pr0(πci

|f)+x0

x0·Pr0(c|f)
(x−x0)·Pr0(πci

|f)+x0

fi � f (1−x)·Pr0(c|f)
(x0−x)·Pr0(πci

|f)+1−x0

(1−x0)·Pr0(c|f)
(x0−x)·Pr0(πci

|f)+1−x0

Proof. We first detail the relation between x = Pr(fi | πfiπci
) and joint probabilities Pr(c∗ f), πfi ∼ f :

Pr(c∗ f)(x) =

 Pr0(c∗ f) for any c∗ � πci

Pr0(c∗ f) · x/x0 for any c∗ ∼ πci
, f ∼ fi

Pr0(c∗ f) · (1− x)/(1− x0) for any c∗ ∼ πci
, f � fi

where the bottom result is due to proportional co-variation.

Now consider the case where πci
∼ c and fi ∼ f . We find

fPr(c|f)(x) =
Pr0(c f) · x/x0∑

c∗∼πci
Pr0(f c∗) · x/x0 +

∑
c∗�πci

Pr0(f c∗)
(1)

Using
∑

c∗�πci
Pr(f c∗) = Pr(f) −

∑
c∗∼πci

Pr(f c∗), and using that
∑

c∗∼πci
Pr(f c∗) = Pr(fπci

)

which marginalises out all class variables outside subset πCi
, and then dividing all terms by Pr0(f)

gives

fPr(c|f)(x) =
Pr0(c f) · x/x0

x/x0 · Pr0(fπci
) + Pr0(f)− Pr0(fπci

) · x0/x0

=
Pr0(c f) · x/x0

(x− x0)/x0 · Pr0(fπci
) + Pr0(f)

=
Pr0(c | f) · x/x0

(x− x0)/x0 · Pr0(πci
| f) + 1

=
Pr0(c | f) · x

(x− x0) · Pr0(πci
| f) + x0

For the case where πci
∼ c, yet fi � f , we observe that x/x0 in Equation (1) needs to be replaced

by (1 − x)/(1 − x0) both in the numerator and in the denominator. For the cases where πci
� c, the

numerator in Equation (1) remains constant. Subsequently following similar steps as above serves to
prove the remaining results stated in Proposition 1. 2

The following proposition provides the sensitivity function for a root class parameter, that is, a
parameter of a class variable without parents. Special cases of MDCs that assume class variables to be
independent contain only root class variables; MDCs in general contain at least one such variable.

2If πfi � f then Pr(c | f) is not affected by a change of Pr(fi | πfi
πci

) and remains constant.



Proposition 2. Let Pr(c | f) be an outcome probability of an MDC(C,F) as before and let x = Pr(ci)
be a parameter of a root class variable. The sensitivity function fPr(c|f)(x) has one of the following
forms:

fPr(c|f)(x) =
x · (1− x0) · Pr0(c | f)

(x− x0) · Pr0(ci | f) + (1− x) · x0
, if ci ∼ c

fPr(c|f)(x) =
(1− x) · x0 · Pr0(c | f)

(x− x0) · Pr0(ci | f) + (1− x) · x0
, if ci � c

Proof. We first detail the relation between x = Pr(ci) and joint probabilities Pr(c∗ f):

Pr(c∗ f)(x) =

{
Pr0(c∗ f) · x/x0 for any c∗ ∼ ci
Pr0(c∗ f) · (1− x)/(1− x0) for any c∗ � ci

where the bottom result is due to proportional co-variation.

Now consider the case where ci ∼ c. We find

fPr(c|f)(x) =
Pr0(c f) · x/x0

Pr0(f ci) · x/x0 +
∑
c∗i 6=ci

Pr0(f c∗i ) · (1− x)/(1− x0)
(2)

Using
∑
c∗i 6=ci

Pr(f c∗i ) = Pr(f)−Pr(f ci), subsequent simplification and division of all terms by Pr0(f)

gives

fPr(c|f)(x) =

=
Pr0(c f) · x/x0

Pr0(f ci) · x/x0 + (Pr0(f)− Pr0(f ci)) · (1− x)/(1− x0)

=
Pr0(c f) · x/x0

Pr0(f ci) · (x/x0) · (1− x0)/(1− x0) + (Pr0(f)− Pr0(f ci)) · (1− x)/(1− x0) · x0/x0

=
Pr0(c f) · x · (1− x0)

(x · (1− x0)− x0 · (1− x)) · Pr0(f ci) + x0 · (1− x) · Pr0(f)

=
Pr0(c | f) · x · (1− x0)

(x− x0) · Pr0(ci | f) + x0 · (1− x)

For the case where ci � c the proof is analogous: we just need to replace x/x0 by (1− x)/(1− x0) in
the numerator of Equation (2). 2

With C reduced to a single variable, the propositions above apply for ODCs. The functions in that
case are equal to the functions found in [11] for naive ODCs. Our proofs show that in fact the results in
[11] apply to ODCs in general.

4 Sensitivity properties of MDCs
In Section 4.1 we shortly review our results with respect to the sensitivity value of MDCs from [2]. In
Section 4.2 we provide intervals of admissible deviation for the feature parameters and the root class
parameters of an MDC.



4.1 Sensitivity Value
As mentioned in Section 2.2, a sensitivity value> 1 is considered to express a higher sensitivity of some
outcome to a local parameter change. From the sensitivity functions given in the previous section we
derived expressions for the sensitivity value

∣∣ df
dx (x0)

∣∣. We used these expressions to establish for which
proportion of combinations of the terms x0, Pr0(c | f), and Pr0(πci

| f) or Pr0(ci | f) a sensitivity
value > 1 will be found and we compared MDCs in general to the special case of ODCs in this respect.

For feature parameters we found that, for MDCs in general approximately 8% of the independently
chosen feasible combinations of terms has a sensitivity value > 1, whereas for the special case of ODCs
this percentage is approximately 17%. For root class parameters we found percentages of respectively
approximately 20% and 50%. For MDCs in general these percentages thus are considerably lower than
for ODCs. The percentages given above hold if terms are chosen independently. The terms, however,
are in fact related. We argued that although the dependencies between the terms will change the actual
percentages, the percentages will remain smaller for MDCs. All in all we concluded that MDCs will in
general be less sensitive to feature parameter changes and root class parameter changes than ODCs.

4.2 Admissible deviation
In view of the classification task of an MDC, the property of admissible deviation is of importance.
The admissible deviation gives the amount of variation that is allowed before an instance is classified as
belonging to a different class. In [4] a method is given to determine the robustness of a most probable
explanation (MPE) to parameter change. A Bayesian network is transformed into an arithmetic circuit
from which two constants are computed that are used to assess for which parameter values the MPE may
change. Since classification with an MDC is a special case of the MPE-problem, this method can provide
for establishing admissible deviations for an MDC. Here we present an alternative approach in which
the admissible deviations for an MDC are derived from the intersections of the appropriate sensitivity
functions. Our approach is more simple since a transformation of the network is not required and
more insightful since it yields formulas that express the admissible deviations in just a few meaningful
probabilities. In Lemma 1 we first prove that a classification can change at most once given a changing
x. We use this lemma in Proposition 3 in which the intervals of admissible deviation are given.

Lemma 1. Let MDC(C,F) be an MDC as before, let f be an instance, let cmax = argmaxc∈C Pr(c | f)
be the classification of f and let x = Pr(fi | πfiπci

) be a feature parameter with πfi ∼ f . Let C∼ = {c |
c ∼ πci} and C� = {c | c � πci} be the instantiations of the class variables, respectively compatible
and incompatible with x and let cmax∼ be argmaxc∈C∼ Pr(c | f) and cmax� be argmaxc∈C� Pr(c |
f). The classification cmax can change at most once given a decreasing or an increasing x; either from
cmax∼ to cmax� or from cmax� to cmax∼. For a root class parameter the lemma is analogous, but
now C∼ = {c | c ∼ ci} and C� = {c | c � ci}.

Proof. Consider a feature parameter x = Pr(fi | πfiπci
) with fi ∼ f . From Proposition 1 we have that

for all c ∈ C∼, the sensitivity functions are given by fPr(c|f) = x·Pr0(c|f)
(x−x0)·Pr0(πci

|f)+x0
. These functions

only differ in Pr0(c | f) and only intersect for x = 0. Since x ∈ 〈0, 1〉, cmax∼ will remain the
same upon varying x. Likewise, cmax� will not change upon varying x. We moreover observe that
for all c ∈ C∼ the sign of the first derivative of the sensitivity functions fPr(c|f)(x) equals the sign of
Pr0(c | f) · Pr(1 − Pr(πci

| f)) · x0 and these functions thus always increase with increasing x. For
for all c ∈ C� the sign of the first derivative of the sensitivity functions fPr(c|f)(x) equals the sign of
−Pr(c | f) ·Pr(πci

| f)) ·x0 and these functions thus always decrease with increasing x. The functions
fPr(c∼max|f)(x) and fPr(c�max|f)(x) can therefore intersect at most once. These two results together
imply that cmax can change at most once with changing x and then changes from cmax∼ to cmax� or
vice versa. For feature parameters with fi � f and root class parameters similar arguments apply. 2

Proposition 3. Let MDC(C,F), cmax, cmax∼ and cmax� be as before. Let γ = Pr0(c
max�|f)

Pr0(cmax∼|f) and let
x be a feature parameter with πfi ∼ f or a root class parameter. We then find the following intervals of
admissible deviation for x with respect to the classification cmax:



Pr(e|a) = 0.1
Pr(e|¬a) = 0.2

Pr(f|ab) = 0.9
Pr(f|a¬b) = 0.4
Pr(f|¬ab) = 0.8
Pr(f|¬a¬b) = 0.2

Pr(g|fb) = 0.1
Pr(g|f¬b) = 0.9
Pr(g|¬fb) = 0.3
Pr(g|¬f¬b) = 0.5

Pr(b)=0.4Pr(a)=0.4

Figure 1: A small example MDC with class variables A,B and feature variables E,F,G.

x cmax = cmax∼ cmax = cmax�

Pr(fi | πfiπci
), fi ∼ f 〈γ · x0, 1〉 〈 0, γ · x0〉

Pr(fi | πfiπci
), fi � f 〈 0, 1− γ · (1− x0)〉 〈1− γ · (1− x0), 1〉

Pr(ci)
〈

γ·x0

1−x0·(1−γ) , 1
〉 〈

0, γ·x0

1−x0·(1−γ)
〉

Proof. From lemma 1 we have that the intervals of admissible deviation are determined by the inter-
sections of fPr(cmax∼|f)(x) and fPr(cmax�|f)(x). For a feature parameter with fi ∼ f , this intersection
is found from x · Pr0(cmax∼ | f) = x0 · Pr0(cmax� | f). In case cmax∼ is originally more likely
than cmax�, for example, the classification will remain unchanged as long as x ∈ 〈γ · x0, 1〉. All other
intervals of admissible deviation are derived analogously. 2

Note that the intersection of fPr(cmax∼|f)(x) and fPr(cmax�|f)(x) maybe at inadmissible values for
x. In that case cmax cannot be changed by just changing x. Note furthermore that it might be that
Pr0(cmax∼ | f) = 0 which implies that computing γ requires division by zero. Since gamma is just
used for notational reasons there is no objection. Note that in case Pr0(cmax∼ | f) = 0, all sensitivity
functions are constant and Pr(cmax | f) = Pr(cmax� | f).

The formulas for the intervals of admissible deviation are equal for ODCs and MDCs. However,
in an ODC there is just one instantiation of C compatible with x, whereas in an MDC in general there
are multiple compatible instantiations. This may affect γ in general. In future research we want to
investigate experimentally if, and if so how, this affects the size of the intervals of admissible deviation
of ODCs compared to MDCs.

For some applications, for example when decisions based on a outcome have considerable conse-
quences, not only the robustness, but also the reliability of a classification is crucial. We are then inter-
ested in how well a network can discriminate between the different classes. A measure for this reliability
is the absolute difference in probability between two classifications. The sensitivity of this discrimina-
tion ability to parameter changes can be easily computed from the appropriate sensitivity functions [12].
By providing full sensitivity functions, we thus enable detecting changes in discrimination ability for
shifts in feature and root class parameters of an MDC.

5 Example
Figure 1 shows a small example MDC with class variables, A and B, and feature variables, E, F and
G. We consider an instance efg and the output probabilities Pr(AB | efg). In the current network we
find Pr(ab | efg) = 0.054, Pr(ab̄ | efg) = 0.321, Pr(āb | efg) = 0.143 and Pr(āb̄ | efg) = 0.482.
The current classification thus is āb̄. Moreover we find Pr(a | efg) = 0.375 and Pr(b | efg) = 0.196.
With this information the sensitivity functions given the observations efg can be constructed for all
parameters. As an example, Figures 2 and 3, respectively, show the sensitivity functions fPr(AB|efg)(x)



Figure 2: Pr(AB | efg) as a function of Pr(e | a) given the network from Figure 1.

Figure 3: Pr(AB | efg) as a function of Pr(g | fb) given the network from Figure 1.

and fPr(AB|efg)(x) for x = Pr(e | a) and x = Pr(g | fb). The sensitivity values for the functions
related to the current classification x = āb̄ are 1.81 and 0.95, respectively.

With respect to the intervals of admissible deviation we observe in Figures 2 and 3 that for the pa-
rameter Pr(e | a), the outcome probabilities Pr(aB | efg), which are compatible with a, increase with
an increase of the parameter, whereas the outcome probabilities Pr(āB | efg) that are not compatible
with a decrease. For the parameter Pr(g | fb) on the other hand, the outcome probabilities Pr(Ab | efg)
increase and the outcome probabilities Pr(Ab̄ | efg) decrease with an increase of the parameter. The
classification may thus change into Pr(aBmax | efg) = Pr(ab̄ | efg) with an increase of Pr(e | a),
and into Pr(Amaxb | efg) = Pr(āb | efg) with an increase of Pr(g | fb). For Pr(e | a) we find
that γ = 0.482

0.321 and for Pr(g | fb) that γ = 0.482
0.143 The intervals of admissible deviation are respectively

[0, 0.15] and [0, 0.34].

6 Conclusions
Multi-dimensional classifiers were introduced to generalise one-dimensional classifiers to application
domains that require an instance to be classified into a combination of classes. In this paper we inves-
tigated the sensitivity of MDCs to shifts in their parameters by studying the sensitivity functions we
proposed in [2]. We first gave proofs for the validity of our sensitivity functions and then used these
functions to derive intervals in which the admissible deviation for a parameter is expressed in just a
few meaningful probabilities. We thereby provided an more simple and insightful alternative to [4], in
which a Bayesian network is converted to an arithmetic circuit in order to find the robustness conditions.



The sensitivity functions, moreover give insight into the reliability of a classification. We also argued
that a classification can change at most once given an increasing or decreasing parameter value. In [2],
we concluded that MDCs can be expected to be, in general, less sensitive to small parameter changes
than ODCs. From the formulas for the intervals of admissible deviation, however, we could not con-
clude straightforwardly whether to expect larger intervals of admissible deviation in MDCs or ODCs.
In future research, therefore, we want to compare experimentally MDCs and ODCs with respect to the
size of the intervals of admissible deviation for their parameters.
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virus inhibitors using multi-dimensional Bayesian network classifiers. In: Artificial Intelligence in
Medicine, 57(3), 219-229.

[4] H.C. Chan and A. Darwiche. 2006. On the robustness of Most Probable Explanations. In: Pro-
ceedings of the Twenty Second Conference on Uncertainty in Artificial Intelligence, 63-71.

[5] P. Domingos and M. Pazzani. 1997. On the optimality of the simple Bayesian classifier under
zero-one loss. In: Machine Learning, 29, 103-130.

[6] L.C. van der Gaag and S. Renooij. 2001. Analysing sensitivity data. In: J. Breese and D. Koller
(Eds.), Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, 530-
537.

[7] L.C. van der Gaag and P.R. de Waal. 2006. Multi-dimensional Bayesian Network Classifiers. In:
M Studeny and J Vomlel (Eds.), Proceedings of the Third European Workshop in Probabilistic
Graphical Models, 107-114.

[8] M. Friedman, D. Geiger and M. Goldschmidt. 1997. Bayesian network classifiers. In: Machine
Learning, 29, 131-163.

[9] K.B. Laskey. 1995. Sensitivity analysis for probability assessments in Bayesian networks. In: IEEE
Transactions on Systems, Man and Cybernetics, 25: 901-909.

[10] J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Palo Alto.

[11] S. Renooij and L.C. van der Gaag. 2008. Evidence and scenario sensitivities in naive Bayesian
classifiers. In: International Journal of Approximate Reasoning, 49(2): 398-416.

[12] S. Renooij and L.C. van der Gaag. 2008. Discrimination and its sensitivity in probabilistic net-
works. In: M. Jaeger and T.D. Nielsen (Eds.), Proceedings of the Fourth Workshop on Probabilistic
Graphical Models, 241-248.

[13] P.R. de Waal and L.C. van der Gaag. 2007. Inference and learning in multi-dimensional Bayesian
network classifiers. In: K. Mellouli (ed). European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, 501-511.


