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Abstract. A Bayesian network is a concise representation of a joint
probability distribution, which can be used to compute any probabil-
ity of interest for the represented distribution. Credal networks were
introduced to cope with the inevitable inaccuracies in the parametri-
sation of such a network. Where a Bayesian network is parametrised
by defining unique local distributions, in a credal network sets of lo-
cal distributions are given. From a credal network, lower and upper
probabilities can be inferred. Such inference, however, is often prob-
lematic since it may require a number of Bayesian network compu-
tations exponential in the number of credal sets. In this paper we
propose a preprocessing step that is able to reduce this complexity.
We use sensitivity functions to show that for some classes of parame-
ter in Bayesian networks the qualitative effect of a parameter change
on an outcome probability of interest is independent of the exact nu-
merical specification. We then argue that credal sets associated with
such parameters can be replaced by a single distribution.

1 INTRODUCTION
Ever since the introduction of Bayesian networks [19], we have seen
a growing interest for probabilistic graphical models in AI. A prob-
abilistic graphical model concisely represents joint probability dis-
tributions over a set of stochastic variables, by combining the use
of a graph to represent the independence relation among the vari-
ables with probability distributions over subsets of those variables.
A Bayesian network defines a unique joint probability distribution
by combining an acyclic directed graph with local discrete distribu-
tions, one for each node in the graph conditioned on its parents. A
Bayesian network can be used to infer any probability of interest
from the represented distribution.

Since in practice the specified probabilities, also called parame-
ters, may be inaccurate, methods were developed to cope with such
inaccuracies. A sensitivity analysis, for example, can be used to
study the impact of inaccuracies on outcome probabilities of inter-
est [16]. Alternatively, credal networks adopt the framework of im-
precise probabilities [2, 23] by allowing the use of closed convex sets
of distributions (also called credal sets), rather than defining unique
local distributions per variable. Credal networks as such represent a
set of Bayesian networks [1, 11, 12].

One of the main computational problems in a credal network is the
computation of tight lower and upper bounds on the outcome proba-
bilities that correspond to the represented Bayesian networks. These
computations in essence require a number of Bayesian network in-
ferences that is exponential in the number of imprecise local credal
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sets, which are the local credal sets that consist of more than one
distribution.

Although this combinatoric explosion can, in general, not be
avoided, in many cases a reduction is possible. For example, similar
to what can be done for Bayesian networks, it is possible to apply a
preprocessing step in which the variables that are irrelevant for a spe-
cific problem, such as d-separated or barren nodes, are pruned in ad-
vance [11]. In this paper, we introduce a second type of preprocessing
step to reduce the combinatoric complexity of credal network infer-
ence. Unlike the use of d-separation or the removal of barren nodes,
our preprocessing step is tailored specifically to credal networks, and
does not apply to Bayesian networks, as it involves replacing some
of the local imprecise credal sets by a single distribution.

In order to prove the validity of our preprocessing step for credal
network inference, we exploit results that we derive from Bayesian
network sensitivity functions. More specifically, we use sensitivity
functions to prove that for certain categories of distributions we can
predict the qualitative effect of changing their parameters on an out-
come probability, irrespective of the numerical specification of the
network. In a credal network, this result allows us to identify, prior to
the inference, local credal sets that can be replaced by a single distri-
bution without changing the result of the inference. By applying this
preprocessing step, the number of imprecise local credal sets and
the corresponding combinatoric complexity of inference is reduced.
Moreover, we demonstrate that for some widely used special classes
of networks even all credal sets can be replaced by a single distribu-
tion, thereby essentially reducing the problem of computing a lower
or upper probability in a credal network to an inference problem in a
single Bayesian network.

This paper is organised as follows. In Section 2, we introduce the
notation used throughout the paper. In Section 3, we start with a brief
review of Bayesian networks and subsequently derive the properties
of sensitivity functions for Bayesian networks that we want to exploit
in the context of credal networks. Section 4 introduces the concept of
a credal network, and then uses the results in Section 3 to establish
the aforementioned preprocessing technique. We end the paper with
conclusions and suggestions for future research.

2 NOTATION

This paper is concerned with graphical models for (sets of) joint
probability distributions Pr(V) over a set of finite-valued random
variables V.

We use upper case V to denote a single random variable, writing
v ∈ V to indicate a value (lowercase v) of V . For binary-valued
V , we use v and v to denote its two possible value assignments.
Boldfaced letters are used to indicate sets (capitals), both of variables



and of value assignments, or a joint value assignment (lowercase) to
a set of variables; the distinction will be clear from the context. For
example V ∈ W indicates that V is a variable in a set of variables
W, whereas w ∈W indicates that w is a joint value assignment of
that same set of variables W.

Two value assignments are said to be compatible, denoted by ∼,
if they agree on the values of the shared variables; otherwise they
are said to be incompatible, denoted by �. For example, for three
distinct variables U , V and W in V, and value assignments u, u′ ∈
U , v ∈ V and w ∈ W such that u 6= u′, we have that uv ∼ uvw
and uv � u′vw. Assignments to disjoint sets are always considered
to be compatible.

The probabilistic graphical models that we consider are Bayesian
networks and credal networks. The graphical part of these models
consists of a directed graph, the nodes of which have a one-to-one
correspondence with the random variables V in V. For a given node
V , π indicates its set of parents in the directed graph, and we will
use π to indicate a joint instantiation of these parents. Without loss
of generality, we assume that the set V of all random variables con-
sists of the disjoint subsets H (hypothesis variables), E (evidence
variables) and R, with V = H ∪ E ∪ R. The sets of hypothesis
variables and evidence variables that do not have parents in R are
denoted by H|�R and E|�R, respectively. Similarly, the set H|�H con-
sists of those hypothesis variables that have no parents in H.

Finally, when referring to monotonic functions, we will use
the term increasing to indicate both strictly increasing and non-
decreasing functions; likewise decreasing refers to both strictly de-
creasing and non-increasing functions.

3 BAYESIAN NETWORKS’ SENSITIVITY
PROPERTIES

In this section, we first briefly review Bayesian networks and sen-
sitivity analysis. Subsequently, we establish guarantees on the be-
haviour of sensitivity functions for some categories of parameters.
Next, we use these results to define types of local distributions, which
will then allow us in Section 4 to exploit our results in the context of
credal networks.

3.1 Bayesian network preliminaries
A Bayesian network B is a concise representation of a joint prob-
ability distribution. It uses a directed acyclic graph to capture the
(in)dependences among its variables V using the well-known d-
separation criterion [19]. 4 Furthermore, for each variable V ∈ V,
it specifies exactly one local distribution Pr(V |π) over the values
of V for each value assignment π to π; the separate probabilities
in these distributions are termed the network’s parameters. The joint
probability distribution Pr factorises over the local distributions as
follows:

Pr(v) =
∏
V ∈V

Pr(v |π)
∣∣
vπ∼v

where the notation |prop is used to indicate the properties the argu-
ments in the preceding formula adhere to. Outcome probabilities of
the form Pr(h |e) can be computed with various algorithms [15].

4 For any three disjoint sets of nodes X , Y , Z, the set Z is said to d-separate
X and Y if there do not exist any active chains between X and Y given
evidence for Z. A chain between two nodes is active if each of its head-to-
head nodes is either instantiated or has an instantiated descendant, and none
of its other nodes are instantiated. The variables captured by d-separated
nodes are considered probabilistically independent.

An example Bayesian network is shown in Figure 1. The figure
shows a graph with hypothesis variables H = {G,H,K} (double
circles), evidence variables E = {E,F} (shaded), and remaining
variable R = {R}. The figure also shows conditional probability
tables (CPTs) that specify the local distributions. Actual numbers are
not provided, but the top row in the table for Pr(H |G) could for
example specify the parameters Pr(h |g) = 0.4 and Pr(h |g) = 0.6.

The probabilities computed from a Bayesian network depend on
the parameters specified in the network, which are inevitably inaccu-
rate. To study the effects of such inaccuracies on an output probabil-
ity of interest, a sensitivity analysis can be performed. One approach
to performing a sensitivity analysis is to compute so-called sensitiv-
ity functions [16]. An n-way sensitivity function describes an output
probability of interest Pr(h |e) as a function of n network parame-
ters ~x = {x1, . . . , xn}:

Pr(h |e)(~x) = Pr(he)(~x)

Pr(e)(~x)

where both the numerator and the denominator are known to be
multi-linear expressions in ~x. For n = 1, the one-way sensitivity
function takes the general form

Pr(h |e)(x) = τ1 · x+ τ2
κ1 · x+ κ2

where the constants τ1, τ2, κ1 and κ2 are composed of non-varied
network parameters. Throughout this paper we assume Pr(e) to be,
and to remain, strictly positive.

Upon varying a parameter x of a distribution, the other parameters
of the same distribution have to be co-varied to let the distribution
sum to 1. If the distribution is associated with a binary variable, the
co-varying parameter equals 1−x. If a variable is multi-valued, how-
ever, different co-variation schemes are possible [21].

Based upon graphical considerations alone, in computing a prob-
ability Pr(h |e), and thus also for performing sensitivity analyses
with respect to this output probability, a Bayesian network can be
safely pruned by removing variables that are either d-separated from
H given E, or that are barren given these sets.5 The remaining vari-
ables all have evidence or parameters that may be required for the
computation of Pr(h |e) [22]. This set of requisite variables coin-
cides with the union of E and the so-called sensitivity set [18], which
is the set of variables for which a change in one of its parameters may
result in a change in Pr(h |e) [10]. In our example network in Fig-
ure 1 all variables are in the sensitivity set of Pr(ghk |ef).

3.2 Guaranteed effects of parameter changes
In this section, we first consider one-way sensitivity functions
Pr(h |e)(x) and identify categories of parameters that are guaran-
teed to give monotonically increasing and parameters that are guar-
anteed to give monotonically decreasing one-way functions. We also
identify parameters inside the sensitivity set of Pr(h |e) that are not
used in computing the outcome probability Pr(h |e). Next, we use
these results to provide guarantees on n-way functions Pr(h |e)(~x).

We begin by categorising the different parameters x = Pr(v |π)
of a Bayesian network with respect to a specific outcome probability
Pr(h |e). We only categorise the subset of all parameters for which
we can provide guarantees on their qualitative effect on the outcome
probability. The categorisation is given in Table 1. For our example
network in Figure 1, the categories are indicated with respect to the
output probability Pr(ghk |ef).
5 Barren variables are in the set R and have just barren descendants.



Figure 1: An example Bayesian—and credal—network. The CPTs are labelled with parameter categories (see Table 1) and distribution types
(see Section 3.3) with respect to output probability Pr(ghk |ef).

Table 1: Categorisation of parameters x = Pr(v |π) with respect to
the outcome probability Pr(h |e).

π ∼ h π � h

π � e cat. 0 cat. 0

V ∈ E, v � e and π ∼ e cat. 1b cat. 2b

V ∈ E|�R and vπ ∼ e cat. 1a cat. 2a

V ∈ E \E|�R and vπ ∼ e - cat. 2a

binary V ∈ H|�R and π ∼ e cat. 3a (v ∼ h) -

cat. 3b (v � h)

The following proposition states that parameters from category 1a
result in sensitivity functions that are monotonically increasing,
whereas parameters from category 2a give monotonically decreas-
ing sensitivity functions, irrespective of the values of the non-varied
network parameters and irrespective of the co-variation scheme that
is used.

Proposition 1 Consider a Bayesian network B and a probability of
interest Pr(h |e). Let x = Pr(v |π) be a parameter of V ∈ E with
vπ ∼ e. If V ∈ E|�R and π ∼ h, then the sensitivity function
Pr(h |e)(x) is monotonically increasing. If π � h, then the sensi-
tivity function Pr(h |e)(x) is monotonically decreasing.

Proof. We first consider the numerator of the sensitivity function:

Pr(he) =
∑
r∈R

Pr(rhe) =
∑
r∈R

∏
V ∗∈V

Pr(v∗ |π∗)
∣∣
v∗π∗∼rhe

(1)

Note that x = Pr(v |π) is a factor in this expression only if π ∼ h.
For π � h, therefore, Pr(he)(x) = τ1 for some constant τ1 ≥ 0.
Returning to the case where π ∼ h, we observe that if V ∈ E|�R, we
have that π ∼ rhe for all r ∈ R and we thus find that

Pr(he)(x) = x ·
(∑
r∈R

∏
V ∗∈V\{V }

Pr(v∗ |π∗)
∣∣
v∗π∗∼rhe

)

Given π ∼ h and V ∈ E|�R, therefore, Pr(he)(x) = x ·τ1 for some
constant τ1 ≥ 0.

Next, we consider the denominator of the sensitivity function:

Pr(e) =
∑

r∈R,h∗∈H

Pr(rh∗e)

=
∑

r∈R,h∗∈H

∏
V ∗∈V

Pr(v∗ |π∗)
∣∣
v∗π∗∼rh∗e

(2)

We observe that x = Pr(v |π) is a factor in each term of the sum-
mation for which π ∼ rh∗, and otherwise is absent. That is, no
term includes x as a co-varying parameter. Therefore, Pr(e)(x) =
κ1 · x+ κ2, for constants κ1, κ2 ≥ 0.

We are now able to determine the general form of the sensitiv-
ity function Pr(h |e)(x) under the given conditions. Moreover, we
can use the first derivative of this sensitivity function to determine
whether the function is increasing or decreasing. If π ∼ h and
V ∈ E|�R, we find that

Pr(h |e)′(x) = τ1 · κ2

(κ1 · x+ κ2)2
.

This first derivative is always non-negative which implies that
Pr(h |e)(x) is a monotone increasing function, irrespective of the
values of the non-varied network parameters and irrespective of the
co-variation scheme. If π � h, we find that

Pr(h |e)′(x) = −τ1 · κ1

(κ1 · x+ κ2)2
.

This first derivative is always non-positive, which implies that
Pr(h |e)(x) is a monotone decreasing function, irrespective of the
values of the non-varied network parameters and irrespective of the
co-variation scheme. 2

Our next proposition states that parameters from category 3a re-
sult in monotonically increasing sensitivity functions, whereas pa-
rameters from category 3b give monotonically decreasing sensitivity
functions, again irrespective of the values of the non-varied network



parameters. The proposition concerns parameters for binary hypoth-
esis variables, which implies that the co-variation scheme is fixed.

Proposition 2 Consider a Bayesian network B and a probability of
interest Pr(h |e). Let x = Pr(v |π) be a parameter of a binary
variable V ∈ H|�R , with π ∼ e and π ∼ h. If v ∼ h then
the sensitivity function Pr(h |e)(x) is monotonically increasing. If
v � h then Pr(h |e)(x) is monotonically decreasing.

Proof. We first consider the parameters x with v ∼ h. As in the
proof of Proposition 1, the numerator of the sensitivity function can
be rewritten as

Pr(he)(x) = x ·
(∑
r∈R

∏
V ∗∈V\{H}

Pr(v∗ |π∗)
∣∣
v∗π∗∼rhe

)
because, under the given conditions, x is a factor in all terms of the
summation. Therefore, we have that Pr(he)(x) = x ·τ1, for some
constant τ1 ≥ 0.

The assumption that V is binary enforces the following co-
variation scheme: Pr(v |π) = 1−Pr(v |π). Therefore, with respect
to the denominator of the sensitivity function—see Equation (2)—
we observe the following: 1) x itself is a factor in any term of the
summation for which π ∼ h∗ and v ∼ h∗, 2) x appears as (1 − x)
for π ∼ h∗ and v � h∗, and 3) x is absent whenever π � h∗.
Hence, Pr(e)(x) = x·κ1 +(1−x)·κ2 +κ3, with constants κi ≥ 0,
i = 1, 2, 3.

We now find that the first derivative of the sensitivity function
equals the following non-negative function:

Pr(h |e)′(x) = (κ2 + κ3)·τ1
(κ2 + κ3 + κ1 ·x− κ2 ·x)2

This implies that Pr(h |e)(x) is a monotonically increasing function
irrespective of the values of the non-varied network parameters.

Next, we consider the parameters x = Pr(v |π) with v � h. Since
we know that Pr(v |π) = 1 − Pr(v |π) with v ∼ h, an increase
(decrease) of x is equivalent to a decrease (increase) of the parameter
consistent with h. Hence, using the first part of this proof, it follows
that Pr(h |e)(x) is a monotonically decreasing function irrespective
of the values of the non-varied network parameters. 2

Although the above propositions are concerned with one-way sen-
sitivity functions, we have shown that their monotone increasing or
decreasing behaviour does not depend on the actual values of the
non-varied parameters which determine the constants of the func-
tion. As a result, our observations extend to specific n-way sensitivity
functions.

Theorem 1 Consider a Bayesian network B and a probability of in-
terest Pr(h |e). Let ~x+ = {x+1 , . . . , x

+
k } be a set of parameters from

categories 1a and/or 3a, and let ~x− = {x−1 , . . . , x
−
l } be a set of

parameters from categories 2a and/or 3b. Then the (k + l)-way sen-
sitivity function Pr(h |e)(~x+, ~x−) is monotonically increasing for
increasing parameters x+i and decreasing parameters x−i ; the sen-
sitivity function is monotonically decreasing for decreasing x+i and
increasing x−i .

Proof. From Propositions 1 and 2 we have that a one-way sensitivity
function Pr(h |e)(x+i ) increases with increasing x+i and a one-way
sensitivity function Pr(h |e)(x−i ) increases with decreasing x−i , ir-
respective of the values of the non-varied parameters, and irrespec-
tive of the co-variation scheme. Given a simultaneous increase of

parameters in ~x+ and decrease of parameters in ~x−, therefore, the
probability Pr(h |e)(~x+, ~x−) will increase. A similar observation
holds for decreasing x+i and increasing x−i . 2

The above results describe an output probability of interest as a
function of changing input parameters of categories 1a, 2a, 3a and 3b.
The example network in Figure 1 also includes parameters of cate-
gory 0, 1b and 2b. Parameters of these categories are not used in com-
puting the output probability. For category 0, the parameters make
up an entire local distribution (see e.g. the CPT for Pr(K |FR)); for
parameters of categories 1b and 2b, parameters are in a local distri-
bution with a parameter of category 1a or 2a (see e.g. the CPTs for
Pr(E |G) and Pr(F |HR)).

Proposition 3 Consider a Bayesian network B and a probability of
interest Pr(h |e). Let Pr(v |π) be a parameter. If v � e and/or
π � e, then Pr(v |π) is not used in the computation of Pr(h |e).

Proof. As before, we have that

Pr(h |e) = Pr(he)

Pr(e)

with numerator

Pr(he) =
∑
r∈R

Pr(rhe) =
∑
r∈R

∏
V ∗∈V

Pr(v∗ |π∗)
∣∣
v∗π∗∼rhe

The parameter Pr(v |π) can only be a factor in this numerator if
v ∼ e and π ∼ e. A completely analogous observation holds for the
denominator as well. 2

Note that we cannot conclude from the above proposition that the
sensitivity function Pr(h |e)(x) for parameters x = Pr(v |π) of cat-
egories 1b and 2b is constant. A change of such parameters may, by
co-variation, induce a change in the parameter Pr(v′ |π) of the same
local distribution with v′ ∼ e which is used in the computation of
Pr(h |e). The actual value of a parameter with v � e, however, is
irrelevant for Pr(h |e). We can conclude that the sensitivity func-
tion Pr(h |e)(x) for parameters of category 0 is a constant, however,
since given a parameter with π � e this condition is fulfilled for all
parameters in the same local distribution.

3.3 Defining local distribution types
In the previous subsection we have focused on properties of different
categories of parameters in a Bayesian network. In order to apply our
results in the context of credal networks, it will be useful to lift these
properties to the level of distributions. To this end, we define four
types of local distributions Pr(V |π), again with respect to a specific
outcome probability of interest Pr(h |e).

Definition 1 (Local distribution of Type 0) Consider a Bayesian
network B and a probability of interest Pr(h |e). A local distribu-
tion Pr(V |π) is said to be of Type 0 if π � e.

All parameters of a local distribution of Type 0 are in category 0.
From Proposition 3, we know that parameters from a local distri-
bution of Type 0 are irrelevant for the computation of the outcome
probability Pr(h |e).

Definition 2 (Local distribution of Type I) Consider a Bayesian
network B and a probability of interest Pr(h |e). A local distribu-
tion Pr(V |π) is said to be of Type I if π ∼ e, V ∈ E|�R and
π ∼ h.



The unique parameter of a distribution of Type I with v ∼ e is in
category 1a. Any other parameter Pr(v′ |e) of the distribution is in
category 1b and is therefore irrelevant for computing Pr(h |e), since
v′ � e. Given changes in a local distribution of Type I, therefore,
knowing the qualitative change of the parameter with v ∼ e suffices
to know the qualitative effect of the changes in the entire distribution
on Pr(h |e). In particular, an increase (decrease) of this parameter
results in an increase (decrease) of Pr(h |e).

Definition 3 (Local distribution of Type II) Consider a Bayesian
network B and a probability of interest Pr(h |e). A local distribu-
tion Pr(V |π) is said to be of Type II if π ∼ e, V ∈ E and π � h.

Analogous to distributions of Type I, knowing the qualitative change
of the parameter with v ∼ e is sufficient to know the qualitative
effect of changes in the entire local distribution on Pr(h |e). Now
the unique parameter with v ∼ e is in category 2a, which implies
that an increase (decrease) of this parameter results in an decrease
(increase) of Pr(h |e).

Definition 4 (Local distribution of Type III) Consider a Bayesian
network B and a probability of interest Pr(h |e). A local distribution
Pr(V |π) is said to be of Type III if π ∼ e, π ∼ h, V ∈ H|�R and
|V | = 2.

Distributions of Type III consist of exactly two parameters, one for
v and one for v, which are related by the fixed co-variation scheme:
Pr(v |π) = 1 − Pr(v |π). The parameter that is compatible with h
is in category 3a, which implies that an increase (decrease) of this
parameter results in an increase (decrease) of Pr(h |e). The param-
eter that is not compatible with h is in category 3b, which implies
that the concurrent decrease (increase) of this parameter results in an
increase (decrease) of Pr(h |e) as well.

By Theorem 1 and Proposition 3 we have that, given simultaneous
changes in multiple local distributions, Pr(h |e) will increase (de-
crease) given an increase (decrease) of the parameters with v ∼ e
in the distributions of Type I and III and a decrease (increase) of the
parameters compatible with v ∼ e in the distributions of Type II.
The outcome probability Pr(h |e) is not affected by changes in local
distributions of Type 0.

3.4 Important special cases
In Section 3.3 we identified types of distributions for which we can
guarantee the direction of change in Pr(h |e) upon changes in cer-
tain parameters from those distributions. In general, as illustrated in
Figure 1, a network will include distributions that do not belong to
any of those types. We can, however, identify classes of networks
for which the majority of distributions—or even all of them—can be
classified as Type 0, I, II or III.

Consider for example a network obeying the following constraint:
each observed variable only has hypothesis variables or other ob-
served variables as parents, that is, E = E|�R. It then follows from
Definitions 1–3 that all local distributions of the observed variables
are of type 0, I or II. Bayesian network classifiers with full evidence
obey this constraint. Bayesian classifiers, a special type of Bayesian
network, are widely used in practice (see [14] for an overview).

Now consider a network obeying the constraint that all hypothesis
variables are binary valued and can only have observed variables as
parents, that is, H = H|�R ∩H|�H and |V | = 2 for each V in H. It
then follows from Definitions 1 and 4 that all local distributions of

the hypothesis variables are of Type 0 or III.6 This second constraint
is for example obeyed by Bayesian network classifiers with a single
binary class variable, or by Bayesian network classifiers with multi-
ple binary class variables, provided that these class variables have no
class parents.7 Given full evidence, these two types of Bayesian net-
work classifiers also satisfy the first constraint, it follows therefore
that, given full evidence, for those networks all the distributions are
of Type 0, I, II or III.

4 AN APPLICATION TO CREDAL NETWORKS
Since a sensitivity function is an object that is associated with a given
Bayesian network, it might at first sight seem as if it has little to do
with credal networks, because these are essentially sets of Bayesian
networks. However, for the particular sensitivity properties that we
developed in the previous section, this is not the case. As we will ex-
plain in this section, these sensitivity properties allow us to replace
some of the local credal sets of a credal network by a single probabil-
ity mass function, and in this way, the combinatoric nature of credal
network inference can be reduced.

4.1 Credal network preliminaries
An important limitation of Bayesian networks is that they require
the exact specification of a large number of probabilities. Since these
probabilities have to be elicited from experts or estimated from data,
this requirement is often unrealistic. By enforcing it anyway, as is
conventionally done, we run the risk of ending up with a model
whose precision is unwarranted, thereby making the resulting con-
clusions unreliable. In order to avoid these issues, credal networks
explicitly drop the assumption that probabilities should be speci-
fied exactly, and instead adopt the framework of imprecise proba-
bilities [2, 23, 25], thereby trading off precision for reliability.

Basically, a credal network [1, 11, 12] is just a Bayesian network
of which the local models are partially specified, in the sense that
they are only known to belong to some set of candidate distributions.
Specifically, for every random variable V ∈ V and every instantia-
tion π of its parents π, the local distribution Pr(V |π) is replaced
by a non-empty setM(V |π) of candidate distributions. This set is
usually taken to be closed and convex, and is then called a credal
set. The local credal sets of a credal network can be obtained in var-
ious ways [23], the most typical of which are to elicit them from
experts [20], to learn them from data [4, 24] or to create a neighbour-
hood model around some distribution [3].

For example, in Figure 1, if an expert judges that the probability
of g is at most 2/3 but not less than 1/3, then in particular, we are lead
to consider the local credal setM(G) that is defined by

Pr(G) ∈M(G) ⇔ 1

3
≤ Pr(g) ≤ 2

3
. (3)

The same credal set can also be obtained by ε-contaminating the uni-
form probability distribution on {g, g} with ε = 1/3 [3] or by learn-
ing it from a dataset in which each of the two possible outcomes—g
and g—is counted twice, using the Imprecise Dirichlet Model (IDM)
with s = 2 [4, 24]. As another example, consider a situation in
which, conditional on G = g, an expert judges that e is at least as

6 V ∈ H|�H implies that π ∼ h
7 Note that, by definition, in Bayesian classifiers class variables do not have

feature parents, as a consequence, H = H|�R, even in case of incomplete
evidence.



e′ e′′

e

Figure 2: Every point in the above equilateral triangle of height one
can be identified with a distribution Pr(E |g) on {e, e′, e′′}, by let-
ting Pr(e |g) be equal to the perpendicular distance from that point
to the edge that opposes the corner that corresponds to e, and simi-
larly for Pr(e′ |g) and Pr(e′′ |g). In this way, the grey area depicts
the distributions in the credal setM(E |g) of Equation (4).

probable as e′′ and that the probability of e′ is at most 2/3 and at least
1/3. In that case, we are lead to consider the credal setM(E |g) that
is defined by

Pr(E |g) ∈M(E |g)

⇔ Pr(e |g) ≥ Pr(e′′ |g) and
1

3
≤ Pr(e′ |g) ≤ 2

3
, (4)

as depicted in Figure 2. The other local credal sets can be obtained
similarly. Depending on the amount of data and/or expert assess-
ments that is available, some of these local credal sets—such as the
two examples we have just provided—will be imprecise, meaning
that they consist of multiple distributions, while others may be pre-
cise, meaning that they consist of a single distribution.

If all the local credal sets are precise, a credal network is exactly
the same as a Bayesian network. However, if some of the credal sets
M(V |π) are imprecise, then since the local distributions Pr(V |π)
are only known to belong to these credal sets, they do not determine
a unique Bayesian network. Therefore, in general, a credal network
corresponds to a set of Bayesian networks B, defined by8

B ∈ B ⇔ (∀V ∈ V) (∀π ∈ π) Pr(V |π) ∈M(V |π).

If all the local credal sets are precise, the set B consists of a single
Bayesian network.

An important computational problem in credal networks consists
in computing tight lower and upper bounds on the probabilities that
correspond to the Bayesian networks B in B, which are called lower
and upper probabilities. In particular, we consider the problem of
computing tight lower and upper bounds on probabilities of the form
Pr(h |e), defined by

Pr(h |e) := min
B∈B

Pr(h |e) and Pr(h |e) := max
B∈B

Pr(h |e). (5)

8 There are also other ways in which the local credal sets of a credal network
can be combined to form a global model, depending on the type of credal
network that is considered [11]; our definition corresponds to what is called
a credal network under complete independence. Our results also apply to
credal networks under strong independence, which replace B by its convex
hull, but not to credal networks under epistemic irrelevance [5, 7, 9] or
epistemic independence [8].

In order for these definitions to make sense, we require that Pr(e) is
strictly positive for all B ∈ B.9

Computing the lower and upper probabilities in Equation (5) con-
sists in optimising Pr(h |e), which is a fraction of two multilin-
ear functions of the network’s parameters, under the constraint that
each of the local distributions Pr(V |π) belongs to its credal set
M(V |π). Obtaining the exact solution is only possible in special
cases [13, 17] or for networks that are sufficiently small. Therefore,
applied work on credal networks often resorts to approximate algo-
rithms; see Reference [1] for a recent overview.

Most of the existing algorithms exploit the fact that for the pur-
poses of computing Pr(h |e) or Pr(h |e), the—closed and convex—
credal setsM(V |π) can be replaced by their set of extreme points10

ext(M(V |π)) [13]:

Pr(h |e) = min
B∈Bext

Pr(h |e) and Pr(h |e) = max
B∈Bext

Pr(h |e),

where Bext is the set of Bayesian networks in B whose local distri-
butions Pr(V |π) take values in ext(M(V |π)), defined by

B ∈ Bext ⇔ (∀V ∈ V) (∀π ∈ π) Pr(V |π) ∈ ext (M(V |π)) .

The reason why this is useful is because in practice, credal sets are
usually finitely generated, meaning that they are defined by means
of a finite number of linear constraints, or equivalently, that they
have a finite number of extreme points. For example, the credal set
M(G) of Equation (3) has two extreme points, which are char-
acterised by Pr(g) = 1/3 and Pr(g) = 2/3, respectively. Simi-
larly, the credal set M(E |g) in Figure 2 has four extreme points
Pr(E |g) = (Pr(e |g),Pr(e′ |g),Pr(e′′ |g)):

(
1

3
,
1

3
,
1

3
), (

2

3
,
1

3
, 0), (

1

3
,
2

3
, 0) and (

1

6
,
2

3
,
1

6
). (6)

If all the local credal sets are finitely generated, Bext is finite, and
computing lower and upper probabilities is then a combinatoric opti-
misation problem, the size of which is exponential in the number of
local credal sets that are imprecise.

4.2 Reducing imprecise credal sets to precise ones
As we will now show, in many cases, we can use the sensitivity prop-
erties of Section 3.2 to reduce the computational complexity of infer-
ence in credal networks.

Basically, the idea is that, for the purposes of computing Pr(h |e)
or Pr(h |e), some of the local credal sets of a credal network can be
replaced by a singleton, that is, some imprecise local credal sets can
be replaced by precise ones, without changing the result of the infer-
ence. In this way, the size of the combinatoric optimisation problem
that needs to be solved can be reduced in advance, as a preprocessing
step, before applying an inference algorithm of choice.

We introduce four types of local credal sets for which this is the
case. Their definitions are completely analogous to the local distri-
bution types that were defined in Section 3.3. For example, a local
credal setM(V |π) is of Type 0 if and only if its distributions are of
Type 0, and similarly for credal sets that are of type I, II or III.

9 For a detailed discussion on how to define Pr(h |e) and Pr(h |e) if Pr(e)
is zero for some—but not all—B in B, see Reference [6].

10 An extreme point of a set is a point that cannot be written as a proper
convex combination of two other points of that set. If a set is a closed and
convex subset of a finite-dimensional space, then by Minkowski’s finite-
dimensional version of the Krein-Milman theorem, it is the convex hull of
its extreme points.



Definition 5 (Local credal set types) Consider a credal network B
and a lower or upper probability of interest Pr(h |e) or Pr(h |e). A
local credal setM(V |π) is then said to be of

Type 0 if π � e;

Type I if π ∼ e, V ∈ E|�R and π ∼ h;

Type II if π ∼ e, V ∈ E and π � h;

Type III if π ∼ e, π ∼ h, V ∈ H|�R and |V | = 2.

Since the elements of a credal setM(V |π) of Type 0 are distri-
butions of Type 0, it follows from Proposition 3 that this credal set
is of no influence to the inference at hand. The following result is an
immediate consequence of this fact.

Proposition 4 Consider a credal network B and a lower or upper
probability of interest Pr(h |e) or Pr(h |e). Then replacing a credal
setM(V |π) of Type 0 with a singletonM′(V |π) := {Pr(V |π)}
that consists of an arbitrary probability mass function Pr(V |π) on
V will not change the result of the inference.

Note that Pr(V |π) is not required to be an element of M(V |π),
and that it can therefore be chosen as simple as possible.

As we are about to show, similar results can also be obtained for
credal sets of Type I, II and III. However, in those cases, the distri-
bution Pr(V |π) can no longer be chosen arbitrarily. We start with
credal sets of Type I or II.

Since a distribution in a credal set of Type I or II is itself of Type
I or II, we infer from the discussion in Section 3.3 that, for the pur-
poses of computing Pr(h |e), the only part of this distribution that is
relevant is the parameter Pr(v |π), with v the unique instantiation of
V that is compatible with e. Furthermore, because of the monotone
effect of changing this parameter—see Theorem 1—we know that
the minimum and maximum value of Pr(h |e) will be obtained by
a Bayesian network B ∈ Bext for which the parameter Pr(v |π) is
minimal or maximal, in the sense that it is equal to the local lower
probability

Pr(v |π) := min
Pr(V |π)∈M(V |π)

Pr(v |π)

or the local upper probability

Pr(v |π) := max
Pr(V |π)∈M(V |π)

Pr(v |π),

and we can predict in advance which of these two extreme values
it will be. Combined, these two observations allow us to replace the
(possibly imprecise) credal set M(V |π) with a precise one. The
following proposition makes this explicit.

Proposition 5 Consider a credal network B and a lower or upper
probability of interest Pr(h |e) or Pr(h |e). A credal setM(V |π)
of Type I or II can then be replaced with a singleton M′(V |π) :

= {Pr(V |π)}, without changing the result of the inference. If we
let v be the unique value of V that is compatible with e, then for
Pr(h |e), Pr(V |π) can be any probability mass function on V such
that

Pr(v |π) =

{
Pr(v |π) if M(V |π) is of Type I;
Pr(v |π) if M(V |π) is of Type II,

and for Pr(h |e), Pr(V |π) can be any probability mass function on
V such that

Pr(v |π) =

{
Pr(v |π) if M(V |π) is of Type I;
Pr(v |π) if M(V |π) is of Type II.

Proof. We only prove the result for Pr(h |e); the proof for Pr(h |e)
is completely analogous.

If the local credal setM(V |π) is of Type I, then because of The-
orem 1, the minimum value of Pr(h |e) is obtained for a local dis-
tribution Pr(V |π) of which the parameter Pr(v |π) is minimal—
equal to Pr(v |π). Furthermore, due to Proposition 3, the other pa-
rameters of this local distribution are irrelevant. Hence, for the pur-
poses of computing Pr(h |e), M(V |π) can be replaced by a pre-
cise credal set M′(V |π) := {Pr(V |π)} that consists of a single
distribution Pr(V |π) on V , with Pr(v |π) = Pr(v |π). If the lo-
cal credal set M(V |π) is of Type II, it follows from Theorem 1
that the minimum value of Pr(h |e) is obtained for a local distribu-
tion Pr(V |π) of which the parameter Pr(v |π) is maximal—equal
to Pr(v |π)—and therefore, M(V |π) can again be replaced by a
singleton that consists of a single distribution Pr(V |π), now with
Pr(v |π) = Pr(v |π). 2

Note that Pr(V |π) is again not required to be an element of
M(V |π), which allows us to choose it as simple as possible.

Consider for example the network in Figure 1, and assume that
we want to compute Pr(ghk |ef). The local credal setM(E |g)—
defined in Equation (4) and depicted in Figure 2—is then of Type
I and can therefore be replaced by a singleton M′(E |g) =
{Pr(E |g)}, where Pr(E |g) can be any probability mass function
on {e, e′, e′′} such that

Pr(e |g) := Pr(e |g) = 1

6
.

The values of Pr(e′ |g) and Pr(e′′ |g) are of no importance. If we
want Pr(E |g) to belong toM(E |g), then the only possible choice
is Pr(e′ |g) = 2/3 and Pr(e′′ |g) = 1/6, which corresponds to one
of the extreme points in Equation (6). However, this is not necessary.
For example, choosing Pr(e′ |g) = 0 and Pr(e′′ |g) = 5/6 works
equally well.

Finally, for local credal sets that are of Type III, we obtain a result
that is very similar to that of Proposition 5.

Proposition 6 Consider a credal network B and a lower or upper
probability of interest Pr(h |e) or Pr(h |e). A credal setM(V |π)
of Type III can then be replaced with a singleton M′(V |π) :

= {Pr(V |π)}, without changing the result of the inference. For
Pr(h |e), Pr(V |π) is defined by

Pr(v |π) :=

{
Pr(v |π) if v ∼ h;
Pr(v |π) if v � h,

(7)

and for Pr(h |e), Pr(V |π) is defined by

Pr(v |π) :=

{
Pr(v |π) if v ∼ h;
Pr(v |π) if v � h.

Proof. We only prove the result for Pr(h |e); the proof for Pr(h |e)
is completely analogous.

Let v be the unique value of V that is compatible with h. If the
local credal setM(V |π) is of Type III, then because of Theorem 1,
the minimum value of Pr(h |e) is obtained for a local distribution
Pr(V |π) of which the parameter Pr(v |π) is minimal—equal to
Pr(v |π)—and the parameter Pr(v |π) is maximal. The unique dis-
tribution for which this is the case is given by Equation (7). Hence,
for the purposes of computing Pr(h |e),M(V |π) can be replaced
by the singletonM′(V |π) := {Pr(V |π)}. 2



Note that in this case, Pr(V |π) is unique and belongs toM(V |π).
For example, if we again consider the network in Figure 1, and

revisit the problem of computing Pr(ghk |ef), then the local credal
setM(G)—defined in Equation (3)—is of Type III and can therefore
be replaced by a singletonM′(G) = {Pr(G)}, with

Pr(g) := Pr(g) = 1/3 and Pr(g) := Pr(g) = 2/3.

In our example, in total, eight out of the fifteen credal sets of the
credal network in Figure 1 can be replaced by a singleton, whereas
other preprocessing techniques—such as the removal of barren or
d-separated nodes—are not able to simplify the problem.

4.3 Special cases
Since a local credal set is of a given type if and only if its elements
are, the special cases that were discussed in Section 3.4 carry over
to credal networks. For example, for a credal network classifier with
full evidence, the credal sets that correspond to the evidence vari-
ables are all of Type 0, I or II, and therefore, they can be replaced by
singletons. It is essentially this feature that allows for tractable com-
putations in basic credal classifiers such as the naive credal classifier
[26] and the tree-augmented naive classifier [27]. In fact, many of the
formulas in References [26] and [27] can be shown to follow from
our results.

In the special case where we do not only have full evidence, but
also know that each of the hypothesis variables V ∈ H is binary
and has no parents in H, then all the local credal sets of the credal
network can be classified as one of the four types in Definition 5.
This has far-reaching consequences: in this case, due to the results
in the previous section, it follows that for the purpose of comput-
ing Pr(h |e) or Pr(h |e), all the local credal sets can be replaced
by singletons, without changing the result of the inference. Hence,
in this case, computing Pr(h |e) or Pr(h |e) reduces to the problem
of computing Pr(h |e) in a specific Bayesian network, the parame-
ters of which can easily be determined by means of the methods in
Section 4.2.

For example, in this special case, for the purpose of computing
Pr(h |e), the local credal sets of a credal network can be replaced by
precise distributions Pr•(V |π), the parameters of which are defined
by

Pr•(v |π) :=



Pr(v |π) if V ∈ H and v ∼ h

Pr(v |π) if V ∈ H and v � h

Pr(v |π) if V ∈ E, v ∼ e and π ∼ h

Pr(v |π) if V ∈ E, v ∼ e and π � h

... if V ∈ E and v � e

(8)

This definition does not distinguish between the cases π ∼ e and
π � e because we know from Proposition 4 that a parameter for
which π � e does not effect the result of the inference anyway.
Similarly, the definition for the case with V ∈ E and v � e is not
provided because we know from Proposition 5 that these parameters
do not influence the result of the inference either.

As an immediate consequence, for this special case, we obtain the
following expression:

Pr(h |e) =
∏

V ∈V Pr•(v |π)
∣∣
vπ∼he∑

h∗∈H
∏

V ∈V Pr•(v |π)
∣∣
vπ∼h∗e

Furthermore, by removing the parameters Pr•(v |π) for which V
and its parents π belong to E—since these are common factors of

the numerator and denominator—and then explicitly applying Equa-
tion (8) to the numerator, this expression can be simplified even
more:

Pr(h |e) =
∏

V ∈K Pr(v |π)
∣∣
vπ∼he∑

h∗∈H
∏

V ∈K Pr•(v |π)
∣∣
vπ∼h∗e

where K is the set of variables that consist of the variables in H and
their children variables.

Similar conclusions can be reached for the problem of computing
Pr(h |e). In the special case of Section 3.4, this problem can again be
reduced to computing Pr(h |e) in a single Bayesian network. How-
ever, of course, it might not be the same Bayesian network as the one
that is used to compute Pr(h |e). In this case, the local credal sets
can be replaced by distributions Pr•(V |π), the parameters of which
are defined by

Pr•(v |π) :=



Pr(v |π) if V ∈ H and v ∼ h

Pr(v |π) if V ∈ H and v � h

Pr(v |π) if V ∈ E, v ∼ e and π ∼ h

Pr(v |π) if V ∈ E, v ∼ e and π � h

... if V ∈ E and v � e

5 CONCLUSIONS AND FUTURE WORK

A credal network represents a set of Bayesian networks thereby al-
lowing for imprecisions in its parametrisation. One of the main com-
putational problems in a credal network is the computation of lower
and upper probabilities. Given a brute force approach, however, this
requires a number of Bayesian network inferences that is exponential
in the number of imprecisely specified local probability distributions.

The pruning of all variables irrelevant for a specific problem is a
well-known approach to make inference more tractable. In this paper
we proposed a different type of preprocessing step. Using Bayesian
network sensitivity functions, we proved that for certain categories of
parameters, we can predict the qualitative effect of their change on
an outcome probability without needing any knowledge of the nu-
merical specification of the network. This result allows for the iden-
tification of imprecisely specified local distributions that can be re-
placed by precisely specified ones, without affecting the outcome of
the computation. Depending on the structure of the network and the
specific problem at hand, our preprocessing step can be quite reward-
ing. We argued, for example, that for some classes of networks, even
all imprecisely specified local distributions can be replaced by pre-
cise ones. In this case, credal network inference reduces to a single
Bayesian network computation.

In future work, we would like to investigate the empirical impact
of our preprocessing step on various existing algorithms. Moreover,
we would like to use our results as a basis for the design of new al-
gorithms. For example, we foresee that the algorithm in [13] could
be extended to more general cases. Finally, we would like to ex-
tend our work to other types of inference, such as the computation
of lower and upper expectations, choosing the most likely hypothe-
sis, and maximising expected utility.
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