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Abstract. A qualitative probabilistic network models the probabilistic
relationships between its variables by means of signs. Non-monotonic in-
fluences are modelled by the ambiguous sign ’?’, which indicates that the
actual sign of the influence depends on the current state of the network.
The presence of influences with such ambiguous signs tends to lead to
ambiguous results upon inference. In this paper we introduce the concept
of situational influence into qualitative networks. A situational influence
is a non-monotonic influence supplemented with a sign that indicates its
effect in the current state of the network. We show that reasoning with
such situational influences may forestall ambiguous results upon infer-
ence; we further show how these influences change as the current state
of the network changes.

1 Introduction

The formalism of Bayesian networks [1] is generally considered an intuitively
appealing and powerful formalism for capturing the knowledge of a complex
problem domain along with its uncertainties. The usually large number of prob-
abilities required for a Bayesian network, however, tends to pose a major obstacle
to the construction [2]. Qualitative probabilistic networks (QPNs), introduced as
qualitative abstractions of Bayesian networks [3], do not suffer from this quantifi-
cation obstacle. Like a Bayesian network, a qualitative network encodes variables
and the probabilistic relationships between them in a directed graph; the rela-
tionships between the variables are not quantified by conditional probabilities as
in a Bayesian network, however, but are summarised by qualitative signs instead.
For inference with a qualitative probabilistic network an efficient algorithm is
available, based on the idea of propagating and combining signs [4].

Although qualitative probabilistic networks do not suffer from the obstacle
of requiring a large number of probabilities, their high level of abstraction causes
some lack of representation detail. As a consequence, for example, qualitative
networks do not provide for modelling non-monotonic influences in an informa-
tive way. An influence of a variable A on a variable B is called non-monotonic
if it is positive in one state and negative in another state of the network. Such a
non-monotonic influence is modelled by the ambiguous sign ’?’. The presence of
influences with such ambiguous signs typically leads to ambiguous, and thereby
uninformative, results upon inference.
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Non-monotonicity of an influence in essence indicates that the influence can-
not be captured by an unambiguous sign of general validity. In each particular
state of the network, however, the influence is unambiguous. In this paper we
extend the framework of qualitative probabilistic networks with situational in-
fluences that capture information about the current effect of non-monotonic
influences. We show that these situational influences can be used upon inference
and may effectively forestall ambiguous results. Because the sign of a situational
influence depends on the current state of the network, we investigate how it
changes as the state of the network changes. We then adapt the standard prop-
agation algorithm to inference with networks including situational influences.

The remainder of this paper is organised as follows. Section 2 provides some
preliminaries on qualitative probabilistic networks. Section 3 introduces the con-
cept of situational influence. Its dynamics are described in Sect. 4, which also
gives an adapted propagation algorithm. The paper ends with some conclusions
and directions for further research in Sect. 5.

2 Preliminaries

Qualitative probabilistic networks were introduced as qualitative abstractions of
Bayesian networks. Before reviewing qualitative networks, therefore, we briefly
address their quantitative counterparts.

A Bayesian network is a concise representation of a joint probability distri-
bution Pr on a set of statistical variables. In the sequel, (sets of) variables are
denoted by upper-case letters. For ease of exposition, we assume all variables to
be binary, writing a for A = true and ā for A = false. We further assume that
true > false. Each variable is now represented by a node in an acyclic directed
graph. The probabilistic relationships between the variables are captured by the
digraph’s set of arcs. Associated with each variable A is a set of (conditional)
probability distributions Pr(A | π(A)) describing the influence of the parents
π(A) of A on the probability distribution for A itself.

Example 1. We consider the small Bayesian network shown in Fig. 1. The
network represents a fragment of fictitious knowledge about the effect of training
and fitness on one’s feeling of well-being. Node T models whether or not one has
undergone a training session, node F captures one’s fitness, and node W models
whether or not one has a feeling of well-being. �

T F

W

Pr(t) = 0.1 Pr(f) = 0.4

Pr(w | tf) = 0.90, Pr(w | tf̄) = 0.05 Pr(w | t̄f) = 0.75, Pr(w | t̄f̄) = 0.35

Fig. 1. An example Bayesian network, modelling the influences of training (T ) and
fitness (F ) on a feeling of well-being (W )
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In its initial state where no observations for variables have been entered, a
Bayesian network captures a prior probability distribution. As such evidence
becomes available, the network converts to another state and then serves to
represent the posterior distribution given the evidence.

Qualitative probabilistic networks bear a strong resemblance to Bayesian net-
works. A qualitative network also comprises an acyclic digraph modelling vari-
ables and the probabilistic relationships between them. Instead of conditional
probability distributions, however, a qualitative probabilistic network associates
with its digraph qualitative influences and qualitative synergies, capturing fea-
tures of the existing, albeit unknown, joint distribution Pr [3].

A qualitative influence between two nodes expresses how the values of one
node influence the probabilities of the values of the other node. For example,
a positive qualitative influence of a node A on a node B along an arc A → B,
denoted S+(A, B), expresses that observing a high value for A makes the higher
value for B more likely, regardless of any other direct influences on B, that is

Pr(b | ax)− Pr(b | āx) ≥ 0 ,

for any combination of values x for the set π(B)\{A} of parents of B other than
A. A negative qualitative influence, denoted S−, and a zero qualitative influence,
denoted S0, are defined analogously. A non-monotonic or unknown influence of
node A on node B is denoted by S?(A, B).

The set of all influences of a qualitative network exhibits various important
properties [3]. The property of symmetry states that, if the network includes
the influence Sδ(A, B), then it also includes Sδ(B, A), δ ∈ {+,−, 0, ?}. The
transitivity property asserts that the signs of qualitative influences along a trail
without head-to-head nodes combine into a sign for the net influence with the
⊗-operator from Table 1. The property of composition asserts that the signs of
multiple influences between two nodes along parallel trails combine into a sign
for the net influence with the ⊕-operator.

Table 1. The ⊗- and ⊕-operators for combining signs

⊗ + − 0 ?
+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

⊕ + − 0 ?
+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

A qualitative probabilistic network further includes additive synergies. An
additive synergy expresses how two nodes interact in their influence on a third
node. For example, a positive additive synergy of a node A and a node B on a
common child C, denoted Y +({A, B}, C), expresses that the joint influence of A
and B on C exceeds the sum of their separate influences regardless of any other
direct influences on C, that is

Pr(c | abx) + Pr(c | āb̄x) ≥ Pr(c | ab̄x) + Pr(c | ābx) ,
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for any combination of values x for the set π(C) \ {A, B} of parents of C other
than A and B. A negative additive synergy, denoted Y −, and a zero additive syn-
ergy, denoted Y 0, are defined analogously. A non-monotonic or unknown additive
synergy of nodes A and B on a common child C is denoted by Y ?({A, B}, C).

Example 2. We consider the qualitative abstraction of the Bayesian network
from Fig. 1. From the conditional probability distributions specified for node W ,
we have that Pr(w | tf) − Pr(w | tf̄) ≥ 0 and Pr(w | t̄f) − Pr(w | t̄f̄) ≥ 0, and
therefore that S+(F, W ): fitness favours well-being regardless of training. We
further have that Pr(w | tf) − Pr(w | t̄f) > 0 and Pr(w | tf̄) − Pr(w | t̄f̄) < 0,
and therefore that S?(T, W ): the effect of training on well-being depends on one’s
fitness. From Pr(w | tf) + Pr(w | t̄f̄) ≥ Pr(w | tf̄) + Pr(w | t̄f), to conclude, we
find that Y +({T, F}, W ). The resulting qualitative network is shown in Fig. 2;
the signs of the qualitative influences are shown along the arcs, and the sign of
the additive synergy is indicated over the curve over variable W . �

T F

W

+
+?

Fig. 2. The qualitative abstraction of the Bayesian network from Fig. 1

We would like to note that, although in the previous example the qualitative
relationships between the variables are computed from the conditional proba-
bilities of the corresponding quantitative network, in realistic applications these
relationships are elicited directly from domain experts.

For inference with a qualitative probabilistic network, an efficient algorithm
based on the idea of propagating and combining signs is available [4]. This al-
gorithm traces the effect of observing a value for a node upon the other nodes
in a network by message passing between neighbouring nodes. The algorithm
is summarised in pseudo-code in Fig. 3. For each node V , a node sign ’sign[V ]’
is determined, indicating the direction of change in its probability distribution
occasioned by the new observation; initial node signs equal ’0’. Observations are
entered as a ’+’ for the observed value true, or a ’−’ for the value false. Each
node receiving a message updates its sign using the ⊕-operator and subsequently
sends a message to each neighbour that is not independent of the observed node.
The sign of this message is the ⊗-product of the node’s (new) sign and the sign
of the influence it traverses. This process of message passing between neighbours
is repeated throughout the network, building on the properties of symmetry,
transitivity, and composition of influences. Since each node can change its sign
at most twice (once from ’0’ to ’+’, ’−’ or ’?’, and then only to ’?’), the process
visits each node at most twice and therefore halts in polynomial time.

Example 3. We consider the qualitative network shown in Fig. 4. Suppose that
we are interested in the effect of observing the value false for node A upon the
other nodes in the network. Prior to the inference, the node signs for all nodes
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procedure Process-Observation(Q,O,sign):
for all Vi ∈ V (G) in Q
do sign[Vi]←’0’;
Propagate-Sign(Q,∅,O,sign).

procedure Propagate-Sign(Q,trail,to,message):
sign[to] ← sign[to] ⊕ message;
trail ← trail ∪ {to};
for each neighbour Vi of to in Q
do linksign ← sign of influence between to and Vi;

message ← sign[to] ⊗ linksign;
if Vi �∈ trail and sign[Vi] �= sign[Vi] ⊕ message
then Propagate-Sign(Q,trail,Vi,message).

Fig. 3. The sign-propagation algorithm

are set to ’0’. Inference now starts with node A receiving the message ’−’. Node
A updates its node sign to 0 ⊕ − = −, and subsequently computes the messages
to be sent to its neighbours E, B and D. To node E, node A sends the message
− ⊗ − = +. Upon receiving this message, node E updates its node sign to
0 ⊕ + = +. Node E does not propagate the message it has received from A to
node B because A and B are independent on the trail A → E ← B. To node
B, node A sends the message −⊗ ? = ?. Upon receiving this message, node B
updates its node sign to 0⊕ ? = ?. Node B subsequently computes the message
? ⊗ + = ? for E. Upon receiving this message, node E updates its node sign to
+⊕ ? = ?. Node B does not propagate the message it has received from A to
node C because A and C are independent on the trail A→ B ← C. Exploiting
the property of symmetry, node A sends the message − ⊗ + = − to node D.
Upon receiving this message, node D updates its node sign to 0 ⊕ − = −.
Node D subsequently computes the message − ⊗ + = − for C. Upon receiving
this message, node C updates its node sign to 0 ⊕ − = −. Node C then sends
the message − ⊗ − = + to B, upon which node B should update its node
sign to ? ⊕ + = ?. Since this update would not change the node sign of B, the
propagation of messages halts. The node signs resulting from the inference are
shown in the network’s nodes in Fig. 4. �

− −

?− ?

AD

BC E

+

− +

+ ? −

Fig. 4. A qualitative network and its node signs after the observation A = false
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3 Situational Influences

The presence of influences with ambiguous signs in a qualitative network is likely
to give rise to uninformative ambiguous results upon inference, as illustrated in
Example 3. We take a closer look at the origin of these ambiguous signs. We
observe that a qualitative influence of a node A on a node B along an arc A→ B
is only unambiguous if the difference Pr(b | ax)−Pr(b | āx) has the same sign for
all combinations of values x for the set X = π(B)\{A}. As soon as the difference
Pr(b | ax) − Pr(b | āx) yields contradictory signs for different combinations x,
the influence is non-monotonic and is assigned the ambiguous sign ’?’. In each
specific state of the network, associated with a specific probability distribution
Pr(X) over all combinations x, however, the influence of A on B is unambiguous,
that is, either positive, negative or zero. To capture the current sign of a non-
monotonic influence in a specific state, we introduce the concept of situational
influence into the formalism of qualitative probabilistic networks.

We consider a qualitative network as before and consider the evidence e
entered so far. A positive situational influence of a node A on a node B given e,
denoted S

?(+)
e (A, B), is a non-monotonic influence of A on B for which

Pr(b | ae)− Pr(b | āe) ≥ 0 .

In the sequel we omit the subscript e from S
?(+)
e as long as ambiguity cannot

occur. A negative situational influence, denoted S?(−), and a zero situational
influence, denoted S?(0), are defined analogously. An unknown situational in-
fluence of node A on node B is denoted by S?(?)(A, B). The sign between the
brackets will be called the sign of the situational influence. A qualitative network
extended with situational influences will be called a situational qualitative net-
work. Note that while the signs of qualitative influences and additive synergies
have general validity, the signs of situational influences pertain to a specific state
of the network and depend on Pr(X).

Example 4. We consider once again the network fragment from Fig. 1 and its
qualitative abstraction shown in Fig. 2. The qualitative influence of node T on
node W was found to be non-monotonic. Its sign therefore depends on the state
of the network. In the prior state of the network where no evidence has been
entered, we have that Pr(f) = 0.4. Given this probability, we find Pr(w | t) =
0.39 and Pr(w | t̄) = 0.51. From the difference Pr(w | t) − Pr(w | t̄) = −0.12
being negative, we conclude that the influence of node T on node W is negative
in this particular state. The current sign of the influence is therefore ’−’. The
situational qualitative network for the prior state is shown in Fig. 5. The dynamic
nature of the sign of the situational influence is illustrated by a change from ’−’
to ’+’ after, for example, the observation F = true is entered into the network,
in which case Pr(w | tf)− Pr(w | t̄f) = 0.90− 0.75 = 0.15. �

Once again we note that, although in the previous example the sign of the
situational influence is computed from the quantitative network, in a realistic
application it would be elicited directly from a domain expert. In the remainder
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T F

W

+
+?(−)

Fig. 5. The network from Fig. 2, now with the prior situational influence of T on W

of the paper, we assume that the expert has given the signs of the situational
influences for the prior state of the network.

4 Inference with a Situational Qualitative Network

For inference with a regular qualitative probabilistic network, an efficient algo-
rithm is available that is based on the idea of propagating and combining signs
of qualitative influences, as reviewed in Sect. 2. For inference with a situational
qualitative network, we observe that the sign of a situational influence indicates
the sign of the original qualitative influence in the current state of the network.
After an observation has been entered into a situational network, therefore, the
signs of the situational influences can in essence be propagated as in regular
qualitative networks, provided that these signs are still valid in the new state
of the network. In this section we discuss how to verify the validity of the sign
of a situational influence as observations become available that cause the net-
work to convert to another state. In addition, we show how to incorporate this
verification into the sign propagation algorithm.

4.1 Dynamics of the Signs of Situational Influences

We begin by investigating the simplest network fragment in which a non-
monotonic qualitative influence can occur, consisting of a single node with two
independent parents. We show for this fragment how the validity of the sign of
the situational influence can be verified during inference by exploiting the associ-
ated additive synergy. We then extend the main idea to more general situational
networks.

A C

B

δ2

?(δ1)

Fig. 6. A fragment of a situational network, consisting of node B and its parents A
and C, with S?(δ1)(A, B) and Y δ2({A, C}, B)

We consider the network fragment from Fig. 6, consisting of node B and its
mutually independent parents A and C. We assume for now that the nodes A
and C remain independent as observations are being entered into the network.
By conditioning on A and C, we find for the probability of b:

Pr(b) = Pr(a) · [Pr(c) · (Pr(b | ac)− Pr(b | ac̄)− Pr(b | āc) + Pr(b | āc̄)) +
Pr(b | ac̄)− Pr(b | āc̄)] + Pr(c) · (Pr(b | āc)− Pr(b | āc̄)) + Pr(b | āc̄) .
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We observe that Pr(b) is a function of Pr(a) and Pr(c), and that for a fixed Pr(c),
Pr(b) is a linear function of Pr(a). For Pr(a) = 1, the function yields Pr(b | a);
for Pr(a) = 0, it yields Pr(b | ā). Moreover, the gradient of the function at a
particular Pr(c) matches the sign of the situational influence of node A on node
B for that Pr(c). In essence, we have two different, so-called, manifestations
of the non-monotonic influence of A on B: either the sign of the situational
influence is negative for low values of Pr(c) and positive for high values of Pr(c),
as shown in Fig. 7, or vice versa, as shown in Fig. 8.

Fig. 7. An example Pr(b) as a function of Pr(a) and Pr(c), with S?(A, B), S+(C, B)
and Y +({A, C}, B)

Fig. 8. An example Pr(b) as a function of Pr(a) and Pr(c), with S?(A, B), S+(C, B)
and Y −({A, C}, B)
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As a result of observations being entered into the network, the probability
of c may change. The sign of the situational influence of node A on node B
may then change as well. For some changes of the probability of c, however,
the sign will definitely stay the same. Whether or not it will do so depends
on the manifestation of the non-monotonic influence, on the current sign, and
on the direction of change of the probability of c. In the graph depicted in
Fig. 7, for example, the sign of the situational influence will definitely persist
if it is negative and the probability of c decreases, or if it is positive and the
probability of c increases. The reverse holds for the graph depicted in Fig. 8. A
method for verifying whether or not the sign of a situational influence retains its
validity thus has to distinguish between the two possible manifestations of the
underlying non-monotonic influence.

The sign of the additive synergy involved can now aid in distinguishing be-
tween the possible manifestations of a non-monotonic influence under study.
We recall that a positive additive synergy of nodes A and C on their com-
mon child B indicates that Pr(b | ac) − Pr(b | āc) ≥ Pr(b | ac̄) − Pr(b | āc̄).
From the influence of A on B being non-monotonic, we have that the differ-
ences Pr(b | ac) − Pr(b | āc) and Pr(b | ac̄) − Pr(b | āc̄) have opposite signs.
A positive additive synergy of A and C on B now implies that the sign of
Pr(b | ac)−Pr(b | āc) must be positive and that the sign of Pr(b | ac̄)−Pr(b | āc̄)
must be negative, as in Fig. 7. Analogously, a negative additive synergy corre-
sponds to the manifestation of the non-monotonic influence shown in Fig. 8.

From the previous observations, we have that the sign of the additive synergy
involved can be exploited for verifying whether or not the sign of a situational
influence retains its validity during inference. Suppose that, as in Fig. 6, we have
S?(δ1)(A, B) and Y δ2({A, C}, B). Further suppose that new evidence causes a
change in the probability of c, the direction of which is reflected in sign[C]. Then,
we can be certain that δ1 will remain valid if

δ1 = sign[C]⊗ δ2 .

Otherwise, δ1 has to be changed into ’?’. We can substantiate our statement as
follows. Abstracting from previously entered evidence, we have that

Pr(b | a)− Pr(b | ā) = Pr(c) · (Pr(b | ac)− Pr(b | ac̄)− Pr(b | āc) + Pr(b | āc̄)) +
Pr(b | ac̄)− Pr(b | āc̄) .

We observe that the equation expresses the difference Pr(b | a) − Pr(b | ā) as
a linear function of Pr(c). We further observe that the sign of the gradient of
this function equals the sign of the additive synergy of A and C on B. Now
suppose that the probability of c increases as a result of the new evidence, and
that Y +({A, C}, B). Since the gradient then is positive, a positive sign for the
situational influence will remain valid. If, on the other hand, the probability of
c increases and Y −({A, C}, B), then a negative sign for the situational influence
will remain valid. We conclude that upon an increase of Pr(c), δ1 persists if
δ1 = + ⊗ δ2. Otherwise, we cannot be certain of the sign of the situational
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influence and δ1 is changed to ’?’. Similar observations hold for a decreasing
probability of c.

In our analysis so far, we have assumed that the two parents A and C of a
node B are mutually independent and remain to be so as evidence is entered
into the network. In general, however, A and C can be (conditionally) dependent.
Node A then not only influences B directly, but also indirectly through C. The
situational influence of A on B, however, pertains to the direct influence in
isolation even though a change in the probability of c may affect its sign. When
a change in the probability of a causes a change in the probability of c which in
turn influences the probability of b, the indirect influence on b is processed by
the sign-propagation algorithm building upon the composition of signs.

4.2 The Adapted Sign-Propagation Algorithm

The sign-propagation algorithm for inference with a qualitative network has to be
adapted to render it applicable to situational qualitative networks. In essence,
two modifications are required. First, in case of non-monotonicities, the algo-
rithm must use the signs of the situational influences involved. Furthermore,
because the sign of a situational influence of a node A on a node B is dynamic,
its validity has to be verified as soon as an observation causes a change in the
probability distribution of another parent of B. Due to the nature of sign prop-
agation, it may occur that a sign is propagated along a situational influence
between A and B, while the fact that the probability distribution of another
parent of B changes does not become apparent until later in the propagation.
It may then turn out that the sign of the situational influence should have been
adapted and that incorrect signs were propagated. A solution to this problem
is to verify the validity of the sign of the situational influence as soon as infor-
mation to this end becomes available; if the sign requires updating, inference
is restarted with the updated network. Since the sign of a situational influence
can change only once, the number of restarts is limited. The adapted part of the
sign-propagation algorithm is summarised in pseudo-code in Fig. 9.

Example 5. We consider the situational qualitative network from Fig. 10. The
network is identical to the one shown in Fig. 4, except that it is supplemented
with a situational sign for the non-monotonic influence of node A on node B.
Suppose that we are again interested in the effect of observing the value false
for node A upon the other nodes in the network. Inference starts with node A
receiving the message ’−’ and updating its node sign to 0 ⊕ − = −. Node A
subsequently determines the messages to be sent to its neighbours E, B and
D. To node E, it sends − ⊗ − = +. Upon receiving this message, node E
updates its node sign to 0 ⊕ + = + as before; node E does not propagate the
message to B. To node B, node A sends the message − ⊗ − = +, using the
sign of the situational influence. Node B updates its node sign to 0 ⊕ + = +.
It subsequently computes the message + ⊗ + = + for E. Upon receiving
this message, node E does not need to change its node sign. Node B does not
propagate the message it has received from A to node C. To node D, node A
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procedure Propagate-Sign(Q,trail,to,message):
sign[to] ← sign[to] ⊕ message;
trail ← trail ∪ {to};
Determine-Effect-On(Q,to);
for each neighbour Vi of to in Q
do linksign ← sign of influence between to and Vi;

message ← sign[to] ⊗ linksign;
if Vi �∈ trail and sign[Vi] �= sign[Vi] ⊕ message
then Propagate-Sign(Q,trail,Vi,message).

procedure Determine-Effect-On(Q, Vi):
NVi ← {Vj → Vk | Vj ∈ π(Vk) \ {Vi}, Vk ∈ σ(Vi), S?(δ)(Vj , Vk), δ �=?};
for all Vj → Vk ∈ NVi

do Verify-Update(S?(δ)(Vj , Vk));
if a δ changes
then Q← Q with adapted signs;

return Process-Observation(Q,O,sign).

Fig. 9. The adapted part of the sign-propagation algorithm

sends − ⊗ + = −. Node D updates its node sign to 0 ⊕ − = −. It subsequently
determines the message − ⊗ + = − for node C. Upon receiving this message,
C updates its node sign to 0 ⊕ − = −. The algorithm now establishes that
node C is a parent of node B which has node A for its other parent, and that
the influence of node A on B is non-monotonic. Because the node sign of C has
changed, the validity of the sign of the situational influence of A on B needs to
be verified. Since − = −⊗+, the algorithm finds that the sign of the situational
influence of A on B remains valid. The inference therefore continues. Node C
sends the message − ⊗ − = + to B. Since node B need not change its node
sign, the inference halts. The node signs resulting from the inference are shown
in the network’s nodes in Fig. 10. �

Examples 3 and 5 demonstrate that inference with a situational network can
yield more informative results when compared to a regular qualitative network.

− −

+− +

AD

BC E

+

+

− +

+ ?(−) −

Fig. 10. A situational network and its node signs after the observation A = false
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5 Conclusions and Further Research

Qualitative probabilistic networks model the probabilistic relationships between
their variables by means of signs. If such a relationship is non-monotonic, it
has associated the ambiguous sign ’?’, even though the influence is always un-
ambiguous in the current state of the network. The presence of influences with
ambiguous signs typically leads to ambiguous, and thus uninformative, results
upon inference. In this paper we extended qualitative networks with situational
influences that capture qualitative information about the current effect of non-
monotonic influences. We showed that these situational influences can be used
upon inference and may then effectively forestall ambiguous inference results.
Because the signs of situational influences are dynamic in nature, we identified
conditions under which these signs retain their validity. We studied the dynamics
of the signs of situational influences in cases where the non-monotonicity involved
originates from a single variable. The presented ideas and methods, however, are
readily generalised to cases where the non-monotonicity is caused by more than
one variable. To conclude, we adapted the existing sign-propagation algorithm
to situational qualitative networks.

By introducing situational influences we have, in essence, strengthened the
expressiveness of a qualitative network. Recently, other research has also focused
on enhancing the formalism of qualitative networks, for example by introducing
a notion of strength of influences [5]. In the future we will investigate how these
different enhancements can be integrated to arrive at an even more powerful
framework for qualitative probabilistic reasoning.
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