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Abstract. For a presented case, a Bayesian network classifier in essence
computes a posterior probability distribution over its class variable. Based
upon this distribution, the classifier’s classification function returns a sin-
gle, determinate class value and thereby hides the uncertainty involved.
To provide reliable decision support, however, the classifier should be able
to convey indecisiveness if the posterior distribution computed for the case
doesnot clearly favourone classvalue over another. In thispaperwepresent
an approach for this purpose, and introduce new measures to capture the
performance and practicability of such classifiers.
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1 Introduction

Many real-life problems can be viewed as classification problems in which a case
described in terms of a number of features is to be assigned to one of several
distinct classes. In the management of animal health on dairy farms, for example,
the problem of establishing an appropriate diagnosis for a combination of clinical
signs can be viewed as a classification problem in which a cow has to be assigned
to one of a number of diagnostic categories. Bayesian network classifiers have
gained considerable popularity for solving such problems. These classifiers embed
a Bayesian network composed of a single class variable, modelling the possible
classes for the problem under study, and a set of feature variables, modelling
the features that constitute the basis for distinguishing between the classes.
For a presented case, this network serves to establish the posterior probability
distribution over the class variable given the case’s features. Based upon this
distribution, the classifier assigns a single, determinate class to the case [3,4].

Bayesian network classifiers are being applied in a wide range of domains
for a variety of problems; for some recent examples in the biomedical field we
refer to [1,2,5,6,7]. In some applications, such as in automated spam filtering,
the class value returned by the classifier conveys sufficient information to solve
the problem at hand and does not require any further decisions from the user.
We have noticed however, that in other applications the returned class value
may not always provide a sufficient basis for reliable further decision making.
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In our domain of animal health, for example, the actual problem is not just to
establish the most likely diagnosis but, even more importantly, to control the
disease patterns in a dairy herd by appropriate treatment. The diagnostic cate-
gory returned by the classifier does not necessarily provide sufficient information
for this purpose, as it hides the uncertainty involved in the classification result.
A differential diagnosis in which two or more diagnostic categories have almost
equal probabilities, for example, could call for a different treatment regime than
a differential diagnosis in which one disease clearly stands out. From the classi-
fication result however, the decision maker cannot distinguish between clear-cut
cases and cases which in essence are inconclusive.

In this paper, we enhance Bayesian network classifiers by allowing them to
be indecisive. The basic idea is that the classifier returns a classification result
for a case only if a single class value stands out convincingly in the posterior
probability distribution computed over the class variable. If none of the possible
class values receives sufficient support in the computed distribution, then the
classifier does not return a determinate classification result but leaves the case
unclassified instead. The case at hand then is left to the human decision maker,
who evaluates the probabilistic information computed by the classifier in view
of further decision making. For our new type of classifier we introduce measures
to express its classification performance and its practicability. These measures
closely resemble the well-known concept of classification accuracy, yet take into
account the classifier’s reduced practicability as a result of its occasional indeci-
siveness. We illustrate the usefulness of our new type of classifier for an example
application in animal health management.

The paper is organised as follows. In Section 2 we review Bayesian network
classifiers and introduce our domain of application. In Section 3, we discuss the
well-known concept of classification accuracy and study its dependence on the
probability thresholds commonly used by classification functions. In Section 4,
we introduce the new concept of stratifying classifier and define associated mea-
sures of classification performance and practicability. We illustrate our concept
of stratifying classifier and its associated measures for our domain of application
in Section 5. The paper ends with our concluding observations in Section 6.

2 Preliminaries

In this section, we briefly review Bayesian network classifiers. In doing so, we
restrict the discussion to naive Bayesian classifiers with binary variables only; the
illustrated concepts, however, are readily extended to non-binary variables and
to Bayesian network classifiers of more general topological structure. In addition,
we introduce our application domain, which will serve as a running example.

2.1 Naive Bayesian Classifiers

A naive Bayesian classifier includes a designated class variable C and a set F
of one or more feature variables Fi. If a variable Vj adopts the value true, we
will write vj ; we use v̄j to denote Vj = false. A joint value assignment to all
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feature variables concerned is termed a case and will be denoted by f . The
classifier’s graphical structure includes arcs C → Fi which capture dependence
of each feature variable on the class variable, yet mutual independence of any two
feature variables given this class variable. The classifier further specifies a prior
probability distribution Pr(C) over the class variable and a set of conditional
distributions Pr(Fi | C) for each feature variable. Naive Bayesian classifiers are
typically constructed by extracting the most discriminating feature variables,
and their associated probability distributions, from a set of example cases.

A naive Bayesian classifier in essence allows the computation of any proba-
bility of interest over its variables. More specifically, it provides for establishing,
for a presented case f , the posterior probability distribution Pr(C | f) over the
class variable given the case’s features. The classifier does not return this prob-
ability distribution, but instead establishes a single, determinate class value for
its output, using a classification function. For the binary class variable C, this
function takes the following form:

class(C, t; f) =
{

c, if Pr(c | f) ≥ t
c̄, otherwise

where t is a pre-defined threshold value. In most applications, the winner-takes-
all rule is used for the model’s classification function, which takes t = 0.50. For
applications with skewed prior distributions over the class variable, however,
other values of t are preferred. In general, the choice of an appropriate threshold
value is domain dependent. If the classification function of a classifier returns
class(C, t; f) = c for a case f , then we say that f is classified as belonging to
class c; analogous terminology is used for class(C, t; f) = c̄.

2.2 An Example Application in Dairy Science

Clinical mastitis is one of the most frequent and cost incurring diseases in a dairy
herd. The disease affects the cow’s udder, causing a reduction of the cow’s milk
production and an increased risk of the cow being culled. Clinical mastitis can
be caused by a large variety of pathogens; diagnosis of the causing pathogen is
done by bacteriological culturing. Bacteriological culturing takes at least three
days. Yet, a timely administered treatment is important to eliminate the disease
and to prevent recurrence as much as possible. Ideally, the disease is controlled
with limited use of antibiotics, to reduce the risk of antibiotic contamination of
the milk and to minimise the impact of treatment on antimicrobial resistance.
The most appropriate treatment is highly dependent upon the specific pathogen
causing the disease in the current instance, however. If a single specific pathogen
is convincingly favoured over other possible causal pathogens, a narrow-spectrum
antibiotic would be preferred; in case two or more pathogens are quite likely,
broad-spectrum antibiotic treatment would be more appropriate. Unfortunately,
a farmer will typically have to decide upon treatment in uncertainty, before the
actual causal pathogen is known from bacteriological culturing.

To support a dairy farmer in his treatment decisions, we constructed a stan-
dard naive Bayesian classifier. Cases of clinical mastitis to be presented to the
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classifier are described by a number of features which range from the cow’s mas-
titis history to such clinical signs as the appearance of the milk and the cow’s
demeanor. For a case, the classifier returns the most likely Gram-status of the
pathogen causing the mastitis; this status is an important indicator for the type
of antibiotics to be applied. For constructing the classifier, we had available a
set of 3 833 clinical mastitis cases; in 2 706 (or 70.6%) of these cases the disease
was caused by a Gram-positive pathogen, and in 1 127 cases the causal pathogen
was Gram-negative. We used 2 631 cases (67%) for constructing the classifier and
retained the remaining 1 202 cases for studying its performance. The constructed
classifier was optimised for a classification threshold value of t = 0.71.

3 The Accuracy Measure and Its Threshold Dependence

The performance of a Bayesian network classifier is commonly summarised as the
proportion of cases which are assigned to their true class value. In this section
we review this measure of accuracy. We further argue that the accuracy of a
Bayesian network classifier depends heavily on the threshold value used in its
classification function. We investigate this dependence and study the effects of
varying the threshold value on the classifier’s accuracy.

3.1 The Measure of Accuracy

We consider a naive Bayesian classifier with the classification function class . We
further consider a set F of cases for the classifier. The case set F is partitioned
into the set F+ which includes p cases belonging to class c, and the set F−

which includes n cases belonging to c̄, with p + n = m. A case belonging to
class c will be termed a positive case; likewise, a case with class c̄ is coined a
negative case. The function class of the classifier now partitions the case set F
into four mutually exclusive and collectively exhaustive subsets; the basic idea
of this partitioning is shown in Table 1. The first subset includes all cases from
F+ which are classified as belonging to class c by the classifier. This set is called
the set of true positive cases, denoted by TP; the size of this set is denoted by tp.
The cases from F+ which are incorrectly classified as belonging to c̄ constitute
the set of false negative cases, denoted by FN; the size of this set is fn. Note that
TP ∩ FN = ∅ and TP ∪ FN = F+, and hence that tp + fn = p. Likewise, we
define the set TN of true negative cases and the set FP of false positive cases; the
sizes of these sets are tn and fp respectively, with tn + fp = n. The performance

Table 1. The sizes of the partition subsets resulting from the classification function

classifier
c c̄ total

data c tp fn p
c̄ fp tn n

total m
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of a Bayesian network classifier now is commonly captured by its (empirical)
accuracy, which is defined as the proportion of correctly classified cases for a
given case set F :

accuracy(F) =
tp + tn

m

The case set from which a classifier’s accuracy is established, is usually omitted
from the notation; we adopt this convention and from now on leave F implicit.

3.2 Dependency on the Classification Threshold

The measure of accuracy reviewed above pertains to a given Bayesian network
classifier with a fixed classification function. The accuracy of a classifier in gen-
eral depends on the threshold value t used in its classification function. More
specifically, the sizes of the four partition subsets constructed from a case set F
are threshold dependent. For example, a classification function with t = 0 would
result in each and every case being assigned to class c, from which we would have
that tp + fp = m and fn = tn = 0; on the other hand, a threshold value t > 1
would distribute all cases over the two sets TN and FN, from which we would
have that fn + tn = m and tp = fp = 0. From now on, we make this dependency
on the threshold value explicit in our notations, by writing tp(t), tn(t), fp(t),
and fn(t) for the sizes of the four sets TP, TN, FP, and FN, respectively. The
accuracy of a classifier as a function of the threshold value t then becomes

accuracy(t) =
tp(t) + tn(t)

m

The above considerations show that a classifier’s accuracy can be manipulated
by choosing an appropriate threshold value t. We note that upon varying the
value of t from zero to one, cases migrate from the sets TP and FP to the sets
TN and FN. More specifically, upon varying t, cases from F+ can migrate, and
migrate only, between the sets TP and FN, whereas cases from F− can move
only between the sets FP and TN. Despite the seeming mutual independence of
the numbers of true positives and true negatives, these numbers are traded off
through their dependence on the threshold value t: while tp(t) is non-increasing
for increasing values of t, tn(t) is non-decreasing in t. The changes in size of
the sets TP and TN upon varying the threshold value t are illustrated for our
example application in Fig. 1.

4 Stratifying Classifiers

In this section we introduce the idea of stratified classification, by defining clas-
sification functions for Bayesian network classifiers with two separate threshold
values. In addition, we define associated performance measures.
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Fig. 1. The accuracy, the number of true positives, and the number of true negatives
as functions of the threshold value t for our example classifier and set of 1 202 cases

4.1 Introducing Stratification

The main motivation underlying the introduction of stratifying classifiers is that
Bayesian network classifiers should be able to convey indecisiveness, especially
when inconclusive cases call for different further decision making than cases
with a convincingly outstanding class value. In view of conveying indecisiveness,
we now look upon a Bayesian network classifier as distributing a case set over
different strata, based upon the computed posterior distribution over the class
variable. After stratification, the classifier returns a determinate class value for
the cases from some strata and leaves the cases from other strata unclassified. To
distinguish between determinate and inconclusive cases, a stratifying classifier
employs a partial classification function class∗ with two threshold values t− ≤ t+:

class∗(C, t−, t+; f) =
{

c, if Pr(c | f) ≥ t+

c̄, if Pr(c | f) < t−

The threshold value t− is termed the function’s lower threshold value; t+ is called
its upper threshold value. The ∗-notation is used to denote a function adapted
to stratification. Note that for t− < t+, the stratifying classification function
class∗ serves to classify only those cases f for which either Pr(c | f) ≥ t+ or
Pr(c | f) < t−. All cases with t− ≤ Pr(c | f) < t+ are left unclassified by the
stratifying classification function. Further note that the function class∗ has the
standard, single-threshold classification function as a special case, with t− = t+.

At first glance, the idea of stratifying classifiers shows similarities to multiway
classification and to threshold decision making. In multiway classification, the
purpose of the classifier is to distinguish between more than two distinct classes.
Stratification in contrast does not increase the number of class values under
consideration and thus differs conceptually from multiway classification. The idea
of threshold decision making, which was introduced to support physicians during
the diagnostic-testing phase in patient management [8], builds upon concepts of
decision analysis to establish two patient-specific threshold values, p− and p+, on
the probability of disease Pr(d) computed for a patient. These threshold values
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serve to decide between withholding treatment (Pr(d) < p−), further diagnostic
testing (p− ≤ Pr(d) < p+), and immediate treatment (Pr(d) ≥ p+). Taking
a decision of further diagnostic testing as conveying indecisiveness concerning
whether or not to treat the patient, the threshold decision making model can in
fact be implemented with a stratifying classifier.

4.2 The Accuracy of a Stratifying Classifier

We consider again the case set F = F+ ∪ F− with m = p + n cases. The clas-
sification function of the stratifying classifier partitions this set in five mutually
exclusive and collectively exhaustive subsets. Four of these subsets match the
sets TP, FP, TN, and FN introduced above; the fifth set is the set of unclassified
cases. The sizes of the five sets again depend upon the threshold values used
by the classification function. To capture this dependence, we observe that the
stratifying classifier displays the following behaviour:

∀ f ∈ C+ = {f | f ∈ F , Pr(c | f) ≥ t+} : class∗(C, t−, t+; f) = c

∀ f ∈ C− = {f | f ∈ F , Pr(c | f) < t−} : class∗(C, t−, t+; f) = c̄

∀ f ∈ Cu = F \ (C+ ∪ C−) : unclassified

This observation shows that all cases from the set C+ are classified as being
positive; the set thus is distributed over the two sets TP and FP. Since the size
of the set C+ depends on the upper threshold value t+, the sizes tp and fp of the
sets TP and FP depend on the value t+ as well; we will write tp(t+) and fp(t+),
respectively, to express this dependence. Similarly, the set C− is distributed over
TN and FN. The sizes tn and fn of these sets depend on the lower threshold value
t−; we will write tn(t−) and fn(t−), respectively, to express this dependence.

We recall that, for a standard Bayesian network classifier with a classification
function based on a single threshold value t, accuracy is defined as the proportion
of cases that are assigned to their true class value:

accuracy(t) =
tp(t) + tn(t)

m

The proportion of cases that are correctly classified by a stratifying classifier
now equals

accuracy(t−, t+) =
tp(t+) + tn(t−)

m

Since a stratifying classifier may leave some cases unclassified, one or more of
the sets TP, FP, TN, and FN may decrease in size compared to those with a
standard classifier. More specifically, we find that

tp(t+) + fn(t−) = p∗ ≤ p and tn(t−) + fp(t+) = n∗ ≤ n

where p∗ is the number of actually classified cases from F+ and n∗ is the number
of classified cases from F−; m − p∗ − n∗ cases are left unclassified by the strat-
ifying classifier. Now, if the stratification results in smaller sets TP and/or TN,
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then some of the cases considered inconclusive after stratification would have
been classified correctly, yet not convincingly, without the stratification. The
accuracy of the stratifying classifier then is smaller than that of the standard
classifier. On the other hand, if the stratification affects neither TP nor TN, then
the accuracy of the stratifying classifier remains unchanged compared to that
of the standard classifier, which indicates that all cases considered inconclusive
after stratification would have been classified incorrectly without the stratifica-
tion. For the stratifying classifier, the standard measure of accuracy thus still
captures the proportion of correctly classified cases from all cases presented to
the classifier, including those considered inconclusive. To capture the proportion
of correctly classified cases among the cases that were actually classified, we now
introduce a measure of stratified accuracy, defined by

accuracy∗(t−, t+) =
tp(t+) + tn(t−)

m∗

where m∗ equals p∗ + n∗ = tp(t+) + tn(t−) + fp(t+) + fn(t−).
The measure of stratified accuracy is in essence defined in terms of the sets

C+ and C−. The measure can also be related to the set Cu of cases that are left
unclassified by the stratifying classifier. To this end, we consider the distribution
of these inconclusive cases over the sets TP, FP, TN, and FN with a standard
classifier. For each f ∈ Cu, we have that

class(C, t−; f) = c and class(C, t+; f) = c̄

With the threshold value t−, therefore, a standard classifier would distribute
all cases from Cu over the two sets TP and FP, with sizes tp(t−) and fp(t−),
respectively. Similarly, with the threshold value t+, all cases from Cu would be
distributed over the sets TN and FN, with sizes tn(t+) and fn(t+). Upon varying
the threshold value from t− to t+, therefore, the cases f ∈ Cu would migrate
from the set TP to the set FN, and from FP to TN. This observation underlies
the following formula:

accuracy∗(t−, t+) =
tp(t−) − Δtp + tn(t+) − Δtn

m − Δtp − Δtn

where Δtp = tp(t−)− tp(t+) is the number of cases from Cu ∩F+ that would be
incorrectly classified as negative if t+ were to be taken as the single threshold
value; Δtn = tn(t+) − tn(t−) has an analogous interpretation.

The effects of stratification on the accuracy of a classifier can be studied by
comparing the resulting stratified accuracy to the standard accuracy. We con-
sider to this end a standard Bayesian network classifier with the classification
function class(C, t; f). Introducing stratification into this classifier entails choos-
ing two threshold values t− and t+, t− ≤ t ≤ t+, and replacing the function class
by the stratifying classification function class∗. If neither the set TP nor the set
TN is affected by the stratification, that is, if tp(t+) = tp(t) and tn(t−) = tn(t),
we find that

accuracy(t−, t+) = accuracy(t) and accuracy∗(t−, t+) ≥ accuracy(t)



526 L.C. van der Gaag et al.

where equality holds for the formula on the right whenever tp(t−) = tp(t) and
tn(t+) = tn(t). If the stratification results in a decrease in size of the sets
TP and/or TN, then the standard accuracy decreases with the stratification:
accuracy(t−, t+) < accuracy(t). The stratified accuracy accuracy∗(t−, t+), how-
ever, can be smaller than, equal to, or larger than the standard accuracy, depend-
ing on the size of the set Cu of inconclusive cases and the standard classifier’s
performance on Cu. If accuracy∗(t−, t+) < accuracy(t), we say that stratification
results in a deterioration in the performance of the classifier. Such a deteriora-
tion indicates that, among the unclassified cases, a relatively large number were
classified correctly prior to the stratification. It further means that the cases
which remain incorrectly classified after the stratification, are cases for which
high posterior probabilities are established for the incorrect class value. Often,
however, the introduction of stratification will result in an improvement of the
performance of a classifier, that is, in accuracy∗(t−, t+) > accuracy(t). An ap-
propriate choice of threshold values can in fact result in extremely high stratified
accuracies, possibly even equal to 1.

4.3 The Classification Percentage

In most applications, the introduction of stratification into a Bayesian network
classifier will result in an increased stratified accuracy. The improvement in
classification performance, however, typically comes at the price of a reduced
practicability of the classifier for decision support. To capture the issue of prac-
ticability, we introduce the concept of classification percentage, which equals the
proportion of cases that are classified:

classification percentage =
m∗

m
· 100%

Note that a standard classifier has a classification percentage of 100%. By intro-
ducing stratification, the classification percentage will typically decrease. When
viewing a stratifying classifier as a tool for support to a decision maker in his
daily practice, the classification percentage indicates, given the stratification un-
der consideration, the percentage of cases for which the tool will actually advance
the decision-making process. Alternatively, the classification percentage conveys
information about the percentage of cases for which the tool will be indecisive,
that is, for which the tool will leave the actual decision to the decision maker.

5 Stratification in the Example Application

In our application domain of animal health management, a dairy farmer typically
has to decide upon treatment of a cow with clinical mastitis before knowing the
pathogen that causes the disease. As a result, often broad-spectrum antibiotics
are administered, where narrow-spectrum antibiotic treatment is preferred. The
administration of narrow-spectrum antibiotics is possible, however, only if one
specific pathogen is convincingly favoured over all others. Our naive Bayesian
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Table 2. Predicted and actual numbers of positive and negative cases for our stratifying
classifier, using threshold values t− = 0.30 and t+ = 0.80, with 1 202 cases

classifier
+ − total

data + 289 8 297
− 11 48 59

total 356

classifier supports the choice of antibiotics by classifying mastitis cases according
to the Gram-status of the causal pathogen. We recall that this Gram-status is an
important indicator for the type of antibiotics to be used. The predicted Gram-
status, however, may be quite uncertain for cases with a posterior probability
close to the threshold value of the classification function. For such cases, in fact,
a broad-spectrum treatment would still be preferred. In this section we use our
example application to illustrate the concepts, measures and observations put
forward in the previous section.

With our standard naive Bayesian classifier and with the case set of 1 202
mastitis cases, we find the following values tp and tn for the sizes of the sets TP
and TN of correctly classified cases, for different threshold values t:

t 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
tp 873 830 809 809 806 289 165 0
tn 48 90 118 118 121 310 321 321

With a threshold value of t = 0.50 for the classification function, for example,
the accuracy of our classifier equals (809+118)/1 202 = 0.77. We now introduce
stratification into our classifier, using a classification function with threshold
values t− = 0.30 and t+ = 0.80. With the resulting stratifying classifier, a total
of 356 cases from the case set are classified, giving a classification percentage
of 29.6%. For the remaining 846 cases the classifier is indecisive, indicating that
the dairy farmer should administer broad-spectrum antibiotics to the diseased
cows. The distribution of the classified cases over the four sets TP, FP, TN, and
FN is shown in Table 2. The stratifying classifier has a standard accuracy of 0.28
and a stratified accuracy of 0.95. Fig. 2 shows the effects of separately varying
the two threshold values t− and t+, on the two accuracies. The figure clearly
shows that an increasing distance between the two threshold values may result
in a higher stratified accuracy, which then typically comes at the expense of a
decrease in the classifier’s classification percentage.

Our earlier observation that the introduction of stratification may both serve
to improve and deteriorate classifier performance, is illustrated by the following
example. We consider two different classification functions for our stratifying
classifier: one function with the threshold values t− = 0.40 and t+ = 0.80 (I), and
another one with the threshold values t− = 0.40 and t+ = 1.00 (II). The resulting
classifiers both have a standard accuracy smaller than that of the standard
classifier. While the standard classifier has an accuracy of accuracy(0.50) = 0.77,
we find for the two stratifying classifiers:
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(I): accuracy(0.40, 0.80) =
289 + 90

1 202
= 0.32, and

(II): accuracy(0.40, 1.00) =
0 + 90
1 202

= 0.07

For classifier (I), we further find for its stratified accuracy:

accuracy∗(0.40, 0.80) =
289 + 90

1 202− (830 − 289) − (310 − 90)
= 0.86

which shows an increase in accuracy over the standard, single-threshold classifier.
This increase is explained by the observation that the decrease in the number
of correct classifications compared to the standard classifier, is smaller than the
relative decrease in the total number of classified cases. For classifier (II), on the
other hand, we find that

accuracy∗(0.40, 1.00) =
90

1 202 − (321 − 90) − (830 − 0)
= 0.64

which reveals a decrease in accuracy compared to the standard classifier. This
decrease is explained by the observation that the relative decrease in the number
of correct classifications now is larger than that in the number of classified cases.

To conclude, by introducing stratification into our example naive Bayesian clas-
sifier with threshold values t− = 0.10 and t+ = 0.90, we find a stratified accuracy
of 1.00 at a classification percentage of 15.5%. A much poorer choice of threshold
values is t− = 0.20 and t+ = 1.00, which results in a stratifying classifier which is
decisive on just 4.5% of the cases and has a stratified accuracy of 0.87. The same
stratified accuracy is also obtained by setting the threshold value t+ to the smaller
value of t+ = 0.75. We now find a classification percentage of 58.7%!
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6 Conclusions

For some problems, the single class value returned by a classifier does not nec-
essarily provide a sufficient basis for reliable further decision making. Building
upon this observation, we introduced stratifying classifiers as classifiers with
the ability to express indecisiveness by not classifying inconclusive cases. These
stratifying classifiers are particularly appropriate for applications in which in-
decisiveness about the class value for a case is a usable result for the decision
maker, as in our application domain. Associated with this new type of classifier,
we introduced new measures of classification performance and practicability;
these measures serve to give insight in the values of the two threshold values
to be used with the classification function. In the future we want to extend our
concept of stratification to multiway classification and to study the practicability
of returning two or more class values for inconclusive cases.
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