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Abstract. Naive Bayesian networks are often used for classification
problems that involve variables of a continuous nature. Upon capturing
such variables, their value ranges are modelled as finite sets of discrete
values. While the output probabilities and conclusions established from
a Bayesian network are dependent of the actual discretisations used for
its variables, the effects of choosing alternative discretisations are largely
unknown as yet. In this paper, we study the effects of changing discreti-
sations on the probability distributions computed from a naive Bayesian
network. We demonstrate how recent insights from the research area of
sensitivity analysis can be exploited for this purpose.

1 Introduction

Naive Bayesian networks are being used for a large range of classification prob-
lems. These networks in essence are probabilistic graphical models of restricted
topology, describing a joint probability distribution over a set of stochastic vari-
ables. Efficient algorithms are available for computing any prior or posterior
probability of interest over the variables of a network, and over its main out-
put variable more specifically. Most of these algorithms assume all variables to
be discrete. A classification problem under study however, may involve variables
which are of a continuous nature. For capturing such variables, their value ranges
should be modelled as finite sets of discrete values. Several different methods are
available for automated discretisation of continuous-valued variables in general;
for an overview of such methods, we refer to [1]. For Bayesian-network modelling,
these general methods unfortunately tend to yield unsatisfactory results [2]. Yet,
while the output probabilities established from a Bayesian network are depen-
dent of the actual ways in which its variables are discretised [3], the effects of
choosing alternative discretisations are largely unknown.

In this paper, we study the effects of changing the discretisations of continuous-
valued feature variables on the posterior probability distributions computed
from a naive Bayesian network. We note that discretising a continuous vari-
able amounts to setting one or more threshold values to split its value range
into intervals. Choosing an alternative discretisation thus amounts to changing
one or more of these threshold values. From the conditional probability table for
the variable at hand it is now readily seen that changing even a single threshold
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value will result in changes in the values of many of the parameter probabilities
involved. These parameter values do not change independently: their changes
are functionally related through the change in threshold value. We will demon-
strate how this functional dependency allows exploiting recent insights from the
research area of sensitivity analysis of Bayesian networks in general [4], to effi-
ciently study the effects of changing discretisations. Throughout the paper, we
will illustrate our findings using real-world breast-cancer screening data.

The paper is organised as follows. In Sect. 2, we introduce our notations and
briefly review sensitivity analysis of Bayesian networks in general. In Sect. 3, we
establish functions that describe the effects of changing the discretisation of a
feature variable on the probability distributions computed from a naive Bayesian
network. The paper ends with our concluding observations in Sect. 4.

2 Preliminaries

We introduce our notational conventions and review recent insights from the
field of sensitivity analysis of Bayesian networks in general.

2.1 Naive Bayesian Networks

We consider joint probability distributions Pr(V) over setsV of discrete stochas-
tic variables. For our notations, we will use (possibly indexed) upper-case letters
V to denote single variables, and bold-faced upper-case letters V to indicate
sets of variables. The possible values of a variable V are denoted by (indexed
or primed) small letters vi; we will write v and v̄ more specifically, for the two
values of a binary variable V . Bold-faced small letters v are used to denote joint
value combinations for the variables from a set V.

A Bayesian network in general is a probabilistic graphical model describing
a joint probability distribution Pr(V) over the set of variables V. The variables
fromV are modelled as nodes in a directed acyclic graph, and the (in)dependency
relation among them is captured by arcs. Associated with each variable V in the
graph are parameter probabilities p(V | π(V )) from the distribution Pr which
jointly describe the influence of the possible values of the parents π(V ) of V
on the probabilities over V itself; these parameter probabilities constitute the
conditional probability table of the variable V . A naive Bayesian network now is
a Bayesian network of highly restricted topology, consisting of a single class vari-
able C and one or more feature variables Ei. In its graphical structure, all feature
variables are connected directly with the class variable, and are unconnected oth-
erwise; the feature variables are thereby modelled as mutually independent given
the class variable. Naive Bayesian networks are commonly used for computing
posterior probability distributions Pr(C | e) over the possible values of the class
variable, given a joint value combination e for the set E of feature variables.

2.2 Sensitivity Analysis

Sensitivity analysis is a general technique for studying the effects of parameter
variation on the output of a mathematical model. For Bayesian networks more
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specifically, sensitivity analysis amounts to investigating the effects of varying
the values of one or more parameter probabilities on an output probability of
interest; to this end, tailored algorithms have been developed [5,6].

In a one-way sensitivity analysis of a Bayesian network, a single parameter
probability p is being varied as x and the other parameter probabilities p′ from
the same conditional probability distribution are co-varied as (1−x)

(1−p) · p′. The
effects of this variation are described by a mathematical function f(x) which ex-
presses the output probability of interest in terms of the parameter under study.
For a marginal probability of interest, this sensitivity function f(x) is linear in
the parameter being varied. For a conditional probability of interest, the effects
of parameter variation are described by a fraction of two linear functions. The
function f(x) then essentially is a fragment of one of the branches of a rectan-
gular hyperbola [5]. Since both the parameter under study and the probability
of interest are restricted to values from [0, 1], the range of points is effectively
constrained to just a fragment of the hyperbola; the two-dimensional space of
feasible points in general is termed the unit window.

In the sequel, we will use higher-order sensitivity analyses in which multiple
parameter probabilities are being varied simultaneously. In general, in an n-way
sensitivity analysis in which n parameters are being varied, a marginal probabil-
ity of interest is described by a multi-linear function in these parameters. For a
conditional probability of interest, the sensitivity function again is a fraction of
two such functions. For example, a two-way sensitivity function that expresses a
posterior probability of interest Pr(c | e) in terms of two parameter probabilities
which are being varied as x and y, has the following form:

fPr(c|e)(x, y) =
fPr(c, e)(x, y)

fPr(e)(x, y)
=

a1 · x · y + a2 · x+ a3 · y + a4
b1 · x · y + b2 · x+ b3 · y + b4

where the constants ai, bi, i = 1, . . . , 4, are built from the non-varied parameters
of the network under study. The two parameter probabilities and the output
probability of interest again are restricted to the [0, 1]-range, which defines a
three-dimensional space of feasible points called the unit cube.

3 Studying the Effects of Discretisation

The basic formalism of naive Bayesian networks requires all included variables to
be discrete. Upon modelling domain knowledge, variables which take their value
from an intrinsically continuous value range will therefore have to be discretised.
Such a discretisation amounts to splitting the variable’s value range into two or
more disjoint intervals and associating each such interval with a value of a (newly
defined) discrete variable. In Sect. 3.1, we will study binary discretisations in view
of a binary class variable; in Sect. 3.2, we extend our results to naive Bayesian
networks including non-binary variables in general.
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3.1 Binary Discretisation in Two-Class Naive Bayesian Networks

We consider a continuous feature variable E and address its binary discretisation,
that is, we assume that the value range of E is split into two intervals by means of
a threshold value t. Slightly abusing notation, we will write E < t and E ≥ t for
the two values of the (now discretised) variable E, and use e′ to indicate either
of these values. Upon including the discretised variable E as a feature variable
in a naive Bayesian network with the binary class variable C, a conditional
probability table is constructed for E with the parameter probabilities p(E <
t | c) and p(E ≥ t | c), and the probabilities p(E < t | c̄) and p(E ≥ t |
c̄). It is now readily seen that changing the discretisation of E by choosing a
different threshold value t, will affect all parameters from this table. Since these
parameter probabilities do not stem all from the same conditional distribution,
we must conclude that we cannot study the effects of changing E’s discretisation
by conducting a one-way sensitivity analysis. It is not necessary however, to use
a full four-way sensitivity analysis in all parameters involved either. We observe
that by varying the parameter probability p(E < t | c), the variation of p(E ≥
t | c) is covered by standard co-variation; similarly, variation of p(E ≥ t | c̄)
is handled by varying p(E < t | c̄). A two-way sensitivity analysis thus should
suffice for studying the effects of changing the discretisation of E on the output
probabilities computed from a naive Bayesian network.

In Sect. 2, we reviewed the general form of a two-way sensitivity function
expressing an output probability Pr(c | e) computed from a Bayesian network
in terms of two parameter probabilities being varied as x and y:

fPr(c|e)(x, y) =
fPr(c, e)(x, y)

fPr(e)(x, y)
=

a1 · x · y + a2 · x+ a3 · y + a4
b1 · x · y + b2 · x+ b3 · y + b4

For studying the effects of changing the discretisation of our feature variable E,
the two parameter probabilities to be varied are p(E < t | c) and p(E < t | c̄) (or
their complements). We note that these parameter probabilities stem from dif-
ferent conditional distributions, that is, they are conditioned on different values
of the class variable. As a consequence, the two parameters have no interaction
effects and the constants a1 and b1 are equal to zero. The independency proper-
ties of a naive Bayesian network even further constrain the general form of the
function, as is shown in the following proposition.

Proposition 1. Let C be the binary class variable of a naive Bayesian network
which further includes the set E of feature variables. Let Pr(c | e) be the net-
work’s probability of interest, for a joint combination of observed values e for
E. Now, let x = p(e′ | c) and y = p(e′ | c̄) be the parameter probabilities for the
observed value e′ of the binary feature variable E. Then, the two-way sensitivity
function expressing Pr(c | e) in x and y is of the form

fPr(c|e)(x, y) =
a · Pr(c) · x

a · Pr(c) · x+ a′ · Pr(c̄) · y
where a and a′ are constants.
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Proof. Using Bayes’ theorem and exploiting the independency properties of a
naive Bayesian network, we find for our probability of interest Pr(c | e) that

Pr(c | e) = Pr(e | c) · Pr(c)
Pr(e | c) · Pr(c) + Pr(e | c̄) · Pr(c̄)

=

∏
e′k∈e Pr(e′k | c) · Pr(c)

∏
e′k∈e Pr(e′k | c) · Pr(c) +∏

e′k∈e Pr(e′k | c̄) · Pr(c̄)

The result follows with a =
∏

e′
k
∈e\e′ Pr(e

′
k | c) and a′ =

∏
e′
k
∈e\e′ Pr(e

′
k | c̄). �

We note that the constants a and a′ in the sensitivity function stated above
are readily computed from the parameter probabilities of the feature variables
in the naive Bayesian network; the two-way sensitivity function can in fact be
established without the need of any propagation, as a result of the conditional
independencies holding among the feature variables. We further note that if the
probability of interest pertains to the value c of the class variable C, then the
numerator of the sensitivity function does not include the parameter probability
being varied as y; similarly, for a probability of interest involving c̄, the numerator
does not include x. We observe that if the value e′ specified in the parameters x
and y for E differs from the actually observed value, then both the numerator
and the denominator of the sensitivity function include an additional constant.
Alternatively, we can choose the complements of x and y as the parameters to
be varied, which will again result in a function of the above form.

We illustrate the form of the two-way sensitivity function derived above by
means of a simple naive Bayesian network for classifying mammographic images.

Example 1. To distinguish between benign and malignant mass lesions, a simple
naive Bayesian network was constructed from breast-cancer screening data from
the UCI Data Repository [7]. The available data involved several discrete vari-
ables modelling properties of the mass lesions seen in mammographic images,
and a continuous variable describing the age of a patient. The naive Bayesian
network was constructed with the class variable Severity, with the values be-
nign and malignant ; the continuous variable Age and the five-valued variable
Shape were selected for its feature variables. We now suppose that we are in-
terested in the output probability Pr(Severity = benign | Age < t,Shape = 4)
for the class variable. In our analysis, we further focus on the effects of vary-
ing the two parameter probabilities x = p(Age < t | Severity = benign) and
y = p(Age < t | Severity = malignant) associated with the feature variable Age.

To establish the two-way sensitivity function which describes our output prob-
ability of interest in terms of the two parameter probabilities being varied, we
need to determine the prior probability of a mass lesion being benign and the
conditional probabilities of a shape-4 mass for benign lesions and for malignant
lesions respectively. We computed these probabilities from the data collection af-
ter removal of the five cases for which no value for the variable Age was available.
The prior probability of a benign lesion was found to be Pr(Severity = benign) =
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0.54. For the variable Shape, we found p(Shape = 4 | Severity = benign) = 0.16
and p(Shape = 4 | Severity = malignant) = 0.71. With these probabilities, we
determined the two-way sensitivity function fbenign(x, y) for the output proba-
bility of interest to be

fbenign(x, y) =
0.54 · 0.16 · x

0.54 · 0.16 · x+ 0.46 · 0.71 · y
Figure 1(a) shows the fragment of the function fbenign(x, y) that lies within
the unit cube; the function fmalignant (x, y) describing the effects of varying the
same parameter probabilities x and y on the complementary output probability
Pr(Severity = malignant | Age < t,Shape = 4) is shown in Fig. 1(b). From Fig.
1(a), we can read for example that a relatively small probability Pr(Severity =
benign | Age < t,Shape = 4) of a shape-4 mass lesion being benign in younger
patients will be found for small values of the parameter x. �

In Proposition 1, we stated the general form of a two-way sensitivity function
which expresses an output probability computed from a two-class naive Bayesian
network in terms of two parameter probabilities of a binary feature variable. This
two-way function specifies a value for the output probability for each combination
of values for the two parameters. We now recall that our aim is to use sensitivity
analysis as a means for studying the effects of changing the binary discretisation
of a continuous-valued feature variable. In view of such a discretisation, the two
parameters under study are not unrelated, as is assumed in a two-way sensitivity
analysis in general. We observe that since varying the threshold value t in a
binary discretisation affects all parameter probabilities of its feature variable,
the two parameters under study are dependent of t, and are in fact varied as
x(t) and y(t). As a result of this dependency, their variation is related through a
function h(t) = (x(t), y(t)). From the way in which discretisations are formalised,
we have that this function h(t) cannot be any arbitrary function. The following
lemma in fact shows that the function is either monotonically non-decreasing or
monotonically non-increasing in each of the dimensions of its co-domain.

Lemma 1. Let C be a binary class variable, let E be a continuous-valued feature
variable, and let t be a threshold value for binary discretisation of E. Let x(t) =
p(E < t | c) and y(t) = p(E < t | c̄) be parameter probabilities of E, and let h be
the function with h(t) = (x(t), y(t)). Then, h is monotonically non-decreasing in
both dimensions of its co-domain.

Proof. The property stated in the lemma derives from the interdependency of
test characteristics in epidemiology [8], and is easily verified by observing that
as the threshold t is shifted to larger values of the continuous variable E, then
the probability p(E < t | C) cannot decrease, regardless of the value of C. �

From the lemma, we have that the function h(t) is monotonically non-decreasing
in any output dimension pertaining to the value E < t of the feature variable
E; it is monotonically non-increasing in a dimension pertaining to E ≥ t.

For studying the overall effect of changing a binary discretisation, we must
now explicitly take the induced relation between the two parameter probabilities
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(a) fbenign (x, y) (b) fmalignant (x, y)

Fig. 1. Two-way sensitivity functions for the class variable Severity given Age < t and
Shape = 4, with the parameters x = p(Age < t | Severity = benign) and y = p(Age <
t | Severity = malignant), assuming independent variation

into account in the sensitivity function under study. Based upon considerations
of practicability, we propose to approximate this relation by y(t) = g(x(t)) for
some function g. Note that by doing so, the dimensionality of the sensitivity
function is reduced and its ease of interpretation is enhanced. Studying the
effects of changing a discretisation then requires the function

fPr(c|e)(x(t), g(x(t))) =
a1 · x(t) + a2 · g(x(t)) + a3
b1 · x(t) + b2 · g(x(t)) + b3

where the constants involved are again built from the non-varied parameters of
the network under study. We note that this function is a function in a single
parameter probability, but not a one-way sensitivity function; to simplify our
notations, we will again omit the explicit dependency of the parameter probabil-
ities x(t) and y(t) on t and write x and y for short. We note in addition that the
function g that is chosen to approximate the induced relation between the pa-
rameter probabilities x and y cannot be arbitrarily shaped, but should preserve
the monotonicity properties of its underlying function h; g is further defined by
knowledge of the problem at hand, as is shown in the following example.

Example 2. We consider again, from Example 1, the problem of establishing
the severity of mass lesions from mammographic images. From the available
data, we approximated the true relation between the parameter probabilities
x = p(Age < t | Severity = benign) and y = p(Age < t | Severity = malignant)
by a linear function: by means of linear regression of y on x, we constructed the
function y = 1.00 ·x−0.21; note that this function preserves the property of non-
decreasing values of y for increasing values of x. We now recall that the surface
fbenign(x, y) from Fig. 1(a) described the probability of interest Pr(Severity =
benign | Age < t,Shape = 4) in terms of the two parameters x and y under the
assumption of independent variation. By intersecting this surface with the plane
y = 1.00 · x− 0.21, we therefore find the function that expresses the probability
of interest in terms of x taking its actual, albeit approximated, variation effect
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(a) fbenign (x) and fmalignant (x) (b) fbenign (y) and fmalignant (y)

Fig. 2. Dimension-reduced functions for the class variable Severity given Age < t and
Shape = 4, taking the variational dependency of x and y into account

with y into consideration. The intersection curve thus describes the sensitivity
of the output probability to changes occasioned in x as a result of varying the
discretisation threshold t. The function capturing the intersection curve is

fbenign(x) =
0.09 · x

0.09 · x+ 0.33 · (1.00 · x− 0.21)

Figure 2(a) displays this function, along with the function for the complement of
the probability of interest. We observe that the depicted functions do not specify
a value for the probability of interest for the smaller values of the parameter
x. This finding originates from the approximated variational dependency of x
and y: for small values of x, there are no matching values g(x) for y within
the feasible range [0, 1]. Note that the finding underlines our earlier observation
that the depicted functions are no one-way sensitivity functions, but dimension-
reduced two-way sensitivity functions instead. Figure 2(b) again shows the two
intersection functions, this time from the perspective of the parameter y; the
variational dependency of x and y was now approximated by linear regression
of x on y, which resulted in x = 0.90 · y + 0.25. �

3.2 Discretisation in Naive Bayesian Networks in General

Thus far, we assumed the class variable of a naive Bayesian network to be binary
and considered binary discretisations only. We will now argue that our results
are readily generalised to naive Bayesian networks in general, that is, to naive
Bayesian networks which include an n-ary class variable and in which the value
range of a continuous variable is split into multiple disjoint intervals.

Non-binary Class Variables. We consider an n-ary class variable C with the
possible values cj , j = 1, . . . , n, n ≥ 2, and assume that we construct a binary
discretisation for our continuous-valued feature variable E through a thresh-
old value t as before. Changing the discretisation of E by choosing a different
threshold value will again affect all parameter probabilities specified for E. These
parameter probabilities now pertain to n different conditional probability distri-
butions, that is, to n distributions over E conditioned on all possible class values.
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To study the effects of changing E’s discretisation therefore, we have to vary as
xj the parameter probabilities p(E < t | cj) for all j = 1, . . . , n. The sensitivity
function describing the effects of this variation on an output probability of inter-
est thus is an n-way sensitivity function. Despite its higher dimensionality, this
sensitivity function again is highly constrained by the independency properties
of a naive Bayesian network. For an output probability Pr(ck | e) for some value
ck, 1 ≤ k ≤ n, of the class variable C, the sensitivity function in x1, . . . , xn more
specifically has the following form:

fPr(ck|e)(x1, . . . , xn) =
ak · Pr(ck) · xk

a1 · Pr(c1) · x1 + . . .+ an · Pr(cn) · xn

where aj, j = 1, . . . , n, again are constants; the proof and conditions of this
property are analogous to those of Proposition 1. The sensitivity function stated
above again assumes independent variation of its parameters x1, . . . , xn, as with
n-way analyses in general. As before however, these parameters are mutually re-
lated through a function h(t) = (x1(t), . . . , xn(t)) which is either monotonically
non-decreasing or monotonically non-increasing in each of the dimensions of its
co-domain. To take the variational relation among the parameters into account,
we propose again to approximate this relation by choosing a single focal param-
eter xi and to functionally relate each other parameter xj , j = 1, . . . , n, j �= i,
to xi by constructing a function gj with xj = gj(xi) which preserves the mono-
tonicity properties of the underlying function h. A dimension-reduced sensitivity
function then results, showing the overall effects of changing a discretisation on
a computed class probability.

Non-binary Discretisations. We address a continuous-valued feature variable
E for which we construct an m-ary discretisation, that is, whose value range is
split into m ≥ 3 disjoint intervals; for ease of exposition, we assume the class
variable again to be binary. We observe that constructing an m-ary discretisa-
tion amounts to setting threshold values tj , j = 1, . . . ,m − 1, with tj < tj+1.
For such a discretisation, we consider changing just a single threshold value tk,
1 ≤ k ≤ m − 1, keeping all other thresholds at their original values. We feel
that changing multiple threshold values simultaneously would not just compli-
cate the details of our analysis, but would also yield impractical results. Now,
changing the threshold value tk of the discretisation of our feature variable E
will again affect its conditional probability table. Not all parameter probabili-
ties will be influenced by the change, however: only the parameter probabilities
p(tk−1 ≤ E < tk | C) and p(tk ≤ E < tk+1 | C) will be affected, for each
possible value of the class variable. We recall that with binary discretisations
we could handle the relation between the affected parameter probabilities from
the same conditional distribution by standard co-variation, which allowed us to
reduce the dimensionality of the sensitivity function. For m-ary discretisations,
the commonly assumed co-variation scheme no longer applies, however: if the
parameter probability p(tk−1 ≤ Ei < tk | c) is varied as x, then the parameter
p(tk ≤ Ei < tk+1 | c) is varied as 1 − x − ∑

j=1,...,k−2,k+1,...,m−2 p(tj ≤ Ei <
tj+1 | c) and all other parameters p(tj ≤ Ei < tj+1 | c), j = 1, . . . ,m − 1,
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j �= k − 1, k, from the same distribution are kept constant. It is readily seen
however, that this scheme of variation will again result in a two-way sensitivity
function of the form stated in Proposition 1. By taking the variational relation
between the two parameter probabilities into account as before therefore, again
a dimension-reduced sensitivity function results that allows studying the overall
effects of the change in discretisation on a class probability of interest.

4 Conclusions and Further Research

Focusing on naive Bayesian networks, we studied the effects of changing the
discretisation of a network’s continuous feature variable on the posterior prob-
abilities computed for its class variable. We showed that recent insights from
sensitivity analysis of Bayesian networks in general serve to analytically de-
scribe these effects. We argued more specifically that changing the discretisation
of a feature variable affects multiple parameter probabilities, and showed how
the relation that is thus induced among these parameters can be explicitly taken
into account for establishing a dimension-reduced sensitivity function that shows
the overall effects of the change of discretisation on a class probability of inter-
est. We currently are extending our results to Bayesian network classifiers in
general and are studying changes in discretisation that induce a change of the
most likely class value. We hope to be able to report our further insights in the
discretisation effects in Bayesian network classifiers in the near future.

References

1. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Russel, S.J. (ed.) Proceedings of the 12th International
Conference on Machine Learning, pp. 194–202. Morgan Kaufmann, CA (1995)

2. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental mod-
elling. Ecological Modelling 203, 312–318 (2007)
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