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Abstract. While for many problems in medicine classification models are being
developed, Bayesian network classifiers do not seem to have become as widely
accepted within the medical community as logistic regression models. We com-
pare first-order logistic regression and naive Bayesian classification in the domain
of reproductive medicine and demonstrate that the two techniques can result in
models of comparable performance. For Bayesian network classifiers to become
more widely accepted within the medical community, we feel that they should
be better aligned with their context of application. We describe how to incorpo-
rate well-known concepts of clinical relevance in the process of constructing and
evaluating Bayesian network classifiers to achieve such an alignment.
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1 Introduction

Bayesian network classifiers are stochastic models that describe the relationship be-
tween one or more feature variables and a class variable, and provide for establishing
posterior probabilities of the various classes for a given instance of the feature variables.
Numerous applications of Bayesian network classifiers exist. Yet, within the medical
field where most diagnostic problems can be considered classification problems, such
classifiers are hardly ever used. Stated informally, in a diagnostic medical problem, pa-
tients have to be assigned to one of a usually small number of distinct diagnostic classes
based upon the patient’s characteristics. A similar observation holds for many problems
that are prognostic in nature. In the domain of reproductive medicine, for example, pa-
tients have to be classified as elective or non-elective for single embryo transfer upon
in vitro fertilisation. To support physicians in taking classification decisions about in-
dividual patients, the most commonly employed models in the medical community are
based on the technique of logistic regression. Logistic regression serves to construct,
from a set of available patient data, a model which, like a Bayesian network classifier,
describes the relationship between the feature variables involved and a class variable,
and provides for establishing posterior probabilities of the various classes.
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Bayesian network classifiers have a number of advantages over logistic regression
models and their generalisations, which should render them attractive alternatives for
the medical field. A major advantage of Bayesian network classifiers lies in their abil-
ity to give reliable classification results even if evidence is available for only a sub-
set of the feature variables. Bayesian network classifiers moreover provide a graphical
representation of the independences between the modelled variables, which allows for
transparency and ease of interpretation of the models and their parameters. Bayesian
network classifiers further range from the simplest type of model, the naive Bayesian
classifier which makes strong independence assumptions concerning the feature vari-
ables involved, through the slightly more sophisticated TAN classifier which allows
restricted dependences between the feature variables, to full Bayesian networks mod-
elling the intricate dependence structure that actually holds in an application domain.
Classifiers of varying complexity can thus be modelled within a single framework.

Even though it is known from theory that first-order logistic regression models per-
form at least as good as naive Bayesian classifiers for larger data sets, many researchers
have reported comparable or even better performance of the Bayesian network classi-
fier for smaller data sets [12,14]. In this paper we describe our first steps aimed at the
adoption of a Bayesian network classifier in the domain of reproductive medicine. At
our disposal we had a small data set from patients undergoing single embryo transfer
upon in vitro fertilisation. From this data set, a first-order logistic regression model had
been constructed for the problem of predicting ongoing pregnancy [15]. From the same
data set, we also constructed a naive Bayesian classifier and studied its performance
compared to that of the logistic regression model.

Logistic regression models developed to support physicians in making patient-speci-
fic classification decisions, are typically evaluated using well-known concepts of clin-
ical relevance. These concepts include the area under the ROC curve, or AUC, and
the model’s sensitivity and specificity characteristics. The AUC gives an indication of
quality, averaged over all possible threshold probabilities for assigning an instance to
a particular class. For use in practice, a fixed decision threshold is chosen based upon
knowledge of the consequences of misclassification. With this threshold, the model has
an associated sensitivity and specificity, where the sensitivity is the percentage of true
positives predicted by the model and the specificity is the percentage of true negatives.

Bayesian network classifiers generally are not evaluated using the concepts of clin-
ical relevance mentioned above, but using classification accuracy as an indication of
quality instead, where classification accuracy refers to the percentage of instances that
are correctly classified by the model. The importance of communicating clinical rel-
evance of a constructed model should not be underestimated, however: concepts of
clinical relevance help convey to the physician a detailed assessment of the quality and
relevance of patient-specific decisions based upon the model. We feel that the limited
acceptance of Bayesian network classifiers in the medical community can be attributed
to at least some extent to the lack of associated indicators of clinical relevance. For
Bayesian network classifiers to become more widely accepted, we feel more specif-
ically that they should be better aligned with the medical contexts in which they are
to be used. In this paper, we describe how failure to use concepts of clinical relevance
can result in medically unacceptable Bayesian network classifiers. We further show that
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incorporating such concepts, both in constructing and in evaluating Bayesian network
classifiers, can be instrumental in achieving a much better alignment. In fact, we can
report comparable results for the logistic regression model and the naive Bayesian net-
work classifier only after alignment.

The paper is organised as follows. In Section 2, we review Bayesian network clas-
sifiers and compare them, theoretically, to logistic regression models. In Section 3 we
describe our domain of application and the data that we had available for our alignment
study; in addition, we describe the different concepts relevant for alignment. In Section
4 we elaborate on the incorporation of the concepts of clinical relevance in the processes
of constructing and evaluating Bayesian network classifiers. The results for the naive
Bayesian classifiers constructed from our data set are presented in Section 5. We end
with our concluding observations in Section 6.

2 Bayesian Network Classifiers and Logistic Regression

Stochastic classifiers in general provide for addressing problems in which an instance
of a set of feature variables has to be assigned to a value of the class variable. These
classifiers in essence establish the posterior probability distribution over the class vari-
able given the instance; the class value to be assigned to the instance is determined
from this distribution using a decision rule. While quite a number of stochastic classifi-
cation paradigms exist [9], we focus in this paper on Bayesian network classifiers and
logistic regression models. We begin by reviewing different types of Bayesian network
classifier and compare them to logistic regression models.

2.1 Bayesian Network Classifiers

Bayesian network classifiers build upon a Bayesian network for establishing posterior
probability distributions over their class variable. Such a network is a concise repre-
sentation of a joint probability distribution over the set of variables involved. For the
purpose of classification, this set is divided into a set of feature variables, a singleton
set with the class variable, and a set of intermediate, or hidden, variables. Bayesian net-
work classifiers vary in complexity from general models posing no restrictions on the
dependences between the variables, to very simple models with highly constrained de-
pendency structures. Two well-known simple Bayesian network classifiers are the naive
Bayesian classifier and the TAN classifier [4]. These models both assume an empty set
of hidden variables. The naive Bayesian classifier in addition assumes mutual inde-
pendence of the feature variables given the class variable; the TAN classifier, or tree
augmented network classifier, allows a tree-like dependency structure over its feature
variables. Because of their simplicity, naive Bayesian classifiers are being developed
for a wide range of application domains and, despite their simplicity, often very good
performance is reported [3,4].

Throughout this paper, we assume that the class variable Y is a binary variable, with
a positive class value denoted by y and a negative class value denoted by ȳ; we use y′
to refer to either class value. The set of feature variables is denoted by X; x is used
to denote a specific instance of this set. The naive Bayesian classifier now models the
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joint probability distribution Pr(X,Y ) over its variables in terms of parameters p(Xi |Y )
specified for its feature variables Xi ∈ X, and p(Y ) specified for the class variable Y . Its
independence assumptions result in the following parametrisation:

Pr(X,Y ) = p(Y ) ·∏i p(Xi | Y )

While full Bayesian networks are typically handcrafted, at least partially, Bayesian net-
work classifiers are generally constructed automatically from a data set. Algorithms for
this purpose use a measure for optimising the model’s quality; this measure is used,
more specifically, for deciding upon the dependences to be included between the vari-
ables. For a naive Bayesian classifier, for example, only dependences between feature
variables and the class variable are allowed; a TAN classifier allows the inclusion of de-
pendences among feature variables as well. Examples of quality measures are a model’s
accuracy and its minimum description length (MDL). The quality of a model in view of
the data can only be established if the model is fully specified, that is, if it includes esti-
mates for all numerical parameters involved. These parameters are estimated as simple
frequency counts, which serve to maximise the log-likelihood of the model given the
data. The quality measure that is used as an optimisation criterion upon constructing
the model often is also exploited for comparing classifiers.

Upon learning Bayesian network classifiers, the quality of a model is optimised not
just by including appropriate dependences, but also by including only the most relevant
feature variables. Data sets often contain more variables than are strictly necessary for
the classification task at hand and the more or less redundant variables could result
in an undesirable bias [8]. A feature-selection method carefully selects, from the data
set, the variables that serve to improve the model’s quality the most. For this purpose,
various methods exist [9]. Here, we focus on the so-called wrapper approach to feature
selection and assume that a greedy forward-selection method is used for choosing the
feature variables to be included. In this approach, feature variables are iteratively added
to an initially empty model until its quality given the data no longer increases.

Bayesian network classifiers use Bayes’ rule for establishing the posterior probability
distribution Pr(Y | X) over their class variable:

Pr(Y | X) =
Pr(Y,X)
Pr(X)

=
Pr(X | Y ) ·Pr(Y )

∑y′ Pr(X | y′) ·Pr(y′)

The actual classification amounts to assigning an instance x′, for a (sub)set of feature
variables X′ ⊆ X, to a particular class, based upon the posterior distribution computed
for the instance. The decision rule that is commonly used for this purpose is the winner-
takes-all rule which, for a binary class variable, amounts to assigning the instance to
the class whose posterior probability exceeds the threshold probability of 0.5.

To conclude, if the performance of the constructed model is evaluated against the
same data set as that from which the model is learned, its performance will tend to be
overestimated as a result of overfitting the model to the data. To correct for this effect
of overfitting and to estimate the model’s performance on unseen data, often ten-fold
cross validation is used.
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2.2 Logistic Regression

Logistic regression models are much more commonly used within the medical commu-
nity than Bayesian network classifiers, even though there are quite a number of simi-
larities between these types of model. A logistic regression model, like a Bayesian net-
work classifier, is a model over a class variable Y and a set of feature variables X. The
model captures the conditional probability distribution over the class variable directly
as a function of the feature variables Xi ∈ X. Logistic regression models also range
from simple models imposing a linear function on the feature variables, to more com-
plex models involving higher-order terms to describe interactions between the feature
variables. The first-order logistic regression model captures the conditional probabil-
ity distribution Pr(Y | X) in terms of a linear function of the feature variables Xi ∈ X
through

Pr(y | X) = (1 + exp(−β0 −∑i βi ·Xi))−1

in which βi denote the model’s parameters.
Logistic regression models are always constructed automatically from data. The log-

likelihood of the model given the available data then is maximised by obtaining appro-
priate estimates for the parameters βi. While for the parameters of a Bayesian network
classifier, a closed-formula solution exists, the optimisation problem involved in find-
ing the parameters for a logistic regression model does not have such a solution. The
parameter values therefore are established using an iterative method. As for Bayesian
network classifiers, furthermore, upon constructing a logistic regression model methods
for feature selection and for correcting for the effect of overfitting are applied.

A logistic regression model provides for directly computing the posterior probability
Pr(y | x) for the positive class value given an instance x, by filling in the appropriate
values for all the feature variables X. The decision rule used with the model again is
based upon a threshold for this posterior probability. The value of this decision thresh-
old is typically based upon knowledge of the consequences of the different types of
misclassification in the domain of application.

2.3 A Theoretical Comparison

Naive Bayesian classifiers and first-order logistic regression models essentially index
the same set of conditional probability distributions, in the sense that for any com-
bination of parameter values of a first-order logistic regression model there exists a
combination of parameter values for a naive Bayesian classifier that describes the same
distribution Pr(Y | X), and vice versa (provided that Pr(Y,X) is strictly positive) [11].
Yet, given a particular data set, naive Bayesian classification and logistic regression will
typically not result in the same estimated distribution ̂Pr(Y | X), because the parame-
ter values for the Bayesian network classifier are chosen so as to maximise the log-
likelihood of the joint probability distribution over the variables whereas the parameter
values for the logistic regression model are chosen so as to optimise the log-likelihood
of the conditional distribution. If in learning a naive Bayesian classifier, its parameter
values are computed iteratively so as to maximise the log-likelihood of the conditional
distribution, called discriminative learning, the resulting model would in essence cap-
ture the same distribution as the first-order logistic regression model.
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Several researchers have argued that discriminative learning is more appropriate for
classification purposes than generative learning in which the log-likelihood of the joint
distribution is maximised, since we are interested in predicting the class for a given
instance and not in their joint probability [4]. Others, however, argue that such a con-
clusion may be premature [12]. For models fitted to infinite data sets, the asymptotic
classification accuracy of a first-order logistic regression model is never smaller than
that of a naive Bayesian classifier. This basically implies that given a large enough data
set the naive Bayesian classifier will not outperform the first-order logistic regression
model. The regression model would typically do better when the independence assump-
tion underlying the naive Bayesian classifier does not hold in the data set, that is, when
there are strong associations among the feature variables [1]. On the other hand, al-
though naive Bayesian classification asymptotically converges to a lower accuracy, it
does so significantly faster than logistic regression. For smaller data sets, therefore,
naive Bayesian classifiers can be expected to outperform first-order logistic regression
models, as has been largely confirmed experimentally [12].

Similar observations hold for TAN classifiers on the one hand and logistic regression
models with interaction terms for pairs of feature variables on the other hand. The ob-
servations cannot be extended, however, to Bayesian network classifiers involving more
complex dependency structures over their feature variables. Such Bayesian network
classifiers index essentially different sets of conditional probability distributions than
logistic regression models with higher-order interaction terms and as a consequence
may theoretically as well as effectively outperform any such regression model.

3 The Medical Context

In this section we describe the concepts of clinical performance relevant for our case
study of aligning Bayesian network classifiers with a medical context. We further briefly
introduce the domain of reproductive medicine in which we conducted the case study,
together with the data set and logistic regression model that we had available.

3.1 Clinical Performance

Stochastic classification models in medicine are often evaluated using concepts of clin-
ical relevance such as the area under the ROC curve and the model’s sensitivity and
specificity characteristics. Given the importance of these concepts for aligning Bayesian
network classifiers with medical contexts, we briefly review them.

A Receiver Operator Characteristic, or ROC, curve visualises the performance of a
classification model by plotting its sensitivity against one minus its specificity for all
possible values of the decision threshold t for the model’s decision rule; some exam-
ple ROC curves are shown in Fig. 1. The decision threshold serves for classifying an
instance x as belonging to class y only if the posterior probability Pr(y | x) computed
for the instance is at or above the threshold. Given this threshold, the classification
model has an associated sensitivity and specificity. The sensitivity of the model is the
probability that it correctly classifies a positive instance, that is, it is the percentage of
positive instances x+ for which the classifier predicts that Pr(y | x+) ≥ t. The model’s
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Fig. 1. ROC curves for the logistic regression model (dashed) and the naive Bayesian network
classifier (solid) with four variables each (prior to correction for overfitting)

specificity is the probability that it correctly classifies a negative instance, that is, it is
the percentage of negative instances x− for which Pr(y | x−) < t is predicted.

The area under the ROC curve, or AUC, in essence measures the ability of a classifi-
cation model to discriminate between distinct classes [5]. More specifically, it captures
the probability that a randomly chosen positive instance x+ and a random negative in-
stance x− are correctly ranked, that is, it is the percentage of such pairs of instances for
which the classifier predicts that Pr(y | x+) > Pr(y | x−). The area under the curve is not
related to a particular threshold, but gives an indication of a classifier’s quality averaged
over all possible decision thresholds for assigning an instance to a particular class. In
view of a fixed decision threshold, the quality of the model is captured by a single point
on the ROC curve, which implies a specific sensitivity and specificity. The area under
the curve may then no longer be an appropriate indication of the model’s performance.

3.2 In Vitro Fertilisation

In vitro fertilisation, or IVF, is an assisted reproductive technique of embryo transfer
used to help infertile couples conceive a child. There are many factors that determine
whether or not IVF treatment results in an ongoing pregnancy, which include the age
of the patient, the quality of the embryo, and the receptivity of the patient’s uterus.
To increase the probability of pregnancy, it used to be common practice for IVF pro-
grammes to transfer multiple embryos. With the increasing success of the treatment,
however, multiple embryo transfer involves an increased risk of multiple pregnancy,
associated with pregnancy loss, obstetrical complications, prematurity, and neonatal
morbidity with long term damage. As a means of forestalling the risks associated with
multiple pregnancy, single embryo transfer is now being used. Applying single em-
bryo transfer without any selection based on patient characteristics and embryo quality,
however, has been shown to lead to a reduced probability of pregnancy per transfer. A
patient may then need to undergo multiple treatments for a pregnancy to persist.
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Multiple treatments involve additional costs as well as physical and emotional discom-
fort for the patient. To guide appropriate use of single embryo transfer, therefore, a
patient-specific assessment of the expected result of the transfer should be made.

In a recent study, a prognostic model was developed for establishing the probability
of an ongoing pregnancy after single embryo transfer [15]. The data used for construct-
ing this logistic regression model were derived from a randomised controlled trial on
the effectiveness of in vitro fertilisation, in which 201 women with an indication for
IVF treatment were randomised to a mild stimulation protocol [6]. For constructing the
model, a subset of these data was composed, including only the data from women with
at least two embryos suitable for transfer. The resulting data set included the data of
152 women who underwent single embryo transfer; in 42 of these women (28%), the
treatment resulted in an ongoing pregnancy.

In the data set, patient characteristics, treatment details, and embryo-quality related
factors are recorded. The feature variables include such patient characteristics as fe-
male age, previous pregnancy, cause and duration of infertility, and body mass
index. Further independent variables are related to the treatment and include the num-
ber of dominant follicles, the number of oocytes retrieved, the proportion of fertilised
oocytes, the duration of the stimulation, the amount of administered recFSH per re-
trieved oocyte, and endometrial thickness. The remaining feature variables are related
to embryo quality and include the grade of fragmentation, whether there was a top-
quality embryo available for transfer, and whether there were embryos available for
cryopreservation. The number of independent variables equals 17, of which 11 vari-
ables are continuous, 3 are binary, and 3 are multi-categorical. For two of the vari-
ables, data were not complete, with 4% and 6% of the values missing, respectively.
For these variables, single imputation was used by filling in the predictive mean af-
ter regression on all other variables. The variable designated as the class variable
in the data set captures whether or not single embryo transfer results in an ongoing
pregnancy.

We now briefly review the performance characteristics of the first-order logistic re-
gression model constructed from the data. The model includes four feature variables,
which was imposed as the maximum number of variables to be included. The variables
of the model are the patient’s body-mass index, the total amount of administered fol-
licle stimulating hormone, the number of retrieved oocytes, and whether there was a
top-quality embryo available for transfer. The ROC curve for the model is shown in
Figure 1; its area under the curve equals 0.68, or 0.60 after correcting for the effects of
overfitting. Using a decision threshold of 0.2, the model has a sensitivity of 0.90, or 0.86
after correction, and a specificity of 0.37, or 0.14 after correction. These characteristics
are summarised in Tables 1 and 2.

Table 1. Performance characteristics of the first-order logistic regression model and of the naive
Bayesian network classifier, with four selected variables each

AUC (corrected) sensitivity (corrected) specificity (corrected)

logistic regression model 0.68 (0.60) 0.90 (0.86) 0.37 (0.14)
naive Bayesian classifier 0.85 (0.58) 0.95 (0.66) 0.55 (0.50)
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Table 2. The variables included in the first-order logistic regression model and in the naive
Bayesian network classifier with four selected variables each

logistic regression model naive Bayesian classifier

– duration of infertility (discretised)
number of retrieved oocytes number of retrieved oocytes (discretised)
top-quality embryo available top-quality embryo available
– endometrial thickness (discretised)
administered follicle stimulating hormone –
body-mass index –

4 Aligning Bayesian Network Classifiers

We recall that building stochastic classification models involves selecting a subset of
the available feature variables; this subset is often construed using a greedy forward-
selection approach, in which feature variables are iteratively added to an initially empty
model until its performance no longer increases. Upon constructing a Bayesian network
classifier, performance is often measured by classification accuracy, which refers to the
percentage of correctly classified instances. In this section, we argue why classification
accuracy is an unacceptable measure of performance in our application domain and
show how concepts of clinical relevance can instead be used for this purpose.

4.1 Classification Accuracy and Its Problems

The measure of classification accuracy refers to the probability of correctly classifying
an arbitrary instance x of the feature variables involved, where x is considered correctly
classified if the class y′ assigned to x corresponds to its true class value y∗. We recall
that the assignment of a class value depends upon the threshold value t that is used
with the classifier’s decision rule: an instance x is assigned to the class y′ whenever
Pr(y′ | x) ≥ t. Alternatively, a classifier’s accuracy can be interpreted as the percentage
of randomly chosen pairs of a positive instance x+ and a negative instance x−, for
which Pr(y | x+) ≥ t and Pr(ȳ | x−) ≥ t. The winner-takes-all decision rule commonly
employed by Bayesian network classifiers implies a decision threshold of t = 0.5.

While the measure of classification accuracy is widely used within the Bayesian
network community, it is hardly ever used with logistic regression models in medical
contexts. To elaborate on why classification accuracy often is inappropriate for measur-
ing performance in medicine, we begin by observing that the accuracy of a classifier
is highly dependent upon the threshold value that is used with the classifier’s decision
rule. If instances x are assigned to a class y′ whenever Pr(y′ | x) ≥ t, then changing the
value of the threshold t will change the number of instances assigned to class y′. As
a result, the sensitivity and specificity characteristics of the classifier also change. By
writing classification accuracy as a function of the decision threshold t:

accuracy(t) = sensitivity(t) · p(y)+ specificity(t) · p(ȳ)
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two problems of using it as a performance measure become apparent [2]. The first prob-
lem is that its dependence on the choice of decision threshold makes classification ac-
curacy an inappropriate measure of performance in general. In fact, the threshold of
t = 0.5 that is implied by the winner-takes-all rule is defendable only if the prior distri-
bution of the class variable is close to uniform. In our domain of in vitro fertilisation for
example, this property does not hold: single embryo transfer results in an ongoing preg-
nancy in just 28% of the patients. For this reason, the smaller decision threshold of 0.20
for predicting ongoing pregnancy was chosen for the logistic regression model. Since
the decision threshold generally is not a parameter of the learning process, it is ques-
tionable whether feature selection based upon classification accuracy as a performance
measure would result in an acceptable model. Note that this particular problem of the
measure of classification accuracy is just technical and could be resolved by fitting the
choice of decision threshold to the prior class distribution [7].

The second problem of using classification accuracy as a measure of performance is
that it assigns fixed importance weights to the sensitivity and the specificity of a model.
Dictated by the prior probability distribution Pr(Y ) over the class variable, it assigns
fixed weights to the costs of the two types of misclassification. A uniform class dis-
tribution, for example, entails that the costs of misclassification are independent of the
predicted class. For many medical contexts, however, the consequences of false pos-
itive errors may be very different from those of false negative errors. Moreover, for
non-uniform priors, either the sensitivity or the specificity is automatically weighted
more heavily by the measure of accuracy, independent of any medical considerations.
In our domain of in vitro fertilisation, for example, the prior distribution over the class
variable would assign a higher weight to the model’s specificity, that is, to correctly
predicting non-implantation, than to the sensitivity, that is, to predicting an ongoing
pregnancy upon transferring a single embryo. Experts in reproductive medicine indi-
cate however, that the consequences of acting upon a false negative prediction are more
severe than those for false positive predictions. A high sensitivity therefore is consid-
ered more important than a high specificity. This second problem may very well be the
reason why classification accuracy is not used as a measure of performance for logistic
regression models in medicine.

The inappropriateness of classification accuracy as a performance measure has been
recognised in other domains as well. In the machine learning community, the area un-
der the ROC curve is being used already for some time now as a measure both for
comparing classifiers and for constructing them. Since the area under the curve is not
dependent on the decision threshold chosen and is invariant to the prior distribution over
the class variable, it is more generally applicable as a performance measure for classi-
fication models than classification accuracy. In fact, it has been shown that Bayesian
network classifiers constructed to maximise AUC, provide better ranking and proba-
bility estimates for the instances to be classified, and in addition even score better on
classification accuracy than those optimised for that purpose [10].

4.2 Clinical Alignment

Bayesian network classifiers will only become an accepted alternative to logistic regres-
sion models in medicine, if their quality is at least comparable and is communicated in
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terms of clinical relevance. Although this observation does not necessarily affect the
process of constructing Bayesian network classifiers, it has been recognised that if clas-
sifiers are evaluated using some quality measure, then it makes sense to optimise that
very measure during automated construction. For this purpose, measures of clinical rel-
evance have to be incorporated in the learning process of Bayesian network classifiers.

Upon learning Bayesian network classifiers from data, the area under the curve can
be readily included in a greedy forward-selection approach to feature selection. We re-
call that, with this approach, feature variables are iteratively added to an initially empty
model until its performance no longer increases. When using classification accuracy
as a performance measure, in each iteration, for each (remaining) feature variable, the
increase it incurs in the classifier’s accuracy is computed, using the decision threshold
of 0.5 of the winner-takes-all rule. When using the area under the curve for the opti-
misation criterion instead, we have to compute for each feature variable the increase
it incurs in the classifier’s AUC. To this end, for each feature variable, the sensitivity
sensitivity(t) and the specificity specificity(t) of the classifier, for n different values of
the decision threshold t between zero and one, are determined. Note that for establish-
ing these n points of the ROC curve, we have to compute the posterior distribution over
the class variable only once. From the n points thus obtained, the area under the curve
can be approximated by constructing trapezoids under the curve between every two
consecutive points. It is readily shown that this approximation equals

1
2 · ∑

i=1,...,n−1

(

sensitivity(ti)+ sensitivity(ti+1)
)

·
(

specificity(ti+1)− specificity(ti)
)

where ti is the decision threshold that resulted in the ith sensitivity-specificity pair. We
then select for inclusion in the classifier, the feature variable that results in the largest
increase in AUC, if any.

5 Experimental Results

Our first step into building a Bayesian network classifier for the domain of reproductive
medicine has been to learn a collection of naive Bayesian classifiers from the avail-
able data. Based upon the theoretical results reviewed in Section 2, we could expect
similar performance of the naive Bayesian classifier and the logistic regression model
constructed from the data. In fact, since our data set is relatively small, we could even
expect slightly better performance of the classifier. We used our Dazzle toolbox [13], for
constructing various naive Bayesian classifiers. Before doing so, we had to discretise the
continuous variables from the data set. For this purpose, knowledge was elicited from
the domain experts who had been involved in the collection of the data. We would like
to note that, since discretisation was done based purely on domain knowledge and was
not aimed at optimising classifier performance, the resulting discretisation might not be
the best situated for our classifiers. For the purpose of feature selection, we employed
the greedy forward-selection approach outlined above, using the area under the curve
for our optimisation criterion. In this section, we review the results that we obtained.
For each constructed model, we report the area under the curve, as well as the sensitivity
and specificity characteristics that result from using a decision threshold of 0.2 on the
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entire data set; we further report corrected performance characteristics obtained using
ten-fold cross validation.

To allow for comparing the performance of the first-order logistic regression model
constructed from the available data with that of our naive Bayesian classifiers in detail,
we decided to construct classifiers with different numbers of feature variables. With a
maximum of four variables, as was imposed on the regression model, the constructed
naive Bayesian classifier includes the feature variables modelling the duration of the
infertility, the number of retrieved oocytes, endometrial thickness and whether there
was a top-quality embryo available for transfer. The area under the curve of this classi-
fier equals 0.85, or 0.58 after correcting for the effects of overfitting. Using a decision
threshold of 0.2, the classifier has a sensitivity of 0.95, or 0.66 after correction, and
a specificity of 0.58, or 0.50 after correction. These characteristics are summarised in
Tables 1 and 2. By comparing the characteristics after correction of the naive Bayesian
classifier with those of the first-order logistic regression model, we find that the differ-
ences between their area under curve and their sensitivities are not significant; the speci-
ficity of the naive Bayesian classifier, however, is significantly higher than that of the
regression model (using a Student t distribution with a significance level of α = 0.05).

In addition to the naive Bayesian classifier with four variables, we constructed classi-
fiers with fewer and with more variables. The results from all constructed classifiers are
summarised in Table 3. With the restriction of a single feature variable, the constructed
classifier includes just the duration of the infertility: the addition of this variable is found
to increase the area under the curve of the initially empty classifier the most. When al-
lowed a second feature variable, the learning algorithm includes the number of retrieved
oocytes in addition to the duration of the infertility in the classifier. The feature variables
modelling endometrial thickness and whether there was a top-quality embryo available
for transfer are included as the third and fourth variable respectively. The fifth feature
variable included in the model is the total amount of administered follicle stimulating
hormone. If the inclusion of feature variables is continued until the classifier’s area un-
der the curve no longer increases, a total of eight variables is included. In addition to the
five variables mentioned above, also the feature variables modelling the grade of frag-
mentation of the embryo, the number of normally fertilised oocytes, and the patient’s
age are included. The remaining variables are not included into the classifier since they
in fact serve to decrease the classifier’s area under the curve.

We note that upon constructing a naive Bayesian classifier, the contribution of each
feature variable to the area under the curve is studied in view of the entire data set. The
uncorrected AUC values reported in Table 3 therefore are the values used upon con-
structing the model. While the classifier’s area under the curve keeps increasing upon
including a fourth and even further feature variables when the full data set is consid-
ered, the values that have been corrected for the effects of overfitting, also reported in
Table 3, reveal a decrease in the expected area under the curve on unseen data. These
observations support the conclusion that for our small data set selecting four or more
feature variables would result in a naive Bayesian classifier that is overfitted to the data.

When comparing the performance characteristics of the various constructed naive
Bayesian classifiers, especially the corrected values for the area under the curve and the
sensitivity suggest that the best classifier is the one that includes three feature variables.
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Table 3. Characteristics of naive Bayesian network classifiers with different numbers of variables

# variables AUC (corrected) sensitivity (corrected) specificity (corrected)

0 0.50 (0.50) 1.00 (1.00) 0 (0)
1 0.69 (0.53) 0.93 (0.80) 0.31 (0.22)
2 0.76 (0.63) 0.93 (0.78) 0.45 (0.35)
3 0.80 (0.65) 0.90 (0.80) 0.55 (0.46)
4 0.85 (0.58) 0.95 (0.66) 0.58 (0.50)
5 0.86 (0.56) 0.93 (0.65) 0.63 (0.51)
8 0.89 (0.56) 0.95 (0.57) 0.67 (0.52)

Upon comparing the characteristics of this model with those of the first-order logistic
regression model constructed from the data, we find that the differences between their
area under curve and their sensitivity are not significant; the specificity of the naive
Bayesian classifier, however, again is significantly larger than that of the regression
model (using a Student t distribution with a significance level of α = 0.10).

To conclude, we would like to illustrate the inappropriateness of using classification
accuracy for measuring performance for our domain of application. We constructed yet
another naive Bayesian network classifier from our data set with a maximum of four
feature variables; for this classifier we used accuracy for the optimisation criterion. The
corrected area under the curve of the classifier is 0.54. With the winner-takes-all rule,
the corrected sensitivity is 0.13; the corrected specificity equals 0.84. We recall from
Section 4 that experts in reproductive medicine indicate that a high sensitivity is more
important than a high specificity. From this observation, we conclude that this accuracy-
based classifier would not exhibit medically acceptable performance as a consequence
of its low sensitivity.

6 Concluding Observations

While for many problems in medicine classification models are being developed,
Bayesian network classifiers do not seem to have become as widely accepted within
the medical community as logistic regression models. The advantages of Bayesian net-
works classifiers over logistic regression models in terms of a graphical representation,
their ability to classify in the context of missing input values, and the possibility to
model any dependence structure among their variables, in themselves clearly are not
sufficient to gain acceptance in the medical community. To advance Bayesian network
classifiers as alternatives to logistic regression models, we feel that it is important that
comparison between the two types of model can be done in terms familiar to the medi-
cal community. In the medical domain, concepts of clinical relevance are used, such as
the area under the curve and a model’s sensitivity and specificity. We have argued that
for Bayesian network classifiers to become more widely accepted, they should be better
aligned with their medical contexts and use these concepts of clinical relevance.

Given an infinite data set and optimising accuracy, a naive Bayesian classifier can-
not outperform a logistic regression model. Comparing a previously constructed re-
gression model with a naive Bayesian network classifier for the problem of selecting
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patients for single embryo transfer in reproductive medicine, we found that even for a
small data set the naive Bayesian classifier can be outperformed by far by the logis-
tic regression model, that is, if the former is constructed using classification accuracy
as a performance measure. We have argued, however, that classification accuracy may
not be appropriate for measuring performance in the medical domain. Serious prob-
lems are associated with using the measure for non-uniform distributions over the class
variable and for unequal cost distributions over the different types of misclassification,
which may in fact give rise to classification models of unacceptable medical behaviour.
We have shown that concepts of clinical relevance can be readily taken into account
upon constructing naive Bayesian classifiers from data. For our relatively small data set
in reproductive medicine, we have shown that by doing so, naive Bayesian classifiers
can result that exhibit at least comparable behaviour to logistic regression models. The
promising results from aligning the simplest type of Bayesian network classifier to its
medical context, have made at least our medical experts enthusiastic.
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