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Abstract

Forecasting scores, such as the Brier score, are used to assess the quality
of a forecaster. It was demonstrated previously that the Brier score can
be successfully applied to establish the forecasting quality of a Bayesian
network. Existing forecasting scores, including the Brier score, assume that
the eventual outcome of a predicted event can be observed with certainty.
In practice, however, there is often uncertainty as to what the truth is. We
propose a new score which takes this additional uncertainty into account.

1 Introduction

A Bayesian network is a compact representation of a joint probability distribution
over a set of statistical variables [2], which enables efficient computation of prior
and posterior distributions for any variable of interest. In various domains, the
results of such network computations can be regarded as probabilistic forecasts for
the variable of interest. Bayesian networks can thus be considered probabilistic
forecasters and forecast verification methods can be used to assess the quality of
their forecasts. In fact, in the context of Bayesian networks the use of the Brier
score was previously illustrated [1].

Measures for assessing forecasting quality exist for both deterministic and prob-
abilistic forecasts, both for discrete (binary and multi-valued) and for continuous
events. The quality of probabilistic forecasts for discrete events is usually mea-
sured by a scoring rule, such as the Brier score [3, 4]. Existing scoring rules assume
that a forecast for an event is followed by a subsequent observation of the true
outcome of the event. In practice, however, this true outcome generally results
from observations which may be erroneous or an uncertain indication of the truth.
Consider, for example, a prognosis of the progression of a patient’s disease, which
can only be monitored using tests and not truly verified until after the patient’s
death; the results from these tests are typically uncertain. Current scoring rules
ignore such uncertainty, under the assumption that the uncertainty in the observa-
tion is much smaller than the expected uncertainty in the forecast. To the best of
our knowledge, no forecast verification methods exist that take uncertainty about
the truth of the observation into account.

In this paper we present a preliminary definition of a scoring rule for forecasters
that probabilistically predict events that are not observable without some uncer-
tainty. The new scoring rule is a generalisation of the Brier score. In Section 2 we



review the Brier score, followed by the introduction of our new score in Section 3.
In Section 4 we compare our score to the Brier score; we present some conclusions
and directions for further research in Section 5.

2 The Brier score

In the remainder of this paper we will use the term forecaster to refer to a Bayesian
network, a human forecaster, or any other system that produces a discrete proba-
bility distribution for some variable of interest.

Consider a forecaster which provides m ≥ 1 probability distributions, or fore-
casts, for a variable C with n ≥ 2 possible outcomes c1, . . . cn. Let fk(C) repre-
sent the probability distribution of the kth forecast. In forecast verification, it is
assumed that each forecast is eventually followed by an observation of the true
outcome for the variable of interest. The true outcome of C following forecast k

is captured by an outcome indicator sk(i), i = 1, . . . , n, such that

sk(i) =

{

1 ⇐⇒ ci is the true outcome corresponding to forecast k

0 ⇐⇒ ci is not the true outcome for forecast k

The Brier score B now is the average value of the squared error between forecast
and outcome for variable C over m sequential forecasts [3]

B =
1

m

m
∑

k=1

n
∑

i=1

(

fk(ci) − sk(i)
)2

The lowest score is obtained iff, for all i and k, fk(ci) = sk(i); that is, the best
score B⊤ is obtained for a correct deterministic forecast B⊤ = (1− 1)2 + (n− 1) ·
(0 − 0)2 = 0. The worst score B⊥ results from an incorrect deterministic forecast
B⊥ = (1 − 0)2 + (0 − 1)2 + (n − 2) · (0 − 0)2 = 2. The Brier score is a strictly
proper scoring rule, awarding the forecaster for stating what it believes: a (strictly)
proper scoring rule (uniquely) optimises the expected score if the forecaster states
forecasts that match its subjective probabilities for the outcomes of the variable
of interest. Not all scoring rules are proper [4].

The Brier score is most easily computed without explicit use of the outcome
indicator; let ct be the observed true outcome of variable C following forecast
fk(C), that is, sk(t) = 1, then the Brier score for the k-th forecast can be computed
from the following equivalence

n
∑

i=1

(

fk(ci)−sk(i)
)2

=
(

fk(ct)−1
)2

+
∑

i 6=t

(

fk(ci)−0
)2

= 1−2fk(ct)+

n
∑

i=1

fk(ci)
2

Note that the last term can already be computed before knowing the outcome that
follows the forecast. From here on we will often consider a only single forecast and
drop the subscript k if no confusion is possible.



3 A new score

The Brier score, like all forecasting scores, builds upon the idea that the quality
of a forecaster can be established from some relation between prediction and true
outcome. This true outcome generally results from observations, which may be
erroneous or an uncertain indication of the truth. Current scoring rules ignore
such uncertainty. In this section we propose a new score that also allows for
taking uncertainty about the truth into account. We identify the benefits and
drawbacks and compare results from both this new score and the Brier score.

3.1 Forming a definition

In this section, we work our way towards a definition for a new scoring rule. We
take the Brier score as a point of departure, because the Brier score is a (strictly)
proper scoring rule with a finite range of possible values; that is, unlike some
scores, the Brier score never assigns an infinite penalty to an incorrect deterministic
forecast.

As an example, consider a forecaster who presents a forecast f(c1), f(c2) for a
binary variable C with values c1 and c2. Assume that the true outcome of variable
C can only be observed indirectly and that the possible values of these indirect
observations are captured by variable O with w values o1,. . . , ow. Let the set
of conditional probability distributions Pr(C | O) describe the relation between
observed and true values of the forecasted variable.

Now assume that the observed outcome following a given forecast is value ot

of variable O. If ot is an indication of the true value c1, then the prediction f(c1)
corresponds to a prediction for the true outcome. For the Brier score this would
mean that with a probability of Pr(c1 | ot) the term (f(c1) − 1)2 is included in
the score. On the other hand, with probability 1−Pr(c1 | ot) the same prediction
f(c1) corresponds to a prediction for an incorrect outcome, in which case the
term (f(c1) − 0)2 is included in the Brier score. Similarly, for prediction f(c2):
with probability Pr(c2 | ot) this is a prediction for the true outcome, and with
probability 1 − Pr(c2 | ot) it is a prediction of the incorrect outcome. To account
for the uncertainty regarding the true outcome following a forecast, we take all
four mentioned factors as ingredients of a new score S

S = p1t ·
(

f(c1) − 1
)2

+ (1 − p1t) ·
(

f(c1) − 0
)2

+

+ p2t ·
(

f(c2) − 1
)2

+ (1 − p2t) ·
(

f(c2) − 0
)2

=
∑

i=1,2

pit ·
(

f(ci) − 1
)2

+ (1 − pit) · f(ci)
2

=
∑

i=1,2

(

f(ci) − pit

)2
+ pit · (1 − pit)

where pit represents the probability Pr(ci | ot), i = 1, 2. The previous argument
lies at the basis of our new score.



3.2 Definition for a single forecast

Again consider the problem of assessing the quality of a forecaster. We assume
that a single probabilistic forecast is presented for a variable C with n possible
true outcomes, c1, . . . cn. These true outcomes can only be observed indirectly
and the possible values of the indirect observations are captured by variable O.
In the previous section, we assumed that variable O had w values; here we argue
that most often we will have that w = n: if variable O has more than n values,
then some of them should be grouped in order to be able to compare forecasts
and outcomes; if variable O has less than n values, then some of the categories of
C should be grouped in order to be able to compare a forecast and an outcome.
Here we indeed assume that w = n and that each oi is an (uncertain) indication
of ci, i = 1, . . . , n.

To establish the quality of a forecaster which forecasts a distribution for variable
C, where only values of variable O can be observed, we require a relationship be-
tween observation and truth. This relationship is modelled by a set of conditional
probability distributions Pr(C | O), where we write pij to denote the probability
Pr(ci | oj). We assume that we have estimates for the n · (n − 1) required proba-
bilities available, or are able to compute them from estimates such as Pr(O | C),
and Pr(C) or Pr(O). We again use an outcome indicator s(i), i = 1, . . . , n, which
now captures the observed outcome rather than the true outcome:

s(i) =

{

1 ⇐⇒ oi is the observed outcome corresponding to the forecast
0 ⇐⇒ oi is not the observed outcome for the forecast

The new score S for a single forecast is now given by the following formula

S =
n

∑

j=1

s(j) ·
n

∑

i=1

(

(

f(ci) − pij

)2
+ pij · (1 − pij)

)

This score can be also be computed without explicit use of the outcome in-
dicator: let ot be the observed value of variable O corresponding to the forecast
under consideration, that is, s(t) = 1, then the new score can be computed using
the equivalence

S =

n
∑

j=1

s(j) ·

n
∑

i=1

(

(

f(ci) − pij

)2
+ pij · (1 − pij)

)

= s(t) ·
n

∑

i=1

(

(

f(ci) − pit

)2
+ pit · (1 − pit)

)

+

+
∑

j 6=t

s(j) ·

n
∑

i=1

(

(

f(ci) − pij

)2
+ pij · (1 − pij)

)

= 1 ·

n
∑

i=1

(

(

f(ci) − pit

)2
+ pit · (1 − pit)

)

+ 0

Note that for a binary variable C (n = 2), this is exactly the formula established
in the previous section.



3.3 Properties of the single-forecast score

We argued earlier that the Brier score ranges from a best value of zero to a worst
value of two. The range of the new score depends on the values of Pr(C | O) and
should be normalised in order to facilitate the comparison of scores for different
forecasts and forecasters. Recall that for observed outcome ot of variable O, the
new score for a single forecast can be written as

S =
n

∑

i=1

(

f(ci) − pit

)2
+

n
∑

i=1

pit · (1 − pit)

where the last summation represents a constant not influenced by the forecast.
To receive a good score, a forecaster should therefore try to minimise, for each

i, the term
(

f(ci) − pit

)2
in such a way that it is ensured that

∑n

i=1
f(ci) = 1.

It is obvious that these terms are minimised whenever f(ci) = pit (note that
∑n

i=1
pit = 1). The best value S⊤ of the new score is therefore

S⊤ =

n
∑

i=1

pit · (1 − pit) = 1 −

n
∑

i=1

pit
2

From the fact that
∑n

i=1
pit

2 ≤
(
∑n

i=1
pit

)2
= 1 (all pits are non-negative), we

have that S⊤ is always in the interval [0, 1〉. Note that if the forecaster predicts a
probability of 1 for the value ct of C that is implied by the observed outcome ot

of O, then we get the following (higher = worse) score

S =
(

1 − ptt

)2
+

∑

i 6=t

(

0 − pit

)2
+

n
∑

i=1

pit · (1 − pit) = 2 · (1 − ptt)

A bad score is obtained for a forecaster who maximises

n
∑

i

(

f(ci) − pit

)2
=

n
∑

i

f(ci)
2 − 2 ·

n
∑

i

f(ci) · pit +
∑

i

pit
2

the last term of which the forecaster has no control over. The first term is max-
imised if

∑

i f(ci)
2 = 1, which is only achieved by assigning a probability of 1 to

a single ci and zero to all other cj , j 6= i. The second term should be minimised,
which is achieved by assigning a probability of 1 to that value cr of C for which
Pr(cr | ot) has the smallest value in the Pr(C | ot) distribution, and zero to all
other cj , j 6= r. The worst possible score S⊥ then corresponds to a deterministic
forecast and becomes

S⊥ =
(

1 − prt

)2
+

∑

i 6=r

(

0 − pit

)2
+

n
∑

i=1

pit · (1 − pit) = 2 · (1 − prt) ≤ 2

The new score is not a proper scoring rule, since the best expected score is
obtained using a strategy in which the forecaster presents forecasts that match
Pr(C | ot) rather than its (subjective) beliefs concerning the outcomes of the



variable of interest. This can be considered a drawback of the score, but a number
of arguments can be given to support the score. First of all, the use of a non-
proper scoring rule does not imply that a forecaster can easily obtain a good
score. For one thing, the forecaster obviously does not know in advance what
the observed outcome will be, and therefore will not know which Pr(C | oi) to
predict. In addition, the forecaster may not be aware that its forecasts are verified,
and if it is, may not know which scoring rule is used; without this knowledge
the forecaster cannot choose a clever strategy with the sole purpose of getting
a good score. Especially non-human forecasters will be unaware of verification
and the methods used. Secondly, although the new score punishes forecasters
for predictions more extreme than the Pr(C | ot) distribution, the uncertainty
inherent in the observations allows us no way to verify if the forecaster is right in
being so sure of itself.

3.4 Definition for multiple forecasts

In the previous section we demonstrated that the range of the new score for a
single forecast depends on the distribution Pr(C | ot) and thus on the outcome
corresponding to the forecast. Therefore, the range of the score may differ from
forecast to forecast. In order to compare different forecasts and forecasters and,
especially, to compute an average score over m forecasts, we normalise for each
forecast k the single-forecast score Sk to the score Ŝk. Let ok

t denote the observed
value of variable O corresponding to forecast k, that is, sk(t) = 1; let pk

it = Pr(ci |
ok

t ), and let S⊤
k and S⊥

k denote the best and worst values, respectively, of the score
Sk for forecast k, then

Ŝk = 2 ·
Sk − S⊤

k

S⊥
k − S⊤

k

= 2 ·

∑

i

(

fk(ci) − pk
it

)2

1 − 2pk
rt +

∑

i

(

pk
it

)2

where pk
rt = min

i
{Pr(ci | ok

t )}. Note that we assume all forecasted events to

be independent; for the k-th forecast, 1 < k ≤ m, however, we can also consider
fk(C | o1

t . . . ok−1

t ) and Pr(C | o1

t . . . ok
t ) instead. The new score for m ≥ 1 forecasts

now ranges from zero (best value) to two and is given by

S =
1

m

m
∑

k=1

Ŝk

4 The new score versus the Brier score

The new score is inspired by the Brier score and is in fact a generalisation of the
Brier score for uncertain observations concerning the truth. This implies that if
there is no uncertainty in our observations, that is, if Pr(ci | oi) = 1 for all i and
Pr(ci | oj) = 0 for all i 6= j, then our new score is equivalent to the Brier score. To
demonstrate this, consider again a single forecast upon which value ot is observed



for variable O. Then,

S = 1 ·

n
∑

i=1

(

(

f(ci) − pit

)2
+ pit · (1 − pit)

)

+ 0

=
(

f(ct) − ptt

)2
+ ptt · (1 − ptt) +

∑

i 6=t

(

(

f(ci) − pit

)2
+ pit · (1 − pit)

)

=
(

f(ct) − 1
)2

+
∑

i 6=t

(

f(ci) − 0
)2

=

n
∑

i=1

(

f(ci) − s(i)
)2

As the best and worst possible scores are now independent of the forecast under
consideration, normalisation is not required and the score for m forecasts reduces
to the Brier score over m forecasts as well.

We present a few examples to investigate when the new score and the Brier score
differ and in what way. We consider five (different) forecasters Fi, i = 1 . . . , 5,
which all provide a forecast for a variable C with two possible true outcomes c1

and c2. We assume that outcomes c1 and c2 can only be observed with some
uncertainty through outcomes o1 and o2, respectively. Consider the forecasts and
probability distributions shown in Table 1. Note that each of the forecasters
predicts c1 as the more likely value of C and hence expects to observe o1.

We now compare the Brier score B and the new score S for m = 1 forecasts for
all forecasters and both outcomes; these scores are shown in Table 1 (right). The
Brier score is computed under the assumption that o1 corresponds to c1 and o2

to c2; the uncertainty in the observations is thereby disregarded. From the table,
we can make a number of observations. Firstly, a uniform forecast (F1) results in
equal Brier scores for all outcomes, but not in equal S scores. The scores with the
new score are in fact better, because less extreme scores are rewarded given the
uncertainty in the observations. For a deterministic forecast (F5) we observe the
opposite: a forecast more extreme than Pr(c1 | o1) is considered perfect using the
Brier score, but is punished for possible overconfidence using the new score.

The Brier scores given different outcomes almost display the behaviour of com-
municating vessels: if one goes up, the other goes down. The S scores show a very
different pattern: scores given outcome o1 decrease until the prediction corresponds
to Pr(c1 | o1) and then increase again; for outcome o2 the decreasing predictions

Pr(C | O) o1 o2

c1 0.80 0.10
c2 0.20 0.90

∑

i pij
2 0.68 0.82

forecast
f(c1) f(c2)

F1: 0.50 0.50
F2: 0.75 0.25
F3: 0.80 0.20
F4: 0.90 0.10
F5: 1.00 0.00

o1 o2

B S B S

0.50 0.28 0.50 0.40
0.13 0.18 1.13 1.04
0.08 0.00 1.28 1.21
0.02 0.03 1.62 1.58
0.00 0.13 2.00 2.00

Table 1: (left) Distribution Pr(C | O). (right) Forecasts with their Brier score B

and new score S, per outcome.



result in increasing scores. In essence, however, both scores basically display the
same behaviour, in that the closer the assessment f(ci) is to Pr(ci | ot) (either 1
or 0 for the Brier score) the better the score for outcome ot is.

5 Conclusions and further research

In this paper we proposed a new scoring rule for assessing the quality of probabilis-
tic forecasters in situations in which there is uncertainty concerning the subsequent
observations. The new score requires knowledge of the actual uncertainty in the
observations, which is information that is often available. In medical domains, for
example, test-characteristics and incidence rates provide the ingredients necessary
for establishing the required probability distributions.

The new score is based on the Brier score, but is no longer a proper scoring
rule. We argued that this is not necessarily a problem and that, for example for
extreme forecasters, it may well be unwished for to create a proper scoring rule
that takes the uncertainty in observations into account. Instead of basing a new
score on the Brier score, it is also possible to consider other existing scoring rules
such as, for example, the logarithmic score − log f(ct). Drawbacks of this latter
score are, however, that only the prediction of the outcome that subsequently
occurs is considered and not the entire forecast, and that a deterministic forecast
for the wrong outcome is punished with an infinitely large score.

We do not claim that our new score is the answer to the problem posed, but it
is at least a step in the right direction. It is possibly the combination of both Brier
score and new score that gives the most insight in the quality of a forecaster. Also,
decompositions of the new score, similar to those existing for the Brier score [5],
may be useful to this end. Further research is required to establish if the current
score can be improved upon.
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