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Abstract

Upon varying parameters in a sensitivity analysis of a Beyesetwork, the standard approach is
to co-vary the parameters from the same conditional digioh such that their proportions remain
the same. Alternative co-variation schemes are, howewsssiple. We theoretically investigate

the effects of using alternative co-variation schemes ensitrcalled sensitivity function, and

conclude that its general form remains the same under aggrlico-variation scheme. In addition,

we generalise the CD-distance for bounding global belieihge, and prove a tight lower bound
on this distance for parameter changes in single conditjmmdability tables.

1 Introduction on proportional co-variation, and the proportional
scheme is known to be optimal when varying a sin-

Sensitivity analysis is a general technique for study-gle parameter, in the sense that it minimises the CD-

ing the effects of parameter changes on the output adistance (Chan & Darwiche, 2005).

a mathematical model. In the context of Bayesian

networks the effect of changes, applied to one or It IS as ?f yﬁt unanO\_NT if '_[hs propgrtlonal scheme
more probabilities from the network’s conditional s optimal when multiple, independent parameters

probability tables, on computed probabilities is de- rom are varied. Moreover, we may not be in-

termined. The results can be captured in detalil b);erested in-minimising the CD-distance:  for ex-

means of asensitivity functiondescribing an out- ample, we ma)_/ bg mtereste_d In mlnlml_slpg.K_L-
put probability of interest in terms of one or more dIVergence, which is not equivalent to minimising

parameter probabilities. More global effects can peCD-distance (Chan & Darvviche, 2005); or we may
described by the€D-distance which is a measure want to perform our analyse_s in the context of _Iarge
for bounding probabilistic belief change and com-d'Sturbanﬁfsﬁ rat?er than ”!'”'ma' onels. rl]n th's pr?'
plements the sensitivity function by giving insight pher we wi _t (;re ore mve(;stlﬁate e>;e_1cty ovc\j/ ot q
in the effect of parameter changes on the global joinf & sensitivity function and the CD-distance depen

distribution, rather than on a specific (posterior) out-2" the co-variation scheme_ .u_sed. We S_hOW f[hat
put probability of interest. the general form of the sensitivity function is main-

Unpon varvin robability from nditional tained as long as the co-variation scheme is linear in
_-’bon varying a probabliity Trom a co onal e parameter(s) varied. In addition, we generalise
distribution, the remaining probabilities from the

S . the CD-distance to arbitrary co-variation schemes,
same distribution need to be co-varied. Tire- Y

. nd prove that a previously suggested approxima-
portional schemdnas been adopted as the standard. prove ¥ prev y sugg PP
ion of this distance is in fact a lower bound.

scheme for co-variation in Bayesian networks, an
various sensitivity analysis algorithms build upon This paper is organised as follows. Section 2 pro-
this scheme. The proportional co-variation schemevides preliminaries on sensitivity analysis and co-
is one of numerous alternatives for co-varying pa-variation. Section 3 generalises the sensitivity func-
rameters from the same distribution. The mere faction to arbitrary co-variation schemes; the conse-
that it is the standard co-variation scheme used, doeguences for computing the functions are discussed
not imply that there are no situations in which alter-in Section 4. Section 5 likewise generalises the CD-
native schemes are suitable. However, the knownlistance. The paper ends with conclusions and di-
standard form of the sensitivity function is basedrections for future research in Section 6.
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2 Preliminaries above mentioned proportional co-variation scheme,

. . ._the parameters§ k 1, get the same propor-
A Bayesian network compactly represents a joint P vgur # 1.9 brop

probability distributionPr over a set of stochastic gcr)igir?gllt;'e remaining mass af — z, as they had
variablesV (Jensen & Nielsen, 2007). It combines '

an acyclic directed grap&, that captures the vari- O u
ables and their dependencies as nodes and arcs reﬂZk|u = #
spectively, with conditional probability distributions vifu

Ov;=(v;) for each variablé/; and its parentst(V;) where¢* | is the new value of the parameter, and
in the graph, such thatr(V) = [[; O;jx(v;)- We Oy jus Qvf|u indicate the original values that were
will refer to Oy; (v;) as the conditional probability gpecified in the network. We typically assume that
table (CPT) oft’; entriest of © are called parame-  ,5ameters with an original value 6for 1 are not
ter probabilities, or parameters for short. Va”ablesvaried, so the above denominator is/in 1).

are denoted by capital letters and their values or in- The proportional scheme has been adopted as the

stantiations by lower case; bold face is used forsetsstandard scheme for co-variation in Bayesian net-

Probabilities computed from a Bayesian netWorkworks, and various sensitivity analysis algorithms

are affected by the inaccuracies in the network’s pag, jiiq upon this scheme (Chan & Darwiche (2002:
rameters. To investigate the extent of these eﬁectszoo 4, 2005) Coup & Van der Gaag (2002) '
a sensitivity analysis can be performed in WhiCthaerl;Iﬁ&Van der Gaag (2000)).  In fact the

n = 1 network parameters are varied simultane-y ., tional scheme minimises the CD-distance
ously and the effect on output probabilities of inter- between the new distributioBr* and the original
est are studied. The effects of suctwayparameter distribution Pr (Chan & Darwiche, 2005)

variation can be described Ipensitivity functions

Such a function isnultilinear in the varied param- 3 cg-variation in the Sensitivity Function

eters in case of a prior probability of interest, and

rational (quotient of two multilinear functions) in The proportional co-variation scheme, although

the posterior case (Coéap& Van der Gaag, 2002). standard, is merely one of many alternatives for co-

For example, the-way sensitivity functionfé(z)  varying parameters from the same distribution. In

describing the posterior probabilifyr(a | ) as a this section, we will take a fresh look at sensitivity

function of parameter is given by functions without restricting ourselves to a particu-
lar co-variation scheme.

(1 —x)

_ fae(T) _ax + ¢ )
fe(z)  diz+do 3.1 Co-variation schemes

with constants;, d;, i = 0, 1, built from non-varied  Consider &-valued variablé” and suppose we vary
network parameters. The general form of the sensia parameter from the distributicfhwu asz. Thet—
tivity function was established under the assumption; remaining parameters from this distribution must
of proportional co-variation (Castillo, Guéirrez &  co-vary; more specifically, each of these parameters

Hadi, 1997; Coup & Van der Gaag, 2002). should get a portion, or cut, of the remaining mass
Co-variation Consider a binary-valued variable 1 — x. We define a valid co-variation scheme based

V with valuesv andw, and parent configuratioa. on these cuts.
Sincel,|, + Opu = 1, f, we have that if),|,, varies,  Definition 1. Considerk > 1 parameterd;, from
031w should be co-varied to ensure that their sum rethe same distribution and leb < 1 be the to-
mains1. Therefore, ifg,, varies asr in a sensitiv-  tal probability mass available for these parameters.
ity analysis /5, should co-vary as — . A co-variation cuty : {0;} — [0,1] defines the
Now if V hast > 2 valueswy,...,v;, andz =  share of each parameté in m. A co-variation
0, u IS the parameter varied in a sensitivity analy-schemes(k) = ~v(k) - m now maps each, to a new
sis, then there are endless ways in which the paramsalue 6. A co-variation scheme is calleelid if
etersd,, ju, 1 < k <t can co-vary withe. Usingthe  », (k) = 1.

o ()
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From here on we will writey, rather thamy (k).  where

Note that a valid co-variation scheme ensures that , — Pr(w|vi, u)-Pr(u), § = Pr(w,a),
the entire distribution under consideration sums to "

(I =m)+ >, v-m = 1. The following example B = ZPT(W|% ) Pr(u) Yo fus

gives two valid co-variation schemes. k=2

Example 1. The standard proportional co-variation gnq ~, Ju- (1 — ), for all ¢
scheme, co-variation scheme.

1< k<t isa

vgu

Oy 5 Proof. First we rewritePr(w) to include the param-
Yopha (1= @) = T—=— forra (1-2) (2 eters under consideration:
Pr(w) = Pr(w,u)+ Pr(w,u)
is indeed valid:
= Pr(W u) + Pr(wlvy, u)-Pr(u)-0,, 1,

O 1-6

Z'Yvuu = Z = 1_ o _ 1 —I-ZPI" (Wlvg, u)-Pr(u)-0 v |u

k;ﬁl 9v1|u 9’(}1‘11

The proposmon now follows by replacing,, |, by
x and eachy,, |, by its value according to the co-
variation scheme. O

We can also think of other valid co-variation
schemes. Consider for example uamiform co-
variation scheme:

3.3 The generalisedi-way form

Yo (1 —2) = 7—=-(1 —z) (3)  Inthis section we consider the explicit simultaneous
variation ofn > 1 parameters from either a single

which uniformly distributes the remaining mass of distribution, or from an entire CPT. Taking param-
1 — z over thet — 1 co-varying parameters. This eters from multiple CPTs is also possible (Chan &

scheme is also valid: Darwiche, 2004; Kjeerulff & Van der Gaag, 2000).
Although our results extend to this latter case, it will
Z B 1 . 1).L _1 not be considered here: the approach is not often
Toglu t—1 1—t used in practice since it quickly becomes computa-

S h=2 u tionally infeasible.

The following proposition explicitly captures
how the general form of the-way sensitivity func-
In the remainder of this paper we focus on a probatjon for n parameters from a single distribution
bility of interestPr(w)?! as a function of a parameter Oy, depends on the co-variation scheme.

|9v1|u ?f at- Vallljed varlafbld/ In E?.S(dltl(;ﬂ without . hosition 2. Probability Pr(w) as a function of
0ss of generality, we often assurbieto have asin- "2 ciore O 1 < i < n, of t-valued

gle, binary-valued parerif with valuesu and. variableV, ¢ > n, is given by

The following proposition explicitly captures ' '
how the general form of thé-way sensitivity func- _ ATy Y4
tion depends on the co-variation scheme. Jwl@r,.sxn) Z(az B7) @i+ (87 +9)

3.2 The generalised -way form

Proposition 1. Probability Pr(w) as a function of where
r = 0,,), oft-valued variableV is given by a; = Pr(wlv, u)-Pr(u), § = Pr(w,a)

t
— (v — 3. Y
fwl@) = (a=F)2+ (57 +9) 87 = 3 Pr(wlog,w)-Pr(u) Y,
!Note from Equation 1 thdPr(w) is general enough to rep- k=n+l
resent any probability of interest. For exampla(a | e) = n
Pr(a, )/ Pr(e), where both numerator and denominator are ?nd %MU'(_l N Zizl x;), for all ka\u’ n<k<t
of the formPr(w). is a co-variation scheme.
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Proof. The proof is analogous to that of Proposi-
tion 1, with each9vi‘u, 1 < i < n, replaced byz;
and eachy,,,, n < k < t, replaced by its value
according to the co-variation scheme. O

Note that in the above case we need to ensur
thatZ?:1 x; < 1, which means we have to impose
an additional constraint on the sensitivity analysis.
For this reason, an-way analysis typically consid-
ers parameters from different distributions, often
constituting an entire CPT. That is, from a single
CPT Oy y, exactly one parameter for each condi-
tional distribution®©y,,, is varied, and all other pa-
rameters are co-varied (Chan & Darwiche, 2004).
For such single-CPT-way analyses, the follow-
ing proposition describes how the general form of
the sensitivity function depends on the co-variation
scheme.

Proposition 3. Probability Pr(w) as a function of
n parametersr; = 6,,|,,, 1 < j < n, oft-valued
variableV, is given by

n

fw(@1, ..., xn) = Z(aj —B])xi+ B
j=1
where
aj = Pr(wlvi, uj)-Pr(u;),
t
/6] = ZPT(W’Uk, uj)'Pr(uj)'vak\uﬁ

k=2
and%km]..(l xj), for all Ovplu;» 1 < k <t are
co-variation schemes.

Proof. The proof is analogous to that of Proposi-
tion 1, except that for each parent configuration
the termPr(w, u;) now depends on an; and its
co-varying parameters. O

3.4 Fixing parameters

of at-valued variabld/, ¢t > 3, a single parameter
0,ju Should remain unchanged.

Proposition 4. Probability Pr(w) as a function of
T = 0v1|u of t-valued variableV, ¢t > 3, with pa-
rameterd,,|, fixed, is given by

fw(@) = (a=pF7)-z+ (p-B7 +9)
where
a = Pr(wlv, u)-Pr(u),
) Pr(wlvg, u)-Pr(u)-0y,, + Pr(w, ),

t—1

g = ZPr(W|vk, u)-Pr(u)- vy, us
k=2

= 1—0,,. (mass for co-variation)
dYeu (1 — ), forall 0, 1 < k <t isa

co-variation scheme.

Proof. Reconsider the proof of Proposition 1. The
proposition follows directly by taking into account
that we no longer co-vary all — 1 remaining pa-
rameters, and that the co-varied parameters together
only have a remaining mass ¢f — 6
1 — x to divide.

—r =

O

'L)t|”LL)

Proposition 4 generalises to any fixed massy,
including the special cage = 1 where no parame-
ters are fixed, as is the standard case. Note that fix-
ing parameters with an original value of zero also
givesu = 1, so we may have to exclude them
explicitly from the co-variation. This is the case
when using, for example, the uniform co-variation
scheme. Using proportional co-variation, however,
parameters with an original value of zero keep that

value upon co- varlatlon—‘(l x) = 0. Propo-

sition 4 also generalises to theway functions con-
sidered in Propositions 2 and 3.

3.5 Generalised versus standard functions

In the above, we assumed that we varied one owWe note that in the propositions above, the tetin

more parameters from &valued variable and let

or 37), sums over all the co-varying parameters. It
J

the remaining parameters co-vary in some way. Was exactly this term that depends on the co-variation
may, however, want one or more parameters to sticlscheme used. The propositions therefore explicitly

to their original value. For example, parameters
with an original value of zero indicate an impossi-
bility that should remain impossible.

We now consider the effect of fixing parameters
on the sensitivity function. Without loss of gener-
ality we assume that upon varying parameigr,

270

indicate which part of the sensitivity function de-
pends on the co-variation scheme used. We now
note that3” can be considered constant with re-
spect to the varied parameter(s) only if v, |, is
independent of, i.e. if the co-variation scheme
Yoglu® (1 — ) is linear inz.
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Corollary 1. A sensitivity functionfg(z) is of the A note on uniform co-variation As illustrated by
standard form (Equatior{l1)), iff the co-variation the following example, uniform co-variation can be
scheme used is valid and linear:in implemented by applying proportional co-variation

to a pre-processed CPT. Hence, algorithms that
Proof. The result follows directly from Definition 1  build on the analytic form of the constartan be
and Proposition 1. [0 applied in the context of uniform co-variation.

The above corollary generalises teway sensi- =x@mple 3. Consider parameters,, |, 0,,j, and
tivity functions, as well as to sensitivity functions %vs/u With values).3, 0.5 and0.2, respectively. Sup-
with fixed parameters. From the corollary we haveP0S€ We vary,, ,, 10 0.5 and co-vary the other two:
that, contrary to the usual assumption in literature Under uniform co-variation this results in a value of
the general form of the sensitivity function does 0-25 for both. The same result is achieved by us-
not necessarily require a proportional co-variation"d Proportional co-variationafter first uniformly

scheme: any valid scheme, linearinvill do. distributing (1 — 6, ) overf,,, andé,,,. This

_ o approach is valid, since equal parameter values re-
Example 2. The uniform co-variation scheme iy equal under proportional co-variation. W
(Equation (3)) is clearly linear i. The standard

proportional co-variation scheme (Equation (2)) is4 o Comparing co-variation schemes
also linear inz, since~,,|,, only depends on the

original value off,, j,. m Inthis section we provide a preliminary analysis of
' the impact of using different co-variation schemes.
4 Using Another Co-variation Scheme Example 3 points to a potential problem with alter-

native co-variation schemes, especially those inde-

In the previous section we concluded that sensitivpendent of the original value @, if a param-
ity functions keep their standard form as long as aeter z, upon variation, takes on a value that cor-
valid and linear co-variation scheme is used. Weresponds to the original valué’ of the parameter,
now investigate the implications of this for existing then the co-varying parameters may take on differ-
algorithms that establish sensitivity functions, andent values from their original ones. As a result,
provide a preliminary comparison of such functionsfor a probability of interestr(ale) with original
for alternative co-variation schemes. valuep® we will find that £¢(2°) # p°. This may
seem counter-intuitive, but the sensitivity function
describes the relation between an output probability
Algorithms that build upon the analytic ex- and the value of parametet in the context of the
pression of the constants of the sensitiv-values for the co-varied parametert/pon choos-
ity function for their computation, such as ing a uniform co-variation scheme, for example,
e.g. Kjeerulff & Van der Gaag (2000), cannot be f(z") is computed assuming that the co-varying pa-
applied if we use a co-variation scheme that isrameters are distributed uniformly over- 2%, even
different from proportional co-variation. This is if they originally weren't. Note that for the pro-
simply because the co-variation scheme affectgortional co-variation scheme, we indeed have that
the analytic form of the constants, as we haveyvkm(l—a:o) = 0y, |u Vk. From the above observa-
demonstrated in the previous section. tions, we have that properties that assume the sen-

Another class of algorithms constructs andsitivity function to include(z, p°) may give cor-
solves a system of equations, one for each re- rupt results upon applying alternative co-variation
quired constant, by computing the output proba-schemes; this includes properties such as the sen-
bility of interest for r different values ofz (see sitivity value and various bounds on the sensitivity
e.g. Coug & Van der Gaag (2002)). These algo- function (Chan & Darwiche, 2002; Van der Gaag,
rithms do not depend on the analytic form of the Renooij & Cougg, 2007).
constants, and can therefore be applied regardless With respect to sensitivity functions which are
of the co-variation scheme used. defined forx € [0, 1], i.e. none of the co-varying

4.1 Computing the constants
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parameters are fixed to a non-zero value, we observand the new distributior®7, . In addition, they

the following: showed that this distance has the following closed
. . . . form:2
e if a parameter is varied te = 1, there is no
more mass left for co-variation, s& (1) is in- 05 1u 105,
dependent of the scheme used; this also holdg?»(Ovu, Oy ) =|In 7 1| —1In T 0 1‘ (4)
viju viju

for rational functions, and fot-way functions.

o for 1-way linear sensitivity functions we have Opting for a different co-variation scheme will
that for any co-variation scheme which pre- therefore necessarily increase the distance between

servesy” for 2 = 20, the function is indepen- original and new distribution. It is unknown, how-
dent of the co-variation scheme. This obser-€ver, how the CD-distance is exactly affected by the
vation, however, does not necessarily hold forCo-variation scheme used. The following proposi-
1-way rational functions, which are uniquely 0N provides us with that information.

defined by three points. Proposition 5. Consider changing a parameter
0u,u for a t-valued variablet > 2, to 0, . Let
%k|u-(1—0:1‘u), 1 < k < t, be the new values of the
co-varied parameters. Theh), (Oy |y, @;‘/‘u) =

¢ the maximum difference i-way linear sensi-
tivity functions, caused by using different co-
variation schemes, is thus found for = 0;
whether the same can be said feway ratio- g+

«
nal functions requires further investigation. — Inmax ¢ 2" L= b
. . . Ouyju’ min v, Oy
From these observations we conjecture that consid- I<ks<t OF
ering alternative co-variation schemes may be most f* 1— @*
interesting for parameters with smaller values. In — Inmin evl‘ua _fllu
the context of parameter tuning, it could turn out vifu B, Voelu Fonlu

that a 'single’ parameter change under an alterna- ¢ h gi q
tive co-variation scheme can accomplish an effect '00f- For the CD-distance we need to compute

that is not possible with a 'single’ parameter change 0* *
under proportional co-variation. In max 2% _In min -2
1<i<t Oy, 1u 1<i<t O, 1u

5 Co-variation and the CD-distance _ _
_ _ We therefore consider all ratI(ﬂ%lu/Hmu, 1<:<
The CD-distance measures the distance betweengnd determine their maximum and minimum, re-

two probability distributionsPr andPr*. If Pr*is  gpectively. Fori # 1, we have that
the result of making changes in a single CBY
in a Bayesian network, the CD-distance is given 67, vu-(1—0;,,) 1-67,,

by (Chan & Darwiche, 2004): O O ’Y;.|1u'9vilu
* . ;ti|uj . :;i|uj . .
D(Oy|u, Oyy) = Inmax —Inmin —~ Itis obvious that
Yot Yol V0N Yy 1—0* 1-6*

In this section we will analyse how the CD-distance fgggt _1—;“ = i _f 1';
depends on the co-variation scheme used. = TogluPoslu [Segt Tokfu okl
5.1 Single parameter co-variation and
Chan & Darwiche (2005) demonstrated that upon . 1 =0, |, 1=0) 4

. . . i min 71— = ]
changing a single parametéy, ,, from a distri 1<k<t %k‘u.gvﬂu f?,?gﬂvuu'%u

bution ©y,,,, the proportional co-variation scheme
'S_ optimal in the sense th'at_ It mmmyse; the CD-" 2rpe subscript forD indicates the assumed co-variation
distanceD between the original distributio®y;,,  scheme is generalp is proportionalu is uniform.
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Comparing the above minimum and maximum
to the ratio¢; | /0,,. for i = 1, we straightfor-

vilu

wardly find that there exist values féy, |,, such that

9$1|u/‘9v1 \u IS the largest term, but there are also val-

ues ford,, |, such that; /0, is the smallest
term (see example belows. The result follows from
these observations. O

The following example illustrates the various
possibilities.
Example 4. Consider a distribution over a variable
V with 3 values. Suppose we vary parametgn,
and co-vary the remaining two using theiformco-

variation scheme. Let the original assessments fO{he true distanc®,(
p

v1, v2 andwvg be 0.25, 0.7 and 0.05, respectively.
Then%ju'@mu (3-1)-0.7 =14 andfy;ju-
Opslu = (3—1)-0.05=0.1.

Case 1 (nax:emll/evl‘u): we vary 0,
0.25 to 07, 0.8; then 07 /0 ju =
0.8/0.25 = 3.2. ThereforeDu(@V‘u,@;}'u) =
Inmax{3.2,0.2/0.1} — Inmin{3.2,0.2/1.4} =
3.109.

*

Case 2 (naxzemu/e;luzmin): we vary
A (¢ 0:1|u 0.5; then Qil‘u/evl‘u =
0.5/0.25 Therefore Dy(Oyy, Oy,,) =

2.
Inmax{2,0.5/0.1} — Inmin{2,0.5/1.4} = 2.639.

Case 3 (ninz@vﬂu/emu): we vary 6, |, to
0.10; then 9:1|u/0m|u = 0.1/0.25 = 0.4. There-
fore Du(@v‘u,@*{/m) = Inmax{0.4,0.9/0.1} —
Inmin{0.4,0.9/1.4} = 3.114.

Note that if we use theroportional co-variation
scheme, then . - 6,,u = (0.7/0.75) 7" - 0.7 =
0.75 and%;ju +Opyja = (0.05/0.75)71 - 0.05 =
0.75, which indeed both equal — 0, |, as in
Equation (4). Forcase 1 for example, we then
get Dy(Oyju, ©f,) = Inmax{3.2,0.2/0.75} —
Inmin{3.2,0.2/0.75} = 2.485 which is indeed less
than the distance found with uniform co-variation.
|

*

Note from the above example that the minimisa-
tion and maximisation terms over the co-varied pa-

rameters depend of,, .., but not ond; \,; hence
they can be pre-computed and used for computin
the CD-distance for any new distributidy, , ob-

tained by changing parametgy, ,, to ¢

viju’
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éln 0.5 — In 1.75|, which is1.252.

5.2 Single CPT co-variation

Chan & Darwiche (2004) erroneously introduced
the following closed form for the CD-distance in
case the parameters of an entire OPFy are var-

ied as described in Section 3.3 (just above Proposi-
tion 3), i.e. a single parameter froeachOy,; is
varied, while co-varying all others:

* *
evlluj 1 0v1|uj
max |In —In
u; 0111|uj 1- 9v1|uj

In Chan (2005) the error was corrected by stating
that the above expression is an approximaﬂfbnf
®V|U7@*V|U>-

If we extend Proposition 5 by maximising and
minimising over all parent configurationa; as
well, we get the exact expression for the distance
between two CPTsD., (Oyy, @*Q'U) =

In max L , = 71v1‘u"
R R R
* *
— Inmin vifu , ! __elmuj
u; vilu fg?%(t Vorluy ﬂvk\uj

which in the case of proportional co-variation re-
duces to:D,(Oyu, @"K/IU) =

0* 1-0%,

In max viju vifu

uj 0m\u~ 11— 0v1|uj

— Ilnmin evlluJ , - evlluj
W Oy 1= Ouyp,

The following example illustrates the difference be-
tween this expression and the approximation

Example 5. Consider a tabledy,y for binary-
valuedV andU. Let6, , = 0.8 andf, ., =
0.6, and suppose these parameters are decreased
to Gzlm 0.6 and Gzlm 0.3, respectively.

Let R denote the set of all ratios under consid-
eration, i.e. R = {38 =00 03 1-83}  Then

DP(@VIU’@S\FAU) = IlnmaxR — lnmin R
In2 — In0.5 = 1.386. 5(@V|U,@*V|U), how-
ever, equals the maximum ¢ 0.75 — In2| and
|

In the above example the approximated CD-
distance is smaller than the true distance. In fact,
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*

=l T % increased complexity of the formula for the CD-
o o7 W e T4 . distance for single CPT changes, forestalls straight-

forward generalisation of the known optimality of
Figure 1: lllustration of distances between (the the CD-distance. If proportional co-variation turns
of) various parameter ratios. Dashed lines linkout not to be necessarily optimal for whole CPTs,
In ?-terms to their correspondirig 11‘;* -terms. then alternative co-variation schemes will become
more interesting to consider in e.g. the context

] _ _ of parameter tuning. We suspect that sensible co-
the approximate distance is a lower bound on th§ariation schemes will be domain-dependent, pre-
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