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Abstract

Upon varying parameters in a sensitivity analysis of a Bayesian network, the standard approach is
to co-vary the parameters from the same conditional distribution such that their proportions remain
the same. Alternative co-variation schemes are, however, possible. We theoretically investigate
the effects of using alternative co-variation schemes on the so-called sensitivity function, and
conclude that its general form remains the same under any linear co-variation scheme. In addition,
we generalise the CD-distance for bounding global belief change, and prove a tight lower bound
on this distance for parameter changes in single conditional probability tables.

1 Introduction

Sensitivity analysis is a general technique for study-
ing the effects of parameter changes on the output of
a mathematical model. In the context of Bayesian
networks the effect of changes, applied to one or
more probabilities from the network’s conditional
probability tables, on computed probabilities is de-
termined. The results can be captured in detail by
means of asensitivity function, describing an out-
put probability of interest in terms of one or more
parameter probabilities. More global effects can be
described by theCD-distance, which is a measure
for bounding probabilistic belief change and com-
plements the sensitivity function by giving insight
in the effect of parameter changes on the global joint
distribution, rather than on a specific (posterior) out-
put probability of interest.

Upon varying a probability from a conditional
distribution, the remaining probabilities from the
same distribution need to be co-varied. Thepro-
portional schemehas been adopted as the standard
scheme for co-variation in Bayesian networks, and
various sensitivity analysis algorithms build upon
this scheme. The proportional co-variation scheme
is one of numerous alternatives for co-varying pa-
rameters from the same distribution. The mere fact
that it is the standard co-variation scheme used, does
not imply that there are no situations in which alter-
native schemes are suitable. However, the known
standard form of the sensitivity function is based

on proportional co-variation, and the proportional
scheme is known to be optimal when varying a sin-
gle parameter, in the sense that it minimises the CD-
distance (Chan & Darwiche, 2005).

It is as of yet unknown if the proportional scheme
is optimal when multiple, independent parameters
from are varied. Moreover, we may not be in-
terested in minimising the CD-distance: for ex-
ample, we may be interested in minimising KL-
divergence, which is not equivalent to minimising
CD-distance (Chan & Darwiche, 2005); or we may
want to perform our analyses in the context of large
disturbances, rather than minimal ones. In this pa-
per we will therefore investigate exactly how both
the sensitivity function and the CD-distance depend
on the co-variation scheme used. We show that
the general form of the sensitivity function is main-
tained as long as the co-variation scheme is linear in
the parameter(s) varied. In addition, we generalise
the CD-distance to arbitrary co-variation schemes,
and prove that a previously suggested approxima-
tion of this distance is in fact a lower bound.

This paper is organised as follows. Section 2 pro-
vides preliminaries on sensitivity analysis and co-
variation. Section 3 generalises the sensitivity func-
tion to arbitrary co-variation schemes; the conse-
quences for computing the functions are discussed
in Section 4. Section 5 likewise generalises the CD-
distance. The paper ends with conclusions and di-
rections for future research in Section 6.
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2 Preliminaries

A Bayesian network compactly represents a joint
probability distributionPr over a set of stochastic
variablesV (Jensen & Nielsen, 2007). It combines
an acyclic directed graphG, that captures the vari-
ables and their dependencies as nodes and arcs re-
spectively, with conditional probability distributions
ΘVi|π(Vi) for each variableVi and its parentsπ(Vi)
in the graph, such thatPr(V) =

∏
i ΘVi|π(Vi). We

will refer to ΘVi|π(Vi) as the conditional probability
table (CPT) ofVi; entriesθ of Θ are called parame-
ter probabilities, or parameters for short. Variables
are denoted by capital letters and their values or in-
stantiations by lower case; bold face is used for sets.

Probabilities computed from a Bayesian network
are affected by the inaccuracies in the network’s pa-
rameters. To investigate the extent of these effects,
a sensitivity analysis can be performed in which
n ≥ 1 network parameters are varied simultane-
ously and the effect on output probabilities of inter-
est are studied. The effects of suchn-wayparameter
variation can be described bysensitivity functions.
Such a function ismultilinear in the varied param-
eters in case of a prior probability of interest, and
rational (quotient of two multilinear functions) in
the posterior case (Coupé & Van der Gaag, 2002).
For example, the1-way sensitivity functionfe

a (x)
describing the posterior probabilityPr(a | e) as a
function of parameterx is given by

fe
a (x) =

fa,e(x)
fe(x)

=
c1x + c0

d1x + d0
(1)

with constantsci, di, i = 0, 1, built from non-varied
network parameters. The general form of the sensi-
tivity function was established under the assumption
of proportional co-variation (Castillo, Gutiérrez &
Hadi, 1997; Couṕe & Van der Gaag, 2002).

Co-variation Consider a binary-valued variable
V with valuesv andv̄, and parent configurationu.
Sinceθv|u + θv̄|u = 1, f, we have that ifθv|u varies,
θv̄|u should be co-varied to ensure that their sum re-
mains1. Therefore, ifθv|u varies asx in a sensitiv-
ity analysis,θv̄|u should co-vary as1− x.

Now if V hast > 2 valuesv1, . . . , vt, andx =
θv1|u is the parameter varied in a sensitivity analy-
sis, then there are endless ways in which the param-
etersθvk|u, 1 < k ≤ t can co-vary withx. Using the

above mentioned proportional co-variation scheme,
the parametersθvk|u, k 6= 1, get the same propor-
tion of the remaining mass of1 − x, as they had
originally:

θ∗vk|u =
θvk|u

1− θv1|u
· (1− x)

whereθ∗vk|u is the new value of the parameter, and
θvk|u, θv1|u indicate the original values that were
specified in the network. We typically assume that
parameters with an original value of0 or 1 are not
varied, so the above denominator is in〈0, 1〉.

The proportional scheme has been adopted as the
standard scheme for co-variation in Bayesian net-
works, and various sensitivity analysis algorithms
build upon this scheme (Chan & Darwiche (2002;
2004; 2005), Couṕe & Van der Gaag (2002),
Kjærulff & Van der Gaag (2000)). In fact, the
proportional scheme minimises the CD-distance
between the new distributionPr∗ and the original
distributionPr (Chan & Darwiche, 2005).

3 Co-variation in the Sensitivity Function

The proportional co-variation scheme, although
standard, is merely one of many alternatives for co-
varying parameters from the same distribution. In
this section, we will take a fresh look at sensitivity
functions without restricting ourselves to a particu-
lar co-variation scheme.

3.1 Co-variation schemes

Consider at-valued variableV and suppose we vary
a parameter from the distributionΘV |u asx. Thet−
1 remaining parameters from this distribution must
co-vary; more specifically, each of these parameters
should get a portion, or cut, of the remaining mass
1− x. We define a valid co-variation scheme based
on these cuts.

Definition 1. Considerk ≥ 1 parametersθk from
the same distribution and letm ≤ 1 be the to-
tal probability mass available for these parameters.
A co-variation cutγ : {θk} → [0, 1] defines the
share of each parameterθk in m. A co-variation
schemes(k) = γ(k) ·m now maps eachθk to a new
valueθ∗k. A co-variation scheme is calledvalid if∑

k γ(k) = 1.
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From here on we will writeγk rather thanγ(k).
Note that a valid co-variation scheme ensures that
the entire distribution under consideration sums to
(1 − m) +

∑
k γk ·m = 1. The following example

gives two valid co-variation schemes.

Example 1. The standard proportional co-variation
scheme,

γvk|u ·(1− x) =
θvk|u

1− θv1|u
· (1− x) (2)

is indeed valid:

∑
k 6=1

γvk|u =
t∑

k=2

θvk|u
1− θv1|u

=
1− θv1|u
1− θv1|u

= 1

We can also think of other valid co-variation
schemes. Consider for example auniform co-
variation scheme:

γvk|u ·(1− x) =
1

t− 1
·(1− x) (3)

which uniformly distributes the remaining mass of
1 − x over thet − 1 co-varying parameters. This
scheme is also valid:

∑
k 6=1

γvk|u =
t∑

k=2

1
t− 1

= (t− 1)· 1
1− t

= 1
�

3.2 The generalised1-way form

In the remainder of this paper we focus on a proba-
bility of interestPr(w)1 as a function of a parameter
θv1|u of a t-valued variableV . In addition, without
loss of generality, we often assumeV to have a sin-
gle, binary-valued parentU with valuesu andū.

The following proposition explicitly captures
how the general form of the1-way sensitivity func-
tion depends on the co-variation scheme.

Proposition 1. Probability Pr(w) as a function of
x = θv1|u of t-valued variableV is given by

fw(x) = (α− βγ)·x + (βγ + δ)

1Note from Equation 1 thatPr(w) is general enough to rep-
resent any probability of interest. For example,Pr(a | e) =
Pr(a, e)/ Pr(e), where both numerator and denominator are
of the formPr(w).

where

α = Pr(w|v1, u)·Pr(u), δ = Pr(w, ū),

βγ =
t∑

k=2

Pr(w|vk, u)·Pr(u)·γvk|u,

and γvk|u · (1 − x), for all θvk|u, 1 < k ≤ t, is a
co-variation scheme.

Proof. First we rewritePr(w) to include the param-
eters under consideration:

Pr(w) = Pr(w, ū) + Pr(w, u)
= Pr(w, ū) + Pr(w|v1, u)·Pr(u)·θv1|u

+
t∑

k=2

Pr(w|vk, u)·Pr(u)·θvk|u

The proposition now follows by replacingθv1|u by
x and eachθvk|u by its value according to the co-
variation scheme.

3.3 The generalisedn-way form

In this section we consider the explicit simultaneous
variation ofn > 1 parameters from either a single
distribution, or from an entire CPT. Taking param-
eters from multiple CPTs is also possible (Chan &
Darwiche, 2004; Kjærulff & Van der Gaag, 2000).
Although our results extend to this latter case, it will
not be considered here: the approach is not often
used in practice since it quickly becomes computa-
tionally infeasible.

The following proposition explicitly captures
how the general form of then-way sensitivity func-
tion for n parameters from a single distribution
ΘV |u, depends on the co-variation scheme.

Proposition 2. Probability Pr(w) as a function of
n parametersxi = θvi|u, 1 ≤ i ≤ n, of t-valued
variableV , t > n, is given by

fw(x1, . . . , xn) =
n∑

i=1

(αi − βγ)·xi + (βγ + δ)

where

αi = Pr(w|vi, u)·Pr(u), δ = Pr(w, ū),

βγ =
t∑

k=n+1

Pr(w|vk, u)·Pr(u)·γvk|u,

andγvk|u ·(1 −
∑n

i=1 xi), for all θvk|u, n < k ≤ t,
is a co-variation scheme.
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Proof. The proof is analogous to that of Proposi-
tion 1, with eachθvi|u, 1 ≤ i ≤ n, replaced byxi

and eachθvk|u, n < k ≤ t, replaced by its value
according to the co-variation scheme.

Note that in the above case we need to ensure
that

∑n
i=1 xi ≤ 1, which means we have to impose

an additional constraint on the sensitivity analysis.
For this reason, ann-way analysis typically consid-
ers parameters fromn different distributions, often
constituting an entire CPT. That is, from a single
CPT ΘV |U, exactly one parameter for each condi-
tional distributionΘV |uj

is varied, and all other pa-
rameters are co-varied (Chan & Darwiche, 2004).
For such single-CPTn-way analyses, the follow-
ing proposition describes how the general form of
the sensitivity function depends on the co-variation
scheme.

Proposition 3. Probability Pr(w) as a function of
n parametersxj = θv1|uj

, 1 ≤ j ≤ n, of t-valued
variableV , is given by

fw(x1, . . . , xn) =
n∑

j=1

(αj − βγ
j )·xj + βγ

j

where

αj = Pr(w|v1, uj)·Pr(uj),

βγ
j =

t∑
k=2

Pr(w|vk,uj)·Pr(uj)·γvk|uj
,

andγvk|uj
·(1 − xj), for all θvk|uj

, 1 < k ≤ t, are
co-variation schemes.

Proof. The proof is analogous to that of Proposi-
tion 1, except that for each parent configurationuj ,
the termPr(w,uj) now depends on anxj and its
co-varying parameters.

3.4 Fixing parameters

In the above, we assumed that we varied one or
more parameters from at-valued variable and let
the remaining parameters co-vary in some way. We
may, however, want one or more parameters to stick
to their original value. For example, parameters
with an original value of zero indicate an impossi-
bility that should remain impossible.

We now consider the effect of fixing parameters
on the sensitivity function. Without loss of gener-
ality we assume that upon varying parameterθv1|u

of a t-valued variableV , t ≥ 3, a single parameter
θvt|u should remain unchanged.

Proposition 4. Probability Pr(w) as a function of
x = θv1|u of t-valued variableV , t ≥ 3, with pa-
rameterθvt|u fixed, is given by

fw(x) = (α − βγ)·x + (µ·βγ + δ)

where

α = Pr(w|v1, u)·Pr(u),
δ = Pr(w|vt, u)·Pr(u)·θvt|u + Pr(w, ū),

βγ =
t−1∑
k=2

Pr(w|vk, u)·Pr(u)·γvk|u,

µ = 1− θvt|u (mass for co-variation),

and γvk|u ·(µ − x), for all θvk|u, 1 < k < t, is a
co-variation scheme.

Proof. Reconsider the proof of Proposition 1. The
proposition follows directly by taking into account
that we no longer co-vary allt − 1 remaining pa-
rameters, and that the co-varied parameters together
only have a remaining mass of(1 − θvt|u) − x =
µ− x to divide.

Proposition 4 generalises to any fixed mass1−µ,
including the special caseµ = 1 where no parame-
ters are fixed, as is the standard case. Note that fix-
ing parameters with an original value of zero also
gives µ = 1, so we may have to exclude them
explicitly from the co-variation. This is the case
when using, for example, the uniform co-variation
scheme. Using proportional co-variation, however,
parameters with an original value of zero keep that
value upon co-variation: 0

1−θv1|u
·(1−x) = 0. Propo-

sition 4 also generalises to then-way functions con-
sidered in Propositions 2 and 3.

3.5 Generalised versus standard functions

We note that in the propositions above, the termβγ

(or βγ
j ), sums over all the co-varying parameters. It

is exactly this term that depends on the co-variation
scheme used. The propositions therefore explicitly
indicate which part of the sensitivity function de-
pends on the co-variation scheme used. We now
note thatβγ can be considered constant with re-
spect to the varied parameter(s)x, only if γvk|u is
independent ofx, i.e. if the co-variation scheme
γvk|u ·(1− x) is linear inx.
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Corollary 1. A sensitivity functionfe
a (x) is of the

standard form (Equation(1)), iff the co-variation
scheme used is valid and linear inx.

Proof. The result follows directly from Definition 1
and Proposition 1.

The above corollary generalises ton-way sensi-
tivity functions, as well as to sensitivity functions
with fixed parameters. From the corollary we have
that, contrary to the usual assumption in literature,
the general form of the sensitivity function does
not necessarily require a proportional co-variation
scheme: any valid scheme, linear inx will do.

Example 2. The uniform co-variation scheme
(Equation (3)) is clearly linear inx. The standard
proportional co-variation scheme (Equation (2)) is
also linear inx, sinceγvk|u only depends on the
original value ofθv1|u. �

4 Using Another Co-variation Scheme

In the previous section we concluded that sensitiv-
ity functions keep their standard form as long as a
valid and linear co-variation scheme is used. We
now investigate the implications of this for existing
algorithms that establish sensitivity functions, and
provide a preliminary comparison of such functions
for alternative co-variation schemes.

4.1 Computing the constants

Algorithms that build upon the analytic ex-
pression of the constants of the sensitiv-
ity function for their computation, such as
e.g. Kjærulff & Van der Gaag (2000), cannot be
applied if we use a co-variation scheme that is
different from proportional co-variation. This is
simply because the co-variation scheme affects
the analytic form of the constants, as we have
demonstrated in the previous section.

Another class of algorithms constructs and
solves a system ofr equations, one for each re-
quired constant, by computing the output proba-
bility of interest for r different values ofx (see
e.g. Couṕe & Van der Gaag (2002)). These algo-
rithms do not depend on the analytic form of the
constants, and can therefore be applied regardless
of the co-variation scheme used.

A note on uniform co-variation As illustrated by
the following example, uniform co-variation can be
implemented by applying proportional co-variation
to a pre-processed CPT. Hence, algorithms that
build on the analytic form of the constantscan be
applied in the context of uniform co-variation.

Example 3. Consider parametersθv1|u, θv2|u and
θv3|u with values0.3, 0.5 and0.2, respectively. Sup-
pose we varyθv1|u to 0.5 and co-vary the other two:
under uniform co-variation this results in a value of
0.25 for both. The same result is achieved by us-
ing proportional co-variation,after first uniformly
distributing (1 − θv1|u) over θv2|u andθv3|u. This
approach is valid, since equal parameter values re-
main equal under proportional co-variation. �

4.2 Comparing co-variation schemes

In this section we provide a preliminary analysis of
the impact of using different co-variation schemes.
Example 3 points to a potential problem with alter-
native co-variation schemes, especially those inde-
pendent of the original value ofθv1|u: if a param-
eter x, upon variation, takes on a value that cor-
responds to the original valuex0 of the parameter,
then the co-varying parameters may take on differ-
ent values from their original ones. As a result,
for a probability of interestPr(a|e) with original
valuep0 we will find that fe

a (x0) 6= p0. This may
seem counter-intuitive, but the sensitivity function
describes the relation between an output probability
and the value of parameterx, in the context of the
values for the co-varied parameters. Upon choos-
ing a uniform co-variation scheme, for example,
f(x0) is computed assuming that the co-varying pa-
rameters are distributed uniformly over1−x0, even
if they originally weren’t. Note that for the pro-
portional co-variation scheme, we indeed have that
γvk|u·(1−x0) = θvk|u ∀k. From the above observa-
tions, we have that properties that assume the sen-
sitivity function to include(x0, p0) may give cor-
rupt results upon applying alternative co-variation
schemes; this includes properties such as the sen-
sitivity value and various bounds on the sensitivity
function (Chan & Darwiche, 2002; Van der Gaag,
Renooij & Couṕe, 2007).

With respect to sensitivity functions which are
defined forx ∈ [0, 1], i.e. none of the co-varying
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parameters are fixed to a non-zero value, we observe
the following:

• if a parameter is varied tox = 1, there is no
more mass left for co-variation, sofw(1) is in-
dependent of the scheme used; this also holds
for rational functions, and forn-way functions.

• for 1-way linear sensitivity functions we have
that for any co-variation scheme which pre-
servesp0 for x = x0, the function is indepen-
dent of the co-variation scheme. This obser-
vation, however, does not necessarily hold for
1-way rational functions, which are uniquely
defined by three points.

• the maximum difference in1-way linear sensi-
tivity functions, caused by using different co-
variation schemes, is thus found forx = 0;
whether the same can be said for1-way ratio-
nal functions requires further investigation.

From these observations we conjecture that consid-
ering alternative co-variation schemes may be most
interesting for parameters with smaller values. In
the context of parameter tuning, it could turn out
that a ’single’ parameter change under an alterna-
tive co-variation scheme can accomplish an effect
that is not possible with a ’single’ parameter change
under proportional co-variation.

5 Co-variation and the CD-distance

The CD-distance measures the distance between
two probability distributionsPr andPr∗. If Pr∗ is
the result of making changes in a single CPTΘV |U
in a Bayesian network, the CD-distance is given
by (Chan & Darwiche, 2004):

D(ΘV |U,Θ∗
V |U) = ln max

vi,uj

θ∗vi|uj

θvi|uj

−ln min
vi,uj

θ∗vi|uj

θvi|uj

In this section we will analyse how the CD-distance
depends on the co-variation scheme used.

5.1 Single parameter co-variation

Chan & Darwiche (2005) demonstrated that upon
changing a single parameterθv1|u from a distri-
bution ΘV |u, the proportional co-variation scheme
is optimal in the sense that it minimises the CD-
distanceD between the original distributionΘV |u

and the new distributionΘ∗
V |u. In addition, they

showed that this distance has the following closed
form:2

Dp(ΘV |u,Θ∗
V |u)=

∣∣∣∣∣ ln
θ∗v1|u
θv1|u

− ln
1− θ∗v1|u
1− θv1|u

∣∣∣∣∣ (4)

Opting for a different co-variation scheme will
therefore necessarily increase the distance between
original and new distribution. It is unknown, how-
ever, how the CD-distance is exactly affected by the
co-variation scheme used. The following proposi-
tion provides us with that information.

Proposition 5. Consider changing a parameter
θv1|u for a t-valued variable,t ≥ 2, to θ∗v1|u. Let
γvk|u·(1−θ∗v1|u), 1 < k ≤ t, be the new values of the
co-varied parameters. Then,Dγ(ΘV |u,Θ∗

V |u) =

= ln max

θ∗v1|u
θv1|u

,
1− θ∗v1|u

min
1<k≤t

γ−1
vk|u ·θvk|u


− ln min

θ∗v1|u
θv1|u

,
1− θ∗v1|u

max
1<k≤t

γ−1
vk|u ·θvk|u


Proof. For the CD-distance we need to compute

ln max
1≤i≤t

θ∗vi|u
θvi|u

− ln min
1≤i≤t

θ∗vi|u
θvi|u

We therefore consider all ratiosθ∗vi|u/θvi|u, 1 ≤ i ≤
t and determine their maximum and minimum, re-
spectively. Fori 6= 1, we have that

θ∗vi|u
θvi|u

=
γvi|u ·(1− θ∗v1|u)

θvi|u
=

1− θ∗v1|u
γ−1

vi|u ·θvi|u

It is obvious that

max
1<k≤t

1− θ∗v1|u
γ−1

vk|u ·θvk|u
=

1− θ∗v1|u
min

1<k≤t
γ−1

vk|u ·θvk|u

and

min
1<k≤t

1− θ∗v1|u
γ−1

vk|u ·θvk|u
=

1− θ∗v1|u
max
1<k≤t

γ−1
vk|u ·θvk|u

2The subscript forD indicates the assumed co-variation
scheme:γ is general,p is proportional,u is uniform.
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Comparing the above minimum and maximum
to the ratioθ∗v1|u/θv1|u for i = 1, we straightfor-
wardly find that there exist values forθvk|u such that
θ∗v1|u/θv1|u is the largest term, but there are also val-
ues forθvk|u such thatθ∗v1|u/θv1|u is the smallest
term (see example below). The result follows from
these observations.

The following example illustrates the various
possibilities.

Example 4. Consider a distribution over a variable
V with 3 values. Suppose we vary parameterθv1|u
and co-vary the remaining two using theuniformco-
variation scheme. Let the original assessments for
v1, v2 and v3 be 0.25, 0.7 and 0.05, respectively.
Thenγ−1

v2|u ·θv2|u = (3 − 1) ·0.7 = 1.4 andγ−1
v3|u ·

θv3|u = (3− 1)·0.05 = 0.1.

Case 1 (max = θv1|u/θ∗v1|u): we vary θv1|u
= 0.25 to θ∗v1|u = 0.8; then θ∗v1|u/θv1|u =
0.8/0.25 = 3.2. ThereforeDu(ΘV |u,Θ∗

V |u) =
ln max{3.2, 0.2/0.1} − ln min{3.2, 0.2/1.4} =
3.109.

Case 2 (max ≥ θv1|u/θ∗v1|u ≥ min): we vary
θv1|u to θ∗v1|u = 0.5; then θ∗v1|u/θv1|u =
0.5/0.25 = 2. Therefore Du(ΘV |u,Θ∗

V |u) =
ln max{2, 0.5/0.1} − ln min{2, 0.5/1.4} = 2.639.

Case 3 (min = θv1|u/θ∗v1|u): we vary θv1|u to
0.10; then θ∗v1|u/θv1|u = 0.1/0.25 = 0.4. There-
fore Du(ΘV |u,Θ∗

V |u) = ln max{0.4, 0.9/0.1} −
ln min{0.4, 0.9/1.4} = 3.114.

Note that if we use theproportionalco-variation
scheme, thenγ−1

v2|u · θv2|u = (0.7/0.75)−1 · 0.7 =

0.75 and γ−1
v3|u · θv3|u = (0.05/0.75)−1 · 0.05 =

0.75, which indeed both equal1 − θv1|u, as in
Equation (4). Forcase 1, for example, we then
get Dp(ΘV |u,Θ∗

V |u) = ln max{3.2, 0.2/0.75} −
ln min{3.2, 0.2/0.75} = 2.485 which is indeed less
than the distance found with uniform co-variation.
�

Note from the above example that the minimisa-
tion and maximisation terms over the co-varied pa-
rameters depend onγvk|u, but not onθ∗v1|u; hence
they can be pre-computed and used for computing
the CD-distance for any new distributionΘ∗

V |u ob-
tained by changing parameterθv1|u to θ∗v1|u.

5.2 Single CPT co-variation

Chan & Darwiche (2004) erroneously introduced
the following closed form for the CD-distance in
case the parameters of an entire CPTΘV |U are var-
ied as described in Section 3.3 (just above Proposi-
tion 3), i.e. a single parameter fromeachΘV |uj

is
varied, while co-varying all others:

max
uj

∣∣∣∣∣ln θ∗v1|uj

θv1|uj

− ln
1− θ∗v1|uj

1− θv1|uj

∣∣∣∣∣
In Chan (2005) the error was corrected by stating
that the above expression is an approximationD̃ of
the true distanceDp(ΘV |U,Θ∗

V |U).
If we extend Proposition 5 by maximising and

minimising over all parent configurationsuj as
well, we get the exact expression for the distance
between two CPTs:Dγ(ΘV |U,Θ∗

V |U) =

ln max
uj

θ∗v1|uj

θv1|uj

,
1− θ∗v1|uj

min
1<k≤t

γ−1
vk|uj

·θvk|uj


− ln min

uj

θ∗v1|uj

θv1|uj

,
1− θ∗v1|uj

max
1<k≤t

γ−1
vk|uj

·θvk|uj


which in the case of proportional co-variation re-
duces to:Dp(ΘV |U,Θ∗

V |U) =

ln max
uj

{
θ∗v1|uj

θv1|uj

,
1− θ∗v1|uj

1− θv1|uj

}

− ln min
uj

{
θ∗v1|uj

θv1|uj

,
1− θ∗v1|uj

1− θv1|uj

}
The following example illustrates the difference be-
tween this expression and the approximationD̃.

Example 5. Consider a tableΘV |U for binary-
valuedV and U . Let θv1|u1

= 0.8 and θv1|u2
=

0.6, and suppose these parameters are decreased
to θ∗v1|u1

= 0.6 and θ∗v1|u2
= 0.3, respectively.

Let R denote the set of all ratios under consid-
eration, i.e. R = {0.6

0.8 , 1−0.6
1−0.8 , 0.3

0.6 , 1−0.3
1−0.6}. Then

Dp(ΘV |U,Θ∗
V |U) = ln max R − ln min R =

ln 2 − ln 0.5 = 1.386. D̃(ΘV |U,Θ∗
V |U), how-

ever, equals the maximum of|ln 0.75 − ln 2| and
|ln 0.5 − ln 1.75|, which is1.252. �

In the above example the approximated CD-
distance is smaller than the true distance. In fact,
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τ∗+
τ+

τ∗m
τm

1−τ∗m
1−τm

τ∗−
τ−

Figure 1: Illustration of distances between (theln
of) various parameter ratios. Dashed lines link
ln τ∗

τ -terms to their correspondingln 1−τ∗
1−τ -terms.

the approximate distance is a lower bound on the
true distance.

Proposition 6. Let ΘV |U and Θ∗
V |U be as before.

Then,

Dp(ΘV |U,Θ∗
V |U) ≥ D̃(ΘV |U,Θ∗

V |U)

Proof. Let τ∗+/τ+ denote the maximum, over all
parent configurationsuj , of θ∗v1|uj

/θv1|uj
and(1 −

θ∗v1|uj
)/(1− θv1|uj

); likewise, letτ∗−/τ− denote the

minimum (see Figure 1). Note thatτ∗+/τ+ ≥ 1 and
0 < τ∗−/τ− ≤ 1. Then, by definition,

Dp(ΘV |U,Θ∗
V |U) = ln

τ∗+
τ+

− ln
τ∗−
τ−

Now if τ− and 1 − τ+ actually correspond with
the same parameter, thenDp(ΘV |U,Θ∗

V |U) =

D̃(ΘV |U,Θ∗
V |U), since ln(τ∗+/τ+) − ln((1 −

τ∗+)/(1 − τ+)) equals the largest possible distance.
Otherwise, suppose that̃D = ln(τ∗m/τm)− ln((1−
τ∗m)/(1 − τm)), for someτm such thatτ∗+/τ+ ≥
τ∗m/τm ≥ τ∗−/τ−. Then from Figure 1 it is obvious
thatD̃(ΘV |U,Θ∗

V |U) ≤ Dp(ΘV |U,Θ∗
V |U).

6 Conclusions

We have generalised both sensitivity functions and
CD-distance to cope with arbitrary co-variation
schemes. We showed that the sensitivity function
remains a rational function as long as a valid and
linear co-variation scheme is used. In addition, we
discussed the suitability of various algorithms for
computing the sensitivity functions under different
co-variation schemes. Finally, we proved a lower
bound on CD-distance for single CPTs.

In Section 4.2 we provided some preliminary re-
sults on comparing sensitivity functions under var-
ious co-variation schemes. We plan to study the
differences in more detail in the near future. The

increased complexity of the formula for the CD-
distance for single CPT changes, forestalls straight-
forward generalisation of the known optimality of
the CD-distance. If proportional co-variation turns
out not to be necessarily optimal for whole CPTs,
then alternative co-variation schemes will become
more interesting to consider in e.g. the context
of parameter tuning. We suspect that sensible co-
variation schemes will be domain-dependent, pre-
serving e.g. known thresholds or relationships be-
tween parameters.
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