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Abstract. The robustness of the performance of a Bayesian network to
shifts in its parameters can be studied with a sensitivity analysis. For
reasons of computational efficiency such an analysis is often limited to
studying shifts in only one or two parameters at a time. The concept
of sensitivity value, an important notion in sensitivity analysis, captures
the effect of local changes in a single parameter. In this paper we gener-
alise this concept to an n-way sensitivity value in order to capture the
local effect of multiple simultaneous parameters changes. Moreover, we
demonstrate that an n-way sensitivity value can be computed efficiently,
even for large n. An n-way sensitivity value is direction dependent and
its maximum, minimum, and direction of maximal change can be eas-
ily determined. The direction of maximal change can, for example, be
exploited in network tuning. To this end, we introduce the concept of
sliced sensitivity function for an n-way sensitivity function restricted to
parameter shifts in a fixed direction. We moreover argue that such a
function can be computed efficiently.

1 Introduction

The robustness of Bayesian networks to changes in their parameter probabil-
ities can be studied with a sensitivity analysis. To this end, a function which
describes the effect of varying one or more parameters on an output probability
of interest can be established. From such a sensitivity function, various sensitiv-
ity properties can be derived that give insight into the effects of the parameter
changes [6].

Most research has focused on one-way sensitivity analyses in which only a
single parameter is varied at a time. These one-way analyses, however, do not
provide full insight into the effects of multiple simultaneous parameter shifts;
to study such effects, an n-way sensitivity analysis is required. To this end, we
can establish an n-way sensitivity function. Unfortunately, the computation of
multi-dimensional functions is generally expensive. Existing algorithms for n-way
sensitivity analysis are only computationally feasible for larger n under certain
conditions. For example, the efficient method for computing n-way sensitivity
functions by Kjærulff and van der Gaag [8] assumes that the n parameters all
belong to the same clique in the network’s junction tree representation. Another
example is the method introduced by Chan and Darwiche [2] for assessing which



parameter shifts will enforce a given constraint with respect to some outcome
probability: this method is feasible if all parameters concern the same CPT, and
quickly becomes infeasible otherwise.

In this paper we are interested in studying the local effects of multiple simul-
taneous parameters changes in a Bayesian network. To this end we generalise
the concept of sensitivity value [9] — well-known in the context of one-way sen-
sitivity analysis — to an n-way sensitivity value. The sensitivity value captures
the effect of local parameter changes by means of the derivative of the sensitivity
function in the point corresponding with the original parameter assessment spec-
ified in the Bayesian network. We generalise this concept to multiple dimensions
by using a directional derivative of the n-way sensitivity function. Moreover, we
prove that computing this directional derivative can be done efficiently, due to
the fact that we do not need the n-way sensitivity function: availability of the
one-way sensitivity values of the parameters under consideration suffices. The
n-way sensitivity value is direction dependent, but its maximum and minimum
can be easily determined, together with the corresponding direction of maximal
change. The latter information is not only useful for studying the robustness of
a Bayesian network, but is also useful in the context of parameter tuning. In
parameter tuning, network parameters are changed in order to fulfill constraints
with respect to outcome probabilities. Assuming that small perturbations are
preferred, we argue that tuning parameters by shifting them in the direction
of maximal change will yield a good approximation of the optimal parameter
change necessary to meet a given constraint. Moreover, since a fixed vector di-
rection ties together all parameters linearly, we can efficiently establish the effect
of such a combined parameter shift. To this end, we introduce the concept of
sliced sensitivity function.

The remainder of the paper is organised as follows. In Section 2 we intro-
duce our notational conventions, briefly review sensitivity analysis in Bayesian
networks and review the mathematical notion of directional derivatives. In Sec-
tion 3 we define the n-way sensitivity value and its bounds, and in Section 4 we
address the question of how to compute an n-way sensitivity value efficiently. In
Section 5 we discuss the use of our concepts in the context of parameter tuning
and we conclude our paper with a discussion in Section 6.

2 Preliminaries

2.1 Bayesian Networks and Sensitivity Analysis

A Bayesian network compactly represents a joint probability distribution Pr over
a set of stochastic variables A [7]. It combines an acyclic directed graph G, that
captures the variables and their dependencies as nodes and arcs respectively,
with conditional probability distributions for each variable Ai and its parents
π(Ai) in the graph, such that

Pr(A) =
∏
i

Pr(Ai | π(Ai))



Variables are denoted by capital letters, which are boldfaced in case of sets; spe-
cific values or instantiations are written in lower case. In examples we restrict
ourselves to binary variables, writing a and ā to denote the two possible instan-
tiations of a variable A. We assume the conditional distributions are specified as
tables (CPTs) and use the term parameter to refer to a CPT entry. The super-
script ’o’ is used to indicate that a probability is an original parameter value, or
is computed from the network with parameter values as originally specified.

To investigate the effects of inaccuracies in its parameters, a Bayesian network
can be subjected to a sensitivity analysis. In a sensitivity analysis, parameters
of a network are varied and a probability of interest as a function of the varied
parameters is computed.

General n-way analysis In an n-way sensitivity analysis, simultaneous pertur-
bations of multiple parameters are considered. The effect of varying the param-
eters x1, . . . , xn on a probability of interest Pr(y | e) is captured by a function
of the form

fPr(y|e)(x1, . . . , xn) =
fPr(y e)(x1, . . . , xn)

fPr(e)(x1, . . . , xn)
=

∑
Xk∈P({x1,...,xn}) ck ·

∏
xi∈Xk

xi∑
Xk∈P({x1,...,xn}) dk ·

∏
xi∈Xk

xi

where P denotes the powerset, and ck and dk, k = 0, . . . , 2n − 1, are constants
constructed from the non-varied network parameter [1]. A two-way function, for
example, takes the following form:

fPr(y|e)(x1, . . . , x2) =
c0 + c1 · x1 + c2 · x2 + c3 · x1 · x2
d0 + d1 · x1 + d2 · x2 + d3 · x1 · x2

The n parameters of an n-way sensitivity function are typically assumed
to be independent, that is, parameters from the same CPT must come from
different conditional distributions. Upon varying a parameter x = Pr(ai | π), all
probabilities Pr(aj | π), j 6= i, pertaining to the same conditional distribution
are assumed to co-vary proportionally.

An n-way sensitivity function in general requires the computation of 2n con-
stants and is thus computationally expensive; an algorithm to this end can be
found in [8].

Single CPT analysis In the special case where all n parameters are indepen-
dent parameters from the same CPT, the interaction terms in the n-way sensi-
tivity function become zero and the function reduces to the following form [2]:

fPr(y|e)(x1, . . . , xn) =
c0 +

∑
i ci · xi

d0 +
∑
i di · xi

One-way analysis Most research has focused on one-way sensitivity analysis,
in which just a single parameter x is varied. In this case the sensitivity function
becomes [4]:

fPr(y|e)(x) =
c0 + c1 · x
d0 + d1 · x



The constants of the one-way functions fPr(y|e)(xi) for output probability Pr(y |
e) can be established efficiently for all network parameters xi simultaneously
from just one inward and two outward propagations in the junction tree repre-
sentation of the Bayesian network [8].

From the one-way sensitivity function, several sensitivity properties can be es-
tablished [6]. The most well-known sensitivity property is the sensitivity value [9].
This value captures the sensitivity of an outcome probability of interest to small
perturbations of the parameter under consideration. The sensitivity value of the
one-way sensitivity function f(x) for parameter x with original assessment xo is
defined as the absolute value of the first derivative of the function at x = xo:∣∣∣ df

dx
(xo)

∣∣∣
High sensitivity values indicate that the output probability of interest may
change considerably as a result of small parameter changes. The one-way sen-
sitivity function takes the form of a rectangular hyperbola, with its vertex (in
which the derivative is +1 or −1) marking the transition from low to possibly
high sensitivity.

2.2 Directional Derivatives

The sensitivity value is defined in terms of the first derivative of the one-way
sensitivity function. For a one-dimensional function f(x) we can refer to the
derivative at x = a, since df

dx (a) is a single value. The multi-dimensional analogue
of the derivative is the directional derivative. The directional derivative of an n-
dimensional function depends on the direction v and the specific point x of the
function that is considered. To compute the directional derivative of a function
f(x) for x = (x1, . . . , xn), we can use its gradient ∇f , that is, the vector of
partial derivatives ( ∂f∂x1

, . . . , ∂f∂xn
) of f . The directional derivative at x = a in the

direction v now equals the following dot product

Duf(a) = ∇f(a) • u

where unit vector u is the normalised vector of v, that is, u is the vector in the
direction of v that has length 1.

Although the directional derivative varies depending on the chosen direction,
we can establish bounds on its value. The maximum directional derivative of f at
x = a is found in the direction of the gradient vector at a, ∇f(a), and equals the
length of the gradient vector at a, |∇f(a)|. Similarly, the minimum directional
derivative occurs in the opposite direction.

Example 1. Suppose we are interested in the directional derivative of f(x, y) =
x2+4 ·x ·y at (1, 2), in the direction (−2, 1). We have that ∇f = (2 ·x+4 ·y, 4 ·x)
which yields ∇f(1, 2) = (10, 4). Vector (−2, 1) has length

√
5 and is normalised

to u = (−2√
5
, 1√

5
). The requested directional derivative thus equals Duf(1, 2) =

(10, 4) • (−2√
5
, 1√

5
) = −16√

5
. The maximum directional derivative at (1, 2) occurs

in the direction (10, 4) and equals
√

102 + 42 ≈ 10.77; the minimum directional
derivative at this point equals −10.77 and occurs in the direction (−10,−4).



3 Defining an n-way Sensitivity Value

The sensitivity value as defined in [9] reflects the local sensitivity of some out-
come of interest to a single parameter shift. In this section we generalise the
definition of sensitivity value in order to capture the local sensitivity given mul-
tiple simultaneous parameter shifts.

A (one-way) sensitivity value is defined in terms of the first derivative of a
one-way sensitivity function. In mathematics, the notion of first derivative of a
function with a single variable generalises to the notion of directional derivative
for a function with multiple variables. We therefore define an n-way sensitivity
value in terms of a directional derivative. In contrast to the definition of the one-
way sensitivity value, we will not consider the n-way sensitivity value to be an
absolute value. In our opinion, using the absolute value results in loss of useful
information concerning the direction of change in the output of interest upon
local perturbation of the parameters. For this reason, we also introduce a signed
version of the one-way sensitivity value, which equals the sensitivity value prior
to taking the absolute value.

Definition 1 (signed sensitivity value). Let f(x) be a one-way sensitivity
function and xo the original value for parameter x. The signed sensitivity value
for f(x), denoted svx, equals the first derivative of f at xo:

svx =
df

dx
(xo)

We now generalise the concept of (signed) sensitivity value to multiple dimen-
sions.

Definition 2 (n-way sensitivity value). Let f(x) be an n-way sensitivity
function and let xo be the vector of original parameter settings. Consider a shift
of the parameters in the direction v. The n-way sensitivity value for f(x), de-
noted svxv, equals the directional derivative of f at the original parameter assess-
ments xo in the direction v:

svxv = Du f(xo)

where unit vector u is the normalised vector of v.

Note that svx is a special case of svxv for n = 1 and u = (1).
Whereas a single parameter can only be changed to lower or higher values,

multiple simultaneous parameters shifts can occur in an infinite number of di-
rections. Hence the dependence on v in our definition of n-way sensitivity value.
Fortunately, the n-way sensitivity values have an upper- and lowerbound.

Definition 3 (svxmax). Let f(x) be an n-way sensitivity function and xo the
vector of original parameter settings. The maximum n-way sensitivity value,
denoted svxmax, equals

svxmax = max
v

svxv = max
u

Du f(xo)

where unit vector u is the normalised vector of v.



Since the n-way sensitivity value is defined as a directional derivative, its
maximum value in fact equals the length of the gradient vector of f at xo, that
is, svxmax = |∇f(xo)|; moreover, svxmax is obtained in the direction ∇f(xo). We
can similarly define svxmin = −svxmax as the minimum n-way sensitivity value,
which occurs in the opposite direction −1 • ∇f(xo).

Pr(mc) = 0.2 

Pr(ct|b) = 0.95
Pr(ct|b) = 0.1

Pr(b|mc) = 0.2
Pr(b|mc) = 0.05

Pr(isc|mc) = 0.8
Pr(isc|mc) = 0.2

Pr(sh|b) = 0.8
Pr(sh|b) = 0.6

Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.8
Pr(c|b isc) = 0.05

Fig. 1. An example Bayesian network.

Example 2. Consider the example network from Fig. 1, representing some (fic-
titious) medical information. For a patient, the variables MC, B and SH rep-
resent the presence or absence of metastatic cancer, a brain tumour, and severe
headaches, respectively. Variable ISC captures the presence or absence of an
increased serum calcium level, variable C represents whether or not a patient is
comatose, and CT whether or not the outcome of a CT scan is positive. Sup-
pose that we are interested in the output probability of a brain tumour in a
patient with a positive CT-scan, severe headaches, but who is not in a coma,
that is, Pr(b | ct sh c). In addition, suppose that the assessments of the param-
eters x = Pr(mc) and y = Pr(sh | b̄) might be inaccurate. We now find the
following sensitivity function, depicted in Fig. 2:

fPr(b|ct sh c)(x, y) =
0.76 + 2.28 · x

0.76 + 2.28 · x+ 7.6 · y − 4.8 · x · y

with gradient ∇f = (∂f∂x ,
∂f
∂y ), where

∂f

∂x
=

20.976 · y
(0.76 + x · (2.28− 4.8 · y) + 7.6 · y)2

and
∂f

∂y
=

−5.776− 13.68 · x+ 10.944 · x2

(0.76 + x · (2.28− 4.8 · y) + 7.6 · y)2



The gradient at (xo, yo) = (0.2, 0.6) then equals ∇f(0.2, 0.6) ≈ (0.465,−0.299).
Now consider a parameter shift from (xo, yo) = (0.2, 0.6) to (0.1, 0.7), that

is, a shift in the direction (−0.1, 0.1). The directional derivative at (0.2, 0.6)
in this direction is (0.465,−0.299) • ( −0.1√

0.02
, 0.1√

0.02
) ≈ −0.540 and equals the

sensitivity value svx,yv for this direction. The maximum sensitivity value svx,ymax

= |(0.465,−0.299)| ≈ 0.553 and is found in the direction (0.465,−0.299).
We can also compute the directional derivative at some other point (x, y)

than the original parameter assessments. For example, the gradient at (x, y) =
(0.1, 0.1) equals ∇f(0.1, 0.1) ≈ (0.581,−0.414). For a shift from this point, in
the direction (0.4, 0.2), we have a directional derivative of (0.581,−0.414) •

( 0.4√
0.2
, 0.2√

0.2
) ≈ −0.414.

Fig. 2. Pr(b | ct sh c) as function of Pr(mc) and Pr(sh | b̄) given the network from
Figure 1.

4 Computing an n-way Sensitivity Value

For the computation of an n-way sensitivity value, the partial derivatives ∂f
∂xi

of
the n-way sensitivity function at xo are required. These partial derivatives can
be established in various ways. In Section 4.1 we will identify the possibilities
and drawbacks of using various existing algorithms. In Section 4.2 we will sub-
sequently point out a relation between the n-way sensitivity value and one-way
sensitivity values that allows for efficiently computing the former.

4.1 Computing Partial Derivatives for Sensitivity Functions

There are basically two approaches that we can employ for computing our partial
derivatives ∂f

∂xi
for sensitivity function f(x): a direct and an indirect approach.



Indirect Approach One approach is to establish the complete sensitivity func-
tion f(x), using one of the available algorithms for computing its constants from
the Bayesian network (see Section 2). Subsequently, the partial derivative with
respect to xi can be computed from the resulting function. This approach allows
for computing partial derivatives at any value of xi and not only at xoi . The
major drawback of this approach, however, is that the currently most efficient
algorithm to compute an n-way sensitivity function requires in the order of 2n/n
full junction tree propagations to establish 2n equations from which the required
constants can be solved; this can only be done more efficiently if all n parameters
are in the same clique [8]. We note that in the special case where all n parameters
are independent parameters from the same CPT, the n-way sensitivity function
requires a linear rather than exponential number of constants. In that case, it is
doable to compute the n-way sensitivity function.

For the special case where all parameters are from the same CPT, we can
express svxmax in terms of the constants of the n-way sensitivity function, the
original probability of interest and the original probability of the evidence, as
stated in the following proposition.

Proposition 1 (svxmax; x in single CPT). Consider an n-way sensitivity func-
tion fPr(y|e)(x) = fPr(y e)(x)/fPr(e)(x) for output probability Pr(y | e) and n in-
dependent parameters x = (x1, . . . , xn) from a single CPT with original values
xo = (xo1, . . . , x

o
n). Let fPr(y e)(x) = c0 +

∑
i ci ·xi and fPr(e)(x) = d0 +

∑
i di ·xi

for constants ci, di, i = 1, . . . , n. Then the maximum n-way sensitivity value
equals

svxmax =
1

Pro(e)
·

√√√√ n∑
i=1

(
ci − di · Pro(y | e)

)2
Proof. The value svxmax is the length of the gradient vector in xo. To compute the
gradient vector we compute the partial derivatives of f for each xk, k = 1, . . . , n:

∂f

∂xk
=
ck · (d0 +

∑
i,i6=k di · xi)− dk · (c0 +

∑
i,i6=k ci · xi)

(d0 +
∑n
i=1 di · xi)2

At xo this partial derivative equals:

∂f

∂xk
(xo) =

ck · (d0 +
∑
i,i6=k di · xoi )− dk · (c0 +

∑
i,i6=k ci · xoi )

(d0 +
∑n
i=1 di · xoi )2

=
ck · (Pro(e)− dk · xok)− dk · (Pro(y e)− ck · xok)

Pro(e)2

=
ck · Pro(e)− dk · Pro(y e)

Pro(e)2
=
ck − dk · Pro(y | e)

Pro(e)

The result now follows directly. 2

Direct Approach The second approach is far more elegant for our purposes.
A differential approach can be used to compute partial derivatives from the so-
called canonical network polynomial F . For ∂f

∂xi
a closed form in terms of first and



second order partial derivatives of polynomial F exists; details are beyond the
scope of this paper and can be found in [5]. As an alternative, for any parameter
xi = Pr(a | π) with xoi 6= 0, we can use the following probabilistic closed form,
which is equivalent to the above-mentioned one based on partial derivatives [5]:

∂fPr(y|e)

∂xi
(xo) =

Pro(y aπ | e)− Pro(y | e) · Pro(aπ | e)

xoi

Since the closed forms allow for direct computation of partial derivatives, albeit
at xi = xoi only, they are more efficient to compute than the approach using the
n-way sensitivity function: rather than computing a number of constants that
is exponential in n, we compute n partial derivatives. A drawback of using the
partial-derivative-based closed form is that it cannot be computed using classical
inference algorithms and requires the computation of both first and second order
partial derivatives. A minor drawback of the probabilistic closed form is that the
expression requires the computation of several probabilities per parameter for
which it is not immediately clear what their relation to sensitivity analysis or
sensitivity properties is.

4.2 n-way Partial Derivatives From One-way Functions

In the previous section we argued that the direct computation of partial deriva-
tives is much more efficient than establishing them from an n-way sensitivity
function. In this section we demonstrate that there is a simple correspondence
between partial derivatives of n-way sensitivity functions and derivatives for
one-way functions1. This provides us with an alternative way of efficiently es-
tablishing n-way sensitivity values during a sensitivity analysis.

Proposition 2. Let x1, . . . , xn be n > 1 network parameters with original as-
sessments xoi , i = 1, . . . , n, and let P be an output probability of interest. Con-
sider the n-way sensitivity function fP (x1, . . . , xn) and the one-way sensitivity
function f∗P (xk), k ∈ {1, . . . , n}. Then

∂fP
∂xk

(xo1, . . . , x
o
n) =

d f∗P
dxk

(xok)

Proof. Consider an output probability P = Pr(y | e) = Pr(y e)
Pr(e) . As a result of

the factorisation defined by a Bayesian network, both numerator and denomina-
tor can be written as an expression of all network parameters consistent with y
and/or e [1]. Suppose these expressions contain m independent parameters (the
remaining ones will co-vary). A sensitivity function for n < m of these indepen-
dent parameters then basically is the m-dimensional sensitivity function with
m − n independent parameters fixed at their original value. This also holds for

1 We note that this correspondence, formally stated in Proposition 2, has been im-
plicitly exploited in, for example, [5]; to the best of our knowledge, however, it has
not been formalised explicitly before.



n = 1. The partial derivative w.r.t xk of an n-way function fP (x1, . . . , xk, . . . , xn)
with parameters xi 6= xk kept at xoi , is therefore the same as the derivative of
the one-way sensitivity function f∗P (xk). This proves the proposition. 2

To assess the partial derivatives of an n-way sensitivity function given the
original parameter assessments, we thus just need the appropriate one-way sen-
sitivity functions. The above proposition thus gives a computationally feasible
way of computing the n-way sensitivity value, since the constants of the one-way
functions can be established efficiently. Note that if we are not interested in an
n-way sensitivity value, but in the directional derivative at some other point
than the original parameters assessments, then the one-way sensitivity functions
will not suffice.

Example 3. Consider again the outcome of interest Pr(b | ct sh c) and the param-
eters x = Pr(mc) and y = Pr(sh | b̄) from Example 2 and Fig. 1. The one-way
sensitivity functions are given by

f∗Pr(b|ct sh c)(x) =
0.76 + 2.28 · x
5.32− 0.6 · x

and f♦Pr(b|ct sh c)(y) =
1.216

1.216 + 6.64 · y

Their derivatives equal

df∗

dx
(xo) =

12.586

(5.32− 0.6 · xo)2
= 0.465,

df♦

dy
(yo) =

−8.074

(1.216 + 6.64 · yo)2
= −0.299

at xo and yo, respectively. We observe that indeed(∂f
∂x

(xo, yo),
∂f

∂y
(xo, yo)

)
=
(df∗
dx

(xo),
df♦

dy
(yo)

)

Using Proposition 2, we can express svxmax in terms of the constants of the
one-way sensitivity functions and the original probability of the evidence.

Proposition 3 (svxmax in general). Consider n > 1 network parameters x
= (x1, . . . , xn) with original values xo = (xo1, . . . , x

o
n), and let Pr(y | e) be an

output probability of interest. In addition, consider the n one-way sensitivity

functions f
(i)
Pr(y|e)(xi) = f

(i)
Pr(y e)(xi) / f

(i)
Pr(e)(xi), i = 1, . . . , n, where f

(i)
Pr(y e)(xi) =

ci0+ci1 ·xi, with constants ci0, c
i
1, and f

(i)
Pr(e)(xi) = di0+di1 ·xi, with constants di0, d

i
1.

Then the maximum n-way sensitivity value for the n-way function fPr(y|e)(x)
equals

svxmax =
1

Pro(e)2
·

√√√√ n∑
i=1

(ci1 · di0 − ci0 · di1)2

Proof. The derivative of the one-way sensitivity function f
(i)
Pr(y|e)(xi) at the

original parameter assessment xoi equals



df
(i)
Pr(y|e)

dxi
(xoi ) =

ci1 · di0 − ci0 · di1
(di0 + di1 · xoi )2

=
ci1 · di0 − ci0 · di1

Pro(e)2

Since this derivative is equal to the partial derivative
∂fPr(y|e)
∂xi

at xo (Proposi-
tion 2), and svxmax is the length of the gradient vector in xo, the proposition
follows. 2

The following corollary states two convenient properties for svxmax. In addi-
tion, it states properties that can be used in case we are interested in the n-way
sensitivity value in an arbitrary direction, rather than just in the maximum
value.

Corollary 1. Consider n > 1 network parameters x = (x1, . . . , xn) with orig-
inal values xo = (xo1, . . . , x

o
n), and let P be an output probability of interest.

Consider the n-way sensitivity function fP (x) with n-way sensitivity value svxv
in direction v of at most svxmax. In addition, consider the n one-way sensitivity

functions f
(i)
P (xi), i = 1, . . . , n, and let s = (svx1 , . . . , svxn) be a vector of their

one-way signed sensitivity values svxi =
d f

(i)
P

dxi
(xoi ). Then

1. svxmax = |s| =
√∑

i(sv
xi)2

2. s = ∇fP (xo)

3. svxv = s • u, where unit vector u is the normalised vector of v

4. if |svxi | < 1√
n
∀i, then svxmax < 1 and svxmin > −1

Proof. Equalities 1. and 2. follow directly from the definition of the signed one-
way sensitivity value and Proposition 2. Equality 3. then follows directly from
the definition of svxv . Inequality 4. follows directly from Equality 1. 2

Note that the above corollary can be exploited both in the context of an
indirect and a direct approach to computing partial derivatives. Moreover, in-
equality 4. enables us to analyse what combinations of parameters may not be
interesting enough to investigate further during a sensitivity analysis, allowing
us to focus on more important parameters.

Example 4. We illustrate, using Fig. 3, the fact that some combinations of pa-
rameters may not be interesting enough for further investigation. This figure
gives svx1,x2

max as a function of svx1 and svx2 for sensitivity values |svxi | < 1. The
figure in addition shows the plane svx1,x2

max = 1. The fraction of combinations of
svx1 and svx2 that result in svx1,x2

max < 1 is found below the plane svx1,x2
max = 1

and equals π
4 ≈ 0.785. From inequality 4. of Corollary 1 it follows that, in or-

der to result in a two-way sensitivity value ≥ 1, the absolute value of at least
one of the individual values has to be ≥ 1√

2
. Thus whenever both |svx1 | and

|svx2 | are < 0.71, we can be sure that svx1,x2
max < 1 and that svx1,x2

min > −1, that is,



|svx1,x2
v | < 1 for any v. If one of the two parameters, however, has a one-way sen-

sitivity value ≥ 0.71, it depends on the sensitivity value of the other parameter
whether svx1,x2

max ≥ 1 or not.

Fig. 3. svx1,x2
max , as a function of svx1 , svx2 ∈ 〈−1, 1〉 and the plane svx1,x2

max = 1.

4.3 Joint vs Synergistic Effect in n-way Analyses

We observe that the absolute value |svxv | may be higher (or lower) than each of
the individual absolute values |svxi | of which it is composed. For example, in
the network from Fig. 1 (see Examples 2 and 3 ), we had that |svx| = 0.465,
|svy| = 0.299 and that a shift in the direction of v = (−0.1, 0.1) resulted in
|svx,yv | = 0.540. A simultaneous shift thus may have a larger (or smaller) local
effect on the outcome probability than each parameter shift separately.

We would like to note that this joint effect of multiple parameter changes
is not the same as the synergistic effect of multiple parameter changes, as first
described in [3]. A synergistic effect is caused by the fact that the exact form
of the one-way sensitivity function of xi, depends on the original values of the
other parameters of the network, and thus may be different for different values
of some other parameter xj . Such a synergistic effect can only be present if
the n-way sensitivity function of those parameters includes product terms of xi
and xj . For a joint effect of multiple simultaneous changes, the presence of such
product terms is not necessary. As mentioned in Section 2, given just parameters
from a single CPT, a sensitivity function will not include product terms of its
parameters. Given parameters from a single CPT, therefore, no synergistic effect
will be observed; a joint effect, however, may be present.

5 Parameter Tuning

The theory we discussed in Sections 3 and 4 can be used to study the robustness
of a network to small simultaneous parameter changes. Another area of appli-
cation lies in parameter tuning. In building a network, we may want to adjust



parameters in order to meet certain constraints. An example of such a constraint
is Pr(y | e) > t for some probability Pr(y | e) and a desired value t.

In [2], a method for parameter tuning is described in which the parameter
adjustment is guided by the log-odd change of the varied parameters in order
to keep the distance between the old and the new distribution as small as pos-
sible. The paper moreover describes a method to compute the solution space of
all possible parameter changes that would fulfill the constraint. This method,
although not mentioned as such by the authors, in essence provides for com-
puting the constants of the sensitivity function of the varied parameters, and
is exponential in the number of CPTs from which the parameters are chosen.
The method thus is feasible only if the adjusted parameters come from a limited
number of different CPTs.

We now propose another tuning approach, based on the theory introduced
in Sections 3 and 4. In this approach, our goal is to satisfy some constraint by
adjusting a given set of n parameters as little as possible, that is, by keeping
the sum of the absolute values of the parameter changes as low as possible. In
our method the direction of the maximal change is used to guide the parameter
changes. Since the gradient s = (svx1 , . . . , svxn) of an n-way sensitivity function
at xo gives the direction of local maximal increase of the outcome probability,
we will simultaneously adjust the n parameters in or against the direction of
s to achieve the desired value. As long as the changes needed are small, this
adjustment will be a good approximation of the adjustments required to satisfy
the desired constraint with a minimal change of the parameters.

The adjustments needed can be assessed using a sensitivity function in which
the parameters are constrained to variation only in or against the direction of s.
Below we first define an n-way sensitivity function given parameter changes in
or against a fixed direction v to be a sliced sensitivity function in the direction
of v.

Definition 4 (sliced sensitivity function). Let fPr(y|e)(x) be an n-way sen-
sitivity function. A sliced sensitivity function of f in the direction of v, denoted
fvPr(y|e), expresses Pr(y | e) as a function of the change of the parameters x in
or against direction v only.

The following proposition shows that a sliced sensitivity function can be
expressed in a single parameter and takes the form of a fraction of two polynomial
functions of degree at most the number of CPTs from which the parameters are
chosen.

Proposition 4. Consider an n-way sensitivity function fPr(y|e)(x) for an out-
put probability Pr(y | e), and a change of its parameters x = (x1, . . . , xn) in a
fixed direction v = (v1, . . . , vn). Then for any xi, i = 1, . . . , n, with vi 6= 0 there
exists a sliced sensitivity function fvPr(y|e)(xi) of the form:

fvPr(y|e)(xi) =
c0 + c1 · x1i + . . .+ cm · xmi
d0 + d1 · x1i + . . .+ dm · xmi



where each xki , k = 1, . . . ,m, is a polynomial term of degree k and m is the
number of different CPTs from which x1, . . . , xn are chosen.

Proof. Given a change in or against a fixed direction (v1, . . . , vn), we can express
all parameters xj in parameter xi, since (xj − xoj) =

vj
vi
· (xi − xoi ) ⇔ xj =

vj
vi
· (xi − xoi ) + xoj , which is linear in xi. Product terms of parameters in the

n-way function fPr(y|e)(x) will now result in polynomial terms in fvPr(y|e)(xi),
of which the degree is determined by the number of interacting parameters in
fPr(y|e)(x). This number equals at most the number of CPTs from which the
parameters x1, . . . , xn are chosen. 2

The n-way sensitivity function in any fixed vector direction v thus is a poly-
nomial with as maximum degree the number of CPTs m from which the param-
eters are chosen and is determined by just 2 · (m+1) constants. This observation
also holds for the direction s of maximal increase. A constraint on Pr(y | e)
now can be expressed in terms of a sliced sensitivity function in the direction
of s, and a feasible solution with minimal parameter change in or against the
direction of s can be derived, if any. The solutions of a polynomial equation can
be established analytically for polynomials up to degree 4; solutions for higher
degree polynomials can be approximated.

In the above we assumed a given set of parameters {x1, . . . , xn}. Note that
a reasonable heuristic for choosing a set of parameters to adjust can be based
on the one-way sensitivity values since svxmax =

√∑
i(sv

xi)2; i.e. selecting the
n parameters with highest one-way sensitivity value will allow for the largest
possible local shift in the output upon their simultaneous perturbation.

Example 5. Consider again the example network from Fig. 1. Suppose we know
that the outcome probability Pr(b | ct sh c) should be at least 0.80. In the network
as it is we find that Pr(b | ct sh c) = 0.76 so some parameter adjustment is
required. First the signed one-way sensitivity values svx for all independent
parameters x of the network are assessed2; these are given in Table 1. We observe
that the parameters which will affect the outcome probability the most are x =
Pr(b | mc) and y = Pr(ct | b̄). Suppose that we want to satisfy our constraint
by adjusting those two parameters. The direction of maximal increase is v =
(1.87,−1.81) ∼ (1,−0.97). Tying y to x, the sliced sensitivity function in the
direction of the maximal change now is

fvPr(b|ct sh c)(x) =
0.02432 + 0.4864 · x

0.0478424 + 0.318496 · x+ 0.09312 · x2

Solutions to fvPr(b|ct sh c)(x) = 0.80 are x ≈ 0.061 and x = 3.047, where only the

former is feasible. Parameter values that will satisfy Pr(b | ct sh c) ≥ 0.80 thus
are x = Pr(b | mc) = 0.061 and y = Pr(ct | b̄) = yo − 0.97 · (0.061 − xo) =
0.10− 0.97 · (0.061− 0.05) = 0.089.

2 Recall that dependent parameters are included in the analysis by covariation.



Table 1. Sensitivity values svx for independent parameters of the example network
from Fig. 1.

x xo svx

Pr(mc) 0.20 0.12
Pr(b | mc) 0.20 0.56
Pr(b | mc) 0.05 1.87
Pr(isc | mc) 0.80 −0.09
Pr(isc | mc) 0.20 −0.41
Pr(ct | b) 0.95 0.19
Pr(ct | b̄) 0.10 −1.81
Pr(c | b isc) 0.80 0.11
Pr(c | b isc) 0.80 0.11
Pr(c | b̄ isc) 0.80 −0.20
Pr(c | b̄ isc) 0.05 −0.46
Pr(sh | b) 0.80 0.23
Pr(sh | b̄) 0.60 −0.30

6 Discussion

The robustness of Bayesian networks to changes in their parameter probabilities
can be studied with a sensitivity analysis. Since the study of multiple simulta-
neous parameter shifts is computationally expensive, most research has focused
on one-way sensitivity analyses in which only a single parameter is varied at
a time. An important notion in sensitivity analysis is the notion of sensitivity
value, which captures the sensitivity of some outcome of the network to a small
change in a single parameter under consideration. In this paper we generalised
this concept to multiple dimensions and proved that the computation of such
an n-way sensitivity value can be done efficiently from the one-way sensitivity
values of the parameters under consideration.

In contrast to a one-way sensitivity value, an n-way sensitivity value varies
depending on the direction of shift under consideration. We expressed the di-
rection of maximal change in terms of one-way sensitivity values and provided
bounds on the n-way sensitivity value. We argued that the maximal (minimal)
sensitivity value and the corresponding direction of maximal change is not only
useful for studying the robustness of a Bayesian network, but can also be used
in the context of network tuning. For small parameter changes, a shift of the
parameters in or against the direction of the maximal increase until some tun-
ing constraint is met will yield a good approximation of the minimal parameter
change necessary to meet this constraint. We also proved that, since a fixed
vector direction of change ties all parameters linearly, the effect of a parameter
shift in the direction of the maximal change on some outcome probability can be
efficiently established. To this end we introduced the concept of sliced sensitivity
function for a sensitivity function that captures such a linearly tied parameter
shift.



In a sliced sensitivity function variables are tied linearly. Variables, however,
can also be tied by some other meaningful relationship. In [2], for example,
parameters are tied by their log-odds ratio changes. In future research, we would
like to expand the notion of sliced sensitivity function to more general forms of
constrained sensitivity functions and explore the use of these functions both
within and outside the field of parameter tuning.
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