
Exploiting Non-monotonic Influences in Qualitative Belief Networks

Silja Renooij and Linda C. van der Gaag

Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{silja,linda}@cs.uu.nl

Abstract

In a qualitative belief network, depen-
dences between variables are indicated
by qualitative signs. These signs serve to
model monotonic probabilistic relation-
ships only: non-monotonic relationships
between variables are modelled as lack
of information. In this paper, we pro-
pose to include information about non-
monotonic probabilistic influences be-
tween variables explicitly in a qualitative
belief network. We show that this infor-
mation can be exploited in probabilistic
inference to forestall unnecessarily weak
results.
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1 Introduction

In the late 1980s, the framework of belief networks
was introduced for reasoning with uncertainty [4].
A belief network is a concise representation of a
joint probability distribution on a set of statisti-
cal variables. It encodes the variables concerned
along with their interdependences in a directed
graph; the dependences between the variables are
quantified by (conditional) probabilities. Asso-
ciated with the belief-network formalism are al-
gorithms for probabilistic inference. The increas-
ing number of knowledge-based systems built on a
belief network acknowledge the usefulness of the
formalism and its associated algorithms for ad-
dressing complex real-life problems. Experience

shows, however, that the large number of prob-
abilities required poses a major obstacle to their
application [1]. Motivated by this experience, the
framework of qualitative belief networks was in-
troduced in the early 1990s [5].

A qualitative belief network is a qualitative ab-
straction of a quantified belief network. Like a
belief network, it encodes the variables under con-
sideration along with their interdependences in
a directed graph. Rather than by probabilities,
however, a qualitative belief network indicates
the dependences between its variables by quali-
tative signs. These signs serve to capture quali-
tative probabilistic influences between variables.
For probabilistic inference with a qualitative be-
lief network, an elegant algorithm is available [2].

A qualitative belief network models, by means of
signs, monotonic qualitative influences between
its variables only. A qualitative influence between
two variables is monotonic if observing higher val-
ues for one of these variables renders a shift in the
probabilities of the values for the other variable in
a direction that is not dependent upon any other
influence. If the direction of shift does depend on
influences from other variables, we say that the
probabilistic influence between the two variables
is non-monotonic.

In a qualitative belief network, a non-monotonic
qualitative influence between two variables is in-
dicated by a ‘?’ sign. The same sign is used to
express an unknown qualitative influence, that is,
a probabilistic influence for which the direction of
shift is unknown. Non-monotonicity of a quali-
tative influence and lack of information therefore
are expressed in the same way. Non-monotonicity



and lack of information, however, are different
from a conceptual point of view. While an un-
known qualitative influence does not provide any
information, a non-monotonic influence conveys
at least some information by the nature of its non-
monotonicity. In this paper, we argue that it is
worthwhile to explicitly distinguish between non-
monotonic influences and unknown influences in
a qualitative belief network. We show how use-
ful information can be extracted from the non-
monotonic influences of a network that can be
exploited in probabilistic inference to forestall un-
necessarily weak results.

The paper is organised as follows. In Section 2,
we briefly review the belief-network framework;
qualitative belief networks are introduced in Sec-
tion 3. In Section 4, we investigate non-monotonic
qualitative influences between variables and dis-
cuss how these influences can be exploited. The
paper is rounded off with some conclusions and
directions for further research in Section 5.

2 Belief networks

A belief network is a concise representation of a
joint probability distribution on a set of statistical
variables [4]. It consists of a qualitative part and
an associated quantitative part. The qualitative
part is a graphical representation of the interde-
pendences between the variables in the encoded
distribution. It takes the form of an acyclic di-
rected graph G. Each node A in G represents a
statistical variable that takes one of a finite set of
values. In this paper, we assume all variables to
be binary, taking one of the values true and false;
for abbreviation, we use a to denote A = true and
ā to denote A = false. The arcs in the digraph
G model possible dependences between the rep-
resented variables. Informally speaking, we take
an arc A → B between the nodes A and B to
represent an influential relationship between the
associated variables A and B; the arc’s direction
marks B as the effect of the cause A. Absence
of an arc between two nodes means that the cor-
responding variables do not influence each other
directly and, hence, are (conditionally) indepen-
dent.

Associated with the qualitative part of a belief

network are numerical quantities from the en-
coded probability distribution. With each vari-
able A in the digraph is associated a set of con-
ditional probabilities Pr(A | π(A)), describing the
joint influence of values for the causes π(A) of A
on the probabilities of variable A’s values. These
sets of probabilities constitute the quantitative
part of the network.

Example 1 We consider the belief network
shown in Figure 1. The network represents

L M

C

Pr(l) = 0.9 Pr(m) = 0.4

Pr(c | lm) = 0.35
Pr(c | l̄m) = 0.95

Pr(c | lm̄) = 0
Pr(c | l̄m̄) = 1.0

Figure 1: The Cervical Metastases belief network.

a small, highly simplified fragment of medical
knowledge in oncology, pertaining to lymphatic
metastases of an oesophageal carcinoma. The
variable L represents the location of an oe-
sophageal carcinoma in a patient’s oesophagus.
The value true of L represents the information
that the carcinoma resides in the lower two-third
of the oesophagus; l̄ expresses that the carcinoma
is located in the oesophagus’ upper one-third.
An oesophageal carcinoma upon growth typically
gives rise to lymphatic metastases. The variable
M represents the extent of these metastases. The
value false of M indicates that just the local and
regional lymph nodes are affected; m denotes that
the distant lymph nodes are affected by cancer
cells as well. Which lymph nodes are local or
regional and which are distant depends on the
location of the primary tumour in the oesopha-
gus. The lymph nodes in the neck, or cervix, for
example, are regional for a carcinoma in the up-
per one-third of the oesophagus and distant oth-
erwise. The variable C represents the presence or
absence in a patient of metastases in the cervical
lymph nodes. �

A belief network uniquely represents a joint prob-
ability distribution on its variables and thus pro-
vides for computing any probability of interest.
Various different algorithms for probabilistic in-
ference with a belief network are available.



3 Qualitative belief networks

Qualitative belief networks, as qualitative abstrac-
tions of belief networks, bear a strong resemblance
to their quantitative counterparts [5]. A qualita-
tive belief network equally comprises a graphical
representation of the interdependences between
a set of statistical variables, once again taking
the form of an acyclic digraph. Instead of condi-
tional probabilities, however, a qualitative belief
network associates signs with its digraph. These
signs serve to capture the probabilistic influences
and synergies between the various variables.

A qualitative probabilistic influence between two
variables expresses how the values of one vari-
able influence the probabilities of the values of
the other variable. For example, a positive qual-

itative influence of a variable A on its effect B,
denoted S+(A,B), expresses that observing the
value true for A makes the value true for B more
likely, regardless of any other direct influences on
B, that is,

Pr(b | ax) ≥ Pr(b | āx)

for any combination of values x for the set π(B)\
{A} of causes of B other than A. A negative qual-

itative influence, denoted S−(A,B), and a zero

qualitative influence, denoted S0(A,B), are de-
fined analogously, replacing ≥ in the above for-
mula by ≤ and =, respectively. If the influence of
A on B is non-monotonic, that is, the sign of the
influence depends upon the values of other causes
of B, or unknown, we say that the influence is
ambiguous, denoted S?(A,B). With each arc in
a qualitative network’s digraph an influence is as-
sociated.

The set of influences of a qualitative belief net-
work exhibits various convenient properties [5].
The property of symmetry guarantees that, if
the network includes the qualitative influence
S+(A,B), then it also includes S+(B,A). The
property of transitivity asserts that the qualita-
tive influences along a trail between two variables,
specifying at most one incoming arc for each vari-
able, combine into a single compound influence
between these variables with the ⊗-operator from
Table 1. The property of composition further as-
serts that multiple qualitative influences between

two variables along parallel trails combine into a
compound influence between these variables with
the ⊕-operator.

Table 1: The operators for combining signs.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

In addition to influences, a qualitative belief net-
work includes synergies modeling interactions be-
tween influences. An additive synergy between
three variables expresses how the values of two
variables jointly influence the probabilities of the
values of the third variable. For example, a posi-

tive additive synergy of the variables A and B on
their common effect C, denoted Y +({A,B}, C),
expresses that the joint influence of A and B on
C is greater than the sum of their separate in-
fluences, regardless of any other influences on C,
that is,

Pr(c | abx)+Pr(c | āb̄x) ≥ Pr(c | ab̄x)+Pr(c | ābx)

for any combination of values x for the set of
causes of C other than A and B. Negative, zero,
and ambiguous additive synergy are defined anal-
ogously. A qualitative network specifies an ad-
ditive synergy for each pair of causes and their
common effect in its digraph.

A product synergy between three variables ex-
presses how the value of one variable influences
the probabilities of the values of another variable
in view of an observed value for the third variable
[3]. For example, a negative product synergy of a
variable A on a variable B given the value true for
their common effect C, denoted X−({A,B}, c),
expresses that, given c, the value true for A ren-
ders the value true for B less likely, that is,

Pr(c | abx) · Pr(c | āb̄x) ≤ Pr(c | ab̄x) · Pr(c | ābx)

for any combination of values x for the set of
causes of C other than A and B. Positive, zero,
and ambiguous product synergy again are defined
analogously. For each pair of causes and their
common effect, a qualitative belief network spec-
ifies two product synergies, one for each value of



the effect. Upon observation of a specific value
for a common effect of two causes, the associated
product synergy induces an influence between the
two causes; the sign of this influence equals the
sign of the synergy. A qualitative influence that
is thus induced by a product synergy is termed an
intercausal influence.

Example 2 We consider the qualitative abstrac-
tion of the Cervical Metastases belief network
from Figure 1. From the conditional probabilities
specified for the variable C, it is readily verified
that the variable L exerts a negative qualitative
influence on C; the influence of the variable M

on C is ambiguous. The joint influence of L and
M on C is larger than the sum of their separate
influences; L and M therefore exhibit a positive
additive synergy on C. Furthermore, either value
for the variable C induces an intercausal influence
between L and M . For the value true of C this in-
tercausal influence is captured by a positive prod-
uct synergy and for the value false the influence
is captured by a negative synergy. The qualita-
tive belief network that is thus abstracted from
the Cervical Metastases belief network is shown
in Figure 2; the signs of the qualitative influences

L M

C

+, −

− ?
+

Figure 2: The qualitative Cervical Metastases be-
lief network.

are shown along the network’s arcs, the sign of
the additive synergy is indicated over the curve
over the variable C, and the signs of the product
synergies are shown over the dashed line between
the variables L and M . �

We would like to note that, although in the exam-
ple above we have computed the signs of the var-
ious qualitative probabilistic relationships from
the probabilities of the original belief network, in
real-life applications these signs are elicited di-
rectly from domain experts.

For probabilistic inference with a qualitative be-
lief network, an elegant algorithm is available [2].
The basic idea of this algorithm is to trace the
effect of observing a single variable’s value on the

probabilities of the other variables represented in
the network by message-passing between neigh-
bours. For each variable, a sign is determined,
indicating the direction of the shift in the vari-
able’s probabilities occasioned by the new obser-
vation in the presence of previous observations.
Initially, the sign of every variable equals ‘0’. For
the newly observed variable, an appropriate sign
is entered, that is, either a ‘+’ for the value true

or a ‘−’ for the value false. The variable updates
its sign and subsequently sends a message to each
neighbour in the digraph and every variable on
which it exerts an induced intercausal influence.
The sign of this message equals the sign-product
of the variable’s (new) sign and the sign of the
influence associated with the arc it traverses. A
variable that receives a message in turn updates
its sign with the sign-sum of its original sign and
the sign of the message it receives. If its sign
has changed, the variable sends an appropriate
message to any of its neighbours. This process is
repeated throughout the network, building upon
the properties of symmetry, transitivity, and com-
position of influences. Since a variable can change
sign at most twice, the process visits each variable
at most twice and is therefore guaranteed to halt.

4 Non-monotonic influences

A qualitative belief network serves to capture in
essence only monotonic qualitative influences be-
tween its variables. We recall from Section 3 that,
for example, a positive qualitative influence of a
variable A on its effect B expresses that observ-
ing the value true for A makes the value true for
B more likely. The influence exerted by A on B

results in a shift in the probabilities of B’s values
in a direction that is independent of any other
influences exerted on B. Qualitative influences
between variables, however, need not necessarily
be monotonic in nature as was demonstrated in
Examples 1 and 2. The influence exerted by a
variable A on its effect B is non-monotonic, for
example, if the resulting direction of shift in the
probabilities of B’s values depends upon the in-
fluence of some other cause C on B.

In a qualitative belief network, a non-monotonic
influence is denoted by the sign ‘?’. The same
sign is used to indicate an unknown qualitative



influence. Non-monotonicity of an influence and
lack of information are thus represented in the
same way. Non-monotonicity and lack of informa-
tion, however, are not the same from a conceptual
point of view. While an unknown qualitative in-
fluence does not provide any information at all, a
non-monotonic influence conveys at least some in-
formation by the nature of its non-monotonicity.
Now, the sign ‘?’ in a qualitative belief network
gives rise to unwished-for ambiguous results in
probabilistic inference, as is seen from Table 1.
It is therefore worthwhile to try and avoid ‘?’-
signs whenever possible. For this purpose, we will
distinguish between the non-monotonic and un-
known qualitative influences of a network explic-
itly and extract as much information as possible
from its non-monotonic influences. We will show
that this information can be exploited in prob-
abilistic inference to forestall unnecessarily weak
ambiguous results.

A non-monotonic qualitative influence of a vari-
able A on its effect B is a qualitative influence
of A on B that is not positive, negative, zero, or
unknown. We say that the non-monotonicity of
the influence is provoked by another cause C of
B, denoted S∼C (A,B), if the sign of the influ-
ence depends unambiguously on the value of C.
More specifically, the non-monotonic influence ex-
presses that for all combinations of values y for the
set of causes of B other than A and C, we have
either

Pr(b | acy) ≥ Pr(b | ācy) and
Pr(b | ac̄y) ≤ Pr(b | āc̄y),

or Pr(b | acy) ≤ Pr(b | ācy) and
Pr(b | ac̄y) ≥ Pr(b | āc̄y),

with strict inequalities for at least one combina-
tion of values y. From this definition, it is readily
seen that once a value for the provoking variable
C has been observed, the non-monotonic influ-
ence of A on B reduces to a monotonic influence.
We say that the observation resolves the non-
monotonicity of A’s influence on B. We would like
to note that the concept of provoking variable can
easily be extended to sets of variables; for ease of
exposition, however, we restrict the discussion to
non-monotonicities provoked by a single variable.

Although an observation for its provoking vari-
able reduces a non-monotonic influence between

two variables to a monotonic influence, the sign of
the resulting influence is yet unknown. This sign,
however, can be readily determined from the ad-
ditive synergy defined for the variables concerned.
We consider, as an example, a non-monotonic
qualitative influence S∼C (A,B) of a variable A

on its effect B in which the non-monotonicity is
provoked by the variable C. We suppose that the
variables A and C exhibit a positive additive syn-
ergy on B, that is, we have

Pr(b | acy)+Pr(b | āc̄y) ≥ Pr(b | ac̄y)+Pr(b | ācy)

for any combination of values y for the set of
causes of B other than A and C. From the non-
monotonicity of the influence of A on B and the
sign of the additive synergy of A and C on B, we
conclude that

Pr(b | acy) ≥ Pr(b | ācy) and
Pr(b | ac̄y) ≤ Pr(b | āc̄y)

for any combination y. Now, upon observation of
the value true for the provoking variable C, we
find that

Pr(b | ax) ≥ Pr(b | āx)

for any combination of values x, including the
observation c, for the set of causes of B other
than A. We conclude that, after resolving the
non-monotonicity involved, the variable A exerts
a positive qualitative influence on B. Alterna-
tively, upon observation of c̄, the variable A exerts
a negative influence on B. A negative additive
synergy of A and C on B leads to an analogous
result. We conclude that the sign of the resolved
non-monotonic influence equals the sign-product
of the sign of the additive synergy involved and
the sign of the observation for the provoking vari-
able.

Example 3 We consider once again the quali-
tative Cervical Metastases belief network from
Figure 2. The ambiguous influence S?(M,C)
of the extent of the lymphatic metastases of
an oesophageal carcinoma, M , on the presence
of metastases in the cervical lymph nodes, C,
is a non-monotonic influence in which the non-
monotonicity is provoked by the location of the
carcinoma, L. From the probabilities specified
for the variable C in Figure 1, it is readily seen
that, given a carcinoma in the upper one-third of



a patient’s oesophagus, that is, given l̄, the vari-
able M exerts a negative influence on C; given l,
M exerts a positive qualitative influence on the
variable C. In the qualitative belief network, the
sign of the influence of M on C after resolution
by l̄ is computed to be the sign-product of the
sign ‘+’ of the additive synergy of M and L on
C and the sign ‘−’ of the observation for L, that
is, the sign is computed to be + ⊗ − = −. After
resolution by l, the sign of the influence of M on
C is computed to be +⊗+ = +. �

We would like to note that in real-life applications
of a qualitative belief network, non-monotonic
qualitative influences and their provoking vari-
ables are elicited directly from domain experts.

For probabilistic inference with a qualitative be-
lief network in which non-monotonic and un-
known influences are explicitly distinguished, ba-
sically the same algorithm can be used as for
probabilistic inference with a regular qualitative
network. The only difference lies in the traver-
sal of a non-monotonic qualitative influence. Be-
fore propagating the sign of a non-monotonic in-
fluence by sign multiplication, it is investigated
whether or not the influence’s non-monotonicity
is resolved by the available observations. If the
non-monotonicity is resolved, the sign of the re-
solved influence as described above is propagated;
otherwise, the ambiguous sign ‘?’ is propagated.
We would like to point out that by thus exploit-
ing information about non-monotonic influences
in a qualitative belief network, at least some am-
biguous results in probabilistic inference are fore-
stalled.

5 Conclusions and further research

A qualitative belief network in essence serves
to capture monotonic probabilistic influences be-
tween its variables only. We have argued that
it is worthwhile to explicitly capture informa-
tion about non-monotonic influences as well. We
have shown that this information can be exploited
in probabilistic inference to forestall unnecessar-
ily weak ambiguous results. In this paper, we
have focused attention on non-monotonic influ-
ences between binary variables. We would like
to extend our ideas to induced intercausal influ-

ences that are non-monotonic in nature. Further-
more, we would like to generalise our results to
non-binary variables. To conclude, we envision
further investigation of the information that can
be derived from sets of variables provoking non-
monotonicities to forestall even more ambiguous
results in probabilistic inference with a qualitative
belief network.
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