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Abstract

Qualitative probabilistic networks have been designed
for probabilistic reasoning in a qualitative way. As
a consequence of their coarse level of representation
detail, qualitative probabilistic networks do not pro-
vide for resolving trade-offs and typically yield ambigu-
ous results upon inference. We present an algorithm
for computing more informative results for unresolved
trade-offs. The algorithm builds upon the idea of zoom-
ing in on the truly ambiguous part of a qualitative
probabilistic network and identifying the information
that would serve to resolve the trade-offs present.

Introduction
Qualitative probabilistic networks were introduced in
the early 1990s for probabilistic reasoning with uncer-
tainty in a qualitative way (Wellman 1990). A quali-
tative probabilistic network encodes variables and the
probabilistic relationships between them in a directed
acyclic graph. The encoded relationships basically rep-
resent influences on the variables’ probability distribu-
tions. Each of these influences is summarised by a qual-
itative sign indicating a direction of shift in probabil-
ity distribution. For probabilistic inference with qual-
itative networks, an elegant algorithm based upon the
idea of propagating and combining signs is available
(Druzdzel and Henrion 1993a).
Qualitative probabilistic networks capture the rela-

tionships between their variables at a coarse level of
representation detail. These networks do therefore not
provide for resolving trade-offs, that is, for establishing
the net result of two or more conflicting influences on
a variable’s probability distribution. If trade-offs are
represented in a qualitative probabilistic network, then
probabilistic inference will typically yield ambiguous re-
sults. Once an ambiguity arises, it will spread through-
out most of the network upon inference, even if only a
very small part of the network is truly ambiguous.
The issue of dealing with trade-offs in qualitative

probabilistic networks has been addressed by several re-
searchers. S. Parsons (1995) has introduced, for exam-
ple, the concept of categorical influences. A categorical
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influence is either an influence that serves to increase a
probability to 1 or an influence that decreases a prob-
ability to 0, regardless of any other influences, thereby
resolving any trade-off in which it is involved. C.-L. Liu
and M.P. Wellman (1998) have designed a method for
resolving trade-offs based upon the idea of reverting to
numerical probabilities whenever necessary. S. Renooij
and L.C. van der Gaag (1999) have enhanced the for-
malism of qualitative probabilistic networks by distin-
guishing between strong and weak influences. Trade-off
resolution during inference is then based on the idea
that strong influences dominate over conflicting weak
influences.

In this paper, we present a new algorithm for deal-
ing with trade-offs in qualitative probabilistic networks.
Rather than resolve trade-offs by providing for a finer
level of representation detail, our algorithm identifies
from a qualitative probabilistic network the informa-
tion that would serve to resolve the trade-offs present.
From this information, a more insightful result than
ambiguity is constructed.

Our algorithm for dealing with trade-offs builds upon
the idea of zooming in on the part of a qualitative prob-
abilistic network where the actual trade-offs reside. Af-
ter an observation has been entered into a network, the
sign of the influence of this observation on a variable
of interest is computed. If the sign is ambiguous, then
there are trade-offs present in the network. In fact,
a trade-off must reside along the reasoning chains be-
tween the observation and the variable of interest. Our
algorithm isolates these reasoning chains to constitute
the part of the network that is relevant for address-
ing trade-offs. From this relevant part, an informa-
tive result is constructed for the variable of interest in
terms of values for the variables involved and the rela-
tive strengths of the influences among them.

The paper is organised as follows. We set out by pre-
senting some preliminaries concerning qualitative prob-
abilistic networks. We then introduce the basic idea of
our algorithm for zooming in on trade-offs informally,
by means of an example. The algorithm is thereupon
discussed in further detail. The paper ends with some
concluding observations.



Preliminaries

A qualitative probabilistic network encodes statistical
variables and the probabilistic relationships between
them in a directed acyclic graph. Each node in the
digraph represents a variable. Each arc can be looked
upon as expressing a causal influence from the node
at the tail of the arc on the node at the arc’s head.
More formally, the digraph’s set of arcs captures proba-
bilistic independence between the represented variables.
We say that a chain between two nodes is blocked if
it includes either an observed node with at least one
outgoing arc or an unobserved node with two incom-
ing arcs and no observed descendants. If all chains be-
tween two nodes are blocked, then these nodes are said
to be d-separated and the corresponding variables are
considered conditionally independent given the entered
observations (Pearl 1988).
A qualitative probabilistic network associates with its

digraph qualitative influences and qualitative synergies
(Wellman 1990). A qualitative influence between two
nodes expresses how the values of one node influence the
probabilities of the values of the other node. A positive
qualitative influence of node A on its successor B ex-
presses that observing higher values for A makes higher
values for B more likely, regardless of any other di-
rect influences on B; the influence is denoted S+(A,B),
where ‘+’ is the influence’s sign. A negative qualitative
influence, denoted S−, and a zero qualitative influence,
denoted S0, are defined analogously. If the influence of
node A on node B is not monotonic or unknown, we
say that it is ambiguous, denoted S?(A,B).
The set of influences of a qualitative probabilistic

network exhibits various properties (Wellman 1990).
The property of symmetry states that, if the network
includes the influence Sδ(A,B), then it also includes
Sδ(B,A), δ ∈ {+,−, 0, ?}. The property of transitivity
asserts that qualitative influences along a chain that
specifies at most one incoming arc for each node, com-
bine into a single influence with the ⊗-operator from
Table 1. The property of composition asserts that mul-
tiple influences between two nodes along parallel chains
combine into a single influence with the ⊕-operator.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 1: The ⊗- and ⊕-operators.

In addition to influences, a qualitative probabilistic net-
work includes synergies that express how the value of
one node influences the probabilities of the values of an-
other node in view of a value for a third node (Druzdzel
and Henrion 1993b). A negative product synergy of
node A on node B (and vice versa) given the value c for
their common successor C, denoted X−({A,B}, c), ex-
presses that, given c, higher values for A render higher
values for B less likely. A product synergy induces

a qualitative influence between the predecessors of a
node upon observation; the induced influence is coined
an intercausal influence. Positive, zero, and ambiguous
product synergies are defined analogously.

Example 1 We consider the small qualitative proba-
bilistic network shown in Figure 1. The network rep-
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Figure 1: The qualitative antibiotics network.

resents a fragment of fictitious and incomplete medical
knowledge, pertaining to the effects of administering
antibiotics on a patient. Node A represents whether or
not a patient takes antibiotics. Node T models whether
or not a patient has typhoid fever and node D repre-
sents presence or absence of diarrhoea. Node F de-
scribes whether or not the composition of a patient’s
bacterial flora has changed.
Typhoid fever and a change in bacterial flora are

modelled as the possible causes of diarrhoea. As the
presence of either of them will increase the probability
of a patient having diarrhoea, the influences of both T
and F on D are positive. Antibiotics can cure typhoid
fever by killing the bacteria that cause the infection; the
influence of A on T , therefore, is negative. Antibiotics
can also change the composition of a patient’s bacterial
flora, thereby increasing the risk of diarrhoea; the influ-
ence of A on F is positive. Upon observing diarrhoea
in a patient, the presence of typhoid fever in itself is a
sufficient explanation, reducing the probability that a
change in bacterial flora is also a contributing cause; a
similar observation holds for a change in composition of
bacterial flora. Given diarrhoea, therefore, a negative
intercausal influence is induced between T and F .
The qualitative antibiotics network models two con-

flicting influences on the probability distribution of
nodeD and therefore captures a trade-off. For a patient
who is known to take antibiotics, the trade-off cannot
be resolved and the result with regard to this patient
having diarrhoea is ambiguous. �

For inference with a qualitative network, an elegant al-
gorithm is available fromM.J. Druzdzel and M. Henrion
(1993a). The basic idea of the algorithm is to trace the
effect of observing a node’s value on the other nodes
in a network by message-passing between neighbouring
nodes. For each node, a node sign is determined, indi-
cating the direction of change in the node’s probability
distribution occasioned by the new observation given
all previously observed node values. Initially, all node
signs equal ‘0’. For the newly observed node, an ap-
propriate sign is entered, that is, either a ‘+’ for the
observed value true or a ‘−’ for the value false. Each



node receiving a message updates its sign and subse-
quently sends a message to each neighbour that is not
d-separated from the observed node and to every node
on which it exerts an induced intercausal influence. The
sign of this message is the⊗-product of the node’s (new)
sign and the sign of the influence it traverses. This pro-
cess is repeated throughout the network, building on
the properties of symmetry, transitivity, and composi-
tion of influences. Each node is visited at most twice,
since a node can change sign at most twice, and the
process is therefore guaranteed to halt.

Outline of the Algorithm

If a qualitative probabilistic network models trade-offs,
it will typically yield ambiguous results upon inference
with the sign-propagation algorithm. From Table 1, we
have that whenever two conflicting influences on a node
are combined with the ⊕-operator, an ambiguous sign
will result. Once an ambiguous sign is introduced, it
will spread throughout most of the network and an am-
biguous sign is likely to result for the node of interest.
By zooming in on the part of the network where the
actual trade-offs reside and identifying the information
that would serve to resolve them, a more insightful re-
sult can be constructed. We illustrate the basic idea of
our algorithm for this purpose.
As our running example, we consider the qualitative

probabilistic network from Figure 2. Now, suppose that
the value true has been observed for the node H and
that we are interested in its influence on the probability
distribution of node A. Tracing the influence of the ob-
servation on every node’s distribution by means of the
basic sign-propagation algorithm, results in the node
signs as shown in Figure 3. These signs reveal that
at least one trade-off must reside along the reasoning
chains between the observed node H and the node of
interest A. These chains together constitute the part
of the network that is relevant for addressing the trade-
offs that have given rise to ambiguous results; this part
is termed the relevant network. For the example, the
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Figure 2: The example qualitative network.
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Figure 3: The result of propagating ‘+’ for node H .

relevant network is shown in Figure 4 below the dashed
line. Our algorithm isolates this relevant network for
further investigation. To this end, it deletes from the
network all nodes and arcs that are connected to, but
no part of the reasoning chains from H to A.
A relevant network for addressing trade-offs typi-

cally includes many nodes with ambiguous node signs.
Often, however, only a small number of these nodes
are actually involved in the trade-offs that have given
rise to ambiguous results. Figure 4, for example, re-
veals that, while the nodes A, B, and C have am-
biguous node signs, the influences between them are
not conflicting. In fact, any unambiguous node sign
sign[C] for node C would result in the unambiguous
node sign sign [C]⊗ ((+ ⊗−)⊕−) = sign[C]⊗− for
node A. For addressing the trade-offs involved, there-
fore, the part of the relevant network between node C
and node A can be disregarded. Node C is termed
the pivot node for the node of interest A. In general,
the pivot node is a node with an ambiguous sign for
which every possible unambiguous sign would uniquely
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Figure 4: The relevant network, below the dashed line.



determine an unambiguous sign for the node of interest;
in addition, the pivot node does not reside on an un-
blocked chain from another node having this property
to the node of interest, that is, the pivot node is the
node with this property “closest” to the observed node.
Our algorithm now computes from the relevant network
the pivot node for the network’s node of interest.
From the definition of pivot node, we have that there

must be two or more reasoning chains from the observed
node to the pivot node; the net influence along these
chains must be conflicting. Our algorithm identifies the
information that would serve to resolve the ambiguity at
the pivot node. For this purpose, the algorithm selects
a minimal set of nodes, each with two or more incoming
arcs, for which unambiguous node signs would uniquely
determine the signs of the separate influences on the
pivot node. These nodes with each other constitute the
resolution frontier for the pivot node. In terms of signs
for these nodes, the algorithm now constructs a sign for
the pivot node by comparing the relative strengths of
its various conflicting reasoning chains.

C

D E

F

δ3 + − δ4

δ1 + + δ2

Figure 5: The construction of a sign for node C.

In the example network, two influences are exerted on
the pivot node C: the influence from node F via node
D on C and the influence from E on C. Note that
unambiguous signs for the nodes F and E would render
both influences unambiguous. These nodes with each
other now are taken to constitute the resolution frontier
for node C. For the sign δ of the influence of node F
via node D on C and for the sign δ′ of the influence of
E on C, we find that

δ = sign [F ]⊗ δ1 ⊗ δ3 δ′ = sign [E]⊗ δ4
= sign [F ]⊗+ = sign [E]⊗−

where δi, i = 1, 3, 4, are as in Figure 5. For the node
sign sign[C] of the pivot node, the algorithm now con-
structs the following result:

if |δ| ≥ |δ
′

|, then sign [C] = δ, else sign [C] = δ′

where |δ| denotes the strength of the sign δ. So, if the
two influences on node C have opposite signs, then their
relative strengths will determine the sign for node C.
The sign of the node of interest A then follows directly
from the sign of C.

Splitting up and Constructing Signs

In this section we further detail some of the issues in-
volved in our algorithm for zooming in on trade-offs.
In doing so, we assume that a qualitative network does
not include any ambiguous influences, that is, ambigu-
ous node signs upon inference result from unresolved

trade-offs. We also assume that a single observation
is entered into the network and that sign-propagation
results in an ambiguous sign for the node of interest.
We focus attention on identifying the pivot node from
the relevant part of a qualitative network and on con-
structing an informative result for the network’s node
of interest; further details are provided in a forthcoming
technical paper.

Splitting up the Network

Our algorithm identifies from a qualitative network the
relevant part for addressing the trade-offs that have re-
sulted in an ambiguous sign for the node of interest.
From the relevant network, the pivot node is identified.
The relevant network is constructed by reducing the

original network’s digraph. First, the computationally
relevant part of the network is identified. In a quantita-
tive probabilistic network, a node is said to be computa-
tionally relevant to a node of interest, if its (conditional)
probability distribution is required for computing the
posterior probability distribution for this node of inter-
est given all previously observed nodes. For computing
the set of computationally relevant nodes, the efficient
Bayes-Ball algorithm is available from R.D. Shachter
(1998). From the computationally relevant network, all
nodes are identified that do not reside on any reason-
ing chain from the newly observed node to the node
of interest; these nodes are removed to yield the rele-
vant network. An efficient algorithm is available from
Y. Lin and M.J. Druzdzel (1997) to identify these so-
called nuisance nodes.
From the relevant network, the pivot node is identi-

fied. We recall that the pivot node is a node with an
ambiguous sign for which any unambiguous sign would
uniquely determine an unambiguous sign for the node
of interest. From this property, we have that the pivot
node is either the node of interest or an articulation
node in the relevant network. An articulation node is
a node that upon removal, along with its incident arcs,
makes the digraph fall apart into various components;
articulation nodes are found by depth-first search (Cor-
men, Leiserson, and Rivest 1990). Our algorithm now
sets out by computing all articulation nodes in the rel-
evant network. As any reasoning chain in the relevant
network from the observed node to the node of interest
visits all articulation nodes, we have that there exists a
total ordering on these nodes. Numbering them from 1,
closest to the observed node, to m, closest to the node
of interest, the pivot node basically is the articulation
node with the lowest number for which an unambiguous
sign would uniquely determine an unambiguous sign for
the node of interest. To identify the pivot node, our al-
gorithm starts with the articulation node numbered m
and investigates whether an unambiguous sign for this
node would result in an unambiguous sign for the node
of interest upon sign propagation. If the sign of the
node of interest is ambiguous, then the node of interest
itself is the pivot node. Note that, in the qualitative
antibiotics network from Figure 1, the node of interest



is the pivot node. Otherwise, the algorithm proceeds
by investigating the articulation node numbered m− 1,
and so on.

Constructing Results

From its definition, we have that the pivot node for a
qualitative network’s node of interest receives two or
more conflicting net influences and, hence, captures a
trade-off. Our algorithm now focuses on this trade-
off and identifies the information that would serve to
resolve it. For this purpose, our algorithm computes
the so-called candidate resolvers for the pivot node. A
candidate resolver is a node with an ambiguous node
sign that has two or more incoming arcs and resides on
a chain from the observed node to the pivot node. From
among these candidate resolvers, a minimal set of nodes
is constructed for which unambiguous node signs would
uniquely determine the signs of the separate influences
on the pivot node. This set of nodes constitutes the
so-called resolution frontier. The resolution frontier is
computed to be the set of candidate resolvers that do
not reside on a chain from another candidate resolver
to the pivot node. In terms of signs for the nodes from
the resolution frontier, the algorithm now constructs an
informative result for the pivot node by comparing the
relative strengths of the various influences upon it.
Let F be the resolution frontier for the pivot node

P . For each resolver Ri ∈ F , let sign[Ri] be its node
sign. Let sij , j ≥ 1, denote the signs of the different
reasoning chains from Ri to the pivot node. For each
combination of node signs sign[Ri], Ri ∈ F , the sign of
the pivot node is computed to be

if
∣

∣

∣
⊕(sign[Ri]⊗si

j)=+

(

sign[Ri]⊗ sij
)

∣

∣

∣
≥

∣

∣

∣
⊕(sign[Ri]⊗si

j)=−

(

sign[Ri]⊗ sij
)

∣

∣

∣

then sign[P ] = +, else sign [P ] = −

where |δ| once again denotes the strength of the sign δ.
The process of thus constructing informative results can
be repeated recursively for the pivot node’s resolvers.

Conclusions

We have presented a new algorithm for dealing with
trade-offs in qualitative probabilistic networks. Rather
than resolve trade-offs by providing for a finer level of
representation detail, our algorithm identifies from a
qualitative network the information that would serve
to resolve the trade-offs present. For this purpose, the
algorithm zooms in on the ambiguous part of the net-
work and identifies the pivot node for the node of in-
terest. For the pivot node, a more informative result
than ambiguity is constructed in terms of values for the
node’s resolvers and the relative strengths of the influ-
ences upon it. This process of constructing informative
results can be repeated recursively for the pivot node’s
resolvers.
We believe that qualitative probabilistic networks can

play an important role in the construction of Bayesian

belief networks for real-life application domains. The
construction of a Bayesian belief network typically sets
out with the construction of the network’s digraph. As
the assessment of the various probabilities required is a
far harder task, it is performed only when the network’s
digraph is considered robust. Now, by assessing signs
for the influences modelled in the digraph, a qualitative
network is obtained that can be exploited for studying
the projected belief network’s reasoning behaviour prior
to the assessment of probabilities. For this purpose,
algorithms are required that serve to derive as much
information as possible from a qualitative network. We
look upon our algorithm as a first step in this direction.
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