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Abstract

Quantification is well known to be a major ob-
stacle in the construction of a probabilistic net-
work, especially when relying on human experts
for this purpose. The construction of a qualitative
probabilistic network has been proposed as an
initial step in a network’s quantification, since the
qualitative network can be used to gain prelimi-
nary insight in the projected network’s reasoning
behaviour. We extend on this idea and present
a new type of network in which both signs and
numbers are specified; we further present an
associated algorithm for probabilistic inference.
Building upon these semi-qualitative networks, a
probabilistic network can be quantified and stud-
ied in a stepwise manner. As a result, modelling
inadequacies can be detected and amended at an
early stage in the quantification process.

1 Introduction

The formalism of probabilistic networks [1] is generally
considered an intuitively appealing and powerful formal-
ism for capturing knowledge from a complex problem do-
main, along with its uncertainties. The graphical structure
of the network encodes variables and the probabilistic rela-
tionships between them. With associated conditional prob-
abilities it captures the strengths of these relationships. The
construction of a probabilistic network typically sets out
with the configuration of the graphical structure, before the
task of assessing the required probabilities is commenced.
Experience shows that, although it may take considerable
time, the configuration of a network’s graphical structure
is quite doable. It is the assessment of the typically large
number of probabilities required that is the most daunt-
ing, especially when domain experts are the only source
of probabilistic information available [2]. Research on fa-
cilitating probability assessment for probabilistic networks
has thus far focused on elicitation methods that are tailored
to the elicitation of a large number of probabilities [3].

Recently, another approach has been advocated [4] that
builds upon the use of qualitative probabilistic networks. A
qualitative probabilistic network in essence is a qualitative
abstraction of a probabilistic network [5]. It has the same
graphical structure as its quantitative counterpart, but in-
stead of quantifying the probabilistic relationships between
the variables by conditional probabilities it summarises
these by qualitative signs. For inference with a qualitative
probabilistic network, an efficient algorithm is available,
based on the idea of propagating signs [6]. This algorithm
provides for studying the reasoning behaviour of a proba-
bilistic network in the making prior to its quantification.

We elaborate on the idea of using a qualitative network to
facilitate quantification and introduce a methodology that
provides for stepwise quantifying a probabilistic network.
When the graphical structure of a network in the making
is considered robust, a domain expert is asked to associate
signs with it to arrive at a qualitative network. Specify-
ing signs is known to require considerably less effort from
domain experts than specifying numbers [6]. The construc-
tion of the qualitative network will therefore take relatively
little time. The qualitative network is then used to perform
an initial study of the reasoning behaviour of the proba-
bilistic network under construction.

When quantifying a probabilistic network with the help of
domain experts, quantification efforts typically are focused
on small parts of the network at a time. As, in each step,
conditional probability distributions become available for
the variables in the network, we replace the appropriate
signs with this numerical information, which results in a
network in which both signs and probabilities are speci-
fied. Before proceeding to the next part of the network for
quantification, the reasoning behaviour of the intermediate
network is studied. Modelling inadequacies in the graphi-
cal structure can thus be detected and amended at an early
stage in the quantification process. This process of quan-
tifying small parts of the network and studying reasoning
behaviour is repeated until the network is fully quantified.

To support the methodology of stepwise quantification
outlined above, we introduce the formalism of semi-
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qualitative probabilistic networks to capture networks in
which both signs and probabilities are employed to de-
scribe the probabilistic relationships between variables. In
addition, we present an efficient algorithm for inference
with a semi-qualitative network.

The paper is organised as follows. In Section 2, we provide
some preliminaries from the field of probabilistic networks
and their qualitative abstractions. In Section 3, we intro-
duce the formalism of semi-qualitative probabilistic net-
works; the inference algorithm is presented in Section 4. In
Section 5, we discuss some complexity issues concerning
inference in semi-qualitative networks. Section 6 illustrates
our quantification methodology with an example network.
The paper is rounded off with some conclusions and direc-
tions for further research in Section 7.

2 Preliminaries

A probabilistic network is a concise representation of a
joint probability distribution on a set of statistical vari-
ables [1]. It encodes, in an acyclic directed graph G =
(V (G), A(G)), the variables concerned by means of the
set of nodes V (G) and the probabilistic relationships be-
tween them by means of a set of arcs A(G). Associated
with each node A is a set of conditional probability distri-
butions Pr(A | π(A)) describing the relationship of this
node with its (immediate) predecessors π(A) in the di-
graph. Figure 1(a) shows an example of a simple proba-
bilistic network with three binary-valued nodes.

A probabilistic network defines a unique joint probability
distribution on its nodes from which probabilities of inter-
est can be computed. For this purpose, various algorithms
are available [1, 7]. These algorithms have an exponen-
tial computational complexity in general. For networks
with relatively sparse digraphs, as in fact are found in most
real-life applications, the algorithms tend to have a runtime
complexity that is polynomial in the number of nodes.

Qualitative probabilistic networks in essence are qualita-
tive abstractions of probabilistic networks and thus bear
a strong resemblance to their quantitative counterparts. A
qualitative probabilistic network also comprises an acyclic
digraph modelling variables and the probabilistic relation-
ships between them. Instead of conditional probability dis-
tributions, however, a qualitative probabilistic network as-
sociates with its digraph qualitative influences and qualita-
tive synergies [5].

A qualitative influence between two nodes expresses how
the values of one node influence the probabilities of the val-
ues of the other node. Such an influence is summarised by
a sign. A positive qualitative influence, for example, of a
node A on its (immediate) successor B, denoted S +(A, B),
expresses that observing higher values for A makes higher
values for B more likely, regardless of any other direct in-

fluence on B; for binary-valued nodes A and B with a > ā
and b > b̄, this means that

Pr(b | ax) − Pr(b | āx) ≥ 0

for any combination of values x for the set π(B) \ {A}
of (immediate) predecessors of B other than A. A negative
qualitative influence, denoted by S−, and a zero qualitative
influence, denoted by S 0, are defined analogously, replac-
ing ≥ in the above formula by ≤ and =, respectively. If the
influence of node A on node B is not monotonic or if it is
unknown, we say that it is ambiguous, denoted S ?(A, B).
Figure 1(b) shows our example network abstracted to a
qualitative probabilistic network; the signs of the qualita-
tive influences are indicated over the arcs.

The set of influences of a qualitative probabilistic network
exhibits various convenient properties [5]. The property of
symmetry guarantees that, if the network includes the in-
fluence Sδ(A, B), δ ∈ {+,−, 0, ?}, then it also includes
Sδ(B, A). The property of transitivity asserts that quali-
tative influences along a chain that specifies at most one
incoming arc for each node, combine into a single net in-
fluence whose sign is given by the⊗-operator from Table 1.
The property of composition asserts that multiple quali-
tative influences between two nodes along parallel chains
combine into a single net influence whose sign is given by
the ⊕-operator.

From the ⊕-operator in Table 1, we have that combin-
ing parallel qualitative influences with the ⊕-operator may
yield an ambiguous sign. Such an ambiguity, in fact, results
whenever influences with opposite signs are combined. We
say that the trade-off that is reflected by the conflicting in-
fluences cannot be resolved. Note that, in contrast with the
⊕-operator, the ⊗-operator cannot introduce ambiguities
upon combining signs of influences along chains. It will
cause ambiguous signs to be spread throughout the network
once they have arisen, though.

In addition to influences, a qualitative probabilistic network
includes product synergies that express how the value of
one node influences the probabilities of the values of an-
other node in view of a given value for a third node [8].
The sign of the product synergy serves to capture the sign
of the intercausal influence it induces between the prede-
cessors of an observed node. The intercausal influence is a
qualitative influence in essence and behaves accordingly.

For reasoning with a qualitative probabilistic network, an
efficient algorithm is available [6]; this algorithm is sum-

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 1: The ⊗- and ⊕-operators for combining signs.
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Figure 1: A probabilistic network fragment (a), its abstraction into a qualitative probabilistic network (b), the interval
network equivalent to the qualitative network (c), and the more informed interval network (d).

marised in pseudocode in Figure 2. The basic idea of the
algorithm is to trace the effect of observing a node’s value
on the other nodes in the network by message-passing be-
tween neighbouring nodes. For each node, a sign is de-
termined, indicating the direction of change in the node’s
probabilities occasioned by the new observation given all
previous ones. Initially, all node signs equal ‘0’. For the
newly observed node, an appropriate sign is entered, that
is, either a ‘+’ for the observed value true or a ‘−’ for the
value false. The node updates its sign and subsequently
sends a message to each (induced) neighbour that is not in-
dependent of the observed node. The sign of this message
is the⊗-product of the node’s (new) sign and the sign of the
influence it traverses. This process is repeated throughout
the network, building on the properties of symmetry, transi-
tivity, and composition of influences. Since each node can
change its sign at most twice (once from ‘0’ to ‘+’, ‘−’ or
‘?’, and then only to ‘?’), the process visits each node at
most twice and therefore halts in polynomial time.

procedure PropagateSign(trail,from,to,messagesign):

sign[to]← sign[to] ⊕messagesign;
trail← trail ∪ {to};
for each active neighbour Vi of to
do linksign← sign of (induced) influence between to and Vi;

messagesign← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] �= sign[Vi] ⊕messagesign
then PropagateSign(trail,to,Vi,messagesign).

Figure 2: The sign-propagation algorithm.

3 Semi-qualitative networks

A semi-qualitative probabilistic network comprises an
acyclic digraph modelling statistical variables and the re-
lationships between them, just like a probabilistic network
and its qualitative counterpart. Associated with this digraph
are conditional probability distributions and signs so as to
satisfy the following property: for each node A, either a
set of distributions Pr(A | π(A)) is specified, or each in-
coming arc C → A, C ∈ π(A), for A has associated a
qualitative influence Sδ(C, A), δ ∈ {+,−, 0, ?}.

Associated with a semi-qualitative probabilistic network,
we construct an interval network that will be exploited
upon inference. In this interval network, each arc A → B
has associated an interval influence, denoted F [p,q](A, B),
where the interval [p, q] ⊆ [−1, 1] has the following mean-

ing: F [p,q](A, B) if and only if

Pr(b | ax) − Pr(b | āx) ∈ [p, q]

for all combinations of values x for the set π(B) \ {A} of
predecessors of B other than A. An interval influence and
its associated interval [p, q] will be called positive if p ≥ 0,
negative if q ≤ 0, zero if p = q = 0, and ambiguous
otherwise.

To construct an associated interval network, we observe
that the signs of a semi-qualitative probabilistic network
can be readily interpreted as intervals. For a node B and its
predecessor A, we have, for example, that

S+(A, B) ⇐⇒ F [0,1](A, B)

Similarly, a negative influence is an influence with the in-
terval [−1, 0], a zero influence has the interval [0, 0], and
an ambiguous influence has [−1, 1]. In the sequel, these
four intervals will be referred to as the unit intervals. The
network from Figure 1(c) is the interval network associated
with the qualitative network from Figure 1(b). Using the
above translation of signs into intervals, the operators from
Table 1 can be taken to be operators on intervals as is re-
flected in Table 2.

We further observe that the conditional probability distribu-
tions Pr(A | π(A)) specified for a node A can be used to
compute the interval influences to be associated with A’s
incoming arcs. As an example, we construct the interval
network for the probabilistic network from Figure 1(a). For
the arc A → B we find that

Pr(b | ac) − Pr(b | āc) = 0.6 − 0.4 = 0.2
Pr(b | ac̄) − Pr(b | āc̄) = 0.9 − 0.5 = 0.4

The interval influence of A on B thus is F [0.2,0.4](A, B).

⊗ [0, 1] [−1, 0] [0, 0] [−1, 1]
[0, 1] [0, 1] [−1, 0] [0, 0] [−1, 1]

[−1, 0] [−1, 0] [0, 1] [0, 0] [−1, 1]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[−1, 1] [−1, 1] [−1, 1] [0, 0] [−1, 1]

⊕ [0, 1] [−1, 0] [0, 0] [−1, 1]
[0, 1] [0, 1] [−1, 1] [0, 1] [−1, 1]

[−1, 0] [−1, 1] [−1, 0] [−1, 0] [−1, 1]
[0, 0] [0, 1] [−1, 0] [0, 0] [−1, 1]

[−1, 1] [−1, 1] [−1, 1] [−1, 1] [−1, 1]

Table 2: The ⊗- and ⊕-operators for combining intervals.
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Note that the interval indicates that the qualitative influence
of A on B indeed is positive. For the interval influence of
C on B we find F [−0.3,−0.1](C, B). The resulting interval
network is shown in Figure 1(d). Obviously, the interval
network contains less information than the fully quantified
probabilistic network. In Section 5 we will elaborate on
this loss of information.

We are not the first to propose the use of intervals in rea-
soning with uncertainty; we refer to, for example, [9, 10]
for an overview. Intervals have been used to indicate the
uncertainty about or imprecision of the actual value of a
probability. In our interval network, however, we use in-
tervals to indicate a range of differences in probability. As
the semantics of our intervals diverge from the semantics
that have been proposed before, we feel that the available
interval-propagation algorithms are unsuitable for proba-
bilistic inference in our interval networks.

4 Inference in a semi-qualitative network

For reasoning with a semi-qualitative network, we intro-
duce an algorithm that operates upon the associated inter-
val network. Our algorithm is closely related to the sign-
propagation algorithm discussed in Section 2, and is based
on the idea of propagating intervals over arcs. We recall
that the sign-propagation algorithm builds on the properties
of symmetry, transitivity and composition of qualitative in-
fluences. We revisit these properties with respect to interval
influences before presenting our propagation algorithm.

4.1 Transitivity

To address the effect of transitively combining interval in-
fluences, we consider the network fragment from Figure 3.
The fragment includes the nodes A, B and C, with two in-
fluences between them; X denotes the set of predecessors
of B other than A, and Y is the set of all predecessors of C
other than B. For the indirect influence of node A on node
C, we observe that

Pr(c | axy) − Pr(c | āxy) =
(Pr(c | by) − Pr(c | b̄y)) · (Pr(b | ax) − Pr(b | āx))

for any combination of values x for the set of nodes X and
any combination of values y for Y . From this expression,
we have, for example, that the largest difference in proba-
bilities yielded by the net influence of A on C equals the
largest difference in probabilities obtained from the prod-

A B C

X Y

Figure 3: A fragment of a network.

⊗i [r, s]

[p, q] [min{p·r, p·s, q ·r, q ·s}, max{p·r, p·s, q ·r, q ·s}]

Table 3: The ⊗i-operator for interval multiplication.

ucts of the differences in probabilities yielded by the influ-
ences from which it is composed. We conclude that

F [p,q](A, B) ∧ F [r,s](B, C) ⇒ F [p,q]⊗i[r,s](A, C)

where ⊗i denotes the interval multiplication defined in Ta-
ble 3. The above observations are readily generalised to
any chain between two nodes that specifies at most one in-
coming arc per node.

4.2 Parallel composition

For combining multiple interval influences between two
nodes along parallel chains, we consider the network frag-
ment from Figure 4. The fragment includes the two parallel
chains A → C and A → B → C between the nodes A and
C; X denotes the set of all predecessors of B other than A,
and Y is the set of predecessors of C other than A and B.
For the net influence of node A on node C along the two
parallel chains, we find that

Pr(c | axy) − Pr(c | āxy) =
(Pr(c | aby) − Pr(c | ab̄y)) · Pr(b | ax) + Pr(c | ab̄y)

−(Pr(c | āby) − Pr(c | āb̄y)) · Pr(b | āx) − Pr(c | āb̄y)

for any combination of values x for the set of nodes X and
any combination of values y for the set Y . Now suppose
that all influences in the network fragment under consider-
ation are positive with intervals [p, q], [r ′, s′] and [r′′, s′′],
respectively. We thus have F [p,q](A, C), F [r′,s′](A, B),
and F [r′′,s′′](B, C), with p, q, r′, s′, r′′, s′′ ≥ 0. Fur-
ther suppose that the interval influences F [r′,s′](A, B)
and F [r′′,s′′](B, C) combine into the indirect influence
F [r,s](A, C). To determine the interval for the net influence
of node A on node C, we observe that Pr(b | ax) − Pr(b |
āx) ∈ [r′, s′]. The lower- and upper-bounds of the interval
[r′, s′] are attained, for example, for Pr(b | ax) = r ′ and
Pr(b | āx) = 0, and Pr(b | ax) = 1 and Pr(b | āx) =
1 − s′, respectively. For the first situation, we find that

Pr(c | axy) − Pr(c | āxy) ≥
(Pr(c | aby)− Pr(c | ab̄y))·r′ + Pr(c | ab̄y)−Pr(c | āb̄y)

A

B

C

X

Y

Figure 4: Another network fragment.
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The observation that Pr(c | aby) − Pr(c | ab̄y) ∈ [r′′, s′′]
and Pr(c | ab̄y) − Pr(c | āb̄y) ∈ [p, q], now gives

Pr(c | axy) − Pr(c | āxy) ≥ r′ ·r′′ + p = p + r

for any combination of values xy for the set of nodes X∪Y .
Similarly, we find that

Pr(c | axy) − Pr(c | āxy) ≤ s′ ·s′′ + q = q + s

We conclude that

F [p,q](A, C) ∧ F [r,s](A, C) ⇒ F [p,q]⊕i[r,s](A, C)

where ⊕i denotes the interval addition operator given in
Table 4. The above observations again are readily gen-
eralised. For example, if the direct influence of node A
on node C in Figure 4 is negative, that is, F [p,q](A, C)
with p, q ≤ 0, then the lower-bound for the difference
Pr(c | axy) − Pr(c | āxy) is attained using the small-
est value for the direct influence of node A on node C; this
is again the lower-bound p, which is the largest negative
value. Whether the net influence of node A on node C now
becomes positive, negative, or ambiguous, depends on the
actual values of p, q, r and s. Note that as the bounds repre-
sent differences in probability, they can be no smaller than
−1 and cannot exceed +1.

⊕i [r, s]

[p, q] [p + r, q + s] ∩ [−1, 1]

Table 4: The ⊕i-operator for interval addition.

4.3 Symmetry

We recall from Section 2 that qualitative influences are
symmetric. The same observation holds for the ‘sign’ of
an interval influence; for example, if the interval of an
influence is known to be positive, then so is the interval
of the reverse influence. Interval influences, however, are
not symmetric with respect to the interval itself, that is,
F [p,q](A, B) does not necessarily imply F [p,q](B, A). To
provide for propagating intervals against the direction of
arcs upon inference, we propose to explicitly specify inter-
vals for reverse influences. We use a default unit interval
for this purpose. For an arc A → B with the positive inter-
val influence F [p,q](A, B), we specify F [0,1](B, A); for a
negative influence F [p,q](A, B), we specify F [−1,0](B, A),
and so on.

As numerical information becomes available for the nodes
in a semi-qualitative probabilistic network, the (default) in-
tervals specified for reverse influences can be tightened.
We consider, as an example, a root node A with a single
direct successor B. Suppose that for node A the proba-
bility distribution Pr(a) = x has been specified. Further
suppose that the arc A → B has associated a positive inter-
val influence. The possible effect of observing node B on

node A is then restricted to the interval [0, max{x, 1− x}].
The possible effect of node B on node A is restricted to
the interval [−max{x, 1 − x}, 0] if the influence of node
A on node B has associated a negative interval. Moreover,
for arbitrary nodes A and B with an arc A → B between
them, we have that if we are able to compute the values
Pr(a | bx) − Pr(a | b̄x) for all relevant nodes X , then
we can also determine the interval that is to be associated
with the reverse influence of B on A. These values can be
readily computed by applying Bayes’ theorem, if the prob-
ability distributions for both nodes A and B are available.
After quantifying a node A therefore, we can tighten not
just the intervals associated with its incoming arcs, but also
the intervals of the reverse influences associated with those
outgoing arcs A → B for which node B has been quanti-
fied as well.

4.4 The interval-propagation algorithm

In the foregoing, we have shown that interval influences
exhibit the properties of transitivity and parallel compo-
sition. We have further specified a means of determining
reverse interval influences, thereby providing for the prop-
erty of symmetry. Building upon these properties, we can
now use the sign-propagation algorithm for the purpose of
propagating intervals, by simply replacing the ⊗- and ⊕-
operators for combining signs by the ⊗ i- and ⊕i-operators
for combining intervals. With the resulting algorithm, for
each node an interval is determined, indicating the upper-
and lower-bounds of the change in the node’s probabili-
ties occasioned by the new observation, given all previous
observations. Initially, all node intervals equal [0, 0]. For
the newly observed node, an interval [α, β] is entered to
indicate the strength of the observation. For example, the
observation A = a for a node A with Pr(a) = x is en-
tered as [1 − x, 1 − x]. If we have no knowledge about
the prior probability of the observed node, then this igno-
rance is reflected by entering the unit interval [0, 1] for a
positive observation and [−1, 0] for a negative observation.
Note that we also allow entering imprecise knowledge of
the observed node’s prior probability.

5 Loss of information and complexity

In the previous section, we have detailed our interval-
propagation algorithm for probabilistic inference with a
semi-qualitative network. Here we address the computa-
tional complexity of the basic algorithm and focus on two
types of information loss from which it suffers.

5.1 Coping with information loss due to abstraction

In Section 3, we have demonstrated that constructing an
interval network from a semi-qualitative probabilistic net-
work may result in some loss of information. This loss
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of information arises from the abstraction of differences in
probability to intervals. Since we have defined our interval-
propagation algorithm to operate upon an interval network,
the algorithm cannot fully exploit all probabilistic informa-
tion that is available. As a result, it is possible that trade-
offs that are modelled in the semi-qualitative network can-
not be resolved, even though the available probabilistic in-
formation would allow us to do so.

A closely related problem has been addressed by C.-L. Liu
and M.P. Wellman [11]. They propose to reason with a
probabilistic network in a qualitative way, thereby exploit-
ing the efficiency of sign-propagation, and to revert to the
full quantification only when a trade-off leads to an am-
biguous result. They describe two methods for resolving
the trade-off. The first method amounts to marginalising
over the nodes along the conflicting chains that give rise to
the trade-off. Nodes are removed in a stepwise manner, us-
ing arc reversal and node reduction [12], until the trade-off
is resolved or no more nodes are available for removal. For
the former successors of the removed nodes, the marginal-
isation results in updated (conditional) probabilities, which
are again abstracted into qualitative signs for further pro-
cessing. The second method proposed by Liu and Wellman
is to estimate bounds on the net influence along the chains
that give rise to the trade-off. These bounds are then used
to compute the sign of the net influence.

With our methodology of stepwise quantification of a prob-
abilistic network, typically small coherent parts of a net-
work are quantified at a time. Whenever a cluster of nodes
involved in a trade-off has been quantified and the interval-
propagation algorithm results in an ambiguous interval,
then one of the methods from Liu and Wellman can be used
to attempt to locally resolve the trade-off. Note that both
methods provide us with sufficient information to establish
an interval for the net influence, which can then again be
used in interval-propagation.

5.2 Coping with information loss due to propagation

When discussing the interval-propagation algorithm in
Section 4, we have argued that ignorance about the strength
of an observation can be expressed by entering the unit in-
terval [0, 1] or [−1, 0], depending on the sign of the obser-
vation. A major drawback of using an interval including a
zero as bound, however, is that upon propagation all com-
puted node intervals end up including a zero, which in turn
may result in ambiguous intervals. Instead of using the in-
tervals [0, 1] and [−1, 0], therefore, we propose to enter the
intervals [1, 1] or [−1,−1], respectively. After propagation,
each node interval then describes the maximum possible ef-
fect of the observation, without taking the actual strength
into account. The minimum possible effect is a zero ef-
fect, that is, no change. If knowledge about the strength
[α, β] of the observation becomes available at a later stage,

then the node intervals resulting from the propagation can
be multiplied with this interval using the ⊗i-operator.

5.3 Computational complexity

The interval-propagation algorithm presented in Section 4
closely resembles the sign-propagation algorithm for prob-
abilistic inference in a qualitative network. We recall that
with the sign-propagation algorithm a node can change sign
at most twice. As a node does not have to pass on any mes-
sages when its sign has not changed, the algorithm halts
after a number of steps that is polynomial in the num-
ber of nodes of the network. A node interval, however,
can change as often as the node is visited. The interval-
propagation algorithm as a consequence has a worst-case
computational complexity that is exponential in the num-
ber of nodes. It therefore is not as efficient as its look-alike
sign-propagation algorithm.

To ameliorate the problem of an exponential computa-
tional complexity, we propose to add a parameter m to the
interval-propagation algorithm that serves to limit the num-
ber of times a node’s interval can be changed. When the
mth change to the interval occurs, it is set to the unit inter-
val corresponding to the ‘sign’ of the current interval. For
example, if a node’s interval is positive after having been
visited m − 1 times, it is set to [0, 1] upon the mth visit.
If, on subsequent visits of the node, the ‘sign’ of the inter-
val does not change, we do not change the interval at all; if
the sign does change, however, then the interval is changed
to the appropriate unit interval. Note that once a node has
associated a unit interval, it can change at most one more
time. Also note that thus restricting the number of changes
to a node’s interval does not lead to incorrect results upon
inference. It just causes results to be less informative.

6 An example

In our methodology for stepwise quantifying a probabilis-
tic network, we take its graphical structure for a point of
departure. A domain expert is asked to associate signs with
the arcs of the structure to arrive at a qualitative network
that allows for an initial study of the reasoning behaviour
of the probabilistic network under construction. In each
following step, quantification efforts are focused on small
coherent parts of the network. As a result, conditional
probability distributions become available for small clus-
ters of related nodes. This probabilistic information is used
to build a semi-qualitative network, from which an inter-
val network is constructed. The reasoning behaviour of the
semi-qualitative network can then be studied through inter-
val propagation in its associated interval network. This pro-
cess is repeated until we have arrived at a fully quantified
probabilistic network. In this section we present an exam-
ple of the use of semi-qualitative probabilistic networks as
sketched in the above.
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Figure 5: Initial (semi-) qualitative probabilistic network.

The first step after configuring the graphical structure of
our example network is to elicit signs from the domain ex-
perts. Suppose that the network from Figure 5 is the result-
ing qualitative network. The reasoning behaviour of this
network can be studied using the sign-propagation algo-
rithm. For example, the effect of entering a ‘+’ for node
B on all other nodes is shown in the following table, where
the ambiguous signs for the nodes H , I and N reflect the
trade-offs modelled for H and N , respectively:

nodes node sign

B, C, E, K, L +
A, F, G, M −

D, J 0
H, I,N ?

Suppose that in the next step, the nodes A and B are quan-
tified by the domain experts. They indicate that the prior
probabilities for node A are Pr(a) = 0.4 and Pr(ā) = 0.6;
the conditional probabilities for node B are Pr(b | a) =
0.2, Pr(b̄ | a) = 0.8, Pr(b | ā) = 0.4, and Pr(b̄ | ā) = 0.6.
We substitute this probabilistic information in the quali-
tative network from Figure 5, thereby obtaining a semi-
qualitative network. For the associated interval network,
we now compute non-unit intervals for the arc A → B.
The interval influence of A on B is determined from the
conditional probabilities specified for node B: we find that
F [−0.2,−0.2](A, B). As nodes A and B are both quanti-
fied, we can use Bayes’ theorem to determine that Pr(a |
b) = 0.82 and Pr(a | b̄) = 0.92. As a result we find
F [−0.1,−0.1](B, A) for the reverse influence.

To determine the effect of a positive observation for node
B on all other nodes in the network, we use the interval-
propagation algorithm with the value [1, 1] as suggested in
Section 5. The results, indicating the maximum possible
effect of B’s observation on the other nodes, are as follows:

nodes node interval

B [1, 1]
C, E, K, L [0, 1]

A [−0.1,−0.1]
F, G, M [−1, 0]

D, J [0, 0]
H, I,N [−1, 1]

As the available probabilistic information provides for
computing the prior probabilities for node B: Pr(b) = 0.22
and Pr(b̄) = 0.78, we know that a positive observation oc-
casions a change in B’s probabilities of 0.78. The effect of
the observation on the probabilities of the other nodes can
now be determined by multiplying the above intervals by
[0.78, 0.78].

Now suppose that the probabilities for node D happen to be
known from the literature: Pr(d) = 0.3 and Pr(d̄) = 0.7.
As node D is a root node with a single direct successor,
we can tighten the interval [0, 1] of the reverse influence
associated with the arc D → C. We find that the upper-
bound of the interval is max{0.3, 0.7} and we thus find
F [0,0.7](C, D).

Now suppose that conditional probabilities are provided for
the nodes C, K , L, M and N . The intervals computed
from the newly available probabilistic information for the
influences to be associated with the various arcs, are shown
in Figure 6; the intervals for the reverse influences are not
specified in the figure. Once again we determine the in-
fluence of a positive observation for node B on the other
nodes in the network, using the interval-propagation algo-
rithm. We find the following results:

nodes node interval

B [1, 1]
L [0.39, 0.50]
K [0.56, 0.72]
C [0.7, 0.9]
N [0.02, 0.32]
E [0, 0.9]
A [−0.1,−0.1]

M [−0.36,−0.28]
F, G [−0.9, 0]
D, J [0, 0]
H, I [−0.9, 0.9]

Note that the trade-off for node N has now been resolved.
The intervals [−0.9, 0.9] for the nodes H and I , however,
still indicate an ambiguity.

Suppose that after quantification of the nodes F , G and H ,
interval-propagation still results in an ambiguous influence
of node B on node H . We now apply Liu and Wellman’s

B

C

K

L M

N

[.7, .9]

[.8, .8]

[−.5,−.5][.7, .7]

[.5, .8] [.3, .5]

· · ·
· · ·

· · ·

Figure 6: A fully quantified fragment of the interval net-
work associated with our semi-qualitative network.
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method as suggested in Section 5, to attempt to resolve the
trade-off involved. Suppose that with the available numeri-
cal information, node F is removed by marginalisation, and
that by doing so the trade-off is resolved: the net influence
of node G on node H over the parallel composition of the
two influences has become negative. The new node inter-
val for node H is now the product of the node interval of
node G and the interval associated with the computed net
influence of G on H . As the node interval for node H has
now changed, node H sends a new message to node I .

7 Conclusions and further research

A first step in the quantification of a probabilistic network
can be to elicit signs instead of numbers from a domain
expert. We can then study the reasoning behaviour of the
network under construction using the thus obtained qual-
itative probabilistic network. To bridge the gap between
the coarse level of representation detail of a qualitative
network and the level of detail of a quantified network,
we have proposed to perform quantification in a stepwise
manner, studying the reasoning behaviour of the result-
ing semi-qualitative network after each step. To support
our methodology, we have introduced the formalism of
semi-qualitative probabilistic networks. In addition, we
have presented an algorithm for probabilistic inference in
a semi-qualitative network that amounts to propagating in-
tervals in its associated interval network.

The algorithm that we have presented for interval propa-
gation becomes less efficient as more numerical informa-
tion is added to the network under construction. This is, of
course, not surprising given the computational complexity
of inference in a probabilistic network in general. We have
shown, however, that a polynomial bound can be put on the
complexity if desired. We have further shown that the nu-
merical information available in a semi-qualitative network
can be exploited to tighten the intervals in its associated in-
terval network. Further research is required to determine
whether or not the available information can be exploited
to an even further extent. We have shown that ambigu-
ous intervals resulting from trade-offs in the network may
be locally resolved using the methods provided by Liu and
Wellman, as long as enough numerical information is avail-
able to apply these.

In conclusion, we feel that the stepwise methodology we
have proposed provides for effective quantification of a
probabilistic network. Each time a part of the network
under construction is quantified, the reasoning behaviour
of the resulting semi-qualitative network can be studied,
thereby allowing for early identification of modelling in-
adequacies and for better understanding of the network by
the domain experts. We feel that the robustness and quality
of the network will ultimately benefit from the use of our
methodology.
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