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Abstract

Studying the effects of one-way variation of any
number of parameters on any number of output
probabilities quickly becomes infeasible in prac-
tice, especially if various evidence profiles are
to be taken into consideration. To provide for
identifying the parameters that have a potentially
large effect prior to actually performing the anal-
ysis, we need properties of sensitivity functions
that are independent of the network under study,
of the available evidence, or of both. In this pa-
per, we study properties that depend upon just the
probability of the entered evidence. We demon-
strate that these properties provide for establish-
ing an upper bound on the sensitivity value for
a parameter; they further provide for establish-
ing the region in which the vertex of the sensitiv-
ity function resides, thereby serving to identify
parameters with a low sensitivity value that may
still have a large impact on the probability of in-
terest for relatively small parameter variations.

INTRODUCTION

terms of the parameter under study [1, 4]; the constants in
the function can be established from a limited number of
network propagations.

Performing a sensitivity analysis is computationally feas
ble as long as we are interested in the sensitivity functions
for a single output probability of interest with respect to

all network parameters, or in the sensitivity functions for
anynumber of output probabilities with respect tgiagle
parameter [6]. Analysing the effects of any number of pa-
rameters on any number of output probabilities, quickly be-
comes infeasible, especially when taking different eviden
profiles into consideration. In such cases it is very useful
to have properties of sensitivity functions that are indepe
dent of the network under study, of the available evidence,
or of both. Such properties can then be exploited to dis-
tinguish between parameters that may need actual analysis
and parameters that cannot have any substantial influence
on the output probabilities of interest and therefore do not
warrant further consideration.

Several researchers addressed properties of sensitivity
functions that are independent of both the network under
study and the available evidence [2, 3, 8]. They showed,
for example, that any sensitivity function that expresses a
output probability with an original value @f) in terms of a
parametes: with an original value ok, is bounded by two
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The output probabilities of a probabilistic network can befuyrl]3 Cetlr gr? Slcd :S ecr:gnjno rgﬁgxog;ﬂ; [z]n d aerzenz?%rggg-

highly sensitive to changes in the network’s numerical pa-

X dent of any knowledge of the network under study. The
rameters. As these parameters are generally estimated frofrtrfnctions further are evidence-invariant and, hence,-inde

(incomplete) data or assessed by human experts in the dBéndent of the probability of the available evidence. The

mainn pf. application, they are int_ay!tably inaccurate. Thebounding functions served to confirm an upper bound on
sensm_wty of th? output probabilities of the. ne_twork to the effect of infinitesimally small shifts in a parameter’s
these inaccuracies can be evaluated by subjecting the nec}FiginaI value, that is, on its sensitivity value [2, 3, 8].

work to asensitivity analysisSuch an analysis amounts to The established upper bound inherits the characteristics o

varying the assgssmepts for ane or more of the nef\tw.o'rk dvidence-invariance and network-independence from the
parameters and investigating the effects on the probialilit bounding functions from which it is derived

of interest. Efficient algorithms are available for this pur
pose, that build upon the observation that the sensitifigy o In this paper, we study properties of sensitivity functions
probability of interest to parameter variation compliethwi that depend on some knowledge of the available evidence.
a simple mathematical function [4, 6]. Thisnsitivity func- We show that this knowledge provides us with information
tion basically expresses the output probability of interes&inabout the constants of the sensitivity function, which en-



ables us to provide tighter bounding functions without us-
ing any other knowledge about the network under consider-
ation. We argue that computing these evidence-dependent
bounds requires much less computational effort than estab-
lishing all complete sensitivity functions. We demonsgrat
that the tighter bounds can be used, for example, for pro-
viding a tighter upper bound on the sensitivity value of a
parameter and for locating the region in which the vertex
of a sensitivity function might reside; the latter is impaont

to identify parameters with a low sensitivity value that may
nonetheless have a high impact on the output probability of
interest for non-infinitesimal parameter shifts.

The paper is organised as follows. In Section 2, we preserftigure 1: The possible hyperbolas and their constants (the
some preliminaries on sensitivity functions. In Section 3,constraints os andt are specific for sensitivity functions).
we derive evidence-dependent bounds on the constants of a

sensitivity function. In Section 4, we exploit these bounds.

to bound sensitivity values and to locate the vertex of a Sen|_nterest for up to three values for the parameter under study

sitivity function, respectively; in addition, we illusteahow and solving the resulting system of linear equations [4], or

the derived information can be purposefully used. The papy means of an algorithm that is closely related to junction-

per ends with our conclusions and directions for further re-tree propagation [6].
search in Section 5. A sensitivity function is either éinear function or a frag-
ment of arectangular hyperbolain the remainder of this
paper, we focus on hyperbolic sensitivity functions. A rect

angular hyperbola takes the general form

2 SENSITIVITY FUNCTIONS

Sensitivity analysis of a probabilistic network amounts to r
establishing, for each of the network’s numerical parame- r)=
ters, thesensitivity functiorthat expresses an output prob-

ability of interest in terms of that parameter. lRt(A =  Where, for a sensitivity function with,, ..
a | e), or Pr(a | e) for short, denote the output probability We have that

under study, where is a specific value of a variablé of 4 1

interest anck denotes the available evidence. In addition, = T t= s’ and 7 = c3
letz = p(b | m) be the parameter under study, whérie

a value of some variabl® and~ is a combination of val-
ues forB’s parents. We now usgp, 4. () to denote the

+1
T — s

., ¢4 as before,
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The hyperbola has two branches and the two asymptotes
x = s and f(z) = t. Figure 1 illustrates the locations of

sensitivity function that expresses the probabiftiya | )
in terms of the parameter, we often omit the subscript for

the function symboy, as long as ambiguity cannot occur.

Any sensitivity functionfp.(,e) () is a quotient of two
linear functions in the parametemunder study [1, 4]. More
formally, the function takes the form

c1-T+Co
flx) = p———
where the constants, j = 1,...,4, are built from the as-

sessments for the parameters that are not being vaiiee

the possible hyperbola branches relative to the asymptotes
For r < 0, the branches lie in the second (ll) and fourth
(IV) quadrants relative to the asymptotes; for> 0, the
branches are found in the first (1) and third (l11) quadrants.

We observe that, in a sensitivity function, battand f (z)
represent probabilities and henecec [0,1] and f(z) €
[0,1]; in the sequel we will refer to the two-dimensional
space of feasible values far and f(z) as theunit win-
dow. Since any sensitivity function is continuous and well-
defined in the unit window, it is a fragment of just one of
the four possible branches reviewed above. The vertical

numerator of this quotient in essence describes the protiSymptoter = s therefore lies either to the left of = 0

ability Pr(a,e) as a function of the parameterand the
denominator describdr(e) as a function ofc. Any sen-

(for first- and fourth-quadrant functions) or to the right of
x = 1 (for second- and third-quadrant functions); the hor-

sitivity function is thus characterised by at most three-con iZontal asymptotef (x) = ¢ either lies belowl (for first-
stants. These constants can be feasibly determined frof"d Second-quadrant functions) or abovgor third- and
the network, for example by computing the probability of fourth-quadrantfunctions).

We assume that the parameters pertaining to the same cor-'l—-he sensitivity functionf(x) captures the change in the

ditional distribution as the parameter under study are arted
proportionally [6, 8].

output probability of interest that is occasioned by a shift

5 in the parameter under study. The effect of an infinitesi-



mally small shift is captured by the valy&(z,) of the first  properties can then be exploited to distinguish between the
derivative of the function at the original valug of the pa-  parameters for which an actual analysis may be of interest
rameter; the absolute value §f(z,) is called thesensitiv-  and the parameters which can be further disregarded.

ity valueof the parameter for the output probability [7]. For
establishing the effect of larger shifts the sensitivitjuea
of a parameter may no longer suffice, as the impact of
larger shift is strongly dependent upon the location of thet
vertexof the sensitivity function [9]. The vertex of a hy-
perbola branch is the point where the absolute value of th
first derivative equals; it is equal to one of the four points
(s £+/Ir],t + /|r]), depending on the branch’s quadrant.
The vertex of a hyperbolic sensitivity function may or may

not lie within the unit window. If it lies outside the win- ; g !
dow, then high sensitivity values are unlikely, regardiafss that, if necessary, the value otan be computed quite effi-
' ' ciently from a network under study. Since the constaist

the original value of the parameter under study. A vertex_ . -
o o ; o easily computed foall parameters at once, aryspecific
within the unit window basically marks the transition from : X . .
- . ) o properties can be immediately projected onto the network
original parameter values with a high sensitivity value to ; . X S
. s . under consideration. In Section 4 we will give some exam-
parameter values with a low sensitivity value, or vice versa )
o les of how these properties can be purposefully used.
Parameters that have a small sensitivity value, yet whos

original value lies close to the vertex, may thus show con-
siderable effects upon variation. 31 ESTABLISHING TIGHTER BOUNDS

In this paper, we study properties that emerge from fixing
the constant to a specific value. Note that fixingmeans

at the sensitivity functions under consideration alléav
heir vertical asymptote at the same position. From this ob-
servation, we can establish tighter bounds on the possible
unctions throughzo, pp). The reason for choosing to fix
s rather thart is thats in essence is related to the probabil-
ity of the available evidence only and is independent of the
output probability of interest; we will argue in Section 3.2

To provide for studying all possible sensitivity functions
3 BOUNDING THE FUNCTIONS that pass through the poifity, po) and have their vertical

asymptote at the same position, we begin by defining the
A hyperbolic sensitivity function in essence is defined bysubspaceé of all points in three-dimensiong, ¢, r)-space
the values for the three constants andt reviewed above. that capture a hyperbolic sensitivity function. We then de-
In previous work, we studied properties of such a sensitivfine, again within(s, ¢, 7)-space, the surface that captures
ity function that are network independent as well as inde-any rectangular hyperbola through the pding, po). The
pendent of the available evidence, yet build upon the actudntersection of the subspaceand this surface then gives
valuep, of the output probability of interest and the origi- us all combinations of values fat ¢ andr that describe a
nal valuez, of the parameter under study. We establishedhyperbolic sensitivity function througtx, po).

that all possible sensitivity functions througho, po) are  Any hyperbolic sensitivity functiorf () is continuous and
bounded by an increasing hyperbola branch and a decreagz,)|_qefined in the unit window, and therefore adheres to
ing hyperbplabranch [8]; as aniillustration, Figure 2 depic 0 < f(z) < 1forall0 < z < 1. The subspace within
the bounding branches fdto, po) = (0.1,0.6). From . % "y shace that is defined by this inequality, is delimited

r = (z —s)- (f(z) — 1), we observe that the range of all ¢ - sirfaces. For examplg{0) = 1 corresponds with
possible sensitivity functions througly, po) is defined by thye surface ' PI¢(0) P

just the values of andt: for any givenz, andpy, the val-

ues ofs and¢ uniquely determine the value of Fixing r=(x—s) (flx)—t)=—s-(1-1)

one ofs andt to a specific value now serves to reduce theyqia that the signs of and¢ determine whether the sur-

range of possible functions throughy, po), and allows for ¢ is an upper or a lower bound on the values allowed for

s- or t-specific properties to emerge. Knowledge of these. 11q subspacs of all combinations of values fos, ¢
andr that define a hyperbolic sensitivity function, now is

1 delimited by the following (intersecting) surfaces:

0 | A: r=s-(t-1)
B: r=t-(s—1)
< 2T 1 C: r=s-t
= ok J D: r=@t-1)-(s—1)
02 ] where the surfaced and B intersect fort = s and the
surfacesC and D intersect fort = 1 — s; the surfaces
0 o2 o2 o8 o8 1 B and C intersect fort = 0 and the surfaceg and D

_ X _ __intersect fort = 1. Figure 3 illustrates the subspase
Figure 2: The general bounds on all possible sensitivityhere the valid combinations of values fart and lie
functions through0.1,0.6). 5 Within the two regions bounded by the four surfaces. We



following intersecting lines:

S
L‘A=p0+(1—po)-T—
)

_ bo- (o — 5)
N o — 1
te=po- (1)
c = Po 70
s-(1—po)+po-a0—1

o — 1
Now consider, in Figures 3 and 4, the part of the subspace
S wheres > 1. Depending on the actual values 9fz
andpy, surfaceE will enter this part of the subspace, for
smaller values of, through either surfac€ or surfaceD
and exit the region, for largervalues, through either sur-
face A or surfaceB. To determine through which of the
surfacesE actually enters and exists the part of the sub-
space under study, we establish the points at which the in-
tersecting lines of the surfacdsandB, and of the surfaces
C and D meet. Writingpyw for the value ofpy for which
the linesty, andtyy intersect, we find that

tp

tp =

Figure 3: The subspac® with all (s, ¢, r)-combinations
that define a hyperbolic sensitivity function.

observe that fos > 1 and¢ < 0, an upper bound on the
value ofr is given by the surfac€’; a lower bound is given
by the surfaceD. Fors > 1 andt > 0, an upper bound on
r is given by the surfac®; a lower bound is given by.
Similarly, fors < 0, if ¢ < 1, an upper bound on the value
of r is given by the surfacd and if¢ > 1 an upper bound
is found from D; the lower bound is given by the surface

B fort < 0 and by the surfac€ for t > 0. pap = (w0 — 1)
To— S

Having defined the subspa&eof all combinations of val- (1 _OS) y

ues fors, ¢ andr that capture a hyperbolic sensitivity func- pop = ——2"0
g — S

tion, we now define the surfacE of combinations that
capture a rectangular hyperbola through the poigt o) From the above considerations, we now find that the in-

within the unit window: tersection ofS and E, which describes all combinations
_ of values fors, ¢ andr that capture a hyperbolic sensitivity
E: r=(z0-5) (po—1) function through(zo, po), is given by values fos andt that

The surface is depicted in Figure 4. Note that for any pointre related as described in Table 1 and (29 —s)-(po—1).

on the surfacé?, the values of andt uniquely determine Note that for any pointzo, po) in the unit window and any

the value ofr. value fors, the table provides an upper bound and a lower
bound on the value af and hence, on the value of We

The space of all combinations of values for the constants jj,strate the use of these bounds by means of an example.

t andr that define a sensitivity function through the point

(o, po), Now is characterised by the points from the sub-gyxample3.1 We consider a parameter with an original
spaceS that lie on the surfac&’. To establish these com- yajye ofz, = 0.1. In addition, we consider an output
binations, we determine the intersections of the surféce propapility of interest with the original valug, = 0.6.
with the four surfaces that delimit the subsp&cehe sur-  Now suppose that = —2. Then, from

facesE and A, for example, intersect at any point where

(w0 =) (po —t) = s- (t — 1), which results in the line =2-.01-1) ees po, and
t = po+ (1—po) - ==. Writing ty for the values oft 0.1+2
for which the surface¥ and E intersect, we thus find the (1+2)-0.1

® pcp = T 0112 ~0.14 < po

we find that the horizontal asymptotemust lie within

Table 1: Upper and lower bounds on the range of possible
t-values, fors and(xzo, po)-

27,
SRS
SIS
S
“Q <AL

[s<0 [s>1

Po=>PpaB || t2ta | <14
Po<pap || t2tB |t<lB
Figure 4: The surfac& with all (s, ¢, 7)-combinations that Po<pcp | t<tc | t=tc

resultinf(zo) = po. Po=>pcp || t<ip |t=>1p
4
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Figure 6: General bounds on the sensitivity value as a func-
Figure 5: The bounds on all sensitivity functions throughtion of z;, andpy.

(0.1,0.6) with s = —2 (solid); the general bounds from

Figure 2 are replicated for ease of reference (dashed). . . .
g P ( ) inward and one outward propagation therefore suffice to

establish the value offor the given evidence, fanysen-
the intervalltp, tp] ~ [—1.4,1.93]. We further find that sitivity function that we might be interested in, that isf fo
r = (20 — s) - (po — t) must lie within the interval any parameter and any probability of interest. Note that
[—2.80,4.20]. These values fot andr now describe all actually computing all constants of all sensitivity fumcts
possible sensitivity functions through.1,0.6) that have a  requires an additional outward propagation for each output
vertical asymptote at = —2. The bounding functions that probability that we would like to consider and is therefore
enclose these possible sensitivity functions are depiated far more costly than just computing

Figure 5. = To conclude, we would like to note that for establishing the

From the example we clearly see that additional knowledg¥@!ue ofs we explicitly require the constants andc, and
of the value of the constantallows for further tightening hence, the functional form ofp. () (). Approaches that

the bounds on the range of possible sensitivity functions follow for computingPr(e) in relation withz without ac-
a parameter under study. tually providing this functional form (see for example [5])

are therefore not suitable for our purposes.

3.2 THE FEASIBILITY OF ESTABLISHING S

4 APPLYING THE BOUNDS
The bounds on the values of the constanhtsnd r es-
tablished above, serve to describe all sensitivity fumstio |n this section we use the evidence-dependent bounds es-
through(xo, po) for a specific value of the constantWe  tablished in the previous section to gain more insight in
recall that the constantis defined as sensitivity values and for locating vertices.

_a o
s == Wherefpye) (@) = sz + ey 41 BOUNDING SENSITIVITY VALUES

The constant therefore is related to just the probability ofwe recall that the sensitivity value of a parameter for
the available evidence and is independent of the outpuin output probability of interest is the absolute value of
probability of interest. Properties of the network underf/(xo)_ Previously, it was shown that the sensitivity value
study may give an initial idea of the value of For ex-  for any sensitivity function througheo, po) is bounded by
ample, if the distance in the network’s digraph between thehe constan(po - (1 — po))/(zo - (1 — 20)) [2, 8]; Fig-
observed variables and the parameter that is being variegre 6 depicts this general bound as a functiompéndpy.

is quite large, then the probability of the evidence will be Now that we have bounded the possible sensitivity func-
relatively insensitive to changes in the parameter's 0&bi  tions through(zzo, po) by using knowledge of the available
value. The (absolute) value of will then be quite small  evidence, we can also provide tighter evidence-dependent

and for rather Ilkely evidence a relatively Iarge (abs@lute bounds on the sensiti\/ity value of a parameter_

value ofs will result. o ]
For any sensitivity functiotf (z) through(zy, pp) we have

If required, the exact value of the constantan be com-  that

puted in a very efficient way. From the method proposed , —r t—po
by Kjaerulff & Van der Gaag for computing the constants /' (o) = ( =
of the sensitivity functions for a single output probalilit

of interest with respect to all parameters in the network [6] By filling in the bounds 4, ¢z, t¢, andtp on the values of
we have that the constantsandc, can be computed fall the constant as established in the previous section, we get
network parameters after just a single inward and a singl¢he bounds ory’(z,) shown in Table 2. Taking the max-
outward propagation in the network’s junction tree. Ogeimum of the absolute values of the upper bound and the

To—5)2 x0—5



Table 2: Upper and lower bounds gfi(x), for s and s=-01
(x07 po)_ |f’(x0)|

/ —S-(l—po)
f(zo) = oo o —s)

—po-(1—5) 1
(1—a0) - (zo — 9) L :' ~08

Po = DAB

po < pap || ['(zo) >

po-s
po <pep || (@) £ ———
—zp - (xg — 8)

(1-=po) - (1—5)
(1 —x0) - (mo — 5) s=4

po > pep || f'(xo) <

lower bound, respectively, now gives us an upper bound on
the sensitivity value that is dependent upon the value of

An example of such an evidence-dependentupper boundis 1 %:—i-"

. . . T ALATS S
shown in the upper half of Figure 7. One of the more strik- %ﬁ:.?:.:,”t:l:;/// 68
ing differences with Figure 6 is its asymmetry. To explain % “~55 "'",',':':""’I/l/l[ 540,
this difference, we observe that Figure 6 takes into account % o6 ” 1

all possible values of. For negative values of, how-

ever, the hyperbola branch of the sensitivity functionifes  £igre 7: The bounds on the sensitivity value as a function
the first or fo'u.rt'h quadraljt. Sc.),'n‘ a parameter is to have 2o andpy, for s = —0.1 ands — 4, respectively.

a large sensitivity value, its original value must be found

among the smaller parameter values. For positive values of

s, on the other hand, we will find the larger sensitivity val- that the parameter can have far less impact on the output
ues for the larger values ef Knowledge of the value of  probability than suggested by the general bound. O
thus serves to render the bound depicted in the upper part

of Figure 7 asymmetric. From the example in the lowerTO conclude, we can derive the following simple general
half of Figure 7, we note that for larger (absolute) valuesProperties of sensitivity values: ify > po or zo + po >

of s, the evidence-dependent bound starts to resemble the then any negative value farwill result in a sensitivity
bound general found for linear sensitivity functions, whic Vvalue less than or equal to oneyif < py orzo +po < 1,

is reproduced in Figure 8 [8]. This tendency is readily ex-then any positives-value will result in a sensitivity value
plained from the observation that large values oén only  less than or equal to one.

be attained if the constant approaches zero (the constant

¢4 can never be larger than one); far= 0, the sensitivity 4.2 LOCATING VERTICES

function is actually linear. . )
We recall that the vertex of a hyperbola branch is the point

Examp|e41 We consider again a parameter with an Orig_Where (the absolute value Of) its first derivative equa|S one
inal value ofzy = 0.1; we further consider an output prob- If the vertex of a sensitivity function lies within the unit
ability of interest with the original valug, = 0.6. Now  Window, then values for the parameter under study with

suppose that = —2. We then find that

, —0.6-(1+2)
Pl 2 a0y iy~ 0%
and
gy < 000042

(1—0.1)-(0.1+2)

The sensitivity value of the parameter therefore can be no
larger than0.95. With the previously established general

bound, we would have found an upper bound on the sen- o _
sitivity value of (po (1 - po))/(a:o (1= a:o)) — 2.67. Figure 8: General bounds on the sensitivity value of linear

Knowledge of the constant therefore serves to indicatg sensitivity functions as a function af, andp, [8].




Table 3: The ranges dfvalues that, gives and(z, po),
resultinz, € [«, 3].

paB < po < pcp te [tic, tLC] N (1 Uts)

po > max{pap,pep} || t € [thp, thpl N (¢ Uts)
po <min{pap,pep} || t € [tpestpel N (b Uts)

pep < po < pas t € [thpstypl N (t Uts)

very high and very low sensitivity values may lie within
a short distance of one another. For selecting param

ters for further analysis, therefore, not only their sensi-

tivity values, but also the vicinity of a vertex is of im-
portance [9]. To gain insight in the location of the ver-
tex of a sensitivity function, we recall that the vertices

est with the original valugy = 0.6. Suppose again that
s = —2. We now are interested in whether or not the ver-
tex (x,,y») Of the real sensitivity function can be located
within the unit window. We recall from Example 3.1 that
pep < pg =06 < pap,tg = —14andtp = 1.93. In
addition, we find withy = 0 and = 1 that

o 1= [0.6+ 5, 0.6 + T ] ~ [2.50,4.89], and
oty =[0.6 — G22U2,0.6 — i) ~ [~3.69, ~1.30)

The vertex of any hyperbolic sensitivity function through
(zo,po) With a vertical asymptote at-2, therefore lies

é/yithin the unit window iff

t € [~1.40,1.93] N ([2.50,4.89] U [~3.69, —1.30])

With s = —2 andt € [-1.40,-1.30], we have that
r € [4.0,4.2]; as a resultg, lies betweerd and0.05, and

of the four possible hyperbola branches are found at the, between).65 and0.70. If the true sensitivity function

points (z,,y,) = (s £ /|rl,t = v/]r]). We now con-
sider a hyperbolic sensitivity function that passes thioaig
point (xo, pp) in the unit window and address the question
whether or not the vertex of the function is located in its
vicinity. Note that since the vertex is a point itself on the
sensitivity function, we need to study just its coordinate

We begin by addressing, for an arbitrary rectangular hype
bola branch that passes through the p6int po), whether
or not the valuer, of its vertex lies in a specific interval
[, B]. By solving the constaritfrom z,, = s £ +/|r| with

r = (zo — 8) - (po — t) for the four different quadrants, we
find thatz,, € [«, 0] iff

N2 2

otE{po—F(iO _a) , Po (io—ﬂz },OI’
(s —B)? (s —a)?

ote{po— To—s 0 arg—s}

The first interval, denoted b#, is found for second- and
fourth-quadrant branches; the second interval, dengted
corresponds with first- and third-quadrant branches.

The two intervals established above pertain to all possible

hyperbolas through the poirit, po), but not yet to all
possible hyperbolic sensitivity functions througty, po).
To study the location of the vertices of hyperbolic sen-

sitivity functions, therefore, the above intervals must be

combined with the upper and lower bounds on the possi
ble values for the constamtfrom Table 1. Writingt{,w
andt{,,, for the maximum and the minimum ot and
tw, VW € {A,B,C, D}, respectively, Table 3 gives
the ranges of possible values for the constatitat, for

a specifics and(zg, po), define a sensitivity function with
xy € [, B] for its vertex(z,, yy).

Example 4.2 We consider again a parameter with an orig-
inal value ofrg = 0.1 and an output probability of inter-7

r_

through(zg, po) with s = —2 has a vertex within the unit
window, therefore, it must lie to the northwest(@f, po);

the horizontal distance to the vertex then is just between
0.05 and0.10. We conclude that, although the sensitivity
value of the parameter is at mas5, variation to smaller
values than:, might nonetheless induce a large change in
the output probability of interest; variation to largerwes,
however, will certainly have no substantial effect. [

The analyses that were illustrated in the various examples
in this section, can be performed for any pding, po) and

any value ofs. The theoretical results can subsequently
be applied to the true points, pp) and true values of

that are found in a real-life probabilistic network. Combi-
nations that are potentially interesting due to the seuitsiti
value implied or the possible vicinity of a vertex can thus
be distinguished from non-interesting combinations. Our
analyses, for example, reveal the following behaviour, il-
lustrated in Figure 9, as the vertical asymptote s moves
further away from the unit window:

e if s is very close to zero (for example = —0.01),
then the vertex of the sensitivity function will also lie
quite close to zero; as a result, very small values of
the parameter under study will have large sensitivity
values, while all other values far will have small
sensitivity values. Similar observations apply if the

- constant is close to one.

if s moves slightly away from the window (for

example tos = 1.05), then the sensitivity function

starts to increase or decrease more gradually. A larger
range of values for the parameterunder study will
then have large sensitivity values, although they will
be smaller than the sensitivity values found for
closer to zero or one.
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Figure 9: Examples of sensitivity functions with different

values fors.

e if s moves further away from the unit window (for ex-

ample tos = —1.00 or s = —5.00), then the sensi-

tivity function starts to flatten, resulting in small sen-
sitivity values regardless of the value of the parameter

under study.

5 CONCLUSIONS

Studying the effects of variation of any number of pa-
rameters on any number of output probabilities quickly

fore the concept oddmissible deviatiof@]. This concept
captures the extent to which a parameter can be varied with-
out inducing a change in the most likely value for the vari-
able of interest. Establishing properties of such admlissib
deviations that are independent of the network under study
yet dependent of the available evidence, will be a challeng-
ing issue for further research.
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