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Abstract

Sensitivity analysis in a Hidden Markov model (HMM) usuadmounts to applying a change to
its parameters and re-computing its output of interest.eRibg it was shown that, as in Bayesian
networks, a simple mathematical function describes thatiozl between a model parameter and
a probability of interest in an HMM. Up till now, however, npecial purpose algorithms existed
for determining this function. In this paper we present a aew efficient algorithm for doing so,
which exploits the recursive properties of an HMM.

1 Introduction and to use the above mentioned algorithms for com-
puting the constants of the sensitivity function. The
Hidden Markov models (HMMs) are frequently ap- drawback of this approach is that the repetitive char-
plied statistical models for capturing processes thaacter of the HMM, with the same parameters occur-
evolve over time. An HMM can be representedring for each time step, is not exploited in the com-
by the simplest type of Dynamic Bayesian networkputation of the constants. As such, using standard
(see for details Smyth, Heckerman & Jordan, 1997Bayesian network algorithms may not be the most
Murphy (2002)), which entails that all sorts of algo- efficient approach to determining sensitivity func-
rithms available for (Dynamic) Bayesian networks tions for HMMs.
can be straightforwardly applied to HMMs. In this paper we present a new and efficient al-
HMMs specify a number of parameter probabil- gorithm for computing the constants of the sensitiv-
ities, which are bound to be inaccurate to at leastty function in HMMs, which exploits the recursive
some degree. Sensitivity analysis is a standard teclproperties of an HMM. After presenting some pre-
nique for studying the effects of parameter inac-liminaries concerning HMMs and sensitivity func-
curacies on the output of a model. An analysistions in Section 2, we review the known recursive
in which a single parameter is varied, is called aexpressions for different probabilities of interest in
one-waysensitivity analysis; in am-way analysis  Sections 3 and 4; more specifically, we focus on so-
n > 1 parameters are varied simultaneously. Forcalled filter and prediction probabilities in Section 3
Bayesian networks, a simple mathematical functiorand on smoothing in Section 4. In these sections,
exists that describes the relation between one owe subsequently translate the recursive expressions
more network parameters and an output probabilinto functions of model parameters and present al-
ity of interest. Various algorithms are available for gorithms for computing the constants of the associ-
computing the constants of this so-called sensitivityated sensitivity functions. We discuss relevant re-
function (see Coupet al. (2000) for an overview lated work in Section 5 and conclude the paper with
and comparison of existing algorithms). Recently,directions for future research in Section 6.
it was shown that similar functions describe the re-
lation between model parameters and output proba® Preliminaries
bilities in HMMs (Charitos & Van der Gaag, 2004).
For computing the constants of these functions, itFor each time, an HMM consists of a single hid-
was suggested to represent the HMM as a Bayesiatten variable whose state can be observed by some
network, unrolled for a fixed number of time slices, test or sensor. The uncertainty in the test or sensor



F A @ A @ o forward probabilityF' (i, t) = p(z!, y1*), and
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Figure 1: A Bayesian network representation of anp(z! | y27) =
HMM unrolled for three time slices.
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Alternatively, the HMM can be represented as
output is captured by a set of observation probabila Bayesian network unrolled fanax{¢,T} time
ities; the transitions among the states in subsequestices, upon which standard Bayesian network in-
time steps, otime slices are captured by a set of ference algorithms can be used.
transition probabilities. In this paper we concentrate The outcomep(z! | y2'7) depends on the proba-
on HMMs with discrete observable variables. Webility parameters specified for the model. To study
further assume that the model is time-invariant, i.ethe effects of possible inaccuracies in these param-
the probability parameters do not depend on timeeters on the computed outputsansitivity analysis
More formally, an HMM now is a statistical model can be done. To this end, we establish $basitiv-

H = (X,Y,A,0,T), where for each time > 1: ity functionp(a! | y21)(0) that describes our output
f interest in terms of parametér wheref can be
ny model parameter, i.e. an initial probability, an
observation probability or a transition probability.

e Y is the observable variable, with states de- In the context of Bayesian networks,

e X' isthe hidden variable; its states are denote(fl
byzl,i=1,...,n,n>2;

noted byyﬁ.,j =1,...,m, m > 2; the nota- Sensitivity analysis has been studied ex-

tion y! is used to indicate actual evidence; ~ tensively by  various  researchers  (see
Van der Gaag, Renooij & Co@n2007) for an

e A'is the transition matrix with entries;; =  overview and references). In the context of HMMs,

p(33§+1 | 2f), i, =1,...,m; sensitivity analysis is usually performed by means

of a perturbation analysis where a small change is
applied to the parameters, upon which the output of
interest is re-computed (Mitrophanov, Lomsadze &
e I'is the initial vector forX! with entriesy; =  Borodovsky, 2005). The main difference between
plzl),i=1,...,n. sensitivity analysis in Bayesian networks and in
Hidden Markov models in essence is that a single
Figure 1 shows a Bayesian network representatioparameter in an HMM may occur multiple times. A
of an HMM unrolled for three time slices. one-way sensitivity analysis in an HMM, therefore,
Inference in temporal models typically amounts gmounts to ann-way analysis in its Bayesian
to computing the marginal distribution oveéf at  network representation, whereequals the number
time , given the evidence up to and including time of time slices under consideration. It is therefore
T, thatisp(X* | y; ), wherey; ™" is short for the  no surprise that for HMMs sensitivity functions are
sequence of observationg,....y.. If T =t gimilar to those for Bayesian networks (Charitos
this inference task is known d8tering, ' < t & van der Gaag, 2004). The difference with the
concernsprediction of a future state, andmooth-  generaln-way function for Bayesian networks is,

ing is the task of inferring the past, that % >  powever, that the: parameters are constrained to
t. For exact inference in an HMM, the efficient
Forward-Backward algorithm is available (see for 'If @ parameted = p(v; | ) for a variableV is varied,

. ; ._we must ensure that stif_. p(v; | 7) = 1. To this end, all
details Russel & Norvig (2003, chapter 15)). This popapilitiesp(v; | ), i £ j, are co-varied proportionally:
algorithm computes for all hidden stateat timet,  p(v; | 7)(0) = p(v; | w)-#f;m. For binary-valued/ this

the following two probabilities: simplifies top(v; | 7)(8) = 1 — 6.

¢ O is the observation matrix with entrieg ; =
p(ys lof),i=1,...,n,j=1,...,m



all be equal, which reduces the number of requiredunction for a probabilityp(z, | y!7T) is a quo-
constants. We now summarise the known results fotient of the sensitivity functions far(=?, y*7') and
sensitivity functions in HMMs (Charitos & Van der for p(y}?), and thatp(ytT) = S0, p(at, y27).

Gaag, 2004; Charitos, 2007). For the probability of Therefore, given the polynomial form of the func-
evidence as a function of a model paramétewe tions, the coefficients for the sensitivity functions

have the following polynomial function: for p(zf, yX'T) provide enough information to es-
o -~ . . tablish all required coefficients. The remainder of
pye " )(0) =dn-0" +...+dy-0+d this section is therefore devoted to obtaining the co-

_ _ efficients forp(x,, y}*7') as a function of.
whereN =T if0 =0, N =T —1if 0 = a,,

N = 1for 6 = ~,, and coefficients’y, ..., dj 3.1 Filter and Prediction Recursions

are constants with respect to the various paramén will now review the recursive expres-
ters. For the joint probability of a hidden state andSion for filter probabilites (see for de-

EVidenﬁe}T a_functitl)n ofa_rlnfodel _paramétaxve tails Russel & Norvig (2003, chapter 15)) and
ave the following polynomial function: make explicit the relation between filter and pre-
diction probabilities. Starting with the latter, we

t 1:T t N t t
0) = -0 ... -0
P, g )0) = co 07+ e Ot find by conditioning onX” and exploiting the

where independence&® | Y51 | X7 for T < ¢, that
t—1 if 0=a,,andt>T; e o~ T LT
T 0 = Or.s andv = r; p(l‘i, yel ) - Zp<mf) ‘ xz)'p(xzv y; ) (l)
N — T-1 0 = o, andv # r, or =1
0 =ays,t <Tandv=r; The second factor in this summation is a filter prob-
T-2 0 =ars,t <T andv # r; ability; the first can be computed from similar prob-
1 0 = abilities in time slicet — 1 fort > T + 1:
n
and coefficients’_;’N, ..., C, o are constants with re- pa [2]) = D awep@lt 12l (@)
spect to the various parameters. The same general w=1

forms apply to prior marginals ovek, by taking and equals fot = T + 1:

T = 0. Note that prior probabilities are not affected

by variation in observation parameters. pat | 2T) = a,, (3)
Up till now, no special purpose algorithms for

establishing the coefficients of the sensitivity func-Now consider the filter probability, i.e. the case

tions in an HMM were available, which means thatWhereT' = t. Exploiting the conditional indepen-

Bayesian network algorithms need to be used to thifences’™ L Y¥~1 | X*andX* Ly~ | X1,

end. In the next sections, we present a new and eind conditioning onX*~!, we have the follow-

ficient algorithm for computing the coefficients for iNg relation between probabilities(z}, y.*) and

sensitivity functions in HMMs. To this end, we ex- P(, ' y¢ '~ !) for two subsequent time slices- 1

ploit the repetitive character of the model parame-@ndt, ¢ > 1:

ters and knowledge about the polynomial form of . r B Y

the sensitivity functions presented above. We will P(Zv: ve') = Ov’et'Z:lazuv'p@i Ly @)

=

discuss the inference tasks filtering/prediction and
smoothing separately. wheree; corresponds to the value &f observed at

timet. For time slicet = 1, we have that
3 Filter and Prediction Coefficients

_ _ _ N play, yo) = p(e | 2))-p(x)) = 0ver Y0 (5)
In this section we establish the coefficients of the

sensitivity functionp(z!, | yX7)(#),t > T, for var-  Note that for a prior marginal(z}) we find the same
ious model parametes Note that the sensitivity expressions witl,, ., omitted.



Finally, consider the case whefé < ¢. Equa- 3.3 Transition Parameters
tions 1 and 2 show that we now basically need toys consider the sensitivity functign(zt, y1*)(6,)

prolong the recursion in E_quatk_)n 4 from tirieto 5 model parametef, = a, ;. From Equations 4
timet, except that for the time slicés+1uptoand  4nq 5 it follows that fort = 1 we find a constant,
includingt no evidence is available. The absence of

z, y1)(04) = 0y.e, 70, and fort > 1,
evidence can be implemented by multiplying with Py, 9 ) (0a) e

rather tharo, .. In the remainder of this section, p(z! 41%)(9,) = (6)

we will therefore assume, without lack of general- n

ity, thatT' = t. = Ope Z az,v(ea)'p(wi_l, Yt (0,)
We will now translate the above relations into o

functions of the three types of model parameter. We = Oue, aro(fa) p(xiY, Y1) (0,) +

already know that those functions are polynomial in -

the parameter under consideration, and we know the + 0v.e,- 070 (0a) P2k, 4 1) ()

degree of the functions. However, we have yet to
establish what the coefficients are and how to com- _

- . wherer denotes the state df other thanr. In the
pute them. For ease of exposition concerning the co-

- . . _above formulaa,,(6,) equalsd, for v = s and
variation of parameters, we assume in the remamde{ AT
— 6§, forv # s; ar, is independent of,,.

f thi ion that all variabl inary-val . . ,
of this section that all variables are binary-valued, The polynomialp(zt, 41)(6,) requirest coeffi-

le.n=m=2 cients:cl, y, N = 0,...,t — 1. To compute these
3.2 Initial Parameters coefficients, building upon Equation 6 above, we
designed a procedure which constructs a set of ma-
trices containing the coefficients of the polynomial
sensitivity functions for each hidden state and each
time slice. We call this procedure thgoefficient-
Matrix-Fill procedure.

We consider the sensitivity functign(zf, y*)(6.)
for model parametefi., = .. Note thaty,, the pa-
rameter associated with the state of interestXdér
corresponds either @, (v = r) or its complement

1—6, (v # r). From Equation 4 it now follows that

fort =1: 3.3.1 The Coefficient-Matrix-Fill Procedure
- Ope; 0+ 0 if v=r The Coefficient-Matrix-Fill procedure constructs
plel. v)(05) = | ime sl derati
vy Je)\Uy 9 if a matrix for each time slice under consideration, and
—Oye, Oy +0pe, I vFET

fills this matrix with the coefficients of the polyno-
mial functions relevant for that time slice. In this

and from Equation 5 we have for> 1: i i i .
section, we will detail the procedure for computing

p(h, ye*)(0,) = the coefficients of(zf, y'*)(6,). In the sections
2 following, we demonstrate how a similar procedure
= Z Ov.e, Az pp(xt yH ) (0,) can be used to compute the coefficients given an ob-
z=1 servation parameter, and in cdBef .

i t 1:t i
Th_e_ polynotmlal p(%; Ye )(07) requires tWo - rpe pasic idea For each time slic: = 1,...,t
coefficients: ¢, ; and ¢; . Since each initial

arameter is ugclad only in time step 1, as the abovWe construct am x k matrix ¥, A row 7 in
P y P k contains exactly the coefficients for the function

expressions demonstrate, the coefficientst for 1 k. y1%)(0,), S0 the procedure in fact computes

ZZthJ)\(fe _es(;[ai)lllshed through a simple recursion fofhe coefficients for the sensitivity functions falt n

hidden states anall time slices up to and including
. 2 1 t. A columnj in F* contains all coefficients of the
Co,N = Zov,et 2o C N (4 — 1)th-order terms of the: polynomials. More
=1 specifically, entryfF; equals the coefficient;; ,
with ¢, o = 0if v = r, ando, ., otherwise; in addi-  of the sensitivity functiop(z¥, y2*)(6,). The en-

]

tioncl, = oy, if v=r, and—o, ., otherwise. tries of matrix '! are set to their correct values in



the initialisation phase of the procedure. MatricesForj = 1, the general cases above are simplified by

FF* for k > 1 are built solely from the entries in
F*=1 the transition matrixd and the observation
matrix O.

Fill operations The recursive steps in the vari-
ous formulas are implemented by transitioning from
matrix F¥ to F**1 for k > 1. To illustrate this tran-
sition, consider an arbitrarfk — 1)th-degree poly-
nomial ind, p(6) = cx_1-0* 1 +... 4+ c10+co, and

let this polynomial be represented in rawof ma-
trix F*, i.e. ff = (co,...,ck—1). In transitioning
from matrix F'* to F**1, three types of operation
(or combinations thereof) can be appliedht®):

e summation with another polynomiél-)p*(6)

setting ﬁ;}l = 0. This boundary condition cap-

tures that entries in the first column correspond to
coefficients of the zero-order terms of the polyno-
mials and can therefore never result from a multi-
plication with 6,. Similarly, since the coefficients
for columnj = k, k > 1, canonly result from mul-
tiplication byd,, we set .’fjfl = (0 in that case.

Complexity Ineach of the: steps, am x k& matrix

is filled. This matrix contains the coefficients for
the functionsp(z¥, y*)(8,) for all i, so the pro-
cedure computes the coefficients for the sensitivity
functions for all hidden states and all time slices up
to and includingt. If we are interested in only one
specific time slice, then we can save space by stor-

of the same degree: this just requires summingng only two matrices at all times. The runtime com-
the coefficients of the same order, i.e. summingplexity for a straightforward implementation of the

entries with the same column number;

multiplication with a constantl: the result-
ing polynomial is represented in roiof ma-
trix FA+1 by fF0 = (d-co,...,d-cx-1,0).
Note thatF"**! has an additional columind-1,
which is unaffected by this operation.

multiplication with&: the resultingkth-degree
polynomial is represented in rowof matrix
FF+1py fF1 = (0, ¢g, ..., cx_1). This oper-
ation basidally amounts to shifting entries from
F* one column to the right.

Fill contents: initialisation Matrix F! is ini-

tialised by settingf}'; = 0;., -y; fori = 1,2. Ma-

tricesF?, ..., F! are initialised by filling them with
zeroes.

Fill contents: k =2,...,t We will now provide
the details for filling matrixF*, k > 1. Following
Equation 6, positiory in row i of matrix F*, fF,
k > 1, is filled with:

if i =s thenforl < j < k:
Oi,ek'(f,lf;_ll + a?,i'fF]i;l)

if i # s thenforl < j < k:

—fritt by e £

07"7€k .(

algorithm isO(n? - t2), which ist times that of the
forward-backward algorithm. This is due to the fact
that per hidden state we need to computaimbers
per time step rather than one.

Example 1. Consider an HMM with binary-valued
hidden stateX and binary-valued evidence variable
Y. LetT = [0.20,0.80] be the initial vector forX?,
and let transition matrix4 and observation matrix
O be as follows:

-

Suppose we are interested in the sensitivity func-
tions for the two states ak3 as a function of pa-
rameterf, = as; = p(zt | z5') = 0.15, for all

t > 1. Suppose the following sequence of observa-
tions is obtainedy., 3 andy?. To compute the co-
efficients for the sensitivity functions, the following
matrices are constructed by the Coefficient-Matrix-

o) - o s

[ o1,1-a11-f1, o11-f3, ]
09,1-(f31 +a12-f11) —o21-f3,
0.75-0.08

—0.90-0.08

0.95 0.05
0.15 0.85

0.75 0.25

]a”dO - [0.90 0.10

0.25-0.20
0.10-0.80

0.05
0.08

01,271
02272

|

F? =

B 0.75-0.95-0.05
~ [0.90-(0.08 + 0.05-0.05)

|



[0.03563 0.06 The polynomial function(zf, y2*)(6,) requires

= (007425 —0.072] | t + 1 coefficients:cl, y, N =0,...,t. We compute
0.10988 — 0.012 these coefficients,jbuilding upon the Equations 7

and 8, again using our Coefficient-Matrix-Fill pro-

cedure. The contents and size of the matrices dif-
[ o11-a11" fia fer from the case with transition parameters and are

and finally, F3 =

specified below.
02,1'(f22,1 + a1,2'f12,1) P

Fill contents: initialisation F! is ann x 2 ma-

. 2 . 2
or-(fia+ara-fiz) trix, initialised in accordance with Equation 7. All

2 2 2
021 (=far+ fiz+ are-fia) F¥ k=2,...,t aren x (k4 1) matrices and are
01,1 f32 ] initialised by filling them with zeroes.
— . 2
021 22 Fill contents: k = 2,...,¢ Following Equa-
tion 8, position; in row i of matrix F*, ”, k>1,
0.02538  0.09844 —0.054 is filled with the following forj = 2, ..., k:
0.06843 —0.12893 0.0648 N ) -
0.09381 —0.03049  0.0108 PDRELRD it it i=re=s;
2 1am(f fJ ) i i=r e # s

From which we can conclude, for example:

h1 . ]

—0.054-62 + 0.098-0, + 0.025 e e G S .

0.011-62 — 0.030-6, + 0.094 Forj = 1 andj = k + 1 we again simplify the
above formulas where necessary, to take into ac-
count boundary conditions.

p(at | ye?)(0a) =

and also,

—-0.072-4, + 0.074
—0.012-6, + 0.110

p(a3 | ye?)(0a) =

4 Smoothing Coefficients

In this section we consider establishing the coeffi-
cients of the sensitivity functiop(z!, | y17)(9) for
various model parametefs in the situation where

t < T. We again focus only op(z!,, y17)(6).

Note that the coefficients for the probability of evi-
dence function follow from summing the entries in
each column of* (see e.gF? andF? above). [

3.4 Observation Parameters 41 Recursion for Smoothing

Recall from Section 2 that(x!, y1' 1) = B(i,t)-
F(i,t), or

We consider the sensitivity functigr{x?, y1*)(0,)
for model parametef, = o, ;. From Equation 4 it
follows that fort = 1:

p(le), y;)(%) _ (7) p(]"fn yé: ) (ye+1 T | T ) p(xfn y;:t) (9)

i ‘ The second term in this product is again a filter
Ov,e1" Mo it v probability, so we now further focus on the first

- 0o if v=rande, =s; term. By conditioning onX**! and exploiting
(1=00)-7r if v=rande; #s; independences (see for details (Russel & Norvig,
and from Equation 5 we have for> 1: 2003, chapter 15)), we have the following re-
p(zt, ykt)(6,) = lation between probabilitiegp(y:t7 | 2!) and

p(ytt? T | 2t fort +1 < T

= Oy,eq (65)- az,v'p(xiilv ylztil)(QO) (8)
pytttT | al) =
whereo, ., (6,) equalso, ., forv # r, §, forv =r

t+2:T t+1
0, Gy 5+ T 10
ande; = s, and1 — 6, for v = r ande; # s. Z e Gz Py | ) 10



Fort 4+ 1 = T, this reduces to our Coefficient-Matrix-Fill procedure, where con-
n tents is now determined by Equations 10 and 11,
plyl T 2yt = Zoz,eT ‘avz-1 (11)  and depends on the relation between andd,: if
z=1 v = r thena, . equalsy, for = = s, andl — 6, for
Again we translate the above relations into func-, _ g otherwiseu, . is constant.
tions of the various model parameters. From 7o gistinguish between computations that move
Equations 10 and 11 it follows that the func- fonyard in time, and the current ones which move
tion p(ye™ | 27)(6) is polynomial in each packward intime, we will use matrices®, ¢ < k <
model parametet. Moreover, from Equation 9 7 wherek = T'is used purely as initialisation.
we have that the degree ofz!, y1'7)(0) equals

v

the sum of the degrees of(y:t:T | zi)(p)  Fill contents: initialisation BT is ann x 1 ma-

(2

and p(a!, y1*)(9). Since the degrees of both trix, initialised with1's. Al Bf k=t ...,T—1,
p(at, yET)(0) and p(zt, yl*)(6) are known (see aren x (T —k + 1) matrices which are initialised
Section 2), the degree ofy/ ™7 | z.)(0) can be With zeroes.

established as their difference. We thus have that = contents: # = 7 — 1 down to ¢ Following

HLT |ty 0) = gt N . L d 04 dl Equations 10 and 11, positighin row ¢ of matrix
Pl ) (0) = duy 7t b duo g B 2 i filled with the following forj —
where 2,...,T—k:

; TR, 2 k+1 k+1
N—{ T—t if 6=o0.50r0=aq,s; ifi=r (3o, 0Z76k+1~b2371)+Og7ek+1-b§3

0 if 6=n, _ ) .

if @7 Zz:l 0z,ex41 'ai,z'bz;

and coefficientsl;, v, ...,d; , are constants with re- , . _

spect to the various parameters. The coefficients of T/ = 1 andj = T'—k +1 we again have to take
the polynomial functionp(z?,, y17)(6), T > ¢, can into account boundary conditions.

tr;_us t'?e esfta(bl;shelg)?g) stagdzirgfgb'/n?;r(uee;l multiy 4 Observation Parameters

plication of p(z!, L andp(y:HT | zt)(6). _ T . _

In the following we will establish exactly what The function p(y. | gfv)(eo)’ t < T, with

the coefficients op(y:™"" | z})(¢) are and how parameters, = oy requiresT — ¢ + 1 coeffi-

to compute them. For ease of exposition, we agair?iems' We again compute these coefficients using
taken — m — 2 our Coefficient-Matrix-Fill procedure in a similar

way as for the transition parameters above. The only
4.2 Initial Parameters difference is in the fill contents determined by Equa-
We consider the functiop(y:+ 17 | 21)(6,),t < T, tions 10 and 11. This now depends on the relation

for model parametef., = ~,. The degree of this betweerv. ¢, ,, andd,: for z =r, 0-¢,, equalse_o
polynomial is0. Indeed, from Equations 10 and 11 If €41 = s, and1 — 0, if eyq # s; for z = 7,
it follows that this function is constant with respect %z 1S constant.

to an initial parameter. This constant is simply arij|| contents: ¥ = 7 — 1 down to # Following
probability which can be computed using standardequations 10 and 11, positighin row i of matrix
inference. BF bk k < T, is filled with the following forj =

’ Z7j’

4.3 Transition Parameters 2,..., T -k

The functionp(y! ™7 | x_f,)(ﬁa), t < T, with if g1 =s: ai,r'bfﬁ
parametery, = a,, requiresT — ¢ + 1 coeffi- ftl ftl
cients. We again compute these coefficients usin@lf €k+1 7# S *ai,r'br,j_l + ai,r‘bm’ +
k41
+Or e 'alﬂ"'ij

k+1
1+ 07 i by

2Note that this may seem counter-intuitive as it concerns the

function for aconditionalprobability; sinceX” is an ancestor . . . .
of Y+ ... Y, however, the factorisation qf(y’ "7, «1)  FOrj =1 andj = T — k + 1 we again take into

includesp(z?,). account the boundary conditions.



5 Related Work that exploiting the repetitive character of HMMs re-
Varvi » b . ) sults in a simple algorithm that computes the co-
HT\;I)'/\I/IHQ a tran5|t|(;)n oro sc_ervatlor; lp?rameter N ANafficients of the sensitivity functions for all hidden
AIMIME corresponas to varying mu t|.p € parameters yi.io5 and all time steps. Our procedure basically
N Its Bgye&an network reprgsentatlon,lgn.e for eacrP’nimics the forward-backward inference algorithm,
tlrng SI:(I:\/IeI\/lIJ nQerhconfS|derat|on. Sgns(;ltl]:/lty e;gfaly'but computes coefficients rather than probabilities.
sisn | SIS t I:re ore a constrilne _cr)]rm” Various improvements of the forward-backward al-
way analysis in bayesian Networks, with a var- gorithm for HMMs exist that exploit the matrix for-
ied parameters having the same value at all times,, \ation (Russel & Norvig, 2003, Section 15.3);
As_a result, absen?tlwt;]/crfqnctlo? in-an HhMM "€ further research is required to investigate if our pro-
quires a humber ot coe icients inear n t € NUM"cedure can be improved in similar or different ways.
ber of parameters varied, whereas in Bayesian net- The presented work can be extended quite

quks in general aT-Yvay SEnS't'\]{'ty fl.;fl"lCFIOT re- straightforwardly to sensitivity functions which
;:|U|res z;n exp(_)t:}en Iab nt:mfet;n(e) C(_)edlmen S ON&oncern the prediction of future observations, i.e
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