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Abstract

Sensitivity analysis in a Hidden Markov model (HMM) usuallyamounts to applying a change to
its parameters and re-computing its output of interest. Recently it was shown that, as in Bayesian
networks, a simple mathematical function describes the relation between a model parameter and
a probability of interest in an HMM. Up till now, however, no special purpose algorithms existed
for determining this function. In this paper we present a newand efficient algorithm for doing so,
which exploits the recursive properties of an HMM.

1 Introduction

Hidden Markov models (HMMs) are frequently ap-
plied statistical models for capturing processes that
evolve over time. An HMM can be represented
by the simplest type of Dynamic Bayesian network
(see for details Smyth, Heckerman & Jordan, 1997;
Murphy (2002)), which entails that all sorts of algo-
rithms available for (Dynamic) Bayesian networks
can be straightforwardly applied to HMMs.

HMMs specify a number of parameter probabil-
ities, which are bound to be inaccurate to at least
some degree. Sensitivity analysis is a standard tech-
nique for studying the effects of parameter inac-
curacies on the output of a model. An analysis
in which a single parameter is varied, is called a
one-waysensitivity analysis; in ann-way analysis
n > 1 parameters are varied simultaneously. For
Bayesian networks, a simple mathematical function
exists that describes the relation between one or
more network parameters and an output probabil-
ity of interest. Various algorithms are available for
computing the constants of this so-called sensitivity
function (see Couṕe et al. (2000) for an overview
and comparison of existing algorithms). Recently,
it was shown that similar functions describe the re-
lation between model parameters and output proba-
bilities in HMMs (Charitos & Van der Gaag, 2004).
For computing the constants of these functions, it
was suggested to represent the HMM as a Bayesian
network, unrolled for a fixed number of time slices,

and to use the above mentioned algorithms for com-
puting the constants of the sensitivity function. The
drawback of this approach is that the repetitive char-
acter of the HMM, with the same parameters occur-
ring for each time step, is not exploited in the com-
putation of the constants. As such, using standard
Bayesian network algorithms may not be the most
efficient approach to determining sensitivity func-
tions for HMMs.

In this paper we present a new and efficient al-
gorithm for computing the constants of the sensitiv-
ity function in HMMs, which exploits the recursive
properties of an HMM. After presenting some pre-
liminaries concerning HMMs and sensitivity func-
tions in Section 2, we review the known recursive
expressions for different probabilities of interest in
Sections 3 and 4; more specifically, we focus on so-
called filter and prediction probabilities in Section 3
and on smoothing in Section 4. In these sections,
we subsequently translate the recursive expressions
into functions of model parameters and present al-
gorithms for computing the constants of the associ-
ated sensitivity functions. We discuss relevant re-
lated work in Section 5 and conclude the paper with
directions for future research in Section 6.

2 Preliminaries

For each timet, an HMM consists of a single hid-
den variable whose state can be observed by some
test or sensor. The uncertainty in the test or sensor
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Figure 1: A Bayesian network representation of an
HMM unrolled for three time slices.

output is captured by a set of observation probabil-
ities; the transitions among the states in subsequent
time steps, ortime slices, are captured by a set of
transition probabilities. In this paper we concentrate
on HMMs with discrete observable variables. We
further assume that the model is time-invariant, i.e.
the probability parameters do not depend on time.
More formally, an HMM now is a statistical model
H = (X,Y,A,O,Γ), where for each timet ≥ 1:

• Xt is the hidden variable; its states are denoted
by xt

i, i = 1, . . . , n, n ≥ 2;

• Y t is the observable variable, with states de-
noted byyt

j , j = 1, . . . ,m, m ≥ 2; the nota-
tion yt

e is used to indicate actual evidence;

• A is the transition matrix with entriesai,j =
p(xt+1

j | xt
i), i, j = 1, . . . , n;

• O is the observation matrix with entriesoi,j =
p(yt

j | xt
i), i = 1, . . . , n, j = 1, . . . ,m;

• Γ is the initial vector forX1 with entriesγi =
p(x1

i ), i = 1, . . . , n.

Figure 1 shows a Bayesian network representation
of an HMM unrolled for three time slices.

Inference in temporal models typically amounts
to computing the marginal distribution overX at
time t, given the evidence up to and including time
T , that isp(Xt | y1:T

e ), wherey1:T
e is short for the

sequence of observationsy1
e , . . . , y

T
e . If T = t,

this inference task is known asfiltering, T < t

concernsprediction of a future state, andsmooth-
ing is the task of inferring the past, that isT >

t. For exact inference in an HMM, the efficient
Forward-Backward algorithm is available (see for
details Russel & Norvig (2003, chapter 15)). This
algorithm computes for all hidden statesi at timet,
the following two probabilities:

• forward probabilityF (i, t) = p(xt
i, y1:t

e ), and

• backward probabilityB(i, t) = p(yt+1:T
e | xt

i)

resulting in

p(xt
i | y1:T

e ) =
p(xt

i, y1:T
e )

p(y1:T
e )

=
F (i, t)·B(i, t)

∑n
i=1

F (i, t)·B(i, t)

Alternatively, the HMM can be represented as
a Bayesian network unrolled formax{t, T} time
slices, upon which standard Bayesian network in-
ference algorithms can be used.

The outcomep(xt
i | y1:T

e ) depends on the proba-
bility parameters specified for the model. To study
the effects of possible inaccuracies in these param-
eters on the computed output, asensitivity analysis
can be done. To this end, we establish thesensitiv-
ity functionp(xt

i | y1:T
e )(θ) that describes our output

of interest in terms of parameterθ, whereθ can be
any model parameter, i.e. an initial probability, an
observation probability or a transition probability.1

In the context of Bayesian networks,
sensitivity analysis has been studied ex-
tensively by various researchers (see
Van der Gaag, Renooij & Coupé (2007) for an
overview and references). In the context of HMMs,
sensitivity analysis is usually performed by means
of a perturbation analysis where a small change is
applied to the parameters, upon which the output of
interest is re-computed (Mitrophanov, Lomsadze &
Borodovsky, 2005). The main difference between
sensitivity analysis in Bayesian networks and in
Hidden Markov models in essence is that a single
parameter in an HMM may occur multiple times. A
one-way sensitivity analysis in an HMM, therefore,
amounts to ann-way analysis in its Bayesian
network representation, wheren equals the number
of time slices under consideration. It is therefore
no surprise that for HMMs sensitivity functions are
similar to those for Bayesian networks (Charitos
& Van der Gaag, 2004). The difference with the
generaln-way function for Bayesian networks is,
however, that then parameters are constrained to

1If a parameterθ = p(vj | π) for a variableV is varied,
we must ensure that still

P

i
p(vi | π) = 1. To this end, all

probabilitiesp(vi | π), i 6= j, are co-varied proportionally:
p(vi | π)(θ) = p(vi | π)· 1−θ

1−p(vj |π)
. For binary-valuedV this

simplifies top(vi | π)(θ) = 1 − θ.



all be equal, which reduces the number of required
constants. We now summarise the known results for
sensitivity functions in HMMs (Charitos & Van der
Gaag, 2004; Charitos, 2007). For the probability of
evidence as a function of a model parameterθ, we
have the following polynomial function:

p(y1:T
e )(θ) = dT

N ·θN + . . . + dT
1 ·θ + dT

0

whereN = T if θ = or,s, N = T − 1 if θ = ar,s,
N = 1 for θ = γr, and coefficientsdT

N , . . . , dT
0

are constants with respect to the various parame-
ters. For the joint probability of a hidden state and
evidence, as a function of a model parameterθ, we
have the following polynomial function:

p(xt
v, y1:T

e )(θ) = ct
v,N ·θN + . . . + ct

v,1·θ + ct
v,0

where

N =































t − 1 if θ = ar,s andt ≥ T ;
T θ = or,s andv = r;
T − 1 θ = or,s andv 6= r, or

θ = ar,s, t < T andv = r;
T − 2 θ = ar,s, t < T andv 6= r;
1 θ = γr;

and coefficientsct
v,N , . . . ,ct

v,0 are constants with re-
spect to the various parameters. The same general
forms apply to prior marginals overX, by taking
T = 0. Note that prior probabilities are not affected
by variation in observation parametersor,s.

Up till now, no special purpose algorithms for
establishing the coefficients of the sensitivity func-
tions in an HMM were available, which means that
Bayesian network algorithms need to be used to this
end. In the next sections, we present a new and ef-
ficient algorithm for computing the coefficients for
sensitivity functions in HMMs. To this end, we ex-
ploit the repetitive character of the model parame-
ters and knowledge about the polynomial form of
the sensitivity functions presented above. We will
discuss the inference tasks filtering/prediction and
smoothing separately.

3 Filter and Prediction Coefficients

In this section we establish the coefficients of the
sensitivity functionp(xt

v | y1:T
e )(θ), t ≥ T , for var-

ious model parametersθ. Note that the sensitivity

function for a probabilityp(xt
v | y1:T

e ) is a quo-
tient of the sensitivity functions forp(xt

v, y1:T
e ) and

for p(y1:T
e ), and thatp(y1:T

e ) =
∑n

z=1
p(xt

z, y1:T
e ).

Therefore, given the polynomial form of the func-
tions, the coefficients for the sensitivity functions
for p(xt

v, y1:T
e ) provide enough information to es-

tablish all required coefficients. The remainder of
this section is therefore devoted to obtaining the co-
efficients forp(xt

v, y1:T
e ) as a function ofθ.

3.1 Filter and Prediction Recursions

We will now review the recursive expres-
sion for filter probabilities (see for de-
tails Russel & Norvig (2003, chapter 15)) and
make explicit the relation between filter and pre-
diction probabilities. Starting with the latter, we
find by conditioning onXT and exploiting the
independenceXt ⊥ Y 1:T | XT for T < t, that

p(xt
v, y1:T

e ) =
n

∑

z=1

p(xt
v | xT

z )·p(xT
z , y1:T

e ) (1)

The second factor in this summation is a filter prob-
ability; the first can be computed from similar prob-
abilities in time slicet − 1 for t > T + 1:

p(xt
v | xT

z ) =
n

∑

w=1

aw,v ·p(xt−1
w | xT

z ) (2)

and equals fort = T + 1:

p(xt
v | xT

z ) = az,v (3)

Now consider the filter probability, i.e. the case
whereT = t. Exploiting the conditional indepen-
dencesY t ⊥ Y 1:t−1 | Xt andXt ⊥ Y 1:t−1 | Xt−1,
and conditioning onXt−1, we have the follow-
ing relation between probabilitiesp(xt

v, y1:t
e ) and

p(xt−1
v , y1:t−1

e ) for two subsequent time slicest−1
andt, t > 1:

p(xt
v, y1:t

e ) = ov,et ·
n

∑

z=1

az,v ·p(xt−1
z , y1:t−1

e ) (4)

whereet corresponds to the value ofY observed at
time t. For time slicet = 1, we have that

p(x1
v, y1

e) = p(y1
e | x1

v)·p(x1
v) = ov,e1 ·γv (5)

Note that for a prior marginalp(xt
i) we find the same

expressions withov,et omitted.



Finally, consider the case whereT < t. Equa-
tions 1 and 2 show that we now basically need to
prolong the recursion in Equation 4 from timeT to
timet, except that for the time slicesT +1 up to and
includingt no evidence is available. The absence of
evidence can be implemented by multiplying with1
rather thanov,et . In the remainder of this section,
we will therefore assume, without lack of general-
ity, thatT = t.

We will now translate the above relations into
functions of the three types of model parameter. We
already know that those functions are polynomial in
the parameter under consideration, and we know the
degree of the functions. However, we have yet to
establish what the coefficients are and how to com-
pute them. For ease of exposition concerning the co-
variation of parameters, we assume in the remainder
of this section that all variables are binary-valued,
i.e. n = m = 2.

3.2 Initial Parameters

We consider the sensitivity functionp(xt
v, y1:t

e )(θγ)
for model parameterθγ = γr. Note thatγv, the pa-
rameter associated with the state of interest forXt,
corresponds either toθγ (v = r) or its complement
1−θγ (v 6= r). From Equation 4 it now follows that
for t = 1:

p(x1
v, y1

e)(θγ) =

{

ov,e1 ·θγ + 0 if v = r

−ov,e1 ·θγ + ov,e1 if v 6= r

and from Equation 5 we have fort > 1:

p(xt
v, y1:t

e )(θγ) =

=
2

∑

z=1

ov,et ·az,v ·p(xt−1
z , y1:t−1)(θγ)

The polynomial p(xt
v, y1:t

e )(θγ) requires two
coefficients: ct

v,1 and ct
v,0. Since each initial

parameter is used only in time step 1, as the above
expressions demonstrate, the coefficients fort > 1
can be established through a simple recursion for
eachN = 0, 1:

ct
v,N =

2
∑

z=1

ov,et ·az,v ·c
t−1

z,N

with c1
v,0 = 0 if v = r, andov,e1 otherwise; in addi-

tion c1
v,1 = ov,e1 if v = r, and−ov,e1 otherwise.

3.3 Transition Parameters

We consider the sensitivity functionp(xt
v, y1:t

e )(θa)
for model parameterθa = ar,s. From Equations 4
and 5 it follows that fort = 1 we find a constant,
p(x1

v, y1
e)(θa) = ov,e1 ·γv, and fort > 1,

p(xt
v, y1:t

e )(θa) = (6)

= ov,et ·

n
∑

z=1

az,v(θa)·p(xt−1
z , y1:t−1

e )(θa)

= ov,et ·ar,v(θa)·p(xt−1
r , y1:t−1

e )(θa) +

+ ov,et ·ar,v(θa)·p(xt−1

r , y1:t−1
e )(θa)

wherer denotes the state ofX other thanr. In the
above formula,ar,v(θa) equalsθa for v = s and
1 − θa for v 6= s; ar,v is independent ofθa.

The polynomialp(xt
v, y1:t

e )(θa) requirest coeffi-
cients: ct

v,N , N = 0, . . . , t − 1. To compute these
coefficients, building upon Equation 6 above, we
designed a procedure which constructs a set of ma-
trices containing the coefficients of the polynomial
sensitivity functions for each hidden state and each
time slice. We call this procedure theCoefficient-
Matrix-Fill procedure.

3.3.1 The Coefficient-Matrix-Fill Procedure

The Coefficient-Matrix-Fill procedure constructs
a matrix for each time slice under consideration, and
fills this matrix with the coefficients of the polyno-
mial functions relevant for that time slice. In this
section, we will detail the procedure for computing
the coefficients ofp(xt

v, y1:t
e )(θa). In the sections

following, we demonstrate how a similar procedure
can be used to compute the coefficients given an ob-
servation parameter, and in caseT 6= t.

The basic idea For each time slicek = 1, . . . , t
we construct ann × k matrix F k. A row i in
F k contains exactly the coefficients for the function
p(xk

i , y1:k
e )(θa), so the procedure in fact computes

the coefficients for the sensitivity functions forall n

hidden states andall time slices up to and including
t. A columnj in F k contains all coefficients of the
(j − 1)th-order terms of then polynomials. More
specifically, entryfk

i,j equals the coefficientck
i,j−1

of the sensitivity functionp(xk
i , y1:k

e )(θa). The en-
tries of matrixF 1 are set to their correct values in



the initialisation phase of the procedure. Matrices
F k for k > 1 are built solely from the entries in
F k−1, the transition matrixA and the observation
matrix O.

Fill operations The recursive steps in the vari-
ous formulas are implemented by transitioning from
matrixF k to F k+1 for k ≥ 1. To illustrate this tran-
sition, consider an arbitrary(k − 1)th-degree poly-
nomial inθ, p(θ) = ck−1·θ

k−1 + . . .+c1·θ+c0, and
let this polynomial be represented in rowi of ma-
trix F k, i.e. fk

i,. = (c0, . . . , ck−1). In transitioning
from matrix F k to F k+1, three types of operation
(or combinations thereof) can be applied top(θ):

• summation with another polynomial(−)p∗(θ)
of the same degree: this just requires summing
the coefficients of the same order, i.e. summing
entries with the same column number;

• multiplication with a constantd: the result-
ing polynomial is represented in rowi of ma-
trix F k+1 by fk+1

i,. = (d · c0, . . . , d · ck−1, 0).

Note thatF k+1 has an additional columnk+1,
which is unaffected by this operation.

• multiplication withθ: the resultingkth-degree
polynomial is represented in rowi of matrix
F k+1 by fk+1

i,. = (0, c0, . . . , ck−1). This oper-
ation basically amounts to shifting entries from
F k one column to the right.

Fill contents: initialisation Matrix F 1 is ini-
tialised by settingf1

i,1 = oi,e1 ·γi for i = 1, 2. Ma-
tricesF 2, . . . , F t are initialised by filling them with
zeroes.

Fill contents: k = 2, . . . , t We will now provide
the details for filling matrixF k, k > 1. Following
Equation 6, positionj in row i of matrix F k, fk

i,j ,
k > 1, is filled with:

if i = s then for1 < j < k:

oi,ek
·(fk−1

r,j−1
+ ar,i ·f

k−1

r,j )

if i 6= s then for1 < j < k:

oi,ek
·(−fk−1

r,j−1
+fk−1

r,j +ar,i ·f
k−1

r,j )

Forj = 1, the general cases above are simplified by
settingfk−1

r,j−1
= 0. This boundary condition cap-

tures that entries in the first column correspond to
coefficients of the zero-order terms of the polyno-
mials and can therefore never result from a multi-
plication with θa. Similarly, since the coefficients
for columnj = k, k > 1, canonly result from mul-
tiplication byθa, we setfk−1

. ,j = 0 in that case.

Complexity In each of thek steps, ann×k matrix
is filled. This matrix contains the coefficients for
the functionsp(xk

i , y1:k
e )(θa) for all i, so the pro-

cedure computes the coefficients for the sensitivity
functions for all hidden states and all time slices up
to and includingt. If we are interested in only one
specific time slicet, then we can save space by stor-
ing only two matrices at all times. The runtime com-
plexity for a straightforward implementation of the
algorithm isO(n2 · t2), which ist times that of the
forward-backward algorithm. This is due to the fact
that per hidden state we need to computek numbers
per time step rather than one.

Example 1. Consider an HMM with binary-valued
hidden stateX and binary-valued evidence variable
Y . LetΓ = [0.20, 0.80] be the initial vector forX1,
and let transition matrixA and observation matrix
O be as follows:

A =

[

0.95 0.05
0.15 0.85

]

andO =

[

0.75 0.25
0.90 0.10

]

Suppose we are interested in the sensitivity func-
tions for the two states ofX3 as a function of pa-
rameterθa = a2,1 = p(xt

1 | xt−1

2
) = 0.15, for all

t > 1. Suppose the following sequence of observa-
tions is obtained:y1

2 , y2
1 andy3

1. To compute the co-
efficients for the sensitivity functions, the following
matrices are constructed by the Coefficient-Matrix-
Fill procedure:

F 1 =

[

o1,2 ·γ1

o2,2 ·γ2

]

=

[

0.25·0.20
0.10·0.80

]

=

[

0.05
0.08

]

F 2 =

[

o1,1 ·a1,1 ·f
1
1,1 o1,1 ·f

1
2,1

o2,1 ·(f
1
2,1 + a1,2 ·f

1
1,1) −o2,1 ·f

1
2,1

]

=

[

0.75·0.95·0.05 0.75·0.08
0.90·(0.08 + 0.05·0.05) −0.90·0.08

]



=

[

0.03563 0.06
0.07425 −0.072

]

+

0.10988 − 0.012

and finally,F 3 =

=

[

o1,1 ·a1,1 ·f
2
1,1

o2,1 ·(f
2
2,1 + a1,2 ·f

2
1,1)

o1,1 ·(f
2
2,1 + a1,1 ·f

2
1,2)

o2,1 ·(−f2
2,1 + f2

2,2 + a1,2 ·f
2
1,2)

o1,1 ·f
2
2,2

−o2,1 ·f
2
2,2

]

=

[

0.02538 0.09844 −0.054
0.06843 −0.12893 0.0648

]

+

0.09381 − 0.03049 0.0108

From which we can conclude, for example:

p(x3
1 | y1:3

e )(θa) =
−0.054·θ2

a + 0.098·θa + 0.025

0.011·θ2
a − 0.030·θa + 0.094

and also,

p(x2
2 | y1:2

e )(θa) =
−0.072·θa + 0.074

−0.012·θa + 0.110

Note that the coefficients for the probability of evi-
dence function follow from summing the entries in
each column ofF t (see e.g.F 2 andF 3 above). �

3.4 Observation Parameters

We consider the sensitivity functionp(xt
v, y1:t

e )(θa)
for model parameterθo = or,s. From Equation 4 it
follows that fort = 1:

p(x1
v, y1

e)(θo) = (7)

=







ov,e1 ·γv if v 6= r;
θo ·γr if v = r ande1 = s;
(1 − θo)·γr if v = r ande1 6= s;

and from Equation 5 we have fort > 1:

p(xt
v, y1:t

e )(θo) =

= ov,et(θo)·

2
∑

z=1

az,v ·p(xt−1
z , y1:t−1)(θo) (8)

whereov,et(θo) equalsov,et for v 6= r, θo for v = r

andet = s, and1 − θo for v = r andet 6= s.

The polynomial functionp(xt
v, y1:t

e )(θo) requires
t + 1 coefficients:ct

v,N , N = 0, . . . , t. We compute
these coefficients, building upon the Equations 7
and 8, again using our Coefficient-Matrix-Fill pro-
cedure. The contents and size of the matrices dif-
fer from the case with transition parameters and are
specified below.

Fill contents: initialisation F 1 is an n × 2 ma-
trix, initialised in accordance with Equation 7. All
F k, k = 2, . . . , t, aren × (k + 1) matrices and are
initialised by filling them with zeroes.

Fill contents: k = 2, . . . , t Following Equa-
tion 8, positionj in row i of matrix F k, fk

i,j , k > 1,
is filled with the following forj = 2, . . . , k:















∑

2

z=1
az,i ·f

k−1

z,j−1
if i = r, et = s;

∑

2

z=1
az,i ·(f

k−1

z,j − fk−1

z,j−1
) if i = r, et 6= s;

or,ek
·
∑

2

z=1
az,r ·f

k−1

z,j if i 6= r;

For j = 1 and j = k + 1 we again simplify the
above formulas where necessary, to take into ac-
count boundary conditions.

4 Smoothing Coefficients

In this section we consider establishing the coeffi-
cients of the sensitivity functionp(xt

v | y1:T
e )(θ) for

various model parametersθ, in the situation where
t < T . We again focus only onp(xt

v, y1:T
e )(θ).

4.1 Recursion for Smoothing

Recall from Section 2 thatp(xt
v, y1:T

e ) = B(i, t) ·
F (i, t), or

p(xt
v, y1:T

e ) = p(yt+1:T
e | xt

v)·p(xt
v, y1:t

e ) (9)

The second term in this product is again a filter
probability, so we now further focus on the first
term. By conditioning onXt+1 and exploiting
independences (see for details (Russel & Norvig,
2003, chapter 15)), we have the following re-
lation between probabilitiesp(yt+1:T

e | xt
v) and

p(yt+2:T
e | xt+1

v ) for t + 1 < T :

p(yt+1:T
e | xt

v) =

=

n
∑

z=1

oz,et+1 ·av,z ·p(yt+2:T
e | xt+1

z ) (10)



For t + 1 = T , this reduces to

p(yT :T
e | xT−1

v ) =

n
∑

z=1

oz,eT
·av,z ·1 (11)

Again we translate the above relations into func-
tions of the various model parameters. From
Equations 10 and 11 it follows that the func-
tion p(yt+1:T

e | xt
v)(θ) is polynomial in each

model parameter.2 Moreover, from Equation 9
we have that the degree ofp(xt

v, y1:T
e )(θ) equals

the sum of the degrees ofp(yt+1:T
e | xt

v)(θ)
and p(xt

v, y1:t
e )(θ). Since the degrees of both

p(xt
v, y1:T

e )(θ) and p(xt
v, y1:t

e )(θ) are known (see
Section 2), the degree ofp(yt+1:T

e | xt
v)(θ) can be

established as their difference. We thus have that

p(yt+1:T
e | xt

v)(θ) = dt
v,N·θN + . . .+dt

v,1·θ+dt
v,0

where

N =

{

T − t if θ = or,s or θ = ar,s;
0 if θ = γr

and coefficientsdt
v,N , . . . ,dt

v,0 are constants with re-
spect to the various parameters. The coefficients of
the polynomial functionp(xt

v, y1:T
e )(θ), T > t, can

thus be established by standard polynomial multi-
plication ofp(xt

v, y1:t
e )(θ) andp(yt+1:T

e | xt
v)(θ).

In the following we will establish exactly what
the coefficients ofp(yt+1:T

e | xt
v)(θ) are and how

to compute them. For ease of exposition, we again
taken = m = 2.

4.2 Initial Parameters

We consider the functionp(yt+1:T
e | xt

v)(θγ), t < T ,
for model parameterθγ = γr. The degree of this
polynomial is0. Indeed, from Equations 10 and 11
it follows that this function is constant with respect
to an initial parameter. This constant is simply a
probability which can be computed using standard
inference.

4.3 Transition Parameters

The functionp(yt+1:T
e | xt

v)(θa), t < T , with
parameterθa = ar,s requiresT − t + 1 coeffi-
cients. We again compute these coefficients using

2Note that this may seem counter-intuitive as it concerns the
function for aconditionalprobability; sinceXt is an ancestor
of Y t+1 . . . Y T , however, the factorisation ofp(yt+1:T

e , xt
v)

includesp(xt
v).

our Coefficient-Matrix-Fill procedure, where con-
tents is now determined by Equations 10 and 11,
and depends on the relation betweenav,z andθa: if
v = r thenav,z equalsθa for z = s, and1 − θa for
z = s̄; otherwiseav,z is constant.

To distinguish between computations that move
forward in time, and the current ones which move
backward in time, we will use matricesBk, t ≤ k ≤
T , wherek = T is used purely as initialisation.

Fill contents: initialisation BT is ann × 1 ma-
trix, initialised with1’s. All Bk, k = t, . . . ,T − 1,
aren × (T − k + 1) matrices which are initialised
with zeroes.

Fill contents: k = T − 1 down to t Following
Equations 10 and 11, positionj in row i of matrix
Bk, bk

i,j , k < T , is filled with the following forj =
2, . . . , T − k:

if i = r:
(
∑

2

z=1
oz,ek+1

·bk+1

z,j−1

)

+ os̄,ek+1
·bk+1

s,j

if i 6= r:
∑

2

z=1
oz,ek+1

·ai,z ·b
k+1

z,j

For j = 1 andj = T − k + 1 we again have to take
into account boundary conditions.

4.4 Observation Parameters

The functionp(yt+1:T
e | xt

v)(θo), t < T , with
parameterθo = or,s requiresT − t + 1 coeffi-
cients. We again compute these coefficients using
our Coefficient-Matrix-Fill procedure in a similar
way as for the transition parameters above. The only
difference is in the fill contents determined by Equa-
tions 10 and 11. This now depends on the relation
betweenoz,et+1 andθo: for z = r, oz,et+1 equalsθo

if et+1 = s, and1 − θa if et+1 6= s; for z = r̄,
oz,et+1 is constant.

Fill contents: k = T − 1 down to t Following
Equations 10 and 11, positionj in row i of matrix
Bk, bk

i,j , k < T , is filled with the following forj =
2, . . . , T − k:

if ek+1 = s: ai,r ·b
k+1

r,j−1
+ or,ek+1

·ai,r ·b
k+1

r,j

if ek+1 6= s: −ai,r ·b
k+1

r,j−1
+ ai,r ·b

k+1

r,j +

+or,ek+1
·ai,r ·b

k+1

r,j

For j = 1 andj = T − k + 1 we again take into
account the boundary conditions.



5 Related Work

Varying a transition or observation parameter in an
HMM corresponds to varying multiple parameters
in its Bayesian network representation, one for each
time slice under consideration. Sensitivity analy-
sis in HMMs is therefore a constrained form ofn-
way analysis in Bayesian networks, with all var-
ied parameters having the same value at all times.
As a result, a sensitivity function in an HMM re-
quires a number of coefficients linear in the num-
ber of parameters varied, whereas in Bayesian net-
works in general ann-way sensitivity function re-
quires an exponential number of coefficients, one
for each possible subset of then varied parame-
ters. For Bayesian networks,n-way sensitivity anal-
ysis, with parameters fromdifferentCPTs, has been
studied by only few (see Coupé et al. (2000) for an
overview and comparison of research). For com-
puting the coefficients ofn-way sensitivity func-
tions roughly three approaches, or combinations
thereof, are known: symbolic propagation, solv-
ing systems of linear equations, and propagation
of tables with coefficients. The approach taken
by Couṕe et al. (2000) resembles our Coefficient-
Matrix-Fill procedure in the sense that a table or
matrix of coefficients is constructed; their approach
extends the junction-tree architecture to propagate
vector tables rather than potential functions and de-
fines operations on vectors to this end. Each vector
table contains the coefficients of the corresponding
potential function is terms of the parameters under
study. Our approach, on the contrary, does not de-
pend on a specific computational architecture nor
does it necessarily require a Bayesian network rep-
resentation of the HMM. In addition, the operations
we use are quite different, since we can exploit the
fact that we have a polynomial function in a single
parameter.

6 Conclusions and Further Research

In this paper we introduced a new and efficient al-
gorithm for computing the coefficients of sensitivity
functions in Hidden Markov Models, for all three
types of model parameter. Earlier work on this
topic suggested to use the Bayesian network repre-
sentation of HMMs and associated algorithms for
sensitivity analysis. In this paper we have shown

that exploiting the repetitive character of HMMs re-
sults in a simple algorithm that computes the co-
efficients of the sensitivity functions for all hidden
states and all time steps. Our procedure basically
mimics the forward-backward inference algorithm,
but computes coefficients rather than probabilities.
Various improvements of the forward-backward al-
gorithm for HMMs exist that exploit the matrix for-
mulation (Russel & Norvig, 2003, Section 15.3);
further research is required to investigate if our pro-
cedure can be improved in similar or different ways.

The presented work can be extended quite
straightforwardly to sensitivity functions which
concern the prediction of future observations, i.e
p(yt

e | y1:T
e )(θ), T < t. More challenging will be

to extend current research to sensitivity analysis in
which different types of model parameter are varied
simultaneously, and to extensions of HMMs.
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