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Abstract

Arc-removal is usually employed as part of an approximate inference scheme for Bayesian net-
works, whenever exact inference is intractable. We consider the removal of arcs in a different
setting, as a means of simplifying a network under construction. We show how sensitivity func-
tions, capturing the effects of parameter variation on an output of interest, can be employed to
describe detailed effects of removing an arc. In addition, we provide new insights related to the
choice of parameter settings upon arc removal, and the effect of this choice on the quality of the
simplified model as an approximation of the original one.

1 Introduction

Arc removal is a model simplification technique
most often employed as part of an approximate in-
ference scheme for Bayesian networks. Whenever
exact inference is intractable, a set of “weak” links
is selected and removed to arrive at an approx-
imate network in which exact inference is feasi-
ble (Kjærulff, 1994; Engelen, 1997; Choi, Chan &
Darwiche, 2005).

In this paper, we consider the removal of arcs in a
different setting, where we are interested in simpli-
fying a model that is being constructed with the help
of domain experts. A sparser model has the compu-
tational benefits of having fewer arcs and, hence, a
smaller number of probability parameters. Further-
more, a sparser model may be easier to understand
for the domain experts. Our focus is now on gaining
detailed insight into the possible impact of remov-
ing a single, pre-selected arc on the behaviour of the
network, both with and without evidence.

We will demonstrate that by interpreting arc re-
moval as a constrained form of varying multiple pa-
rameters in the original network, we can study the
effects of such a removal by means of so-calledsen-
sitivity functions. More specifically, a sensitivity-
to-arc-removal function will describe the effects of
any choice of setting the new parameters after arc
removal, on some output probability of interest. For
establishing these functions, we assume that infer-

ence in the original network is possible.
The quality of the new network can be assessed

by evaluating its behaviour. Alternatively, when the
quality of the new network as anapproximationof
the original one is of concern, the sensitivity-to-arc-
removal functions can be plugged into some quality
measure. In the context of arc removal, the quality
of the approximation is usually measured in terms
of the KL-divergence between the prior joint dis-
tributions of the original network and the approxi-
mate network (Kjærulff, 1994; Engelen, 1997). The
KL-divergence has the convenient property that the
change in prior joint distribution occasioned by the
removal of an arcA → B can be computed lo-
cally from the probabilities for variableB and its
parents (Kjærulff, 1994). This property does not
necessarily hold, however, if we consider the KL-
divergence between marginal distributions, or be-
tween posterior distributions. We will show that in
this setting, such KL-divergences can be computed
with our sensitivity functions.

The paper is structured as follows. Section 2
briefly reviews Bayesian networks and sensitivity
functions. In Section 3 we derive the sensitivity-
to-arc-removal functions. Section 4 demonstrates
the use of these functions for computing KL-
divergence; in doing so, some novel insights into the
effect on KL-divergence of different choices of new
parameters are given. The paper ends with conclu-
sions and directions for future research in Section 5.



2 Preliminaries

A Bayesian network compactly represents a joint
probability distributionPr over a set of stochastic
variablesW (Jensen & Nielsen, 2007). It com-
bines an acyclic directed graphG, that captures
the variables and their dependencies as nodes and
arcs respectively, with conditional probability dis-
tributions ΘWi|π(Wi) for each variableWi and its
parentsπ(Wi) in the graph, such thatPr(W) =
∏

i ΘWi|π(Wi).
We will refer to ΘWi|π(Wi) as the conditional

probability table (CPT) ofWi; entriesθ of Θ are
called parameter probabilities, or parameters for
short. In the remainder of this paper we will as-
sume all variables to be binary-valued. Variables
are denoted by capital letters and their values or in-
stantiations by lower case; bold face is used for sets.

Probabilities computed from a Bayesian network
are affected by the inaccuracies in the network’s pa-
rameters. To investigate the extent of these effects, a
sensitivity analysis can be performed in whichn ≥
1 network parameters are varied simultaneously and
the effect on an output probability of interest is stud-
ied. The effects of so-calledn-wayparameter vari-
ation are described by asensitivity function. This
is a multilinear function in the varied parameters
in case of a prior probability of interest, and a ra-
tional function in the posterior case (Coupé & Van
der Gaag, 2002). For example, the2-way sensitiv-
ity function fPr(a|e)(x, y) describing the posterior
probability Pr(a | e) as a function of two parame-
tersx andy is given by

fPr(a e)(x, y)

fPr(e)(x, y)
=

c11xy + c01x + c10y + c00

d11xy + d01x + d10y + d00

where the constantscij , dij , i, j ∈ {0, 1}, are built
from the non-varied parameters1 in the network
under study; feasible algorithms are available for
their computation (Kjærulff & Van der Gaag, 2000;
Couṕe & Van der Gaag, 2002). Parameters from the
same CPTΘWi|π(Wi), but for different condition-
ing contexts, are independent; this results in zero
interaction terms (Chan & Darwiche, 2004). In the
above example this entails thatc11 = d11 = 0.

1When a parameterθ varies asx, its complementθ = 1 −

θ from the same distribution varies as1 − x. If θ concerns
an k-valued variable,k > 2, then thek − 1 complementing
parameters are co-varied proportionally.

3 Sensitivity Functions for Arc Removal

Sensitivity analysis typically refers to the study of
effects of changes in network parameters on some
outcome of interest. We can, however, also exploit
it to study the effects of structural changes to the
network’s digraph, such as the removal of arcs.

Arc removal is most often employed as part of an
approximate inference scheme, where arcs are re-
moved until an approximate network is obtained in
which exact inference is feasible (Kjærulff, 1994;
Engelen, 1997; Choi, Chan & Darwiche, 2005). In
this paper, we consider the removal of arcs in a dif-
ferent setting. We assume that we are constructing a
Bayesian network with the help of domain experts,
who are known to have the tendency of adding too
many arcs into the model (Van der Gaag & Helsper,
2002). Our focus now is on studying the effects of
removing a single arc, which we suspect may be su-
perfluous, for the purpose of arriving at a simpler
model that still suffices for the domain of applica-
tion. We assume that inference in the original net-
work is possible and, since we are still in a construc-
tion phase, that we have ample time to spend on it.

In this section, we propose the first approach for
exactly studying the possible effects of arc removal
on a probability of interest; the approach exploits
the sensitivity function describing this probability
in relation to the new parameters.

3.1 Implementing Arc Removal

Throughout this paper we consider the removal of
an arcA → B from a Bayesian networkB, where
π(B) = {A} ∪ Z. Removing an arc can be imple-
mented in various ways (Choi, Chan & Darwiche,
2005). The approach we adopt in this paper is to
simulate the removal by changes in the CPTΘB|AZ.
More specifically, for each combination of valuesb
andz the parametersθb|az are set to be equal for all
valuesa; we will refer to these new parameters as
θ′
b|.z, since the value ofA is irrelevant.
The more or less standard approach to setting the

new parameter values is by marginalising out vari-
ableA, or by approximating this process if it is in-
feasible to perform the exact computations (Enge-
len, 1997; Choi, Chan & Darwiche, 2005). More
recent approaches focus on the addition of auxil-
iary nodes and parameters that compensate for the



lost dependency, together with iterative or varia-
tional methods that optimise these parameters as
part of the arc-removal procedure (Choi & Dar-
wiche, 2010; Choi & Darwiche, 2006). Rather than
choosing a new parameter setting in advance, how-
ever, we can study the effects of all possible settings.

3.2 Sensitivity to Arc Removal

We study the effects of arc removal using a sen-
sitivity analysis in which we vary all parameters
θb|az until, for eachb and contextz, the parame-
ters are equivalent for alla. Let m be the num-
ber of different instantiationsz for Z, then arc re-
moval requires the simultaneous variation of2m pa-
rameters2. Generally, determining a2m-way sensi-
tivity function is computationally demanding. The
following proposition shows, however, that in the
context of arc removal anm-way function suffices.
Moreover, this function can be obtained from2m 1-
way sensitivity functions, whichcanbe established
efficiently (Kjærulff & Van der Gaag, 2000).

Proposition 1. Let i index the values of variableA
and j the instantiations ofZ. Let xij = θb1|aizj

and 1 − xij = θb2|aizj
denote the2 ·2m parame-

ters inΘB|AZ, and letΘ′
B|.Z be the result of setting

x1j = x2j for all j. Letx′
j and1−x′

j denote the pa-
rameters inΘ′. Then, them-way sensitivity function
which captures the effects of any possible choice for
the parameters inΘ′

B|.Z on an output probability of
interestPr(v) equals:

fPr(v)(x
′
1, . . . , x

′
m) =

(

m
∑

j=1

(

2
∑

i=1

c1
ij

)

·x′
j

)

+

+
(

2
∑

i=1

m
∑

j=1

c0
ij

)

− (2·m − 1)·Pr(v)

wherec0
ij andc1

ij equal the constants from the1-way
sensitivity function describingPr(v) as a function
of parameterxij , fPr(v)(xij) = c1

ij ·xij + c0
ij .

Proof: First we will detail the probabilistic se-
mantics of the constants of a sensitivity function for
Pr(v). Each of the2m terms in the summation

Pr(v) =
2

∑

i=1

m
∑

j=1

Pr(v aizj)

2Another2m parameters, for the other value ofB, are co-
varied.

depends only on parametersθB|aizj
with a corre-

sponding conditioning context, and is constant with
respect to other parameters in the CPT ofB. More
specifically, eachPr(v aizj) relates to parameter
θb1|aizj

as follows:

Pr(v aizj) =

=
2

∑

k=1

Pr(v | bkaizj)·Pr(bk | aizj) · Pr(aizj)

= Pr(v | b1aizj)·θb1|aizj
·Pr(aizj)

+ Pr(v | b2aizj)·(1 − θb1|aizj
)·Pr(aizj)

Pr(v) in terms of a singleθb1|aizj
thus equals

Pr(v) =
(

c1
ij ·θb1|aizj

+rij

)

+
(

Pr(v)−Pr(v aizj)
)

where

c1
ij =

(

Pr(v | b1aizj)−Pr(v | b2aizj)
)

·Pr(aizj)

and rij = Pr(v | b2aizj) ·Pr(aizj). For Pr(v)
in relation toxij = θb1|aizj

we therefore have a1-
way sensitivity function of the formfPr(v)(xij) =
c1
ij ·xij + c0

ij with

c0
ij = rij + Pr(v) − Pr(vaizj)

Consequently, upon varying all2m parameters
x1j = θb1|a1zj

andx2j = θb1|a2zj
, j = 1, . . . ,m,

we find from

Pr(v) =

2
∑

i=1

m
∑

j=1

(

c1
ij ·θb1|aizj

+ rij

)

=
2

∑

i=1

m
∑

j=1

(

c1
ij ·θb1|aizj

+ c0
ij

)

−
2

∑

i=1

m
∑

j=1

(

Pr(v) − Pr(v aizj)
)

the function,fPr(v)(x11, x21, . . . , x1m, x2m) =

=
(

2
∑

i=1

m
∑

j=1

fPr(v)(xij)
)

− (2·m − 1)·Pr(v)

=
2

∑

i=1

m
∑

j=1

c1
ij ·xij + c0
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A
θa1

= 0.8 θd1|b1c1 = 0.1

θd1|b1c2 = 0.3

θb1|a1
= 0.8 θd1|b2c1 = 0.9

θb1|a2
= 0.4 θd1|b2c2 = 0.8

θc1|a1
= 0.5

θc1|a2
= 1.0

Figure 1: The example Bayesian network, taken
from Choi & Darwiche (2010).

with c0 =
(

2
∑

i=1

m
∑

j=1

c0
ij

)

− (2·m − 1)·Pr(v)

The above2m-way sensitivity function describes
all possible effects of varying the2m parameters on
Pr(v). To study the effects of arc removal, how-
ever, variation of these parameters is constrained
in the sense thatx1j = x2j should hold for each
j = 1, . . . ,m. That is, rather than a2m dimen-
sional parameter space, we are actually dealing with
an m dimensional space and anm-way sensitivity
function. Usingx′

j to denote the parametersθ′
b1|.zj

resulting from settingx1j = x2j , we conclude

fPr(v)(x
′
1, . . . , x

′
m) =

(

m
∑

j=1

(

2
∑

i=1

c1
ij

)

·x′
j

)

+ c0

2

Note that in the above proposition we have not as-
sumedPr(v) to be a marginal over a single variable.
The proposition is therefore more generally appli-
cable, but most algorithms for computing the con-
stants of sensitivity functions assume that we are in-
terested in a single-variable marginal (prior or pos-
terior). Generalisation of the proposition to a pos-
terior probability of interest, such asPr(v | e) =
Pr(ve)
Pr(e) , is also straightforward, as we demonstrate

in the following example.

Example 1. Consider the Bayesian network in
Figure 1, which will serve as a running example
throughout the paper. We assume that variableA
can take on two values, represented bya1 anda2,
respectively. A similar assumption holds for the
other variables in the network. We are interested
in studying the effects of removing arcA → B, and
therefore consider the parametersx1 = θb1|a1

and
x2 = θb1|a2

, and their complements.
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SupposePr(c1 | d1) is our probability of interest,
with original valuePr(c1d1)/Pr(d1) = 0.22/0.38.
The relevant1-way sensitivity functions are:

fPr(c1|d1)(x1) =
−0.32·x1 + 0.48

−0.52·x1 + 0.80

fPr(c1|d1)(x2) =
−0.16·x2 + 0.28

−0.16·x2 + 0.44

Following Proposition 1, simultaneous variation of
x1 andx2 results in:fPr(c1|d1)(x1, x2) =

=
−0.32·x1 − 0.16·x2 + 0.48 + 0.28 − 0.22

−0.52·x1 − 0.16·x2 + 0.80 + 0.44 − 0.38

=⇒
−0.48·x′ + 0.54

−0.68·x′ + 0.86
= fPr(c1|d1)(x

′)

wherex′ results from settingx1 = x2. This func-
tion, shown in Figure 2, now describes the possible
effects of removing arcA → B on the probability
Pr(c1 | d1). From the function we can, for example,
compute which new parameter setting will result in
the original value of the probability of interest:

fPr(c1|d1)(x
′) =

0.22

0.38
⇐⇒ x′ = 0.49 2

Although we assumed all variables to be binary,
Proposition 1 trivially extends to non-binary vari-
ablesA andZ. If variable B can take onn > 2
values, however, the sensitivity function describing
the effects of arc removal can no longer be obtained
from 1-way sensitivity functions. In that case, vary-
ing the parametersθb1|aiz

until they become equal
for all ai, no longer ensures that all proportionally



co-varying parametersθb2|aiz
. . .θbn|aiz

, n > 2, be-
come equal for allai. To enforce such equalities,
(n−1)-way analyses are necessary.

By studying the sensitivity functions that describe
the effects of arc removal on an output of interest
for various outputsand forvarious combinations of
observations, we can determine whether there ex-
ists a parameter setting that results in acceptable be-
haviour of the simplified model. From the sensi-
tivity functions we can, for example, immediately
determine if a specific case entered into the network
would result in the same most likely value of our
output variable in both the original and the simpli-
fied network. Another way to compare the models,
is by comparing the distributions they define.

4 Arc Removal and KL-divergence

Empirical evidence shows that arc removal can lead
to quite a speedup in inference, at the cost of only
little deterioration in quality (Choi, Chan & Dar-
wiche, 2005; Santana & Provan, 2008; Choi & Dar-
wiche, 2010). In this context, quality is measured
in terms of the Kullback-Leibler (KL) divergence
between the original distributionPr and the distri-
bution Pr′ for the approximate network (Cover &
Thomas, 1991); it is defined by

KL(Pr(V),Pr′(V)) def

=

∑

v

Pr(v)·log
Pr(v)

Pr′(v)

The KL-divergence has the convenient property that
the change inprior joint distribution occasioned by
the removal of an arcA → B can be computed lo-
cally from the probabilities for variableB and its
parents (Kjærulff, 1994). This property does not
necessarily hold, however, if we consider the KL-
divergence between marginal distributions, or be-
tween posterior distributions, which are typically of
interest for practical applications. Recently, it was
argued that arc-removal methods should take avail-
able evidence into account, in order to tailor the ap-
proximation to the evidence at hand (Choi, Chan &
Darwiche, 2005; Choi & Darwiche, 2010). In this
section we will consider KL-divergence as a func-
tion of the new parameter settings, and demonstrate
that we can plug in our sensitivity-to-arc-removal
functions in order to compute this divergence, both
between joint and marginal distributions, with and
without evidence.

4.1 Joint Prior and Joint Posterior Divergence

If, upon arc removal, we wish to choose the new
parameter settings such that they minimise the KL-
divergence between the original and the simplified
network, then under some conditions this choice is
evident. The clear-cut cases concern joint (prior or
posterior) distributions and are given by the propo-
sition below.

In the remainder of this section we let network
B′ be the result of removing arcA → B from the
original networkB. The distribution defined byB′

is denotedPr′.

Proposition 2. Consider the two joint prior distri-
butionsPr(V) andPr′(V), and two joint posterior
distributionsPr(V | e) andPr′(V | e) conditioned
on evidencee. Then

• KL(Pr(V),Pr′(V)) is minimised by setting,
for all b andz combinations,θ′

b|.z = Pr(b | z);

• KL(Pr(V | e),Pr′(V | e)) is minimised by
setting, for all b and z combinations,
θ′
b|.z = Pr(b | ze), if Pr(e) = Pr′(e).

Proof: The factorisation of the joint distribu-
tion is exploited to reduce the KL-divergence
to terms involving the CPT of variableB
(see Kjærulff (1994) or Engelen (1997) for the prior
situation and Choi, Chan & Darwiche (2005) for
the posterior case):

KL(Pr(V | e),Pr′(V | e)) =

=
∑

v

Pr(v | e)·log
Pr(v | e)

Pr′(v | e)

= log
Pr′(e)

Pr(e)
+

∑

abz

Pr(abz | e)·log
θb|az

θ′
b|.z

The term
∑

abz Pr(abz | e)·log θb|az is determined
by the original network only. The remaining terms
are a function of the new parameters and equals:

log
Pr′(e)

Pr(e)
−

∑

abz

Pr(abz | e)·log θ′b|.z =

= log
Pr′(e)

Pr(e)
+

∑

z

Pr(z | e)·

·
(

−
∑

b

Pr(b | ze)·log θ′b|.z

)



The bracketed summation equals the cross-entropy
between the two distributions overB and is known
to be minimal if the distributions are the same, i.e.
θ′
b|.z = Pr(b | ze).
In the prior situation, we get the same formula

but without thelog(Pr′(e)/Pr(e)) term, and with
the e’s removed from the conditioning contexts.
In that case, minimising cross-entropy, i.e. set-
ting θ′

b|.z = Pr(b | z), serves to minimise the
KL-divergence. In the posterior case, however,
minimising cross-entropy is onlyguaranteed to
minimise the KL-divergence ifPr′(e) = Pr(e),
i.e. if the probability of evidence is insensitive to
changes in the parameters forB. 2

The first property in the above proposition, although
to the best of our knowledge never explicitly proven,
must be well-known: the optimal parameter setting
stated amounts exactly to marginalising out variable
A, which is a standard approach to implementing
arc removal.

For the two cases stated in Proposition 2, we
have an expression defining the KL-divergence in
relation to the new parameter settings. In case
Pr(e) 6= Pr′(e), we can now plug in the sensi-
tivity function fPr′(e)(θ

′
b|.z) and again get the KL-

divergence as a function of the new parameters. For
low-dimensional functions it is then easy to com-
pute the parameter settings that minimise the diver-
gence.

Example 2. Reconsider the example Bayesian
network in Figure 1. We will use the termsprior
KL-divergence and posterior KL-divergenceto
refer to the divergence between (joint) prior and
posterior distributions, respectively. The prior
KL-divergence as a function ofx′ = θ′

b1|.
equals

KL(Pr(ABCD),Pr′(ABCD))(x′) =

=
2

∑

i=1

2
∑

j=1

Pr(aibj)·log θbj |ai
+

− Pr(b1)·log x′ − Pr(b2)·log(1 − x′)

= −0.77 − 0.72·log x′ − 0.28·log(1 − x′)

and is shown in Figure 3 (dashed). We can indeed
verify from the figure that the values of the new pa-
rameters that correspond with the marginal proba-
bilities for B, i.e. θ′

b1|.
= 0.80·0.8 + 0.4·0.2 = 0.72

andθ′
b2|.

= 0.28, result in a minimal KL-divergence
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Figure 3: The prior KL-divergence (dashed), and
the posterior divergence, given evidenced1, as a
function of the new parametersθ′

b1|.
and θ′

b2|.
=

1 − θ′
b1|.

(zero and one excluded).

of 0.08. Figure 3 also shows the jointposteriorKL-
divergence in the context of evidenced1 (solid); this
can be written in terms ofx′ by using the sensitivity
functionfPr′(d1)(x

′):

KL(Pr(ABC | d1),Pr′(ABC | d1))(x
′) =

= log
−0.68·x′ + 0.86

0.38
+ 0.52

− 0.28·log x′ − 0.24·log(1 − x′)

Taking the first derivative, we find that this function
is minimised forx′ = 0.73. This same value for
Pr(b1) follows from the auxiliary parameters estab-
lished, for thissameexample network, by the iter-
ative procedure in Choi & Darwiche (2010). Note
that this optimal value is found for a much higher
value ofx′ than would be found through marginali-
sation, i.e.θ′

b|.z =
∑

a Pr(b | aze)·Pr(a | ze):

θ′b1|. = 0.48·0.69 + 0.07·0.31 = 0.36

This is caused by the fact thatPr(d1) is sensitive
to the parameter changes. The parameter setting
used in (Choi, Chan & Darwiche, 2005),θ′

b|.z =
∑

a θb|az ·Pr(a | e), results in:

θ′b1|. = 0.8·0.69 + 0.4·0.31 = 0.68

Remarkably, these settings are closer to the opti-
mum, despite their use of the invalid independence
assumption thatB is independent ofD givenA. 2

4.2 Marginal Prior and Posterior Divergence

Suppose we wish to choose the new parameter set-
tings such that they minimise the KL-divergence be-
tween marginal rather than joint distributions. The
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. For variablesA andC the diver-
gence is zero.

KL-divergence between marginal distributions is
hardly ever considered, since in that case we cannot
exploit the factorisation of the joint distribution to
reduce the divergence to local terms. Using the sen-
sitivity functions for arc removal introduced in the
previous section, however, we can define the KL-
divergence as a function of the new parameters un-
der consideration.

Corollary 1. Let Pr, Pr′ and x′
1, . . . x

′
m be as

before, then

KL(Pr(V | e),Pr′(V | e))(x′
1, . . . x

′
m) =

=
∑

v

Pr(v | e)·log
Pr(v | e)

fPr′(v|e)(x
′
1, . . . x

′
m)

Note that the above corollary applies to both joint
and marginal distributions; in the prior situation, the
above holds with all occurrences ofe removed. Its
formula in fact was used to create the graphs of Fig-
ures 3, 4 and 5.

The following example illustrates, for each vari-
ableV in our example network, the KL-divergence
between the original marginal distributionPr(V )
and the new marginal distributionPr′(V ), for dif-
ferent choices of the new parameters for variableB.
We will refer to these divergences asmarginal KL-
divergences.

Example 3. Reconsider the example Bayesian net-
work in Figure 1, from which we remove arc
A → B. Figure 4 now shows the prior marginal
KL-divergences for each variable and all possible
choices for the new parametersθ′bi
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excluded). Since the values in the CPT for variable
B affect only the marginal distributions ofB andD,
the KL-divergences forA andC are zero. In addi-
tion, we see that the parameter settings that optimise
the marginal KL-divergence forB, also optimise the
divergence for its descendantD.

Figure 5 similarly shows the various marginal
KL-divergences in the context of evidenced1. We
see that the parameter setting for which the KL-
divergence is optimal, now varies per variable: this
is due to the fact that the marginal KL-divergence
for a certain variable is optimal, if the new parame-
ters are chosen such that the new marginal probabil-
ities equal the original ones.

As an illustration, suppose we are interested in
variableC, in the context of evidenced1. Recall
that the sensitivity function forc1 is given by

fPr′(c1|d1)(x
′) =

−0.48·x′ + 0.54

−0.68·x′ + 0.86

The original value forPr(c1 | d1) equals 0.22
0.38 ,

which we can obtain in our new network by setting
x′ = θ′

b1|.
= 0.49. Figure 5 indeed suggests that

this choice is optimal in terms of KL-divergence.2

From the previous examples we have that the op-
timal choice for the new parameter settings, in terms
of minimising the KL-divergence, differs between
prior and posterior distributions, both for joint and
marginal distributions. In the example network,
however, setting the new parameterθ′

b1|.
to a value

somewhere in the range[0.6, 0.8] seems to result in
a small KL-divergence in all situations considered.



5 Conclusion

In this paper we introduced sensitivity functions as a
means of studying the exact impact of removing an
arc from a Bayesian network on some output of in-
terest. These functions provide insight into whether
or not removing the arc can result in an acceptable
simplified model, and they can support our choice
for setting the new parameters upon removal. If
the simplified network should be a good quality ap-
proximation of the original one, then the sensitivity
functions can also be used to find new parameters
that minimise the KL-divergence between various
distributions of interest.

In addition, we provided some insights concern-
ing arc removal and KL-divergence. More specif-
ically, we showed that arc removal by means of
marginalisation is in fact optimal in terms of min-
imising the KL-divergence between prior joint dis-
tributions. Secondly, we provided a condition un-
der which marginalisation results in an optimal KL-
divergence between posterior joint distributions.

We assumed that all variables are binary-valued.
As mentioned, extension to non-binary variables is
trivial, except for variableB. For non-binaryB,
proportional co-variation of its values no longer en-
sures that all parameters that should be equated for
arc removal in fact are. As a result, multi-way func-
tions with non-zero interaction terms are necessary.
Further research is required to establish the exact
implications of this increased complexity.

Although our interest in arc removal is not in ap-
proximating networks to make inference feasible,
our results can be put to use in situations where the
complexity of a network is such that exact infer-
ence is possible, but too time-consuming for prac-
tical purposes. In such a case, detailed insights con-
cerning the effects of arc removal can be obtained
prior to deploying the network, and then exploited
to construct efficient approximations for certain sets
of observable variables, or for varying output vari-
ables of interest.
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