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Abstract

The increasing number of knowledge-based systems
that build on a Bayesian belief network or influence di-
agram acknowledge the usefulness of these frameworks
for addressing complex real-life problems. The usually
large number of probabilities and utilities required for
their application, however, is often considered a ma-
jor obstacle. The use of qualitative abstractions may
to some extent remove this obstacle. Qualitative belief
networks and associated algorithms have been devel-
oped before. In this paper, we address qualitative in-
fluence diagrams and outline an efficient algorithm for
qualitative decision making.

Introduction

In the late 1980s, the framework of Bayesian belief net-
works was introduced for reasoning with uncertainty
(Pearl 1988). The framework provides a formalism
for encoding a joint probability distribution on a set
of statistical variables and offers algorithms for prob-
abilistic inference. In practice, reasoning with uncer-
tainty is often performed to support a decision maker in
solving complex real-life problems. The belief-network
framework in itself does not provide for decision mak-
ing under uncertainty, as decision making involves not
only knowledge of the uncertainties in a problem under
study, but also knowledge of the decisions that are at a
decision maker’s disposal and of the desirability of their
uncertain consequences. The framework of influence
diagrams is tailored to decision making (Howard and
Matheson 1981). It provides a formalism for capturing
the various types of knowledge involved in a decision
problem and offers algorithms for computing preferred
decisions. The framework is closely related to the belief-
network framework; in fact, influence diagrams may be
looked upon as enhanced belief networks.
The belief-network and influence-diagram frame-

works have demonstrated their practicability in a wide
range of problem domains. Experience shows, however,
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that the usually large number of probabilities and utili-
ties required poses a major obstacle to their application
(Druzdzel and Van der Gaag 1995). Motivated by this
experience, the framework of qualitative belief networks
was introduced in the early 1990s by M.P. Wellman
(1990). A qualitative belief network abstracts from
numerical probabilities by encoding qualitative proba-
bilistic relationships among its variables. For reasoning
with a qualitative belief network, an elegant algorithm
is available from M.J. Druzdzel and M. Henrion (1993).
As belief networks may be extended to influence dia-
grams, qualitative belief networks may be enhanced to
qualitative influence diagrams (Wellman 1990). A qual-
itative influence diagram abstracts from the numerical
quantities involved in a decision problem under study
by encoding qualitative probabilistic and preferential re-
lationships among its variables.
Since their introduction, research has focused mainly

on qualitative belief networks, with less attention for
qualitative influence diagrams. As we consider decision
making a valuable addition to reasoning with uncer-
tainty, we re-introduce qualitative influence diagrams
and outline a new algorithm for efficient qualitative de-
cision making, that builds on Druzdzel and Henrion’s
algorithm for qualitative reasoning with uncertainty.
The paper is organised as follows. In Section 2 we

review the belief-network and influence-diagram frame-
works. In Section 3 qualitative belief networks are pre-
sented. In Section 4 we introduce qualitative influ-
ence diagrams; in addition, we outline our algorithm
for qualitative decision making. In Section 5 we give
some conclusions and directions for further research.

Belief networks and influence diagrams

The framework of Bayesian belief networks for reason-
ing with uncertainty is rooted in probability theory
(Pearl 1988). It offers a formalism for encoding a joint
probability distribution on a set of statistical variables,
in which information about independences is explicitly
separated from numerical quantities.
A belief network consists of a qualitative part and an

associated quantitative part. The qualitative part is a
graphical representation of the independences holding
among the variables in the encoded probability distri-



bution. It takes the form of an acyclic directed graph
G. Each node A in G represents a statistical variable
that takes one of a finite set of values. We assume all
variables to be binary, taking one of the values true and
false; for abbreviation, we use a to denote A = true and
ā to denote A = false. The arcs of G with each other
model the independences among the represented vari-
ables. Informally, we take an arc A → B to represent
an influential relationship between the variables A and
B; the arc’s direction marks B as the effect of the cause
A. Absence of an arc between two nodes means that
the corresponding variables do not influence each other
directly and, hence, are (conditionally) independent.
Associated with the qualitative part of a belief net-

work are numerical quantities from the encoded distri-
bution. With each node A in G is associated a set of
conditional probabilities Pr(A | π(A)), describing the
joint influence of values for the causes π(A) of A on the
probabilities of A’s values. These sets of probabilities
constitute the quantitative part of the network.

Example 1 Consider the belief network shown in Fig-
ure 1. The network represents a fragment of fictitious
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S

Pr(r) = 0.2 Pr(t) = 0.1

Pr(s | rt) = 1.0
Pr(s | r̄t) = 0.8

Pr(s | rt̄) = 0.4
Pr(s | r̄t̄) = 0.01

Figure 1: The Sore Throat belief network.

medical knowledge in pediatrics. Node S represents the
presence or absence in a child of a severe sore throat,
R represents the presence or absence of an upper res-
piratory tract infection, and T represents whether or
not a child suffers from tonsillitis. Upper respiratory
tract infection and tonsillitis are modelled as the pos-
sible causes of a sore throat. Note that the presence of
any of these causes suffices to considerably increase the
probability of a severe sore throat in a child. �

A belief network uniquely represents a probability dis-
tribution. It thus provides for computing any probabil-
ity of interest. To this end efficient algorithms are avail-
able (Pearl 1988; Lauritzen and Spiegelhalter 1988).
A Bayesian belief network may be extended to an in-

fluence diagram to allow for decision making under un-
certainty (Howard and Matheson 1981). The formalism
of influence diagrams provides for encoding not only a
probability distribution on a set of variables, but also
the decisions that a decision maker can take and the
desirability of their uncertain consequences.
As a belief network, an influence diagram consists of

a qualitative part and a quantitative part. The qual-
itative part again is an acyclic directed graph. Three
different types of node are discerned. A node represent-
ing a statistical variable is termed a chance node; it is
generally depicted as a circle. A decision node models
a decision variable, representing the various decision al-
ternatives that are at the decision maker’s disposal; the

node’s value is under control of the decision maker. A
decision node is depicted as a square. The third type of
node is the value node. It represents the desirability of
the consequences that may arise from the various deci-
sions. There is only one value node and it does not have
any outgoing arcs; it is depicted as a hexagon. The arcs
between the chance nodes again encode the indepen-
dences among the represented statistical variables. An
arc from a decision node into a chance node expresses an
influence on the represented statistical variable, exerted
by the decision maker through a decision for the deci-
sion variable at hand. The incoming arcs of a decision
node capture the information that is available before a
decision is made. To conclude, an incoming arc of the
value node expresses an influence on desirability.
The quantitative part of an influence diagram again

associates with each chance node A in the diagram’s
digraph a set of conditional probabilities Pr(A | π(A)).
With the value node V is associated a set of utilities
u(π(V )), specifying for each combination of values for
V ’s parents π(V ) a number expressing the desirability
of this value combination to the decision maker.

Example 2 Consider the influence diagram shown in
Figure 2. The diagram embeds the Sore Throat belief
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Pr(s | rt) = 1.0
Pr(s | rt̄) = 0.4
Pr(s | r̄t) = 0.8
Pr(s | r̄t̄) = 0.01
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Vu(te) = 0.5
u(tē) = 0.2

u(t̄e) = 0.5
u(t̄ē) = 1.0

Figure 2: The Sore Throat influence diagram.

network from Figure 1. In addition, it includes the deci-
sion node E and the value node V . Node E models the
decision alternatives that are at the decision maker’s
disposal; these are the decision to perform a tonsillec-
tomy and the decision to refrain from performing one.
A decision is made only if it is known with certainty
whether or not a child is suffering from a severe sore
throat. The preferred decision is to perform a tonsillec-
tomy in the presence of tonsillitis and to refrain from
performing one in the absence of tonsillitis. �

An influence diagram uniquely represents a decision
problem. A solution to the problem is a decision or,
in case of multiple decision nodes, a sequence of deci-
sions that maximises desirability of consequences. To
compute a solution, for each sequence of decisions, the
utilities of its uncertain consequences are weighted with
the probabilities that these consequences will occur; the
expected utility of the sequence x is thus computed from

û(x) =
∑

i
u(πi(V )) · Pr(πi(V ) | x)

where πi(V ) is a combination of values for the par-
ents of the value node V and u(πi(V )) is its utility;
Pr(πi(V ) | x) is the probability of πi(V ) given that the



decisions x are taken. The preferred sequence of deci-
sions is a sequence with highest expected utility. Effi-
cient algorithms are available for decision making with
influence diagrams (Shachter 1986).

Qualitative belief networks
Qualitative belief networks, introduced by M.P. Well-
man as qualitative abstractions of belief networks, bear
a strong resemblance to their quantitative counterparts
(Wellman 1990). A qualitative belief network comprises
a graphical representation of the independences among
a set of statistical variables, once more taking the form
of an acyclic digraph. Instead of conditional probabil-
ities, however, a qualitative belief network associates
with its digraph qualitative probabilistic relationships.
A qualitative influence between two nodes expresses

how the values of one node influence the probabilities
of the values of the other node. For example, a positive
qualitative influence of node A on its effect B, denoted
S+(A,B), expresses that observing higher values for A
makes higher values for B more likely, regardless of any
other direct influence on B, that is,

Pr(b | ax) ≥ Pr(b | āx)

for any combination of values x for the set π(B) \ {A}
of causes of B other than A. A negative qualitative in-
fluence, denoted S−(A,B), and a zero qualitative influ-
ence, denoted S0(A,B), are defined analogously, replac-
ing ≥ in the above formula by ≤ and =, respectively. If
the influence of A on B is not monotonic, we say that
it is ambiguous, denoted S?(A,B).
The set of influences of a qualitative belief network

exhibits various convenient properties (Wellman 1990;
Renooij 1996). The property of symmetry guarantees
that, if the network includes the influence S+(A,B),
then it also includes S+(B,A). The property of transi-
tivity asserts that qualitative influences along a chain,
that specifies at most one incoming arc for each node,
combine into a single influence with the ⊗-operator
from Table 1. The property of composition asserts that
multiple qualitative influences between two nodes along
parallel chains combine into a single influence with the
⊕-operator. Note that combining qualitative influences
may yield an ambiguous result. While for a qualitative
influence along a single arc ambiguity indicates non-
monotonicity, for a combined influence ambiguity may
also indicate that its sign is unknown.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 1: The ⊗- and ⊕-operators.

In addition to influences, a qualitative belief network
includes synergies modeling interactions among influ-
ences. An additive synergy between three nodes ex-
presses how the values of two nodes jointly influence

the probabilities of the values of the third node (Well-
man 1990). For example, a positive additive synergy
of nodes A and B on their common effect C, denoted
Y +({A,B}, C), expresses that the joint influence of A
and B on C is greater than the sum of their separate
influences, regardless of other influences on C, that is,

Pr(c | abx) + Pr(c | āb̄x) ≥ Pr(c | ab̄x) + Pr(c | ābx)

for any combination of values x for the set π(C)\{A,B}
of causes of C other than A and B. Negative, zero, and
ambiguous additive synergy are defined analogously.
A product synergy expresses how the value of one

node influences the probabilities of the values of an-
other node in view of a given value for a third node
(Henrion and Druzdzel 1991); it describes an intercausal
influence. For example, a negative product synergy of
node A on node B (and vice versa) given the value c
for their common effect C, denoted X−({A,B}, c), ex-
presses that, given c, higher values for A render higher
values for B less likely, that is,

Pr(c | abx) · Pr(c | āb̄x) ≤ Pr(c | ab̄x) · Pr(c | ābx)

for any combination of values x for the set π(C)\{A,B}.
Positive, zero, and ambiguous product synergy again are
defined analogously.

Example 3 We consider the qualitative abstraction of
the Sore Throat belief network from Figure 1. From
the conditional probabilities specified for node S, it is
readily verified that both R and T exert a positive qual-
itative influence on S. As the joint influence of R and
T on S is smaller than the sum of their separate influ-
ences, they exhibit a negative additive synergy on S.
Furthermore, either value for node S induces an inter-
causal influence between R and T ; this intercausal in-
fluence is described by a negative product synergy. The
resulting qualitative belief network is shown in Figure
3. We would like to note that, although in this ex-
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Figure 3: The qualitative Sore Throat belief network.

ample we have computed the qualitative probabilistic
relationships from the probabilities of the original be-
lief network, in real-life applications, these relationships
are elicited directly from domain experts. �

For reasoning with a qualitative belief network, an el-
egant algorithm is available from M.J. Druzdzel and
M. Henrion (1993). The basic idea of this algorithm
is to trace the effect of observing a node’s value on the
other nodes in the network by message-passing between
neighbouring nodes. For each node, a sign is deter-
mined, indicating the direction of change in the node’s
probabilities occasioned by the new observation given
all previously observed node values. Initially, all node



procedure Propagate-Sign(from,to,message):

sign[to] ← sign[to] ⊕ message;
for each (induced) neighbour Vi of to
do linksign ← sign of (induced) influence

between to and Vi;
message ← sign[to] ⊗ linksign;
if Vi 6= from and Vi /∈ Observed

and sign[Vi] 6= sign[Vi] ⊕ message
then Propagate-Sign(to,Vi,message)

signs equal ‘0’. For the newly observed node, an ap-
propriate sign is entered, that is, either a ‘+’ for the
value true or a ‘−’ for the value false. The node up-
dates its sign and subsequently sends a message to each
neighbour and every node on which it exerts an induced
intercausal influence. The sign of this message is the
⊗-product of the node’s (new) sign and the sign of the
influence it traverses. This process is repeated through-
out the network, building on the properties of symme-
try, transitivity, and composition of influences. No node
is visited more than twice.

Qualitative influence diagrams
Qualitative influence diagrams are qualitative abstrac-
tions of influence diagrams. A qualitative influence
diagram, as its quantitative counterpart, comprises a
representation of the variables involved in a decision
problem along with their interrelationships, once more
taking the form of an acyclic digraph. Instead of con-
ditional probabilities, however, a qualitative influence
diagram encodes influences and synergies on its chance
variables. Instead of utilities, it specifies qualitative
preferential relationships. These preferential relation-
ships capture the preferences of the decision maker and,
hence, pertain to the diagram’s value node.
A qualitative influence on utility expresses how the

values of a node influence expected utility. For example,
a positive qualitative influence on utility of a parent A
of the value node V , denoted U+(A), expresses that
observing higher values for A increases expected utility,
regardless of any other influence on utility, that is,

u(ax) ≥ u(āx)

for any combination of values x for the set π(V )\{A} of
parents of V other than A. Negative, zero, and ambigu-
ous qualitative influences on utility are defined analo-
gously. As qualitative influences, influences on utility
adhere to the properties of symmetry, transitivity, and
composition; the symmetric counterpart of an influence
on utility, however, is a qualitative influence and the
transitive combination of a qualitative influence and an
influence on utility is an influence on utility.
An additive synergy on utility expresses how the

values of two nodes jointly influence expected utility.
For example, a positive additive synergy on utility of
two parents A and B of the value node V , denoted
Y +

U
({A,B}), expresses that the joint influence of the

two nodes on expected utility is greater than the sum
of their separate influences, that is,

u(abx) + u(āb̄x) ≥ u(ab̄x) + u(ābx)

for any combination of values x for the set π(V )\{A,B}.
Negative, zero, and ambiguous additive synergies on
utility are defined analogously. Note that as the value
node of an influence diagram cannot be observed, prod-
uct synergies on utility have no meaning.

Example 4 We consider the qualitative abstraction of
the Sore Throat influence diagram from Figure 2. Since
it embeds the qualitative belief network from Exam-
ple 3, we focus on its preferential relationships. From
the specified utilities, it is readily verified that node T
exerts a negative qualitative influence on utility. The
qualitative influence on utility of the decision node E
is ambiguous as the desirability to the decision maker
of a tonsillectomy depends on whether or not a child
suffers from a tonsillitis. To conclude, T and E exhibit
a positive additive synergy on utility. The resulting
qualitative influence diagram is shown in Figure 4. �
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Figure 4: The qualitative Sore Throat diagram.

For decision making with qualitative influence dia-
grams, M.P. Wellman has designed an algorithm based
on the idea of recursively reducing a diagram (Wellman
1990). Unfortunately, this algorithm tends to create
more ambiguities than necessary and, hence, is able to
compute a preferred decision for fewer problems than
possible (Druzdzel and Henrion 1993). We propose
a new algorithm for qualitative decision making, that
builds on, and includes, Druzdzel and Henrion’s algo-
rithm for qualitative probabilistic inference. As the al-
gorithm of Druzdzel and Henrion creates fewer ambi-
guities than Wellman’s, our algorithm is able to solve
more decision problems.
We recall that the algorithm of Druzdzel and Hen-

rion traces the effect of observing a node’s value on
the other nodes in a qualitative belief network. As a
qualitative influence diagram embeds a qualitative be-
lief network for representing the relationships among its
chance nodes, the algorithm can be applied straightfor-
wardly to the diagram’s probabilistic part. In addition,
the algorithm can be used to trace the effect of the ob-
servation on the value node, yielding the sign of change
in expected utility occasioned. The algorithm cannot
be used, however, with regard to decision nodes, as it
would ignore control of the decision maker.
To provide for decision nodes, we extend Druzdzel

and Henrion’s algorithm by including a second, sim-
ilar process of message-passing between neighbouring
nodes. This process is initiated by sending a ‘+’ from
the value node towards every decision node. Note that
this message captures the decision maker’s aim of max-



procedure Preferred-Decisions(from,message):

Propagate-Signinfluence(from,from,message);
Propagate-Signutility(V ,V ,‘+’);
for each decision node D
do if sign[utility,D] = ‘?’ and α(D) causes the ambiguity

then sign[utility,D] ← ⊕i (sign[influence,Ai] ⊗ δi),
where Ai ∈ α(D) and δi is determined

from Y δi

U
({D,Ai})

imising expected utility. The sign that thus reaches a
decision node D reflects this node’s influence on utility.
So, if a ‘+’ reachesD, the preferred decision is d; if a ‘−’
reaches it, d̄ is the preferred decision. If D receives a ‘0’,
then both decision alternatives are equally preferred. If
D, however, receives an ambiguous sign, the preferred
decision cannot be determined from the influence on
utility of the node by itself. In fact, the ambiguity may
indicate that the represented decision problem involves
a true trade-off. By exploiting the signs of influence of
the nodes that model the trade-off and their additive
synergies on utility with node D, the ambiguity may be
resolved; we illustrate the basic idea by means of our
running example. Further details of our algorithm and
a formal proof of its correctness will be provided in a
forthcoming technical paper.

Example 5 Consider once more the qualitative Sore
Throat influence diagram from Figure 4. Suppose that,
after having observed a sore throat, we observe tonsil-
litis in a child. To reflect the new observation, a ‘+’ is
entered for node T . T updates its own sign to ‘+’ and
sends a ‘−’ to nodes R and V ; node R subsequently
updates its sign of influence to ‘−’. Our algorithm now
proceeds by sending a ‘+’ from the value node V to the
decision node E. Because of its ambiguous qualitative
influence on utility, E receives a ‘?’ and the preferred
decision cannot yet be determined. From U ?(E), we
conclude, however, that either

u(te) > u(tē) and u(t̄e) < u(t̄ē), or
u(te) < u(tē) and u(t̄e) > u(t̄ē)

must hold. The first set of inequalities would corre-
spond with a positive additive synergy on utility of
nodes E and T , as it induces

u(te) + u(t̄ē) ≥ u(tē) + u(t̄e)

The second set of inequalities would correspond with a
negative additive synergy on utility. Since the diagram
specifies a positive additive synergy on utility of T and
E, we know that the first set of inequalities holds. The
preferred decision can now be determined: from the
synergy, we have that in case of a positive sign of influ-
ence for T , the preferred decision is e, and in the case
of a negative sign, the decision ē is preferred. Since
tonsillitis has actually been observed in the child un-
der consideration, the algorithm yields the decision to
perform a tonsillectomy as the preferred decision. �

Conclusions and further research
Qualitative abstractions of belief networks and influ-
ence diagrams have been introduced to remove the ob-

stacle of acquiring a large number of probabilities and
utilities. Research so far has focused mainly on quali-
tative belief networks. Since we consider decision mak-
ing a valuable addition to reasoning with uncertainty,
we have re-introduced the framework of qualitative in-
fluence diagrams. We have proposed a new algorithm
for qualitative decision making under uncertainty, that
builds on a similar algorithm for qualitative probabilis-
tic reasoning. In developing our algorithm, we have as-
sumed that a qualitative influence diagram under study
includes binary variables only. Our algorithm is readily
extended, however, to apply to more general diagrams.
One of the major drawbacks of qualitative abstrac-

tions is their coarse level of detail. Although for some
problem domains this level will suffice, there are deci-
sion problems for which a finer level of detail is required.
We would like to test our algorithm for qualitative de-
cision making on various real-life applications to gain
insight as to the level of detail generally required.
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