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Abstract 

Qualitative probabilistic networks have been 
introduced as qualitative abstractions of 
Bayesian belief networks. One of the ma
jor drawbacks of these qualitative networks 
is their coarse level of detail, which may lead 
to unresolved trade-offs during inference. We 
present an enhanced formalism for qualita
tive networks with a finer level of detail. 
An enhanced qualitative probabilistic net
work differs from a regular qualitative net
work in that it distinguishes between strong 
and weak influences. Enhanced qualitative 
probabilistic networks are purely qualitative 
in nature, as regular qualitative networks are, 
yet allow for efficiently resolving trade-offs 
during inference. 

1 INTRODUCTION 

The formalism of Bayesian belief networks is generally 
considered an intuitively appealing and powerful for
malism for capturing complex problem domains along 
with their uncertainties. The usually large number 
of probabilities required for a belief network, how
ever, tends to pose a major obstacle to their applica
tion. To mitigate this obstacle, qualitative probabilis
tic networks have been introduced as qualitative ab
stractions of Bayesian belief networks [Wellman, 1990]. 
Like a Bayesian belief network, a qualitative proba
bilistic network encodes variables and the probabilis
tic interrelationships among these variables in a di
rected graph; the relationships are not quantified by 
conditional probabilities as in a belief network, but are 
summarised by qualitative signs instead. For inference 
with a qualitative probabilistic network, an elegant al
gorithm is available, based on the idea of propagating 
signs [Druzdzel & Henrion, 1993]. 

One of the major drawbacks of qualitative probabilis
tic networks is their coarse level of detail. As a conse
quence of their high abstraction level, qualitative prob
abilistic networks do not provide for modelling the 
intricacies involved in weighing conflicting influences 
and, hence, do not provide for resolving trade-offs. In
ference with a qualitative probabilistic network for a 
real-life domain of application, therefore, quite often 
leads to ambiguous results. 

Ambiguous results in inference can be averted by en
hancing the formalism of qualitative probabilistic net
works to provide for a finer level of detail. Roughly 
speaking, the finer the level of detail, the more trade
offs can be resolved during inference. The problem 
of trade-off resolution within the framework of quali
tative networks has been addressed before by others. 
S. Parsons has introduced, for example, the concept of 
categorical influences. A categorical influence is either 
an influence that serves to increase a probability to 1 
or an influence that decreases a probability to 0, re
gardless of any other influences, and thereby resolves 
any trade-off in which it is involved [Parsons, 1995]. 
C.-1. Liu and M.P. Wellman have designed two meth
ods for resolving trade-offs based upon the idea of re
verting to numerical probabilities whenever necessary 
[Liu & Wellman, 1998]. While only some trade-offs 
can be resolved by the use of categorical influences, 
the methods of Liu and Wellman provide for resolving 
any trade-off. Their methods, however, require a fully 
specified, numerical belief network. We would like to 
mention that various other approaches to dealing with 
uncertainty in a qualitative way have been proposed in 
the literature. These approaches are not tailored for 
use within the framework of qualitative probabilistic 
networks and therefore will not be reviewed here. 

To provide for trade-off resolution without resorting to 
numerical probabilistic information, we have designed 
an intuitively appealing formalism of enhanced quali
tative networks. An enhanced qualitative probabilis
tic network differs from a regular qualitative network 



560 Renooij and van der Gaag 

in that it distinguishes between strong and weak in
fluences. For inference, we have generalised the sign
propagation algorithm for regular qualitative networks 
to deal with the strong and weak influences of an en
hanced qualitative network. Trade-off resolution dur
ing inference is based on the idea that strong influences 
dominate over conflicting weak influences. 

The paper is organised as follows. In Section 2, we 
provide some preliminaries from the field of qualita
tive networks to introduce our notational conventions. 
In Section 3, we present the formalism of enhanced 
qualitative probabilistic networks. In Section 4, we 
detail various properties of these enhanced networks, 
thereby providing for a sign-propagation algorithm for 
inference. The paper is rounded off with some conclu
sions and directions for future research in Section 6. 

2 PRELIMINARIES 

Qualitative probabilistic networks have been intro
duced as abstractions of Bayesian belief networks. Be
fore addressing qualitative networks, we briefly review 
their quantitative counterparts. A Bayesian belief net
work is a concise representation of a joint probability 
distribution on a set of statistical variables. It encodes, 
in an acyclic directed graph, the variables concerned 
along with their probabilistic interrelationships. Each 
node in the digraph represents a variable; the prob
abilistic relationships between the variables are cap
tured in the digraph's set of arcs. Associated with 
each variable is a set of conditional probability dis
tributions describing the relationship of this variable 
with its (immediate) predecessors in the digraph. 

We introduce a small Bayesian belief network that will 
serve as our running example throughout the paper. 

Example 2.1 We consider the small belief network 
shown in Figure 1. The network represents a fragment 

Pr(a) = 0.70 

Pr(t I �) = 0.01 
Pr(t a) = 0.35 

Pr(d I tJ) = 0.95 
Pr(d tf) = 0.15 

Pr{f I iil = 0.45 
Pr(/ a = 0.50 

Pr(d I ij_l = 0.80 
Pr(d tf = 0.01 

Figure 1: The Antibiotics Belief Network. 

of fictitious and incomplete medical knowledge, per
taining to the effects of administering antibiotics on 
a patient. Node A represents whether or not a pa
tient takes antibiotics. Node T models whether or not 
the patient has typhoid fever and node D represents 
presence or absence of diarrhoea in the patient. Node 

F, to conclude, describes whether or not the composi
tion of the patient's bacterial flora has changed. Ty
phoid fever and a change in the patient's bacterial flora 
are modelled as the possible causes of diarrhoea. An
tibiotics can cure typhoid fever by killing the bacteria 
that cause the infection. However, antibiotics can also 
change the composition of the patient's bacterial flora, 
thereby increasing the risk of diarrhoea. D 

Qualitative probabilistic networks bear a strong re
semblance to their quantitative counterparts. A qual
itative probabilistic network also comprises an acyclic 
digraph modelling variables and probabilistic interre
lationships among variables. Instead of conditional 
probability distributions, however, a qualitative prob
abilistic network associates with its digraph qualitative 
influences and qualitative synergies [Wellman, 1990]. 

A qualitative influence between two nodes expresses 
how the values of one node influence the probabilities 
of the values of the other node. A positive qualita
tive influence of node A on its (immediate) successor 
B, denoted s+(A, B), expresses that observing higher 
values for A makes higher values for B more likely, 
regardless of any other direct influence on B, that is, 

Pr(b I ax)- Pr(b I iix) � 0 

for any combination of values x for the set 7r(B) \ {A} 
of (immediate) predecessors of B other than A. A 
negative qualitative influence, denoted by s-, and a 
zero qualitative influence, denoted by S0, are defined 
analogously, replacing � in the above formula by ::; 
and =, respectively. If the influence of node A on 
node B is not monotonic or unknown, we say that it 
is ambiguous, denoted S7 (A, B). 

The set of influences of a qualitative probabilis
tic network exhibits various convenient properties 
[Wellman, 1990]. The property of symmetry guar
antees that, if the network includes the influence 
s+(A, B), then it also includes s+(B, A). The prop
erty of tmnsitivity asserts that qualitative influences 
along a trail, that specifies at most one incoming arc 
for each node, combine into a single influence with the 
®-operator from Figure 2. The property of compo
sition asserts that multiple qualitative influences be
tween two nodes along parallel chains combine into a 
single influence with the $-operator. 

® + 0 ? Ell + 
+ + + + 

+ 0 ? ? ? 
0 0 0 0 0 0 + 0 ? 
? ? ? 0 ? ? ? ? ? ? 

Figure 2: The 0- and $-Operators. 



From Figure 2, we have that combining parallel qual
itative influences with the Ell-operator may yield an 
ambiguous result. Such an ambiguity, in fact, results 
whenever influences with opposite signs are combined. 
We say that the trade-off that is reflected by the con
flicting influences cannot be resolved. Note that, in 
contrast with the Ell-operator, the ®-operator cannot 
introduce ambiguities upon combining signs of influ
ences along trails. 

In addition to influences, a qualitative probabilistic 
network includes synergies, that express how the value 
of one node influences the probabilities of the values 
of another node in view of a given value for a third 
node [Henrion & Druzdzel, 1991]. A negative product 
synergy of node A on node B (and vice versa) given 
the value c for their common successor C, denoted 
x-({A,B},c), expresses that, given c, higher values 
for A render higher values for B less likely, that is, 

Pr(c I abx)-Pr(c I abx)- Pr(c I abx)-Pr(c I abx) :S 0 

for any combination of values x for the set 71'( C) \ 
{A, B} of predecessors of C other than A and B. A 
product synergy induces a qualitative influence be
tween the predecessors of a node upon observation; 
the induced influence is coined an intercausal influ
ence. Positive, zero, and ambiguous product synergies 
again are defined analogously. 

Example 2.2 We consider the qualitative abstraction 
of the Antibiotics belief network from Figure 1. From 
the conditional probability distributions specified for 
node T, we have that 

Pr(t I a) - Pr(t I a) :S 0 

and therefore that s-(A,T); we further find that 
s+(A,F), s+(T,D), and s+(F,D). Either value for 
node D, in addition, induces a negative intercausal 
influence between the nodes T and F. The result
ing qualitative probabilistic network is shown in Fig
ure 3. D 

Figure 3: The Qualitative Antibiotics Network. 

We would like to note that, although in the previous 
example, we have computed the qualitative probabilis
tic relationships among the variables from the proba-
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bilities of the original belief network, in real-life appli
cations, these relationships are elicited directly from 
domain experts. 

For reasoning with a qualitative probabilistic network, 
an elegant algorithm is available from M.J. Druzdzel 
and M. Henrion (1993); this algorithm is summarised 
in pseudocode in Figure 4. The basic idea of the algo-

procedure Propagate-Sign(from, to, message): 
sign[ to] +--- sign[ to] Ell message; 
for each (induced) neighbour V; of to 
do linksign +--- sign of (induced) influence 

between to and V;; 
message +--- sign[ to] ® linksign; 
if V; f. from and V; ¢. Observed 

and sign[V;] f. sign[V;] Ell message 
then Propagate-Sign( to, V;, message) 

Figure 4: The Sign-Propagation Algorithm. 

rithm is to trace the effect of observing a node's value 
on the other nodes in the network by message-passing 
between neighbouring nodes. For each node, a sign is 
determined, indicating the direction of change in the 
node's probabilities occasioned by the new observation 
given all previously observed node values. Initially, all 
node signs equal '0'. For the newly observed node, an 
appropriate sign is entered, that is, either a '+' for 
the observed value true or a '-' for the value false. 
The node updates its sign and subsequently sends a 
message to each neighbour and every node on which 
it exerts an induced intercausal influence. The sign of 
this message is the ®-product of the node's (new) sign 
and the sign of the influence it traverses. This process 
is repeated throughout the network, building on the 
properties of symmetry, transitivity, and composition 
of influences. 

3 THE ENHANCED FORMALISM 

Qualitative probabilistic networks model a problem 
domain at a coarse level of detail. This coarseness 
of representation is most visible in the way relation
ships among variables are captured: the relationships 
are summarised by qualitative influences without any 
indication of their strengths. As a consequence of the 
coarse level of detail, any trade-off encountered dur
ing inference will remain unresolved. To allow for re
solving trade-offs in a qualitative way, we enhance the 
formalism of qualitative probabilistic networks by as
sociating a relative strength with influences. If in a 
trade-off, for example, the positive influence is known 
to be stronger than the conflicting negative one, we 
may then conclude the combined influence to be posi
tive, thereby resolving the trade-off. 
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In our formalism of enhanced qualitative probabilistic 
networks, we distinguish between strong and weak in
fluences. We begin by focusing on the strong and weak 
positive influences. The basic idea is to partition the 
set of all positive influences into two disjoint sets of in
fluences in such a way that any influence from the one 
subset is stronger than any influence from the other 
subset. To this end, a cut-off value 6 is introduced. 
This value serves to partition the set of qualitative 
influences into a set of influences that capture a differ
ence in probabilities larger than 6 and a set of influ
ences that model a difference smaller than 6. An influ
ence from the former subset will be termed a strongly 
positive influence; an influence from the latter subset 
will be termed a weakly positive influence. 

More formally, a strongly positive qualitative influence 
of a node A on its successor B, denoted s++(A,B), 
expresses, first and foremost, that observing higher 
values for A makes higher values for B more likely, 
regardless of any other influence on B; in addition, it 
expresses that 

Pr(b I ax) - Pr(b I ax) ;::: 6 

for any combination of values x for the set 1r( B) \ {A} 
of predecessors of B other than A, where 6 is the cut
off value used. A weakly positive qualitative influence 
of A on B, denoted s+(A, B), is a positive qualitative 
influence such that 

Pr(b I ax) - Pr(b I ax) � 6 

for any combination of values x for the set 1r(B) \ {A} 
of predecessors of B other than A, where 6 once again 
is the cut-off value used. Strongly negative qualitative 
influences, denoted s--' and weakly negative qualita
tive influences, denoted s-' are defined analogously; 
zero qualitative influences and ambiguous qualitative 
influences are defined as in regular qualitative proba
bilistic networks. In the sequel, we will use the phrase 
strong influences to refer to both strongly positive and 
strongly negative influences; the phrase weak influ
ences is meant to have an analogous meaning. We 
further say that a product synergy is strongly negative 
if it induces a strongly negative intercausal influence. 
Strongly positive product synergies are defined analo
gously; zero product synergies and ambiguous product 
synergies again are defined as in regular qualitative 
networks. 

We would like to note that, in our enhanced formal
ism, the meaning of the sign of an influence has slightly 
changed. While in a regular qualitative probabilistic 
network, the sign of an influence represents the sign of 
a difference in probabilities only, in an enhanced qual
itative network a sign in addition captures the relative 
magnitude of the difference. 

Upon abstracting a Bayesian belief network to an en
hanced qualitative probabilistic network, the cut-off 
value 6 needs to be chosen explicitly. This cut-off 
value will typically vary from application to applica
tion. Note that it is always possible to choose a cut-off 
value, as the value 6 = 1 yields a trivial partitioning 
of the set of influences. 

Example 3.1 We consider once again the Antibiotics 
belief network from Example 2.1. Suppose that we 
choose for our cut-off value 6 = 0.30. For the influence 
of node A on node T, we now find that 

Pr(t I a) - Pr(t I a) � 0, and 
I Pr(t I a) - Pr(t I a) I = 0.34;::: 6 

We therefore conclude that s--(A, T). We further 
find that s++(T, D), s+(A, F), and s+(F, D). The 
resulting enhanced qualitative probabilistic network is 
shown in Figure 5. 0 

Figure 5: The Enhanced Antibiotics Network. 

We would like to note that, in real-life applications of 
enhanced qualitative probabilistic networks, a cut-off 
value need not be established explicitly. The parti
tioning into strong and weak influences then is elicited 
directly from the domain experts involved in the con
struction of the network. 

4 INFERENCE WITH AN 

ENHANCED NETWORK 

For inference with a regular qualitative probabilistic 
network, an elegant algorithm is available. We recall 
from Section 2 that this algorithm builds on the idea 
of propagating signs throughout a network and com
bining them with the 0- and Ell-operators. We fur
ther recall that the algorithm exploits the properties 
of symmetry, transitivity, and parallel composition of 
influences. To generalise the idea of sign-propagation 
to inference with an enhanced qualitative probabilis
tic network, we enhance, in the Sections 4.1 and 4.2, 
the 0- and Ell-operators to provide for the properties 
of transitivity and parallel combination of strong and 
weak influences; in Section 4.3, we address the prop
erty of symmetry. 



4.1 ENHANCING THE 0-0PERATOR 

For propagating qualitative signs along trails of nodes 
in an enhanced qualitative probabilistic network, we 
enhance the 0-operator that is defined for regular 
qualitative networks, to apply to strong and weak in
fluences. We recall that the 0-operator basically pro
vides for multiplying signs of influences. In a regular 
qualitative probabilistic network, an influence captures 
a difference between two probabilities. Upon multiply
ing the signs of two influences, therefore, the sign of 
the result of the multiplication of two such differences 
is computed. In our formalism of enhanced qualitative 
probabilistic networks, we have added an explicit no
tion of relative magnitude to influences. It will be ev
ident that these relative magnitudes need to be taken 
into consideration when multiplying signs. 

To address the effect of multiplying two signs in an en
hanced qualitative probabilistic network, we consider 
the network fragment shown in Figure 6. The frag-

-0 
Figure 6: A Fragment of a Network. 

ment includes the trail of nodes A, B, C, with two 
qualitative influences between them; in addition, X 
denotes the set of all predecessors of B other than A, 
and Y is the set of all predecessors of C other than B. 
For the qualitative influence of A on C, we have that 

Pr(c I axy) - Pr(c I axy) = 

(Pr(c I by)- Pr(c I by))· (Pr(b I ax)- Pr(b I ax)) 

for any combination of values x for the set of nodes X 
and any combination of values y for the set Y. 

Suppose that both qualitative influences in the net
work fragment under consideration are strongly posi
tive, that is, we have that s++(A, B) and s++(B, C); 
suppose that we have used the cut-off value 8 for dis
tinguishing between strong and weak influences. From 
the expression stated above for the influence of node 
A on node C, we now find that 

Pr(c I axy)- Pr(c I axy) � ()2 

for any combination of values xy for the set of nodes 
XU Y. Since 8 ::; 1, we have that 82 :S 8. Upon mul
tiplying the signs of two strong influences, therefore, 
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a sign results that expresses an influence that may or 
may not be stronger than a single weakly positive in
fluence. 

Now suppose that both qualitative influences in the 
network fragment from Figure 6 are weakly positive, 
that is, we have that s+(A, B) and s+(B, C). For the 
influence of node A on node C, we now find that 

Pr(c I axy)- Pr(c I axy) :S (j2 

for any combination of values xy for the set X U Y. 
While the influence resulting from the multiplication 
of two strong influences cannot be compared to a sin
gle weak influence, the above observation shows that 
the resulting influence will always be at least as strong 
as an influence resulting from the multiplication of two 
weak influences. To provide for comparing qualitative 
influences along different trails with respect to their 
magnitude, as required for trade-off resolution, there
fore, we need to retain the length of the trail in the 
network over which influences have been multiplied. 

To provide for comparing qualitative influences along 
different trails, we augment every influence's sign by 
a superscript, called the sign's multiplication index. A 
strongly positive qualitative influence with multiplica
tion index i of node A on node B, written s++' (A, B), 
is now taken to denote that 

Pr(b I ax)- Pr(b I ax) � 8i 

for every combination of values x for the set X of pre
decessors of B other than A. A weakly positive quali
tative influence with multiplication index i of A on B, 
written s+; (A, B), is taken to indicate that 

0 :s Pr(b I ax)- Pr(b I ax) :s 8i 

for every combination of values x for the set X. The 
signs associated with the arcs of the digraph are inter
preted as having a multiplication index equal to 1. 

Building on the concept of multiplication index, Fig
ure 7 shows the table for the enhanced 0-operator. 
From the table, it is readily seen that the +, -, 0, and 
? signs combine as in a regular qualitative probabilistic 
network; the difference is just in the handling of the 
multiplication indices. In the table, there appear signs 
+? and -7; we will elaborate on the meaning of these 
signs in Section 4.2. 

We like to further comment on the combination of the 
signs +; and ++i. In doing so, we consider once again 
the network fragment from Figure 6. Suppose that we 
have s+" (A, B) for the influence of node A on node 
B, and s++; (B, C) for the influence of B on C. The 
weakly positive influence of A on B expresses that 

Pr(b I ax)- Pr(b I ax) :s 8i 
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181 ++j +j +? 0 -? 
_i __ j ? 

++' ++'+i +j +? 0 -? 
_i __ i+j ? 

+' +' +'+i +' 0 _i+j ? 
+? +? +j +? 0 -? _i -? ? 

0 0 0 0 0 0 0 0 0 
-? -? _j -? 0 +? +j +? ? 

_i+i 0 +i +i+i +i ? 
__ i+j _j -? 0 +? +j ++i+j ? 

? ? ? ? 0 ? ? ? ? 

Figure 7: The Enhanced ®-Operator. 

for every combination of values x for the set X of pre
decessors of B other than A. The strongly positive 
qualitative influence of B on C further expresses that 

Pr(c I by)- Pr(c I by) 2 8i 

for every combination of values y for the set Y of pre
decessors of C other than B. For the influence of A 
on C, we now find that 

Pr(c I axy) - Pr(c I axy) � 8i 

for every combination of values xy for the set X U Y. 
We therefore conclude that s+' (A, C). So, +;18>++; = 

+i. Similar observations apply to any multiplication 
of a weak and a strong influence. 

4.2 ENHANCING THE EB-OPERATOR 

For combining multiple qualitative influences between 
two nodes along parallel trails in an enhanced quali
tative network, we enhance the EB-operator that is de
fined for regular qualitative probabilistic networks, to 
apply to strong and weak influences. We recall that the 
EB-operator basically provides for adding signs of influ
ences. We further recall that, upon adding the signs of 
two conflicting influences in a regular qualitative net
work, the represented trade-off cannot be resolved and 
an ambiguous influence results. In our formalism of 
enhanced qualitative probabilistic networks, we have 
added an explicit notion of relative magnitude to in
fluences. These relative magnitudes can now be taken 
into consideration when adding the signs of conflict
ing influences and used to resolve trade-offs, thereby 
forestalling ambiguous results. 

When addressing the enhanced ®-operator, in the pre
vious section, we have argued that the multiplication 
of two influences yields an influence of possibly smaller 
magnitude. We will now see that the addition of two 
influences, in contrast, may result in an influence of 
larger magnitude. To address the effect of adding two 
signs in an enhanced qualitative probabilistic network, 
we consider the network fragment shown in Figure 8. 
The fragment includes the parallel trails A, C, and A, 

B, C, respectively, between the nodes A and C, and 
various qualitative influences; in addition, X denotes 
the set of all predecessors of B other than A, and Y 
is the set of all predecessors of C other than A and B. 
For the net qualitative influence of node A on node C 
along the two parallel trails, we have that 

Pr(c I axy)- Pr(c I axy) = 

(Pr(c I aby)- Pr(c I aby)) · Pr(b I ax)+ 
-(Pr(c I aby)- Pr(c I aby)) · Pr(b I ax)+ 
+(Pr(c I aby)- Pr(c I aby)) 

for any combination of values x for the set of nodes X 
and any combination of values y for the set Y. 

Figure 8: Another Network Fragment. 

Suppose that all qualitative influences in the network 
fragment under consideration are weakly positive, that 
is, we have that s+(A, B), s+(B, C), and s+(A, C); 
suppose that we have used the cut-off value 8 for dis
tinguishing between strong and weak influences. The 
net influence of node A on node C equals the sum of 
the influence with sign +1 along the trail A, C, and 
the influence with sign +2 along the trail A, B, C. 
From the expression stated above for the net influence 
of A on C, we find that 

Pr(c I axy)- Pr(c I axy) 2 0 

The minimum of this difference is attained, for exam
ple, for Pr(c I aby) = 0, which enforces Pr(c I aby) = 0, 
and Pr(b I ax) = Pr(b I ax) = 0. We further find that 

Pr(c I axy)- Pr(c I axy) � 8 + 82 



E& ++' +' 
+? 

++i ++m ++i ++i 

+' ++' +? +? 
+? ++' +? +? 

0 ++' +' 
+? 

-? ? ? ? 
b) ? ? 
? c) ? 

? ? ? ? 

0 -? 

++i ? a) 
+i ? ? 
+? ? ? 
0 -? _j 

-? -? -? 
-? -? 

? ? ? 
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__ j ? 
where m = min(i,j), 

? ? 
a) +?, if i::::; j; ?, otherwise d) ? 

? ? b) +7, if j::::; i; ?, otherwise 
__ j ? 
__ j ? c) -?,if i ::::; j; ?, otherwise ? 

? d) -?, if j ::::; i; ?, otherwise 
? ? 

Figure 9: The Enhanced E&-Operator. 

This maximum is attained, for example, for Pr(c I 
aby) = 1, Pr(c I aby) = 1- 8, Pr(c I aby) = 1- 2 · 8, 
Pr(c I aby) = 1- 8, and Pr(b I ax) = 1. In computing 
the maximum of the difference, we have used explicitly 
the information that all influences are weakly positive. 
From the maximum attained, it is readily seen that 
the addition of two weakly positive influences yields a 
result that may or may not be stronger than a weakly 
positive influence. In general, we have that the result 
of adding two positive or two negative influences is at 
least as strong as the strongest of the influences added. 

From the preceding observations, we have that the 
qualitative influence that results from adding two 
weakly positive influences, is either weakly positive or 
strongly positive. So, although the resulting influence 
is known to be positive, its relative magnitude is un
known. To capture this ambiguity, we use +? to denote 
the influence's sign. An ambiguously positive qualita
tive influence of node A on node C, written s+'(A, C), 
is therefore taken to indicate that 

0::::; Pr(c I axy) - Pr(c I axy) ::::; 1 

for any combination of values xy for the set X U  Y. 
Similarly, -7 is used to denote an ambiguously nega
tive qualitative influence. 

The enhanced EB-operator is shown in Figure 9. From 
the table, it is readily seen that the +, -, 0, and ? 
signs combine as in a regular qualitative probabilistic 
network; the difference is just in the handling of the 
multiplication indices and the ambiguity subscripts. 

We like to further comment on the resolution of trade
offs using the enhanced EB-operator. In doing so, we 
consider once again the network fragment from Fig
ure 8. Suppose that we have s++(A, C) for the direct 
influence of node A on node C, and that we further 
have s+(A,B) and s-(B,C). The net influence of 
node A on node C equals the sum of the influence with 
sign ++1 along the trail A, C, and the influence with 
sign -2 along the trail A, B, C. From the expression 
for the net influence of A on C, we find that 

Pr(c I axy) - Pr(c I axy) � 8- 82 

The minimum for the difference is attained, for ex
ample, for Pr(c I aby) = 2 · 8, Pr(c I aby) = 8, 
Pr(c I aby) = 8, Pr(c I aby) = 0, and Pr(b I ax)- Pr(b I 
ax)= 6. In computing the minimum of the difference, 
we have once again exploited the information with re
gard to the signs and relative magnitudes of the in
fluences involved. From the minimum attained, it is 
readily seen that the net influence of node A on node 
C is positive. However, as 8-82 < 8, the net influence 
may either be strong or weak. We conclude that the 
net influence of A on C is ambiguously positive. So, 
+ +1 EB-2 = +7. Similar observations apply to various 
other trade-offs. 

4.3 THE PROPERTY OF SYMMETRY 

The sign-propagation algorithm for inference with a 
regular qualitative network explicitly builds on the 
properties of symmetry, transitivity, and parallel com
position of influences. We have so far addressed the 
0- and E&-operators and have thereby guaranteed the 
transitivity and parallel-composition properties of in
fluences. We now focus on the property of symmetry 
to enable the propagation of qualitative influences over 
a single arc in the network in both directions. 

In a regular qualitative probabilistic network, the 
property of symmetry guarantees that, if a node A 
exerts an influence on a node B, then node B exerts 
an influence of the same sign on node A. In an en
hanced qualitative network, an influence and its re
verse also are both positive or both negative. The 
symmetry property, however, does not hold with re
gard to the relative magnitudes of an influence and its 
reverse. The reverse of a strongly positive qualitative 
influence may be a weakly positive influence, and vice 
versa. As the relative magnitude of the reverse of a 
positive influence is unknown, the reverse is taken to 
be ambiguously positive. A similar observation applies 
to the reverse of a negative influence. 

To conclude, we would like to mention that an alter
native way of ensuring that the property of symmetry 
holds in an enhanced qualitative network is to spec-
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ify the signs of all reversed influences explicitly; these 
signs will then have to be elicited from the domain 
experts involved in the network's construction. 

4.4 TRADE-OFF RESOLUTION: AN 
EXAMPLE 

In the previous sections, we have argued that the 
properties of symmetry, transitivity, and parallel com
position of influences hold in an enhanced qualita
tive probabilistic network. The sign-propagation algo
rithm from Section 2 therefore is generalised straight
forwardly to apply to enhanced qualitative networks: 
instead of the regular®- and E&-operators, it just has to 
use the enhanced operators for propagating and com
bining influences. We illustrate the application of the 
algorithm by means of our running example. 

Example 4.5 We consider once again the qualitative 
Antibiotics network from Figure 3. Suppose that we 
enter the sign + for node A. Node A propagates this 
sign towards node T. Node T thereupon receives the 
sign + ®- = - and sends it to node D. Node D in 
turn receives the sign -® + = -; it does not pass on 
any sign. Node A also sends its positive sign to node 
F. Node F receives the sign + ® + = + and passes 
it on to node D. Node D then receives the additional 
sign + ® + = +. The two signs that enter node D are 
combined and result in the ambiguous sign - E& + =?. 

Now, consider the enhanced Antibiotics network from 
Figure 4. We enter the sign ++0 for node A; this sign 
reflects a positive observation for A. We once again 
apply the sign-propagation algorithm, this time using 
our enhanced operators. Recall that initially all influ
ences' signs have a multiplication-index of 1. Node A 
propagates its sign towards node T. Node T receives 
the sign + +0 ® - -1 = --1 and sends it to node 
D. Node D receives - -1 0 + +1 = --2. Node A 
sends its sign ++0 also to node F. Node F there
upon receives the sign + +0 ®+1 = +1 and passes it 
on to node D. Node D receives the additional sign 
+1 ® +1 = +2. Combining the two signs that enter 
node D results in the sign - -2 E&+2 = -?· Note 
that, while in the regular qualitative network the rep
resented trade-off cannot be resolved and results in an 
ambiguous influence, the trade-off is resolved in the 
enhanced qualitative probabilistic network. 0 

5 Conclusions and further research 

One of the major drawbacks of qualitative probabilis
tic networks is their coarse level of detail. Although 
it may suffice for some problem domains, the coarse
ness of detail may lead to unresolved trade-offs dur
ing inference in other domains. To provide for re-

solving trade-offs, we have enhanced the formalism 
of qualitative probabilistic networks by distinguish
ing between strong and weak influences. We have 
enhanced the multiplication and addition operators 
to guarantee the transitivity and parallel-composition 
properties of influences, thereby generalising the basic 
sign-propagation algorithm to apply to enhanced qual
itative networks. We have shown that our formalism 
provides for resolving trade-offs in a qualitative, yet 
efficient way. 

Our formalism of enhanced qualitative probabilistic 
networks does not provide for resolving all possible 
trade-offs during inference. Since qualitative abstrac
tions do not have the same expressiveness as numerical 
belief networks, it is hardly likely that any qualitative 
abstraction will be able to resolve all possible trade
offs. We suspect, however, that in our enhanced signs 
more information is hidden than we currently exploit 
upon multiplying and adding influences. In the near 
future, we will therefore investigate whether still more 
trade-offs can be resolved within the framework of our 
enhanced qualitative networks. In addition, we will 
address the non-associativity of the addition-operator 
for influences and design heuristics to forestall unnec
essary ambiguous results. To conclude, we will extend 
our formalism to incorporate non-binary variables. 
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