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Abstract. Causal interaction models such as the noisy-or model, are
used in Bayesian networks to simplify probability acquisition for vari-
ables with large numbers of modelled causes. These models essentially
prescribe how to complete an exponentially large probability table from a
linear number of parameters. Yet, typically the full probability tables are
required for inference with Bayesian networks in which such interaction
models are used, although inference algorithms tailored to specific types
of network exist that can directly exploit the decomposition properties
of the interaction models. In this paper we revisit these decomposition
properties in view of general inference algorithms and demonstrate that
they allow an alternative representation of causal interaction models that
is quite concise, even with large numbers of causes involved. In addition
to forestalling the need of tailored algorithms, our alternative represen-
tation brings engineering benefits beyond those widely recognised.

Keywords: Bayesian networks · causal interaction models · mainte-
nance robustness

1 Introduction

The use of causal interaction models has become popular as a technique for
simplifying probability acquisition upon building Bayesian networks for real-
world applications. These interaction models essentially impose specific patterns
of interaction among the causal influences on an effect variable, by means of a
parameterised conditional probability table for the latter variable. The number
of parameters involved in this table typically is linear in the number of causes
involved, where the full table itself is exponentially large in this number. Vari-
ous different causal interaction models have been designed for use in Bayesian
networks, the best known among which are the (leaky) noisy-or model and its
generalisations (see for example [4, 11, 17]).

While a causal interaction model describes a conditional probability table
for the effect variable in a causal mechanism by a linear number of parameters,
most software packages for inference with the embedding Bayesian network re-
quire the fully specified table. This full probability table is then generated from
the parameters and the definition of the interaction model used, prior to the
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inference. Using fully expanded probability tables is associated with two serious
disadvantages, however. Firstly, the size of the full table is exponential in the
number of cause variables involved in a causal mechanism, which induces both
the specification size of the network and the runtime complexity of inference to
increase substantially. Secondly, using full tables has the engineering disadvan-
tage that the modelling decision to impose a specific pattern of causal interaction
is no longer explicit in the representation, as a consequence of which the intricate
dependencies between the cells of the table are effectively hidden.

For richly-connected Bayesian networks with large numbers of cause variables
per effect variable, as found for example from probabilistic relational models [7],
inference scales poorly and quickly becomes infeasible. Over the last decades
therefore, researchers have addressed ways to ameliorate the representational
and inferential complexity of using fully expanded probability tables with causal
interaction models. One such approach has focused on the design of tailored
inference algorithms for noisy-or Bayesian networks, which trade off general ap-
plicability and runtime efficiency; these algorithms in essence exploit the struc-
tured specification of the noisy-or model for all variables upon inference (see for
example [5, 6, 8, 12, 15]). While experimental results underline their scalability
for noisy-or networks, these tailored algorithms are not easily integrated with
current algorithms for probabilistic inference in general. Another approach to
tackling the representational and inferential complexity of using fully expanded
probability tables for causal interaction models, has focused on the design of
more concise representations of causal mechanisms; these alternative represen-
tations in essence are distilled automatically from the interaction models at hand
and allow use of general inference algorithms (see for example [9, 10, 16, 18, 19]).

In this paper we reconsider and integrate some of the early work in which
causal mechanisms with interaction models are represented by alternative graph-
ical structures and probability tables. We demonstrate that interaction models
with specific decomposition properties can be represented efficiently by an al-
ternative structure with associated small tables that have an intuitively appeal-
ing semantics. This alternative structure can be readily embedded in a general
Bayesian network and thereby allows for inference without the necessity of pre-
processing tables or using tailored algorithms. We further argue that this alter-
native representation induces elegant properties from an engineering perspective
which allow more ready maintenance and safer fine-tuning of parameters than
the use of fully expanded probability tables in causal mechanisms.

The paper is organised as follows. In Sect. 2, we briefly review causal inter-
action models, and the (leaky) noisy-or model more specifically. In Sect. 3, we
reconsider the partition of causal interaction models into a deterministic function
and associated independent noise variables, and demonstrate when and how the
underlying deterministic function can be decomposed. Based on these insights,
we derive our alternative cascading representation and study its properties in
Sect. 4. We conclude the paper in Sect. 5.
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c Pr(e | c)

c1, c2, c3 0
c1, c2, c3 p1
c1, c2, c3 p2
c1, c2, c3 p3
c1, c2, c3 1− (1− p1) · (1− p2)
c1, c2, c3 1− (1− p1) · (1− p3)
c1, c2, c3 1− (1− p2) · (1− p3)
c1, c2, c3 1− (1− p1) · (1− p2) · (1− p3)

Fig. 1. A causal mechanismM(n) with n cause variables Ci and the effect variable E
(left); a conditional probability table imposed by the noisy-or model, for n = 3 (right).

2 Preliminaries

We briefly review causal interaction models for Bayesian networks and thereby
introduce our notational conventions. In this paper, we focus on binary random
variables, which are denoted by (possibly indexed) capital letters X. The values
of such a variable X are denoted by small letters; more specifically, we write x
and x to denote absence and presence, respectively, of the concept modelled by
X. (Sub)sets of variables are denoted by bold-face capital letters X and their
joint value combinations by bold-face small letters x; Ω(X) is used to denote
the domain of all value combinations of X. We further consider joint probability
distributions Pr over sets of variables, represented by a Bayesian network.

Within Bayesian networks, we consider causal3 mechanisms M(n) composed
of a single effect variable E and one or more cause variables Ci, i = 1, . . . , n, with
arcs pointing to E; Fig. 1 (left) illustrates the basic idea of such a mechanism.
For the effect variable E of a causal mechanism, a conditional probability table is
specified, with distributions Pr(E | C) over E for each joint value combination c
for its set C of cause variables; this table thus specifies a number of distributions
that is exponential in the number of cause variables involved.

A causal interaction model for a causal mechanism M(n) takes the form of
a parameterised probability table for the effect variable involved. The noisy-or
model [17], which is the best known among these interaction models, defines the
conditional probability table for the effect variable E of M(n) through

– the conditional probability Pr(e | c̄1, . . . , c̄n) = 0;
– the parameters pi = Pr(e | c̄1, . . . , c̄i−1, ci, c̄i+1, . . . , c̄n), for all i = 1, . . . , n;
– the definitional rule Pr(e | c) = 1 −

∏
i∈Ic(1−pi) for the probabilities given

the remaining value combinations c involving the presence of two or more
causes, where Ic is the set of indices of the present causes ci in c.

Fig. 1 (right) illustrates the parameterised table of the noisy-or model for a
mechanism with three cause variables. For a causal mechanismM(n), the model

3 Although we do not make any claim with respect to causal interpretation, we adopt
the terminology commonly used.
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defines a full probability table over n + 1 variables, specifying a total of 2·2n
probabilities; half of these are derived from Pr(e | c) + Pr(e | c) = 1 and, hence,
are redundant. Of the 2n non-redundant probabilities, the noisy-or model allows
the values of only the n parameter probabilities pi to be chosen freely. The model
further forces the distribution Pr(E | c1, . . . , cn) to be degenerate.

Since its introduction, the noisy-or model has given rise to several variants
and generalisations (see [4] for an overview). Of these, we briefly review here
the leaky noisy-or model. This model differs from the noisy-or model in that it
includes an additional leak parameter pL = Pr(e | c̄1, . . . , c̄n) that captures the
probability of the effect e occurring in the absence of all modelled causes. Dif-
ferent interpretations of the noisy-or parameters in view of this leak probability
have given rise to different definitional rules for the remaining probabilities [4,
11]. Without loss of generality, we adopt in this paper the interpretation pro-
posed by Dı́ez [4], and use the rule Pr(e | c) = 1 − (1−pL) ·

∏
i∈Ic(1−pi) for the

probabilities given arbitrary joint value combinations c with multiple present
causes, where Ic again is the set of indices of the causes present in c.

3 Decomposition of Causal Interaction Models

Causal interaction models are often viewed as combining a deterministic function
f with independent noise variables Zi per cause variable (see for example [10, 14,
17]); Fig. 2 (left) illustrates this view for the (leaky) noisy-or model. The noise
variables Zi are associated with the probabilities Pr(zi | ci) = pi, Pr(zi | ci) = 0,
where the pi are the model’s parameters; in the leaky variant of the noisy-or
model, the prior probability Pr(zL) = pL for the designated noise variable ZL

is the leak parameter. The deterministic function f equals the logical or and
is encoded in the probability table Pr(E | Z) for the effect variable E through
degenerate distributions. The variable E thereby is a deterministic variable and,
by convention, is indicated by a double border in our figure. Slightly abusing
notation, we will further write E = f(Z).

The representation in Fig. 2 (left) was introduced originally to indicate how a
causal interaction model could ease the task of knowledge acquisition for causal
mechanisms involving large numbers of variables [9]: by making independence
of the causal influences explicit, the partition into a deterministic part and a
probabilistic noise part underlines the requirement of actually just a limited
number of parameters. While indeed easing the task of knowledge acquisition for
practical applications, the partition of a causal interaction model does not reduce
the actual size of its representation for use with general inference algorithms. In
fact, embedding the partition of a causal mechanismM(n) in a Bayesian network
will increase the total number of variables involved by n and still require the
specification of exponentially many probabilities for the effect variable E.

Specific types of causal interaction model however, actually do allow a re-
duced representation [10]. More formally, it are specific decomposability proper-
ties of the deterministic function f that provide for a reduction of the size of the
conditional probability table(s) for the effect variable(s) in a causal mechanism.
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Fig. 2. Partition of a causal interaction model into a probabilistic noise part and a
deterministic functional part (left); a chain decomposition for a commutative and as-
sociative deterministic function (right).

Such decomposability properties of functions are widely used in mathematics
and computing science to simplify functions by their hidden structure: a func-
tion f(·) on a set of entities is called self-decomposable if, for any two disjoint
subsets X,Y, the property f(X ∪Y) = f(X) � f(Y) holds, for some commu-
tative and associative merge operator � (cf. [13]). Commutative and associative
logical operators, such as and and or, are self-decomposable Boolean functions.
Now, if the deterministic function f modelled for the effect variable E in the
partition in Fig. 2 (left) is self-decomposable, it can be split into a sequence of
function applications, each to a subset of E’s cause variables. Each such ap-
plication can then be described by an auxiliary effect variable Ei with fewer
parents than E. The set of auxiliary variables resulting from such a functional
decomposition can be organised in various different graphical structures. In this
paper the chained organisation from Fig. 2 (right) will be used and referred to
as a chain decomposition. We would like to note that the idea of introducing
additional variables to reduce the number of parents for a variable is a general
modelling technique for Bayesian networks, known as parent divorcing [16].

We consider again the partition of a causal interaction model into a proba-
bilistic part with noise variables Zi, i = 1, . . . , n, and a deterministic part E =
f(Z1, . . . , Zn) for some self-decomposable deterministic function f . The chain
decomposition of the model replaces the effect variable E of this partition by n
auxiliary variables Ei, i = 1, . . . , n, such that

– En has the noise variable Zn for its single parent and encodes the function
application En = f(Zn, I), where the variable I captures identity under f ;

– for all i = 1, . . . , n − 1, the variable Ei has Zi and Ei+1 for its parents and
encodes Ei = f(Zi, Ei+1).

If the interaction model includes a leak variable ZL the identity variable I in
the function application f(Zn, I) is replaced by ZL, to give En = f(Zn, ZL).
We note that the number of variables in the chain decomposition has increased,
from 2·n+1 in the original partition, to 3·n. The total number of non-redundant
probabilities required for the probability tables for the variables Ei in the chain
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Fig. 3. The cascading representation of a causal interaction model, which results from
marginalising out the noise variables Zi from its chain decomposition.

equals 4·n − 2 however, instead of the 2n probabilities required for the effect
variable E in the original partition. For an interaction model with a leak variable,
the number of required probabilities for the effect variable(s) is reduced from
2n+1 to 4·n. We will return to these observations in further detail in Section 4.

While the original motivation for partitioning causal interaction models was
to underline their induced ease of knowledge acquisition, Heckerman noted that
the introduction of the hidden noise variables Zi in fact made probability elic-
itation harder rather than easier, as “assessments are easier to elicit (and pre-
sumably more reliable) when a person makes them in terms of observable vari-
ables” [9]. Following this insight, he proposed a temporal interpretation of inde-
pendence of causal influences for causal interaction models in which a cause Ci

is assumed to occur (or not) at time i and has associated its own effect variable
Ei indicating the effect after the presence or absence of the first i causes have
been observed. With this temporal interpretation, the hidden noise variables are
no longer required and the effect variables Ei have in fact become observable
variables with a clear semantics supporting probability elicitation. As noted al-
ready by Heckerman himself, this temporal interpretation for causal interaction
models has reduced applicability for its main drawback [9, 10].

4 Properties of a Cascading Representation

We propose a representation of causal interaction models that is quite similar to
Heckerman’s temporal representation, yet without the temporal interpretation.
We will argue that our representation has a clear semantics and in addition
allows for easy maintenance in the event of changes in the parameters of the
represented interaction model. Before demonstrating the latter in Sect. 4.2, we
now first detail our cascading representation of causal interaction models.

4.1 The Cascading Representation and its Equivalence Property

We focus on causal mechanisms with an underlying self-decomposable determin-
istic function f as reviewed in the previous section, and consider their chain
decomposition as illustrated in Fig. 2 (right). Instead of building on a tempo-
ral interpretation as suggested by Heckerman, we propose to sum out the noise
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variables Zi by marginalisation. We note that, by doing so, the effect variables
Ei, i = 1, . . . , n, become stochastic rather than deterministic. The resulting rep-
resentation, called the cascading representation of a causal interaction model, is
illustrated for a mechanism M(n) in Fig. 3, where

– the variable En, with the cause variable Cn for its single parent, has the
probability table derived from the chain decomposition as

Pr(en | Cn) =
∑

z′n∈Ω(Zn)

Pr(en | z′n) · Pr(z′n | Cn) (1)

or, in the presence of a leak probability, as

Pr(en | Cn) = pL ·
∑

z′n∈Ω(Zn)

Pr(en | z′n, zL) · Pr(z′n | Cn)

+ (1− pL) ·
∑

z′n∈Ω(Zn)

Pr(en | z′n, zL) · Pr(z′n | Cn) (2)

– the variables Ei, i = 1, . . . , n − 1, with the parents Ci and Ei+1, have the
probability table derived as

Pr(ei | Ci, Ei+1) =
∑

z′i∈Ω(Zi)

Pr(ei | z′i, Ei+1) · Pr(z′i | Ci) (3)

We note that all probabilities conditioned on a value of a noise variable originate
from the degenerate distributions modelling the deterministic function f of the
interaction model. We further note that the inclusion of a leak probability affects
only the cells of the probability table for the variable En, whereas it affects,
through the definitional rule of the interaction model at hand, all cells in the
fully expanded table for the variable E in the causal mechanism.

To ensure that our cascading representation of an interaction model is equiv-
alent to its original representation in a causal mechanism, the variable E1 in our
representation should represent the exact same information as the effect variable
E in a mechanism M(n). Any probability Pr(e | c) = 1 − Pr(e | c) specified in
the full probability table for E should therefore be the same as the probability
Pr(e1 | c) that is computed from the cascading representation as

Pr(e1 | c) =
∑

e−∈Ω(E−)

Pr(e1 | c′1, e′2) ·
n−1∏
k=2

Pr(e′k | c′k, e′k+1) · Pr(e′n | c′n) (4)

where Ω(E−) is the domain of the variable set E− = {E2, . . . , En}, and where
e′k ∈ Ω(Ek), k = 2, . . . , n, is consistent with e− and c′k ∈ Ω(Ck), k = 1, . . . , n,
is consistent with c. We emphasize that we focus on the value e1 of the variable
E1 rather than on the value e1, to simplify our arguments in the sequel.

We now illustrate the derivation of the probability tables for the cascading
representations of the noisy-or and leaky noisy-or models, and demonstrate
their equivalence to the standard causal-mechanism representation.
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The cascading noisy-or. We begin with constructing the conditional probability
tables to be specified for the noisy-or model in its cascading representation. For
the variables Ei, i = 1, . . . , n− 1, we find from Eq. 3 that

Pr(ei | ci, ei+1) = 1 · 0 + 0 · 1 = 0

Pr(ei | ci, ei+1) = 1 · pi + 0 · (1− pi) = pi

Pr(ei | ci, ei+1) = 1 · 0 + 1 · 1 = 1

Pr(ei | ci, ei+1) = 1 · pi + 1 · (1− pi) = 1

where pi = Pr(e | c1, . . . , ci−1, ci, ci+1, . . . , cn) coincides with a regular noisy-or
parameter. For the variable En we similarly find from Eq. 2 that

Pr(en | cn) = 1 · 0 + 0 · 1 = 0

Pr(en | cn) = 1 · pn + 0 · (1− pn) = pn

where pn is again a regular noisy-or parameter. We observe that each parameter
pi, i = 1, . . . , n, occurs in the specification of exactly one table, which is the table
for the variable Ei. In addition to this single associated noisy-or parameter, the
probability table for the variable Ei further specifies just zeroes and ones.

We now show that the cascading representation, with the probability specifi-
cation above, correctly captures the noisy-or model. To this end, we observe that
for a summand of Eq. 4 to actually contribute to the computation of Pr(e1 | c),
it should be a product composed of just non-zero terms. Such non-zero terms
are found only with the following probabilities:

– Pr(en | cn) or Pr(e′n | cn), for the variable En;
– Pr(ei | c′i, ei+1), Pr(ei | c′i, ei+1), and Pr(ei | ci, ei+1), for the variable Ei,

i = 1, . . . , n− 1;

with e′i ∈ Ω(Ej) and c′i ∈ Ω(Ci), i = 1, . . . , n. Close examination of these non-
zero probabilities shows that for the value e1 of E1 under consideration, only
value combinations e− for E− = {E2, . . . , En} consistent with e2 can possibly
contribute a non-zero term to a summand of Eq. 4. By iteratively applying this
argument to the variables E3, . . . , En, we conclude that only the value com-
bination e− = e2, . . . , en contributes a non-zero summand to the probability
Pr(e1 | c). For the cascading representation of the noisy-or model therefore,
Eq. 4 reduces to:

Pr(e1 | c) =

n−1∏
i=1

Pr(ei | c′i, ei+1) · Pr(en | c′n) (5)

To show that the cascading representation correctly captures the noisy-or model,
we now consider the three different cases distinguished by this model:

– Where the noisy-or model has Pr(e | c) = 0 for c = c1, . . . , cn, we find in
the cascading representation from Pr(ej | cj , ej+1) = 1 for j = 1, . . . , n − 1
and Pr(en | cn) = 1, that Pr(e1 | c) = 1 and, hence, Pr(e1 | c) = 0.
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Table 1. For the two representations of the noisy-or model for a causal mechanism
M(n): the number of variables (#variables), the number of non-redundant probabilities
for the effect variable(s) (#probabilities), and of those, the number of free parameters
to be acquired (#free) and the number of zeroes and ones (#0/1).

Representation #variables #probabilities #free #0/1

Full table n + 1 2n n 1
Cascade 2·n 4·n− 2 n 3·n− 2

– Where the noisy-or model has Pr(e | c) = pi for c including the single
present cause ci, we have in the cascading representation that the product
term contributed for the variable Ei has the probability Pr(ei | ci, ei+1) =
1−pi or, in case i = n, Pr(en | cn) = 1−pn. As all other terms in the product
of Eq. 5 equal 1, we find that Pr(e1 | c) = 1− pi and, hence, Pr(e1 | c) = pi.

– For any value combination c including multiple present causes, with their
indices in Ic, the noisy-or model has Pr(e | c) = 1 −

∏
i∈Ic(1 − pi). In

the cascading representation, the product term contributed by any Ej with
j 6∈ Ic equals 1 and the term by any Ei with i ∈ Ic is 1 − pi. We thus find
that Pr(e1 | c) =

∏
i∈Ic(1− pi) and, hence, Pr(e1 | c) = 1−

∏
i∈Ic(1− pi).

From the three cases above, we conclude that the cascading representation indeed
correctly captures the noisy-or model and, hence, that the cascading representa-
tion is equivalent with the fully expanded probability table for the effect variable
E in a causal mechanism with a noisy-or model.

The cascading representation of the noisy-or model is a more efficient rep-
resentation than a causal mechanism M(n) with a full probability table for the
effect variable E, despite the increase in number of variables to 2·n compared
to the n + 1 variables in the standard representation. More specifically, the cas-
cading representation requires 4·(n−1)+2 conditional probability distributions
in total for the variables Ei, of which 3·(n − 1) + 1 are degenerate. For ease of
reference, Table 1 summarises a comparison of the size of the cascading repre-
sentation with that of the standard representation. We note that the cascading
representation is more concise when a causal mechanism would include n ≥ 4
cause variables for the effect variable of interest.

The cascading leaky noisy-or. We now briefly address the cascading represen-
tation of the noisy-or model in the presence of a leak probability, which differs
from that of the standard noisy-or model only in the specification of the prob-
ability table for the variable En, which is derived from Eq. 2 as

Pr(en | cn) = pL

Pr(en | cn) = pL + pn · (1− pL) = 1− (1− pL) · (1− pn)

where pn is again a regular noisy-or parameter and pL is the leak probabil-
ity. To show that the cascading representation with this specification correctly
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captures the leaky noisy-or model, we use Eq. 5 again, now for the different
cases distinguished by the leaky noisy-or model. We observe that, while with
the noisy-or model, the variable En would contribute to the product either
Pr(en | cn) = 1 or Pr(en | cn) = 1−pn, it contributes either Pr(en | cn) = 1−pL
or Pr(en | cn) = (1− pL) · (1− pn) in the cascading representation of the leaky
noisy-or model. As a consequence

– With the leaky model having Pr(e | c) = pL for c = c1, . . . , cn, we find Pr(e1 |
c) = 1− pL and, hence, Pr(e1 | c) = pL from the cascading representation.

– For any value combination c with an arbitrary number of present causes with
indices in Ic, the leaky model has Pr(e | c) = 1−(1−pL)·

∏
i∈Ic(1−pi). Using

the observation above, we find in the cascading representation that Pr(e1 |
c) = (1−pL)·

∏
j∈Ic(1−pj) and, hence, Pr(e1 | c) = 1−(1−pL)·

∏
j∈Ic(1−pj).

We conclude that the probabilities computed from the cascading representation
indeed coincide with the probabilities in the full probability table in a causal
mechanism with the leaky noisy-or model. We thus can construct an efficient
representation for a causal mechanismM(n) with the leaky noisy-or model. Of
the 4·(n − 1) + 2 conditional distributions required in total by the cascading
representation, now 3·(n− 1) are degenerate. We note that the difference of one
compared with the cascading representation of the noisy-or model originates
from the inclusion of the leak probability as a parameter.

4.2 Additional Engineering Benefits

Causal mechanisms are typically modelled straightforwardly in Bayesian net-
works, as in Fig. 1 (left). The different partitions and decompositions of causal
interaction models proposed, are mostly seen as alternative representations to
support probability elicitation and are hardly ever used in a network directly. Ta-
ble 1 clearly illustrates the reduction in specification size that would be achieved
by choosing a cascading representation for causal mechanisms with large num-
bers of cause variables; as this representation limits the number of parents per
effect variable, it also has the potential to reduce the runtime complexity of
probabilistic inference, dependent of the graphical structure of the embedding
Bayesian network [10, 14]. In this section, we now argue that the cascading repre-
sentation further has clear engineering benefits beyond those widely recognised.

Clear semantics. Alternative representations of causal interaction models typi-
cally rely on the introduction of additional variables. Although introducing such
additional variables is commonly used for reducing the number of parents for
an effect variable, it is often quite undesirable from a knowledge engineering
perspective. While the additional variables have a clear meaning from a mathe-
matics point of view, they often are quite meaningless from the perspective of the
application domain and thereby hamper the interpretation of the model as a do-
main representation. The lack of a clear meaning is especially problematic if the
probabilities for these additional variables need be elicited from experts. Now, in
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our cascading representation of a causal interaction model, the additional vari-
ables do have a clear intuitive meaning, as a consequence of the decomposability
properties of the underlying deterministic function: in the cascading representa-
tion of a causal mechanism M(n), any variable Ei can be viewed as the effect
variable in the causal mechanism M(n − i + 1) involving the subset of causes
Ci, . . . , Cn. This claim is readily seen by replacing E1 by Ei in Eq. 4:

Pr(ei | c) =
∑

e−∈Ω(E−)

Pr(ei | c′1, e′i+1) ·
n−1∏

k=i+1

Pr(e′k | c′k, e′k+1) · Pr(e′n | c′n)

where Ω(E−) now is the domain of E− = {Ei+1, . . . , En}, and e′k, c′k are defined
as before. As each variable Ei in the cascading representation represents the
effect variable in a (leaky) noisy-or model with the cause variables Ci, . . . , Cn, it
has an intuitive meaning that allows for explicit embedding of the representation
in a network without hampering interpretation and probability elicitation.

Maintenance robustness. The cascading representation of a causal interaction
model brings yet another advantage from an engineering perspective. When us-
ing fully expanded probability tables for the effect variables in a Bayesian net-
work, any modelling decision to employ a causal interaction model is no longer
explicitly visible in the network’s representation. More specifically, the depen-
dency of multiple cells of the table on the parameters of the model employed is
hidden. When a network is maintained and adapted to its changing context of
application over a period of years therefore, inopportune changes to the speci-
fied probabilities can disrupt the modelled interaction pattern and, thereby, the
original modelling decision. We illustrate this observation by means of a causal
mechanism with a noisy-or model for the effect variable, and show that the cas-
cading representation of the interaction model used is more robust by preventing
the occurrence of such unintended disruptions.

We address the engineering task of studying the effects, on a network’s output
probabilities, of changing a single probability from one of the network’s prob-
ability tables. Such a sensitivity analysis is usually part of the encompassing
task of fine-tuning the network’s specification to attain a desired effect on the
output (see for example [1–3]). In view of a causal mechanism M(n), we now
consider the output probability of interest Pr(e |ci, ck), for some 1 ≤ i < k < n,
and address how this probability changes with a change of the probability
x = Pr(e | c̄1, . . . , c̄i−1, ci, c̄i+1, . . . , c̄n) of the full probability table of the effect
variable E; we note that this probability is one of the parameters of the noisy-or
model. The function [Pr(e | ci, ck)] (x) describing the sensitivity of Pr(e | ci, ck)
to changes in x would be constant if the modelling choice of imposing a noisy-or
interaction for the mechanism at hand is not taken into consideration:

[Pr(e | ci, ck)] (x) = a, with a =
∑

c−∈Ω(C−)

Pr(e | ci, ck, c−) · Pr(c− | ci, ck) (6)
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where Ω(C−) is the domain of the set C− = {C1, . . . , Cn} \ {Ci, Ck} of cause
variables for which no value is fixed by the probability of interest. We note
that the computation of Pr(c− | ci, ck) does not involve any probabilities from
the probability table of E; in contrast, the first term in the product for each
summand in a corresponds directly to a cell from the full table for E. Since the
summation does not involve parameter x directly, the analysis reveals that the
output probability is not sensitive to variations of the parameter. This result
however, does not correctly reflect the true sensitivity of the output probability
to variations in the parameter under study: the parameter x is actually included
in various cells of the full probability table of E by the definitional rule from the
noisy-or model, and thereby hidden in various summands of a.

We now consider the same sensitivity analysis in view of the cascading repre-
sentation of the noisy-or model, for essentially the same probability of interest
and essentially the same parameter probability. Recall that in the cascading rep-
resentation, any posterior probability distribution over the variable E1 equals the
posterior distribution given the same evidence over the original variable E with
the full probability table; we therefore take the probability Pr(e1 | ci, ck) for the
probability of interest. The parameter pi = Pr(e | c̄1, . . . , c̄i−1, ci, c̄i+1, . . . , c̄n)
of the noisy-or model moreover occurs as pi = Pr(ei | ci, ēi+1) in the model’s
cascading representation; we thus take x = Pr(ei | ci, ēi+1) as the probability
that will be varied. The sensitivity analysis will in essence establish the same
result as presented in Eq. 6, but now the probabilities Pr(e | ci, ck, c−) follow
from the cascading representation using Eq. 5, and depend explicitly on x:

[
Pr(e1 | ci, ck, c−)

]
(x) =

(1− pi) · (1− pk) ·
∏

j∈Ic−

(1− pj)

 (x)

= (1− x) · (1− pk) ·
∏

j∈Ic−

(1− pj)

where Ic− indexes all present causes in C− and, for ease of exposition, we again
focus on the value e1 for variable E1. As a result, we find that

[Pr(e1 | ci, ck)] (x) =
∑

c−∈Ω(C−)

(1− x) · (1− pk) ·
∏

j∈Ic−

(1− pj) · Pr(c− | ci, ck)

and conclude that the function [Pr(e1 | ci, ck)] (x) is in fact a linear function of
the form a · x + b with constants a, b, where

a = (1− pk) ·
∑

c−∈Ω(C−)

Pr(c− | ci, ck)
∏

j∈Ic−

(1− pj)

b = 1− a

The cascading representation of the noisy-or model performs, during inference,
the computation of the probabilities of the effect e given possible combinations of
causes. That is, application of the definitional rule is in essence left to inference,
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resulting in the dependency of the output probability of interest on the noisy-or
parameter now being correctly taken into consideration. This observation fur-
ther demonstrates that, when changing a single parameter of the noisy-or model
specification upon fine-tuning a Bayesian network, in the cascading representa-
tion just a single cell of the conditional probability table for the appropriate effect
variable Ei needs to be adapted; in contrast, in the representation with a full
conditional probability table, various cells that are specified using the model’s
definitional rule will need adaptation. The cascading representation is therefore
easier to adapt without the risk of violating the properties of the underlying
causal interaction model.

5 Conclusions and Further Research

In this paper we revisited part of the large volume of work on causal interaction
models, and focused thereby on the representational complexity of such models.
We built on this early work for the purpose of demonstrating that some of these
models allow for a representation with various elegant properties that have not
been recognised until now. More specifically, by exploiting the property of self-
decomposability of the deterministic function underlying a causal interaction
model, we arrived at an alternative cascading representation that has a clear
intuitive semantics in terms of the causal mechanism itself, not requiring the in-
clusion of artificial unobservable variables. In addition to well-known complexity
benefits of such alternative representations, this specific cascading representa-
tion has important knowledge engineering benefits, allowing easier maintenance
and more robust fine-tuning of parameters. As the compactness of the cascading
representation can be exploited directly by standard inference algorithms more-
over, we conclude all in all that this representation of causal interaction models
is quite suitable for explicit embedding in Bayesian networks.

While we used the (leaky) noisy-or model for our example causal interaction
model throughout the paper, the presented properties of the cascading represen-
tation apply straightforwardly to any interaction model involving binary-valued
variables and having an underlying self-decomposable deterministic function,
such as the (leaky) noisy-and model. For our further research we aim at extend-
ing our results to causal interaction models involving multi-valued variables, such
as the noisy-max model [5], and to other types of decomposable function.
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