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Evidence-invariant Sensitivity Bounds

1

The numerical parameters for a probabilistic network ar
generally estimated from statistical data or assessed by h
man experts in the domain of application. As a conse-
guence of incompleteness of data and partial knowledge
the domain, the assessments obtained inevitably are inaccH
rate. Since the outcome of a probabilistic network is built
from these assessments, it may be sensitive to the inacc
racies involved and, as a result, may even be unreliable.
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Abstract

The sensitivities revealed by a sensitivity anal-
ysis of a probabilistic network typically depend
on the entered evidence. For a real-life network
therefore, the analysis is performed a number of
times, with different evidence. Although efficient
algorithms for sensitivity analysis exist, a com-
plete analysis is often infeasible because of the
large range of possible combinations of obser-
vations. In this paper we present a method for
studying sensitivities that are invariant to the ev-
idence entered. Our method builds upon the idea
of establishing bounds between which a parame-
ter can be varied without ever inducing a change
in the most likely value of a variable of interest.

INTRODUCTION

Q

t@cs.uu.nl

The sensitivities revealed by a sensitivity analysis of a prior
probabilistic network typically differ from those revealed
by an analysis of the network after evidence has been en-
tered. A complete sensitivity analysis of a real-life network
would therefore involve performing multiple analyses, for
different profiles of evidence. Such a complete analysis
generally is infeasible, however, as a consequence of the
many different possible profiles. Consider, as an example,
a probabilistic network havingp observable variables with

3 values each. For this network, there are sdre¢ dif-
ferent combinations of observations, or evidence profiles.
A complete sensitivity analysis of the network would re-
quire a number of network propagations that is at least of
the same order of magnitude.

The above example serves to demonstrate the need for
methods that provide insight into sensitivities and their con-
sequences, without actually performing sensitivity analyses
for the full range of evidence profiles. Recent results show
that the change in a probability of interest, that is occa-
sioned by a shiftin a given parameter, can be bounded with-
out knowledge of the network under study [2, 3]. The pro-

Q/ided bounds depend, more specifically, just on the original

Values of the parameter and of the probability of interest. In
this paper, we argue that these bounds actually are bounds
n a sensitivity function and are built from sensitivity func-
ons themselves. Based upon this observation, we provide
an upper bound on the effect of small shifts in a param-
Efer, that is, on its sensitivity value. We further establish
lower bounds on the deviation that is allowed for a parame-

The reliability of the outcome of a probabilistic network ter from its original value, before the most likely value of a

can be evaluated by subjecting the network to a sensitivityariable of interest may change. These bounds can again be
analysis. Such an analysis amounts to varying the assesgstablished without knowledge of the network under study.
ments for one or more of its numerical parameters and inThe bounds moreover are evidence-invariant in the sense
vestigating the effects on a probability of interest. Efficientthat they hold for large ranges of profiles.

algorithms are available that build upontheobservationtha.ﬁ.he paper is organised as follows. In Section 2, we
th_e sensitiviFy qu probability of interest to parame_tervar_i-presem some preliminaries concerning sensitivity %unc-
at|on. gqmplles \.N'th a s_|mple mathematical functlor_];_ thIStions. In Section 3, we introduce bounds on sensitivity
sensitivity function basically expresses the probability Ofvalues; bounds on admissible deviations are discussed in

interest in terms of the parameter under study [4, 5]. Com'Section 4. The paper ends with our conclusions and direc-
puting the constants for a sensitivity function requires jUSttions for further research in Section 5

a limited number of network propagations.
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2 SENSITIVITY FUNCTIONS r <o
s>1
Sensitivity analysis of a probabilistic network amounts to t<1

establishing, for each of the network’s numerical parame- "
ters, thesensitivity functiorthat expresses the probability of
interest in terms of the parameter under study. In the sequel,
we denote the probability of interest (A = a | ¢€), or
Pr(a | e) for short, wherez is a specific value of the vari-

. ) X i \%
able A of interest and denotes the available evidence. The

network’s parameters are denotedaby= p(b; | 7), where ‘5:2 ts:g
b; is a value of a variablé and~ is a combination of val- >0 ' <0

ues for the parents dB. We usefp,(4|c) () to denote the
sensitivity function that expresses the probabiltftya | )
in terms of the parameter, we often omit the subscript for Figure 1: Hyperbolas and their constants (the constraints
the function symbof, as long as ambiguity cannot occur. Ons andt are specific for sensitivity functions).

Upon varying a single parameter= p(b; | «), the other _
parameterg(b; | ), j # i, specified for the variabl®  Of the parameter; the absolute valuefofz,) is called the
need to beo-variedto ensure that the parameters pertain-sensitivity valuef the parameter for the current probabil-
ing to the same conditional distribution still sum to one; ity of interest. Even if the probabilities of the various values
each parameter(b; | ) can in fact be seen as a function of the variable of interest are not very sensitive to variation
of the parameter: under study. In the sequel, we assume©f the parameter, a small shift inz may still change the
that the parameters(b; | «) are co-varied wittp(b; | ) most likely value of this variable. For capturing the extent
in such a way that their mutual proportional relationship isof the variation that can be applied to a parameter without

kept constant, that is, changing the most likely value of the variable of interest,
the concept ohdmissible deviatiowas introduced [6]. An
1—x i ot : i :

p(b; | ©) — p(b; | ) - admissible deviation for a variable of interest and a given

1—p(bi | ) parameter, is a pair of valués, () that describe the shifts
to smaller values and to larger values, respectively, that are

for p(b; | m) < 1. Thisproportional co-variationhas been ; X . : .
shown to result in the smallest distance between the origi‘:""owecj in the parameter without inducing a change in the

e - most likely value of the variable of interest. For a param-
I h I . . - o L
nal and the new probability distribution upon variation [3] eter with an original value af, the admissible deviation

Under the (standard) assumption of proportional co-(«, 3) thusindicates that the parameter can be safely varied
variation, any sensitivity functiorfp,, ) () is a quotient  within the intervallzy — «, zo + ).
of two functions that are linear in the parameteunder . S . .

A sensitivity function is either éinear function or a frag-

study [1, 4]. The numerator of the quotient describes thement of arectanaular hvoerbolaA rectanaular hvperbola
probability Pr(a, e) as a function of the parameterand 9 yp 9 yp

the denominator describ&s(e) as a function ofc. More takes the general form

formally, the function takes the form r
Y, @)= ——+t
xr— S
T +ce
flz) = c3-T+cy where, for a hyperbolic sensitivity function, we have that
where the constants, j = 1,...,4, are built from the as- g G a0 g, aa
sessments for the numerical parameters that are not being cg’ cg’ c32

varied. Any sensitivity function is thus characterised by a :
most three constants. These constants can be feasibly (tj-le-zbe hyperbola has two branches and two asymptotes. Fig

. . ure 1 illustrates the locations of the possible hyperbola
termined from the network, for example by computing the .
- . branches relative to the two asymptotes. Fox 0, the
probability of interest for up to three values for the param- S
: . branches lie in the second (ll) and fourth (IV) quadrants
eter under study and solving the resulting system of equa-

i . 4 relative to the asymptotes= s and f(x) = ¢t; for r > 0,
t|0_ns [4].’ or by means of an algorithm thatis closely relatedthe branches are found in the first (1) and third (lll) quad-
to junction-tree propagation [5].

rants. Since any sensitivity function is continuous and well-
The sensitivity functionf(x) provides for establishing the defined forz € [0, 1], a hyperbolic sensitivity function is
change in the probability of interest that is occasioned by actually a fragment of one of the four possible hyperbola
specific shift in the parameterunder study. The effectofa branches. As for each sensitivity function we further have
small shift in the parameter is captured by the vaflle,)  that0 < z < 1 and0 < f(z) < 1, we observe that the
of the first derivative of the function at the original valtg  vertical asymptote: = s lies either to the left oft = 0 or
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to the right ofx = 1. For any sensitivity function, there-
fore, we have that < 0 or s > 1. In addition, we observe
that the horizontal asymptotg(x) = ¢ lies below f(1)
for a first-quadrant function and beloyi0) for a second-
guadrant function; we then have that 1. Similarly, the
horizontal asymptote lies aboy&0) for a third-quadrant
function and abové (1) for a fourth-quadrant function, im-
plying thatt > 0. Note, for example, that for a type | func-
tion, negative values of are possible, and that for a type
IV function, values of larger thanl are possible.
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Figure 2: The upper bound on the sensitivity value of a
hyperbolic sensitivity function, as a function of andp,.

A sensitivity analysis is generally performed to investigate
the extent to which a probability of intereBi:(a | €) can
change as a consequence of a shift in the paramdtem

its original valuer, to another value:;;. From the sensitiv-
ity function, the change iRr(a | e) occasioned by the shift
can be computed exactly. As the distance betweeand

x1 approaches zero, the changeHn(a | e) is captured
by the valuef’(z) of the first derivative of the sensitiv-
ity function, which can also be established exactly. In this
section we show for both hyperbolic and linear sensitivityChan and Darwiche [2] further established an upper bound
functions, that bounds on the chang@ir{a | ¢) andinthe  on the sensitivity value of a parameter fdsiaary variable:
sensitivity value forPr(a | e) can be established without

3 BOUNDING SENSITIVITY VALUES

2 andp; with f(z). Note that the above bounds depend on
the original values of the parameter and of the probability
of interest, but are independent of any other aspect of the
network under study. The bounds therefore apply to any
pair (xg,po) for any network. Their computation, more-
over, does not require any network propagations, except for
establishing the valug, that corresponds witl.

actually knowing the sensitivity function. These bounds

constitute the basis for analysing the effects of parameter

variation for large ranges of evidence profiles.

3.1 HYPERBOLIC FUNCTIONS

We consider a parametemwithin a given probabilistic net-

work. Suppose that, is the value specified in the net-
work for z, and thatp, is the corresponding value of the
probability of interest, which may be any prior or poste-

y po - (1 —po)
If'(zo0)] < ﬁ

Zo
For ease of reference, the upper bound on the sensitivity
value as a function afy andp is replicated in Figure 2.
The figure reveals that large sensitivities are expected only
for the more extreme values of.

We recall that, for real-life probabilistic networks, often
different profiles of evidence are studied in a sensitivity
analysis. We demonstrate the possible uses of the above

rior probability. In the sequel, we refer to these values adound in view of such a thorough analysis. We consider, as

the original values of the parameter and of the probabil-
ity of interest, respectively. Without loss of generality, we
assume that neithat, nor pg is equal to zero or one.

In their work on sensitivity analysis, Chan and Dar
wiche [3] established bounds on the new vajyeof the
probability of interest that results from varying the param-
eterz from xq to ;. Under the assumption of proportional
co-variation, their bounds are given by

-0 0

Po - € Po - €
<py < —= -
po (e - +1 - = p (@ 1)1
where
6= |ln 1 —Iln o
1—!,61 1—!,60

While these bounds were stated for a fixgd we observe

an example, a parameter with an original valu®.6f We
conclude from the above bound that any probability of in-
terest will be quite insensitive to small shifts in this param-
eter, regardless of the evidence profile under study. Now
suppose that we are interested in the sensitivity value for
some probability of interest with an original value @®.

For any profile that we can identify, using domain knowl-
edge, as one that induces an increase of this probability,
we observe that no parameter can upon variation induce a
major change. On the other hand, for profiles that serve
to decrease the original probability of interest, a shift in
a parameter with a relatively extreme original value may
induce a considerable change in the probability of interest
given the profile. For such combinations of profiles and
parameters, therefore, a more detailed analysis is required.

An in-depth study of the bounds on a sensitivity func-
tion established by Chan and Darwiche, reveals that these

that they are easily rephrased as bounds on the sensitivityounds are the maximum and minimum, respectively, of

function for all possible values af, by replacingz; with

two rectangular hyperbolas.
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Proposition 3.1 Letz, be the original value of a parame- 1 . . . .
ter z and letp, be the corresponding probability of interest
as before. Furthermore, let 08 ]
06 -
oy po-(1—x9)-x -
i(z) = &
(Po — o) - = + (1 —po) - zo 04 | 4
and 02 F 3 -
po-xo-(1—x ) I e
d(z) = 0-%o- ) 0o 0.2 0.4 0.6 0.8 1

(1 —=po—x0) -+ po-xo

X

Then, for any hyperbolic sensitivity functigf{z) with

F(x0) = po, we have that Figure 3. An example of linear and hyperbolic bounds on
0) — PO

sensitivity functions througkwg, po) = (0.10,0.20).
min{i(z;), d(z;)} < f(z;) < max{i(z;),d(z;)}

to a linear function fors = 0. If we know that a sensitiv-
forall z; € [0,1].

ity function is linear in the parameter under study, we can
establish tighter bounds than the hyperbolic bounds that we
found before. We consider to this end an increasing linear
function through(0,0) and(1,1). Note that this function
passes through, po) only if xg = pg. For a linear func-
tion ¢;(z) to serve as a bound on a linear sensitivity func-
tion f(z) with f(z¢) = po, it must either have;(0) = 0
ori;(1) = 1. More specifically, forzy > pg, the function
hasi;(0) = 0; for xg < po, it hasi;(1) = 1. The function
1;(x) thus has two points in common with an increasing hy-
perbolic bound. For either = 0 or x = 1, however, the
function’s value will lie within the(0, 1)-range. Similar ob-
servations pertain to a decreasing linear function. Figure 3
To — Po - To now illustrates that, although linear sensitivity functions are
si=——— ti=1—s; ri=s5-(1-3s;) also bounded by the hyperbolds:) andd(x) from Propo-

Proof: Any increasing hyperbolic sensitivity functigiix)
with f(xzg) = po is bounded by an increasing hyperbola
i(x) = ;7 4 t; with i(0) = 0, i(1) = 1, andi(xo) = po,
wherei(z) is a lower bound oryf(z) for z < z, and an
upper bound oryf(z) for z > z,. Any decreasing hyper-
bolic sensitivity function is bounded by a decreasing hy-
perbolad(z) = ;=4 +t4 with d(0) = 1, d(1) = 0, and
d(zg) = po, whered(zx) is an upper bound orf(x) for

x < xo and a lower bound orf(z) for > x,. From
the three constraints per function, the constani$of and

d(x) can be computed:

T —
0P sition 3.1, tighter bounds can in fact be established.
and
o, — P00 by = S0, T4 = 54 (50— 1) Proposition 3.2 Letzq be the original value of a parame-
4 o tpo— 1 4T o TdTodTAAd ter 2 and letp, be the corresponding probability of interest

_ _ as before. Furthermore, let
The result now follows immediatel{z]

- . P &, if 2o > po
From Proposition 3.1, we have that ter< z, the increas- () = Zo
ing hyperbola(x) is a lower bound on any sensitivity func- i(w) = 1—1po Po — To therwi
tion f(z) with f(z9) = po and the decreasing hyperbola 1—x e 1—x otherwise
d(x) is an upper bound ofi(z); for the larger values of,

. : . and

the two hyperbolas switch roles. It is now straightforward _1
to show that the bounds from the proposition are equivalent Po sz 41, if 2op>1—1pg
to the bounds provided by Chan and Darwiche. By taking di(z) = To
the first derivatives of the functiongz) andd(x), more- Py B0 otherwise
over, we find the same upper bound on the sensitivity value 1=z 1—x

as establlshed_by Chan and Darwiche. Thew resul_t theref’hen, for any linear sensitivity functiof(z) with f(zo) —
fore holds not just for the parameters of binary variables,

) . 'po, we have that
but for the parameters of any variable in general.

min{i;(z;), di(x;)} < f(z;) < max{i(z;),di(z;)}

forall z; € [0,1].
In the previous section, we established hyperbolic bounds
on a sensitivity function. Considering once more the genProof: Any increasing linear sensitivity functiorf(x)
eral form of a sensitivity function, we note that it reduceswith f(z¢) = po is bounded by an increasing linear

3.2 LINEAR FUNCTIONS
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Figure 5: The minimum admissible deviation defined by
Figure 4: The upper bound on the sensitivity value of athe space between the hyperbolic boundsfoandp,.
linear sensitivity function, as a function of andp.

original assessment may considerably change the probabil-
function i;(z) with 4;(0) = 0 for zg > po or (1) = 1  ities of a variable’s values without inducing a change in the
for zy < po, andi;(zg) = po, wherei;(z) is a lower  most likely one; for other parameters, variation may have
bound onf(z) for z < xy and an upper bound ofi(x) little effect on the probabilities involved and yet change the
for x > xo. Any decreasing linear sensitivity function most likely outcome. The concept of admissible deviation
is bounded by a decreasing linear functidr(z) with now captures the sensitivity of the most likely value of a
di(0) = 1forag > 1—poord;(1) = 0forzy < 1— po, variable of interest to parameter variation [6].
andd;(zo) = po, whered;(x) is an upper bound offi(x)
for z < xo and a lower bound off(z) for © > zy. From
the two constraints per function, the constantsidk)
and d;(x) can be established. The result then follows
immediately.[]

We consider a variable of interedt Suppose that, is the
most likely value ofA given the available evidence. We
further consider a parameterwith the original valuer,
and address the extent to whieltan be varied without an-
other value tham; becoming the most likely value of.
From the sensitivity functions for the probabilities of the
sensitivity function is readily found to be the maximum of separate values of, the _admls_5|ble deviation for can be
mputed exactly. In this section, we show that bounds on

the absolute values of the gradients of the increasing an - L . i
decreasing linear bounds given in Proposition 3.2. The upt_ e admissible deviation can be established without actu-

per bound on the sensitivity value as a function@&ndp, ally knowing these sensitivity functions. For this purpose,

is shown in Figure 4. Note that the sensitivity value ofalin-V€ exploit the bounds on the sensitivity functions found

ear function never exceeds further note that the surface in the previous Se.Ct'O”' I_n doing S0, We again distinguish
from Figure 4 can be placed underneath that of Figure 2. between hyperbolic and linear sensitivity functions.

An upper bound on the sensitivity valug (z)| of a linear

We recall once again that, for real-life probabilistic net-41 HYPERBOLIC EUNCTIONS

works, different profiles of evidence are studied. For each

such profile, the parameters that will give rise to a linearlWe consider a variable of interedtwith n > 2 possible

sensitivity function are readily determined [4]. For exam-values. Without loss of generality, we assume thas the

ple, the parameters of any variable without observed demost likely value ofA; we then have thgt; = Pr(a; |

scendants, will show a linear relationship with the probabil-e) > ps = Pr(as | ¢) for some other value, of A. We

ity of interest. Knowledge of where the variable of interestfurther consider a parameter Now, leti,(z) anddy(x)

and the observable variables reside in a network, thereforelenote the two rectangular hyperbolas from Proposition 3.1

provides for identifying ranges of profiles for which spe- with py replaced by, & = 1,2, respectively. The sensi-

cific sensitivity functions are linear. tivity function that describes the probabilipy of the most
likely value a; of A in terms of the parametet then is

4 BOUNDING ADMISSIBLE DEVIATIONS bounde_q by‘l(m)_anddl(x);the.sensitivityfunctionforthe

probability of as is bounded byis(x) andds(x). Figure 5

. . serves to illustrate the basic idea. Nowpif # po, there

I_n .th? previous secglon wle _shgweg h.OW tl)aoun((jjs on sens__ﬁ-s a space between the bounds through which neither of the

t!v!ty unctions can be exploited to enye ounds on sens'sensitiviw functions forp; and p, can pass. The bound-

tivity values. Often, however, we are interested not in the

itivity of bability of int 1t i . aries of this space define the deviation thatmimimally
SEnsitivity ot a probabliity of Interest 1o parameler vana- .,y for the parameter under study before the value
tion, but in the effect on the most likely value for the vari-

_ . .of the variable of interest may become more likely than
able of interest. For some parameters, deviation from their y y tha
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Figure 6: Minimum admissible deviatioris, ) for hyperbolic sensitivity functions, plotted as a functionpefandp.,

with p; > po andpy < 1 — pq, for zp = 0.1: (a) the minimally admissible shift to smaller values; (b) the minimally
admissible shift to larger values; (c) the minimally admissible shifts to smaller values (solid line) and to larger values
(dashed line) for a binary variable of interest.

Proposition 4.1 Letzq be the original value of a parame- We illustrate an example use of the minimum admissi-
ter 2 and letpy, p2, with p; > po, denote the correspond- ble deviation in view of a thorough sensitivity analysis in
ing probabilities of the values; anda, of the variable of  which various profiles of evidence are studied. We con-

interestA, respectively. Furthermore, let sider Figure 6(c) which shows the intersections of the sur-
faces from Figures 6(a) and (b) with the plane=1—p,,
Q=Vp1-(L—p1)-p2-(1-po2) that is, we consider a binary variable of interest; note that

we thus have thap; > 0.5. From the figure we ob-
serve for example that, for any profile that resultein=
0.8, the minimum admissible deviation fromy = 0.1 is
4 (1—20) - Q+(1—p1)-p2- 20 (0.075, 0.265_)), indicating that the parameter under study
{—m . (( o) T (=2 79) pr (1= ))} can b(_a varied WIthI!’] the |nterve{D.02570..369] Wlthout
P1—P2) " %o o) P1 P2 changing the most likely value of the variable of interest.
andz 5 = [z,1] N The same deviation is also admissible for any profile that
is known to induce a probability of at leas8B. If the plau-
+ (1—20) - Q@+ (1 —p2)-p1-x0 sible interval of variation for the parameter is within the
{_‘T ' ((m —p1) w2+ (1—2-20) po- (1 — p1)) } given admissible deviation, then we can safely say that for
all profiles that serve to increase the probability.of the
Proof: We observe that the minimum admissible deviationmost likely value of the variable of interest cannot change
is computed from the intersections of the bounds on theipon the variation. For profiles that induce a decrease in
sensitivity functions fop; andp,. More in particular, we  p,, however, a more detailed analysis is required.
establish the value , from the intersection of; (z) and L o
do(z). Since hyperbolas have two branches, we find two! "€ @dmissible deviatiofw, §) for a, anda; captures the
values for the intersection, one of which lies within the SHifts that can be minimally applied to the original valtie
interval[0, z]. Similar observations hold far 5. O of the parameter without changing the o_rder of the prob-
abilities of the values; anda, of the variable of interest

The minimum admissible deviatiofay, 3) from z for a; A. Forabingry variable_, i&_l is the_ most likely value given
anda, indicates that at least a shift lyto smaller values %o then variation ofr within the interval captured by the
of the parameter and by to larger values, are guaranteed @dmissible deviation guarantees thatremains to be the
not to change the order of the probabilities andp, of ~ MOSt likely value. For non-binary variables, however, this
ay andas, respectively. As an example, Figure 6 depictsPTOPerty no longer holds: the valug then is guaranteed to
the minimally admissible shifts to smaller values (a) and to'¢main the most likely value only if the parameter is varied
larger values (b) for a parameter with an original value ofwithin the intersection of the intervals captured by the ad-

0.1, as functions op, andps,. Note thaty; > p, andp; + missible deviations foall other valuesis, ..., a,, n > 2,
ps < 1; we thus have that, < 0.5. From the figure, we of A. When a shift beyond the interval defined by the min-

note that ifp; = p» then no deviation from, is allowed. imum admissible deviation far; andas is applied to the
The admissible shifts are maximalpf = 0. Forz, — Parameter, then the order of the probabilities of and

0.5, the minimal shifts allowed would be the same for both @2 May change. Note thak, or in fact another value of,
smaller and larger values. may then become the new most likely value.

Then, theminimum admissible deviatiofrom z, for a;
anday equals(zg — = o, x g — o), Wherex , = [0, 2] N
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Figure 7: The minimum admissible deviation defined by
the space between the linear boundspfpand forps.

4.2 LINEAR FUNCTIONS

We consider the same variable of interdsas before, with

ay for its most likely value. We suppose that the proba-
bilities of the values ofA relate linearly to the parameter
x under study. Now, let;,(z) andd;(z) denote the two
linear functions from Proposition 3.2 wifhy, replaced by
Pk, k = 1,2, respectively. The sensitivity function that
describes the probability; of the most likely value:; of

A in terms of the parameter, then is bounded by;; (x)
andd;; (z); the sensitivity function for the probability,

of the valuea; is bounded byi;>(z) andd2(z). Figure 7
illustrates the basic idea. #f; # ps, then the space be-
tween the bounds on the sensitivity functions again define
the minimumadmissible deviation fromg for a; andas.

Proposition 4.2 Let ¢ be the original value of a param-
eter z and letpy, ps, with p; > po, denote the corre-
sponding probabilities of the values andas of the vari-
able of interestA, respectively. Then, theinimum ad-
missible deviationfrom zy for a; and ay equals(zy —
max{x 4,0}, min{z g,1} — ), where

P2 ' %o if 1—p2>ax02>p1
pl—(Pl—Pz)'%
P1— P2 20> 1—ps
LTo = 1-— . .
: (1= py) - o if 1—p2<a0<pr
1—p2—(p1 —p2) @0
w if x0<p1and
b1 — D2 2o <1—po

andx g is defined similarly, witlp; andp, interchanged.

Proof: We observe that the minimum admissible deviation
is computed from the intersections of the bounds on th
sensitivity functions fop, andp,. More specifically, we
establish the value ., from the intersection of;; (z) and
di2(z), and the valuer 5 from the intersection of;2(x)
andd;; (x). If zp < p; andzy < 1 — py thenz , may be
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negative; similarly, ifxzg > ps andzy > 1 — py, thenz g
may be larger than one. Otherwise, andx 3 are in the
[0, 1]-interval. The result now follows immediately]

The minimum admissible deviation again indicates mini-
mally allowed shifts to smaller values and to larger values
of the parametex: under study. As an example, Figure 8
depicts the minimally admissible shifts to smaller values
(a) and to larger values (b) for a parameter with an original
value of0.8, as functions ofp; andp,. We observe that
both surfaces show a level flat. To explain this observation,
we recall that the intersection of the linear bounds may fall
outside thg0, 1]-interval. If the intersection gives, < 0,

for example, then the parameter under study can be varied
to zero without inducing a change in the more likely value
of a; andas. The minimally admissible shift to smaller
values then equalsy. For increasing values ¢f, and de-
creasing values gfis, the minimally admissible shift will
then remain to be equal tg, thereby giving rise to the flat

of Figure 8(a). If the intersection gives; > 1, then the
minimally admissible shift to larger values equals x.

We now consider Figure 8(c) which shows the intersections
of the surfaces from Figures 8(a) and (b) with the plane
p2 = 1 — pq, that is, we consider again a binary variable
of interest. We observe that both the minimally admissi-
ble shifta. to smaller values and the minimally admissible
shift g to larger values, expressed as functiongqfshow
points at which the function is not differentiable. The func-
tion that expresses in terms ofp; has such a point at the
value ofp; for which 8 = 1 — zy. Note that the value of
[ cannot increase beyord- z as it already corresponds
with a shift to the upper boundary of tig 1]-interval. The
function that expressesin terms ofp; has a similar point,
for which @« = z¢. The function, moreover, is not dif-
ferentiable atp; = zo. To explain this observation, we
note that the minimally admissible shift to smaller values
is determined by the intersection of the increasing bound
1;1(x) on the linear sensitivity function through and the
decreasing bound;»(z) throughp,. We now recall from
Proposition 3.2 that the increasing boundz) is a differ-
ent function forxy > p; and forzg < py; similarly, the
decreasing bound,, () differs forzg > 1 — p» = p; and
for zg < p;. The function that expressesin terms ofp;
therefore is built from three different functions, giving rise
to the two points at which the function is not differentiable.
In essence, a similar observation holds for the function that
expressesg in terms ofp,. However, since;y = 0.8 is al-
ways larger thati—p; = po, the increasing bounigh () is
described by a single function; also the decreasing bound
d;1 (z) is captured by a single function. The function ex-
ressing3 therefore is built from two functions, giving rise
0 just a single point at which it is not differentiable.

We again demonstrate the use of admissible deviations for
studying sensitivities. From Figure 8(c), we observe for
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Figure 8: Minimum admissible deviatioris, 3) for linear sensitivity functions, plotted as a functionggfandp., with

p1 > po andpy < 1 — pq, for o = 0.8: (a) the minimally admissible shift to smaller values; (b) the minimally admissible
shift to larger values; (c) the minimally admissible shifts to smaller values (solid line) and to larger values (dashed line) for
a binary variable of interest.

example that, ifp; = 0.8, then for any evidence profile Further insights in the various bounds may also constitute
that induces an increase in this probability, the admissibl¢he basis for evidence-invariant bounds on the higher-order
deviation is at leasf0.3, 0.2), indicating that the parame- sensitivities revealed by real-life probabilistic networks.

ter under study can be varied within the inter{@b, 1.0]
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