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Abstract

For predicting the presence of different bird species in Andalusia from land-
use data, we compare the performances of Bayesian-network classifiers and
logistic-regression models. In our study, both balanced and unbalanced data
sets are used, and models are learned from both the original continuous data
and from the data after discretization. For the latter purpose, four different
discretization methods, called Equal Frequency , Equal Width, Chi-Merge and
MDLP , are compared. The experimental results from our species data sets
suggest that the simple Naive Bayesian classifiers are preferable to logistic-
regression models and that the relatively unknown Chi-Merge method is the
preferred method for discretizing these environmental data.

Keywords: Species distribution models, Bayesian-network classifiers,
Logistic-regression models, Discretization methods

1. Introduction1

Bayesian networks (BNs for short) are powerful probabilistic models that2

have demonstrated their usefulness in a wide range of application fields3

among which is the environmental-science field (Baur and Bozdag, 2015;4

Jensen and Nielsen, 2007). In environmental science, Bayesian networks are5

used for knowledge discovery, where the focus is on establishing the relation-6

ships among the variables at hand and their evolution under various scenarios7
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(Dyer et al., 2014). Bayesian networks are further used for classification pur-8

poses (Maldonado et al., 2015; Park and Stenstrom, 2008), where the aim is9

to accurately predict the value of a specific target variable, called the class10

variable.11

Initially, Bayesian networks were designed to handle data pertaining to12

discrete variables only. Real-world data are often of a continuous or hybrid13

nature however, and new algorithms for learning and inference in Bayesian14

networks with both continuous and discrete variables are emerging (Langseth15

et al., 2012; Moral et al., 2001). Despite the increasing availability of such16

algorithms, most Bayesian-network packages to date require variables to be17

discrete. Upon practical application, therefore, any continuous variables need18

to be discretized.19

Discretization is widely applied in knowledge-discovery and machine-20

learning applications, with the aim of i) reducing and simplifying the avail-21

able data, ii) rendering model learning more efficient, and iii) obtaining more22

compact and more readily interpretable results (Liu et al., 2002). Over the23

years, several different discretization methods have been proposed, only a few24

of which are widely used while others are largely unnoticed (Garćıa et al.,25

2013; Yang et al., 2010; Liu et al., 2002). Since data discretization gener-26

ally results in information loss (Li, 2007; Uusitalo, 2007), the discretization27

method employed will affect the predictive quality of any model learned from28

the data. Where several papers address the question of which discretization29

method is most suited for data mining in general (Garćıa et al., 2013; Liu30

et al., 2002) or for Bayesian-network learning in particular (Lima et al., 2014;31

Zhou et al., 2014), the best choice of method tends to depend on the nature32

and characteristics of the data at hand.33

In environmental science, Bayesian networks are typically used in a decision-34

making process in which expert knowledge plays an important role (Voinov35

and Bousquet, 2010). In this context, the use of discrete data provides more36

easily interpretable results and facilitates the communication between mod-37

elers and environmental experts (Garćıa et al., 2013; Liu et al., 2002). Ac-38

cording to a recent review (Aguilera et al., 2011), in fact, more than 80%39

of the papers addressing Bayesian networks in environmental science involve40

discretized data, where the discretization is done using the so-called Equal41

Frequency method or is based on expert knowledge. While more tailored42

discretization methods have been designed for specific types of model, such43

as hydrological models (Pradhanang and Briggs, 2014), models of air qual-44

ity (Davison and Ramesh, 1996), and models of spatial distributions of the45
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data (Liu et al., 2015), discretization methods specifically designed for en-46

vironmental modeling through Bayesian networks do not abound. To bring47

the discretization methods in use with Bayesian networks in general to the48

attention of environmental modelers, further efforts as well as more tailored49

insights are called for (Nash et al., 2013).50

During the last decades, species distribution modeling has evolved in51

the field of environmental science, following the development of Geographic52

Information Systems (GIS) and spatial statistics techniques (Segurado and53

Araújo, 2004). In general, the objective of species distribution modeling is54

to link species data with environmental variables and to obtain maps show-55

ing the spatial distribution of the species under study (Elith et al., 2006).56

Some of the most commonly used models for this purpose are classification57

trees (Fukuda et al., 2013), regression models (Li and Wang, 2013), neural58

networks (Dedecker et al., 2004), and more tailored models like BIOCLIM59

(Busby, 1986) and FLORAMAP (Jones and Gladkov, 1999). In contrast,60

Bayesian networks are scarcely being applied in species distribution model-61

ing, although some examples are found, addressing classification with dis-62

cretized data (Newton et al., 2007) and using a model structure based on63

expert knowledge (Pollino et al., 2007).64

In this paper we compare various classification models for predicting the65

presence of different bird species in Andalusia from land-use data. More66

specifically, we study the performance of two types of Bayesian-network clas-67

sifier: the Naive Bayesian (NB) classifier and the Tree Augmented Naive68

Bayesian (TAN) classifier. These classifiers are learned from both the original69

continuous data and from discretized data. For discretization, four methods70

are compared: Equal Frequency (EF), Equal Width (EW), Chi-Merge (ChiM)71

and a method based on the Minimum Description Length Principle (MDLP);72

these methods are the most commonly used discretization methods (Garćıa73

et al., 2013; Liu et al., 2002). We further compare the performances of these74

classifiers when learned from well-balanced data sets and from less balanced75

data.76

The performance of a classification model depends to a large extent on77

the decision rule that is used to decide upon the class to which a case is78

assigned. In practice often maximum-probability classification is used, in79

which a case is assigned to the most likely class (Ropero et al., 2015; Aguil-80

era et al., 2013). In essence, however, any probability can be chosen for a81

decision threshold: a species then is classified as present if the predicted prob-82

ability of it being present exceeds this threshold, and as absent otherwise.83
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For less balanced data sets, in which the prior distribution over the class84

variable is quite skewed, maximum-probability classification may lead to un-85

desirable classification behaviour (van der Gaag et al., 2009a). In this paper86

we therefore study the performance of the various classifiers with maximum-87

probability classification and with threshold-probability classification using88

a decision threshold based on the prior species distribution (van der Gaag89

et al., 2009b).90

Since in species distribution modeling the use of logistic-regression models91

is quite common, from the various data sets also logistic-regression models92

are constructed and compared with the learned Bayesian-network classifiers93

in terms of their performance.94

2. Materials and Methods95

In this section we review the data sets available for our study and describe96

the various methods used for discretizing these data and for learning and97

validating classification models.98

2.1. Study area and data collection99

Andalusia, located in the South of Spain (Fig. 1), constitutes the na-100

tion’s second largest autonomous region, with a surface area of 87, 600 km2
101

representing 17.3% of the national territory1. Lying on the frontier between102

Europe and Africa, Andalusia inherits landscape and biodiversity specifics103

from both continents. Its terrain covers a wide range of altitudes, from the104

Baetic Depression to the mountainous ranges of the Sierra Morena and the105

Baetic System, with the highest peaks lying over 3000 meters above see level106

(m.a.s.l.) The landscape is quite heterogeneous, with huge differences from107

the densely populated and irrigated cropland areas of the river basin and108

coastlands, to the sparsely populated forested areas of the uplands. Its cli-109

mate is similarly heterogeneous, with stark differences between inland and110

coastal areas. The climate in the south-eastern coastal part is semiarid, with111

less than 200 mm of annual rainfall in several areas, while the middle and112

northern parts have a continental climate, with more than 4000 mm of rainfall113

per year. These natural conditions make Andalusia a heterogeneous region114

1Data from the Spanish Statistical Institute.
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Figure 1: Andalusia, located in the South of Spain (left), its relief and the UTM 10× 10
km grid used for the data collection (right); the smaller cells in the western area result
from the grid having been corrected to fit two geographical HUSOS.

both in terms of territorial structure and in climatic and ecological condi-115

tions. Provoking ecological niches with large biodiversity rates, Andalusia is116

considered a global biodiversity hotspot (Myers et al., 2000).117

The Spanish Inventory of Terrestrial Species2 by the Spanish National118

Government was used to select information about the prevalence of three119

bird species – Turdus viscivorus , Cecropis daurica and Accipiter nisus – for120

the UTM (Universal Transverse Mercator) 10 × 10 km grid of Andalusia121

(Fig. 1); the three species were selected for their different prevalence rates.122

Information about land use for the same grid was collected from the An-123

dalusian Environmental Information Network3 from the Andalusian Regional124

Government. ArcGIS 9.3 was used for selecting the data and merging them125

into the grid. As a consequence of the high heterogeneity of the region, a126

single cell of the grid of Andalusia can show several small patches of different127

types of land use, as illustrated in Fig. 2(a). A more detailed example, show-128

ing the distribution of Olive cropland coverage over the grid cells, is provided129

in Fig. 2(b). The figure shows that, for this land-use variable, the majority130

2http://www.magrama.gob.es/es/biodiversidad/temas/inventarios-
nacionales/inventario-especies-terrestres/

3http://www.juntadeandalucia.es/medioambiente/site/rediam
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Figure 2: Enlarged part of the 10 × 10 km grid showing different types of land use (a),
and the distribution of Olive cropland coverage over all grid cells.

of recorded percentages are within the range of 0% to 10% of the surface,131

while the remaining data values are scattered over the 10% to 100% interval.132

Similarly skewed distributions are found for all variables involved.133

The data used for our study is composed of three data sets, one for each134

bird species of interest. Each data set includes a single discrete class variable135

that represents whether the bird species at hand is present or absent in a136

specific grid cell. The remaining variables, listed in Table 1, are continuous137

feature variables which represent the percentage (between 0% and 100%) of138

a grid cell’s surface with a particular type of land use. The actual features139

were extracted from regional reports about the biology of each species, by140

selecting those pertaining to the species’ habitat. Each data set contains 989141

records, one per grid cell, and does not have any missing values, that is, for142

each grid cell, both the actual features and the associated class are recorded.143

2.2. Classification models144

Two types of Bayesian-network classifier are studied, each with discretized145

variables and with the original continuous variables respectively, and their146

performances are compared with those of a logistic-regression model.147

2.2.1. Bayesian-network classifiers148

A Bayesian network is a concise model of a joint probability distribution149

over a set of random variables (Jensen and Nielsen, 2007). It combines a150
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Table 1: Feature variables and prevalence (p) per species.

Turdus viscivorus Cecropis daurica Accipiter nisus
p = 0.47 p = 0.84 p = 0.27

1 Bare soil Agricultural areas Bare soil
2 Dams Bare soil Bare soil of scrub
3 Dense forest of conifers Cliff Dense forest of conifers
4 Dense forest of oaks Dehesas Dense forest of oaks
5 Dense scrubland Dense forest Dense grasslands
6 Dense scrubland of conifers Dense scrubland Dense scrubland
7 Dense scrubland of oaks Dense scrubland of trees Dense scrubland of oaks
8 Open scrubland Open scrubland Open grasslands
9 Grasslands of oaks Open scrubland of trees Open scrubland
10 Herbaceous crops Grasslands Open scrubland of oaks
11 Heterogeneous crops Grasslands of trees Grasslands of oaks
12 Irrigation pond Herbaceous crops Herbaceous crops
13 Olive crops Heterogeneous crops Heterogeneous crops
14 Other dense forests Man-made water surfaces Irrigated pool
15 Woody crops River bed Olive crops
16 Urban areas Other disperse scrubland

of trees
17 Woody crops Other dense forest
18 Other dense scrubland

of trees
19 River bed
20 Woody crops

directed acyclic graph, which describes the (in)dependencies between the151

variables, with local probability distributions per variable. From a Bayesian152

network, any probability of interest over its variables can be computed.153

When used for classification purposes, a Bayesian network includes a154

designated class variable C. Of interest then is the posterior probability dis-155

tribution Pr(C | f) over C given case observations f for the feature variables156

involved. To decide upon the class to which the observations f are to be157

assigned, two approaches are in use:158

• maximum-probability classification (also known as “the winner takes159

all”), in which the case observations f are assigned to the most probable160

class given f ;161

7



• probability-threshold classification, in which the observations f are as-162

signed to the class c if t1 > Pr(c | f) ≥ t2 for some suitable choice of163

decision thresholds t1 and t2.164

For a binary class variable with the classes c1 and c2, probability-threshold165

classification with a decision threshold t assigns case observations f to c1 if166

Pr(c1 | f) ≥ t

and to c2 otherwise; taking t = 0.5 would then result in the same class167

assignment as maximum-probability classification. The overall performance168

of a probabilistic classifier is optimized by choosing a decision threshold based169

on the prior distribution over the class variable (Lachiche and Flach, 2003).170

For classification purposes, tailored Bayesian networks with highly con-171

strained graphical structures are in use, among which are the Naive Bayesian172

(NB) classifier and the Tree Augmented Naive Bayesian (TAN) classifier173

(Friedman et al., 1997). The Naive Bayesian classifier is the most constrained174

of all Bayesian-network classifiers: its graph consists of a designated node for175

the class variable and nodes modeling the feature variables with just this176

class variable for their parent. This type of classifier derives its name from177

the fact that its graphical structure captures the naive assumption that all178

feature variables are mutually independent given the class variable. Although179

this assumption does not generally hold in practice, NB classifiers tend to180

show quite competitive performance. TAN classifiers allow for explicitly rep-181

resenting dependencies among the feature variables by a tree structure, and182

in essence may thereby outperform NB classifiers.183

Learning a Naive Bayesian classifier from a data set amounts to estimat-184

ing probabilities from the available data so as to quantify the relationships185

between the class variable and each of the feature variables. Learning a TAN186

classifier in addition involves learning the graphical structure from the data.187

For this purpose, first a directed tree over the feature variables is learned by188

building upon the conditional mutual information between pairs of feature189

variables given the class variable (Chow and Liu, 1968); subsequently, the190

class variable is added and all modeled relationships are quantified.191

2.2.2. Hybrid Bayesian networks192

Bayesian networks were initially defined for discrete variables only. Even193

to date, Bayesian-network software packages tend to assume all variables to194

be discrete. As a consequence, upon developing a real-world application, all195
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continuous domain variables have to be discretized by dividing their value196

ranges into a sequence of adjacent intervals. A probability distribution over197

the discretized variable then assigns to each such interval a single probability198

which can be viewed as approximating the continuous distribution over the199

interval by a constant function. In general, the use of more intervals upon200

discretization tends to result in a better approximation, albeit at the expense201

of a more complex model.202

More recently, approaches have been developed that allow Bayesian net-203

works to include both continuous and discrete variables (Langseth et al.,204

2012; Shenoy and West, 2011; Lauritzen and Jensen, 2001; Moral et al., 2001).205

In this paper we study Bayesian-network classifiers that employ Mixtures of206

Truncated Exponentials (MTEs) for their local probability distributions. Like207

discretization methods, MTE approaches divide the value range of a contin-208

uous variable into intervals. The continuous distribution per interval is then209

approximated by an exponential function rather than by a constant function210

(Rumı́, 2003). Similar to discretization, the use of more intervals tends to211

result in a better approximation, but will also yield a more complex model.212

By including more terms in the MTE per interval, the approximation also213

tends to improve, yet again at the cost of a more complex model (Rumı́ and214

Salmerón, 2007; Morales et al., 2006; Rumı́ et al., 2006).215

2.2.3. Logistic regression216

Logistic regression is a type of regression in which a binary response vari-217

able (the binary class variable, in terms of our classification context) is related218

to multiple explanatory variables (the feature variables) which may be dis-219

crete or continuous (Scott, 2010). Upon classification of case observations f220

for the explanatory variables, the response with highest posterior odds given221

f is determined and assigned to the case. Logistic-regression classification222

thereby in essence is similar to taking a maximum-probability approach to223

classification. In fact, logistic-regression classification is known to be equiv-224

alent to Naive-Bayesian classification under mild conditions (Roos et al.,225

2005).226

2.3. Data discretization227

In our study, four discretization methods are compared: Equal Frequency ,228

Equal Width, Chi-Merge and Minimum Description Length Principle dis-229

cretization. These four methods are the most commonly studied discretiza-230

tion methods in the literature (Garćıa et al., 2013; Liu et al., 2002). In231
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environmental modeling with Bayesian networks, the Equal Frequency and232

Equal Width methods prevail (Aguilera et al., 2011). The Chi-Merge method233

has, to the best of our knowledge, never been used in such applications, while234

use of the Minimum Description Length Principle has been reported in just235

a single environmental-modeling study (Fernandes et al., 2013).236

2.3.1. Discretization methods237

Application of a discretization method to a data set starts by sorting the238

available data points in increasing order of their value for the continuous239

variable to be discretized. The data points are then distributed over k > 1240

bins, each of which is associated with an interval from the variable’s overall241

value range. Discretization methods differ in whether or not the number of242

intervals k is chosen beforehand and in how the boundaries, or cut points,243

for the intervals are determined.244

Equal Frequency (EF) and Equal Width (EW) discretisation. The Equal Fre-245

quency and Equal Width methods are probably the simplest discretization246

methods in use (Liu et al., 2002). With the Equal Frequency method, each247

constructed interval includes essentially the same number of data points.248

With the Equal Width method, all constructed intervals have equal length;249

these intervals may thus have varying numbers of data points. With both250

Equal Frequency and Equal Width, the parameter k dictating the number of251

intervals used for the discretization, is chosen beforehand. Upon discretizing252

the continuous variables underlying a data set, in essence different k’s may253

be chosen per variable. In most applications, however, a single k is used for254

all variables concerned. In environmental sciences, the number of intervals is255

often chosen based upon expert knowledge (Chen and Pollino, 2012); without256

such knowledge, an appropriate number may be found by experimentation.257

Alternatively, the number of intervals k may be decided upon by the Propor-258

tional k-interval Discretization (PKID) guideline (Yang and Webb, 2009),259

which takes k =
√
N where N is the number of data points available.260

The Equal Frequency and Equal Width methods are the most commonly261

used methods for discretizing continuous variables in environmental modeling262

with Bayesian networks (Aguilera et al., 2011). Chen and Pollino (2012)263

argue however, that the Equal Width method is less suited for data sets that264

have a markedly uneven distribution or include prominent outliers, and that265

the Equal Frequency method is less appropriate for data sets in which specific266

values are overrepresented.267
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Chi-Merge (ChiM) discretization. Chi-Merge is a supervised discretization268

method which takes the classes associated with the available data points into269

account (Kerber, 1992). The method starts by constructing a sequence of270

intervals such that each interval includes a single data point. The χ2-statistic271

is then used to decide whether two adjacent intervals be merged. For this272

purpose, for each pair of adjacent intervals, the χ2-value is calculated from:273

χ2 =
2∑
i=1

m∑
j=1

(Aij − Eij)2

Eij
(1)

where m is the number of distinct classes, Aij is the number of data points274

in interval i that are of class j, and Eij is the expected number of data points275

of class j in interval i under the assumption that the class frequencies per276

interval are the same; this expected number Eij is established from:277

Eij =

(
∑
j

Aij) · (
∑
i

Aij)∑
i

∑
j

Aij
(2)

In each iteration of the Chi-Merge method, the pair of adjacent intervals278

with the smallest χ2-value are merged, provided that this value falls below279

the confidence threshold χ2
df,α read from the χ2-distribution table, where df is280

the number of degrees of freedom m− 1 and α is a user-specified significance281

level (preferably between 0.9 and 0.99). The iterative procedure halts when282

all χ2-values are above the confidence threshold.283

Since the Chi-Merge method serves to discretize each continuous vari-284

able in a data set independently, the number of intervals constructed per285

variable may differ. In order to avoid large numbers of intervals in practice,286

a maximum number of intervals can be pre-set for application of the Chi-287

Merge method. The iterative procedure described above is then halted as288

this number of intervals is reached.289

Minimum Description Length Principle (MDLP) discretization. Similar to290

Chi-Merge, the MDLP method, first introduced by Fayyad and Irani (1993,291

1996), is a supervised discretization method which takes the classes asso-292

ciated with the data points into account. Starting with a single interval293

composed of all data points sorted in increasing order of their value for the294
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variable to be discretized, MDLP constructs, by an iterative procedure, a se-295

quence of intervals over the variable’s overall value range. Within an interval296

S, potential cut points ti are defined between each pair of data values; such a297

cut point would in essence partition the interval S into the two adjacent in-298

tervals Si1 and Si2. For each potential cut point ti in S, the Class Information299

Entropy (CIE) of the partition induced by ti is then computed, from:300

CIE (S, ti) =
N(Si1)

N(S)
· E(Si1) +

N(Si2)

N(S)
· E(Si2) (3)

where Si1, S
i
2 are the two (sub)intervals that would be induced by the cut301

point ti, N(·) denotes the number of data points in the indicated interval, and302

E(·) is the entropy of the class distribution estimated from the data points303

in the indicated interval. This entropy E(S ′) for an interval S ′ is calculated304

as:305

E(S ′) = −
∑
cj

PS′(cj) · log2 PS′(cj) (4)

where cj is a class and PS′(cj) is the estimated probability of occurrence306

of cj in the interval S ′. The potential cut point ti with the smallest Class307

Information Entropy now is accepted as an actual cut point, provided that308

doing so yields an information gain E(S)−CIE (S, ti) satisfying the following309

criterion:310

E(S)− CIE (S, ti) >
1

N(S)
·
(

log2(N(S)− 1) +4(S, ti)
)

(5)

where 4(S, ti) equals311

4(S, ti) = log2(3
m − 2)− [m · E(S)−m1 · E(Si1)−m2 · E(Si2)] (6)

with m,mj, j = 1, 2, being the number of distinct classes in the intervals312

S, Sij, respectively. This procedure is repeated iteratively, with the two inter-313

vals Si1 and Si2 substituted for the interval S for each accepted cut point ti, as314

long as there is at least one potential cut point that satisfies the information-315

gain criterion above. After the procedure has halted, the accepted cut points316

serve to define the intervals from the overall value range of the variable being317

discretized.318

MDLP discretization is one of the more commonly used discretization319

methods in general (Garćıa et al., 2013). Experiments by Liu et al. (2002)320
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suggest that MDLP in fact is one of the best performing discretization meth-321

ods in practice. Despite its reported good performance, however, MDLP has322

hardly been used in environmental modeling with Bayesian networks (Fer-323

nandes et al., 2013).324

2.3.2. The discretized data sets for the study325

The continuous variables of the species data sets described in Section 2.1,326

were discretized by the four methods reviewed above, as available from the327

Discretization Package4 of the R statistical computing software. With each328

of the Equal Frequency and Equal Width methods, four different discretiza-329

tions were constructed for the variables under study, with 3, 5, 10 and 32330

intervals, respectively, where the PKID criterium gave rise to the number of331

intervals k =
√
N =

√
989 = 32. For application of the Chi-Merge method,332

a significance level of 0.99 was used as suggested in the literature; no limit333

was set on the number of intervals.334

Discretization resulted in 10 data sets per species: four data sets resulted335

from using the Equal Frequency method with 3, 5, 10 and 32 intervals, re-336

spectively, and four resulted from using the Equal Width method with the337

same numbers of intervals; one data set resulted from application of the338

Chi-Merge method, and one set of discretized data was constructed using339

MDLP . As per species moreover, the original continuous data were used in340

the investigations, our study involved a total of 33 data sets.341

2.4. Model learning and validation342

From each of the 30 discretized data sets, discrete Naive Bayesian and343

TAN classifiers were learned. From the three continuous data sets, we con-344

structed NB and TAN classifiers with mixtures of truncated exponentials345

for the local probability distributions; the number of exponentials was set346

to three based on preliminary experimentation. All classifiers were learned347

using the Elvira software5 (Elvira-Consortium, 2002). In addition, 33 logistic-348

regression models were constructed using the R statistical software package.349

To arrive at reliable estimates of the predictive performance per model,350

a ten-fold cross validation procedure was used. To this end, each data set351

D was partitioned into ten equally-sized disjoint subsets, or folds, Di, i =352

1, . . . , 10. Then, for each fold, the following procedure was run:353

4https://cran.r-project.org/web/packages/discretization/index.html
5Elvira is a public-domain Java-based software package: http://leo.ugr.es/elvira
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• set the current fold Di aside for testing;354

• learn the appropriate type of classification model from the set D−i =355 ⋃
j=1,...,10,j 6=iDj composed of the data from the other nine folds;356

• estimate the performance of the thus learned model by classifying the357

data points from Di.358

The predictive performance of the classifier learned from the entire data set359

D now is estimated as the performance result averaged over the ten runs.360

As measures of performance for the learned classification models, the361

well-known sensitivity and specificity characteristics are used. Estimates for362

these characteristics are calculated from:363

sensitivity =
TP

TP + FN
(7)

364

specificity =
TN

FP + TN
(8)

where TP is the number of true positives, that is, the number of data points365

in the test set in which the species is known to be present and which are366

assigned to the present class by the learned classifier, and TN is the num-367

ber of true negatives, that is, the number of data points in the test set in368

which the species is absent and which are assigned to the absent class by the369

classifier; FP is the number of false positives, that is, the number of data370

points in the test set which are classified as present, yet are known to be371

absent, and FN is the number of false negatives, that is, the number of data372

points which are classified as absent and are known to be present. The thus373

obtained sensitivity and specificity estimates are combined into an averaged374

performance estimate through375

averaged performance = 1
2

(sensitivity + specificity) (9)

Since the sensitivity and specificity estimates found for a classifier are376

dependent of the decision threshold used for classification, all Bayesian-377

network classifiers were validated using maximum-probability classification to378

allow a fair comparison with their matching logistic-regression models. The379

Bayesian-network classifiers were also validated using probability-threshold380

classification with the prevalences of the various bird species as the decision381

thresholds. All in all, with each of the 33 data sets, five classification models382
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Table 2: Minimum, maximum and mean number of intervals constructed by the Chi-Merge
and MDLP discretization methods, per species data set.

Cecropis daurica Turdus viscivorus Accipiter nisus

Chi-Merge
Mean 52.9 12 18.7

Minimum 14 6 9
Maximum 91 25 29

MDLP
Mean 1.5 2.4 1.8

Minimum 1 1 1
Maximum 2 4 3

were learned and validated: an NB, a TAN and a logistic-regression model383

were constructed and evaluated using maximum-probability classification,384

and an NB and a TAN were learned and validated using probability-threshold385

classification.386

3. Results387

The experimental results from using the different discretization methods388

on the various data sets are summarized by the granularity of the resulting389

discretizations and by the performance of the learned classification models.390

3.1. Granularity of discretization391

For use of the Equal Frequency and Equal Width discretization methods,392

the numbers of intervals to be constructed for a continuous variable were393

chosen beforehand, as 3, 5, 10 and 32, respectively; for each variable, the same394

number of intervals was used. With the Chi-Merge and MDLP methods, the395

numbers of intervals to be constructed were not pre-set but rather established396

by the methods themselves, for each variable separately. Table 2 reports,397

for each species data set, the numbers of intervals constructed by the Chi-398

Merge and MDLP methods, respectively; the means reported in the table399

were calculated by averaging over the discretizations of all variables in the400

data set at hand. The table shows that, for our data sets, the MDLP method401

resulted in quite coarse discretizations, with just a limited number of intervals402

per variable. The Chi-Merge method, on the other hand, resulted in more403

fine-grained discretizations, with over 50 intervals for some of the variables404

involved.405
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3.2. Maximum-probability classification406

From each of the species data sets, Bayesian-network classifiers and logistic-407

regression models were learned as described in Section 2.4. The performances408

of the learned models using maximum-probability classification are visualized409

in Figure 3, which shows the sensitivity and specificity estimates found; Ta-410

ble 3 summarizes these estimates in the models’ averaged performances.411

For the data set pertaining to Turdus viscivorus, all logistic-regression412

models showed quite similar performance, regardless of whether continuous413

or discretized data were used and, in the latter case, regardless of the dis-414

cretization method employed (Fig. 3(c)). The Bayesian-network classifiers415

(Figs. 3(a) and 3(b)) showed more divergence in their performance character-416

istics. From among the discretization methods used, the Chi-Merge method417

resulted in the best balance of the specificity and sensitivity characteristics418

estimated for the classifiers, with an averaged performance of 0.82. Figs. 3(a)419

and 3(b) further show that the continuous Bayesian-network classifiers had420

a worse sensitivity than the classifiers learned from discretized data.421

While the data set pertaining to Turdus viscivorus is well balanced with422

respect to the two classes, the other two data sets are less balanced, with a423

prevalence of 84% for the Cecropis daurica and a prevalence of 27% for the424

Accipiter nisus, respectively. For these less balanced data sets, all constructed425

models were found to excel at predicting the most probable class. More426

specifically, for the Cecropis daurica all classifiers attained a high sensitivity427

(Figs. 3(d), 3(e) and 3(f)), while for the Accipiter nisus the classifiers attained428

a high specificity (Figs. 3(g), 3(h) and 3(i)).429

For the data set pertaining to Cecropis daurica, all Bayesian-network430

classifiers showed quite similar performance, yet with a notable single excep-431

tion. The Naive Bayesian classifier learned from the data after discretization432

with the Chi-Merge method, showed very good performance in terms of both433

sensitivity and specificity ; this classifier in fact resulted in an averaged perfor-434

mance of 0.93 (Table 3). Also for the Accipiter nisus data set discretized with435

the Chi-Merge method, did the NB classifier show the best balance of the436

sensitivity and specificity estimates attained, with an averaged performance437

of 0.84. While the TAN classifier never reached a sensitivity higher than 0.6438

for the Accipiter nisus data set, the NB classifier gave sensitivity estimates439

higher than 0.7 after discretizing the data with the Equal Frequency method440

with 3, 5 and 10 intervals, with MDLP and with the Chi-Merge method.441

The performance characteristics of the logistic-regression models learned442

from the Cecropis daurica and Accipiter nisus data sets (Figs. 3(f) and 3(i))443
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(a) Turdus viscivorus NB
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(b) Turdus viscivorus TAN
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(c) Turdus viscivorus LR
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(d) Cecropis daurica NB
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(e) Cecropis daurica TAN
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(f) Cecropis daurica LR
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(g) Accipiter nisus NB
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(h) Accipiter nisus TAN

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Specificity

S
e
n
s
it
iv

it
y

Continuous
EF3
EF5
EF10
EF_PKID
EW3
EW5
EW10
EW_PKID
ChiM
MDLP

(i) Accipiter nisus LR

Figure 3: Sensitivity and specificity estimates for the NB, TAN and logistic-regression
(LR) models with maximum-probability classification, per species data set.
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Table 3: Averaged performance estimates of the classification models with maximum-
probability classification, per species data set.

Turdus viscivorus Cecropis daurica Accipiter nisus
NB TAN LR NB TAN LR NB TAN LR

Continuous 0.68 0.69 0.72 0.53 0.54 0.57 0.60 0.54 0.59
EF3 0.75 0.75 0.71 0.64 0.67 0.60 0.68 0.69 0.68
EF5 0.75 0.74 0.73 0.66 0.64 0.63 0.71 0.67 0.63
EF10 0.75 0.75 0.69 0.66 0.63 0.62 0.70 0.63 0.65

EF PKID 0.75 0.68 0.69 0.64 0.59 0.62 0.68 0.59 0.66
EW3 0.70 0.71 0.65 0.57 0.56 0.57 0.58 0.59 0.57
EW5 0.70 0.73 0.65 0.56 0.57 0.53 0.61 0.62 0.58
EW10 0.70 0.70 0.71 0.58 0.52 0.57 0.65 0.61 0.61

EW PKID 0.74 0.74 0.72 0.59 0.54 0.55 0.66 0.55 0.62
ChiM 0.82 0.82 0.72 0.93 0.61 0.63 0.84 0.76 0.59
MDLP 0.75 0.78 0.75 0.68 0.60 0.63 0.71 0.70 0.66

again were hardly affected by the discretization method used. For these444

two data sets, the averaged performance estimates found with the logistic-445

regression models were in the 0.53 – 0.68 range (Table 3). While for all446

models very good performance at predicting the most probable class was447

seen, the best specificity achieved by these models for Cecropis daurica was448

smaller than 0.3; similarly, the best sensitivity achieved for Accipiter nisus449

by the logistic-regression models was below 0.45.450

3.3. Probability-threshold classification451

The performances of the Bayesian-network classifiers learned from each of452

the species data sets are once more investigated, this time using probability-453

threshold classification. The detailed results are visualized in Fig. 4, in terms454

of the sensitivity and specificity estimates found; Table 4 summarizes these455

estimates in the models’ averaged performances.456

For the data set pertaining to Turdus viscivorus, the learned Bayesian-457

network classifiers were found to exhibit similar performance with probability-458

threshold classification as with maximum-probability classification (Figs. 4(a)459

and 4(b)). Since the Turdus viscivorus data set includes a binary class460

variable, maximum-probability classification was equivalent to probability-461

threshold classification with a decision threshold equal to 0.5. Based on462

the prevalence for Turdus viscivorus, probability-threshold classification was463

performed with a threshold of 0.47. Given the small difference in decision464
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(a) Turdus viscivorus NB

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Specificity

S
e
n
s
it
iv

it
y

Continuous
EF3
EF5
EF10
EF_PKID
EW3
EW5
EW10
EW_PKID
ChiM
MDLP

(b) Turdus viscivorus TAN
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(c) Cecropis daurica NB
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(d) Cecropis daurica TAN
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(e) Accipiter nisus NB
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(f) Accipiter nisus TAN

Figure 4: Sensitivity and specificity estimates for the NB and TAN classifiers with
probability-threshold classification, per species data set.

19



Table 4: Averaged performance estimates of the classifiers using probability-threshold
classification, per species data set.

Turdus viscivorus Cecropis daurica Accipiter nisus
NB TAN NB TAN NB TAN

Continuous 0.68 0.69 0.61 0.61 0.60 0.54
EF3 0.75 0.75 0.72 0.72 0.68 0.69
EF5 0.75 0.74 0.73 0.69 0.71 0.67
EF10 0.75 0.75 0.73 0.69 0.70 0.63

EF PKID 0.75 0.68 0.65 0.61 0.68 0.59
EW3 0.70 0.71 0.63 0.62 0.58 0.59
EW5 0.70 0.73 0.63 0.63 0.61 0.62
EW10 0.70 0.70 0.64 0.61 0.65 0.61

EW PKID 0.74 0.74 0.65 0.59 0.66 0.55
ChiM 0.82 0.82 0.96 0.70 0.84 0.76
MDLP 0.75 0.78 0.74 0.75 0.71 0.70

threshold used, similar performance of the Bayesian-network classifiers under465

the two types of classification was not unexpected.466

Also for the data set pertaining to Accipiter nisus were the performances467

of the Bayesian-network classifiers with probability-threshold classification468

comparable to those found with maximum-probability classification (Figs. 4(e)469

and 4(f)). With this data set, however, the decision threshold for classifi-470

cation was set to the prevalence of 0.27 of the bird species, which differed471

substantially from the 0.5 threshold used with maximum-probability classi-472

fication.473

When validated on the data set pertaining to Cecropis daurica, the Bayesian-474

network classifiers showed a different performance with probability-threshold475

classification (Figs. 4(c) and 4(d)) than with maximum-probability classifica-476

tion. In fact, use of the species’ prevalence of 0.84 for the decision threshold477

for classification resulted in a better balance of the sensitivity and speci-478

ficity characteristics estimated for the classifiers (Table 4) than use of the 0.5479

threshold with maximum-probability classification. For the Naive Bayesian480

classifiers specifically, the good performances in terms of sensitivity were481

matched by a specificity between 0.7 and 0.8 after discretizing the data with482

MDLP and with the Equal Frequency method with three intervals; the corre-483

sponding specificity estimates found with maximum-probability classification484

were below 0.4. For the NB classifier moreover, discretization of the data with485

the Chi-Merge method gave the best averaged performance estimate, equal486
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to 0.96. For the TAN classifier, discretization with the MDLP method gave487

the best overall result.488

From the detailed sensitivity and specificity estimates plotted for the var-489

ious Bayesian-network classifiers in Figs. 3 and 4, a general pattern emerges.490

Both with maximum-probability classification and with probability-threshold491

classification, discretization of the data with the Equal Width method tends492

to result in classifiers with a good performance at predicting the most prob-493

able class, that is, the C. daurica being present and the A. nisus being494

absent. With both types of classification, moreover, discretization with the495

Equal Frequency method tends to result in a better balance of the sensitivity496

and specificity characteristics of the learned Bayesian-network classifiers.497

4. Discussion498

Based on the experimental results described in Section 3, we discuss some499

implications for use of the various discretization methods and classification500

models in species distribution modeling.501

Logistic-regression models. Regression methods are widely used in environ-502

mental modeling in general (Schmitz et al., 2005) and for species distribution503

modeling in particular (Li and Wang, 2013). For well-balanced data sets, in504

which a species is (more or less) equally likely to be present as it is to be505

absent, our experimental results suggest that logistic-regression models can506

attain relatively high sensitivity and specificity characteristics. The overall507

performance of these models moreover, appears not to be affected by dis-508

cretization of the data nor by the method used if the data were discretized.509

For less balanced data sets, however, logistic-regression models tend to fail510

at predicting the least probable class.511

From an environmental point of view, a species distribution model should512

accurately predict the presence of a specific species in a territory, that is, it513

should show a high sensitivity. For abundant species, such as Cecropis dau-514

rica in our study, logistic-regression models can indeed attain a high sensi-515

tivity and thereby show satisfactory performance. In real-world applications516

however, attention will mostly focus on endangered or rare species, such517

as Accipiter nisus. Our experimental results suggest that, for such species,518

logistic-regression models may not be able to achieve a satisfactory perfor-519

mance. For such species, therefore, using logistic regression may not be the520

best possible choice.521
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Bayesian-network classifiers and the effect of decision thresholds. One of the522

advantages of Bayesian-network classifiers over other types of classifier is that523

the classification decision is separated from the prediction process (Uusitalo,524

2007). The Bayesian networks underlying these classifiers in essence return525

a posterior probability distribution over the class variable given the case ob-526

servations, based upon which a classification decision is taken. As discussed527

in the previous sections, cases can then be assigned to the most probable528

class or to a class decided upon through a probability threshold.529

Naive Bayesian and TAN classifiers are known to show a tendency to pro-530

duce rather skewed posterior distributions for their class variable (Bennett,531

2000). As a consequence, choosing non-extreme thresholds with probability-532

threshold classification may not dramatically change performance compared533

to maximum-probability classification. For the Turdus viscivorus and Ac-534

cipiter nisus data sets in our study, in fact, classification with the decision535

thresholds of 0.47 and 0.27, respectively, did not result in a performance536

different from using the 0.5 threshold of maximum-probability classification.537

For the former species, this experimental finding was not unexpected given538

the small difference between the thresholds of 0.47 and 0.5. For the latter539

species, the difference between the two thresholds involved was more substan-540

tial. The finding of similar performance with the two types of classification541

now indicates that, for none or just a few cases, the established posterior542

probability of the species being present was in the 0.27 − 0.5 range, which543

would indeed be explained by the tendency of the Bayesian-network classi-544

fiers to produce rather skewed distributions over their class variable. While545

for Turdus viscivorus and Accipiter nisus using the species’ prevalence for the546

decision threshold did not have any impact on classification performance, for547

the Cecropis daurica species the performance of the Bayesian-network clas-548

sifiers did improve with probability-threshold classification using the more549

extreme decision threshold probability of 0.84.550

The above insights from our experimental results suggest that using pro-551

bability-threshold classification can be beneficial with Bayesian-network clas-552

sifiers developed for species with quite small prevalences.553

Continuous Bayesian-network classifiers. Direct use of available continuous554

data is often recommended for Bayesian-network learning, to avoid loss of555

information due to discretization (Uusitalo, 2007). The current generation of556

Bayesian networks can cope with continuous probability distributions only557

to some extent, however: local distributions for the continuous variables are558
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required to be Gaussian (Lauritzen and Wermuth, 1989) or are approximated559

by polynomial or exponential functions, such as the MTEs used in our study.560

In our experimental study, the Bayesian-network classifiers with MTEs561

for their local distributions showed good performance at predicting the most562

probable class. Since typically a large number of data points is required to563

allow satisfactory approximation of the continuous distributions at hand, this564

good performance may be attributed, to at least some extent, to the availabil-565

ity of many data points from the predominant class. For endangered or rare566

species, where the class of interest is the less probable one, our experimental567

results suggest that Bayesian-network classifiers with MTEs may result in568

relatively poor sensitivity and hence show unsatisfactory performance. For569

such species, direct use of available continuous data may not be the best570

choice for finding Bayesian-network classifiers of good performance.571

Unsupervised discretization. The unsupervised Equal Width and Equal Fre-572

quency discretization methods are widely used in environmental modeling573

through Bayesian networks (Aguilera et al., 2011). Chen and Pollino (2012)574

already argued that both methods are suitable for discretizing variables with575

a more or less even distribution over their values. They further argued that576

use of the Equal Width method is less appropriate for data sets that have577

a markedly uneven distribution or include prominent outliers, and that the578

Equal Frequency method is less suited for data sets in which specific values579

are overrepresented. The land-use variables in our study typically do not580

have even distributions, as was illustrated for the Olive cropland variable in581

Fig. 2(b).582

The Equal Frequency method partitions the overall value range of a con-583

tinuous variable into k intervals such that each interval includes an essentially584

equal number of data points. Yet, data points with the same value for the585

continuous variable to be discretized are never placed in different intervals.586

Since the feature variables in our study capture types of land use that are587

present in relatively few grid cells, for any such variable a large number of588

data points include the value 0. These data points are all included in the589

first interval therefore, and the remaining data points are equally distributed590

over the remaining k − 1 intervals.591

Our experimental results indicate that, with Equal Frequency discretiza-592

tion, all constructed Bayesian-network classifiers show good performance at593

predicting the most probable class; this good performance is generally bal-594

anced by a reasonable performance for the less probable class. The results595
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further show that using just three intervals for the discretization tends to596

result in the best balance of the sensitivity and specificity characteristics for597

all Bayesian-network classifiers learned. Since for most land-use variables a598

large number of data points include the value 0, the majority of the intervals599

constructed with the Equal Frequency method will include just a few data600

points. In fact, the more intervals are used, the fewer data points are ex-601

pected per interval and the less informative the intervals tend to become for602

classification purposes. Using a small number of intervals therefore appears603

to be the best option upon Equal Frequency discretization of data sets in604

which specific values are overrepresented.605

The Equal Width discretization method partitions the overall value range606

of a continuous variable into k intervals such that all intervals are of equal607

length. Just like the Equal Frequency method, it includes all data points with608

the value 0 for the variable to be discretized in the first interval. Since for609

most land-use variables a large number of data points include this value and610

the method further aims at constructing intervals of equal length, actually611

the majority of data points will be included in this first interval and very612

few points remain for the subsequent intervals, which causes these intervals613

to be rather uninformative.614

Our experimental results now indicate that, with Equal Width discretiza-615

tion, all constructed Bayesian-network classifiers show good performance at616

predicting the most probable class, just as with Equal Frequency discretiza-617

tion. With Equal Width discretization however, this good performance is618

balanced by a relatively poor performance for the less probable class, as a619

consequence of the constructed highly dominant first interval. While, with620

Equal Frequency discretization, using three intervals resulted in the best bal-621

ance of the sensitivity and specificity characteristics for all Bayesian-network622

classifiers learned, the experimental results obtained with Equal Width dis-623

cretization suggest that using a small number of intervals may not always624

give a well-balanced performance. For the Accipiter nisus data set, with the625

low prevalence of its species, in fact, using three intervals for the discretiza-626

tion resulted in a very high specificity while more intervals were required to627

attain a reasonable sensitivity.628

Supervised discretization. The supervised Chi-Merge and MDLP methods629

take the classes associated with the available data points into account upon630

discretizing the continuous variables involved. The two methods differ in631

their starting points for the iterative procedure and in their criteria for merg-632
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(c) ChiM (0-10% and 0 - 5% of surface)

Figure 5: Distribution of the Olive croplands variable, discretized by the MDLP method
(a) and by the Chi-Merge method (b), with a detailed view of the latter discretization for
0-10% and 0-5%, respectively, of the surface (c).
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ing and splitting intervals. The Chi-Merge method starts with a separate633

interval per data point and iteratively merges two adjacent intervals if the634

class distributions in these intervals are more or less similar. The MDLP635

method on the other hand, starts with a single interval including all data636

points and iteratively splits an interval if the class distributions in the re-637

sulting subintervals are more skewed than the distribution in the original638

interval.639

As argued above, the continuous land-use variables in our study have640

highly skewed distributions, as a result of the heterogeneous conditions of641

Andalusia. From among the two supervised discretization methods reviewed642

in our study, the Chi-Merge method seems better able to capture the charac-643

teristics of the data than the MDLP method. As an example, Fig. 5 depicts644

the available data points in terms of their Olive croplands coverage, for the645

cells of the UTM grid. The full range of the percentage of surface covered,646

is partitioned into intervals by the two discretization methods. The dis-647

cretization constructed by the MDLP method is shown in Fig. 5(a) and the648

discretization found by Chi-Merge is shown in Fig. 5(b); the various parti-649

tions are indicated in color. Fig. 5(a) reveals that, with the MDLP method,650

just two intervals were constructed for the entire range of the percentage of651

covered surface. With the Chi-Merge method, multiple intervals were cre-652

ated: four intervals were constructed for the lower percentages of surface653

coverage (Fig. 5(c)) and four more intervals resulted for the remainder of the654

percentage range. The difference between the resulting discretizations may,655

to some extent, be due to the stopping criteria employed by the two meth-656

ods. Yet also the tendency of the MDLP method to construct intervals with657

class distributions of low entropy may cause this method to be less sensi-658

tive to small shifts in already quite skewed distributions than the Chi-Merge659

method is.660

For all species data sets discretized with the Chi-Merge method, the Naive661

Bayesian classifiers attained high sensitivity and specificity characteristics,662

with averaged performances between 0.82 and 0.96. A similar trend was663

seen for the TAN classifiers constructed from the Turdus viscivorus data set664

discretized with Chi-Merge. For the less balanced data sets discretized with665

the Chi-Merge method, the TAN classifiers excelled at predicting the most666

probable class. For the least probable class, however, TAN classifiers with a667

better performance resulted from discretizing the data with less sophisticated668

methods. For the Cecropis daurica data set in fact, using the Chi-Merge669

method for discretization resulted in TANs with averaged performances of670
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0.61 and 0.70, while the best performing TANs had averaged performances671

of 0.67 and 0.72, respectively. The lesser performance found from using the672

Chi-Merge method with the Cecropis daurica data set may be attributed to673

the relatively large number of intervals constructed for the various feature674

variables: some of these intervals are likely to include only very few data675

points and, as a consequence, the strengths estimated for the dependencies676

involved in the TANs will most likely be unreliable.677

For the species data sets discretized with the MDLP method, the per-678

formance trends of all Bayesian-network classifiers were more or less similar679

to those found for the sets discretized with the Chi-Merge method, although680

less prominent. Overall, the averaged performances of the various classifiers681

were found to lie below those of the corresponding classifiers learned from682

the Chi-Merge discretized data.683

5. Conclusions and future research684

In our experimental study, we compared the performances of different685

types of classification model and different discretization methods in view of686

species distribution modeling. In the study, we focused on prediction of the687

presence of various bird species in Andalusia from land-use data, and con-688

sidered to this end three species with different prevalence rates. The experi-689

mental results obtained suggest that Bayesian-network classifiers, and among690

these especially the Naive Bayesian classifiers, may be preferable to logistic-691

regression models for the environmental-science context at hand. Our results692

further indicate that the Chi-Merge method may be the preferred method693

for discretizing the continuous variables involved, since with this method the694

best averaged performance results in terms of both sensitivity and specificity695

were found. As it is a supervised method, it is computationally more in-696

volved than the better known Equal Frequency and Equal Width methods697

for discretization. Implementations of the Chi-Merge method are available698

in software packages such as R for ready use in practice.699

While most applications of Bayesian networks require discretization of the700

continuous variables underlying available data, only a restricted set of meth-701

ods are used in practice. For species distribution modeling through Bayesian702

networks more specifically, further research efforts are required to gain insight703

in the foundational properties of the various discretization methods proposed704

in the literature and to establish their practical properties upon application705

to different types of environmental data. While the conclusions obtained from706
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our experimental study are likely to hold for data sets with similar charac-707

teristics as our land-use data, the results cannot be directly extrapolated708

to other environmental data, such water quality, air pollution and climatic709

data, without further study. Morover, since expert knowledge is often taken710

as a primary source of information in environmental science (Henriksen et al.,711

2007), and is in fact used for choosing cut points for discretization, the quality712

of expert-based discretizations should be compared with the discretizations713

found with automated methods.714

From a wider future perspective, it is worthwhile to study the strengths715

and weaknesses of using Bayesian networks for species distribution modeling716

compared to using the more common domain-specific models proposed in the717

literature, such as BIOCLIM and FLORAMAP.718
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