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An AI model: the Bayesian network (BN)
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P (b | mc) = 0.20 P (mc) = 0.20
P (b | ¬mc) = 0.05

P (c | b ∧ isc) = 0.80
P (sh | b) = 0.80 P (c | ¬b ∧ isc) = 0.80
P (sh | ¬b) = 0.60 P (c | b ∧ ¬isc) = 0.80

P (c | ¬b ∧ ¬isc) = 0.02
P (ct | b) = 0.95
P (ct | ¬b) = 0.10 P (isc | mc) = 0.80

P (isc | ¬mc) = 0.20

P (V1, . . . , Vn) =
n∏

i=1

P (Vi | paG(Vi))

Typical outputs:
• the probability of some hypothesis given evidence (P (c | sh))
• the most likely hypothesis given evidence



Explaining Bayesian networks

• 1992: Explanation in Bayesian belief networks (Stanford PhD
thesis by H.J. Suermondt)

• 2001: A Review of Explanation Methods for Bayesian
Networks (KER paper by C. Lacave and F.J. Dı́ez)

2021: A taxonomy of explainable Bayesian networks (I.P. Derks, A. de Waal)

2022: Extending MAP-independence for Bayesian network explainability (E. Valero-Leal, P. Larrañaga, C. Bielza)



Explanation of the model
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Beware of the DAG! (Directed Acyclic Graph)

• DAG suggests causal interpretation;
• DAGs in the same equivalence class represent the same

probabilistic independences

=⇒ BNs with different graphs and different ’causal’
interpretation can represent the exact same distribution!



Explanation of the model: priors

BN: The Native Fish Bayesian networks (A. Nicholson, O. Woodberry, Ch. Twardy, Bayesian Intelligence Tech.Rep. 2010)



Explanation of reasoning

Img: Explanation of Bayesian Networks and Influence Diagrams in Elvira (C. Lacave, M. Luque, F.J. Dı́ez, IEEE Trans., 2007)



Explanation with scenarios (in natural language)

Scenarios H,E (in)compatible
with most likely h∗:

Scenario h∗ most likely, with
evidence for and against it:

1991: Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning (M. Henrion, M.J.
Druzdzel, UAI)
2016: When stories and numbers meet in court (C.S. Vlek, PhD Thesis, RUG)



Explanations: a social science perspective

It is important to realise that [Miller, 2019]:
1 explanations are contrastive: “why P instead of Q?”
2 explanations are selected (in a biased manner): people

include just one or two relevant causes as explanation; this
selection is influenced by cognitive biases.

3 explanations do not refer to probabilities or statistical
relationships; the most likely explanation is not always the
best explanation.

4 explanations are social: presented as part of a conversation
or interaction.

Miller, T. (2019) Explanation in Artificial Intelligence: Insights from the social sciences



Explanation: robustness of classification

Sufficient explanation(s): {‘H = yes ∧ X = Oligaemic’}
Counterfactual explanations:
{‘X = Plethoric’, ‘X = Normal ∧ H = no’, ‘X = Grd Glass
∧ H = no’, ‘X = Asy/Patchy ∧ H = no ∧ O = <5’}

CHILD network (Spiegelhalter et al.,1993) implemented in SamIam (UCLA, AR Group)



Interactive explanation: human-in-the-loop

Computing contrastive, counterfactual explanations for Bayesian networks (T. Koopman, MSc. Thesis, UU, 2020)



What do all these explanations have in common?

• mostly model-specific (for BNs)
• domain-independent
• focus on what is ‘technically’ possible
• hardly a real user involved
• . . .

Mostly a computer scientist perspective. Why?
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My two cents

AI was generating explanations before we even knew
what (good) explanations are.

Miller [2019]:

For over two decades, cognitive psychologists and
scientists have investigated how people generate
explanations and how they evaluate their quality.
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Human-centered XAI

Current research ‘involving’ users:
• papers that identify stakeholders
• papers that define quality, goals and types of explanation
• papers that introduce frameworks/questionnaires for user

requirements concerning explanations
• many literature studies
• . . .

All general, model-agnostic, domain independent.



Asking a real user of a real application

“We’d like a 95% confidence interval with each prediction.”

PLOS Medicine — https://doi.org/10.1371/journal.pmed.1003111May15,20201/19
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Take home message

Multi-disciplinary teams:
• need to know what is technically possible
• need to involve and interact with user more

In addition to what, whom and how, consider . . .

when:
• explanations are necessary,

yet not everything needs explanation
• machine-in-the-loop?*

why:
• effective explanations are not always accurate
* Tim Miller (2023 arXiv preprint) Explainable AI is Dead, Long Live Explainable AI! Hypothesis-driven decision support





Explanation of the model: probabilistic relations

Conjunctivitis |Mucositis (1)

Consider a pig without an infection
of the mucous. How likely is it that
this pig shows a conjunctivitis ?

Qualitative approaches to quantifying probabilistic networks (S. Renooij, PhD Thesis, UU, 2001)



Explanation of reasoning

Flow of influence from most
relevant evidence

Arguments built from most likely
intermediate values

1997: BANTER: a Bayesian network tutoring shell (P. Haddawy, J. Jacobson, Ch.E. Kahn Jr., AI in Med.)
2015: Explaining the reasoning of Bayesian networks with intermediate nodes and clusters (J. van Leersum, MSc Thesis, UU)



Explanation of reasoning

Argument diagram:
Argument tree:

2011: On extracting arguments from Bayesian network representations of evidential reasoning (J. Keppens, ICAIL)
2017: Designing and understanding forensic Bayesian networks using argumentation (S.T. Timmer, PhD Thesis, UU)



Causal anecdote

BNs: Bayesian network models for the management of ventilator-associated pneumonia (S. Visscher, PhD Thesis, UU, 2008)


