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1 Introduction

Since their introduction three decades ago, probabilistic graphical models have become an essential tool in knowledge-
based systems for Artificial Intelligence. In most cases, knowledge-based systems are designed to deal with real-life
problems requiring considerable human knowledge and proficiency for their solutions. One popular probabilistic
graphical model is called a Bayesian network. Bayesian networks are widely used in healthcare, financial advice,
spam filter, image processing, robotics, etc [2, 10, 11, 12], to manage reasoning with uncertain interactions among
variables in the given domain.

A Bayesian network is a compact representation of a joint probability distribution representing a set of variables
and their conditional independencies via a directed acyclic graph [1, 7, 8]. The parameters in the network are specified
by a set of conditional probability tables (CPT). The network serves as a tool for computing the posterior probability
distribution of outcome variable(s) when observing evidence. The knowledge needed for building a Bayesian network
is often obtained by domain experts and/or appropriate data. The elicitation of all the required probabilities is often
the primary hindrance in building a real-world network with domain experts. To ease this elicitation task, a network
engineer can use interaction models such as the noisy-OR model and its variants. An interaction model basically
entails a parameterised CPT for a common effect variable where specific patterns of interaction among the causal
influences on the effect variable hold [1, 3]. These interaction models require limited probability estimates since the
remaining probabilities of the CPT are computed by the model’s rules, where the model’s rules are derived from the
assumptions of interaction among the causal influences. However, even if the assumptions underlying the noisy-OR
model hold in the application domain, the probabilities computed from the model depend on the input parameters
and the accuracy of their estimates. The input parameters of the interaction model are the probability estimates
taken in by the model to compute the remaining probabilities. For the noisy-OR model, the input parameters
are called the noisy-OR parameters. However, it is not (always) possible for a network engineer to elicit accurate
estimates for all input parameters. Conducting a sensitivity analysis, that is, examining the effects of changes in
parameters on an output probability of interest, can give insights into the propagation effects due to deviating noisy-
OR parameter probabilities in Bayesian networks. The propagation effects pertain to how the network’s specified
probabilities influence the computed output when deviations from noisy-OR parameters are assumed. However,
examining the effects of variation for a wide range of possible combinations of parameters rapidly becomes infeasible
[6]. The just mentioned matter indicates the need for studying generic sensitivity functions of different models to gain
understanding into the consequences when input parameters of causal interaction models are possibly inaccurate. As
a result, network engineers will be capable of determining how much effort they need to put into obtaining accurate
probability estimates for the input parameters in order to guarantee the validity of a Bayesian network’s output
without executing a complete analysis.

The effects of the noisy-OR assumptions and its variants have been studied before, for example, by Woudenberg
and van der Gaag [1]. They examined the following matter: how well do the computed probabilities from the model’s
rules approach the real probabilities if the properties underlying the noisy-OR model do not genuinely hold in the
application domain? They examined whether the choice of using the noisy-OR model for the elicitation task is
appropriate. We will, taking a similar approach, investigate the consequences of inaccurate estimates of the noisy-
OR parameters on the output probabilities. How robust are the calculated probabilities to possible inaccuracies in
the input parameters? The desired result of our investigations will help a network engineer to decide how accurate
the probability estimates he/she should provide should be, and thus, the amount of time that he/she should take
for the elicitation task. In contrast to Woudenberg and van der Gaag, we will assume that the choice of using the
noisy-OR model for the elicitation task is indeed appropriate and therefore assume that the properties underlying
the noisy-OR model hold.

This thesis is organised as follows. In Section 2, we briefly review Bayesian networks, certain causal interaction
models for Bayesian networks, and how one can perform a sensitivity analysis. We conduct our research in an
analytical way and will take a similar approach for different structures and parameters. This approach will be
described in Section 3. In Section 4, we examine the propagation effects due to (leaky) noisy-OR parameter changes
on output probabilities. Since the (leaky) noisy-OR model involves binary variables only, an interaction model called
the noisy-MAX came into practice. We will study the propagation effects of this interaction model in Section 5. In
Section 6, we will summarise our findings and describe the differences and similarities of our findings with [1]. We
will conclude this thesis in Section 7.

3



2 Preliminaries

In this section, we briefly introduce some notation, review Bayesian networks, the (leaky) noisy-OR model, and how
one can perform a sensitivity analysis. In the preliminaries, we mainly rely on [1, 2, 3, 6].

2.1 Notation

In this thesis, we will represent variables with capital letters and their values with lower case letters. For example,
v represents a possible value of variable V . Likewise, V indicates a set of variables {V1, ..., Vm}, and v a particular
m−tuple (v1, ..., vm), where vi represents a value taken on by variable Vi in V. Furthermore, we will use the following
notation regarding the representation of values of variables:

• A variable Vi can take on values vji ∈ {v0i , ..., v
ni
i }, ni ≥ 1. By making n dependent of i, every Vi can have a

different number of values;

• The values are ordered, meaning that v0i < ... < vni
i ;

• In case of Boolean variables (ni = 1) we simply write ¬vi instead of v0i , and vi instead of v1i . Boolean variables
are of the type true/false, present/absent or positive/negative.

2.2 Bayesian networks

A Bayesian network is a graphical representation of a joint probability distribution over a set of variables [1]. It
consists of a qualitative- and quantitative part. The qualitative part is a directed acyclic graph G = (VG, AG),
containing random variables illustrated as nodes V ∈ VG, and a set of arcs AG ⊆ VG × VG, which describe the
(in)dependency relation among the variables [7]. In this thesis, we will write X → Y instead of (X,Y ). In addition,
given that X,Y and Z are nodes and X → Y → Z ∈ G, then X is a parent of Y and Y a parent of Z. Likewise, we
say that Y is a child of X and Z a child of Y . Finally, we have that Z and Y are descendants of X, and in the same
way, X and Y are ancestors of Z. The quantitative part of a Bayesian network is a set of conditional probability
distributions for every variable represented in the network.

We now define the concept of a Bayesian network more formally [2]:

Definition 2.1. A Bayesian network encodes the joint probability distribution over a set of variables {V1, V2, ..., Vm},
where m is finite, and decomposes it into a product of conditional probability distributions over each variable given
its parents in the graph. In case of nodes with no parents, we use their prior probability distribution. The joint
probability distribution over {V1, V2, ..., Vm} can be obtained by taking the product of all of these prior and conditional
probability distributions:

Pr(v1, v2, ..., vm) =

m∏
i=1

Pr(vi|pa(Vi)) (1)

where pa(Vi) is a conjunction of value assignments of all parents of node Vi.

There exist algorithms that compute the probabilities from a Bayesian network. However, even though Bayesian
networks decrease the complexity of the representation of the joint probability distribution, probabilistic inference is
NP-hard [2,9].
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V1

V0

V2 Vm. . .

Figure 1: A causal mechanism with effect variable V0 and m cause variables Vi.

2.3 Noisy-OR model

To simplify the quantification task, one can use a causal interaction model such as the noisy-OR model. In general,
the noisy-OR model can be looked upon as a parameterised conditional probability table for a corresponding effect
variable of a causal mechanism with multiple cause variables, see Figure 1. Experts’ elicitation tasks become con-
siderably more manageable with the help of a noisy-OR model because only a limited number of probabilities need
to be provided. When using the noisy-OR model, it is assumed that a certain effect can be obtained with a high
probability by the presence of one of the multiple causes [5]. In addition, the model assumes that if two or more
causes are present, the likelihood of the concerning outcome will not decrease. The noisy-OR model possesses mere
binary random variables Vi, i ∈ {0, ...,m}.

To express the noisy-OR model more formally, we have [1, 3]:

G = (VG, AG) withVG = V whereV1 → V0, ..., Vm → V0 ∈ AG andm ≥ 1.

Figure 1 illustrates the basic idea of such a mechanism. This directed graph G exhibits different causes Vi where
i ∈ {1, ...,m} and V0 is the common effect. The noisy-OR model defines the conditional probability table (CPT) for
the effect variable V0 of a causal mechanism through [1, 3]:

• Pr(v0|¬v1, ...,¬vm) = 0 (property of accountability);

• The noisy-OR parameters qi = Pr(v0|¬vi, ...,¬vi−1, vi,¬vi+1, ...,¬vm) associated with cause Vi, for all i =
1, ...,m;

• For the remaining value combinations c involving the presence of two or more causes we have:

Pr(v0|c) = 1−
∏
i∈Tc

(1− qi) (2)

where Tc = {i|c ∧ vi 6≡ False}.

For a causal mechanism with m modelled causes Vi, i = {1, ..,m}, the noisy-OR model defines a full probability
table over m + 1 variables, specifying a total of 2 · 2m probabilities. However, exactly half of the probability table
is provided by that fact that Pr(v0|c) + Pr(¬v0|c) = 1 and, therefore, are redundant. Of the 2m non-redundant
probabilities, the noisy-OR model needs the values of only m parameter probabilities qi to be provided beforehand.
Furthermore, the model forces the distribution Pr(V0|¬v1, ...,¬vm) to be degenerate, that is Pr(v0|¬v1, ...,¬vm) = 0
and Pr(¬v0|¬v1, ...,¬vm) = 1.

In case of two causes V1 and V2 and their common effect V0, the CPT leads to Table 1.

Pr(v0|v1, v2) v1 ¬v1
v2 q1 + q2 − q1q2 q2
¬v2 q1 0

Pr(¬v0|v1, v2) v1 ¬v1
v2 1− (q1 + q2 − q1q2) 1− q2
¬v2 1− q1 1

Table 1: CPT for a noisy-OR model with two parents.
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2.4 Leaky noisy-OR model

In the noisy-OR model the property of accountability (Pr(v0|¬v1 ∧ ... ∧ ¬vm) = 0) is assumed. However, this is
actually quite a challenging assumption. The reason for this is that it’s (almost) impossible to model all the existing
causes V1,...,Vm of a common effect V0 of a Bayesian network. A model dealing with this matter is called the leaky
noisy-OR model. The leaky noisy-OR model assumes the following property:

Pr(v0|¬v1 ∧ ... ∧ ¬vm) = p

where the variables V1,...,Vm again are the different modelled causes of the common effect V0, with p > 0. This
probability p is called the leak probability. The leak probability is the probability that the common effect V0 will
be present while all the modelled causes V1,...,Vm are absent. One can also say that the leak probability is the
probability that the effect v0 occurs spontaneously.

The leaky noisy-OR model defines the CPT for the effect variable V0 of a causal mechanism through [1, 3]:

• Pr(v0|¬v1 ∧ ... ∧ ¬vm) = p (leak-probability)

• The noisy-OR parameters qi = Pr(v0|¬vi, ...,¬vi−1, vi,¬vi+1, ...,¬vm) associated with cause Vi, for all i =
1, ...,m;

• For the remaining value combinations c involving the presence of two or more causes we have:

Pr(v0|c) = 1− (1− p) ·
∏
i∈Tc

(1− qi)
(1− p)

(3)

where Tc = {i|c ∧ vi 6≡ False}.

One should take into account that during the construction of a Bayesian network, the effect of a single cause cannot
be set apart from the spontaneous occurrence of the effect. Therefore, the probability assessments of the effect given
only one cause are modified to account for this spontaneous leak before they are combined. Also, now the required
number of probabilities to define the CPT for node V0 is equal to m+ 1.

2.5 Sensitivity analysis

In this section we briefly review sensitivity analysis of Bayesian networks and rely on [1, 4, 6, 8].
The reliability of the output of a Bayesian network can be examined by studying its robustness. Robustness

pertains to the extent to which the network’s conditional probabilities affect the output when deviations from precise
estimates are assumed [4]. The probabilities of the CPT used in the Bayesian network are mostly assessed by domain
experts or obtained from appropriate data. However, the chances of inaccurate obtained values for the assessed prob-
abilities are unavoidable. Because of this reason, it is essential to study a Bayesian network’s robustness. A Bayesian
network can be exposed to sensitivity analyses to investigate the possible effects of these inaccurate obtained values
on its output. The sensitivity analysis result is a sensitivity function f(x) that demonstrates the network’s output
probability in the probability x being varied, which is called a one-way sensitivity analysis.

A sensitivity function is either a linear or a rectangular hyperbolic function. A linear sensitivity function has the
form [1, 8]:

f(x) = ax+ b (4)

The linear function is derived from examining the effects of inaccuracies in the probabilities for the (possibly
indirect) causes of the variable of interest where this variable has no observed descendants. We say that these linear
functions capture the effects of causal propagation. The constants a, b are built from the network’s non-varied prob-
abilities.

A hyperbolic sensitivity function has the form:

f(x) =
ax+ b

cx+ d
(5)

6



The hyperbolic function is derived from examining the effects of inaccuracies in a network’s probabilities on output
probabilities for variables with observed descendants. We say that these hyperbolic functions capture the effects of
diagnostic propagation. The constants a, b, c, d are again built from the assessments for the non-varied numerical
parameters. The values f(x) and x both represent probabilities, indicating that f(x) and x are both bounded by
the unit window, meaning that f(x) ∈ [0, 1] and x ∈ [0, 1].

We can rewrite the hyperbolic sensitivity function and obtain:

f(x) =
r

x− s
+ t

where

s = −d
c
, t =

a

c
, and r =

bc− ad
c2

where x = s indicates the vertical asymptote of the rectangular hyperbola and y = t the horizontal asymptote. The
constants s, t define the general shape of the hyperbola, and the location of the quadrants of the two branches. The
constant r defines the location of the vertices of the two branches. See Figure 2. Keep in mind that the vertices of
a hyperbola are the exact points where the absolute value of the first derivative of the function equals 1. Depending
on the quadrant of the branch under study, the vertex is located at one of the four points (s ±

√
|r|, t ±

√
|r|) [1,

8]. Note that a vertex point can lie either inside or outside the unit window and the vertical asymptote has to lie
outside the unit window.

;

Figure 2: Rectangular hyperbolas and their constants (the constraints on s and t are specific for sensitivity functions).

To gain more insight into a sensitivity function which is a rectangular hyperbolic function, one can study its first
derivative. The first derivative of function (5) equals:

d

dx
f(x) =

ad− bc
(cx+ d)2

. (6)
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3 Methods

We will conduct our research in an analytical way, taking a similar approach as Woudenberg and van der Gaag [1],
but for different parameters since we consider a different research question. In addition to Woudenberg and van der
Gaag, we study more models and conduct experiments with different parameter settings.

We will now present the general approach when examining the propagation effects due to noisy-OR parameter changes.

To examine the propagation effects due to noisy-OR parameter changes in Bayesian networks, we will take the
following approach:

1. First, we examine the possible effects due to changes in a noisy-OR parameter on an output probability of
interest pertaining to the effect variable, that is, the propagation effects in the causal direction.

• We start by deriving a general formula for the sensitivity function under consideration. When studying
the propagation effects in the causal direction, the corresponding sensitivity function is linear in x, where
x is a noisy-OR parameter;

• Subsequently, we determine the gradient of the sensitivity function and how this depends on the different
parameters of the model;

• When examining the gradient of the corresponding sensitivity function, we keep in mind the assumptions
underlying the noisy-OR model, namely:

For the causal mechanism from Figure 1 we assume:

– The prior probability distributions for the cause variables Vi, i ∈ {1, ...,m} are non-degenerate, that
is Pr(vi) 6= 0 and Pr(¬vi) 6= 0 for i ∈ {1, ...,m};

– Pr(v0|¬v1, ...,¬vm) = 0, by the property of accountability;

– Because the noisy-OR parameters qi = Pr(v0|¬vi, ...,¬vi−1, vi,¬vi+1, ...,¬vm) associated with cause
Vi for all i = 1, ...,m, are assumed to be large since any of the factors is likely to trigger the effect [5],
we mainly focus on qi ∈ [0.6, 1] when evaluating the propagation effects.

• We present our observations.

2. Subsequently, we examine the possible effects due to changes in a noisy-OR parameter on an output probability
of interest pertaining to a parent of the observed effect variable, that is, the propagation effects in the diagnostic
direction.

• We again derive a general expression for the sensitivity function, which in this case is a rectangular
hyperbolic function;

• From generic research of sensitivity functions from Bayesian networks, we know that the effect of deviations
in the x-value on the output probability of interest mainly depends on the location of the vertex of the
corresponding hyperbola branch. Therefore, analogous to Woudenberg and van der Gaag [1], we examine
the influence of the involved parameters’ values on the vertex’s location;

• After that, we plot several example sensitivity functions to support the mentioned findings and gain more
insight into the propagation effects in the entire interval [0, 1];

• Since we assume that noisy-OR parameters generally take on high values in practice, we then focus on
the interval for x ∈ [0.6, 1], where x is a noisy-OR parameter;

• In addition to Woudenberg and van der Gaag [1], we investigate the derivative of the corresponding
sensitivity function;

• With the help of WOLFRAM MATHEMATICA we obtain the value of the maximum gradient of the
sensitivity function under study in the interval x ∈ [0.6, 1];

• We present our observations.
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We will carry out this procedure for various Bayesian network’s graphical structures for different interaction models
and parameter settings. The assumptions will differ for different interaction models and experiments. For example,
the assumptions underlying the leaky noisy-OR and noisy-MAX model are different than for the noisy-OR model.
For each case, we will clearly indicate the underlying assumptions beforehand.
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4 Propagation effects due to (leaky) noisy-OR parameter changes

The (leaky) noisy-OR model is a helpful interaction model contributing to ease the elicitation task: they require
a limited number of parameter probabilities, indicating clear engineering advantages. However, the probability
estimates of the input parameters of the (leaky) noisy-OR model can be inaccurate. For that reason, we will examine
the effects of changes in noisy-OR parameters on specific probabilities. These effects pertain to how the network’s
specified probabilities influence the computed output when deviations from noisy-OR parameters are assumed. We
will call these effects the propagation effects. By examining the propagation effects of noisy-OR parameter changes
on probabilities computed from a Bayesian network, we want to identify conditions under which the use of inaccurate
input parameters can result in different output probabilities, and therefore, possibly harm the validity of a Bayesian
network’s output. These conditions can help a network engineer to determine how much effort he/she should put
into acquiring precise estimates for the noisy-OR parameters.

4.1 Propagation effects due to noisy-OR parameter changes: independent causes

We start by considering the conditional probability tables for the three variables of the basic mechanism from Figure
3. This basic mechanism can also be comprehended as a mechanism consisting of two parents (the cause variables
C1 and C2) and their child (the effect variable E).

C1

E

C2

Figure 3: A basic causal mechanism with the effect variable E and cause variables C1, C2.

For the basic mechanism from Figure 3 we now make the following assumptions:

• The prior probability distributions for cause variables C1 and C2 are non-degenerate, that is Pr(ci) 6= 0 and
Pr(¬ci) 6= 0 for i = 1, 2;

• Pr(e|¬c1,¬c2) = 0, by the property of accountability;

• Because noisy-OR parameters are assumed to be large since any of the factors is likely to trigger the effect [5],
we mainly focus on Pr(e|c1,¬c2), P r(e|¬c1, c2) ∈ [0.6, 1] in our research. We specifically use this constraint
when evaluating the propagation effects.

4.1.1 Propagation effects in the causal direction

First, we examine the possible effects on the probability Pr(e) due to changes in a noisy-OR parameter.

Theorem 4.1. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(e)(x) has the following form:

Pr(e)(x) = xPr(c2)
(

1− Pr(e|c1,¬c2)Pr(c1)
)

+ Pr(e|c1,¬c2)Pr(c1) (7)

Proof :
We have that probability Pr(e) is equal to:

Pr(e) = Pr(e|c1, c2)Pr(c1)Pr(c2) + Pr(c2|¬c1, c2)Pr(¬c1)Pr(c2) + Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

+ Pr(e|¬c1,¬c2)Pr(¬c1)Pr(¬c2) (8)

Note that Pr(e|¬c1,¬c2)Pr(¬c1)Pr(¬c2) = 0 since Pr(e|¬c1,¬c2) = 0.

10



Using the noisy-OR model described in Section 2.3, we first compute Pr(e|c1, c2):

Pr(e|c1, c2) = 1−
(
(1− Pr(e|¬c1, c2))(1− Pr(e|c1,¬c2))

)
= 1−

(
(1− x)(1− Pr(e|c1,¬c2))

)
= 1−

(
1− Pr(e|c1,¬c2)− x+ xPr(e|c1,¬c2)

)
= Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2)

= x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2). (9)

From Equation (8) we now have:

Pr(e)(x) =
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2) + Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

= Pr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(c1)Pr(c2)− xPr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

= x
(
Pr(c1)Pr(c2)− Pr(e|c1,¬c2)Pr(c1)Pr(c2) + Pr(¬c1)Pr(c2)

)
+ Pr(e|c1,¬c2)Pr(c1)Pr(c2)

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

= x
(
Pr(c1)Pr(c2)− Pr(e|c1,¬c2)Pr(c1)Pr(c2) + Pr(¬c1)Pr(c2)

)
+ Pr(e|c1,¬c2)

(
Pr(c1)Pr(c2) + Pr(c1)Pr(¬c2)

)
= xPr(c2)

(
Pr(c1)− Pr(e|c1,¬c2)Pr(c1) + Pr(¬c1)

)
+ Pr(e|c1,¬c2)

(
Pr(c1)Pr(c2) + Pr(c1)Pr(¬c2)

)
= xPr(c2)

(
Pr(c1)− Pr(e|c1,¬c2)Pr(c1) + Pr(¬c1)

)
+ Pr(e|c1,¬c2)

(
Pr(c1)

(
Pr(c2) + Pr(¬c2)

))
= xPr(c2)

(
1− Pr(e|c1,¬c2)Pr(c1)

)
+ Pr(e|c1,¬c2)Pr(c1)

The last 2 lines can been deduced because Pr(ci) + Pr(¬ci) = 1 for i = 1, 2.

To say something about the propagation effects we will examine the first derivative, that is in this case, the gradient
of a single-variable function. The gradient of Equation (7) describes the effect that a deviation of x can have on the
prior output probability of interest, namely Pr(e). Thus, a small gradient expresses the information that a possibly
large deviation of the probability x will still have only a minor effect on the output probability of interest.

To better convey the size of the gradient in natural language, we consider the gradient ∇ of the sensitivity function
under study to be:

• small, when |∇| ≤ 0.25;

• moderate, when |∇| ∈ (0.25, 0.75);

• large, when |∇| ≥ 0.75.

We will, in the same way, use these gradations for describing the propagation effects.

Corollary 4.1.1. The gradient of the sensitivity function from Equation (7) is:

d

dx
Pr(e)(x) = Pr(c2)

(
1− Pr(e|c1,¬c2)Pr(c1)

)
Observation: One can see that the gradient of Equation (7) is large when at least the probability Pr(c2) is large
and Pr(c1) and/or Pr(e|c1,¬c2) is/are small. Note that the gradient of Equation (7) is in the interval (0, 1) because
Pr(c2), P r(e|c1,¬c2) and Pr(c1) are all probabilities and Pr(c1), P r(c2) fall within the interval (0, 1) by assumption.
Since Pr(e|c1,¬c2) is a noisy-OR parameter, and we assume that noisy-OR parameters possess a probability in the
interval [0.6, 1], we conclude that the gradient is large when cause C2 is likely to be present and C1 absent. In
addition we have that the smaller the noisy-OR parameter Pr(e|c1,¬c2), the larger the gradient. We conclude that
if cause C1 is likely to be absent and cause C2 present, the gradient of Equation (7) will be large.
Analogous observations hold for the sensitivity function obtained for the probability of interest Pr(e) when x =
Pr(e|c1,¬c2); c1 and c2 merely exchange roles.
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Remark. We have also used the words ”large” and ”small” for describing the prior probabilities Pr(c1) and Pr(c2),
and noisy-OR parameters. We will use ”large” and ”small” in a more abstract way to indicate the prior probabilities
and thus, not provide concrete values for large or small prior probabilities. Because if we, for example, have Pr(c2) =

0.75 and Pr(c1) = 0.25 in Equation (7), the gradient will attain a maximum value of: d
dxPr(e)(x) = Pr(c2)

(
1 −

Pr(e|c1,¬c2)Pr(c1)
)

= 0.75(1 − 1 · 0.25) = 0.5625, which by assumption is moderate. Therefore, we leave it to

the reader to provide specific values for these prior probabilities. However, to indicate some clarification: the prior
probability should be at least ≥ 0.75 and ≤ 0.25 in order to be stated as ”large” or ”small, respectively. In like
manner, we will not provide concrete values for describing the noisy-OR probabilities. The noisy-OR parameters are
by assumption in the interval [0.6, 1], indicating that our focus is on rather large probabilities.

Example 4.1. As an example, consider the following parameter setting: Pr(c1) = 0.1, Pr(c2) = 0.9 and
Pr(e|c1,¬c2) = 0.85. The gradient of Equation (7) equals Pr(c2)

(
1 − Pr(e|c1,¬c2)Pr(c1)

)
= 0.9(1 − 0.85 · 0.1) =

0.8235. Thus, for these parameter values we consider the gradient, and thus the propagation effects, to be large.
If we now set the parameter settings to Pr(c1) = 0.5, Pr(c2) = 0.5, and Pr(e|c1,¬c2) = 0.6, the gradient equals:
Pr(c2)

(
1−Pr(e|c1,¬c2)Pr(c1)

)
= 0.5(1− 0.6 · 0.5) = 0.35. As a consequence, we consider the propagation effects to

be moderate.

4.1.2 Propagation effects in the causal direction conditioned on one cause

We further examine the effects of causal propagation through the causal mechanism of Figure 3 by assuming the
actual presence or absence of one of the causes C1 or C2, that is, by considering Pr(e|ci) or Pr(e|¬ci) for i = 1, 2,
for the probability of interest.
We first examine Pr(e|c2) as a function of the probability x = Pr(e|¬c1, c2), the result is a linear function in x.

Theorem 4.2. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(e|c2)(x) has the following
form:

Pr(e|c2)(x) = x
(

1− Pr(e|c1,¬c2)Pr(c1)
)

+ Pr(e|c1,¬c2)Pr(c1) (10)

Proof :
We have:

Pr(e|c2)(x) = Pr(e|c1, c2)Pr(c1) + xPr(¬c1) (by conditioning and independence of C1 and C2)

=
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c1) + xPr(¬c1) (by Equation (9))

= x
(
Pr(c1)− Pr(e|c1,¬c2)Pr(c1) + Pr(¬c1)

)
+ Pr(e|c1,¬c2)Pr(c1)

= x
(

1− Pr(e|c1,¬c2)Pr(c1)
)

+ Pr(e|c1,¬c2)Pr(c1).

We made use of the fact that Pr(c1) + Pr(¬c1) = 1.

Observation: The gradient of Equation (10) is in the interval (0,1). The gradient is large when the probabilities
Pr(c1) and/or Pr(e|c1,¬c2) are/is small. However, since the parameter Pr(e|c1,¬c2) is a noisy-OR parameter,
which are assumed to be large, we conclude that the propagation effects are large when the prior probability Pr(c1)
is small, and in addition we have that the smaller the noisy-OR parameter Pr(e|c1,¬c2), the larger the propagation
effects. The difference compared to the result derived in Section 4.1.1 is the absence of the prior probability Pr(c2)
in the gradient. This means that the gradient of Equation (10) is large whenever the prior probability Pr(c1) ≤ 0.25,
regardless of the probability of the noisy-OR parameter Pr(e|c1,¬c2).
Analogous observations hold for the function Pr(e|c1)(x) where x = Pr(e|c1,¬c2).

We now examine Pr(e|c2) as a function of the probability Pr(e|c1,¬c2), that is the noisy-OR parameter associated
with cause C1. The result is again a linear function in x.
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Theorem 4.3. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(e|c2)(x) has the following
form:

Pr(e|c2)(x) = xPr(c1)
(

1− Pr(e|¬c1, c2)
)

+ Pr(e|¬c1, c2) (11)

Proof :
We have:

Pr(e|c2)(x) = Pr(e|c1, c2)Pr(c1) + Pr(e|¬c1, c2)Pr(¬c1)

Note that we substitute Pr(e|c1, c2) with a different equation than Equation (9). Since x = Pr(e|c1,¬c2) we therefore
obtain using the noisy-OR model described in Section 2.3:

Pr(e|c1, c2) = 1−
(
(1− Pr(e|¬c1, c2))(1− Pr(e|c1,¬c2))

)
= 1−

(
(1− x)(1− Pr(e|c1,¬c2))

)
= 1−

(
1− Pr(e|c1,¬c2)− x+ xPr(e|c1,¬c2)

)
= Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2)

= x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2). (12)

We now have:

Pr(e|c2)(x) =
(
x
(
1− Pr(e|¬c1, c2)

)
+ Pr(e|¬c1, c2)

)
Pr(c1) + Pr(e|¬c1, c2)Pr(¬c1)

= xPr(c1)− xPr(e|¬c1, c2)Pr(c1) + Pr(e|¬c1, c2)Pr(c1) + Pr(e|¬c1, c2)Pr(¬c1)

= xPr(c1)
(

1− Pr(e|¬c1, c2)
)

+ Pr(e|¬c1, c2).

Observation: The gradient of Equation (11) is in the interval (0, 1). The gradient is large when the probability
Pr(c1) is large and Pr(e|¬c1, c2) is small. The difference compared to Equation (10) is that now a large value for
Pr(c1) results in a large gradient. This can be easily explained by the fact that x = Pr(e|c1,¬c2) which is the
noisy-OR parameter associated with cause C1. Since Pr(c1) ∈ (0, 1) and Pr(e|c1,¬c2) is a noisy-OR parameter,
which by our assumption lie in the interval [0.6, 1], we obtain that the gradient of Equation (10) lies in the interval
[0, 0.4) and thus we conclude that the propagation effects can become small or moderate at most.
Analogous observations hold for Pr(e|c1) as a function of the probability Pr(e|¬c1, c2).

Finally, we examine Pr(e|¬c2)(x) for x = Pr(e|c1,¬c2). Note that if we choose the noisy-OR parameter associated
with cause C2, that is x = Pr(e|¬c1, c2), the sensitivity function Pr(e|¬c2)(x) would be a constant function since
Pr(e|¬c2)(x) = Pr(e|c1,¬c2)Pr(c1) +Pr(e|¬c1,¬c2)Pr(c1), and thus, is independent of the term x = Pr(e|¬c1, c2).

Theorem 4.4. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(e|¬c2)(x) has the following
form:

Pr(e|¬c2)(x) = xPr(c1) (13)

Proof
We have:

Pr(e|¬c2)(x) = xPr(c1) + Pr(e|¬c1,¬c2)Pr(¬c1)

= xPr(c1) + 0

= xPr(c1).

Observation: One can observe that only one of the noisy-OR parameters is present in Equation (13), whereby
x = Pr(e|c1,¬c2). We note that the gradient of Equation (13) lies in the interval (0,1) and is equal to the prior
probability Pr(c1), meaning that the propagation effects solely depend on the value of the prior probability Pr(c1).
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Analogous observations to Theorem 4.4 hold for function Pr(e|¬c1)(x) when x = Pr(e|¬c1, c2), and a constant
function when x = Pr(e|c1,¬c2).

Thus far, we have considered the consequences of deviating noisy-OR probabilities upon causal propagation
through the basic causal mechanism in Figure 3. It seems that large propagation effects on the probability of interest
can be expected if the cause associated with the noisy-OR parameter under study has a large prior probability of
being present and the other cause has a large prior probability of being absent, see Theorem 4.1. For clarification:
if x = Pr(e|¬c1, c2), then large propagation effects occur when cause C1 is likely to be absent and cause C2 present.
We have that the larger these prior probabilities, the larger the gradient of the sensitivity function under study, and
thus the larger the propagation effects on the probability of interest. In addition, we found that the smaller the
noisy-OR parameter involved that is not set to x, the larger the propagation effects. Furthermore, we observed that
by actually establishing the presence or absence of cause Ci, the gradient no longer reveals a dependency of Pr(ci)
or Pr(¬ci), respectively. See Theorem 4.2, 4.3, and 4.4.

4.1.3 Propagation effects in the diagnostic direction

Till so far, we have investigated the effects of a deviating noisy-OR parameter on an output probability of interest
upon causal propagation. Now we will examine the propagation effects in the diagnostic direction, that is, upon
propagating evidence for the effect variable to an unobserved cause variable. We again consider the conditional
probability tables for the three variables of the basic mechanism in Figure 3.

4.1.3.1 Sensitivity function Pr(c2|e)(x) with x = Pr(e|¬c1, c2)

First we examine Pr(c2|e) as a function of the noisy-OR parameter Pr(e|¬c1, c2). The result is sensitivity function
Pr(c2|e)(x) which is hyperbolic in the probability x.

Theorem 4.5. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(c2|e)(x) has the following
form:

Pr(c2|e)(x) =
x+ β

1−β

x+ β
Pr(c2)(1−β)

(14)

where β = Pr(e|c1,¬c2)Pr(c1).

Proof : We have for x = Pr(e|¬c1, c2):

Pr(c2|e)(x) =
Pr(c2, e)(x)

Pr(e)(x)

=
Pr(e, c1, c2)(x) + Pr(e,¬c1, c2)(x)

Pr(e)(x)

=
Pr(e|c1, c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(e)(x)

Where Pr(e)(x) = Pr(c2, e)(x) + Pr(¬c2, e)(x) and Pr(e|c1, c2) is dependent of x.
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We use that Pr(e|c1, c2) = x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2) (Eq. 9), and substitute:

Pr(c2|e)(x) =

(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(e)(x)

=
Pr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(c1)Pr(c2)− xPr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(c2, e)(x) + Pr(¬c2, e)(x)

=
Pr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(c1)Pr(c2)− xPr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(c2, e)(x) + Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + Pr(e|¬c1,¬c2)Pr(¬c1)Pr(¬c2)

=
Pr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(c1)Pr(c2)− xPr(e|c1,¬c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)(

x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2) + Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + 0

=
x
(
1− Pr(e|c1,¬c2)Pr(c1)

)
+ Pr(e|c1,¬c2)Pr(c1)

x
(
1− Pr(e|c1,¬c2)Pr(c1)

)
+ Pr(e|c1,¬c2)Pr(c1)

Pr(c2)

· Pr(c2)

Pr(c2)

=
x+ Pr(e|c1,¬c2)Pr(c1)

1−Pr(e|c1,¬c2)Pr(c1)

x+ Pr(e|c1,¬c2)Pr(c1)
Pr(c2)

(
1−Pr(e|c1,¬c2)Pr(c1)

)
=

x+ β
1−β

x+ β
Pr(c2)(1−β)

where β = Pr(e|c1,¬c2)Pr(c1).

Observation: Since Equation (14) is a hyperbolic function, we use the properties of hyperbolic functions described
in Section 2.5, and discover that the vertical asymptote of Equation (14) lies at x = s = − β

Pr(c2)(1−β) . Because
β

Pr(c2)(1−β) > 0, the asymptote is located to the left of the unit window and the horizontal asymptote lies at t = 1.

As a result, we find that Equation (14) is a fragment of a fourth-quadrant hyperbola branch.
From generic research of sensitivity functions from Bayesian networks, we find that the effect of deviations in

the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding
hyperbola branch [1]. Generally, we have that the closer the vertex of the fourth-quadrant hyperbola branch lies to
the upper-left corner of the unit window, the larger the propagation effects. Equation (14) has its vertex at:

(s+
√
|r|, 1−

√
|r|) =

(
− β

Pr(c2)(1− β)
+

√( β

Pr(c2)(1− β)
− β

1− β

)
, 1−

√( β

Pr(c2)(1− β)
− β

1− β

))
The vertex is located within the unit window for some values of β

1−β ,
β

Pr(c2)(1−β)

with β
Pr(c2)(1−β) <

√
β

Pr(c2)(1−β) −
β

1−β < 1. To obtain β
Pr(c2)(1−β) <

√
β

Pr(c2)(1−β) −
β

1−β given that β
Pr(c2)(1−β) ≥

β
1−β , we discover that merely rather small values of β

1−β produce a vertex with an x-coordinate in the unit range.
In addition, the vertex only approaches the upper-left corner of the unit window, if in addition the difference

β
Pr(c2)(1−β) −

β
1−β is rather small. We observe that Equation (14) approaches 1 if the value β

Pr(c2)(1−β) −
β

1−β is small.

Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that Pr(c1) and
Pr(e|c1,¬c2) need to be small and Pr(c2) large.
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x = Pr(e|¬c1, c2)

P
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|e

)(
x

)

Figure 4: Several example sensitivity functions adhering to Theorem 4.5. (See Table 2 for parameter settings)

Parameter Red Red
dashed

Green Green
dashed

Purple Purple
dashed

Orange Orange
dashed

Black Black
dashed

Blue Blue
dashed

Pr(e|c1,¬c2) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6
Pr(c1) 0.1 0.1 0.5 0.5 0.9 0.9 0.1 0.1 0.1 0.1 0.9 0.9
Pr(c2) 0.9 0.9 0.5 0.5 0.1 0.1 0.3 0.3 0.1 0.1 0.9 0.9

Table 2: Parameter settings for sensitivity functions from Figure 4

To support the above mentioned findings and gain more insight into the effects we consider concrete parameter
settings, see Figure 4. We observe, when focusing on the entire interval x = Pr(e|¬c1, c2) ∈ [0, 1], that when the
prior probability Pr(c1) is small and the prior probability Pr(c2) is small/moderate, the largest propagation effects
occur, see orange (dashed) and black (dashed). In addition, we observe a minor influence of the noisy-OR parameter
Pr(e|c1,¬c2); we note that slightly larger propagation effects in the entire interval [0, 1] occur when Pr(e|c1,¬c2)
is ”small”, this effect is conveyed by the solid versus dashed function for each colour. Since by our assumption
the noisy-OR parameter Pr(e|c1,¬c2) lies in the interval [0.6, 1], we conclude that a smaller noisy-OR parameter
Pr(e|c1,¬c2) provides slightly larger propagation effects in the entire interval x = Pr(e|¬c1, c2) ∈ [0, 1]. Furthermore,
we have that the vertical offset on the y-axis is greatly influenced by Pr(c2); see red (dashed), green (dashed) and
purple (dashed). If the probability Pr(c2) approaches 1, and hence the value β

Pr(c2)(1−β) −
β

1−β becomes very small,

the x-coordinate of the vertex will indeed approach 0.

However, probabilities of noisy-OR parameters are assumed to be large [5], which indicates that we should especially
focus on the propagation effects for x = Pr(e|¬c1, c2) ≥ 0.6. As one can observe in Figure 4, large propagation effects
only occur, with a particular parameter settings, when x = Pr(e|¬c1, c2) is less than 0.4 (see for example orange and
black function). These results show that the propagation effects, for x = Pr(e|¬c1, c2) larger than 0.6, are moderate
or small. To gain better insight into Equation’s (14) behaviour in the interval x = Pr(e|¬c1, c2) ≥ 0.6, we compute
its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (14) are a fragment
of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative d

dxPr(c2|e)(x) > 0
for all x ∈ [0, 1].
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Corollary 4.5.1. The first derivative of the sensitivity function from Equation (14) is:

d

dx
Pr(c2|e)(x) =

Pr(e|c1,¬c2)Pr(c1)
(
1− Pr(c2)

)
Pr(c2)

(
1− Pr(e|c1,¬c2)Pr(c1)

)(
x+ Pr(e|c1,¬c2)Pr(c1)

Pr(c2)
(
1−Pr(e|c1,¬c2)Pr(c1)

))2
=

β
(
1− Pr(c2)

)
Pr(c2)(1− β)

(
x+ β

Pr(c2)
(
1−β
))2 (15)

where β = Pr(e|c1,¬c2)Pr(c1).

Now, for specific parameter settings for some of the functions demonstrated in Figure 4, namely the green (dashed),
orange (dashed) and black (dashed) function, we plot the derivatives of Equation 15. See Figure 5.

x = Pr(e|¬c1, c2)

d d
x
P
r(
c 2
|e

)(
x

)

x = Pr(e|¬c1, c2)

d d
x
P
r(
c 2
|e

)(
x

)

Figure 5: Several examples of Equation (15) restricted to the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 3.5] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 2 for parameter settings)

In Figure 5, the horizontal lines at y = 0.25 and y = 0.75 indicate the boundaries between what we consider to be a
small, moderate or large gradient and therefore whether the propagation effects are small, moderate, or large. The
black dashed function has moderate propagation effects in the interval x ∈ [0.6, 0.8776) and small propagation effects
in the interval x ∈ [0.8776, 1]. The black function has moderate propagation effects in the interval x ∈ [0.6, 0.8998)
and small propagation effects in the interval x ∈ [0.8998, 1]. The orange function has moderate propagation effects in
the interval x ∈ [0.6, 0.6215) and small propagation effects in the interval x ∈ [0.6215, 1]. The orange dashed function
has small propagation effects in the entire interval x ∈ [0.6, 1].

We observe two remarkable differences when comparing the propagation effects in the interval x ∈ [0.6, 1] to the
entire interval x ∈ [0, 1]. First, we saw when focusing on the entire interval x ∈ [0, 1] that the largest propagation
effects occur when the prior probability Pr(c1) is small, Pr(c2) is small/moderate, and the noisy-OR parameter
Pr(e|c1,¬c2) is small. However, with the help of Figure 5 and only focusing on the interval x ∈ [0.6, 1], we don’t
observe that a smaller noisy-OR parameter Pr(e|c1,¬c2) leads to larger propagation effects. We even observe for
some functions the opposite effect in the interval x ∈ [0.6, 1], namely that a larger value for the noisy-OR parameter
Pr(e|c1,¬c2) provides larger propagation effects. The second observation is that when only focusing on the interval
x ∈ [0.6, 1], we have that the smaller the prior probability Pr(c2), the larger the propagation effects.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c2|e)(x) = 0.416666 in the inter-

val x = Pr(e|¬c1, c2) ∈ [0.6, 1] of Equation (15) with the following parameter setting (see Appendix A.1):
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Pr(e|c1,¬c2) = 0.775347, P r(c1) = 3.28813 · 10−7 and Pr(c2) = 4.24907 · 10−7.

This maximum lies at x = 0.6.

Since the prior probabilities Pr(c1) and Pr(c2) are now extremely small, we put a lower bound on these priors, namely
Pr(c1), P r(c2) > 0.01. We find a maximum of max d

dxPr(c2|e)(x) = 0.412496 in the interval x = Pr(e|¬c1, c2) ∈
[0.6, 1] of Equation (15) with the following parameter setting (see Appendix A.1):

Pr(e|c1,¬c2) = 0.600043, P r(c1) = 0.0100007 and Pr(c2) = 0.0100003.

We observe that this maximum value of the derivative is a little lower and the value of the noisy-OR parameter
Pr(e|c1,¬c2) becomes 0.600043. This maximum again lies at x = 0.6.

Finally, we put a lower bound of Pr(c1), P r(c2) > 0.05 on these priors. We now find a maximum of max d
dxPr(c2|e)(x) =

0.395741 in the interval x = Pr(e|¬c1, c2) ∈ [0.6, 1] of Equation (15) with the following parameter setting (see Ap-
pendix A.1):

Pr(e|c1,¬c2) = 0.600012, P r(c1) = 0.050001 and Pr(c2) = 0.0500003.

We again observe that the maximum value of the derivative is lower and the value of the noisy-OR parameter
Pr(e|c1,¬c2) becomes 0.600012. This maximum lies at x = 0.6.

We conclude that Equation (14) shows that the strongest effects on the output probability Pr(c2|e) in the interval
x = Pr(e|¬c1, c2) ∈ [0.6, 1] can be expected, based on the following:

• The prior probabilities Pr(c1) and Pr(c2) are small; that is, causes C1 and C2 are likely to be absent. In
addition, we observe that when we put a lower bound on the priors of C1 and C2, a smaller value of the
noisy-OR parameter Pr(e|c1,¬c2) will provide larger propagation effects.

We found that when examining Pr(c2|e) as a function of the probability Pr(e|¬c1, c2), the propagation effects can
become moderate at most

4.1.3.2 Sensitivity function Pr(c2|e)(x) with x = Pr(e|c1,¬c2)

We now examine Pr(c2|e) as a function of the probability Pr(e|c1,¬c2), that is the noisy-OR parameter associated
with cause C1. The result is function Pr(c2|e)(x) which is hyperbolic in the probability x.

Theorem 4.6. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(c2|e)(x) has the following
form:

Pr(c2|e)(x) =
x+ γ

βx+ γ
(16)

where γ = Pr(e|¬c1,c2)
Pr(c1)

(
1−Pr(e|¬c1,c2)

) and β = 1−Pr(c2)Pr(e|¬c1,c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

)
Proof :
We have:

Pr(c2|e)(x) =
Pr(e|c1, c2)Pr(c1)Pr(c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c2)

Pr(e)(x)

where Pr(e|c1, c2) is dependent of x. Pr(e)(x) is equal to:

Pr(e)(x) = Pr(c2, e)(x) + Pr(¬c2, e)(x)

= Pr(e|c1, c2)Pr(c1)Pr(c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c2) + xPr(c1)Pr(¬c2) + 0

and using Eq. (9) we get:

=
(
x
(
1− Pr(e|¬c1, c2)

)
+ Pr(e|¬c1, c2)

)
Pr(c1)Pr(c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c2) + xPr(c1)Pr(¬c2)
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Then, by dividing the denominator and numerator by Pr(c1)Pr(c2) we get:

Pr(c2|e)(x) =
x− xPr(e|¬c1, c2) + Pr(e|¬c1, c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c1)

x− xPr(e|¬c1, c2) + Pr(e|¬c1, c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c1)
+ xPr(¬c2)Pr(c2)

=
x
(

1− Pr(e|¬c1, c2)
)

+ Pr(e|¬c1, c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c1)

x
(

1− Pr(e|¬c1, c2) + Pr(¬c2)
Pr(c2)

)
+ Pr(e|¬c1, c2) + Pr(e|¬c1, c2)Pr(¬c1)Pr(c1)

divide both the denominator and numerator by
(
1− Pr(e|¬c1, c2)

)
:

=
x+

Pr(e|¬c1,c2)
(
1+

Pr(¬c1)

Pr(c1)

)
1−Pr(e|¬c1,c2)

x+
Pr(e|¬c1,c2)

(
1+

Pr(¬c1)

Pr(c1)

)
1−Pr(e|¬c1,c2) + xPr(¬c2)

Pr(c2)
(
1−Pr(e|¬c1,c2)

)
=

x+ Pr(e|¬c1,c2)
Pr(c1)

(
1−Pr(e|¬c1,c2)

)
x+ Pr(e|¬c1,c2)

Pr(c1)
(
1−Pr(e|¬c1,c2)

) + xPr(¬c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

)
=

x+ γ

x+ γ + xPr(¬c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

)
=

x+ γ

βx+ γ

where γ = Pr(e|¬c1,c2)
Pr(c1)

(
1−Pr(e|¬c1,c2)

) and

β = Pr(¬c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

) + 1 = Pr(c2)+Pr(¬c2)−Pr(c2)Pr(e|¬c1,c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

) = 1−Pr(c2)Pr(e|¬c1,c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

) .

Observation: We find that Equation (16) is a hyperbolic function, and therefore we use the properties of hyperbolic
functions described in Section 2.5. Note that Equation (16) is not defined for Pr(e|¬c1, c2) = 1, since then the
denominator equals 0. The vertical asymptote of Equation (16) lies at x = s = − γβ . Because γ

β > 0, the vertical

asymptote is located to the left of the unit window and the horizontal asymptote lies at t = 1
β , where 0 < 1

β < 1.

As a result, we find that Equation (16) is a fragment of a first-quadrant hyperbola branch. We now find that the
closer the vertex of the first-quadrant hyperbola branch lies to the point (0, 1

β ), the larger the propagation effects.

Equation (16) has its vertex at:

(s+
√
|r|, t+

√
|r|) =

(
− γ

β
+

√∣∣∣γ(β − 1)

β2

∣∣∣, 1

β
+

√∣∣∣γ(β − 1)

β2

∣∣∣)

We have that the vertex is located within the unit window for values of β, γ with γ
β <

√∣∣∣γ(β−1)β2

∣∣∣ < 1. To have a

vertex closely located to the point (0, 1
β ) we find that γ

β and

√∣∣∣γ(β−1)β2

∣∣∣ should approach 0. Thus, for γ
β to approach

0, we need γ to be small and β large. Consequently, large propagation effects occur when the vertex of the sensitivity
function under study is closely located to the point (0, 0). For γ → 0, Pr(c1) has to be large and Pr(e|¬c1, c2) small.

On the other hand, for β to become large, we need that Pr(c2) is small. The same holds for the term

√∣∣∣γ(β−1)β2

∣∣∣.
For

√∣∣∣γ(β−1)β2

∣∣∣ to approach 0, we need again that γ should be small and β large.

To support the above mentioned conditions and gain more insight in Equation’s (16) behaviour, we look at concrete
parameter settings of several hyperbola branches restricted to the unit window. See Figure 6. We observe, when
focusing on the entire interval x = Pr(e|c1,¬c2) ∈ [0, 1], that Equation (16) shows that the strongest effect on the
output probability Pr(c2|e) in the entire interval x ∈ [0, 1] can be expected based on the following:
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• Pr(c1) is large and Pr(c2) is small, that is, cause C1 is likely to be present and cause C2 absent;

• The smaller the noisy-OR parameter Pr(e|¬c1, c2) the larger the propagation effects on the output probability.
However, this influence is relatively small.

x = Pr(e|c1,¬c2)

P
r(
c 2
|e

)(
x

)

Figure 6: Several example sensitivity functions adhering to Theorem 4.6. (See Table 3 for parameter settings)

Parameter Blue Blue
dashed

Red Red
dashed

Black Black
dashed

Orange Orange
dashed

Purple Purple
dashed

Pr(e|¬c1, c2) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6
Pr(c1) 0.1 0.1 0.5 0.5 0.9 0.9 0.1 0.1 0.9 0.9
Pr(c2) 0.9 0.9 0.5 0.5 0.1 0.1 0.1 0.1 0.9 0.9

Table 3: Parameter settings for sensitivity functions from Figure 6

We will now focus on probabilities for x = Pr(e|c1,¬c2) ≥ 0.6. As we observe in Figure 6, large propagation
effects only occur, with a particular parameter settings, when x is less than 0.5. These results show that the
propagation effects, for x = Pr(e|c1,¬c2) larger than 0.6, are moderate or small. To gain better insight into
Equation’s (16) behaviour in the interval x = Pr(e|c1,¬c2) ≥ 0.6, we compute its first derivative. The sensitivity
functions corresponding to Equation (16) are a fragment of a first-quadrant hyperbola branch, and as a consequence,
we know that the first derivative d

dxPr(c2|e)(x) < 0 for all x ∈ [0, 1].

Corollary 4.6.1. The first derivative of the sensitivity function from Equation (16) is:

d

dx
Pr(c2|e)(x) =

Pr(e|¬c1,c2)
Pr(c1)(1−Pr(e|¬c1,c2))

(
1− 1−Pr(c2)Pr(e|¬c1,c2)

Pr(c2)(1−Pr(e|¬c1,c2))

)
(

1−Pr(c2)Pr(e|¬c1,c2)
Pr(c2)(1−Pr(e|¬c1,c2)) · x+ Pr(e|¬c1,c2)

Pr(c1)(1−Pr(e|¬c1,c2))

)2
=

γ(1− β)

(βx+ γ)2
(17)

where γ = Pr(e|¬c1,c2)
Pr(c1)

(
1−Pr(e|¬c1,c2)

) and β = 1−Pr(c2)Pr(e|¬c1,c2)
Pr(c2)

(
1−Pr(e|¬c1,c2)

) .

Now, for specific parameter settings for some of the functions demonstrated in Figure 6, namely the black (dashed),
orange (dashed) and red (dashed) function, we plot the derivatives of Equation 17. See Figure 7.
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Figure 7: Several examples of Equation (17) restricted to the window x ∈ [0, 1] and d

dxPr(c2|e)(x) ∈ [−3.5, 0] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [−0.8, 0] (right). (See Table 3 for parameter settings)

In Figure 7, the horizontal lines at y = −0.25 and y = −0.75 indicate the boundaries between what we consider
to be a small, moderate or large gradient. The black (dashed) function has small propagation effects in the entire
interval x ∈ [0.6, 1]. The red function has moderate propagation effects in the interval x ∈ [0.6, 0.7893) and small
propagation effects in the interval x ∈ [0.7893, 1]. The red dashed function has moderate propagation effects in the
interval x ∈ [0.6, 0.7078) and small propagation effects in the interval x ∈ [0.7078, 1]. The orange function has mod-
erate propagation effects in the interval x ∈ [0.6, 0.9828) and small propagation effects in the interval x ∈ [0.9828, 1].
Finally, the orange dashed function has moderate propagation effects in the interval x ∈ [0.6, 0.9252) and small
propagation effects in the interval x ∈ [0.9252, 1].

We now compare the propagation effects in the interval x ∈ [0.6, 1] to the entire interval x ∈ [0, 1]. We saw that
for the entire interval x ∈ [0, 1], the largest propagation effects occur when the prior probability Pr(c1) is large and
Pr(c2) is small, and the noisy-OR parameter Pr(e|¬c1, c2) is small. However, with the help of Figure 7, and only
focusing on the interval x ∈ [0.6, 1], we don’t observe that a smaller noisy-OR parameter Pr(e|c1,¬c2) necessarily
leads to larger propagation effects. We even see for some functions the opposite effect in the interval x ∈ [0.6, 1],
namely that a larger value for the noisy-OR parameter Pr(e|c1,¬c2) provides larger propagation effects. We also
observe that the strongest propagation effects in the interval x ∈ [0.6, 1] occur when both Pr(c1) and Pr(c2) are
small, see orange (dashed) function.

With the help of WOLFRAM MATHEMATICA, we find an absolute maximum of max | ddxPr(c2|e)(x)| = |0.416666|
in the interval x = Pr(e|c1,¬c2) ∈ [0.6, 1] of Equation (17) with several parameter settings (see Appendix A.2). For
example, one of the parameter settings is:

Pr(e|¬c1, c2) = 0.9999, P r(c1) = 0.385073 and Pr(c2) = 0.187681.

This maximum lies at x = 0.6.

We conclude that Equation (16) shows that the strongest effects on the output probability Pr(c2|e) in the interval
x = Pr(e|c1,¬c2) ∈ [0.6, 1] can be expected, based on the following:

• The prior probability Pr(c2) is small and Pr(c1) is small/moderate. In addition we observe that the largest
propagation effects happen when the noisy-OR parameter Pr(e|¬c1, c2) is large.

We find that the absolute maximum value of the corresponding derivatives of Equation (16) in the interval [0.6, 1]
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is equivalent to the maximum value obtained for the corresponding derivatives of Equation (14) in Section 4.1.3.1.
Altogether, we again find when studying Pr(c2|e)(x) for x = Pr(e|c1,¬c2) ∈ [0.6, 1] that the propagation effects can
become again moderate at most.

4.1.3.3 Sensitivity function Pr(c2|¬e)(x) with x = Pr(e|¬c1, c2)

We now examine Pr(c2|¬e) as a function of the probability Pr(e|¬c1, c2), that is the noisy-OR parameter for cause
C2. The result is sensitivity function Pr(c2|¬e)(x) which is hyperbolic in the probability x.

Theorem 4.7. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(c2|¬e)(x) has the following
form:

Pr(c2|¬e)(x) =
x− 1

x− α
γ

(18)

where γ = 1− Pr(e|c1,¬c2)Pr(c1) and α = 1 + Pr(c1)
(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
.

Proof :
First, we note the following:

• x = Pr(e|¬c1, c2) and Pr(¬e|c1, c2) = 1−
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
since Pr(¬e|c1, c2) = 1− Pr(e|c1, c2);

• Pr(¬e|¬c1, c2) = 1− Pr(e|¬c1, c2) = 1− x;

• Pr(¬e|c1,¬c2) = 1− Pr(e|c1,¬c2).

We have:

Pr(c2|¬e)(x) =
Pr(¬e|c1, c2)Pr(c1)Pr(c2) + Pr(¬e|¬c1, c2)Pr(¬c1)Pr(c2)

Pr(¬e)(x)

=

(
1 + x

(
Pr(e|c1,¬c2)− 1

)
− Pr(e|c1,¬c2)

)
Pr(c1)Pr(c2) + (1− x)Pr(¬c1)Pr(c2)

Pr(¬e)(x)

and Pr(¬e)(x) is equal to:

Pr(¬e)(x) = Pr(c2,¬e)(x) + Pr(¬c2,¬e)(x)

= Pr(¬e|c1, c2)Pr(c1)Pr(c2) + Pr(¬e|¬c1, c2)Pr(¬c1)Pr(c2) + Pr(¬e|c1,¬c2)Pr(c1)Pr(¬c2)

=

(
1 + x

(
Pr(e|c1,¬c2)− 1

)
− Pr(e|c1,¬c2)

)
Pr(c1)Pr(c2) + (1− x)Pr(¬c1)Pr(c2)

+
(
1− Pr(e|c1,¬c2)

)
Pr(c1)Pr(¬c2)

= Pr(c1)Pr(c2) + xPr(e|c1,¬c2)Pr(c1)Pr(c2)− xPr(c1)Pr(c2)− Pr(e|c1,¬c2)Pr(c1)Pr(c2) + Pr(¬c1)Pr(c2)

− xPr(¬c1)Pr(c2) + Pr(c1)Pr(¬c2)− Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

Note that the numerator of the sensitivity function Pr(c2|¬e)(x) equals the denominator minus the last 2 terms,
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that is Pr(c1)Pr(¬c2)− Pr(e|c1,¬c2)Pr(c1)Pr(¬c2). We have:

Pr(c2|¬e)(x) =
xPr(e|c1,¬c2)Pr(c1)Pr(c2)− xPr(c2) + Pr(c2)− Pr(e|c1,¬c2)Pr(c1)Pr(c2)

xPr(e|c1,¬c2)Pr(c1)Pr(c2)− xPr(c2) + Pr(c2) + Pr(c1)Pr(¬c2)− Pr(e|c1,¬c2)Pr(c1)

(divide both the numerator and denominator by Pr(c2))

=
xPr(e|c1,¬c2)Pr(c1)− x+ 1− Pr(e|c1,¬c2)Pr(c1)

xPr(e|c1,¬c2)Pr(c1)− x+ 1 + Pr(c1)Pr(¬c2)Pr(c2)
− Pr(e|c1,¬c2)Pr(c1)

Pr(c2)

=
x
(
Pr(e|c1,¬c2)Pr(c1)− 1

)
+ 1− Pr(e|c1,¬c2)Pr(c1)

x
(
Pr(e|c1,¬c2)Pr(c1)− 1

)
+ 1 + Pr(c1)

(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
=

x+ 1−Pr(e|c1,¬c2)Pr(c1)
Pr(e|c1,¬c2)Pr(c1)−1

x+
1+Pr(c1)

(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
Pr(e|c1,¬c2)Pr(c1)−1

=
x+ γ

−γ

x+
1+Pr(c1)

(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
−γ

=
x− 1

x+
1+Pr(c1)

(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
−γ

=
x− 1

x+ α
−γ

=
x− 1

x− α
γ

where γ = 1− Pr(e|c1,¬c2)Pr(c1) and α = 1 + Pr(c1)
(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
.

Observation: Equation (18) is hyperbolic in the probability x = Pr(e|¬c1, c2). Building on the properties of
hyperbolic functions described in Section 2.5, we find that the vertical asymptote equals s = α

γ where α, γ > 0. To
show that α

γ ≥ 1, we proof that α ≥ γ:

1 + Pr(c1)
(Pr(¬c2)− Pr(e|c1,¬c2)

Pr(c2)

)
≥ 1− Pr(e|c1,¬c2)Pr(c1), subtract 1 from both sides & divide by Pr(c1), we get:

1− Pr(c2)− Pr(e|c1,¬c2)

Pr(c2)
≥ −Pr(e|c1,¬c2), multiply both sides by Pr(c2) and we find:

1− Pr(c2)− Pr(e|c1,¬c2) ≥ −Pr(c2)Pr(e|c1,¬c2)

Since Pr(c2) and Pr(e|c1,¬c2) are probabilities and by assumption Pr(c2) ∈ (0, 1), we indeed find that α ≥ γ. Since
the vertical asymptote has to lie outside the unit window, we also have to add the restriction Pr(e|c1,¬c2) 6= 1.

Because of above, we find that the vertical asymptote is located to the right of the unit window. Since the horizontal
asymptote t of Equation (18) equals t = 1, we conclude that Equation (18) is a fragment of a third-quadrant hyper-
bola branch. We derive that the closer the vertex of the third-quadrant hyperbola branch lies to the point (1, 1), the
larger the propagation effects of Equation (18). We find that Equation (18) has its vertex at:

(s−
√
|r|, 1−

√
|r|) =

(α
γ
−
√
|α
γ
− 1|, 1−

√
|α
γ
− 1|

)
Since α

γ >
√
|αγ − 1| for α

γ > 1, we have that α
γ should approach 1 in order to have a vertex closely located to

the point (1, 1). As a consequence, Pr(c2) should have a large value, and Pr(c1) a small value. The influence of
Pr(e|¬c1, c2) is relatively small.
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In order to confirm the above observations and gain more insight into the propagation effects, we consider concrete
parameter settings for the parameters Pr(e|c1,¬c2), P r(c1) and Pr(c2). We make some plots of several hyperbola
branches restricted to the unit window. See Figure 8.

x = Pr(e|¬c1, c2)

P
r(
c 2
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e)
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)

Figure 8: Several example sensitivity functions adhering to Theorem 4.7. (See Table 4 for parameter settings)

Parameter Green Green
dashed

Purple Purple
dashed

Orange Orange
dashed

Red Red
dashed

Black Black
dashed

Pr(e|c1,¬c2) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6
Pr(c1) 0.1 0.1 0.5 0.5 0.9 0.9 0.9 0.9 0.1 0.1
Pr(c2) 0.9 0.9 0.5 0.5 0.1 0.1 0.9 0.9 0.1 0.1

Table 4: Parameter settings for sensitivity functions from Figure 8

With help of Figure 8 we conclude that Equation (18) demonstrates that the strongest effects on the output probability
Pr(c2|¬e) in the entire interval x = Pr(e|¬c1, c2) ∈ [0, 1] can be expected based on the following:

• Pr(c1) is small and Pr(c2) large, that is, cause C1 is likely to be absent and C2 present;

• The larger the noisy-OR parameter Pr(e|c1,¬c2), the larger the propagation effects on the output probability.
However, this influence is relatively small.

Since we focus on probabilities for x = Pr(e|¬c1, c2) ≥ 0.6, we observe that the propagation effects are not only large
for the above mentioned parameter settings, but also when for example Pr(c1) = Pr(c2) = 0.5. We observe that for
many parameter settings small deviations in the noisy-OR parameter x = Pr(e|¬c1, c2) for x ∈ [0.6, 1] will have a
large effect on the output probability Pr(c2|¬e).

To gain better insight into Equation’s (18) behaviour we compute its first derivative. The sensitivity functions cor-
responding to Equation (18) are a fragment of a third-quadrant hyperbola branch, and as a consequence, we know
that d

dxPr(c2|¬e)(x) < 0 for all x = Pr(e|¬c1, c2) ∈ [0, 1].
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Corollary 4.7.1. The first derivative of the sensitivity function from Equation (18) is:

d

dx
Pr(c2|¬e)(x) =

1−
1+Pr(c1)

Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

1−Pr(e|c1,¬c2)Pr(c1)(
x+

1+Pr(c1)
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

Pr(e|c1,¬c2)Pr(c1)−1

)2

=
1− α

γ(
x− α

γ

)2 (19)

where γ = 1− Pr(e|c1,¬c2)Pr(c1) and α = 1 + Pr(c1)
(
Pr(¬c2)−Pr(e|c1,¬c2)

Pr(c2)

)
.

We plot the derivatives of the specific parameter settings shown in Table 4 of Equation (19). See Figure 9.
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Figure 9: Several examples of Equation (19) restricted to the window x ∈ [0, 1] and d
dxPr(c2|¬e)(x) ∈ [−3.5, 0] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|¬e)(x) ∈ [−0.8, 0] (right). (See Table 4 for parameter settings)

In Figure 9, it is demonstrated that for the orange (dashed) function the first derivative d
dxPr(c2|¬e)(x) ∈ [−0.1,−0.25]

for x ∈ [0, 1]. The purple (dashed), black (dashed), red (dashed) and green (dashed) function all obtain values
d
dxPr(c2|¬e)(x) > |0.75|, in the interval where x > 0.6. We conclude that the propagation effects of Pr(c2|¬e)(x)
where x = Pr(e|¬c1, c2) in the interval x ∈ [0.6, 1] can become large for a wide range of parameter settings.

When we investigate the possible maximum value of max d
dxPr(c2|¬e)(x) in the interval x = Pr(e|¬c1, c2) ∈ [0.6, 1],

we find that the derivative of d
dxPr(c2|¬e)(x) can go to infinity for some parameter settings. Some functions of

Equation (18) approach the vertical asymptote, and thus d
dxPr(c2|¬e)(x) can go to infinity. The propagation effects

can become extremely large.

The findings demonstrated in Section 4.1.3.1 are in line with the results discovered in Section 4.1.3.2. Namely,
when examining Pr(c2|e) as a function of the probability Pr(e|ci,¬cj) where i, j = 1, 2, we found that the propagation
effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become moderate at most
when keeping in mind the underlying properties of the noisy-OR model. We discovered that the derivative can have
a maximum value of |0.416666|. On the other hand, the results in Section 4.1.3.3 show that the propagation effects
in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become large for a wide range
of parameter settings when examining Pr(c2|¬e) as a function of the probability Pr(e|¬c1, c2). We conclude that
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the propagation effects in the diagnostic direction are highly dependent on which output probability we look at and
which noisy-OR parameter we vary.

4.2 Propagation effects due to noisy-OR parameter changes: dependent causes

So far, we have studied the effects of a deviating noisy-OR parameter upon propagation through the basic causal
mechanism exhibited in Figure 3. In this section, we consider a causal mechanism involving a direct connection, and
therefore, a possibly dependency between their pair of cause variables, meaning there is no a priory independence of
the two cause variables. See Figure 10. An extra arc C1 → C2 is added and we make the following assumptions:

• The prior probability distribution over C1 is non-degenerate;

• The conditional distribution over C2 given C1 is non-degenerate;

• Pr(e|¬c1,¬c2) = 0;

• Because noisy-OR parameters are assumed to be large [5], we mainly focus on Pr(e|c1,¬c2), P r(e|¬c1, c2) ∈
[0.6, 1] in our research. We specifically use this constraint when evaluating the propagation effects.

C1

E

C2

Figure 10: A causal mechanism with effect variable E and possibly dependent cause variables.

Furthermore, we will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function
under study. We consider the gradient ∇ to be small when |∇| ≤ 0.25, moderate when |∇| ∈ (0.25, 0.75), and large
when |∇| ≥ 0.75.

4.2.1 Propagation effects in the causal direction

We start by investigating the possible propagation effects on the probability Pr(e) due to changes in a noisy-OR
parameter.

Theorem 4.8. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(e)(x) has the following form:

Pr(e)(x) = x
(
Pr(c2)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)

)
+ Pr(e|c1,¬c2)Pr(c1) (20)

Proof :
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We have Pr(e)(x) =

= Pr(e|c1, c2)Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1) + Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1) + Pr(e|¬c1,¬c2)Pr(¬c2|¬c1)Pr(¬c1)

(where Pr(e|c1, c2) =
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
by Eq. 9,

and the last term Pr(e|¬c1,¬c2)Pr(¬c2|¬c1)Pr(¬c1) = 0 since Pr(e|¬c1,¬c2) = 0)

=
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1) + Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1) + 0

= Pr(c2|c1)Pr(c1)Pr(e|c1,¬c2) + xPr(c2|c1)Pr(c1)− xPr(e|c1,¬c2)Pr(c2|c1)Pr(c1)

+ xPr(c2|¬c1)Pr(¬c1) + Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1)

= x
(
Pr(c2|c1)Pr(c1)

(
1− Pr(e|c1,¬c2)

)
+ Pr(c2|¬c1)Pr(¬c1)

)
+ Pr(e|c1,¬c2)Pr(c1)

(
Pr(c2|c1) + Pr(¬c2|c1)

)
we note that Pr(c2|c1)Pr(c1) + Pr(c2|¬c1)Pr(¬c1) = Pr(c2) and Pr(c2|c1) + Pr(¬c2|c1) = 1, and therefore we obtain:

= x
(
Pr(c2)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)

)
+ Pr(e|c1,¬c2)Pr(c1).

Observation: The above function shows that strong effects on the output probability Pr(e) can be expected when:

• Pr(c2) has a large value and at least one of the values Pr(e|c1,¬c2), P r(c2|c1), or Pr(c1) is small.

Since Pr(e|c1,¬c2) is a noisy-OR parameter, which are assumed to be large, we conclude that the gradient is
large when the prior probability Pr(c2) is large and Pr(c1) and/or Pr(c2|c1) is/are small. In addition we have
that the smaller the noisy-OR parameter Pr(e|c1,¬c2), the larger the propagation effects. The gradient is in the
interval (0,1). Note that the gradient here equals (Pr(c2) − Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)) and in Equation (7)
(the basic causal mechanism exhibited in Figure 3) it equals

(
Pr(c2) − Pr(e|c1,¬c2)Pr(c2)Pr(c1)

)
which means

that the prior probability Pr(c2) in Equation (7) is replaced by the conditional probability Pr(c2|c1). We remark
that Pr(c1), P r(c2) and Pr(c2|c1) can not be regarded as entirely independent from each other since Pr(c2) =
Pr(c2|c1)Pr(c1) + Pr(c2|¬c1)Pr(¬c1).

We conclude that the effect of changes in the noisy-OR parameter on the probability Pr(e) of the model shown
in Figure 10, are in line with the basic causal mechanism shown in Figure 3. However, the gradient in Equation (20)
differs from the gradient in Equation (7). The size in which the gradient of Equation (20) differs, depends on the
value of Pr(c2|c1) compared to Pr(c2). If Pr(c2|c1) < Pr(c2), the propagation effects of Equation (20) will be larger
than of Equation (7). However, if Pr(c2|c1) > Pr(c2) the gradient of Equation (20) will be smaller than of Equation
(7), and thus the propagation effects will be smaller. Moreover, we find that the gradient of Equation (20) equals:

Pr(c2)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1), we can rewrite this as:

Pr(c2|c1)Pr(c1) + Pr(c2|¬c1)Pr(¬c1)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1) =

= Pr(c2|¬c1)Pr(¬c1) + Pr(c2|c1)Pr(c1)
(
1− Pr(e|c1,¬c2)

)
and thus, we find that the gradient of Equation (20) is ≥ Pr(c2|¬c1)Pr(¬c1).

We discovered that the results of the presence of possibly dependent cause variables are largely in line with the
results of Section 4.1.1, where there are no dependent causes. For the propagation effects in the causal direction, we
observed that the gradient from Equation (20) possesses the term Pr(c2|c1) instead of Pr(c2) in Equation (7). The
amount in which the gradient from Equation (20) is larger/smaller than of Equation (7), depends on the value of
Pr(c2|c1) compared to Pr(c2).

4.2.2 Propagation effects in the diagnostic direction

In this section, we investigate the consequences of varying a noisy-OR parameter upon propagation in the diagnostic
direction, that is, upon propagating evidence for the effect variable to an unobserved cause variable. We still consider
the conditional probability tables for the three variables of the causal mechanism from Figure 10.

4.2.2.1 Sensitivity function Pr(c2|e)(x) with x = Pr(e|¬c1, c2)

We examine Pr(c2|e) as a function of the probability Pr(e|¬c1, c2). The result is function Pr(c2|e)(x) which is
hyperbolic in the probability x.

27



Theorem 4.9. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(c2|e)(x) has the following form:

Pr(c2|e)(x) =
x+ α

γ−α

x+ α
Pr(c2|c1)(γ−α)

(21)

where α = Pr(e|c1,¬c2) and γ = Pr(c2)
Pr(c2|c1)Pr(c1) .

Proof : We have:

Pr(c2|e) =
Pr(c2, e)

Pr(c2, e) + Pr(¬c2, e)
, and therefore

Pr(c2|e)(x) =
Pr(e|c1, c2)Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1)

Pr(c2, e)(x) + Pr(¬c2, e)(x)
.

We substitute the value Pr(e|c1, c2) with x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2) (Eq. (9)), and obtain:

Pr(c2|e)(x) =

(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1)

Pr(e)(x)

=
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1) + xPr(c2|c1)Pr(c1)− xPr(e|c1,¬c2)Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1)

Pr(c2, e)(x) + Pr(¬c2, e)(x)

Where Pr(c2, e)(x) =
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
Pr(c2|c1)Pr(c1) + xPr(c2|¬c1)Pr(¬c1),

and Pr(¬c2, e)(x) = Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1)+Pr(e|¬c1,¬c2)Pr(¬c2|¬c1)Pr(¬c1) = Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1).
Divide both numerator and denominator by Pr(c1), then Pr(c2|e)(x) =

=
Pr(e|c1,¬c2)Pr(c2|c1) + xPr(c2|c1)− xPr(e|c1,¬c2)Pr(c2|c1) + xPr(c2|¬c1)Pr(¬c1)

Pr(c1)

Pr(e|c1,¬c2)Pr(c2|c1) + xPr(c2|c1)− xPr(e|c1,¬c2)Pr(c2|c1) + xPr(c2|¬c1)Pr(¬c1)
Pr(c1)

+ Pr(e|c1,¬c2)Pr(¬c2|c1)

=
Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2) + xPr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2) + xPr(c2|¬c1)Pr(¬c1)
Pr(c2|c1)Pr(c1) + Pr(e|c1,¬c2)Pr(¬c2|c1)

Pr(c2|c1)

=
x
(

1− Pr(e|c1,¬c2) + Pr(c2|¬c1)Pr(¬c1)
Pr(c2|c1)Pr(c1)

)
+ Pr(e|c1,¬c2)

x
(

1− Pr(e|c1,¬c2) + Pr(c2|¬c1)Pr(¬c1)
Pr(c2|c1)Pr(c1)

)
+ Pr(e|c1,¬c2) + Pr(e|c1,¬c2)Pr(¬c2|c1)

Pr(c2|c1)

=

x+ Pr(e|c1,¬c2)
1−Pr(e|c1,¬c2)+Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

x+
Pr(e|c1,¬c2)+Pr(e|c1,¬c2)Pr(¬c2|c1)

Pr(c2|c1)

1−Pr(e|c1,¬c2)+Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

=

x+ Pr(e|c1,¬c2)
Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

x+
Pr(e|c1,¬c2)

(
1+

Pr(¬c2|c1)

Pr(c2|c1)

)
Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

(because Pr(c2|c1)Pr(c1) + Pr(c2|¬c1)Pr(¬c1) = Pr(c2))

=

x+ Pr(e|c1,¬c2)
Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

x+ Pr(e|c1,¬c2)
Pr(c2|c1)

(
Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

) (since Pr(c2|c1) + Pr(¬c2|c1) = 1)

=
x+ α

γ−α

x+ α
Pr(c2|c1)(γ−α)

where α = Pr(e|c1,¬c2) and γ = Pr(c2)
Pr(c2|c1)Pr(c1) .
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Observation: Since Equation (21) is a hyperbolic function, we use the properties of hyperbolic functions described
in Section 2.5, and discover that the vertical asymptote of Equation (21) lies at x = s = − α

Pr(c2|c1)(γ−α) and the

horizontal asymptote equals t = 1. Because Pr(c2) > Pr(c2|c1)Pr(c1), we find that Pr(c2)
Pr(c2|c1)Pr(c1) > 1, and thus

α
Pr(c2|c1)(γ−α) > 0. Consequently, we find that Equation (21) is a fragment of a fourth-quadrant hyperbola branch,

and as a consequence, we know that the first derivative d
dxPr(c2|e)(x) > 0 for all x ∈ [0, 1].

Equation (21) has its vertex at:

(s+
√
|r|, 1−

√
|r|) =

(
− α

Pr(c2|c1)(γ − α)
+

√
α

Pr(c2|c1)(γ − α)
− α

γ − α
, 1−

√
α

Pr(c2|c1)(γ − α)
− α

γ − α

)
The vertex is located within the unit window for some values of α

Pr(c2|c1)(γ−α) ,
α

γ−α

with α
Pr(c2|c1)(γ−α) <

√
α

Pr(c2|c1)(γ−α) −
α

γ−α < 1. To obtain α
Pr(c2|c1)(γ−α) <

√
α

Pr(c2|c1)(γ−α) −
α

γ−α given that
α

Pr(c2|c1)(γ−α) ≥
α

γ−α , we discover that merely rather small values of α
γ−α produce a vertex with an x-coordinate in

the unit range. In order to have a small value for α
γ−α = Pr(e|c1,¬c2)

Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

, the prior probability Pr(c2) has

to be large and Pr(c1) has to be small. In addition, the vertex only approaches the upper-left corner of the unit
window if the difference α

Pr(c2|c1)(γ−α) −
α

γ−α is rather small, since then Equation (21) approaches 1. We find that

the difference α
Pr(c2|c1)(γ−α) −

α
γ−α is small when the conditional probability Pr(c2|c1) is large.

x = Pr(e|¬c1, c2)

P
r(
c 2
|e

)(
x

)

Figure 11: Several example sensitivity functions adhering to Theorem 4.9. (See Table 5 for parameter settings)

Parameter Blue Blue
light

Blue
dashed

Blue
dotted

Red Red
light

Red
dashed

Red
dotted

Green Green
light

Pr(e|c1,¬c2) 0.85 0.6 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.6
Pr(c2|c1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5
Pr(c2|¬c1) 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9
Pr(c1) 0.1 0.1 0.5 0.9 0.1 0.1 0.5 0.9 0.1 0.1
Pr(c2) 0.46 0.46 0.3 0.14 0.82 0.82 0.5 0.18 0.86 0.86

1We choose 0.098 because otherwise this function would overlap with the red dashed function.
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Parameter Green
dashed

Green
dotted

Purple Purple
light

Purple
dashed

Purple
dotted

Black Black
dashed

Black
dotted

Pr(e|c1,¬c2) 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.85 0.85
Pr(c2|c1) 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.9
Pr(c2|¬c1) 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.5 0.9
Pr(c1) 0.5 0.9 0.1 0.1 0.5 0.9 0.0981 0.1 0.1
Pr(c2) 0.7 0.54 0.14 0.14 0.3 0.46 0.1 0.5 0.9

Table 5: Parameter settings for sensitivity functions from Figure 11

In order to support the above mentioned findings and gain more insight in what the influences are of the values
of the parameters on the probability Pr(c2|e), we make some plots of the sensitivity function with different input
parameters Pr(e|c1,¬c2), P r(c2|¬c1), P r(c2|c1), Pr(c1) and Pr(c2) as provided in Table 5. The value of Pr(c2) is
determined by Pr(c2|c1), Pr(c2|¬c1) and Pr(c1), since Pr(c2) = Pr(c2|c1)Pr(c1) + Pr(c2|¬c1)Pr(¬c1); for sake of
completeness we listed all parameters in Table 5. Furthermore, we especially want to examine the propagation effects
when Pr(c2|c1) 6= Pr(c2|¬c1), since we want to investigate the effect of a dependency between the cause variables.
For the cases where Pr(c2|c1) = Pr(c2|¬c1) we refer to Chapter 4.1. However, for comparison we plot three functions
where Pr(c2|c1) = Pr(c2|¬c1), see black, black dashed, and black dotted.
The results of the effects of different concrete parameter settings are exhibited in Figure 11. We observe that function
Pr(c2|e)(x) demonstrates that strong effects on the output probability Pr(c2|e) in the entire interval x ∈ [0, 1] can
be expected based on the following:

• Pr(c2|c1) and Pr(c1) have small values and Pr(c2|¬c1) has a large value;

• The smaller the noisy-OR parameter Pr(e|c1,¬c2), the larger the propagation effects on the output probability.
This effect is conveyed by the solid versus light function for each colour.

Again, one should recall that the focus is on probabilities for x = Pr(e|¬c1, c2) ≥ 0.6. In Figure 11, it is shown
that large propagation effects only occur for small values for x = Pr(e|¬c1, c2) (see for example blue, green and
red functions). These results show that the propagation effects, for x = Pr(e|¬c1, c2) larger than 0.6, are moderate
or small. However, to gain better insight into Equation’s (21) behaviour in the interval x = Pr(e|¬c1, c2) ≥ 0.6,
we compute its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (21)
are a fragment of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative
d
dxPr(c2|e)(x) > 0 for all x ∈ [0, 1].

Corollary 4.9.1. The first derivative of the sensitivity function from Equation (21) is:

d

dx
Pr(c2|e)(x) =

Pr(e|c1,¬c2)(1− Pr(c2|c1))

Pr(c2|c1)
(

Pr(c2)
Pr(c2|c1)Pr(c1) − Pr(e|c1,¬c2)

)
·
(
x+ Pr(e|c1,¬c2)

Pr(c2|c1)
(

Pr(c2)

Pr(c2|c1)Pr(c1)
−Pr(e|c1,¬c2)

))2
=

α(1− Pr(c2|c1))

Pr(c2|c1)(γ − α)
(
x+ α

Pr(c2|c1)(γ−α)

)2 (22)

where γ = Pr(c2)
Pr(c2|c1)Pr(c1) and α = Pr(e|c1,¬c2).

Now, for the red (light/dashed), blue (light/dashed) and green (light/dashed) functions demonstrated in Figure 11,
we plot the derivatives of Equation (22).

In Figure 12, it is shown that for the parameter settings of the red (light) and green (light/dashed) function the
first derivative d

dxPr(c2|e)(x) < 0.25 for x ∈ [0.6, 1]. We observe moderate and small propagation effects for the
blue (dashed) and red dashed function. Finally, when only concentrating on the interval x ∈ [0.6, 1], we don’t
observe that a smaller noisy-OR parameter Pr(e|c1,¬c2) leads to larger propagation effects anymore. The propa-
gation effects can even become larger in the interval x ∈ [0.6, 1] due to a larger noisy-OR parameter x = Pr(e|c1,¬c2).
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x = Pr(e|¬c1, c2)

d d
x
P
r(
c 2
|e

)(
x

)

x = Pr(e|¬c1, c2)

d d
x
P
r(
c 2
|e

)(
x

)
Figure 12: Several examples of Equation (22) restricted to the window x ∈ [0, 1] and d

dxPr(c2|e)(x) ∈ [0, 3.5] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 5 for parameter settings)

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c2|e)(x) = 0.416666 in the inter-

val x = Pr(e|¬c1, c2) ∈ [0.6, 1] of Equation (22) with several parameter settings (see Appendix B.1). For example,
one of the parameter settings is:

Pr(e|c1,¬c2) = 0.84354, P r(c2|c1) = 2.08187 ·10−7, Pr(c2|¬c1) = 0.9285467399, Pr(c1) = 0.397759 and Pr(c2) =
0.559209.

This maximum lies at x = 0.6. We conclude that our findings concerning the propagation effects of Equation (21)
in the interval x = Pr(e|¬c1, c2) ∈ [0.6, 1] are moderate or small, which are in line with the results derived in
Section 4.1.3.1. We discovered, when studying the effect of possibly dependent cause variables, that Equation (22)
where x = Pr(e|¬c1, c2) ∈ [0.6, 1] can attain maximum value of 0.416666, indicating that the propagation effects are
in line with Section 4.1.3.1.

4.2.2.2 Sensitivity function Pr(c2|e)(x) with x = Pr(e|c1,¬c2)

We now examine Pr(c2|e) as a function of the probability Pr(e|c1,¬c2), that is the noisy-OR parameter associated
with cause C1. The result is function Pr(c2|e)(x) which is hyperbolic in the probability x.

Theorem 4.10. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(c2|e)(x) has the following form:

Pr(c2|e)(x) =
x+ β

xα+ β
(23)

where α = 1−Pr(e|¬c1,c2)Pr(c2|c1)
Pr(c2|c1)(1−Pr(e|¬c1,c2)) and β =

Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2)) .

Proof : We have:
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Pr(c2|e)(x) with x = Pr(e|c1,¬c2), since

Pr(c2|e) =
Pr(c2, e)

Pr(c2, e) + Pr(¬c2, e)
, we find

Pr(c2|e)(x) =
Pr(e|c1, c2)Pr(c2|c1)Pr(c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)

Pr(c2, e)(x) + Pr(¬c2, e)(x)

where Pr(e|c1, c2) is dependent of x.
We substitute the value Pr(e|c1, c2) with x

(
1− Pr(e|¬c1, c2)

)
+ Pr(e|¬c1, c2) (Eq. (12)), and obtain:

Pr(c2|e)(x) =

=

(
x
(
1− Pr(e|¬c1, c2)

)
+ Pr(e|¬c1, c2)

)
Pr(c2|c1)Pr(c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)

Pr(e)(x)

=
Pr(e|¬c1, c2)Pr(c2|c1)Pr(c1) + xPr(c2|c1)Pr(c1)− xPr(e|¬c1, c2)Pr(c2|c1)Pr(c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)

Pr(c2, e)(x) + Pr(¬c2, e)(x)
.

Where Pr(c2, e)(x) =
(
x
(
1− Pr(e|¬c1, c2)

)
+ Pr(e|¬c1, c2)

)
Pr(c2|c1)Pr(c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1),

and Pr(¬c2, e)(x) = Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1) + Pr(e|¬c1,¬c2)Pr(¬c2|¬c1)Pr(¬c1) = xPr(¬c2|c1)Pr(c1).
Divide both numerator and denominator by Pr(c1), then Pr(c2|e)(x) =

=
xPr(c2|c1)− xPr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)Pr(c1)

xPr(c2|c1)− xPr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)Pr(c1)
+ xPr(¬c2|c1)

=
x
(
Pr(c2|c1)− Pr(e|¬c1, c2)Pr(c2|c1)

)
+ Pr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)Pr(c1)

x
(
Pr(c2|c1)− Pr(e|¬c1, c2)Pr(c2|c1)

)
+ Pr(e|¬c1, c2)Pr(c2|c1) + Pr(e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)Pr(c1)

+ xPr(¬c2|c1)

=
x+

Pr(e|¬c1,c2)Pr(c2|c1)+Pr(e|¬c1,c2)Pr(c2|¬c1)Pr(¬c1)

Pr(c1)

Pr(c2|c1)−Pr(e|¬c1,c2)Pr(c2|c1)

x+
Pr(e|¬c1,c2)Pr(c2|c1)+Pr(e|¬c1,c2)Pr(c2|¬c1)Pr(¬c1)

Pr(c1)

Pr(c2|c1)−Pr(e|¬c1,c2)Pr(c2|c1) + x Pr(¬c2|c1)
Pr(c2|c1)−Pr(e|¬c1,c2)Pr(c2|c1)

=
x+

Pr(e|¬c1,c2)
(
Pr(c2|c1)+Pr(c2|¬c1)Pr(¬c1)

Pr(c1)

)
Pr(c2|c1)(1−Pr(e|¬c1,c2))

x+
Pr(e|¬c1,c2)

(
Pr(c2|c1)+Pr(c2|¬c1)Pr(¬c1)

Pr(c1)

)
Pr(c2|c1)(1−Pr(e|¬c1,c2)) + x Pr(¬c2|c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2))

=
x+

Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2))

x+
Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2)) + x Pr(¬c2|c1)
Pr(c2|c1)(1−Pr(e|¬c1,c2))

=
x+ β

xα+ β

where α = 1 + Pr(¬c2|c1)
Pr(c2|c1)(1−Pr(e|¬c1,c2)) = 1−Pr(e|¬c1,c2)Pr(c2|c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2)) and β =
Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2)) .

Observation: We have that Equation (23) is a hyperbolic function, and therefore we use the properties of hyperbolic
functions described in Section 2.5. We find that the vertical asymptote of Equation (23) lies at x = s = −β

α . Note

that Equation (23) is not defined for Pr(e|¬c1, c2) = 1. Because β
α > 0, the vertical asymptote is located to the left

of the unit window and the horizontal asymptote lies at t = 1
α , where α > 1, and thus t < 1. As a result, we find

that Equation (23) is a fragment of a first-quadrant hyperbola branch. Furthermore, we have that the closer the ver-
tex of the first-quadrant hyperbola branch lies to the point (0, 1

α ), the larger the propagation effects of Equation (23).

Equation (23) has its vertex at:

(s+
√
|r|, t+

√
|r|) =

(
− β

α
+

√∣∣∣β(1− α)

α2

∣∣∣, 1

α
+

√∣∣∣β(1− α)

α2

∣∣∣ )
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Now, we have that the vertex is located within the unit window for values of α, β with β
α <

√∣∣∣β(1−α)α2

∣∣∣ < 1. To

have a vertex close located to the point (0, 1
α ) we find that β

α and

√∣∣∣β(1−α)α2

∣∣∣ should approach 0. This means that β

should be small and α should be large, then we have that the term β
α approaches 0. Consequently, large propagation

effects occur when the vertex of the sensitivity function under study is closely located to the point (0, 0). For β → 0
we need that Pr(c1) is large and Pr(c2), P r(c2|c1) and Pr(e|¬c1, c2) are small. In addition, for α to become large,

we need that Pr(c2|c1) and Pr(e|¬c1, c2) are small. The same holds for the term

√∣∣∣β(1−α)α2

∣∣∣. For

√∣∣∣β(1−α)α2

∣∣∣ to

approach 0, we need again that β should be small and α large.

In order to gain better insight in what the influences are of the values of the parameters on the probability Pr(c2|e),
we look at concrete parameter settings of several hyperbola branches restricted to the unit window. We make some
plots of Equation (23) with different input parameters Pr(e|c1,¬c2), Pr(c2|c1), Pr(c2|¬c1) and Pr(c1), whereby
the value of Pr(c2) is determined by Pr(c2|c1), Pr(c2|¬c1) and Pr(c1). For sake of completeness all mentioned
probabilities are listed in Table 6.

x = Pr(e|c1,¬c2)

P
r(
c 2
|e

)(
x

)

Figure 13: Several example sensitivity functions adhering to Theorem 4.10. (See Table 6 for parameter settings)

Parameter Red Red
light

Red
dashed

Red
dotted

Blue Blue
light

Blue
dashed

Blue
dotted

Green Green
light

Pr(e|c1,¬c2) 0.85 0.6 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.6
Pr(c2|c1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5
Pr(c2|¬c1) 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.1 0.1
Pr(c1) 0.1 0.1 0.5 0.9 0.1 0.1 0.5 0.9 0.1 0.1
Pr(c2) 0.46 0.46 0.3 0.14 0.82 0.82 0.5 0.18 0.14 0.14
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Parameter Green
dashed

Green
dotted

Purple Purple
light

Purple
dashed

Purple
dotted

Black Black
dashed

Black
dotted

Pr(e|c1,¬c2) 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.85 0.85
Pr(c2|c1) 0.5 0.5 0.9 0.9 0.9 0.9 0.1 0.5 0.9
Pr(c2|¬c1) 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.5 0.9
Pr(c1) 0.5 0.9 0.1 0.1 0.5 0.9 0.9 0.9 0.9
Pr(c2) 0.7 0.46 0.54 0.54 0.5 0.86 0.1 0.5 0.9

Table 6: Parameter settings for sensitivity functions from Figure 13

The results are exhibited in Figure 13. We observe that Equation (23) demonstrates that the largest propagation
effects in the entire interval x ∈ [0, 1] can be expected based on the following:

• Pr(c2|¬c1) and Pr(c2|c1) have small values and Pr(c1) has a large value;

• The smaller the noisy-OR parameter Pr(e|¬c1, c2), the larger the propagation effects on the output probability
Pr(c2|e). This effect is conveyed by the solid versus light function for each colour.

When we focus on the interval where x = Pr(e|c1,¬c2) ≥ 0.6 in Figure 13, we note that the propagation effects
can become small and moderate at most. In order to gain more insight into the propagation effects for x ≥ 0.6 of
Equation (23), we compute its first derivative. Since the sensitivity functions corresponding to Equation (23) are a
fragment of a first-quadrant hyperbola branch, we know that the first derivative d

dxPr(c2|e)(x) < 0 for all x ∈ [0, 1].

Corollary 4.10.1. The first derivative of the sensitivity function from Equation (23) is:

d

dx
Pr(c2|e)(x) =

Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2))

(
1− 1−Pr(e|¬c1,c2)Pr(c2|c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2))

)
(
x 1−Pr(e|¬c1,c2)Pr(c2|c1)
Pr(c2|c1)(1−Pr(e|¬c1,c2)) +

Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2))

)2
=

β(1− α)

(xα+ β)2
(24)

where α = 1−Pr(e|¬c1,c2)Pr(c2|c1)
Pr(c2|c1)(1−Pr(e|¬c1,c2)) and β =

Pr(e|¬c1,c2)Pr(c2)

Pr(c1)

Pr(c2|c1)(1−Pr(e|¬c1,c2)) .

Now, for specific parameter settings for some of the functions demonstrated in Figure 13, namely the red (dashed/dotted),
blue (dashed/dotted) and green (dashed/dotted) function we plot the derivatives of Equation (24). See Figure 14.

With the help of WOLFRAM MATHEMATICA, we find an absolute maximum of max | ddxPr(c2|e)(x)| = |0.416666|
in the interval x = Pr(e|c1,¬c2) ∈ [0.6, 1] of Equation (24) with several parameter settings (see Appendix B.2). For
example, one of the parameter settings is:

Pr(e|¬c1, c2) = 0.9999, P r(c2|c1) = 0.184973, Pr(c2|¬c1) = 0.3883, Pr(c1) = 0.560874 and Pr(c2) = 0.274277.

This maximum lies at x = 0.6. Again, the noisy-OR parameter Pr(e|¬c1, c2) is extremely large; a somehow similar
parameter setting corresponds to the same gradient’s maximum value of Equation (16) in Section 4.1.3.2. We
conclude that the effect of changes in the noisy-OR parameter Pr(e|c1,¬c2) on the probability Pr(c2|e) of the
causal mechanism involving possibly dependent cause variables, are in line with the basic causal mechanism shown
in Figure 3, see Section 4.1.3.2. We note that the propagation effects in the interval x = Pr(e|c1,¬c2) ∈ [0.6, 1] can
become moderate at most.
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Figure 14: Several examples of Equation (24) restricted to the window x ∈ [0, 1] and d

dxPr(c2|e)(x) ∈ [−3.5, 0] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [−0.8, 0] (right). (See Table 6 for parameter settings)

4.2.2.3 Sensitivity function Pr(c2|¬e)(x) with x = Pr(e|¬c1, c2)

We now examine Pr(c2|¬e) as a function of the probability Pr(e|¬c1, c2), that is the noisy-OR parameter associated
with cause C2. The result is function Pr(c2|¬e)(x) which is hyperbolic in the probability x.

Theorem 4.11. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let x = Pr(e|¬c1, c2)
be the noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(c2|¬e)(x) has the following
form:

Pr(c2|¬e)(x) =
x+ γ

x+ γ + α
(25)

where γ = Pr(c2)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) and α =

Pr(¬c2|c1)Pr(c1)
(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) .

Proof :
Since Pr(e|c) + Pr(¬e|c) = 1, we again note the following (see also Section 4.1.3.3):

• Pr(¬e|c1, c2) = 1−
(
x
(
1− Pr(e|c1,¬c2)

)
+ Pr(e|c1,¬c2)

)
;

• Pr(¬e|¬c1, c2) = 1− Pr(e|¬c1, c2) = 1− x;

• Pr(¬e|c1,¬c2) = 1− Pr(e|c1,¬c2).

We have:

Pr(c2|¬e)(x) =
Pr(¬e|c1, c2)Pr(c2|c1)Pr(c1) + Pr(¬e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1)

Pr(¬e)(x)

=

(
1 + x

(
Pr(e|c1,¬c2)− 1

)
− Pr(e|c1,¬c2)

)
Pr(c2|c1)Pr(c1) + (1− x)Pr(c2|¬c1)Pr(¬c1)

Pr(¬e)(x)
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and Pr(¬e)(x) is equal to:

Pr(¬e)(x) = Pr(c2,¬e)(x) + Pr(¬c2,¬e)(x)

= Pr(¬e|c1, c2)Pr(c2|c1)Pr(c1) + Pr(¬e|¬c1, c2)Pr(c2|¬c1)Pr(¬c1) + Pr(¬e|c1,¬c2)Pr(¬c2|c1)Pr(c1)

=
(

1 + x
(
Pr(e|c1,¬c2)− 1

)
− Pr(e|c1,¬c2)

)
Pr(c2|c1)Pr(c1) + (1− x)Pr(c2|¬c1)Pr(¬c1)

+
(
1− Pr(e|c1,¬c2)

)
Pr(¬c2|c1)Pr(c1)

= Pr(c2|c1)Pr(c1) + xPr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− xPr(c2|c1)Pr(c1)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)

+ Pr(c2|¬c1)Pr(¬c1)− xPr(c2|¬c1)Pr(¬c1) + Pr(¬c2|c1)Pr(c1)− Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1)

Note that the numerator of the sensitivity function Pr(c2|¬e)(x) equals the denominator minus the last 2 terms, that
is Pr(¬c2|c1)Pr(c1)−Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c1). Dividing both the numerator and denominator by Pr(c2|c1)Pr(c1),
we get: Pr(c2|¬e)(x) =

=
1 + xPr(e|c1,¬c2)− x− Pr(e|c1,¬c2) + Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1) −
xPr(c2|¬c1)Pr(¬c1)
Pr(c2)|c1)Pr(c1)

1 + xPr(e|c1,¬c2)− x− Pr(e|c1,¬c2) + Pr(c2|¬c1)Pr(¬c1)
Pr(c2|c1)Pr(c1) −

xPr(c2|¬c1)Pr(¬c1)
Pr(c2|c1)Pr(c1) + Pr(¬c2|c1)

Pr(c2|c1) − Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c2|c1)

=
x
(
Pr(e|c1,¬c2)− 1− Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

)
+ 1 + Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

x
(
Pr(e|c1,¬c2)− 1− Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

)
+ 1 + Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1) + Pr(¬c2|c1)
Pr(c2|c1) − Pr(e|c1,¬c2)Pr(¬c2|c1)Pr(c2|c1)

=

x+
1+

Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

x+
1+

Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)
+

Pr(¬c2|c1)

Pr(c2|c1)

(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

=

x+
Pr(c2|c1)Pr(c1)+Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

x+
Pr(c2|c1)Pr(c1)+Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)
+

Pr(¬c2|c1)

Pr(c2|c1)

(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

=

x+
Pr(c2)

Pr(c2|c1)Pr(c1)

Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

x+
Pr(c2)

Pr(c2|c1)Pr(c1)
+

Pr(¬c2|c1)

Pr(c2|c1)

(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)−1−Pr(c2|¬c1)Pr(¬c1)

Pr(c2|c1)Pr(c1)

=
x+ Pr(c2)

Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2)

x+
Pr(c2)+Pr(¬c2|c1)Pr(c1)

(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2)

=
x+ γ

x+ γ + α

where γ = Pr(c2)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) and α =

Pr(¬c2|c1)Pr(c1)
(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) .

Observation: Equation (25) is hyperbolic in the probability x = Pr(e|¬c1, c2). Building on the properties of
hyperbolic functions described in Section 2.5, we find that the vertical asymptote equals x = s = −(γ+α). We have
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that γ + α < 0, since Pr(c2) > Pr(c2|c1)Pr(c1). We will show that (γ + α) < −1:

γ + α =
Pr(c2)

Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− Pr(c2)
+

Pr(¬c2|c1)Pr(c1)
(
1− Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− Pr(c2)

=
Pr(c2) + Pr(¬c2|c1)Pr(c1)

(
1− Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− Pr(c2)

Now we need to show that:

Pr(c2) + Pr(¬c2|c1)Pr(c1)
(
1− Pr(e|c1,¬c2)

)
> |Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− Pr(c2)|

We multiply
(
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)− Pr(c2)

)
by − 1 :

Pr(c2)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1).

We now have to show that: Pr(c2) + Pr(¬c2|c1)Pr(c1)
(
1− Pr(e|c1,¬c2)

)
> Pr(c2)− Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)

Subtract Pr(c2) from both sides, and then divide by Pr(c1). Finally, we end up with:

Pr(¬c2|c1)
(

1− Pr(e|c1,¬c2)
)
> −Pr(e|c1,¬c2)Pr(c2|c1), and thus (γ + α) < −1.

Since s > 1, we find that the vertical asymptote is located to the right of the unit window. We have that the
horizontal asymptote t of Equation (25) equals t = 1 and we conclude that Equation (25) is a fragment of a third-
quadrant hyperbola branch. We find that the closer the vertex of the third-quadrant hyperbola branch lies to the
point (1, 1), the larger the propagation effects. We note that Equation (25) has its vertex at:

(s−
√
|r|, t−

√
|r|) =

(
− γ − α−

√
|α|, 1−

√
|α|
)

We first discover that
√
|α| → 0 in order to have the y-coordinate approach 1. It becomes theoretically quite com-

plicated to state for which parameter settings α → 0. However, in order for the vertex to approach the upper-right
corner of the unit window, that is the point (1, 1), we then also need γ → −1. We note that if Pr(c2|c1) and/or

Pr(c1) is/are small then γ will approach −1 since γ ≈ Pr(c2)
−Pr(c2) ≈ −1.

In order to clarify, and supplement the findings above, we make some plots of Equation (25) with different in-
put parameters Pr(e|c1,¬c2), P r(c2|c1), Pr(c2|¬c1), and Pr(c1). The value of Pr(c2) is determined by Pr(c2|c1),
Pr(c2|¬c1) and Pr(c1). See Figure 15.

We observe that function Pr(c2|¬e)(x) demonstrates that the strongest effects on the output probability Pr(c2|¬e)
can be expected based on the following:

• Pr(c1) and Pr(c2|c1) have small values and Pr(c2|¬c1) has a large value;

• The propagation effects in the entire interval [0, 1] are larger when Pr(e|¬c1, c2) is small. This effect is conveyed
by the solid versus light function for each colour.
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Figure 15: Several example sensitivity functions adhering to Theorem 4.11. (See Table 7 for parameter settings)

Parameter Blue Blue
light

Blue
dashed

Blue
dotted

Red Red
light

Red
dashed

Red
dotted

Green Green
light

Pr(e|c1,¬c2) 0.85 0.6 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.6
Pr(c2|c1) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5
Pr(c2|¬c1) 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9
Pr(c1) 0.1 0.1 0.5 0.9 0.1 0.1 0.5 0.9 0.1 0.1
Pr(c2) 0.46 0.46 0.3 0.14 0.82 0.82 0.5 0.18 0.86 0.86

Parameter Green
dashed

Green
dotted

Purple Purple
light

Purple
dashed

Purple
dotted

Black Black
dashed

Black
dotted

Pr(e|c1,¬c2) 0.85 0.85 0.85 0.6 0.85 0.85 0.85 0.85 0.85
Pr(c2|c1) 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.9
Pr(c2|¬c1) 0.9 0.9 0.1 0.1 0.1 0.1 0.1 0.5 0.9
Pr(c1) 0.532 0.8983 0.1 0.1 0.5 0.9 0.0984 0.1 0.1
Pr(c2) 0.7 0.54 0.14 0.14 0.3 0.46 0.1 0.5 0.9

Table 7: Parameter settings for sensitivity functions from Figure 15

We observe that the largest propagation effects happen when the noisy-OR parameter x = Pr(e|¬c1, c2) is large.
Since one should especially focus on probabilities for x = Pr(e|¬c1, c2) ≥ 0.6, we note large propagation effects are
possible for a wide range of parameter settings. To better investigate the sensitivity functions from Equation (25), we
compute its first derivative and make some plots with different input parameters Pr(e|c1,¬c2), P r(c2|c1), P r(c2|¬c1),
and Pr(c1). The sensitivity functions corresponding to Equation (25) are a fragment of a third-quadrant hyperbola
branch, and as a consequence, we know that the first derivative d

dxPr(c2|¬e)(x) < 0 for all x ∈ [0, 1].

2We choose 0.53 because otherwise this function would overlap with the purple function.
3We choose 0.898 because otherwise this function would overlap with the purple dashed function.
4We choose 0.098 because otherwise this function would overlap with the red dashed function.
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Corollary 4.11.1. The first derivative of the sensitivity function from Equation (25) is:

d

dx
Pr(c2|¬e)(x) =

Pr(¬c2|c1)Pr(c1)
(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2)(

x+
Pr(c2)+Pr(¬c2|c1)Pr(c1)

(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2)

)2

=
α

(x+ γ + α)2
(26)

where γ = Pr(c2)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) and α =

Pr(¬c2|c1)Pr(c1)
(
1−Pr(e|c1,¬c2)

)
Pr(e|c1,¬c2)Pr(c2|c1)Pr(c1)−Pr(c2) .

For specific parameter settings for some of the functions demonstrated demonstrated in Figure 15, namely the green
(light), red (light) and blue (light) function, we plot the derivatives of Equation (26). See figure 16.
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d d
x
P
r(
c 2
|¬
e)

(x
)

Figure 16: Several examples of Equation (26) restricted to the window x ∈ [0, 1] and d
dxPr(c2|¬e)(x) ∈ [−3.5, 0]

(left) and the window x ∈ [0, 1] and d
dxPr(c2|¬e)(x) ∈ [−0.8, 0] (right). (See Table 7 for parameter settings)

We observe that the red (light), blue (light) and green (light) function all provide large propagation effects in the
interval x ∈ [0.6, 1]. We conclude that the propagation effects in the interval x ∈ [0.6, 1] become large for a wide
range of parameter settings.

When we investigate the possible maximum value of d
dxPr(c2|¬e)(x) in the interval x = Pr(e|¬c1, c2) ∈ [0.6, 1],

we find that the derivative of d
dxPr(c2|¬e)(x) can go to infinity for some parameter settings. Some functions of

Equation (25) approach the vertical asymptote, and thus d
dxPr(c2|¬e)(x) can go to infinity. The propagation effects

can become extremely large.

Studying the effect of possibly dependent cause variables on the propagation effects in the diagnostic direction lead
to similar results as in Section 4.1.3. Namely, when examining Pr(c2|e) as a function of the probability Pr(e|ci,¬cj)
where i, j = 1, 2, and keeping in mind the underlying properties of the noisy-OR model, we found that the propagation
effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become moderate at most.
We discovered that the derivative can have again a maximum value of |0.416666|. On the other hand, the results in
Section 4.2.2.3 show that the propagation effects in the diagnostic direction due to inaccurate estimates of a noisy-OR
parameter can become large for a wide range of parameter settings when examining Pr(c2|¬e) as a function of the
probability Pr(e|¬c1, c2). These results align with the findings demonstrated in Section 4.1.3.3. We discovered again
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that the propagation effects in the diagnostic direction are highly dependent on which output probability we look at
and which noisy-OR parameter we vary. We conclude that the presence of possibly dependent cause variables does
not lead to remarkably different propagation effects in the diagnostic direction.

4.3 Propagation effects due to leaky noisy-OR parameter changes: independent causes

We will continue our research with the conditional probability tables for the three variables of the basic mechanism
from Figure 3 again. However, we will now assume that the property of accountability is not satisfied, meaning that
Pr(e|¬c1,¬c2) = p, where p > 0. We will use the leaky noisy-OR model described in Section 2.4. When evaluating
the corresponding propagation effects, we assume the following:

• The prior probability distributions for cause variables C1 and C2 are non-degenerate, that is Pr(ci) 6= 0 and
Pr(¬ci) 6= 0 for i = 1, 2;

• A leak-probability typically attains a small value in practise [1]. Because of this, we mainly focus for p ∈ (0, 0.2]
in our research;

• Because leaky noisy-OR parameters are assumed to be large [5], we mainly focus on Pr(e|c1,¬c2), P r(e|¬c1, c2) ∈
[0.6, 1] in our research. We specifically use this constraint when evaluating the propagation effects.

We will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We
consider the gradient ∇ to be small when |∇| ≤ 0.25, moderate when |∇| ∈ (0.25, 0.75), and large when |∇| ≥ 0.75.

4.3.1 Propagation effects in the causal direction

We begin by investigating the possible effects on the probability Pr(e) due to changes in a leaky noisy-OR parameter.

Theorem 4.12. Consider the causal mechanism in Figure 3 and assume it models a leaky noisy-OR. Let x =
Pr(e|¬c1, c2) be the leaky noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(e)(x) has
the following form:

Pr(e)(x) = xPr(c2)

(
Pr(c1)(1− Pr(e|c1,¬c2))

1− p
+ Pr(¬c1)

)
+

Pr(c1)Pr(c2)
(
Pr(e|c1,¬c2)− p

)
1− p

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + pPr(¬c1)Pr(¬c2))

(27)

Proof : Using the leaky noisy-OR model, we compute that:

Pr(e|c1, c2) = 1− (1− p)
(

(1− Pr(e|¬c1, c2)

1− p
(1− Pr(e|c1,¬c2)

1− p

)
= 1− (1− p)

(
(1− x)(1− Pr(e|c1,¬c2)

(1− p)2

)
= 1−

(
1− Pr(e|c1,¬c2)− x+ xPr(e|c1,¬c2)

1− p

)

=
1− p
1− p

− 1− Pr(e|c1,¬c2)− x+ xPr(e|c1,¬c2)

1− p

=
Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2)− p

1− p
(28)
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Thus we have Pr(e)(x) =

=

(
Pr(e|c1,¬c2) + x− xPr(e|c1,¬c2)− p

1− p

)
Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2) + Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

+ pPr(¬c1)Pr(¬c2)

=
Pr(e|c1,¬c2)Pr(c1)Pr(c2)

1− p
+
xPr(c1)Pr(c2)

1− p
− xPr(e|c1,¬c2)Pr(c1)Pr(c2)

1− p
− pPr(c1)Pr(c2)

1− p
+ xPr(¬c1)Pr(c2)

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + pPr(¬c1)Pr(¬c2)

= x

(
Pr(c1)Pr(c2)

1− p
− Pr(e|c1,¬c2)Pr(c1)Pr(c2)

1− p
+ Pr(¬c1)Pr(c2)

)
+
Pr(e|c1,¬c2)Pr(c1)Pr(c2)

1− p
− pPr(c1)Pr(c2)

1− p
+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + pPr(¬c1)Pr(¬c2)

= xPr(c2)

(
Pr(c1)

1− p
− Pr(e|c1,¬c2)Pr(c1)

1− p
+ Pr(¬c1)

)
+
Pr(c1)Pr(c2)

(
Pr(e|c1,¬c2)− p

)
1− p

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2) + pPr(¬c1)Pr(¬c2)

= xPr(c2)

(
Pr(c1)(1− Pr(e|c1,¬c2))

1− p
+ Pr(¬c1)

)
+
Pr(c1)Pr(c2)

(
Pr(e|c1,¬c2)− p

)
1− p

+ Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)

+ pPr(¬c1)Pr(¬c2).

Observation: Equation (27) shows that strong effects on the output probability Pr(e) can be expected only if both
Pr(c2) and Pr(¬c1) have a large value, that is, cause C2 is likely to be present and C1 absent. Furthermore, one can
observe that substituting p = 0 in Equation (27) will result in Equation (7) again.
Note that the parameter Pr(e|c1,¬c2) is a leaky noisy-OR parameter, which is assumed to be large. In addition, the

leak probability p is small, thus we establish that the term Pr(c1)(1−Pr(e|c1,¬c2))
1−p will be small in any case.

Since Pr(e) is a probability and Equation (27) is a linear function we note that the gradient cannot become larger
than 1. Also, since the size of the gradient is mainly determined by Pr(¬c1) and Pr(c2), the leak-probability p
possesses a weak additional influence on the propagation effects compared to the noisy-OR model (without the leak-
probability). However, if we must say whether the addition of a leak-probability has a positive/negative influence on
the propagation effects, we can say that the propagation effects are slightly stronger since we have that the larger
the leak-probability p, the larger the the gradient.

Analogous observations hold for the function obtained for the probability of interest Pr(e) if x = Pr(e|c1,¬c2).

4.3.2 Propagation effects in the diagnostic direction

Now we investigate the consequences of changes in a leaky noisy-OR parameter upon propagation in the diagnostic
direction. If we write Pr(c2|e) as a function of the probability Pr(e|¬c1, c2), the result is a hyperbolic function in x.
The corresponding sensitivity function is:

Pr(c2|e)(x) =
Pr(c2, e)(x)

Pr(c2, e)(x) + Pr(¬c2, e)(x)

=
Pr(e|c1, c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(c2, e)(x) + Pr(¬c2, e)(x)
(where Pr(e|c1, c2) is dependent of x)

=
Pr(e|c1, c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(c2, e)(x) + Pr(e|c1,¬c2)Pr(c1)(Pr(¬c2) + Pr(e|¬c1,¬c2)Pr(¬c1)Pr(¬c2)
(Pr(e|c1, c2) is dependent of x)

=
Pr(e|c1, c2)Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(c2, e)(x) + Pr(e|c1,¬c2)Pr(c1)(Pr(¬c2) + pPr(¬c1)Pr(¬c2)
(where Pr(e|c1, c2) is dependent of x)

41



We note an important difference from function (13) (obtained with the noisy-OR model), namely, the denominator
now includes the extra term pPr(¬c1)Pr(¬c2).

Theorem 4.13. Consider the causal mechanism in Figure 3 and assume it models a leaky noisy-OR. Let x =
Pr(e|¬c1, c2) be the leaky noisy-OR parameter associated with cause C2. Then the sensitivity function Pr(c2|e)(x)
has the following form:

Pr(c2|e)(x) =
x+ γ

x+ γ + ζ
(29)

where γ = Pr(e|c1,¬c2)−p
1

Pr(c1)

(
1−pPr(¬c1)

)
−Pr(e|c1,¬c2)

and ζ =

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)

.

Proof: We have:

Pr(c2|e)(x) =

(
Pr(e|c1,¬c2)+x−xPr(e|c1,¬c2)−p)

1−p

)
Pr(c1)Pr(c2) + xPr(¬c1)Pr(c2)

Pr(e)(x)

=

Pr(e|c1,¬c2)Pr(c1)Pr(c2)+xPr(c1)Pr(c2)−xPr(e|c1,¬c2)Pr(c1)Pr(c2)−pPr(c1)Pr(c2)
1−p + xPr(¬c1)Pr(c2)

Pr(e)(x)

We have that Pr(e)(x) = Pr(e|c1, c2)Pr(c1)Pr(c2)+xPr(¬c1)Pr(c2)+Pr(e|c1,¬c2)Pr(c1)Pr(¬c2)+pPr(¬c1)Pr(¬c2).

We substitute Pr(e|c1, c2) with Pr(e|c1,¬c2)+x−xPr(e|c1,¬c2)−p
1−p and divide the denominator and numerator by Pr(c1)Pr(c2)

and get:

Pr(c2|e)(x) =
x
(

1−Pr(e|c1,¬c2)
1−p + Pr(¬c1)

Pr(c1)

)
+ Pr(e|c1,¬c2)−p

1−p

x
(

1−Pr(e|c1,¬c2)
1−p + Pr(¬c1)

Pr(c1)

)
+ Pr(e|c1,¬c2)−p

1−p + Pr(e|c1,¬c2)Pr(¬c2)Pr(c2)
+ pPr(¬c1)Pr(¬c2)Pr(c1)Pr(c2)

=

x+ Pr(e|c1,¬c2)−p
1

Pr(c1)
−Pr(e|c1,¬c2)−pPr(¬c1)

Pr(c1)

x+ Pr(e|c1,¬c2)−p
1

Pr(c1)
−Pr(e|c1,¬c2)−pPr(¬c1)

Pr(c1)

+

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)

by dividing by
(1− Pr(e|c1,¬c2)

1− p
+
Pr(¬c1)

Pr(c1)

)
and rearrangement. We finally obtain:

=
x+ γ

x+ γ + ζ

where γ = Pr(e|c1,¬c2)−p
1

Pr(c1)

(
1−pPr(¬c1)

)
−Pr(e|c1,¬c2)

and ζ =

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)

.

Observation: Equation (29) is hyperbolic in the probability x = Pr(e|¬c1, c2). We use the properties of hyperbolic
functions described in Section 2.5, and discover that the vertical asymptote of Equation (29) lies at x = s = −(γ+ζ).
Since γ + ζ > 0, the asymptote is located to the left of the unit window and the horizontal asymptote lies at t = 1.
As a result, we find that Equation (29) is a fragment of a fourth-quadrant hyperbola branch.

The effect of deviations in the x−value on the output probability of interest mainly depend on the location of the
vertex of the corresponding hyperbola branch. We have that the closer the vertex of the fourth-quadrant hyperbola
branch lies to the upper-left corner of the unit window, that is the point (0, 1), the larger the propagation effects.
We find that Equation (29) has its vertex at:

(s+
√
|r|, t−

√
|r|) =

(
− (γ + ζ) +

√
|ζ|, 1−

√
|ζ|
)

The vertex is located within the unit window for some values of γ, ζ with (γ+ζ) <
√
|ζ| < 1. To obtain (γ+ζ) <

√
|ζ|

given that (γ + ζ) > ζ, we discover that rather small values of ζ will result in a vertex with a positive x−coordinate.
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The vertex only approaches the upper-left corner of the unit window, if in addition, the difference (γ + ζ)− γ = ζ is
rather small. For ζ → 0, we observe that Pr(c1) should be small and Pr(c2) large. For γ → 0 we need that Pr(c1)
should be small as well. Unfortunately, it becomes theoretically quite difficult to say something about the effect of
p on the location of the vertex within the unit window. In order to get a better idea of what the influence is of the
value of p on the output probability Pr(c2|e), we make some plots of Equation (29) with different input parameters
Pr(c1), P r(c2), and p. We set Pr(e|c1,¬c2) equal to 0.8. See Figure 17.
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Figure 17: Several example sensitivity functions adhering to Theorem 4.13. (See Table 8 for parameter settings)

Parameter Red Red
dashed

Green Green
dashed

Purple Purple
dashed

Orange Orange
dashed

Black Black
dashed

Blue Blue
dashed

Pr(e|c1,¬c2) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Pr(c1) 0.1 0.1 0.5 0.5 0.9 0.9 0.1 0.1 0.1 0.1 0.9 0.9
Pr(c2) 0.9 0.9 0.5 0.5 0.1 0.1 0.3 0.3 0.1 0.1 0.9 0.9
p 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

Table 8: Parameter settings for sensitivity functions from Figure 17

We observe that Equation (29) demonstrates that the largest propagation effects in the entire interval x ∈ [0, 1] on
the output probability Pr(c2|e) can be expected based on the following information:

• The influence of the leak-probability p on the propagation effects is dependent of the other parameters. However,
this influence is relatively small;

• The strongest propagation effects occur when Pr(c1) is small and Pr(c2) is small/moderate.

We indeed observe that the vertex only approaches the upper-left corner of the unit window if Pr(c1) is small and
Pr(c2) large, see red (dashed) function. However, as one can see in Figure 17, this parameter setting will not lead
to the largest propagation effects in the entire interval [0, 1]. For example, the orange (dashed) functions leads to
larger propagation effects in the entire interval [0, 1] than, for example, the red (dashed) function. In addition, we
note that the leak-probability p exercises only a minor influence on the propagation effects on the output probability
Pr(c2|e). The propagation effects are in line with the results obtained in Section 4.1.3.1, where the leak-probability
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p is absent.

To gain better insight into the behaviour of Equation (29) in the interval x = Pr(e|¬c1, c2) ≥ 0.6, we compute its first
derivative. The sensitivity functions corresponding to Equation (29) are a fragment of a fourth-quadrant hyperbola
branch indicating that the first derivative d

dxPr(c2|e)(x) > 0 for all x ∈ [0, 1].

Corollary 4.13.1. The first derivative of the sensitivity function from Equation (29) is:

d

dx
Pr(c2|e)(x) =

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)(
x+ Pr(e|c1,¬c2)−p

1
Pr(c1)

(
1−pPr(¬c1)

)
−Pr(e|c1,¬c2)

+

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)

)2

=
ζ

(x+ γ + ζ)2
(30)

where γ = Pr(e|c1,¬c2)−p
1

Pr(c1)

(
1−pPr(¬c1)

)
−Pr(e|c1,¬c2)

and ζ =

Pr(¬c2)

Pr(c2)

(
Pr(e|c1,¬c2)+pPr(¬c1)

Pr(c1)

)
Pr(¬c1)

Pr(c1)
+

1−Pr(e|c1,¬c2)

(1−p)

.

For specific parameter settings for some of the functions demonstrated demonstrated in Figure 17, namely the orange
(dashed), black (dashed) and green (dashed) function, we plot the derivatives of Equation (30). See figure 18.
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Figure 18: Several examples of Equation (30) restricted to the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 2] (left) and

the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 8 for parameter settings)

In Figure 18, we observe moderate and small propagation effects for the orange (dashed) and black dashed function.
We again observe, when only concentrating on the interval x ∈ [0.6, 1], that the effect of the leak is small.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c2|e)(x) = 0.416666 in the inter-

val x = Pr(e|¬c1, c2) ∈ [0.6, 1] of Equation (30) with several parameter settings (see Appendix C.1). For example,
one of the parameter settings is:

Pr(e|c1,¬c2) = 0.823118, P r(c1) = 2.08182 · 10−7, Pr(c2) = 0.140771 and p = 0.140771.
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This maximum lies at x = 0.6 and is the same as the result obtained in Section 4.1.3.1. We again discover that our
findings concerning the propagation effects of Equation (29) in the interval x = Pr(e|¬c1, c2) ∈ [0.6, 1] are moderate
or small, which are in line with the results derived in Section 4.1.3.1.

We have examined the consequences of the addition of a leak-probability p on a deviating noisy-OR parameter
upon the causal and diagnostic propagation through the basic mechanism from Figure 3. We observed that the
influence of the leak-probability p, where p ∈ (0, 0.2], in both cases is very little. The propagation effects in the
causal direction are slightly larger when the property of accountability is not satisfied, since we have that the larger
the leak probability p, the larger the gradient. The effect of the leak is negligible when examining the propagation
effects in the diagnostic direction; the propagation effects are again mainly determined by which output probability
we look at and which noisy-OR parameter we vary. We conclude that the overall propagation effects are in line with
the results obtained in Section 4.1.

4.4 Causal mechanisms with multiple cause variables: independent causes

Up to this point, we have focused on two-cause mechanisms only. We will now continue our research to mechanisms
involving three cause variables C1, C2, C3 and their common effect variable E, see Figure 19. Given these three cause
variables, the conditional probability table for E now contains eight probabilities. Using the noisy-OR model for
the variable E, we now have that the values for three of these probabilities must be explicitly specified, namely the
noisy-OR parameters associated with causes C1, C2, C3. These are the conditional probabilities for the occurrence
of the effect e arising in the presence of only one of the three causes.

C1 C2

E

C3

Figure 19: A causal mechanism with the effect variable E and cause variables C1, C2, C3.

We first assume the following:

• The prior probability distributions for cause variables C1, C2 and C3 are non-degenerate, that is Pr(ci) 6= 0
and Pr(¬ci) 6= 0 for i = 1, 2, 3;

• Pr(e|¬c1,¬c2,¬c3) = 0, by the property of accountability [1];

• Because noisy-OR parameters are assumed to be large [5], we mainly focus on Pr(e|c1,¬c2,¬c3), P r(e|¬c1, c2,¬c3)
Pr(e|¬c1,¬c2, c3) ∈ [0.6, 1] in our research. We specifically use this constraint when evaluating the propagation
effects.

We have that probability Pr(e) equals:

Pr(e) = Pr(e|c1, c2, c3)Pr(c1)Pr(c2)Pr(c3) + Pr(e|¬c1, c2, c3)Pr(¬c1)Pr(c2)Pr(c3) + Pr(e|c1,¬c2, c3)Pr(c1)Pr(¬c2)Pr(c3)

+ Pr(e|c1, c2,¬c3)Pr(c1)Pr(c2)Pr(¬c3) + Pr(e|¬c1,¬c2, c3)Pr(¬c1)Pr(¬c2)Pr(c3)

+ Pr(e|¬c1, c2,¬c3)Pr(¬c1)Pr(c2)Pr(¬c3) + Pr(e|c1,¬c2,¬c3)Pr(c1)Pr(¬c2)Pr(¬c3)

+ Pr(e|¬c1,¬c2,¬c3)Pr(¬c1)Pr(¬c2)Pr(¬c3) (31)

Note that the last term Pr(e|¬c1,¬c2,¬c3)Pr(¬c1)Pr(¬c2)Pr(¬c3) = 0 since Pr(e|¬c1,¬c2,¬c3) = 0.

Furthermore, we carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under
study. We consider the gradient ∇ to be small when |∇| ≤ 0.25, moderate when |∇| ∈ (0.25, 0.75), and large when
|∇| ≥ 0.75.
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4.4.1 Propagation effects in the causal direction

We begin by investigating the possible effects on the probability Pr(e) due to changes in a noisy-OR parameter.

Theorem 4.14. Consider the causal mechanism in Figure 19 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2,¬c3)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(e)(x) has the following form:

Pr(e)(x) = xPr(c1)
(

1 + βγPr(c2)Pr(c3)− βPr(c2)− γPr(c3)
)

+ βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3) (32)

where β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3).

Proof :
We first focus on the remaining four probabilities of the conditional probability table, that are:
Pr(e|c1, c2, c3), P r(e|¬c1, c2, c3), P r(e|c1,¬c2, c3) and Pr(e|c1, c2,¬c3). These probabilities can be computed from
the noisy-OR model. For simplicity, we write the noisy-OR parameters associated with cause C2 and C3 as:

Pr(e|¬c1, c2,¬c3) = β

Pr(e|¬c1,¬c2, c3) = γ

Using the noisy-OR model we first compute Pr(e|c1, c2, c3):

Pr(e|c1, c2, c3) = 1−
(
(1− Pr(e|c1,¬c2,¬c3))(1− Pr(e|¬c1, c2,¬c3))(1− Pr(e|¬c1,¬c2, c3))

)
= 1−

(
(1− Pr(e|c1,¬c2,¬c3))(1− β)(1− γ)

)
= 1−

(
(1− x)(1− β)(1− γ)

)
= 1−

(
(1− x)(1− β − γ + βγ)

)
= 1− (1− β − γ + βγ − x+ xβ + xγ − xβγ)

= β + γ − βγ + x− xβ − xγ + xβγ)

= x(1− γ − β + βγ) + β + γ − βγ (33)

Secondly, we compute Pr(e|¬c1, c2, c3):

Pr(e|¬c1, c2, c3) = 1−
(
(1− Pr(e|¬c1, c2,¬c3))(1− Pr(e|¬c1,¬c2, c3)

)
= 1−

(
(1− β)(1− γ

)
= 1−

(
1− β − γ + βγ)

)
= β + γ − βγ
= β(1− γ) + γ (34)

Thirdly, we compute Pr(e|c1,¬c2, c3):

Pr(e|c1,¬c2, c3) = 1−
(
(1− Pr(e|c1,¬c2,¬c3))(1− Pr(e|¬c1,¬c2, c3)

)
= 1−

(
(1− x)(1− γ)

)
= 1−

(
1− γ − x+ xγ)

)
= x− xγ + γ

= x(1− γ) + γ (35)

Finally, we compute Pr(e|c1, c2,¬c3):

Pr(e|c1, c2,¬c3) = 1−
(
(1− Pr(e|c1,¬c2,¬c3))(1− Pr(e|¬c1, c2,¬c3)

)
= 1−

(
(1− x)(1− β)

)
= 1−

(
1− β − x+ xβ)

)
= x(1− β) + β (36)
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From Equation (31), we substitute Pr(e|c1, c2, c3), P r(e|¬c1, c2, c3), P r(e|c1,¬c2, c3) and Pr(e|c1, c2,¬c3) with (33),
(34), (35), and (36) respectively, which gives us:

Pr(e)(x) =
(
x(1− γ − β + βγ) + β + γ − βγ

)
Pr(c1)Pr(c2)Pr(c3) +

(
β(1− γ) + γ

)
Pr(¬c1)Pr(c2)Pr(c3)

+
(
x(1− γ) + γ

)
Pr(c1)Pr(¬c2)Pr(c3) +

(
x(1− β) + β

)
Pr(c1)Pr(c2)Pr(¬c3) + βPr(¬c1)Pr(c2)Pr(¬c3)

+ γPr(¬c1)Pr(¬c2)Pr(c3) + xPr(c1)Pr(¬c2)Pr(¬c3)

Pr(e)(x) = βPr(c1)Pr(c2)Pr(c3) + γPr(c1)Pr(c2)Pr(c3)− βγPr(c1)Pr(c2)Pr(c3)

+ xPr(c1)Pr(c2)Pr(c3)− βxPr(c1)Pr(c2)Pr(c3)− γxPr(c1)Pr(c2)Pr(c3) + βγxPr(c1)Pr(c2)Pr(c3)

+ βPr(¬c1)Pr(c2)Pr(c3) + γPr(¬c1)Pr(c2)Pr(c3)− βγPr(¬c1)Pr(c2)Pr(c3)

+ xPr(c1)Pr(¬c2)Pr(c3)− γxPr(c1)Pr(¬c2)Pr(c3) + γPr(c1)Pr(¬c2)Pr(c3)

+ xPr(c1)Pr(c2)Pr(¬c3)− βxPr(c1)Pr(c2)Pr(¬c3) + βPr(c1)Pr(c2)Pr(¬c3)

+ βPr(¬c1)Pr(c2)Pr(¬c3) + γPr(¬c1)Pr(¬c2)Pr(c3) + xPr(c1)Pr(¬c2)Pr(¬c3)

We use that Pr(i) + Pr(¬i) = 1 for i = 1, 2, 3, and simplify:

Pr(e)(x) = βPr(c2)Pr(c3) + γPr(c2)Pr(c3)− βγPr(c2)Pr(c3) + xPr(c1)Pr(c3)− γxPr(c1)Pr(c3)

+ γPr(¬c2)Pr(c3) + xPr(c1)Pr(¬c3) + βPr(c2)Pr(¬c3)− βxPr(c1)Pr(c2) + βγxPr(c1)Pr(c2)Pr(c3)

Pr(e)(x) = βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3) + xPr(c1)− βxPr(c1)Pr(c2)− γxPr(c1)Pr(c3)

+ βγxPr(c1)Pr(c2)Pr(c3)

And we finally obtain:

Pr(e)(x) = xPr(c1)
(

1 + βγPr(c2)Pr(c3)− βPr(c2)− γPr(c3)
)

+ βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3)

where β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3).

Observation: The gradient of Equation (32) equals Pr(c1)
(

1 +βγPr(c2)Pr(c3)−βPr(c2)−γPr(c3)
)

and is in the

interval (0, 1). The gradient is large when at least the probability Pr(c1) is large. Now to attain a large gradient,
it is favourable that the probabilities Pr(c2) and Pr(c3) are small because we have that βPr(c2) > βγPr(c2)Pr(c3)
and γPr(c3) > βγPr(c2)Pr(c3). The reason for this is because we have assumed that Pr(c2), P r(c3) ∈ (0, 1), and
thereby we have that the noisy-OR parameters β and γ are probabilities as well, meaning that they have a maximum
value of 1. To express this more formally:

0 < βγPr(c2)Pr(c3) < βPr(c2), and

0 < βγPr(c2)Pr(c3) < γPr(c3)

then we trivially find that:

βγPr(c2)Pr(c3) < βPr(c2) + γPr(c3)

Consequently, we find that larger probabilities for the noisy-OR parameters Pr(e|¬c1, c2,¬c3) and Pr(e|¬c1,¬c2, c3)
provide a smaller gradient value. We conclude that a large gradient for Equation (32) will be obtained based on the
following:

• Pr(c1) is large and Pr(c2), P r(c3) are small. In addition we have that the smaller the noisy-OR parameters
associated with causes C2 and C3, the larger the gradient.

We discovered that the causal propagation effects with the three-cause mechanism (see Figure 19) are much in line
with the effects found with the basic causal mechanism (see Section 4.1.1). However, we note that more parameters
are present in the gradient of Equation (32) compared to the gradient of Equation (7). The gradient of Equation
(7) consists of two prior probabilities and one noisy-OR parameter. The gradient of Equation (32) consists of three
prior probabilities and two noisy-OR parameters. This means that the prior probabilities of the corresponding causes
of the deviating noisy-OR parameter need to have more skewed prior probability distributions to attain the same
propagation effects as for a causal mechanism involving two cause variables. We conclude that large propagation
effects may still happen; however, an increase in the number of cause variables will possibly lead to less propagation
effects.
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4.4.2 Propagation effects in the diagnostic direction

We now examine the effects of a deviating noisy-OR value upon diagnostic propagation. We express the example
posterior probability of interest Pr(c1|e) as a function of the value x = Pr(e|c1,¬c2,¬c3) for the probability under
study.

Theorem 4.15. Consider the causal mechanism in Figure 19 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2,¬c3)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(c1|e)(x) has the following form:

Pr(c1|e)(x) =
x+ ζ

1−ζ

x+ ζ
Pr(c1)(1−ζ)

(37)

where ζ = βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3), and wherein β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3).

Proof :
We have for x = Pr(e|c1,¬c2,¬c3):

Pr(c1|e)(x) =
Pr(c1, e)(x)

Pr(e)(x)

=
Pr(e, c1, c2, c3)(x) + Pr(e, c1,¬c2, c3)(x) + Pr(e, c1, c2,¬c3)(x) + Pr(e, c1,¬c2,¬c3)(x)

Pr(c1, e)(x) + Pr(¬c1, e)

=
Pr(e, c1, c2, c3)(x) + Pr(e, c1,¬c2, c3)(x) + Pr(e, c1, c2,¬c3)(x) + Pr(e, c1,¬c2,¬c3)(x)

Pr(c1, e)(x) + Pr(e,¬c1, c2, c3) + Pr(e,¬c1,¬c2, c3) + Pr(e,¬c1, c2,¬c3)
+ 0

We use again that β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3), and substitute Pr(e|c1, c2, c3), Pr(e|¬c1, c2, c3),
Pr(e|c1,¬c2, c3) and Pr(e|c1, c2,¬c3) with (33), (34), (35), and (36) respectively.
For the numerator we have:

xPr(c1)Pr(c2)Pr(c3)− xγPr(c1)Pr(c2)Pr(c3)− xβPr(c1)Pr(c2)Pr(c3) + xβγPr(c1)Pr(c2)Pr(c3) + βPr(c1)Pr(c2)Pr(c3)

+ γPr(c1)Pr(c2)Pr(c3)− βγPr(c1)Pr(c2)Pr(c3)

+ xPr(c1)Pr(¬c2)Pr(c3)− xγPr(c1)Pr(¬c2)Pr(c3) + γPr(c1)Pr(¬c2)Pr(c3)

+ xPr(c1)Pr(c2)Pr(¬c3)− xβPr(c1)Pr(c2)Pr(¬c3) + βPr(c1)Pr(c2)Pr(¬c3)

+ xPr(c1)Pr(¬c2)Pr(¬c3)

And for the denominator we have:

xPr(c1)Pr(c2)Pr(c3)− xγPr(c1)Pr(c2)Pr(c3)− xβPr(c1)Pr(c2)Pr(c3) + xβγPr(c1)Pr(c2)Pr(c3) + βPr(c1)Pr(c2)Pr(c3)

+ γPr(c1)Pr(c2)Pr(c3)− βγPr(c1)Pr(c2)Pr(c3)

+ xPr(c1)Pr(¬c2)Pr(c3)− xγPr(c1)Pr(¬c2)Pr(c3) + γPr(c1)Pr(¬c2)Pr(c3)

+ xPr(c1)Pr(c2)Pr(¬c3)− xβPr(c1)Pr(c2)Pr(¬c3) + βPr(c1)Pr(c2)Pr(¬c3)

+ xPr(c1)Pr(¬c2)Pr(¬c3)

+ βPr(¬c1)Pr(c2)Pr(c3)− βγPr(¬c1)Pr(c2)Pr(c3) + γPr(¬c1)Pr(c2)Pr(c3)

+ βPr(¬c1)Pr(c2)Pr(¬c3)

+ γPr(¬c1)Pr(¬c2)Pr(c3)

Now we use that Pr(i) + Pr(¬i)=1 for i = 1, 2, 3, and simplify:

We now obtain for the numerator:

xPr(c1)Pr(c3)− xγPr(c1)Pr(c3) + γPr(c1)Pr(c3) + xPr(c1)Pr(¬c3)− xβPr(c1)Pr(c2)

+ βPr(c1)Pr(c2) + xβγPr(c1)Pr(c2)Pr(c3)− βγPr(c1)Pr(c2)Pr(c3)

= xPr(c1)− xγPr(c1)Pr(c3)− xβPr(c1)Pr(c2) + xβγPr(c1)Pr(c2)Pr(c3)

+ γPr(c1)Pr(c3) + βPr(c1)Pr(c2)− βγPr(c1)Pr(c2)Pr(c3)
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and denominator:

xPr(c1)Pr(c3)− xγPr(c1)Pr(c3) + γPr(c1)Pr(c3) + xPr(c1)Pr(¬c3)− xβPr(c1)Pr(c2)

+ βPr(c1)Pr(c2) + xβγPr(c1)Pr(c2)Pr(c3)− βγPr(c1)Pr(c2)Pr(c3)

+ βPr(¬c1)Pr(c2)Pr(c3)− βγPr(¬c1)Pr(c2)Pr(c3) + γPr(¬c1)Pr(c2)Pr(c3)

+ βPr(¬c1)Pr(c2)Pr(¬c3) + γPr(¬c1)Pr(¬c2)Pr(c3)

= xPr(c1)− xγPr(c1)Pr(c3)− xβPr(c1)Pr(c2) + xβγPr(c1)Pr(c2)Pr(c3)

+ γPr(c1)Pr(c3) + βPr(c1)Pr(c2) + βPr(¬c1)Pr(c2)− βγPr(c2)Pr(c3) + γ(¬c1)Pr(c3)

= xPr(c1)− xγPr(c1)Pr(c3)− xβPr(c1)Pr(c2) + xβγPr(c1)Pr(c2)Pr(c3) + βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3)

When dividing both numerator and denominator by Pr(c1), we obtain:

Pr(c1|e)(x) =
x
(

1− βPr(c2)− γPr(c3) + βγPr(c2)Pr(c3)
)

+ βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3)

x
(
1− βPr(c2)− γPr(c3) + βγPr(c2)Pr(c3)

)
+ 1

Pr(c1)

(
βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3)

)
Now we divide both the numerator and denominator by

(
1− βPr(c2)− γPr(c3) + βγPr(c2)Pr(c3)

)
, we get:

Pr(c1|e)(x) =

x+ βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)
1−
(
βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)

)
x+ βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)

Pr(c1)

(
1−
(
βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)

))
=

x+ ζ
1−ζ

x+ ζ
Pr(c1)(1−ζ)

.

where ζ = βPr(c2) +γPr(c3)−βγPr(c2)Pr(c3), and wherein β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3).

Observation: We start by noticing that Equation (37) has a similar format as Equation (14), see Section 4.1.3.1.
The vertical asymptote of Equation (37) lies at x = s = − ζ

Pr(c1)(1−ζ) and the horizontal asymptote lies at t = 1.

Equation (37) is a fragment of a fourth-quadrant hyperbola branch, and has its vertex at:

(s+
√
|r|, 1−

√
|r|) =

(
− ζ

Pr(c1)(1− ζ)
+

√( ζ

Pr(c1)(1− ζ)
− ζ

(1− ζ)

)
, 1−

√( ζ

Pr(c1)(1− ζ)
− ζ

(1− ζ)

))
Making use of the results obtained in Section 4.1.3.1, we here find that rather small values of ζ

(1−ζ) and ζ
Pr(c1)(1−ζ)

in Equation (37) produce a vertex with a positive x-coordinate. Furthermore, we have that the vertex only ap-
proaches the upper-left corner of the unit window, if in addition, the difference ζ

Pr(c1)(1−ζ) −
ζ

(1−ζ) is rather

small. Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that
Pr(c2), P r(c3), P r(e|¬c1, c2,¬c3) and Pr(e|¬c1,¬c2, c3) need to be small and Pr(c1) should be large.

We gain more insight into the effects by looking at concrete parameter settings. See Figure 20. We see that Equation
(37) shows that the strongest effects on the output probability Pr(c1|e) in the entire interval [0, 1] can be expected
based on the following parameter setting:

• The prior probabilities Pr(c2), Pr(c3) are small and the prior probability Pr(c1) is small/moderate. In ad-
dition we have that the smaller the noisy-OR parameters Pr(e|¬c1, c2,¬c3), Pr(e|¬c1,¬c2, c3), the larger the
propagation effects.

The results obtained here are in line with the results shown in Section 4.1.3.1. Thereby, we want to emphasize that
one should especially focus on the propagation effects for x = Pr(e|c1,¬c2,¬c3) ≥ 0.6, since the probabilities of
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x = Pr(e|c1,¬c2,¬c3)

P
r(
c 1
|e

)(
x

)

Figure 20: Several example sensitivity functions adhering to Theorem 4.15. (See Table 9 for parameter settings)

Parameter Red Red
dashed

Blue Blue
dashed

Green Green
dashed

Purple Purple
dashed

Orange Orange
dashed

Black Black
dashed

Pr(c1) 0.1 0.1 0.9 0.9 0.5 0.5 0.3 0.3 0.5 0.5 0.9 0.1
Pr(c2) 0.1 0.1 0.9 0.9 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.9
Pr(c3) 0.1 0.1 0.9 0.9 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.9
β = Pr(e|¬c1, c2,¬c3) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.85
γ = Pr(e|¬c1,¬c2, c3) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.85

Table 9: Parameter settings for sensitivity functions from Figure 20

noisy-OR parameters are assumed to be large [5]. As one can observe in Figure 20, strong propagation effects only
occur, with a particular parameter settings, when x is smaller than 0.5, see orange (dashed), purple (dashed) and
red (dashed) function.

To gain better insight into Equation’s (37) propagation effects in the interval x = Pr(e|c1,¬c2,¬c3) ≥ 0.6, we compute
its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (37) are a fragment
of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative d

dxPr(c1|e)(x) > 0
for all x ∈ [0, 1].

Corollary 4.15.1. The first derivative of the sensitivity function from Equation (37) is:

d

dx
Pr(c1|e)(x) =

(βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3))(1−Pr(c1))
Pr(c1)(1−(βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)))(

x+ βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)
Pr(c1)(1−(βPr(c2)+γPr(c3)−βγPr(c2)Pr(c3)))

)2
=

ζ(1−Pr(c1))
Pr(c1)(1−ζ)(

x+ ζ
Pr(c1)(1−ζ)

)2 . (38)

where ζ = βPr(c2) + γPr(c3)− βγPr(c2)Pr(c3), and wherein β = Pr(e|¬c1, c2,¬c3) and γ = Pr(e|¬c1,¬c2, c3).

We plot the derivatives of Equation (38) of specific parameter settings for some functions demonstrated in Figure 20,
namely the red (dashed), green (dashed), purple (dashed) and orange (dashed) function. See Figure 21.
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x = Pr(e|c1,¬c2,¬c3)

d d
x
P
r(
c 1
|e

)(
x

)
Figure 21: Several examples of Equation (38) restricted to the window x ∈ [0, 1] and d

dxPr(c1|e)(x) ∈ [0, 2] (left) and

the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 9 for parameter settings)

In Figure 21, we observe that the derivatives of the exemplar sensitivity functions for x ≥ 0.6, all have values smaller
than 0.75. This indicates that the propagation effects considering these circumstances are moderate at most. Fur-
thermore, we observe that the exemplar red dashed function, where the prior probability Pr(c1), P r(c2) and Pr(c3)
are set to 0.1, possesses the largest value for the derivative in the interval [0.6, 1].

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c1|e)(x) = 0.416666 in the inter-

val x = Pr(e|c1,¬c2,¬c3) ∈ [0.6, 1] of Equation (38) with the following parameter setting (see Appendix D.1):

Pr(c1) = 6.34063 ∗ 10−7, P r(c2) = 2.45256 · 10−7, P r(c3) = 2.45256 · 10−7, P r(e|¬c1, c2,¬c3) = 0.77592 and
Pr(e|¬c1,¬c2, c3) = 0.77592.

This maximum lies at x = 0.6 and we observe that the maximum propagation effects in the interval x ∈ [0.6, 1] are
the same as in Section 4.1.3.1. However, now three (instead of two) extremely small prior probabilities are needed to
attain the same propagation effects as in Section 4.1.3.1, indicating more skewed prior probability distributions are
needed to attain the same propagation effects as for the causal mechanism shown in Figure 3. Again, we note that
the propagation effects in the interval x = Pr(e|c1,¬c2,¬c3) ∈ [0.6, 1] can become moderate at most. We discovered
that the diagnostic propagation effects are again mainly determined by which output probability we look at and
which noisy-OR parameter we vary, which are in line with the result found in Section 4.1.3.1.

We conclude that the propagation effects in both the causal and diagnostic direction of the causal mechanism
shown in Figure 22 involving three cause variables, are in line with the results of the causal mechanism shown in
Figure 3, involving two cause variables, see Section 4.1.1. However, more skewed prior probabilities are needed to
attain the same propagation effects as for the causal mechanism shown in Figure 3. We conclude that the same
propagation effects may still happen; however, the size of the propagation effects will possibly decrease when the
number of cause variables increases.

4.5 Causal mechanism with leak as third cause variable: independent causes

In Section 4.3, the leaky noisy-OR model was introduced wherein the leak-probability p represents the probability
that the effect e will occur as a result of unmodelled causes. Because the leak probability p attains a small value in
practice [1, 2], we assumed p ∈ (0, 0.2). However, since it is (almost) impossible to model all the cause variables, we
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can also argue that the leak is always present. As mentioned earlier, in Section 4.3 we considered the leak p as the
probability of the effect e occurring when all modelled causes are absent. If we now explicitly include the cause of
the leak as a cause in our model, the noisy-OR parameter of this cause becomes equal to p (so still small). The prior
probability of the leak cause is typically set to 1.

In this section, we therefore let the leak represent an additional cause variable, namely CL. The noisy-OR pa-
rameter associated with cause CL, that is Pr(e|¬c1,¬c2, cL), will be very small since it represents the case that the
effect will happen spontaneously.

We will examine the propagation effects on a probability of interest due to deviations in a noisy-OR parameter
if we express the leak-variable as an explicit cause variable. Thereby, we assume that the noisy-OR parameter as-
sociated with this cause variable possesses a small value. The property of accountability is still satisfied. See Figure 22.

C1 C2

E

CL

Figure 22: A causal mechanism with the effect variable E and cause variables C1, C2, CL.

We assume the following:

• The prior probability distributions for cause variables C1 and C2 are non-degenerate, that is Pr(ci) 6= 0 and
Pr(¬ci) 6= 0 for i = 1, 2;

• Pr(cL) = 1;

• Because regular noisy-OR parameters are assumed to be large [5], we mainly focus on Pr(e|c1,¬c2,¬cL) and
Pr(e|¬c1, c2,¬cL) ∈ [0.6, 1] in our research. We specifically use this constraint when evaluating the propagation
effects;

• The noisy-OR parameter Pr(e|¬c1,¬c2, cL) associated with cause CL is in fact the leak probability p from
Section 4.3, and thus has a small probability. We let Pr(e|¬c1,¬c2, cL) ∈ (0, 0.2].

• We assume that the property of accountability is again satisfied, we have Pr(e|¬c1,¬c2,¬cL) = 0.

We carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We
consider the gradient ∇ to be small when |∇| ≤ 0.25, moderate when |∇| ∈ (0.25, 0.75), and large when |∇| ≥ 0.75.

4.5.1 Propagation effects in the causal direction

First we examine the propagation effects in the causal direction, that is, the possible effects on the probability Pr(e)
due to changes in a noisy-OR parameter.

Theorem 4.16. Consider the causal mechanism in Figure 22 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2,¬cL)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(e)(x) has the following form:

Pr(e)(x) = xPr(c1)
(

1 + βγPr(c2)− βPr(c2)− γ
)

+ βPr(c2) + γ − βγPr(c2) (39)

where β = Pr(e|¬c1, c2,¬cL) and γ = Pr(e|¬c1,¬c2, cL).

Proof:
The result follows directly from Equation (32) taking into account that CL = C3 and Pr(c3) = 1.

Observation: The gradient of Equation (39) equals Pr(c1)
(

1 + βγPr(c2) − βPr(c2) − γ
)

and is in the interval

(0, 1). In Section 4.4.1 we found that a large gradient of Equation (32) will be obtained based on the following:
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• Pr(c1) is large and the prior probabilities of the other causes are small. In addition we have that the smaller
the noisy-OR parameters associated with causes other than C1, the larger the gradient.

In contrast with the current situation, we now have that the prior probability of the leak cause is 1. We will now
analyse if this affects our earlier conclusions. We want to examine whether:(

Pr(c1)
(

1 + βγPr(c2)Pr(c3) − βPr(c2) − γPr(c3)
))

Eq.(32)

<

(
Pr(c1)

(
1 + βγPr(c2) − βPr(c2) − γ

))
Eq.39

that is, whether the propagation effects of Equation (39) are larger than of Equation (32). Thus, we need to find out
whether:(

γPr(c3)
(
βPr(c2)− 1

))
Eq.(32)

<
(
γ
(
βPr(c2)− 1

))
Eq.39

(40)

Since βPr(c2)− 1 < 0 in (40), we find that both terms are less than zero. Consequently, we want to examine when:(
γPr(c3)

)
Eq.(32)

>
(
γ
)
Eq.39

.

Now recall that we assumed that γ ∈ (0, 0.2] in Equation (39) and γ ∈ [0.6, 1] in Equation (32). We find that if
Pr(c3) > 1

3 inequality (40) always holds. Therefore, we carefully claim that the propagation effects of Equation (39)
are generally slightly larger than of Equation (32). However, note that the size of the gradient is mainly determined
by Pr(c1): a large gradient can only be obtained if the prior probability Pr(c1) is large.

We conclude that the propagation effects of Equation (39) are in line with Equation (32).

4.5.2 Propagation effects in the diagnostic direction

In this section, we will examine the effects of a deviating noisy-OR value upon diagnostic propagation. We will
express the example posterior probability of interest Pr(c1|e) as a function of the value x = Pr(e|c1,¬c2,¬cL) for
the probability under study.

Theorem 4.17. Consider the causal mechanism in Figure 22 and assume it models a noisy-OR. Let x = Pr(e|c1,¬c2,¬cL)
be the noisy-OR parameter associated with cause C1. Then the sensitivity function Pr(c1|e)(x) has the following form:

Pr(c1|e)(x) =
x+ ζ

1−ζ

x+ ζ
Pr(c1)(1−ζ)

(41)

where ζ = βPr(c2) + γ − βγPr(c2), and wherein β = Pr(e|¬c1, c2,¬cL) and γ = Pr(e|¬c1,¬c2, cL).

Proof:
We have again that the result follows directly from Equation (37) taking into account that CL = C3 and Pr(c3) =
1.

Observation: Making use of the results obtained in Section 4.4.2, we likewise find that rather small values of ζ
(1−ζ)

and ζ
Pr(c1)(1−ζ) in Equation (41) produce a vertex with a positive x-coordinate. Furthermore, we have that the

vertex only approaches the upper-left corner of the unit window, if in addition, the difference ζ
Pr(c1)(1−ζ) −

ζ
(1−ζ)

is rather small. Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find
that Pr(c2), P r(e|¬c1, c2,¬cL) and Pr(e|¬c1,¬c2, cL) need to be small and Pr(c1) should be large. Note that we
now assume that the parameter Pr(e|¬c1,¬c2, cL) is indeed small, in contrast to Section 4.4. If the probability
Pr(c1) approaches 1, and hence the value ζ

Pr(c1)(1−ζ) −
ζ

(1−ζ) becomes very small, the x-coordinate of the vertex will

indeed approach 0. However, this might not result in the largest propagation effects in the entire interval x ∈ [0, 1].
This is because Pr(c1|e)(1) will then approach 1 and since we have that horizontal asymptote lies at t = 1 and
d
dxPr(c1|e)(x) > 0 for x ∈ [0, 1], the propagation effects will be limited.

To support the above mentioned findings and gain more insight into the effects, we consider concrete parameter
settings, see Figure 23. We see, when focusing on the entire interval x = Pr(e|c1,¬c2,¬cL) ∈ [0, 1], that the
strongest effects on the output probability Pr(c1|e) can be expected based on the following parameter setting:
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• The prior probabilities Pr(c2) and Pr(c1) are small. In addition we have that the smaller the noisy-OR
parameters Pr(e|¬c1, c2,¬cL), Pr(e|¬c1,¬c2, cL), the larger the propagation effects.

x = Pr(e|c1,¬c2,¬cL)

P
r(
c 1
|e

)(
x

)

Figure 23: Several example sensitivity functions adhering to Theorem 4.17. (See Table 10 for parameter settings)

Parameter Red Red
dashed

Green Green
dashed

Blue Blue
dashed

Orange Orange
dashed

Black Black
dashed

Purple Purple
dashed

Pr(c1) 0.1 0.1 0.9 0.9 0.5 0.5 0.3 0.3 0.5 0.5 0.9 0.1
Pr(c2) 0.1 0.1 0.9 0.9 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.9
β = Pr(e|¬c1, c2,¬cL) 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.6 0.85 0.85
γ = Pr(e|¬c1,¬c2, cL) 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.2

Table 10: Parameter settings for sensitivity functions from Figure 23

To gain better insight into Equation’s (41) behaviour in the interval x = Pr(e|c1,¬c2,¬cL) ≥ 0.6, we compute its
first derivative. We can build upon the results derived in Section 4.4.2. As before, we have that the result follows
directly from Equation (38), taking into account that CL = C3 and Pr(c3) = 1.

Corollary 4.17.1. The first derivative of the sensitivity function from Equation (41) is:

d

dx
Pr(c1|e)(x) =

ζ(1−Pr(c1))
Pr(c1)(1−ζ)(

x+ ζ
Pr(c1)(1−ζ)

)2 . (42)

where ζ = βPr(c2) + γ − βγPr(c2), and wherein β = Pr(e|¬c1, c2,¬cL) and γ = Pr(e|¬c1,¬c2, cL).

For specific parameter settings for some of the functions demonstrated in Figure 23, namely the red (dashed), blue
(dashed), black (dashed) and orange (dashed) function, we plot the derivatives of Equation (42). See Figure 24.

In Figure 24, we observe that small prior probabilities for Pr(c1) and Pr(c2) and, in addition, small probabil-
ities for the noisy-OR parameters Pr(e|¬c1, c2,¬cL) and Pr(e|¬c1,¬c2, cL), lead to the largest propagation ef-
fects in the interval x ∈ [0.6, 1], see red dashed. Recall that by assumption Pr(e|¬c1, c2,¬cL) ∈ [0.6, 1] and
Pr(e|¬c1,¬c2, cL) ∈ (0, 0.2].
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x = Pr(e|c1,¬c2,¬cL)

d d
x
P
r(
c 1
|e

)(
x

)

x = Pr(e|c1,¬c2,¬cL)

d d
x
P
r(
c 1
|e

)(
x

)
Figure 24: Several examples of Equation (42) restricted to the window x ∈ [0, 1] and d

dxPr(c1|e)(x) ∈ [0, 2.5] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 10 for parameter settings)

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c1|e)(x) = 0.416666 in the inter-

val x = Pr(e|c1,¬c2,¬cL) ∈ [0.6, 1] of Equation (41) with the following parameter setting (see Appendix E.1):

Pr(c1) = 6.31615 ·10−7, P r(c2) = 2.45757 ·10−7, P r(e|¬c1, c2,¬cL) = 0.775591 and Pr(e|¬c1,¬c2, cL) = 1.88362 ·
10−7.

This maximum lies at x = 0.6. We note that the maximum value of d
dxPr(c1|e)(x), for x ∈ [0, 1], is the same as the

result obtained in Section 4.4.2. Apparently, the small value of γ = Pr(e|¬c1,¬c2, cL) ∈ (0, 0.2] is compensated by
the large value of the prior probability Pr(cL) = 1. We note, in order to reach this maximum value 0.416666, that the
prior probabilities Pr(c1) and Pr(c2) are extremely small. Furthermore, the noisy-OR parameter Pr(e|¬c1, c2,¬cL)
is approximately 0.77, which is the same value as in Section 4.4.2. We find that the propagation effects can become
moderate at most.

The overall results obtained in Section 4.5 demonstrate that explicitly modelling leak causes, and thereby re-
stricting the noisy-OR parameter associated with that cause variable to a value in the interval (0, 0.2], lead to similar
propagation effects, see Section 4.4. The propagation effects in the causal and diagnostic direction are mainly in line
with the results obtained in Section 4.4.
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5 Propagation effects due to noisy-MAX parameter changes: indepen-
dent causes

So far, we have examined the propagation effects of the (leaky) noisy-OR model. However, since the (leaky) noisy-
OR model involves binary variables only, its ability to model real-world Bayesian networks is limited to a certain
level. To better model real-world Bayesian networks, the noisy-MAX model came into practice. The purpose of
this interaction model is to extend the noisy-OR model to non-binary discrete variables. The noisy-MAX model
still meets the property of accountability. We have that c0i denotes the absence of a given cause Ci and the other

values of variable Ci, that is cji where j > 0, capture different levels of manifestation of cause Ci. The noisy-
MAX model takes in the probabilities of the parameters that represent for each cause variable individually the
influence of its different manifestation levels for the effect e to arise; that is the following parameter probabilities:
Pr(ei|c01, ..., c0j−1, ckj , c0j+1, ..., c

0
m) for all values ckj , k > 0, of the cause variable Cj and all values ei, i ≥ 0, of the effect

variable E. The remaining probabilities for the CPT are defined through [1, 2]

Pr(ei|c) =

{
Pr(E ≤ ei|c)− Pr(E ≤ ei−1|c) for i > 0

Pr(E ≤ e0|c) for i = 0

with

Pr(E ≤ ei|c) =
∏
j∈J

∑
l=0,...,i

Pr(ei|c01, ..., c0j−1, ckj , c0j+1, ..., c
0
m)

where J is the set of indices of the cause variables Cj that are marked as having a value ckj with k > 0 in the
joint value combination c.

Woudenberg and van der Gaag examined the propagation effects of the noisy-MAX model by investigating the pos-
sible effects of propagating deviating model-calculated probabilities [1]. They studied Pr(e)(x, y) and Pr(c11|e)(x, y)
where x = Pr(e|c11, c2) and y = Pr(e|c21, c2). We will, as done through this entire thesis, examine the propagation
effects of noisy-MAX parameter changes. We will again use the basic mechanism in Figure 3, and for simplicity
reasons, assume that cause variable C1 is ternary and the cause variable C2 and effect variable E are binary, as
Woudenberg and van der Gaag assumed in [1]. We have:

C1 = {c01, c11, c21}
C2 = {¬c2, c2}
E = {¬e, e}

For the basic mechanism from Figure 3 we now assume the following:

• The prior probability distributions for cause variables C1 and C2 are non-degenerate, that is Pr(cji ) 6= 0 for
i = 1, 2 and j = 0, 1, 2;

• Pr(e|c01,¬c2) = 0, by the property of accountability;

• For our experimental analysis, the values of the noisy-MAX parameter probabilities are ordered. With this
we mean that Pr(e|c21,¬c2) > Pr(e|c11,¬c2) > Pr(e|c01,¬c2) = 0. This indicates that we assume that ”higher”
levels of a cause variable will be more likely to cause the effect e. We will focus on Pr(e|c21,¬c2) ∈ [0.7, 1] and
Pr(e|c11,¬c2) ∈ [0.4, 0.7] in our research, where we ensure that the constraint Pr(e|c21,¬c2) > Pr(e|c11,¬c2)
always holds.

• Since cause variable C2 is binary, we assume, as for the noisy-OR parameters, that the presence of this single
factor is likely to trigger the effect e [5]. Therefore, we will focus on Pr(e|c01, c2) ∈ [0.6, 1] in our research. We
specifically use this constraint when evaluating the propagation effects.

We will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We
consider the gradient ∇ to be small when |∇| ≤ 0.25, moderate when |∇| ∈ (0.25, 0.75), and large when |∇| ≥ 0.75.
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5.1 Propagation effects in the causal direction

First, we examine the possible effects on the probability Pr(e) due to changes in a noisy-MAX parameter. Since we
particularly want to investigate the influence of involving ternary variables in our model, we will start with examining
the possible effects due to deviations in the noisy-MAX parameter Pr(e|c11,¬c2); that is the noisy-MAX parameter
associated with value c11 of the ternary cause C1.

Theorem 5.1. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let x = Pr(e|c11,¬c2)
be the noisy-MAX parameter associated with value c11 of cause C1. Then the sensitivity function Pr(e)(x) has the
following form:

Pr(e)(x) = xPr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

+ Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2)

+ Pr(e|c01, c2)Pr(c2) (43)

Proof :
We have that probability Pr(e) is equal to:

Pr(e) = Pr(e|c11, c2)Pr(c11)Pr(c2) + Pr(e|c11,¬c2)Pr(c11)Pr(¬c2) + Pr(e|c21, c2)Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2) + Pr(e|c01,¬c2)Pr(c01)Pr(¬c2) (44)

Note that Pr(e|c01,¬c2)Pr(c01)Pr(¬c2) = 0 since Pr(e|c01,¬c2) = 0 by the property of accountability.

We set x = Pr(e|c11,¬c2) and probabilities have been set for the other 2 noisy-MAX parameters Pr(e|c21,¬c2) and
Pr(e|c01, c2). We compute the values of Pr(e|c11, c2) and Pr(e|c21, c2) by the noisy-MAX model:

1. First, we compute Pr(e|c11, c2), this probability is dependent of x:

Pr(e|c11, c2) = Pr(E ≤ e|c)− Pr(E ≤ ¬e|c)

= Pr(E ≤ e|c11, c2)− Pr(E ≤ ¬e|c11, c2)

We compute the first term Pr(E ≤ e|c11, c2):

Pr(E ≤ e|c11, c2) =
(
Pr(¬e|c11,¬c2) + Pr(e|c11,¬c2)

)
·
(
Pr(¬e|c01, c2) + Pr(e|c01, c2)

)
= 1 · 1 = 1

And the second term Pr(E ≤ ¬e|c11, c2):

Pr(E ≤ ¬e|c11, c2) = Pr(¬e|c11,¬c2) · Pr(¬e|c01, c2)

= (1− x)(1− Pr(e|c01, c2))

= 1− Pr(e|c01, c2)− x+ xPr(e|c01, c2)

We have for Pr(e|c11, c2):

Pr(e|c11, c2) = 1−
(

1− Pr(e|c01, c2)− x+ xPr(e|c01, c2)
)

= Pr(e|c01, c2) + x− xPr(e|c01, c2) (45)

2. Now, we compute Pr(e|c21, c2):

Pr(e|c21, c2) = Pr(E ≤ e|c)− Pr(E ≤ ¬e|c)

= Pr(E ≤ e|c21, c2)− Pr(E ≤ ¬e|c21, c2)

We compute the first term Pr(E ≤ e|c21, c2):

Pr(E ≤ e|c21, c2) =
(
Pr(¬e|c21,¬c2) + Pr(e|c21,¬c2)

)
·
(
Pr(¬e|c01, c2) + Pr(e|c01, c2)

)
= 1 · 1 = 1
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And the second term Pr(E ≤ ¬e|c21, c2):

Pr(E ≤ ¬e|c21, c2) = Pr(¬e|c21,¬c2) · Pr(¬e|c01, c2)

= (1− Pr(e|c21,¬c2))(1− Pr(e|c01, c2))

= 1− Pr(e|c01, c2)− Pr(e|c21,¬c2) + Pr(e|c21,¬c2)Pr(e|c01, c2)

We have for Pr(e|c21, c2):

Pr(e|c21, c2) = 1−
(

1− Pr(e|c01, c2)− Pr(e|c21,¬c2) + Pr(e|c21,¬c2)Pr(e|c01, c2)
)

= Pr(e|c01, c2) + Pr(e|c21,¬c2)− Pr(e|c21,¬c2)Pr(e|c01, c2) (46)

Now we substitute Pr(e|c11, c2) and Pr(e|c21, c2) with the obtained values in Equations (45) and (46) respectively:

Pr(e)(x) =
(
Pr(e|c01, c2) + x− xPr(e|c01, c2)

)
Pr(c11)Pr(c2) + xPr(c11)Pr(¬c2)

+
(
Pr(e|c01, c2) + Pr(e|c21,¬c2)− Pr(e|c21,¬c2)Pr(e|c01, c2)

)
Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

= Pr(e|c01, c2)Pr(c11)Pr(c2) + xPr(c11)Pr(c2)− xPr(e|c01, c2)Pr(c11)Pr(c2) + xPr(c11)Pr(¬c2)

+
(
Pr(e|c01, c2) + Pr(e|c21,¬c2)− Pr(e|c21,¬c2)Pr(e|c01, c2)

)
Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

= x
(
Pr(c11)Pr(c2)− Pr(e|c01, c2)Pr(c11)Pr(c2) + Pr(c11)Pr(¬c2)

)
+ Pr(e|c01, c2)Pr(c11)Pr(c2)

+
(
Pr(e|c01, c2) + Pr(e|c21,¬c2)− Pr(e|c21,¬c2)Pr(e|c01, c2)

)
Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

= x
(
Pr(c11)− Pr(e|c01, c2)Pr(c11)Pr(c2)

)
+ Pr(e|c01, c2)Pr(c11)Pr(c2)

+
(
Pr(e|c01, c2) + Pr(e|c21,¬c2)− Pr(e|c21,¬c2)Pr(e|c01, c2)

)
Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

= xPr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

+ Pr(e|c01, c2)Pr(c11)Pr(c2)

+ Pr(e|c01, c2)Pr(c21)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

Finally, we obtain:

Pr(e)(x) = xPr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

+ Pr(e|c01, c2)Pr(c11)Pr(c2) + Pr(e|c01, c2)Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2) + Pr(e|c01, c2)Pr(c01)Pr(c2)

= xPr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

+ Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2)

+ Pr(e|c01, c2)Pr(c2)

since we have that Pr(c01) + Pr(c11) + Pr(c21) = 1.

Observation: The gradient of the linear function from Equation (43) is large when at least the prior probability
Pr(c11) is large and Pr(c2) and/or Pr(e|c01, c2) is/are small. Since Pr(e|c01, c2) is a noisy-MAX parameter, and we
assume that this noisy-MAX parameter has a probability in the interval [0.6, 1], we find that the gradient of Equation
(43) is large when the prior probability Pr(c11) is large and Pr(c2) is small. In addition we have that the smaller the
noisy-MAX parameter Pr(e|c01, c2), the larger the gradient.
Analogous observations hold for the sensitivity function obtained for the probability of interest Pr(e) when x =
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Pr(e|c21,¬c2); c21 and c11 merely exchange roles.

We now refer to Equation (7), where the possible effects on the probability Pr(e) due to changes in a noisy-OR
parameter x = Pr(e|¬c1, c2) were examined, and all involved variables are binary. The gradient of Equation (7) is
Pr(c2)

(
1 − Pr(e|c1,¬c2)Pr(c1)

)
. Since we assumed that both Pr(e|c01, c2) (in Eq. (43)) and Pr(e|c1,¬c2) (in Eq.

(7)) are in the interval [0.6, 1], we now obtain comparable propagation effects as Equation (7). We conclude that the
propagation effects are in line with the propagation effects of the noisy-OR model involving binary variables only,
see Section 4.1.1. We found similar results since the noisy-MAX parameters associated with the non-binary cause
variable C1 are absent in the gradient.

We will now examine the propagation effects on the prior probability Pr(e) due to changes in the noisy-MAX
parameter Pr(e|c01, c2). Note that we here will study the possible effects due to deviations in the noisy-MAX
parameter associated with the binary cause variable C2.

Theorem 5.2. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let x = Pr(e|c01, c2)
be the noisy-MAX parameter associated with cause C2. Then the sensitivity function Pr(e)(x) has the following form:

Pr(e)(x) = xPr(c2)
(

1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)
)

+ Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21)

(47)

Proof :
We have that probability Pr(e) is equal to Equation (44).
We set x = Pr(e|c01, c2) and probabilities have been set for the other 2 noisy-MAX parameters Pr(e|c11,¬c2) and
Pr(e|c21,¬c2). The values of Pr(e|c11, c2) and Pr(e|c21, c2) are defined through the noisy-MAX model:

1. First, we compute Pr(e|c11, c2), this probability is dependent of x:

Pr(e|c11, c2) = Pr(E ≤ e|c)− Pr(E ≤ ¬e|c)

= Pr(E ≤ e|c11, c2)− Pr(E ≤ ¬e|c11, c2)

We compute the first term Pr(E ≤ e|c11, c2):

Pr(E ≤ e|c11, c2) =
(
Pr(¬e|c11,¬c2) + Pr(e|c11,¬c2)

)
·
(
Pr(¬e|c01, c2) + Pr(e|c01, c2)

)
= 1 · ((1− x) + x)

= 1 · 1 = 1

And the second term Pr(E ≤ ¬e|c11, c2):

Pr(E ≤ ¬e|c11, c2) = Pr(¬e|c11,¬c2) · Pr(¬e|c01, c2)

= (1− Pr(e|c11,¬c2))(1− x)

= 1− x− Pr(e|c11,¬c2) + Pr(e|c11,¬c2)x

We have for Pr(e|c11, c2):

Pr(e|c11, c2) = 1−
(

1− x− Pr(e|c11, c2) + Pr(e|c11,¬c2)x
)

= x+ Pr(e|c11,¬c2)− xPr(e|c11,¬c2) (48)

2. Now, we compute Pr(e|c21, c2), which is also dependent of x:

Pr(e|c21, c2) = Pr(E ≤ e|c)− Pr(E ≤ ¬e|c)

= Pr(E ≤ e|c21, c2)− Pr(E ≤ ¬e|c21, c2)

59



We compute the first term Pr(E ≤ e|c21, c2):

Pr(E ≤ e|c21, c2) =
(
Pr(¬e|c21,¬c2) + Pr(e|c21,¬c2)

)
·
(
Pr(¬e|c01, c2) + Pr(e|c01, c2)

)
= 1 · ((1− x) + x)

= 1 · 1 = 1

And the second term Pr(E ≤ ¬e|c21, c2):

Pr(E ≤ ¬e|c21, c2) = Pr(¬e|c21,¬c2) · Pr(¬e|c01, c2)

= (1− Pr(e|c21,¬c2))(1− x)

= 1− x− Pr(e|c21,¬c2) + Pr(e|c21,¬c2)x

We have for Pr(e|c21, c2):

Pr(e|c21, c2) = 1−
(

1− x− Pr(e|c21,¬c2) + Pr(e|c21,¬c2)x
)

= x+ Pr(e|c21,¬c2)− Pr(e|c21,¬c2)x (49)

Now we substitute Pr(e|c11, c2) and Pr(e|c21, c2) with the obtained values in Equations (48) and (49) respectively:

Pr(e)(x) =
(
x+ Pr(e|c11,¬c2)− xPr(e|c11,¬c2)

)
Pr(c11)Pr(c2) + Pr(e|c11,¬c2)Pr(c11)Pr(¬c2)

+
(
x+ Pr(e|c21,¬c2)− xPr(e|c21,¬c2)

)
Pr(c21)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) + xPr(c01)Pr(c2)

= xPr(c2)
(
Pr(c11)− Pr(e|c11,¬c2)Pr(c11) + Pr(c21)− Pr(e|c21,¬c2)Pr(c21) + Pr(c01)

)
+ Pr(e|c11,¬c2)Pr(c11)Pr(c2) + Pr(e|c11,¬c2)Pr(c11)Pr(¬c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(¬c2)

Since we have that Pr(c01) + Pr(c11) + Pr(c21) = 1 and Pr(c2) + Pr(¬c2) = 1 we finally obtain:

Pr(e)(x) = xPr(c2)
(

1−Pr(e|c11,¬c2)Pr(c11)−Pr(e|c21,¬c2)Pr(c21)
)

+Pr(e|c11,¬c2)Pr(c11)+Pr(e|c21,¬c2)Pr(c21).

Observation: The gradient of Equation (47) is equal to Pr(c2)
(

1 − Pr(e|c11,¬c2)Pr(c11) − Pr(e|c21,¬c2)Pr(c21)
)

.

This gradient will obtain a large value when the prior probabilities of the cause variables that correspond with the
values in the noisy-MAX parameter Pr(e|c01, c2) are large; meaning the probabilities Pr(c01) and Pr(c2). In addition
we have that the smaller the probabilities for the noisy-MAX parameters Pr(e|c21,¬c2) and Pr(e|c21,¬c2), the larger
the propagation effects.
We now observe that both noisy-MAX parameters associated with cause C1 are present in the gradient. By as-
sumption we have that Pr(e|c21,¬c2) ∈ [0.7, 1] and Pr(e|c11,¬c2) ∈ [0.4, 0.7]. For the term Pr(e|c21,¬c2)Pr(c21)
we find that if the prior probability Pr(c21) is large, the term Pr(e|c21,¬c2)Pr(c21) presumably will be large, and
thus, will decrease the gradient’s value. For the term Pr(e|c11,¬c2)Pr(c11) we have that this term will presum-
ably be smaller since Pr(e|c11,¬c2) ∈ [0.4, 0.7]. This means that this term will probably not decrease the value
of the gradient as much as the term Pr(e|c21,¬c2)Pr(c21). However, note that the above argument is not com-
plete. If for example Pr(c21) is large, than Pr(c11) = 1 − Pr(c21) − Pr(c01) will probably be smaller than Pr(c21),
and thus Pr(e|c11,¬c2)Pr(c11) < Pr(e|c21,¬c2)Pr(c21), indicating that the gradient’s value is more decreased by
Pr(e|c21,¬c2)Pr(c21).

The value of the gradient is largely determined by the prior probabilities Pr(c2) and Pr(c01). This indicates that
the propagation effects in the causal direction when using the noisy-MAX model, are in line when using the noisy-
OR model. However, by assumption we have that the lower the value cji of the noisy-MAX parameters associated
with cause Ci, the smaller the probability of the corresponding noisy-MAX parameter. For Equation (47), we find
that the smaller the probabilities for the noisy-MAX parameters Pr(e|c21,¬c2) and Pr(e|c21,¬c2), the larger the
gradient. Therefore, we conclude that the propagation effects in the causal direction are possibly higher when using
the noisy-MAX model than for the noisy-OR model involving binary variables only.
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5.2 Propagation effects in the diagnostic direction

In this section, we will study the propagation effects of a deviating noisy-MAX parameter in the diagnostic direction.
We will first study the effects on Pr(c11|e)(x) where x = Pr(e|c11,¬c2).

Theorem 5.3. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let x = Pr(e|c11,¬c2)
be the noisy-MAX parameter associated with value c11 of cause C1. Then the sensitivity function Pr(c11|e)(x) has the
following form:

Pr(c11|e)(x) =
x+ α

γ

x+ β
γ

. (50)

where γ = Pr(c11)
(

1−Pr(e|c01, c2)Pr(c2)
)

, α = Pr(e|c01, c2)Pr(c11)Pr(c2) and β = Pr(e|c01, c2)Pr(c2)+Pr(e|c21,¬c2)Pr(c21)−
Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2).

Proof:
We have for x = Pr(e|c11,¬c2):

Pr(c11|e)(x) =
Pr(c11, e)(x)

Pr(e)(x)

=
Pr(e, c11, c2)(x) + Pr(e, c11,¬c2)(x)

Pr(e)(x)

=
Pr(e|c11, c2)Pr(c11)Pr(c2) + xPr(c11)Pr(¬c2)

Pr(e)(x)
where Pr(e|c11, c2) depends on x as captured in Equation (45)

Furthermore, we have that Pr(e)(x) = Pr(c01, e)(x) + Pr(c11, e)(x) + Pr(c21, e)(x). Pr(c01, e)(x) is equal to:

Pr(c01, e)(x) = Pr(e, c01, c2)(x) + Pr(e, c01,¬c2)(x)

= Pr(e|c01, c2)Pr(c01)Pr(c2) + Pr(e|c01,¬c2)Pr(c01)Pr(¬c2)

= Pr(e|c01, c2)Pr(c01)Pr(c2) + 0 · Pr(c01)Pr(¬c2)

= Pr(e|c01, c2)Pr(c01)Pr(c2)

and Pr(c21, e)(x) is equal to:

Pr(c21, e)(x) = Pr(e, c21, c2)(x) + Pr(e, c21,¬c2)(x)

= Pr(e|c21, c2)Pr(c21)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(¬c2)

where Pr(e|c21, c2) depends on x as captured in Equation (46)

We substitute Pr(e|c11, c2) and Pr(e|c21, c2) with the values From Equation (45) & (46), respectively, and obtain:

For the numerator Pr(c11|e)(x) we have:(
Pr(e|c01, c2) + x− xPr(e|c01, c2)

)
Pr(c11)Pr(c2) + xPr(c11)Pr(¬c2), working out the parentheses gives:

Pr(e|c01, c2)Pr(c11)Pr(c2) + xPr(c11)Pr(c2)− xPr(e|c01, c2)Pr(c11)Pr(c2) + xPr(c11)Pr(¬c2)

Since Pr(c2) + Pr(¬c2) = 1, we find for the numerator:

xPr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

+ Pr(e|c01, c2)Pr(c11)Pr(c2).

For the denominator Pr(e)(x) we have:

Pr(e|c01, c2)Pr(c01)Pr(c2)+
(
Pr(e|c01, c2)+x−xPr(e|c01, c2)

)
Pr(c11)Pr(c2)+xPr(c11)Pr(¬c2)+

(
Pr(e|c01, c2)+ Pr(e|c21,¬c2)−

Pr(e|c21,¬c2)Pr(e|c01, c2)
)
Pr(c21)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(¬c2)
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Because Pr(c01) + Pr(c11) + Pr(c21) = 1 and Pr(c2) + Pr(¬c2) = 1 we obtain for the denominator:

xPr(c11)
(

1−Pr(e|c01, c2)Pr(c2)
)

+Pr(e|c01, c2)Pr(c2)+Pr(e|c21,¬c2)Pr(c21)−Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2).

Now, if we divide both the numerator and denominator by Pr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

, we find:

Pr(c11|e)(x) =

x+
Pr(e|c01,c2)Pr(c

1
1)Pr(c2)

Pr(c11)

(
1−Pr(e|c01,c2)Pr(c2)

)
x+

Pr(e|c01,c2)Pr(c2)+Pr(e|c21,¬c2)Pr(c21)−Pr(e|c21,¬c2)Pr(e|c01,c2)Pr(c21)Pr(c2)

Pr(c11)

(
1−Pr(e|c01,c2)Pr(c2)

)
=
x+ α

γ

x+ β
γ

where γ = Pr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

, α = Pr(e|c01, c2)Pr(c11)Pr(c2) and

β = Pr(e|c01, c2)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2).

Observation: Since Equation (50) is a hyperbolic function, we use the properties of hyperbolic functions described
in Section 2.5, and discover that the vertical asymptote of Equation (50) lies at x = s = −βγ . Because β

γ > 0, the
asymptote is located to the left of the unit window and the horizontal asymptote lies at t = 1. As a result, we find
that Equation (50) is a fragment of a fourth-quadrant hyperbola branch.

From generic research of sensitivity functions from Bayesian networks, we find that the effect of deviations in
the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding
hyperbola branch [1]. Generally, we have that the closer the vertex of the fourth-quadrant hyperbola branch lies
to the upper-left corner of the unit window, the larger the propagation effects. We find that Equation (50) has its
vertex at:

(s+
√
|r|, 1−

√
|r|) =

(
− β

γ
+

√∣∣∣α− β
γ

∣∣∣, 1−√∣∣∣α− β
γ

∣∣∣)

The vertex is located within the unit window for values of α
γ ,

β
γ for which β

γ <

√∣∣∣α−βγ ∣∣∣ < 1. To obtain β
γ <

√∣∣∣α−βγ ∣∣∣
given that β

γ ≥
α
γ , we discover that merely rather small values of αγ produce a vertex with an x-coordinate in the unit

range. Moreover, the vertex only approaches the upper-left corner of the unit window, if in addition the difference
β
γ −

α
γ = β−α

γ is rather small, thus γ should be large and β − α small. For γ to be large, Pr(c11) should be large and

Pr(e|c01, c2) and Pr(c2) should be small. For β − α we have:

β − α = Pr(e|c01, c2)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2)− Pr(e|c01, c2)Pr(c11)Pr(c2)

= Pr(e|c01, c2)Pr(c2)
(
1− Pr(c11)− Pr(e|c21,¬c2)Pr(c21)

)
+ Pr(e|c21,¬c2)Pr(c21)

Thus, for β − α to be small, Pr(e|c01, c2) and Pr(c2) should be small and Pr(c11) large. Since Pr(e|c21,¬c2)Pr(c21) >
Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2) it is favourable that Pr(e|c21,¬c2) and Pr(c21) are small as well.

Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that Pr(c11)
and Pr(¬c2) need to be large and Pr(c01), P r(c21), P r(e|c01, c2) and Pr(e|c21,¬c2) small.

To support the above mentioned findings and gain more insight into influence of the parameter settings on Equa-
tion (50), we consider concrete parameter settings, see Figure 25. When focusing on the entire interval [0, 1] for
x = Pr(e|c11,¬c2), we observe that the largest propagation effects indeed occur when the prior probabilities Pr(c11)
and Pr(¬c2) are large (purple & red). Moreover, we observe that smaller probabilities for the noisy-MAX parameters
Pr(e|c01, c2) and Pr(e|c21,¬c2) will lead to a minor increase in the propagation effects, this effect is conveyed by the
solid versus dashed function for each colour.

Since, by assumption Pr(e|c11,¬c2) ∈ [0.4, 0.7], we should especially focus on propagation effects for x =
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x = Pr(e|c11,¬c2)

P
r(
c1 1
|e

)(
x

)

Figure 25: Several example sensitivity functions adhering to Theorem 5.3. (See Table 11 for parameter settings)

Parameter Red Red
dashed

Blue Blue
dashed

Green Green
dashed

Purple Purple
dashed

Orange Orange
dashed

Pr(c01) 0.05 0.05 0.25 0.25 0.45 0.45 0.005 0.005 0.3333 0.3333
Pr(c11) 0.9 0.9 0.5 0.5 0.1 0.1 0.99 0.99 0.3333 0.3333
Pr(c21) 0.05 0.05 0.25 0.25 0.45 0.45 0.005 0.005 0.3333 0.3333
Pr(c2) 0.1 0.1 0.5 0.5 0.9 0.9 0.01 0.01 0.1 0.1
Pr(e|c01, c2) 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.6
Pr(e|c21,¬c2) 0.85 0.7 0.85 0.7 0.85 0.7 0.85 0.7 0.85 0.7

Table 11: Parameter settings for sensitivity functions from Figure 25

Pr(e|c11,¬c2) ∈ [0.4, 0.7]. In Figure 25 it is shown that large propagation effects only occur when x = Pr(e|c11,¬c2)
is particularly small. To acquire better insight into Equation’s (50) behaviour in the interval x = Pr(e|c11,¬c2) ∈
[0.4, 0.7], we compute its first derivative. Since the sensitivity functions corresponding to Equation (50) are a fragment
of a fourth-quadrant hyperbola branch, we realize that d

dxPr(c
1
1|e)(x) > 0 for all x ∈ [0, 1].

Corollary 5.3.1. The first derivative of the sensitivity function from Equation (50) is:
d
dxPr(c

1
1|e)(x) =

=
Pr(e|c01, c2)Pr(c2)

(
1− Pr(c11)

)
+ Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2)

Pr(c11)
(
1− Pr(e|c01, c2)Pr(c2)

)(
x+

Pr(e|c01,c2)Pr(c2)+Pr(e|c21,¬c2)Pr(c21)−Pr(e|c21,¬c2)Pr(e|c01,c2)Pr(c21)Pr(c2)
Pr(c11)

(
1−Pr(e|c01,c2)Pr(c2)

) )2
=

β − α
γ
(
x+ β

γ

)2 (51)

where γ = Pr(c11)
(

1− Pr(e|c01, c2)Pr(c2)
)

, α = Pr(e|c01, c2)Pr(c11)Pr(c2) and

β = Pr(e|c01, c2)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)− Pr(e|c21,¬c2)Pr(e|c01, c2)Pr(c21)Pr(c2).

For specific parameter settings for some of the functions demonstrated in Figure 25, namely the red (dashed), blue
(dashed) and orange (dashed) function, we plot the derivatives of Equation (44). See Figure 26.

In Figure 26, the horizontal lines at y = 0.25 and y = 0.75 again indicate the boundaries between what we
consider to be a small, moderate or large gradient. The vertical line at x = 0.4 indicates for which x−values we
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assume that the noisy-MAX parameter x = Pr(e|c11,¬c2) takes on plausible probabilities. As mentioned before, we
focus on the propagation effects for x ∈ [0.4, 0.7].

x = Pr(e|c11,¬c2)

d d
x
P
r(
c1 1
|e

)(
x

)

x = Pr(e|c11,¬c2)
d d
x
P
r(
c1 1
|e

)(
x

)

Figure 26: Several examples of Equation (51) restricted to the window x ∈ [0, 1] and d
dxPr(c

1
1|e)(x) ∈ [0, 3.5] (left)

and the window x ∈ [0, 1] and d
dxPr(c

1
1|e)(x) ∈ [0, 0.8] (right). (See Table 11 for parameter settings)

We observe, when now focusing on the interval x ∈ [0.4, 0.7], that for the sensitivity functions shown in Figure 25
the largest propagation effects occur for the orange (dashed) function. For the orange (dashed) function the prior
probability Pr(c2) is small and the prior distribution for C1 takes on an uniform distribution. Furthermore, we find
similar results compared to Section 4.1.3.1: smaller noisy-MAX parameters don’t lead to larger propagation effects
anymore, this effect is conveyed by the solid versus dashed function for each colour. For the exemplar red (dashed)
function we even observe the opposite effect: larger noisy-MAX parameters lead to larger propagation effects.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c

1
1|e)(x) = 0.625 in the interval

x = Pr(e|c11,¬c2) ∈ [0.4, 1] of Equation (51) with several parameter settings (see Appendix F.1). For example, one
of the parameter settings is:

Pr(c01) = 0.205785, P r(c11) = 0.536938, P r(c21) = 0.257277, P r(c2) = 6.74835 · 10−8, P r(e|c01, c2) = 0.750893 and
Pr(e|c21,¬c2) = 0.834803.

This maximum lies at x = 0.4.

We conclude that Equation (50) shows that the strongest effects on the output probability Pr(c11|e) in the interval
x = Pr(e|c11,¬c2) ∈ [0.4, 0.7] can be expected, based on the following:

• The probabilities Pr(c01), Pr(c21) are small, Pr(c2) is extremely small, and Pr(c11) is moderate.

We have found that the propagation effects again can become moderate at most. However, in the noisy-OR
model we assumed that the noisy-OR parameters can’t attain a value smaller than 0.6. Now, by assumption
x = Pr(e|c11,¬c2) ∈ [0.4, 0.7]. As a result, we find that the maximum gradient of d

dxPr(c
1
1|e)(x) can attain a

larger value than we have found before: a gradient of 0.625 compared to 0.416666.

Now we will examine the propagation effects due to changes in the noisy-MAX parameter associated with the
binary cause C2. We continue our research of the noisy-MAX model by studying the effects on Pr(c2|e)(x) where
x = Pr(e|c01, c2).

64



Theorem 5.4. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let x = Pr(e|c01, c2)
be the noisy-MAX parameter associated with cause C2. Then the sensitivity function Pr(c2|e)(x) has the following
form:

Pr(c2|e)(x) =
x+ β

1−β

x+ β
Pr(c2)(1−β)

(52)

where β = Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21).

Note that the ternary cause variable C1 is absent in both x = Pr(e|c01, c2) and the output probability of interest
Pr(c2|e). We expect that the results will be quite similar to Theorem 4.5

Proof:
We have for x = Pr(e|c01, c2):

Pr(c2|e)(x) =
Pr(c2, e)(x)

Pr(e)(x)

=
Pr(e, c01, c2)(x) + Pr(e, c11, c2)(x) + Pr(e, c21, c2)(x)

Pr(e)(x)

=
xPr(c01)Pr(c2) + Pr(e|c11, c2)Pr(c11)Pr(c2) + Pr(e|c21, c2)Pr(c21)Pr(c2)

Pr(e)(x)

Since Pr(e|c11, c2) and Pr(e|c21, c2) are dependent of x we compute these values with the noisy-MAX model. We find
Pr(e|c11, c2) = x + Pr(e|c11,¬c2) − xPr(e|c11,¬c2) (by Eq. 48) and Pr(e|c21, c2) = x + Pr(e|c21,¬c2) − Pr(e|c21,¬c2)x
(by Eq. 49)

In addition, we have that Pr(e)(x) = Pr(c2, e)(x) + Pr(¬c2, e)(x) and Pr(¬c2, e)(x) is equal to:

Pr(¬c2, e)(x) = Pr(e, c01,¬c2)(x) + Pr(e, c11,¬c2)(x) + Pr(e, c21,¬c2)(x)

= Pr(e|c01,¬c2)Pr(c01)Pr(¬c2) + Pr(e|c11,¬c2)Pr(c11)Pr(¬c2) + Pr(e|c21,¬c2)Pr(c21)Pr(¬c2)

= Pr(e|c11,¬c2)Pr(c11)Pr(¬c2) + Pr(e|c21,¬c2)Pr(c21)Pr(¬c2) (since Pr(e|c01,¬c2) = 0)

For the numerator we find:

= xPr(c01)Pr(c2) +
(
x+ Pr(e|c11,¬c2)− xPr(e|c11,¬c2)

)
Pr(c11)Pr(c2) +

(
xPr(e|c21,¬c2)− xPr(e|c21,¬c2)

)
Pr(c21)Pr(c2)

= xPr(c01)Pr(c2) + xPr(c11)Pr(c2) + Pr(e|c11,¬c2)Pr(c11)Pr(c2)− xPr(e|c11,¬c2)Pr(c11)Pr(c2) + xPr(c21)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(c2)− xPr(e|c21,¬c2)Pr(c21)Pr(c2)

= xPr(c2)− xPr(e|c11,¬c2)Pr(c11)Pr(c2)− xPr(e|c21,¬c2)Pr(c21)Pr(c2) + Pr(e|c11,¬c2)Pr(c11)Pr(c2)

+ Pr(e|c21,¬c2)Pr(c21)Pr(c2)

= xPr(c2)
(

1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)
)

+ Pr(e|c11,¬c2)Pr(c11)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)

For the denominator we find:

= xPr(c2)
(

1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)
)

+ Pr(e|c11,¬c2)Pr(c11)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)

+ Pr(e|c11,¬c2)Pr(c11)Pr(¬c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)

= xPr(c2)
(

1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)
)

+ Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21)
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Thus we find Pr(c2|e)(x) =

=
xPr(c2)

(
1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)

)
+ Pr(e|c11,¬c2)Pr(c11)Pr(c2) + Pr(e|c21,¬c2)Pr(c21)Pr(c2)

xPr(c2)
(

1− Pr(e|c11,¬c2)Pr(c11)− Pr(e|c21,¬c2)Pr(c21)
)

+ Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21)

=

x+
Pr(e|c11,¬c2)Pr(c

1
1)Pr(c2)+Pr(e|c

2
1,¬c2)Pr(c

2
1)Pr(c2)

Pr(c2)

(
1−Pr(e|c11,¬c2)Pr(c11)−Pr(e|c21,¬c2)Pr(c21)

)
x+

Pr(e|c11,¬c2)Pr(c11)+Pr(e|c21,¬c2)Pr(c21)

Pr(c2)

(
1−Pr(e|c11,¬c2)Pr(c11)−Pr(e|c21,¬c2)Pr(c21)

)

=

x+
Pr(e|c11,¬c2)Pr(c

1
1)+Pr(e|c

2
1,¬c2)Pr(c

2
1)(

1−Pr(e|c11,¬c2)Pr(c11)−Pr(e|c21,¬c2)Pr(c21)
)

x+
Pr(e|c11,¬c2)Pr(c11)+Pr(e|c21,¬c2)Pr(c21)

Pr(c2)

(
1−Pr(e|c11,¬c2)Pr(c11)−Pr(e|c21,¬c2)Pr(c21)

)
=

x+ β
1−β

x+ β
Pr(c2)(1−β)

where β = Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21).

Observation: Since Equation (52) has exactly the same format as Equation (14), we refer to Section 4.1.3.1. We
find that the vertex of Equation (52) approaches the upper-left corner of the unit window only if Pr(c01) and Pr(c2)
are large and Pr(c11), P r(c21), P r(e|c11,¬c2) and Pr(e|c21,¬c2) are small.

In Figure 27, some sensitivity functions of Equation (52) are plotted. We indeed observe that the vertex of Equation
(52) approaches the upper-left corner of the unit window if Pr(c01) and Pr(c2) are large and Pr(c11), P r(c21), P r(e|c11,¬c2)
and Pr(e|c21,¬c2) are small, see red (dashed) function.

x = Pr(e|c01, c2)

P
r(
c 2
|e

)(
x

)

Figure 27: Several example sensitivity functions adhering to Theorem 5.4. (See Table 12 for parameter settings)
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Parameter Red Red
dashed

Blue Blue
dashed

Green Green
dashed

Orange Orange
dashed

Pr(c01) 0.8 0.8 0.8 0.8 0.8 0.8 0.1 0.1
Pr(c11) 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.7
Pr(c21) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Pr(c2) 0.9 0.9 0.5 0.5 0.1 0.1 0.5 0.5
Pr(e|c11,¬c2) 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4
Pr(e|c21,¬c2) 0.85 0.7 0.85 0.7 0.85 0.7 0.85 0.7

Table 12: Parameter settings for sensitivity functions from Figure 27

For better insight into the propagation effects for x = Pr(e|c01, c2) ≥ 0.6, we compute its first derivative.

Corollary 5.4.1. The first derivative of the sensitivity function from Equation (52) is:
d
dxPr(c2|e)(x) =

=
(Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21))

(
1− Pr(c2)

)
Pr(c2)

(
1−

(
Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21)

))(
x+

(Pr(e|c11,¬c2)Pr(c11)+Pr(e|c21,¬c2)Pr(c21))
Pr(c2)

(
1−(Pr(e|c11,¬c2)Pr(c11)+Pr(e|c21,¬c2)Pr(c21))

))2
=

β
(
1− Pr(c2)

)
Pr(c2)(1− β)

(
x+ β

Pr(c2)
(
1−β
))2 (53)

where β = Pr(e|c11,¬c2)Pr(c11) + Pr(e|c21,¬c2)Pr(c21).

Now, we plot the derivatives for the red (dashed), blue (dashed) and green (dashed) function, see Figure 28. We
observe that only for the green (dashed) exemplar sensitivity function the propagation effects are moderate for
some x ∈ [0.6, 1]. The parameter settings for the green (dashed) function is shown in Table 12: Pr(c01) is large
and Pr(c11), P r(c21) and Pr(c2) are small. Again we find that smaller noisy-MAX parameters Pr(e|c11,¬c2) and
Pr(e|c21,¬c2) don’t necessarily lead to larger propagation effect in the interval x = Pr(e|c01, c2) ∈ [0.6, 1]; for the blue
(dashed) function we even observe the opposite effect.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max d
dxPr(c2|e)(x) = 0.41666 in the interval

x = Pr(e|c01, c2) ∈ [0.6, 1] of Equation (53) with the following parameter settings (see Appendix F.2):

Pr(c01) = 0.9999..., P r(c11) = 3.0174 ·10−7, P r(c21) = 2.26303 ·10−7, P r(c2) = 6.3493 ·10−7, P r(e|c11, c2) = 0.634626
and Pr(e|c21,¬c2) = 0.837225.

This maximum lies at x = 0.6.

We conclude that Equation (52) shows that the strongest effects on the output probability Pr(c2|e) in the interval
x = Pr(e|c01, c2) ∈ [0.6, 1] can be expected, based on the following:

• The probabilities Pr(c11), Pr(c21) and Pr(c2) are small and Pr(c01) is large. In addition we conclude that the
influence of the noisy-MAX parameters Pr(e|c01, c2) and Pr(e|c21,¬c2) is minor.

We discovered that the propagation effects in the diagnostic direction, when studying Pr(c2|e)(x) where x =
Pr(e|c01, c2) and Pr(c11|e)(x) where x = Pr(e|c11,¬c2), can again become moderate at most. The same maximum
value of Equation (53) is found as the result corresponding to Equation (15) in Section 4.1.3.1, as expected. How-
ever, the maximum gradient’s value of Equation (51) is higher, namely 0.625 instead of 0.41666. This means that
the properties underlying the noisy-MAX model can have more impact on the propagation effects compared to the
noisy-OR model, when studying the effects in the diagnostic direction. We discovered that the propagation effects
in the diagnostic direction now mainly depend on which output probability we look at and which value of cji of the
noisy-MAX parameter associated with cause Ci we vary.
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Figure 28: Several examples of Equation (53) restricted to the window x ∈ [0, 1] and d

dxPr(c2|e)(x) ∈ [0, 2.5] (left)

and the window x ∈ [0, 1] and d
dxPr(c2|e)(x) ∈ [0, 0.8] (right). (See Table 12 for parameter settings)

Altogether, we discovered that the overall propagation effects in both the causal and diagnostic direction possibly
increase when using the noisy-MAX model compared to the noisy-OR model.
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6 Summary and discussion

In this section, we will first summarise our findings and subsequently describe the differences and similarities of our
findings with Woudenberg and van der Gaag [1].

We started our investigation with a basic causal mechanism with a common effect variable E and two independent
cause variables, involving binary variables only. The conditional probability tables (CPT) of this causal mechanism
involve eight probabilities, but using the noisy-OR model and thus assuming the property of accountability, only
two parameters are required beforehand. We performed a sensitivity analysis wherein we examined the effect of
deviations in one of the noisy-OR parameters on an output probability of interest. In addition, we also investigated
the effect of possibly dependent cause variables in the basic causal mechanism. For both causal mechanisms, we
discovered that large propagation effects in the causal direction on the probability of interest can only be expected
if the prior probability of the cause associated with the noisy-OR parameter under study has a large probability of
being present and the prior probability of the other cause is likely to be absent. Moreover, we found that a large
probability for the other noisy-OR parameter involved, namely the noisy-OR parameter that is not set to x, will
positively influence the robustness of the causal mechanism. In addition, we observed that by actually establishing
the presence or absence of cause Ci, the propagation effects are no longer dependent of Pr(ci) or Pr(¬ci), respec-
tively. Furthermore, we found that the effect of possibly dependent cause variables is merely quite strong when
the conditional probability Pr(c2|c1), that is the probability capturing the strength of the dependency between the
causes, has a completely different value than Pr(c2). The amount in which the propagation effects decrease/increase
depends on the conditional probability Pr(c2|c1) compared to the prior probability Pr(c2). We found that a small
conditional probability Pr(c2|c1) can possibly increase the propagation effects and a large value for Pr(c2|c1) can
possibly decrease the propagation effects. When examining the propagation effects in the diagnostic direction, we
discovered that the propagation effects strongly depend on which output probability we look at and which noisy-OR
parameter we vary.

When the accountability property is not satisfied/assumed, the leaky noisy-OR model can be used for the causal
mechanism’s elicitation task to complete the CPT. The same results generally hold for using the leaky noisy-OR
model as for using the noisy-OR model. The leak probability increases the propagation effects slightly in the causal
direction, since we discovered that the larger the leak probability, the larger the gradient of the corresponding sen-
sitivity function. However, we again emphasize that this effect is minimal.

We demonstrated that including an additional cause variable does not lead to larger propagation effects. We
observed that the prior probabilities of the corresponding causes of the deviating noisy-OR parameter need to have
more skewed prior probability distributions to attain the same propagation effects as for a causal mechanism involv-
ing two cause variables, indicating possibly less propagation effects. However, a network engineer should keep in
mind that the involvement of additional causes immediately enlarges the elicitation task, as the probabilities needed
by an interaction model to complete the CPT increases linearly in the number of cause variables.

We also studied a situation wherein a causal mechanism modelled the leak as an explicit cause in our model. The
prior probability of the leak cause was set to 1, indicating the presence of unavoidable unmodelled causes. The noisy-
OR parameter associated with this cause represented the case that the effect occurred due to unmodelled causes.
This parameter now attained a probability in the interval (0, 0.2]. Again, the causal and diagnostic propagation
effects were in line with what we had discovered before.

Finally, we investigated a basic causal mechanism with a common effect variable E and two independent cause
variables involving a ternary cause variable. Here, an interaction model called the noisy-MAX was used to compute
the parameters involving the presence of more than one cause. Recall that the assumptions underlying the noisy-
MAX model indicate that the lower the value of cji of the noisy-MAX parameter associated with cause Ci, the lower
the probability (interval) of the corresponding noisy-MAX parameter. In this case, we found that the propagation
effects in the causal direction are possibly slightly higher than when using the noisy-OR model, involving binary
variables only. The propagation effects in the diagnostic direction now mainly depend on which output probability
we look at and which value of cji of the noisy-MAX parameter associated with cause Ci we vary. The same result
holds for the propagation effects in the diagnostic direction: the propagation effects are possibly higher than when
using the noisy-OR model.

We conducted our research for different parameters than Woudenberg and van der Gaag since we considered a
different research question. Woudenberg and van der Gaag examined the propagation effects due to deviating model-
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calculated probability values. We studied the propagation effects due to an inaccurate model’s input parameter. We
found that inaccurate estimates of the probabilities for the input parameters of the noisy-OR model and its variants
can result in different output probabilities, and therefore, possibly harm the validity of a Bayesian network’s output.
However, we also discovered that inaccurate estimates for the input parameters in many cases will not lead to large
propagation effects. These results agree with the findings of Woudenberg and van der Gaag. We will now clearly
state the differences and similarities of our findings compared to [1].

For the causal propagation effects, when using the noisy-OR model, we obtained quite similar results as Wouden-
berg and van der Gaag in [1]. The results of both our studies indicate that the propagation effects in the causal
direction can only be large if the yet unobserved cause variables corresponding to the varied parameter in the mech-
anism have quite skewed prior probability distributions. For clarification, when Woudenberg and van der Gaag set
x = Pr(e|c1, c2), they found that large propagation effects in the causal direction are possible if both causes C1 and
C2 are likely to be present. When we set, e.g. x = Pr(e|¬c1, c2), then we discovered that large propagation effects
are possible only if cause C1 is likely to be absent and C2 present. Contrary to [1], we found that the gradient of the
corresponding sensitivity function, when studying the causal propagation effects, is dependent of the other noisy-OR
parameter involved. This difference can be explained by the fact that Woudenberg and van der Gaag varied a pa-
rameter that is actually calculated from the input parameters by the model’s rules; the other noisy-OR parameter
is, in fact, hidden in the parameter they vary. In our study, the other noisy-OR parameter is in the gradient since
the parameter we vary is not calculated from the input parameters but is an input parameter itself. However, the
effect of this other noisy-OR parameter being present in the gradient in our study is rather small since the properties
underlying the noisy-OR model assume that noisy-OR parameters attain high values in practice [5]. Since only a
small value of the noisy-OR parameter involved in the gradient increases the propagation effects, we discovered that
the effect of this parameter is rather small.

We now present the differences and similarities of our findings with Woudenberg and van der Gaag when studying
the propagation effects in the diagnostic direction when using the noisy-OR model. Since the corresponding sensitiv-
ity functions are rectangular hyperbola functions when studying the propagation effects in the diagnostic direction,
the effect of deviations in the x-value on the output probability of interest mainly depends on the location of the
vertex of the corresponding hyperbola branch. We therefore started examining the influences of the parameters
involved on the location of the vertex as done in [1]. We discovered, like Woudenberg and van der Gaag, that the
propagation effects in the diagnostic direction can be large if the yet unobserved cause variables corresponding to
the varied parameter in the mechanism have quite skewed prior probability distributions. In addition, we found
that small values for the other noisy-OR parameter involved, that is the noisy-OR parameter which is not set to x,
will increase the propagation effects. These results indeed agree with the findings in [1]. However, in contrast to
Woudenberg and van der Gaag, we kept in mind the underlying assumptions of the noisy-OR model, and therefore
our final observations are quite different. Contrary to [1], we found that the propagation effects in the diagnostic
direction are mainly dependent on which output probability we studied and which noisy-OR parameter we varied.

Now we will indicate the most relevant similarities and differences, regarding the propagation effects in the causal
direction, when studying the effect of possibly dependent cause variables, the leak probability, and the inclusion of
(an) additional cause variable(s). When studying the effect of possibly dependent cause variables, we found similar
results as Woudenberg and van der Gaag: possibly dependent cause variables can affect the propagation effects in
the causal direction. The extent to which this could influence the propagation effects is dependent on the conditional
probability Pr(c2|c1), that is the probability capturing the strength of the dependency between the causes, compared
to the prior probability Pr(c2). When studying the effect of the leak, Woudenberg and van der Gaag found that the
leak probability was absent in the gradient when studying the causal propagation effects, and thus, the propagation
effects were independent of the leak probability. The leak probability was absent in the gradient in their study,
because again it is hidden in the parameter they vary. In our study, we discovered that the leak probability is
indeed present in the gradient but can only slightly increase the propagation effects. Furthermore, we found similar
results as Woudenberg and van der Gaag when including additional cause variable(s): the same propagation effects
are possible as with mechanisms involving less cause variables; however, more skewed prior probabilities of the yet
unobserved causes are needed to attain the same propagation effects.
Again, our most relevant findings when studying the effect of possibly dependent cause variables, the leak probability,
and the inclusion of (an) additional cause variable(s) regarding the propagation effects in the diagnostic direction,
are the same as before. The propagation effects in the diagnostic direction were mainly determined by which output
probability we studied and which (leaky) noisy-OR parameter we varied. The effect of possibly dependent cause
variables, the leak probability, and the inclusion of (an) additional cause variable(s) regarding the propagation effects
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in the diagnostic direction were all rather small and in line with our findings for the basic causal mechanism using
the noisy-OR model.

Finally, we discovered that the overall propagation effects possibly increase when using the noisy-MAX model
instead of the noisy-OR model. Woudenberg and van der Gaag concluded that similar results hold for the noisy-OR
as for the noisy-MAX. Consequently, our findings differ from theirs since we found that the propagation effects for
the models are different. The propagation effects corresponding to the noisy-MAX model are possibly larger since
the model’s underlying assumptions are different than for the noisy-OR. In contrast to Woudenberg and van der
Gaag, we kept in mind the underlying assumptions to the corresponding interaction model, and therefore obtained
different results.

Lastly, we want to share a remarkable finding that emerged from our study when examining the propagation effects in
the diagnostic direction due to deviations in (leaky) noisy-OR/MAX parameters. This finding relates to the maximal
value of the gradient of the sensitivity functions where the propagation effects could become moderate at most. When
we focused on the interval x ∈ [0.6, 1], the maximum value for the gradient was always equal to |0.416666|. The fact
that this number at all times showed up raises questions. We acknowledge that there must be an explanation, but
unfortunately, we don’t have it yet.
Note that this observation only applies to the sensitivity functions where the propagation effects in the diagnostic
direction can become small or moderate at most, and where we focus on the interval for x ∈ [0.6, 1].
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7 Conclusion

The elicitation of all the required probabilities in a Bayesian network is often the most demanding challenge. A
network engineer can use interaction models like the noisy-OR model and its generalisations to ease this elicitation
task. Recall that these interaction models require limited probability estimates since the remaining probabilities of
the CPT are computed by the model’s rules. The input parameters of the interaction model are the probability
estimates taken in by the model to compute the remaining probabilities. However, obtaining accurate probability
estimates for the input parameters may be a difficult job. Therefore, it can be helpful for a network engineer to
determine beforehand how much effort he/she should put into acquiring accurate estimates for the input parameters
in order to ensure the validity of the Bayesian network’s output.

In this thesis, we examined the consequences of inaccurate estimates of (leaky) noisy-OR/MAX parameters on
output probabilities. We studied generic sensitivity functions of different models and gained insight into the conse-
quences of specific causal interaction models’ input parameters being inaccurate. In our study, we assumed that the
assumptions underlying the interaction models do indeed hold.

We discovered that the use of inaccurately estimated parameters of causal interaction models can result in dif-
ferent output probabilities, and therefore, possibly harm the validity of a Bayesian network’s output. Since large
propagation effects are possible under certain conditions, a network engineer is strongly advised to check in advance
how accurate the probability estimates of the input parameters of the corresponding interaction model must be.
Moreover, the results obtained in this study pertain to rather basic causal mechanisms; the results might deviate,
for example, for larger network structures.

Our research found that the propagation effects in the causal direction can only be large if the prior probability of
the cause associated with the noisy-OR parameter under study is large and the prior probability/probabilities of the
other cause(s) small. For the diagnostic direction, we discovered that the propagation effects are highly dependent
on which output probability we look at and which noisy-OR parameter we vary. We also found that the causal and
diagnostic propagation effects are small or moderate in many cases. Since it is quite favourable for a network engineer
to make use of causal interaction models, we highly recommend that he/she should beforehand verify whether large
propagation effects may happen, using the insights from this thesis. A network engineer can then decide how much
effort he/she has to put into obtaining accurate estimates for those parameters.

We have examined the propagation effects due to (leaky) noisy-OR/MAX parameters changes. For further re-
search, the propagation effects of the interaction models such as the noisy-AND/MIN can be studied [2]. Furthermore,
we only performed one-way sensitivity analyses. To acquire additional insight into the effects of inaccurate input
parameters of interaction models, we advise performing higher-order sensitivity analyses as well. In a higher-order
sensitivity analysis, multiple probabilities are varied at the same time, and therefore the joint combined effect of devi-
ating input parameters is examined. Lastly, we leave the finding concerning the gradient’s maximal value mentioned
in the discussion in Section 6 for further research.
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Appendices

Appendix A 4.1.3

A.1 4.1.3.1

a = Pr(e|c1,¬c2), b = Pr(c1) and c = Pr(c2).

A.2 4.1.3.2

a = Pr(e|¬c1, c2), b = Pr(c1) and c = Pr(c2).

Appendix B 4.2.2

B.1 4.2.2.1

a = Pr(e|c1,¬c2), b = Pr(c2|c1), d = Pr(c1) and q = Pr(c2).
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B.2 4.2.2.2

a = Pr(e|¬c1, c2), b = Pr(c2|c1), d = Pr(c1) and q = Pr(c2).

Appendix C 4.3

C.1 4.3.2

a = Pr(e|¬c1, c2), b = Pr(c1), c = Pr(c2) and p = p.

Appendix D 4.4

D.1 4.4.2

a = Pr(c1), b = Pr(c2), c = Pr(c3), d = Pr(e|¬c1, c2,¬c3) and f = Pr(e|¬c1,¬c2, c3).
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Appendix E 4.5

E.1 4.5.2

a = Pr(c1), b = Pr(c2), d = Pr(e|¬c1, c2,¬c3) and f = Pr(e|¬c1,¬c2, c3).

Appendix F 5.2

F.1 5.2

b = Pr(c11), c = Pr(c21), d = Pr(c2), f = Pr(e|c01, c2) and g = Pr(e|c21,¬c2).

F.2 5.2

a = Pr(c11), b = Pr(c21), c = Pr(c2), d = Pr(e|c11,¬c2) and f = Pr(e|c21,¬c2).
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