Sensitivity Analysis in Bayesian networks of the noisy-OR model and its generalisations
Msc Thesis - Artificial Intelligence

Author:
Heleen Kaemingk
h.h.kaemingk@students.uu.nl

Utrecht University
Department of Information and Computing Sciences
$1^{\text {st }}$ Supervisor: Dr. S. Renooij
$2^{\text {nd }}$ Supervisor: Dr. M. T. van Ommen

September 30, 2021

Contents

1 Introduction 3
2 Preliminaries 4
2.1 Notation 4
2.2 Bayesian networks 4
2.3 Noisy-OR model 5
2.4 Leaky noisy-OR model 6
2.5 Sensitivity analysis 6
3 Methods 8
4 Propagation effects due to (leaky) noisy-OR parameter changes 10
4.1 Propagation effects due to noisy-OR parameter changes: independent causes 10
4.1.1 Propagation effects in the causal direction 10
4.1.2 Propagation effects in the causal direction conditioned on one cause 12
4.1.3 Propagation effects in the diagnostic direction 14
4.1.3.1 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{2} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{1}, \mathbf{c}_{2}\right)$ 14
4.1.3.2 \quad Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \mathbf{c}_{\mathbf{1}}, \neg \mathbf{c}_{\mathbf{2}}\right)$ 18
4.1.3.3 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \neg \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right)$ 22
4.2 Propagation effects due to noisy-OR parameter changes: dependent causes 26
4.2.1 Propagation effects in the causal direction 26
4.2.2 Propagation effects in the diagnostic direction 27
4.2.2.1 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right)$ 27
4.2.2.2 \quad Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \mathbf{c}_{\mathbf{1}}, \neg \mathbf{c}_{\mathbf{2}}\right)$ 31
4.2.2.3 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \neg \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\boldsymbol{2}}\right)$ 35
4.3 Propagation effects due to leaky noisy-OR parameter changes: independent causes 40
4.3.1 Propagation effects in the causal direction 40
4.3.2 Propagation effects in the diagnostic direction 41
4.4 Causal mechanisms with multiple cause variables: independent causes 45
4.4.1 Propagation effects in the causal direction 46
4.4.2 Propagation effects in the diagnostic direction. 48
4.5 Causal mechanism with leak as third cause variable: independent causes 51
4.5.1 Propagation effects in the causal direction 52
4.5.2 Propagation effects in the diagnostic direction. 53
5 Propagation effects due to noisy-MAX parameter changes: independent causes 56
5.1 Propagation effects in the causal direction 57
5.2 Propagation effects in the diagnostic direction 61
6 Summary and discussion 69
7 Conclusion 72
Appendices 74
A 4.1.3 74
A. 1 4.1.3.1 74
A. 2 4.1.3.2 74

| B 4.2 .2 |
| :--- | :--- | 74

B. 1 4.2.2.1 74
B. 2 4.2.2.2 75
C 4.3 75
C. 1 4.3.2 75

| D | 4.4 |
| :--- | :--- | 75

D. 1 4.4.2 75
E 4.5 76
E. 1 4.5.2 76

| F | 5.2 |
| :--- | :--- | 76

| F. 1 | 5.2 |
| :--- | :--- | 76

F. 2 76

1 Introduction

Since their introduction three decades ago, probabilistic graphical models have become an essential tool in knowledgebased systems for Artificial Intelligence. In most cases, knowledge-based systems are designed to deal with real-life problems requiring considerable human knowledge and proficiency for their solutions. One popular probabilistic graphical model is called a Bayesian network. Bayesian networks are widely used in healthcare, financial advice, spam filter, image processing, robotics, etc [2, 10, 11, 12, to manage reasoning with uncertain interactions among variables in the given domain.

A Bayesian network is a compact representation of a joint probability distribution representing a set of variables and their conditional independencies via a directed acyclic graph [1, 7, 8. The parameters in the network are specified by a set of conditional probability tables (CPT). The network serves as a tool for computing the posterior probability distribution of outcome variable(s) when observing evidence. The knowledge needed for building a Bayesian network is often obtained by domain experts and/or appropriate data. The elicitation of all the required probabilities is often the primary hindrance in building a real-world network with domain experts. To ease this elicitation task, a network engineer can use interaction models such as the noisy-OR model and its variants. An interaction model basically entails a parameterised CPT for a common effect variable where specific patterns of interaction among the causal influences on the effect variable hold [1,3. These interaction models require limited probability estimates since the remaining probabilities of the CPT are computed by the model's rules, where the model's rules are derived from the assumptions of interaction among the causal influences. However, even if the assumptions underlying the noisy-OR model hold in the application domain, the probabilities computed from the model depend on the input parameters and the accuracy of their estimates. The input parameters of the interaction model are the probability estimates taken in by the model to compute the remaining probabilities. For the noisy-OR model, the input parameters are called the noisy-OR parameters. However, it is not (always) possible for a network engineer to elicit accurate estimates for all input parameters. Conducting a sensitivity analysis, that is, examining the effects of changes in parameters on an output probability of interest, can give insights into the propagation effects due to deviating noisyOR parameter probabilities in Bayesian networks. The propagation effects pertain to how the network's specified probabilities influence the computed output when deviations from noisy-OR parameters are assumed. However, examining the effects of variation for a wide range of possible combinations of parameters rapidly becomes infeasible [6. The just mentioned matter indicates the need for studying generic sensitivity functions of different models to gain understanding into the consequences when input parameters of causal interaction models are possibly inaccurate. As a result, network engineers will be capable of determining how much effort they need to put into obtaining accurate probability estimates for the input parameters in order to guarantee the validity of a Bayesian network's output without executing a complete analysis.

The effects of the noisy-OR assumptions and its variants have been studied before, for example, by Woudenberg and van der Gaag [1]. They examined the following matter: how well do the computed probabilities from the model's rules approach the real probabilities if the properties underlying the noisy-OR model do not genuinely hold in the application domain? They examined whether the choice of using the noisy-OR model for the elicitation task is appropriate. We will, taking a similar approach, investigate the consequences of inaccurate estimates of the noisyOR parameters on the output probabilities. How robust are the calculated probabilities to possible inaccuracies in the input parameters? The desired result of our investigations will help a network engineer to decide how accurate the probability estimates he/she should provide should be, and thus, the amount of time that he/she should take for the elicitation task. In contrast to Woudenberg and van der Gaag, we will assume that the choice of using the noisy-OR model for the elicitation task is indeed appropriate and therefore assume that the properties underlying the noisy-OR model hold.

This thesis is organised as follows. In Section 2, we briefly review Bayesian networks, certain causal interaction models for Bayesian networks, and how one can perform a sensitivity analysis. We conduct our research in an analytical way and will take a similar approach for different structures and parameters. This approach will be described in Section 3. In Section 4, we examine the propagation effects due to (leaky) noisy-OR parameter changes on output probabilities. Since the (leaky) noisy-OR model involves binary variables only, an interaction model called the noisy-MAX came into practice. We will study the propagation effects of this interaction model in Section 5 . In Section 6, we will summarise our findings and describe the differences and similarities of our findings with 1]. We will conclude this thesis in Section 7

2 Preliminaries

In this section, we briefly introduce some notation, review Bayesian networks, the (leaky) noisy-OR model, and how one can perform a sensitivity analysis. In the preliminaries, we mainly rely on [1, 2, 3, 6,

2.1 Notation

In this thesis, we will represent variables with capital letters and their values with lower case letters. For example, v represents a possible value of variable V. Likewise, \mathbf{V} indicates a set of variables $\left\{V_{1}, \ldots, V_{m}\right\}$, and \mathbf{v} a particular m-tuple $\left(v_{1}, \ldots, v_{m}\right)$, where v_{i} represents a value taken on by variable V_{i} in \mathbf{V}. Furthermore, we will use the following notation regarding the representation of values of variables:

- A variable V_{i} can take on values $v_{i}^{j} \in\left\{v_{i}^{0}, \ldots, v_{i}^{n_{i}}\right\}, n_{i} \geq 1$. By making n dependent of i, every V_{i} can have a different number of values;
- The values are ordered, meaning that $v_{i}^{0}<\ldots<v_{i}^{n_{i}}$;
- In case of Boolean variables $\left(n_{i}=1\right)$ we simply write $\neg v_{i}$ instead of v_{i}^{0}, and v_{i} instead of v_{i}^{1}. Boolean variables are of the type true/false, present/absent or positive/negative.

2.2 Bayesian networks

A Bayesian network is a graphical representation of a joint probability distribution over a set of variables 1. It consists of a qualitative- and quantitative part. The qualitative part is a directed acyclic graph $G=\left(V_{G}, A_{G}\right)$, containing random variables illustrated as nodes $V \in V_{G}$, and a set of arcs $A_{G} \subseteq V_{G} \times V_{G}$, which describe the (in)dependency relation among the variables 7. In this thesis, we will write $X \rightarrow Y$ instead of (X, Y). In addition, given that X, Y and Z are nodes and $X \rightarrow Y \rightarrow Z \in G$, then X is a parent of Y and Y a parent of Z. Likewise, we say that Y is a child of X and Z a child of Y. Finally, we have that Z and Y are descendants of X, and in the same way, X and Y are ancestors of Z. The quantitative part of a Bayesian network is a set of conditional probability distributions for every variable represented in the network.

We now define the concept of a Bayesian network more formally 2 :
Definition 2.1. A Bayesian network encodes the joint probability distribution over a set of variables $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$, where m is finite, and decomposes it into a product of conditional probability distributions over each variable given its parents in the graph. In case of nodes with no parents, we use their prior probability distribution. The joint probability distribution over $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ can be obtained by taking the product of all of these prior and conditional probability distributions:

$$
\begin{equation*}
\operatorname{Pr}\left(v_{1}, v_{2}, \ldots, v_{m}\right)=\prod_{i=1}^{m} \operatorname{Pr}\left(v_{i} \mid p a\left(V_{i}\right)\right) \tag{1}
\end{equation*}
$$

where $p a\left(V_{i}\right)$ is a conjunction of value assignments of all parents of node V_{i}.
There exist algorithms that compute the probabilities from a Bayesian network. However, even though Bayesian networks decrease the complexity of the representation of the joint probability distribution, probabilistic inference is NP-hard 29 .

Figure 1: A causal mechanism with effect variable V_{0} and m cause variables V_{i}.

2.3 Noisy-OR model

To simplify the quantification task, one can use a causal interaction model such as the noisy-OR model. In general, the noisy-OR model can be looked upon as a parameterised conditional probability table for a corresponding effect variable of a causal mechanism with multiple cause variables, see Figure 1 Experts' elicitation tasks become considerably more manageable with the help of a noisy-OR model because only a limited number of probabilities need to be provided. When using the noisy-OR model, it is assumed that a certain effect can be obtained with a high probability by the presence of one of the multiple causes 5. In addition, the model assumes that if two or more causes are present, the likelihood of the concerning outcome will not decrease. The noisy-OR model possesses mere binary random variables $V_{i}, i \in\{0, \ldots, m\}$.

To express the noisy-OR model more formally, we have 1, 3:

$$
G=\left(V_{G}, A_{G}\right) \text { with } V_{G}=V \text { where } V_{1} \rightarrow V_{0}, \ldots, V_{m} \rightarrow V_{0} \in A_{G} \text { and } m \geq 1
$$

Figure 1 illustrates the basic idea of such a mechanism. This directed graph G exhibits different causes V_{i} where $i \in\{1, \ldots, m\}$ and V_{0} is the common effect. The noisy-OR model defines the conditional probability table (CPT) for the effect variable V_{0} of a causal mechanism through [1, 3:

- $\operatorname{Pr}\left(v_{0} \mid \neg v_{1}, \ldots, \neg v_{m}\right)=0$ (property of accountability);
- The noisy-OR parameters $q_{i}=\operatorname{Pr}\left(v_{0} \mid \neg v_{i}, \ldots, \neg v_{i-1}, v_{i}, \neg v_{i+1}, \ldots, \neg v_{m}\right)$ associated with cause V_{i}, for all $i=$ $1, \ldots, m$;
- For the remaining value combinations \mathbf{c} involving the presence of two or more causes we have:

$$
\begin{equation*}
\operatorname{Pr}\left(v_{0} \mid \mathbf{c}\right)=1-\prod_{i \in T_{\mathbf{c}}}\left(1-q_{i}\right) \tag{2}
\end{equation*}
$$

where $T_{\mathbf{c}}=\left\{i \mid \mathbf{c} \wedge v_{i} \not \equiv\right.$ False $\}$.
For a causal mechanism with m modelled causes $V_{i}, i=\{1, . ., m\}$, the noisy-OR model defines a full probability table over $m+1$ variables, specifying a total of $2 \cdot 2^{m}$ probabilities. However, exactly half of the probability table is provided by that fact that $\operatorname{Pr}\left(v_{0} \mid \mathbf{c}\right)+\operatorname{Pr}\left(\neg v_{0} \mid \mathbf{c}\right)=1$ and, therefore, are redundant. Of the 2^{m} non-redundant probabilities, the noisy-OR model needs the values of only m parameter probabilities q_{i} to be provided beforehand. Furthermore, the model forces the distribution $\operatorname{Pr}\left(V_{0} \mid \neg v_{1}, \ldots, \neg v_{m}\right)$ to be degenerate, that is $\operatorname{Pr}\left(v_{0} \mid \neg v_{1}, \ldots, \neg v_{m}\right)=0$ and $\operatorname{Pr}\left(\neg v_{0} \mid \neg v_{1}, \ldots, \neg v_{m}\right)=1$.

In case of two causes V_{1} and V_{2} and their common effect V_{0}, the CPT leads to Table 1 .

$\operatorname{Pr}\left(v_{0} \mid v_{1}, v_{2}\right)$	v_{1}	$\neg v_{1}$
v_{2}	$q_{1}+q_{2}-q_{1} q_{2}$	q_{2}
$\neg v_{2}$	q_{1}	0

$$
\begin{array}{c|cc}
\operatorname{Pr}\left(\neg v_{0} \mid v_{1}, v_{2}\right) & v_{1} & \neg v_{1} \\
\hline v_{2} & 1-\left(q_{1}+q_{2}-q_{1} q_{2}\right) & 1-q_{2} \\
\neg v_{2} & 1-q_{1} & 1
\end{array}
$$

Table 1: CPT for a noisy-OR model with two parents.

2.4 Leaky noisy-OR model

In the noisy-OR model the property of accountability $\left(\operatorname{Pr}\left(v_{0} \mid \neg v_{1} \wedge \ldots \wedge \neg v_{m}\right)=0\right)$ is assumed. However, this is actually quite a challenging assumption. The reason for this is that it's (almost) impossible to model all the existing causes V_{1}, \ldots, V_{m} of a common effect V_{0} of a Bayesian network. A model dealing with this matter is called the leaky noisy-OR model. The leaky noisy-OR model assumes the following property:

$$
\operatorname{Pr}\left(v_{0} \mid \neg v_{1} \wedge \ldots \wedge \neg v_{m}\right)=p
$$

where the variables V_{1}, \ldots, V_{m} again are the different modelled causes of the common effect V_{0}, with $p>0$. This probability p is called the leak probability. The leak probability is the probability that the common effect V_{0} will be present while all the modelled causes V_{1}, \ldots, V_{m} are absent. One can also say that the leak probability is the probability that the effect v_{0} occurs spontaneously.

The leaky noisy-OR model defines the CPT for the effect variable V_{0} of a causal mechanism through , 1, 3,

- $\operatorname{Pr}\left(v_{0} \mid \neg v_{1} \wedge \ldots \wedge \neg v_{m}\right)=p$ (leak-probability)
- The noisy-OR parameters $q_{i}=\operatorname{Pr}\left(v_{0} \mid \neg v_{i}, \ldots, \neg v_{i-1}, v_{i}, \neg v_{i+1}, \ldots, \neg v_{m}\right)$ associated with cause V_{i}, for all $i=$ $1, \ldots, m$;
- For the remaining value combinations \mathbf{c} involving the presence of two or more causes we have:

$$
\begin{equation*}
\operatorname{Pr}\left(v_{0} \mid \mathbf{c}\right)=1-(1-p) \cdot \prod_{i \in T_{\mathbf{c}}} \frac{\left(1-q_{i}\right)}{(1-p)} \tag{3}
\end{equation*}
$$

where $T_{\mathbf{c}}=\left\{i \mid \mathbf{c} \wedge v_{i} \not \equiv\right.$ False $\}$.
One should take into account that during the construction of a Bayesian network, the effect of a single cause cannot be set apart from the spontaneous occurrence of the effect. Therefore, the probability assessments of the effect given only one cause are modified to account for this spontaneous leak before they are combined. Also, now the required number of probabilities to define the CPT for node V_{0} is equal to $m+1$.

2.5 Sensitivity analysis

In this section we briefly review sensitivity analysis of Bayesian networks and rely on $1,4,6,8$.
The reliability of the output of a Bayesian network can be examined by studying its robustness. Robustness pertains to the extent to which the network's conditional probabilities affect the output when deviations from precise estimates are assumed 4 . The probabilities of the CPT used in the Bayesian network are mostly assessed by domain experts or obtained from appropriate data. However, the chances of inaccurate obtained values for the assessed probabilities are unavoidable. Because of this reason, it is essential to study a Bayesian network's robustness. A Bayesian network can be exposed to sensitivity analyses to investigate the possible effects of these inaccurate obtained values on its output. The sensitivity analysis result is a sensitivity function $f(x)$ that demonstrates the network's output probability in the probability x being varied, which is called a one-way sensitivity analysis.

A sensitivity function is either a linear or a rectangular hyperbolic function. A linear sensitivity function has the form (1. 8:

$$
\begin{equation*}
f(x)=a x+b \tag{4}
\end{equation*}
$$

The linear function is derived from examining the effects of inaccuracies in the probabilities for the (possibly indirect) causes of the variable of interest where this variable has no observed descendants. We say that these linear functions capture the effects of causal propagation. The constants a, b are built from the network's non-varied probabilities.

A hyperbolic sensitivity function has the form:

$$
\begin{equation*}
f(x)=\frac{a x+b}{c x+d} \tag{5}
\end{equation*}
$$

The hyperbolic function is derived from examining the effects of inaccuracies in a network's probabilities on output probabilities for variables with observed descendants. We say that these hyperbolic functions capture the effects of diagnostic propagation. The constants a, b, c, d are again built from the assessments for the non-varied numerical parameters. The values $f(x)$ and x both represent probabilities, indicating that $f(x)$ and x are both bounded by the unit window, meaning that $f(x) \in[0,1]$ and $x \in[0,1]$.

We can rewrite the hyperbolic sensitivity function and obtain:

$$
f(x)=\frac{r}{x-s}+t
$$

where

$$
s=-\frac{d}{c}, t=\frac{a}{c}, \text { and } r=\frac{b c-a d}{c^{2}}
$$

where $x=s$ indicates the vertical asymptote of the rectangular hyperbola and $y=t$ the horizontal asymptote. The constants s, t define the general shape of the hyperbola, and the location of the quadrants of the two branches. The constant r defines the location of the vertices of the two branches. See Figure 2, Keep in mind that the vertices of a hyperbola are the exact points where the absolute value of the first derivative of the function equals 1. Depending on the quadrant of the branch under study, the vertex is located at one of the four points $(s \pm \sqrt{|r|}, t \pm \sqrt{|r|}) 1$, 8. Note that a vertex point can lie either inside or outside the unit window and the vertical asymptote has to lie outside the unit window.

Figure 2: Rectangular hyperbolas and their constants (the constraints on s and t are specific for sensitivity functions).
To gain more insight into a sensitivity function which is a rectangular hyperbolic function, one can study its first derivative. The first derivative of function (5) equals:

$$
\begin{equation*}
\frac{d}{d x} f(x)=\frac{a d-b c}{(c x+d)^{2}} \tag{6}
\end{equation*}
$$

3 Methods

We will conduct our research in an analytical way, taking a similar approach as Woudenberg and van der Gaag [1], but for different parameters since we consider a different research question. In addition to Woudenberg and van der Gaag, we study more models and conduct experiments with different parameter settings.

We will now present the general approach when examining the propagation effects due to noisy-OR parameter changes.
To examine the propagation effects due to noisy-OR parameter changes in Bayesian networks, we will take the following approach:

1. First, we examine the possible effects due to changes in a noisy-OR parameter on an output probability of interest pertaining to the effect variable, that is, the propagation effects in the causal direction.

- We start by deriving a general formula for the sensitivity function under consideration. When studying the propagation effects in the causal direction, the corresponding sensitivity function is linear in x, where x is a noisy-OR parameter;
- Subsequently, we determine the gradient of the sensitivity function and how this depends on the different parameters of the model;
- When examining the gradient of the corresponding sensitivity function, we keep in mind the assumptions underlying the noisy-OR model, namely:

For the causal mechanism from Figure 1 we assume:

- The prior probability distributions for the cause variables $V_{i}, i \in\{1, \ldots, m\}$ are non-degenerate, that is $\operatorname{Pr}\left(v_{i}\right) \neq 0$ and $\operatorname{Pr}\left(\neg v_{i}\right) \neq 0$ for $i \in\{1, \ldots, m\}$;
$-\operatorname{Pr}\left(v_{0} \mid \neg v_{1}, \ldots, \neg v_{m}\right)=0$, by the property of accountability;
- Because the noisy-OR parameters $q_{i}=\operatorname{Pr}\left(v_{0} \mid \neg v_{i}, \ldots, \neg v_{i-1}, v_{i}, \neg v_{i+1}, \ldots, \neg v_{m}\right)$ associated with cause V_{i} for all $i=1, \ldots, m$, are assumed to be large since any of the factors is likely to trigger the effect (5), we mainly focus on $q_{i} \in[0.6,1]$ when evaluating the propagation effects.
- We present our observations.

2. Subsequently, we examine the possible effects due to changes in a noisy-OR parameter on an output probability of interest pertaining to a parent of the observed effect variable, that is, the propagation effects in the diagnostic direction.

- We again derive a general expression for the sensitivity function, which in this case is a rectangular hyperbolic function;
- From generic research of sensitivity functions from Bayesian networks, we know that the effect of deviations in the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding hyperbola branch. Therefore, analogous to Woudenberg and van der Gaag 11, we examine the influence of the involved parameters' values on the vertex's location;
- After that, we plot several example sensitivity functions to support the mentioned findings and gain more insight into the propagation effects in the entire interval $[0,1]$;
- Since we assume that noisy-OR parameters generally take on high values in practice, we then focus on the interval for $x \in[0.6,1]$, where x is a noisy-OR parameter;
- In addition to Woudenberg and van der Gaag [1] we investigate the derivative of the corresponding sensitivity function;
- With the help of WOLFRAM MATHEMATICA we obtain the value of the maximum gradient of the sensitivity function under study in the interval $x \in[0.6,1]$;
- We present our observations.

We will carry out this procedure for various Bayesian network's graphical structures for different interaction models and parameter settings. The assumptions will differ for different interaction models and experiments. For example, the assumptions underlying the leaky noisy-OR and noisy-MAX model are different than for the noisy-OR model. For each case, we will clearly indicate the underlying assumptions beforehand.

4 Propagation effects due to (leaky) noisy-OR parameter changes

The (leaky) noisy-OR model is a helpful interaction model contributing to ease the elicitation task: they require a limited number of parameter probabilities, indicating clear engineering advantages. However, the probability estimates of the input parameters of the (leaky) noisy-OR model can be inaccurate. For that reason, we will examine the effects of changes in noisy-OR parameters on specific probabilities. These effects pertain to how the network's specified probabilities influence the computed output when deviations from noisy-OR parameters are assumed. We will call these effects the propagation effects. By examining the propagation effects of noisy-OR parameter changes on probabilities computed from a Bayesian network, we want to identify conditions under which the use of inaccurate input parameters can result in different output probabilities, and therefore, possibly harm the validity of a Bayesian network's output. These conditions can help a network engineer to determine how much effort he/she should put into acquiring precise estimates for the noisy-OR parameters.

4.1 Propagation effects due to noisy-OR parameter changes: independent causes

We start by considering the conditional probability tables for the three variables of the basic mechanism from Figure 3. This basic mechanism can also be comprehended as a mechanism consisting of two parents (the cause variables C_{1} and C_{2}) and their child (the effect variable E).

Figure 3: A basic causal mechanism with the effect variable E and cause variables C_{1}, C_{2}.
For the basic mechanism from Figure 3 we now make the following assumptions:

- The prior probability distributions for cause variables C_{1} and C_{2} are non-degenerate, that is $\operatorname{Pr}\left(c_{i}\right) \neq 0$ and $\operatorname{Pr}\left(\neg c_{i}\right) \neq 0$ for $i=1,2$;
- $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right)=0$, by the property of accountability;
- Because noisy-OR parameters are assumed to be large since any of the factors is likely to trigger the effect 5], we mainly focus on $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects.

4.1.1 Propagation effects in the causal direction

First, we examine the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-OR parameter.
Theorem 4.1. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \tag{7}
\end{equation*}
$$

Proof:
We have that probability $\operatorname{Pr}(e)$ is equal to:

$$
\begin{align*}
\operatorname{Pr}(e) & =\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \tag{8}
\end{align*}
$$

Note that $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)=0$ since $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right)=0$.

Using the noisy-OR model described in Section 2.3. we first compute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)\right) \\
& =1-\left((1-x)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)\right) \\
& =1-\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \\
& =x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) . \tag{9}
\end{align*}
$$

From Equation (8) we now have:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =x\left(\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =x\left(\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\left(\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\left(\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\left(\operatorname{Pr}\left(c_{1}\right)\left(\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2}\right)\right)\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)
\end{aligned}
$$

The last 2 lines can been deduced because $\operatorname{Pr}\left(c_{i}\right)+\operatorname{Pr}\left(\neg c_{i}\right)=1$ for $i=1,2$.
To say something about the propagation effects we will examine the first derivative, that is in this case, the gradient of a single-variable function. The gradient of Equation (7) describes the effect that a deviation of x can have on the prior output probability of interest, namely $\operatorname{Pr}(e)$. Thus, a small gradient expresses the information that a possibly large deviation of the probability x will still have only a minor effect on the output probability of interest.

To better convey the size of the gradient in natural language, we consider the gradient ∇ of the sensitivity function under study to be:

- small, when $|\nabla| \leq 0.25$;
- moderate, when $|\nabla| \in(0.25,0.75)$;
- large, when $|\nabla| \geq 0.75$.

We will, in the same way, use these gradations for describing the propagation effects.
Corollary 4.1.1. The gradient of the sensitivity function from Equation (7) is:

$$
\frac{d}{d x} \operatorname{Pr}(e)(x)=\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)
$$

Observation: One can see that the gradient of Equation (7) is large when at least the probability $\operatorname{Pr}\left(c_{2}\right)$ is large and $\operatorname{Pr}\left(c_{1}\right)$ and $/$ or $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is/are small. Note that the gradient of Equation (7) is in the interval $(0,1)$ because $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$ are all probabilities and $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)$ fall within the interval $(0,1)$ by assumption. Since $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is a noisy-OR parameter, and we assume that noisy-OR parameters possess a probability in the interval $[0.6,1]$, we conclude that the gradient is large when cause C_{2} is likely to be present and C_{1} absent. In addition we have that the smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, the larger the gradient. We conclude that if cause C_{1} is likely to be absent and cause C_{2} present, the gradient of Equation (7) will be large.
Analogous observations hold for the sensitivity function obtained for the probability of interest $\operatorname{Pr}(e)$ when $x=$ $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) ; c_{1}$ and c_{2} merely exchange roles.

Remark. We have also used the words "large" and "small" for describing the prior probabilities $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$, and noisy-OR parameters. We will use "large" and "small" in a more abstract way to indicate the prior probabilities and thus, not provide concrete values for large or small prior probabilities. Because if we, for example, have $\operatorname{Pr}\left(c_{2}\right)=$ 0.75 and $\operatorname{Pr}\left(c_{1}\right)=0.25$ in Equation (7), the gradient will attain a maximum value of: $\frac{d}{d x} \operatorname{Pr}(e)(x)=\operatorname{Pr}\left(c_{2}\right)(1-$ $\left.\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)=0.75(1-1 \cdot 0.25)=0.5625$, which by assumption is moderate. Therefore, we leave it to the reader to provide specific values for these prior probabilities. However, to indicate some clarification: the prior probability should be at least ≥ 0.75 and ≤ 0.25 in order to be stated as "large" or "small, respectively. In like manner, we will not provide concrete values for describing the noisy-OR probabilities. The noisy-OR parameters are by assumption in the interval $[0.6,1]$, indicating that our focus is on rather large probabilities.

Example 4.1. As an example, consider the following parameter setting: $\operatorname{Pr}\left(c_{1}\right)=0.1, \operatorname{Pr}\left(c_{2}\right)=0.9$ and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.85$. The gradient of Equation (7) equals $\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)=0.9(1-0.85 \cdot 0.1)=$ 0.8235 . Thus, for these parameter values we consider the gradient, and thus the propagation effects, to be large. If we now set the parameter settings to $\operatorname{Pr}\left(c_{1}\right)=0.5, \operatorname{Pr}\left(c_{2}\right)=0.5$, and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.6$, the gradient equals: $\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)=0.5(1-0.6 \cdot 0.5)=0.35$. As a consequence, we consider the propagation effects to be moderate.

4.1.2 Propagation effects in the causal direction conditioned on one cause

We further examine the effects of causal propagation through the causal mechanism of Figure 3 by assuming the actual presence or absence of one of the causes C_{1} or C_{2}, that is, by considering $\operatorname{Pr}\left(e \mid c_{i}\right)$ or $\operatorname{Pr}\left(e \mid \neg c_{i}\right)$ for $i=1,2$, for the probability of interest.
We first examine $\operatorname{Pr}\left(e \mid c_{2}\right)$ as a function of the probability $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, the result is a linear function in x.
Theorem 4.2. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(e \mid c_{2}\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(e \mid c_{2}\right)(x)=x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \tag{10}
\end{equation*}
$$

Proof:

We have:

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{2}\right)(x) & =\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(\neg c_{1}\right)\left(\text { by conditioning and independence of } C_{1} \text { and } C_{2}\right) \\
& =\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \text { (by Equation (9)) } \\
& =x\left(\operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \\
& =x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) .
\end{aligned}
$$

We made use of the fact that $\operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg c_{1}\right)=1$.
Observation: The gradient of Equation 10 is in the interval $(0,1)$. The gradient is large when the probabilities $\operatorname{Pr}\left(c_{1}\right)$ and/or $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ are/is small. However, since the parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is a noisy-OR parameter, which are assumed to be large, we conclude that the propagation effects are large when the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is small, and in addition we have that the smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, the larger the propagation effects. The difference compared to the result derived in Section 4.1.1 is the absence of the prior probability $\operatorname{Pr}\left(c_{2}\right)$ in the gradient. This means that the gradient of Equation (10) is large whenever the prior probability $\operatorname{Pr}\left(c_{1}\right) \leq 0.25$, regardless of the probability of the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.
Analogous observations hold for the function $\operatorname{Pr}\left(e \mid c_{1}\right)(x)$ where $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.
We now examine $\operatorname{Pr}\left(e \mid c_{2}\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, that is the noisy-OR parameter associated with cause C_{1}. The result is again a linear function in x.

Theorem 4.3. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(e \mid c_{2}\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(e \mid c_{2}\right)(x)=x \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \tag{11}
\end{equation*}
$$

Proof:

We have:

$$
\operatorname{Pr}\left(e \mid c_{2}\right)(x)=\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right)
$$

Note that we substitute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ with a different equation than Equation (9). Since $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ we therefore obtain using the noisy-OR model described in Section 2.3.

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)\right) \\
& =1-\left((1-x)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)\right) \\
& =1-\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \\
& =x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) . \tag{12}
\end{align*}
$$

We now have:

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{2}\right)(x) & =\left(x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) .
\end{aligned}
$$

Observation: The gradient of Equation (11) is in the interval $(0,1)$. The gradient is large when the probability $\operatorname{Pr}\left(c_{1}\right)$ is large and $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is small. The difference compared to Equation $\sqrt{10}$ is that now a large value for $\operatorname{Pr}\left(c_{1}\right)$ results in a large gradient. This can be easily explained by the fact that $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ which is the noisy-OR parameter associated with cause C_{1}. Since $\operatorname{Pr}\left(c_{1}\right) \in(0,1)$ and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is a noisy-OR parameter, which by our assumption lie in the interval [0.6, 1], we obtain that the gradient of Equation lines in the interval $[0,0.4)$ and thus we conclude that the propagation effects can become small or moderate at most.
Analogous observations hold for $\operatorname{Pr}\left(e \mid c_{1}\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$.
Finally, we examine $\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x)$ for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$. Note that if we choose the noisy-OR parameter associated with cause C_{2}, that is $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, the sensitivity function $\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x)$ would be a constant function since $\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x)=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$, and thus, is independent of the term $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$.
Theorem 4.4. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x)=x \operatorname{Pr}\left(c_{1}\right) \tag{13}
\end{equation*}
$$

Proof

We have:

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid \neg c_{2}\right)(x) & =x \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)+0 \\
& =x \operatorname{Pr}\left(c_{1}\right) .
\end{aligned}
$$

Observation: One can observe that only one of the noisy-OR parameters is present in Equation 13, whereby $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$. We note that the gradient of Equation (13) lies in the interval $(0,1)$ and is equal to the prior probability $\operatorname{Pr}\left(c_{1}\right)$, meaning that the propagation effects solely depend on the value of the prior probability $\operatorname{Pr}\left(c_{1}\right)$.

Analogous observations to Theorem 4.4 hold for function $\operatorname{Pr}\left(e \mid \neg c_{1}\right)(x)$ when $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, and a constant function when $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.

Thus far, we have considered the consequences of deviating noisy-OR probabilities upon causal propagation through the basic causal mechanism in Figure 3. It seems that large propagation effects on the probability of interest can be expected if the cause associated with the noisy-OR parameter under study has a large prior probability of being present and the other cause has a large prior probability of being absent, see Theorem 4.1. For clarification: if $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, then large propagation effects occur when cause C_{1} is likely to be absent and cause C_{2} present. We have that the larger these prior probabilities, the larger the gradient of the sensitivity function under study, and thus the larger the propagation effects on the probability of interest. In addition, we found that the smaller the noisy-OR parameter involved that is not set to x, the larger the propagation effects. Furthermore, we observed that by actually establishing the presence or absence of cause C_{i}, the gradient no longer reveals a dependency of $\operatorname{Pr}\left(c_{i}\right)$ or $\operatorname{Pr}\left(\neg c_{i}\right)$, respectively. See Theorem 4.2, 4.3 and 4.4.

4.1.3 Propagation effects in the diagnostic direction

Till so far, we have investigated the effects of a deviating noisy-OR parameter on an output probability of interest upon causal propagation. Now we will examine the propagation effects in the diagnostic direction, that is, upon propagating evidence for the effect variable to an unobserved cause variable. We again consider the conditional probability tables for the three variables of the basic mechanism in Figure 3

4.1.3.1 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right)$

First we examine $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. The result is sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ which is hyperbolic in the probability x.
Theorem 4.5. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\frac{\beta}{1-\beta}}{x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}} \tag{14}
\end{equation*}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$.

Proof: We have for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(c_{2}, e\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e, c_{1}, c_{2}\right)(x)+\operatorname{Pr}\left(e, \neg c_{1}, c_{2}\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)}
\end{aligned}
$$

Where $\operatorname{Pr}(e)(x)=\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)$ and $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ is dependent of x.

We use that $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)=x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ (Eq. 9), and substitute:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+0} \\
& =\frac{x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)} \operatorname{Pr}\left(c_{2}\right)} \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}}{x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)}} \\
& =\frac{x+\frac{\beta}{1-\beta}}{x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}}
\end{aligned}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$.
Observation: Since Equation (14) is a hyperbolic function, we use the properties of hyperbolic functions described in Section 2.5, and discover that the vertical asymptote of Equation 14 lies at $x=s=-\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}$. Because $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}>0$, the asymptote is located to the left of the unit window and the horizontal asymptote lies at $t=1$. As a result, we find that Equation (14) is a fragment of a fourth-quadrant hyperbola branch.

From generic research of sensitivity functions from Bayesian networks, we find that the effect of deviations in the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding hyperbola branch [1]. Generally, we have that the closer the vertex of the fourth-quadrant hyperbola branch lies to the upper-left corner of the unit window, the larger the propagation effects. Equation (14) has its vertex at:

$$
(s+\sqrt{|r|}, 1-\sqrt{|r|})=\left(-\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}+\sqrt{\left(\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}\right)}, 1-\sqrt{\left(\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}\right)}\right)
$$

The vertex is located within the unit window for some values of $\frac{\beta}{1-\beta}, \frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}$
with $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}<\sqrt{\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}}<1$. To obtain $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}<\sqrt{\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}}$ given that $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)} \geq$ $\frac{\beta}{1-\beta}$, we discover that merely rather small values of $\frac{\beta}{1-\beta}$ produce a vertex with an x-coordinate in the unit range. In addition, the vertex only approaches the upper-left corner of the unit window, if in addition the difference $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}$ is rather small. We observe that Equation 14) approaches 1 if the value $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}$ is small. Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ need to be small and $\operatorname{Pr}\left(c_{2}\right)$ large.

Figure 4: Several example sensitivity functions adhering to Theorem 4.5. (See Table 2 for parameter settings)

Parameter	Red	Red dashed	Green	Green dashed	Purple	Purple dashed	Orange	Orange dashed	Black	Black dashed	Blue	Blue dashed
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.5	0.9	0.9	0.1	0.1	0.1	0.1	0.9	0.9
$\operatorname{Pr}\left(c_{2}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.3	0.3	0.1	0.1	0.9	0.9

Table 2: Parameter settings for sensitivity functions from Figure 4

To support the above mentioned findings and gain more insight into the effects we consider concrete parameter settings, see Figure 4 We observe, when focusing on the entire interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0,1]$, that when the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is small and the prior probability $\operatorname{Pr}\left(c_{2}\right)$ is small/moderate, the largest propagation effects occur, see orange (dashed) and black (dashed). In addition, we observe a minor influence of the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$; we note that slightly larger propagation effects in the entire interval $[0,1]$ occur when $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is "small", this effect is conveyed by the solid versus dashed function for each colour. Since by our assumption the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ lies in the interval $[0.6,1]$, we conclude that a smaller noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ provides slightly larger propagation effects in the entire interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0,1]$. Furthermore, we have that the vertical offset on the y-axis is greatly influenced by $\operatorname{Pr}\left(c_{2}\right)$; see red (dashed), green (dashed) and purple (dashed). If the probability $\operatorname{Pr}\left(c_{2}\right)$ approaches 1, and hence the value $\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}-\frac{\beta}{1-\beta}$ becomes very small, the x-coordinate of the vertex will indeed approach 0 .

However, probabilities of noisy-OR parameters are assumed to be large 5, which indicates that we should especially focus on the propagation effects for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$. As one can observe in Figure 4, large propagation effects only occur, with a particular parameter settings, when $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is less than 0.4 (see for example orange and black function). These results show that the propagation effects, for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ larger than 0.6 , are moderate or small. To gain better insight into Equation's (14) behaviour in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$, we compute its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (14) are a fragment of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)>0$ for all $x \in[0,1]$.

Corollary 4.5.1. The first derivative of the sensitivity function from Equation (14) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(c_{2}\right)\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)\left(x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)}\right)^{2}} \\
& =\frac{\beta\left(1-\operatorname{Pr}\left(c_{2}\right)\right)}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)\left(x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}\right)^{2}} \tag{15}
\end{align*}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$.
Now, for specific parameter settings for some of the functions demonstrated in Figure 4, namely the green (dashed), orange (dashed) and black (dashed) function, we plot the derivatives of Equation 15 . See Figure 5.

Figure 5: Several examples of Equation 15 restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,3.5]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 2 for parameter settings)

In Figure 5, the horizontal lines at $y=0.25$ and $y=0.75$ indicate the boundaries between what we consider to be a small, moderate or large gradient and therefore whether the propagation effects are small, moderate, or large. The black dashed function has moderate propagation effects in the interval $x \in[0.6,0.8776)$ and small propagation effects in the interval $x \in[0.8776,1]$. The black function has moderate propagation effects in the interval $x \in[0.6,0.8998)$ and small propagation effects in the interval $x \in[0.8998,1]$. The orange function has moderate propagation effects in the interval $x \in[0.6,0.6215)$ and small propagation effects in the interval $x \in[0.6215,1]$. The orange dashed function has small propagation effects in the entire interval $x \in[0.6,1]$.

We observe two remarkable differences when comparing the propagation effects in the interval $x \in[0.6,1]$ to the entire interval $x \in[0,1]$. First, we saw when focusing on the entire interval $x \in[0,1]$ that the largest propagation effects occur when the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is small, $\operatorname{Pr}\left(c_{2}\right)$ is small/moderate, and the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is small. However, with the help of Figure 5 and only focusing on the interval $x \in[0.6,1]$, we don't observe that a smaller noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ leads to larger propagation effects. We even observe for some functions the opposite effect in the interval $x \in[0.6,1]$, namely that a larger value for the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ provides larger propagation effects. The second observation is that when only focusing on the interval $x \in[0.6,1]$, we have that the smaller the prior probability $\operatorname{Pr}\left(c_{2}\right)$, the larger the propagation effects.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=0.416666$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ of Equation (15) with the following parameter setting (see Appendix A.1):

$$
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.775347, \operatorname{Pr}\left(c_{1}\right)=3.28813 \cdot 10^{-7} \text { and } \operatorname{Pr}\left(c_{2}\right)=4.24907 \cdot 10^{-7} .
$$

This maximum lies at $x=0.6$.
Since the prior probabilities $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are now extremely small, we put a lower bound on these priors, namely $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)>0.01$. We find a maximum of $\max \frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=0.412496$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in$ [0.6, 1] of Equation (15) with the following parameter setting (see Appendix A.1):

$$
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.600043, \operatorname{Pr}\left(c_{1}\right)=0.0100007 \text { and } \operatorname{Pr}\left(c_{2}\right)=0.0100003
$$

We observe that this maximum value of the derivative is a little lower and the value of the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ becomes 0.600043 . This maximum again lies at $x=0.6$.

Finally, we put a lower bound of $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)>0.05$ on these priors. We now find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=$ 0.395741 in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ of Equation (15) with the following parameter setting (see Appendix A.1):

$$
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.600012, \operatorname{Pr}\left(c_{1}\right)=0.050001 \text { and } \operatorname{Pr}\left(c_{2}\right)=0.0500003
$$

We again observe that the maximum value of the derivative is lower and the value of the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ becomes 0.600012 . This maximum lies at $x=0.6$.

We conclude that Equation (14) shows that the strongest effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ can be expected, based on the following:

- The prior probabilities $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are small; that is, causes C_{1} and C_{2} are likely to be absent. In addition, we observe that when we put a lower bound on the priors of C_{1} and C_{2}, a smaller value of the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ will provide larger propagation effects.
We found that when examining $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, the propagation effects can become moderate at most

4.1.3.2 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{\mathbf{2}} \mid \mathbf{e}\right)(\mathrm{x})$ with $\mathrm{x}=\operatorname{Pr}\left(\mathbf{e} \mid \mathbf{c}_{\mathbf{1}}, \neg \mathbf{c}_{\mathbf{2}}\right)$

We now examine $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, that is the noisy-OR parameter associated with cause C_{1}. The result is function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ which is hyperbolic in the probability x.
Theorem 4.6. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\gamma}{\beta x+\gamma} \tag{16}
\end{equation*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and $\beta=\frac{1-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$

Proof:

We have:

$$
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)}
$$

where $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ is dependent of $x . \operatorname{Pr}(e)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x) \\
& =\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+0
\end{aligned}
$$

and using Eq. (9) we get:

$$
=\left(x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)
$$

Then, by dividing the denominator and numerator by $\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)$ we get:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{x-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{x-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+x \frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}} \\
& =\frac{x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\left.\operatorname{Pr} \neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}
\end{aligned}
$$

divide both the denominator and numerator by $\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)$:

$$
\begin{aligned}
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\left(1+\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}}{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\left(1+\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}+\frac{x \operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}} \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}}{x+\frac{x \operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}+\frac{x}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}} \\
& =\frac{x+\gamma}{x+\gamma+\frac{x \operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}} \\
& =\frac{x+\gamma}{\beta x+\gamma}
\end{aligned}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and
$\beta=\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}+1=\frac{\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}=\frac{1-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$.
Observation: We find that Equation (16) is a hyperbolic function, and therefore we use the properties of hyperbolic functions described in Section 2.5 Note that Equation (16) is not defined for $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=1$, since then the denominator equals 0 . The vertical asymptote of Equation (16) lies at $x=s=-\frac{\gamma}{\beta}$. Because $\frac{\gamma}{\beta}>0$, the vertical asymptote is located to the left of the unit window and the horizontal asymptote lies at $t=\frac{1}{\beta}$, where $0<\frac{1}{\beta}<1$. As a result, we find that Equation $\sqrt{16}$ is a fragment of a first-quadrant hyperbola branch. We now find that the closer the vertex of the first-quadrant hyperbola branch lies to the point $\left(0, \frac{1}{\beta}\right)$, the larger the propagation effects. Equation (16) has its vertex at:

$$
(s+\sqrt{|r|}, t+\sqrt{|r|})=\left(-\frac{\gamma}{\beta}+\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}, \frac{1}{\beta}+\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}\right)
$$

We have that the vertex is located within the unit window for values of β, γ with $\frac{\gamma}{\beta}<\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}<1$. To have a vertex closely located to the point $\left(0, \frac{1}{\beta}\right)$ we find that $\frac{\gamma}{\beta}$ and $\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}$ should approach 0 . Thus, for $\frac{\gamma}{\beta}$ to approach 0 , we need γ to be small and β large. Consequently, large propagation effects occur when the vertex of the sensitivity function under study is closely located to the point $(0,0)$. For $\gamma \rightarrow 0, \operatorname{Pr}\left(c_{1}\right)$ has to be large and $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ small. On the other hand, for β to become large, we need that $\operatorname{Pr}\left(c_{2}\right)$ is small. The same holds for the term $\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}$. For $\sqrt{\left|\frac{\gamma(\beta-1)}{\beta^{2}}\right|}$ to approach 0 , we need again that γ should be small and β large.
To support the above mentioned conditions and gain more insight in Equation's (16) behaviour, we look at concrete parameter settings of several hyperbola branches restricted to the unit window. See Figure 6. We observe, when focusing on the entire interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0,1]$, that Equation (16) shows that the strongest effect on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ in the entire interval $x \in[0,1]$ can be expected based on the following:

- $\operatorname{Pr}\left(c_{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right)$ is small, that is, cause C_{1} is likely to be present and cause C_{2} absent;
- The smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ the larger the propagation effects on the output probability. However, this influence is relatively small.

Figure 6: Several example sensitivity functions adhering to Theorem 4.6. (See Table 3 for parameter settings)

Parameter	Blue	Blue dashed	Red	Red dashed	Black	Black dashed	Orange	Orange dashed	Purple	Purple dashed
$\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.5	0.9	0.9	0.1	0.1	0.9	0.9
$\operatorname{Pr}\left(c_{2}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.1	0.1	0.9	0.9

Table 3: Parameter settings for sensitivity functions from Figure 6
We will now focus on probabilities for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \geq 0.6$. As we observe in Figure 6, large propagation effects only occur, with a particular parameter settings, when x is less than 0.5 . These results show that the propagation effects, for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ larger than 0.6 , are moderate or small. To gain better insight into Equation's 16) behaviour in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \geq 0.6$, we compute its first derivative. The sensitivity functions corresponding to Equation $\sqrt{16}$ are a fragment of a first-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)<0$ for all $x \in[0,1]$.
Corollary 4.6.1. The first derivative of the sensitivity function from Equation (16) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\left(1-\frac{1-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\right)}{\left(\frac{1-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)} \cdot x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\right)^{2}} \\
& =\frac{\gamma(1-\beta)}{(\beta x+\gamma)^{2}} \tag{17}
\end{align*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and $\beta=\frac{1-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$.
Now, for specific parameter settings for some of the functions demonstrated in Figure 6, namely the black (dashed), orange (dashed) and red (dashed) function, we plot the derivatives of Equation 17. See Figure 7 .

$$
x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)
$$

Figure 7: Several examples of Equation (17) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[-3.5,0]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[-0.8,0]$ (right). (See Table 3 for parameter settings)

In Figure 7, the horizontal lines at $y=-0.25$ and $y=-0.75$ indicate the boundaries between what we consider to be a small, moderate or large gradient. The black (dashed) function has small propagation effects in the entire interval $x \in[0.6,1]$. The red function has moderate propagation effects in the interval $x \in[0.6,0.7893)$ and small propagation effects in the interval $x \in[0.7893,1]$. The red dashed function has moderate propagation effects in the interval $x \in[0.6,0.7078)$ and small propagation effects in the interval $x \in[0.7078,1]$. The orange function has moderate propagation effects in the interval $x \in[0.6,0.9828)$ and small propagation effects in the interval $x \in[0.9828,1]$. Finally, the orange dashed function has moderate propagation effects in the interval $x \in[0.6,0.9252$) and small propagation effects in the interval $x \in[0.9252,1]$.

We now compare the propagation effects in the interval $x \in[0.6,1]$ to the entire interval $x \in[0,1]$. We saw that for the entire interval $x \in[0,1]$, the largest propagation effects occur when the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right)$ is small, and the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is small. However, with the help of Figure 7 , and only focusing on the interval $x \in[0.6,1]$, we don't observe that a smaller noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ necessarily leads to larger propagation effects. We even see for some functions the opposite effect in the interval $x \in[0.6,1]$, namely that a larger value for the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ provides larger propagation effects. We also observe that the strongest propagation effects in the interval $x \in[0.6,1]$ occur when both $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are small, see orange (dashed) function.

With the help of WOLFRAM MATHEMATICA, we find an absolute maximum of $\max \left|\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)\right|=|0.416666|$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0.6,1]$ of Equation (17) with several parameter settings (see Appendix A.2). For example, one of the parameter settings is:

$$
\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=0.9999, \operatorname{Pr}\left(c_{1}\right)=0.385073 \text { and } \operatorname{Pr}\left(c_{2}\right)=0.187681 .
$$

This maximum lies at $x=0.6$.
We conclude that Equation 16) shows that the strongest effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0.6,1]$ can be expected, based on the following:

- The prior probability $\operatorname{Pr}\left(c_{2}\right)$ is small and $\operatorname{Pr}\left(c_{1}\right)$ is small/moderate. In addition we observe that the largest propagation effects happen when the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is large.

We find that the absolute maximum value of the corresponding derivatives of Equation (16) in the interval $[0.6,1]$
is equivalent to the maximum value obtained for the corresponding derivatives of Equation (14) in Section 4.1.3.1. Altogether, we again find when studying $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0.6,1]$ that the propagation effects can become again moderate at most.

4.1.3.3 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{2} \mid \neg \mathbf{e}\right)(\mathbf{x})$ with $\mathrm{x}=\operatorname{Pr}\left(\mathrm{e} \mid \neg \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}\right)$

We now examine $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, that is the noisy-OR parameter for cause C_{2}. The result is sensitivity function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ which is hyperbolic in the probability x.

Theorem 4.7. Consider the causal mechanism in Figure 3 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)=\frac{x-1}{x-\frac{\alpha}{\gamma}} \tag{18}
\end{equation*}
$$

where $\gamma=1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$ and $\alpha=1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)$.

Proof:

First, we note the following:

- $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ and $\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right)=1-\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)$
since $\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right)=1-\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$;
- $\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right)=1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=1-x ;$
- $\operatorname{Pr}\left(\neg e \mid c_{1}, \neg c_{2}\right)=1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.

We have:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) & =\frac{\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(\neg e)(x)} \\
& =\frac{\left(1+x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+(1-x) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(\neg e)(x)}
\end{aligned}
$$

and $\operatorname{Pr}(\neg e)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}(\neg e)(x) & =\operatorname{Pr}\left(c_{2}, \neg e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, \neg e\right)(x) \\
& =\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\left(1+x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+(1-x) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& -x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)
\end{aligned}
$$

Note that the numerator of the sensitivity function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ equals the denominator minus the last 2 terms,
that is $\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)$. We have:
$\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)=\frac{x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}$
(divide both the numerator and denominator by $\operatorname{Pr}\left(c_{2}\right)$)

$$
\begin{aligned}
= & \frac{x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-x+1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-x+1+\operatorname{Pr}\left(c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}-\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{\operatorname{Pr}\left(c_{2}\right)}} \\
= & \frac{x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-1\right)+1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-1\right)+1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)} \\
= & \frac{x+\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-1}}{x+\frac{1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-1}} \\
= & \frac{x+\frac{\gamma}{-\gamma}}{x+\frac{1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr(\neg c_{2})-\operatorname {Pr}(e|c_{1},\neg c_{2})}}{\operatorname{Pr}\left(c_{2}\right)}\right)}{-\gamma}} \\
= & \frac{x-1}{x+\frac{1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)}{-\gamma}} \\
= & \frac{x-1}{x+\frac{\alpha}{-\gamma}=\frac{x-1}{x-\frac{\alpha}{\gamma}}}
\end{aligned}
$$

where $\gamma=1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$ and $\alpha=1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)$.
Observation: Equation (18) is hyperbolic in the probability $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. Building on the properties of hyperbolic functions described in Section 2.5, we find that the vertical asymptote equals $s=\frac{\alpha}{\gamma}$ where $\alpha, \gamma>0$. To show that $\frac{\alpha}{\gamma} \geq 1$, we proof that $\alpha \geq \gamma$:
$1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right) \geq 1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$, subtract 1 from both sides $\&$ divide by $\operatorname{Pr}\left(c_{1}\right)$, we get:
$\frac{1-\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)} \geq-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, multiply both sides by $\operatorname{Pr}\left(c_{2}\right)$ and we find:
$1-\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \geq-\operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$
Since $\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ are probabilities and by assumption $\operatorname{Pr}\left(c_{2}\right) \in(0,1)$, we indeed find that $\alpha \geq \gamma$. Since the vertical asymptote has to lie outside the unit window, we also have to add the restriction $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \neq 1$.

Because of above, we find that the vertical asymptote is located to the right of the unit window. Since the horizontal asymptote t of Equation equals $t=1$, we conclude that Equation (18) is a fragment of a third-quadrant hyperbola branch. We derive that the closer the vertex of the third-quadrant hyperbola branch lies to the point $(1,1)$, the larger the propagation effects of Equation 18). We find that Equation (18) has its vertex at:

$$
(s-\sqrt{|r|}, 1-\sqrt{|r|})=\left(\frac{\alpha}{\gamma}-\sqrt{\left|\frac{\alpha}{\gamma}-1\right|}, 1-\sqrt{\left|\frac{\alpha}{\gamma}-1\right|}\right)
$$

Since $\frac{\alpha}{\gamma}>\sqrt{\left|\frac{\alpha}{\gamma}-1\right|}$ for $\frac{\alpha}{\gamma}>1$, we have that $\frac{\alpha}{\gamma}$ should approach 1 in order to have a vertex closely located to the point $(1,1)$. As a consequence, $\operatorname{Pr}\left(c_{2}\right)$ should have a large value, and $\operatorname{Pr}\left(c_{1}\right)$ a small value. The influence of $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is relatively small.

In order to confirm the above observations and gain more insight into the propagation effects, we consider concrete parameter settings for the parameters $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$. We make some plots of several hyperbola branches restricted to the unit window. See Figure 8 .

Figure 8: Several example sensitivity functions adhering to Theorem 4.7. (See Table 4 for parameter settings)

Parameter	Green	Green dashed	Purple	Purple dashed	Orange	Orange dashed	Red	Red dashed	Black	Black dashed
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.5	0.9	0.9	0.9	0.9	0.1	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.9	0.9	0.1	0.1

Table 4: Parameter settings for sensitivity functions from Figure 8
With help of Figure 8 we conclude that Equation (18) demonstrates that the strongest effects on the output probability $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ in the entire interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0,1]$ can be expected based on the following:

- $\operatorname{Pr}\left(c_{1}\right)$ is small and $\operatorname{Pr}\left(c_{2}\right)$ large, that is, cause C_{1} is likely to be absent and C_{2} present;
- The larger the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, the larger the propagation effects on the output probability. However, this influence is relatively small.

Since we focus on probabilities for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$, we observe that the propagation effects are not only large for the above mentioned parameter settings, but also when for example $\operatorname{Pr}\left(c_{1}\right)=\operatorname{Pr}\left(c_{2}\right)=0.5$. We observe that for many parameter settings small deviations in the noisy-OR parameter $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ for $x \in[0.6,1]$ will have a large effect on the output probability $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$.

To gain better insight into Equation's (18) behaviour we compute its first derivative. The sensitivity functions corresponding to Equation (18) are a fragment of a third-quadrant hyperbola branch, and as a consequence, we know that $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)<0$ for all $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0,1]$.

Corollary 4.7.1. The first derivative of the sensitivity function from Equation 18) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) & =\frac{1-\frac{1+\operatorname{Pr}\left(c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}(2)}}{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}}{\left(x+\frac{1+\operatorname{Pr}\left(c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)-1}\right)^{2}} \\
& =\frac{1-\frac{\alpha}{\gamma}}{\left(x-\frac{\alpha}{\gamma}\right)^{2}} \tag{19}
\end{align*}
$$

where $\gamma=1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$ and $\alpha=1+\operatorname{Pr}\left(c_{1}\right)\left(\frac{\operatorname{Pr}\left(\neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\right)$.
We plot the derivatives of the specific parameter settings shown in Table 4 of Equation 19). See Figure 9 .

$$
x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)
$$

$$
x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)
$$

Figure 9: Several examples of Equation 19 restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) \in[-3.5,0]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) \in[-0.8,0]$ (right). (See Table 4 for parameter settings)

In Figure 9 , it is demonstrated that for the orange (dashed) function the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) \in[-0.1,-0.25]$ for $x \in[0,1]$. The purple (dashed), black (dashed), red (dashed) and green (dashed) function all obtain values $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)>|0.75|$, in the interval where $x>0.6$. We conclude that the propagation effects of $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ where $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ in the interval $x \in[0.6,1]$ can become large for a wide range of parameter settings.

When we investigate the possible maximum value of $\max \frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$, we find that the derivative of $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ can go to infinity for some parameter settings. Some functions of Equation 18) approach the vertical asymptote, and thus $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ can go to infinity. The propagation effects can become extremely large.

The findings demonstrated in Section 4.1.3.1 are in line with the results discovered in Section 4.1.3.2 Namely, when examining $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid c_{i}, \neg c_{j}\right)$ where $i, j=1,2$, we found that the propagation effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become moderate at most when keeping in mind the underlying properties of the noisy-OR model. We discovered that the derivative can have a maximum value of $|0.416666|$. On the other hand, the results in Section 4.1 .3 .3 show that the propagation effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become large for a wide range of parameter settings when examining $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. We conclude that
the propagation effects in the diagnostic direction are highly dependent on which output probability we look at and which noisy-OR parameter we vary.

4.2 Propagation effects due to noisy-OR parameter changes: dependent causes

So far, we have studied the effects of a deviating noisy-OR parameter upon propagation through the basic causal mechanism exhibited in Figure 3. In this section, we consider a causal mechanism involving a direct connection, and therefore, a possibly dependency between their pair of cause variables, meaning there is no a priory independence of the two cause variables. See Figure 10. An extra arc $C_{1} \rightarrow C_{2}$ is added and we make the following assumptions:

- The prior probability distribution over C_{1} is non-degenerate;
- The conditional distribution over C_{2} given C_{1} is non-degenerate;
- $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right)=0$;
- Because noisy-OR parameters are assumed to be large [5, we mainly focus on $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in$ $[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects.

Figure 10: A causal mechanism with effect variable E and possibly dependent cause variables.

Furthermore, we will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We consider the gradient ∇ to be small when $|\nabla| \leq 0.25$, moderate when $|\nabla| \in(0.25,0.75)$, and large when $|\nabla| \geq 0.75$.

4.2.1 Propagation effects in the causal direction

We start by investigating the possible propagation effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-OR parameter.

Theorem 4.8. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}(e)(x)=x\left(\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \tag{20}
\end{equation*}
$$

Proof:

We have $\operatorname{Pr}(e)(x)=$

$$
=\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)
$$

$$
\text { (where } \operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)=\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \text { by Eq. } 9
$$

and the last term $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)=0$ since $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right)=0$)
$=\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+0$
$=\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$
$+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$
$=x\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)\right)$
we note that $\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)=\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)=1$, and therefore we obtain: $=x\left(\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)$.

Observation: The above function shows that strong effects on the output probability $\operatorname{Pr}(e)$ can be expected when:

- $\operatorname{Pr}\left(c_{2}\right)$ has a large value and at least one of the values $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right)$, or $\operatorname{Pr}\left(c_{1}\right)$ is small.

Since $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is a noisy-OR parameter, which are assumed to be large, we conclude that the gradient is large when the prior probability $\operatorname{Pr}\left(c_{2}\right)$ is large and $\operatorname{Pr}\left(c_{1}\right)$ and/or $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ is/are small. In addition we have that the smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, the larger the propagation effects. The gradient is in the interval (0,1). Note that the gradient here equals $\left(\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\right)$ and in Equation (7) (the basic causal mechanism exhibited in Figure 3 it equals $\left(\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)$ which means that the prior probability $\operatorname{Pr}\left(c_{2}\right)$ in Equation (7) is replaced by the conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$. We remark that $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ can not be regarded as entirely independent from each other since $\operatorname{Pr}\left(c_{2}\right)=$ $\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)$.

We conclude that the effect of changes in the noisy-OR parameter on the probability $\operatorname{Pr}(e)$ of the model shown in Figure 10, are in line with the basic causal mechanism shown in Figure 3. However, the gradient in Equation 20) differs from the gradient in Equation (7). The size in which the gradient of Equation (20) differs, depends on the value of $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ compared to $\operatorname{Pr}\left(c_{2}\right)$. If $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)<\operatorname{Pr}\left(c_{2}\right)$, the propagation effects of Equation will be larger than of Equation (7). However, if $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)>\operatorname{Pr}\left(c_{2}\right)$ the gradient of Equation 20 will be smaller than of Equation (7), and thus the propagation effects will be smaller. Moreover, we find that the gradient of Equation (20) equals:
$\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$, we can rewrite this as:
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)=$
$=\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)$
and thus, we find that the gradient of Equation 20 is $\geq \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)$.
We discovered that the results of the presence of possibly dependent cause variables are largely in line with the results of Section 4.1.1, where there are no dependent causes. For the propagation effects in the causal direction, we observed that the gradient from Equation (20) possesses the term $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ instead of $\operatorname{Pr}\left(c_{2}\right)$ in Equation (7). The amount in which the gradient from Equation (20) is larger/smaller than of Equation (7), depends on the value of $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ compared to $\operatorname{Pr}\left(c_{2}\right)$.

4.2.2 Propagation effects in the diagnostic direction

In this section, we investigate the consequences of varying a noisy-OR parameter upon propagation in the diagnostic direction, that is, upon propagating evidence for the effect variable to an unobserved cause variable. We still consider the conditional probability tables for the three variables of the causal mechanism from Figure 10.

4.2.2.1 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{2} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathrm{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{1}, \mathbf{c}_{\mathbf{2}}\right)$

We examine $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. The result is function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ which is hyperbolic in the probability x.

Theorem 4.9. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\frac{\alpha}{\gamma-\alpha}}{x+\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}} \tag{21}
\end{equation*}
$$

where $\alpha=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ and $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}$.
Proof: We have:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right) & =\frac{\operatorname{Pr}\left(c_{2}, e\right)}{\operatorname{Pr}\left(c_{2}, e\right)+\operatorname{Pr}\left(\neg c_{2}, e\right)}, \text { and therefore } \\
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)} .
\end{aligned}
$$

We substitute the value $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ with $x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ (Eq. 9p), and obtain:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)}
\end{aligned}
$$

Where $\operatorname{Pr}\left(c_{2}, e\right)(x)=\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)$, and $\operatorname{Pr}\left(\neg c_{2}, e\right)(x)=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$. Divide both numerator and denominator by $\operatorname{Pr}\left(c_{1}\right)$, then $\operatorname{Pr}\left(c_{2} \mid e\right)(x)=$

$$
\begin{aligned}
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid c_{1}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\frac{x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid c_{1}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\frac{x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{x \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}} \\
& =\frac{x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}}{x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\left(1+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}\right)}{\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}} \quad \text { (because } \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)=\operatorname{Pr}\left(c_{2}\right)\right) \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)} \underset{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{ } \quad\left(\text { since } \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)=1\right) \\
& =\frac{x+\frac{\alpha}{\gamma-\alpha}}{x+\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}}
\end{aligned}
$$

where $\alpha=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ and $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}$.

Observation: Since Equation (21) is a hyperbolic function, we use the properties of hyperbolic functions described in Section 2.5 and discover that the vertical asymptote of Equation $\sqrt{21})$ lies at $x=s=-\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}$ and the horizontal asymptote equals $t=1$. Because $\operatorname{Pr}\left(c_{2}\right)>\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$, we find that $\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}>1$, and thus $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}>0$. Consequently, we find that Equation 21 is a fragment of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)>0$ for all $x \in[0,1]$.

Equation (21) has its vertex at:

$$
(s+\sqrt{|r|}, 1-\sqrt{|r|})=\left(-\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}+\sqrt{\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}}, 1-\sqrt{\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}}\right)
$$

The vertex is located within the unit window for some values of $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}, \frac{\alpha}{\gamma-\alpha}$
with $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}<\sqrt{\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}}<1$. To obtain $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}<\sqrt{\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}}$ given that $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)} \geq \frac{\alpha}{\gamma-\alpha}$, we discover that merely rather small values of $\frac{\alpha}{\gamma-\alpha}$ produce a vertex with an x-coordinate in the unit range. In order to have a small value for $\frac{\alpha}{\gamma-\alpha}=\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}$, the prior probability $\operatorname{Pr}\left(c_{2}\right)$ has to be large and $\operatorname{Pr}\left(c_{1}\right)$ has to be small. In addition, the vertex only approaches the upper-left corner of the unit window if the difference $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}$ is rather small, since then Equation 21 approaches 1. We find that the difference $\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}-\frac{\alpha}{\gamma-\alpha}$ is small when the conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ is large.

Figure 11: Several example sensitivity functions adhering to Theorem 4.9. (See Table 5 for parameter settings)

Parameter	Blue	Blue light	Blue dashed	Blue dotted	Red	Red light	Red dashed	Red dotted	Green	Green light
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.6	0.85	0.85	0.85	0.6	0.85	0.85	0.85	0.6
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5
$\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$	0.5	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.9	0.1	0.1	0.5	0.9	0.1	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.46	0.46	0.3	0.14	0.82	0.82	0.5	0.18	0.86	0.86

[^0]| Parameter | Green
 dashed | Green
 dotted | Purple | Purple
 light | Purple
 dashed | Purple
 dotted | Black | Black
 dashed | Black
 dotted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ | 0.85 | 0.85 | 0.85 | 0.6 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
| $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.1 | 0.5 | 0.9 |
| $\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ | 0.9 | 0.9 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.5 | 0.9 |
| $\operatorname{Pr}\left(c_{1}\right)$ | 0.5 | 0.9 | 0.1 | 0.1 | 0.5 | 0.9 | 0.0981 | 0.1 | 0.1 |
| $\operatorname{Pr}\left(c_{2}\right)$ | 0.7 | 0.54 | 0.14 | 0.14 | 0.3 | 0.46 | 0.1 | 0.5 | 0.9 |

Table 5: Parameter settings for sensitivity functions from Figure 11

In order to support the above mentioned findings and gain more insight in what the influences are of the values of the parameters on the probability $\operatorname{Pr}\left(c_{2} \mid e\right)$, we make some plots of the sensitivity function with different input parameters $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ as provided in Table 5. The value of $\operatorname{Pr}\left(c_{2}\right)$ is determined by $\operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$, since $\operatorname{Pr}\left(c_{2}\right)=\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)$; for sake of completeness we listed all parameters in Table5 Furthermore, we especially want to examine the propagation effects when $\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \neq \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$, since we want to investigate the effect of a dependency between the cause variables. For the cases where $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)=\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ we refer to Chapter 4.1. However, for comparison we plot three functions where $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)=\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$, see black, black dashed, and black dotted.
The results of the effects of different concrete parameter settings are exhibited in Figure 11. We observe that function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ demonstrates that strong effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ in the entire interval $x \in[0,1]$ can be expected based on the following:

- $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$ have small values and $\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ has a large value;
- The smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, the larger the propagation effects on the output probability. This effect is conveyed by the solid versus light function for each colour.

Again, one should recall that the focus is on probabilities for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$. In Figure 11, it is shown that large propagation effects only occur for small values for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ (see for example blue, green and red functions). These results show that the propagation effects, for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ larger than 0.6 , are moderate or small. However, to gain better insight into Equation's (21) behaviour in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$, we compute its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (21) are a fragment of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)>0$ for all $x \in[0,1]$.

Corollary 4.9.1. The first derivative of the sensitivity function from Equation (21) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\left(1-\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \cdot\left(x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(\frac{\operatorname{Pr}\left(\operatorname{Pa}_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}\right)^{2}} \\
& =\frac{\alpha\left(1-\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)\left(x+\frac{\alpha}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)(\gamma-\alpha)}\right)^{2}} \tag{22}
\end{align*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}$ and $\alpha=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.
Now, for the red (light/dashed), blue (light/dashed) and green (light/dashed) functions demonstrated in Figure 11 , we plot the derivatives of Equation (22).

In Figure 12 , it is shown that for the parameter settings of the red (light) and green (light/dashed) function the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)<0.25$ for $x \in[0.6,1]$. We observe moderate and small propagation effects for the blue (dashed) and red dashed function. Finally, when only concentrating on the interval $x \in[0.6,1]$, we don't observe that a smaller noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ leads to larger propagation effects anymore. The propagation effects can even become larger in the interval $x \in[0.6,1]$ due to a larger noisy-OR parameter $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.

Figure 12: Several examples of Equation $\sqrt[22]{ }$ restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,3.5]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 5 for parameter settings)

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=0.416666$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ of Equation (22) with several parameter settings (see Appendix B.1). For example, one of the parameter settings is:

$$
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.84354, \operatorname{Pr}\left(c_{2} \mid c_{1}\right)=2.08187 \cdot 10^{-7}, \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)=0.9285467399, \operatorname{Pr}\left(c_{1}\right)=0.397759 \text { and } \operatorname{Pr}\left(c_{2}\right)=
$$ 0.559209 .

This maximum lies at $x=0.6$. We conclude that our findings concerning the propagation effects of Equation (21) in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ are moderate or small, which are in line with the results derived in Section 4.1.3.1. We discovered, when studying the effect of possibly dependent cause variables, that Equation (22) where $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ can attain maximum value of 0.416666 , indicating that the propagation effects are in line with Section 4.1.3.1.

4.2.2.2 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{2} \mid \mathbf{e}\right)(\mathbf{x})$ with $\mathbf{x}=\operatorname{Pr}\left(\mathbf{e} \mid \mathbf{c}_{1}, \neg \mathbf{c}_{2}\right)$

We now examine $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$, that is the noisy-OR parameter associated with cause C_{1}. The result is function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ which is hyperbolic in the probability x.

Theorem 4.10. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\beta}{x \alpha+\beta} \tag{23}
\end{equation*}
$$

where $\alpha=\frac{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and $\beta=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2} \frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right.}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$.

Proof: We have:

$$
\begin{aligned}
& \operatorname{Pr}\left(c_{2} \mid e\right)(x) \text { with } x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \text { since } \\
& \operatorname{Pr}\left(c_{2} \mid e\right)=\frac{\operatorname{Pr}\left(c_{2}, e\right)}{\operatorname{Pr}\left(c_{2}, e\right)+\operatorname{Pr}\left(\neg c_{2}, e\right)}, \text { we find } \\
& \operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)}
\end{aligned}
$$

where $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ is dependent of x.
We substitute the value $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ with $x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ (Eq. 12) , and obtain: $\operatorname{Pr}\left(c_{2} \mid e\right)(x)=$

$$
\begin{aligned}
& =\frac{\left(x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)} .
\end{aligned}
$$

Where $\operatorname{Pr}\left(c_{2}, e\right)(x)=\left(x\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)$, and $\operatorname{Pr}\left(\neg c_{2}, e\right)(x)=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)=x \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$. Divide both numerator and denominator by $\operatorname{Pr}\left(c_{1}\right)$, then $\operatorname{Pr}\left(c_{2} \mid e\right)(x)=$

$$
\begin{aligned}
& =\frac{x \operatorname{Pr}\left(c_{2} \mid c_{1}\right)-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{x \operatorname{Pr}\left(c_{2} \mid c_{1}\right)-x \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+x \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)} \\
& =\frac{x\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right)-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{x\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right)-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+x \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)} \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}}{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}+x \frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}} \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}}{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\left(\operatorname{Pr}\left(c_{2} \mid c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}+x \frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}} \\
& =\frac{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}}{x+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}+x \frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}} \\
& =\frac{x+\beta}{x \alpha+\beta}
\end{aligned}
$$

where $\alpha=1+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}=\frac{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and $\beta=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$.
Observation: We have that Equation (23) is a hyperbolic function, and therefore we use the properties of hyperbolic functions described in Section 2.5. We find that the vertical asymptote of Equation 23) lies at $x=s=-\frac{\beta}{\alpha}$. Note that Equation 23 is not defined for $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=1$. Because $\frac{\beta}{\alpha}>0$, the vertical asymptote is located to the left of the unit window and the horizontal asymptote lies at $t=\frac{1}{\alpha}$, where $\alpha>1$, and thus $t<1$. As a result, we find that Equation (23) is a fragment of a first-quadrant hyperbola branch. Furthermore, we have that the closer the vertex of the first-quadrant hyperbola branch lies to the point $\left(0, \frac{1}{\alpha}\right)$, the larger the propagation effects of Equation 23 .

Equation (23) has its vertex at:

$$
(s+\sqrt{|r|}, t+\sqrt{|r|})=\left(-\frac{\beta}{\alpha}+\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}, \frac{1}{\alpha}+\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}\right)
$$

Now, we have that the vertex is located within the unit window for values of α, β with $\frac{\beta}{\alpha}<\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}<1$. To have a vertex close located to the point $\left(0, \frac{1}{\alpha}\right)$ we find that $\frac{\beta}{\alpha}$ and $\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}$ should approach 0 . This means that β should be small and α should be large, then we have that the term $\frac{\beta}{\alpha}$ approaches 0 . Consequently, large propagation effects occur when the vertex of the sensitivity function under study is closely located to the point $(0,0)$. For $\beta \rightarrow 0$ we need that $\operatorname{Pr}\left(c_{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ are small. In addition, for α to become large, we need that $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ are small. The same holds for the term $\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}$. For $\sqrt{\left|\frac{\beta(1-\alpha)}{\alpha^{2}}\right|}$ to approach 0 , we need again that β should be small and α large.

In order to gain better insight in what the influences are of the values of the parameters on the probability $\operatorname{Pr}\left(c_{2} \mid e\right)$, we look at concrete parameter settings of several hyperbola branches restricted to the unit window. We make some plots of Equation (23) with different input parameters $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$, whereby the value of $\operatorname{Pr}\left(c_{2}\right)$ is determined by $\operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$. For sake of completeness all mentioned probabilities are listed in Table 6.

Figure 13: Several example sensitivity functions adhering to Theorem 4.10 (See Table 6 for parameter settings)

Parameter	Red	Red light	Red dashed	Red dotted	Blue	Blue light	Blue dashed	Blue dotted	Green	Green light
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.6	0.85	0.85	0.85	0.6	0.85	0.85	0.85	0.6
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5
$\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$	0.5	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.1	0.1
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.9	0.1	0.1	0.5	0.9	0.1	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.46	0.46	0.3	0.14	0.82	0.82	0.5	0.18	0.14	0.14

Parameter	Green dashed	Green dotted	Purple	Purple light	Purple dashed	Purple dotted	Black	Black dashed	Black dotted
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.85	0.85	0.6	0.85	0.85	0.85	0.85	0.85
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$	0.5	0.5	0.9	0.9	0.9	0.9	0.1	0.5	0.9
$\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$	0.9	0.9	0.1	0.1	0.1	0.1	0.1	0.5	0.9
$\operatorname{Pr}\left(c_{1}\right)$	0.5	0.9	0.1	0.1	0.5	0.9	0.9	0.9	0.9
$\operatorname{Pr}\left(c_{2}\right)$	0.7	0.46	0.54	0.54	0.5	0.86	0.1	0.5	0.9

Table 6: Parameter settings for sensitivity functions from Figure 13

The results are exhibited in Figure 13 . We observe that Equation (23) demonstrates that the largest propagation effects in the entire interval $x \in[0,1]$ can be expected based on the following:

- $\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ have small values and $\operatorname{Pr}\left(c_{1}\right)$ has a large value;
- The smaller the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, the larger the propagation effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$. This effect is conveyed by the solid versus light function for each colour.

When we focus on the interval where $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \geq 0.6$ in Figure 13, we note that the propagation effects can become small and moderate at most. In order to gain more insight into the propagation effects for $x \geq 0.6$ of Equation (23), we compute its first derivative. Since the sensitivity functions corresponding to Equation (23) are a fragment of a first-quadrant hyperbola branch, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)<0$ for all $x \in[0,1]$.

Corollary 4.10.1. The first derivative of the sensitivity function from Equation (23) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{P r\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\left(1-\frac{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\right)}{\left(x \frac{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}+\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}\right)^{2}} \\
& =\frac{\beta(1-\alpha)}{(x \alpha+\beta)^{2}} \tag{24}
\end{align*}
$$

where $\alpha=\frac{1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$ and $\beta=\frac{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right)}$.
Now, for specific parameter settings for some of the functions demonstrated in Figure 13 , namely the red (dashed/dotted), blue (dashed/dotted) and green (dashed/dotted) function we plot the derivatives of Equation (24). See Figure 14

With the help of WOLFRAM MATHEMATICA, we find an absolute maximum of max $\left|\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)\right|=|0.416666|$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0.6,1]$ of Equation (24) with several parameter settings (see Appendix B.2). For example, one of the parameter settings is:

$$
\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=0.9999, \operatorname{Pr}\left(c_{2} \mid c_{1}\right)=0.184973, \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)=0.3883, \operatorname{Pr}\left(c_{1}\right)=0.560874 \text { and } \operatorname{Pr}\left(c_{2}\right)=0.274277 .
$$

This maximum lies at $x=0.6$. Again, the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is extremely large; a somehow similar parameter setting corresponds to the same gradient's maximum value of Equation (16) in Section 4.1.3.2. We conclude that the effect of changes in the noisy-OR parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ on the probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ of the causal mechanism involving possibly dependent cause variables, are in line with the basic causal mechanism shown in Figure 3] see Section 4.1.3.2. We note that the propagation effects in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \in[0.6,1]$ can become moderate at most.

$$
x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)
$$

$$
x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)
$$

Figure 14: Several examples of Equation (24) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[-3.5,0]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[-0.8,0]$ (right). (See Table 6 for parameter settings)

4.2.2.3 Sensitivity function $\operatorname{Pr}\left(\mathbf{c}_{2} \mid \neg \mathbf{e}\right)(\mathbf{x})$ with $\mathrm{x}=\operatorname{Pr}\left(\mathbf{e} \mid \neg \mathbf{c}_{1}, \mathbf{c}_{2}\right)$

We now examine $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, that is the noisy-OR parameter associated with cause C_{2}. The result is function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ which is hyperbolic in the probability x.

Theorem 4.11. Consider the causal mechanism in Figure 10 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)=\frac{x+\gamma}{x+\gamma+\alpha} \tag{25}
\end{equation*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$ and $\alpha=\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1} \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$.

Proof:

Since $\operatorname{Pr}(e \mid \mathbf{c})+\operatorname{Pr}(\neg e \mid \mathbf{c})=1$, we again note the following (see also Section 4.1.3.3):

- $\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right)=1-\left(x\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)$;
- $\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right)=1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)=1-x ;$
- $\operatorname{Pr}\left(\neg e \mid c_{1}, \neg c_{2}\right)=1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.

We have:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) & =\frac{\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}(\neg e)(x)} \\
& =\frac{\left(1+x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+(1-x) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}(\neg e)(x)}
\end{aligned}
$$

and $\operatorname{Pr}(\neg e)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}(\neg e)(x) & =\operatorname{Pr}\left(c_{2}, \neg e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, \neg e\right)(x) \\
& =\operatorname{Pr}\left(\neg e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(\neg e \mid \neg c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(\neg e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right) \\
& =\left(1+x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+(1-x) \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right) \\
& +\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right) \\
& =\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-x \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right) \\
& +\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)-x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)
\end{aligned}
$$

Note that the numerator of the sensitivity function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ equals the denominator minus the last 2 terms, that is $\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$. Dividing both the numerator and denominator by $\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$, we get: $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)=$

$$
\begin{aligned}
& =\frac{1+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\frac{x \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\left.\operatorname{Pr}\left(c_{2}\right) \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{1+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}-\frac{\operatorname{Pr} \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}} \\
& =\frac{x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}\right)+1+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{x\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}\right)+1+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}} \\
& =\frac{x+\frac{1+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}}{x+\frac{1+\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}} \\
& =\frac{x+\frac{\frac{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}}{x+\frac{\frac{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)+\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}} \\
& =\frac{x+\frac{\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}}}{x+\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right)}\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}-\sqrt[\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-1-\frac{\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right) \operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)}]{ } \\
& =\frac{x+\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}}{x+\frac{\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}} \\
& =\frac{x+\gamma}{x+\gamma+\alpha}
\end{aligned}
$$

where $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$ and $\alpha=\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$.
Observation: Equation (25) is hyperbolic in the probability $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. Building on the properties of hyperbolic functions described in Section 2.5. we find that the vertical asymptote equals $x=s=-(\gamma+\alpha)$. We have
that $\gamma+\alpha<0$, since $\operatorname{Pr}\left(c_{2}\right)>\operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$. We will show that $(\gamma+\alpha)<-1$:

$$
\begin{aligned}
\gamma+\alpha & =\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}+\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)} \\
& =\frac{\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}
\end{aligned}
$$

Now we need to show that:

$$
\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)>\left|\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)\right|
$$

We multiply $\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)\right)$ by -1 :

$$
\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)
$$

We now have to show that: $\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)>\operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)$ Subtract $\operatorname{Pr}\left(c_{2}\right)$ from both sides, and then divide by $\operatorname{Pr}\left(c_{1}\right)$. Finally, we end up with:

$$
\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)>-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right), \text { and thus }(\gamma+\alpha)<-1
$$

Since $s>1$, we find that the vertical asymptote is located to the right of the unit window. We have that the horizontal asymptote t of Equation (25) equals $t=1$ and we conclude that Equation (25) is a fragment of a thirdquadrant hyperbola branch. We find that the closer the vertex of the third-quadrant hyperbola branch lies to the point $(1,1)$, the larger the propagation effects. We note that Equation 25 has its vertex at:

$$
(s-\sqrt{|r|}, t-\sqrt{|r|})=(-\gamma-\alpha-\sqrt{|\alpha|}, 1-\sqrt{|\alpha|})
$$

We first discover that $\sqrt{|\alpha|} \rightarrow 0$ in order to have the y-coordinate approach 1 . It becomes theoretically quite complicated to state for which parameter settings $\alpha \rightarrow 0$. However, in order for the vertex to approach the upper-right corner of the unit window, that is the point $(1,1)$, we then also need $\gamma \rightarrow-1$. We note that if $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ and/or $\operatorname{Pr}\left(c_{1}\right)$ is/are small then γ will approach -1 since $\gamma \approx \frac{\operatorname{Pr}\left(c_{2}\right)}{-\operatorname{Pr}\left(c_{2}\right)} \approx-1$.

In order to clarify, and supplement the findings above, we make some plots of Equation (25) with different input parameters $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$, and $\operatorname{Pr}\left(c_{1}\right)$. The value of $\operatorname{Pr}\left(c_{2}\right)$ is determined by $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$, $\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$. See Figure 15 .

We observe that function $\operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ demonstrates that the strongest effects on the output probability $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ can be expected based on the following:

- $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ have small values and $\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$ has a large value;
- The propagation effects in the entire interval $[0,1]$ are larger when $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is small. This effect is conveyed by the solid versus light function for each colour.

Figure 15: Several example sensitivity functions adhering to Theorem 4.11 (See Table 7 for parameter settings)

Parameter	Blue	Blue light	Blue dashed	Blue dotted	Red	Red light	Red dashed	Red dotted	Green	Green light
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.6	0.85	0.85	0.85	0.6	0.85	0.85	0.85	0.6
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5
$\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$	0.5	0.5	0.5	0.5	0.9	0.9	0.9	0.9	0.9	0.9
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.9	0.1	0.1	0.5	0.9	0.1	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.46	0.46	0.3	0.14	0.82	0.82	0.5	0.18	0.86	0.86

Parameter	Green dashed	Green dotted	Purple	Purple light	Purple dashed	Purple dotted	Black	Black dashed	Black dotted
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.85	0.85	0.85	0.6	0.85	0.85	0.85	0.85	0.85
$\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$	0.5	0.5	0.5	0.5	0.5	0.5	0.1	0.5	0.9
$\operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$	0.9	0.9	0.1	0.1	0.1	0.1	0.1	0.5	0.9
$\operatorname{Pr}\left(c_{1}\right)$	0.53^{2}	0.898^{3}	0.1	0.1	0.5	0.9	0.0984	0.1	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.7	0.54	0.14	0.14	0.3	0.46	0.1	0.5	0.9

Table 7: Parameter settings for sensitivity functions from Figure 15

We observe that the largest propagation effects happen when the noisy-OR parameter $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ is large. Since one should especially focus on probabilities for $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$, we note large propagation effects are possible for a wide range of parameter settings. To better investigate the sensitivity functions from Equation (25), we compute its first derivative and make some plots with different input parameters $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(c_{2} \mid c_{1}\right), \operatorname{Pr}\left(c_{2} \mid \neg c_{1}\right)$, and $\operatorname{Pr}\left(c_{1}\right)$. The sensitivity functions corresponding to Equation 25) are a fragment of a third-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)<0$ for all $x \in[0,1]$.

[^1]Corollary 4.11.1. The first derivative of the sensitivity function from Equation (25) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) & =\frac{\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}}{\left(x+\frac{\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}\right)^{2}} \\
& =\frac{\alpha}{(x+\gamma+\alpha)^{2}} \tag{26}
\end{align*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$ and $\alpha=\frac{\operatorname{Pr}\left(\neg c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{2} \mid c_{1}\right) \operatorname{Pr}\left(c_{1}\right)-\operatorname{Pr}\left(c_{2}\right)}$.
For specific parameter settings for some of the functions demonstrated demonstrated in Figure 15, namely the green (light), red (light) and blue (light) function, we plot the derivatives of Equation 26). See figure 16 .

$$
x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)
$$

Figure 16: Several examples of Equation 26) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) \in[-3.5,0]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x) \in[-0.8,0]$ (right). (See Table 7 for parameter settings)

We observe that the red (light), blue (light) and green (light) function all provide large propagation effects in the interval $x \in[0.6,1]$. We conclude that the propagation effects in the interval $x \in[0.6,1]$ become large for a wide range of parameter settings.

When we investigate the possible maximum value of $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$, we find that the derivative of $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ can go to infinity for some parameter settings. Some functions of Equation approach the vertical asymptote, and thus $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid \neg e\right)(x)$ can go to infinity. The propagation effects can become extremely large.

Studying the effect of possibly dependent cause variables on the propagation effects in the diagnostic direction lead to similar results as in Section 4.1.3. Namely, when examining $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid c_{i}, \neg c_{j}\right)$ where $i, j=1,2$, and keeping in mind the underlying properties of the noisy-OR model, we found that the propagation effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become moderate at most. We discovered that the derivative can have again a maximum value of $|0.416666|$. On the other hand, the results in Section 4.2.2.3 show that the propagation effects in the diagnostic direction due to inaccurate estimates of a noisy-OR parameter can become large for a wide range of parameter settings when examining $\operatorname{Pr}\left(c_{2} \mid \neg e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. These results align with the findings demonstrated in Section 4.1.3.3. We discovered again
that the propagation effects in the diagnostic direction are highly dependent on which output probability we look at and which noisy-OR parameter we vary. We conclude that the presence of possibly dependent cause variables does not lead to remarkably different propagation effects in the diagnostic direction.

4.3 Propagation effects due to leaky noisy-OR parameter changes: independent causes

We will continue our research with the conditional probability tables for the three variables of the basic mechanism from Figure 3 again. However, we will now assume that the property of accountability is not satisfied, meaning that $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right)=p$, where $p>0$. We will use the leaky noisy-OR model described in Section 2.4 . When evaluating the corresponding propagation effects, we assume the following:

- The prior probability distributions for cause variables C_{1} and C_{2} are non-degenerate, that is $\operatorname{Pr}\left(c_{i}\right) \neq 0$ and $\operatorname{Pr}\left(\neg c_{i}\right) \neq 0$ for $i=1,2$;
- A leak-probability typically attains a small value in practise 1. Because of this, we mainly focus for $p \in(0,0.2$] in our research;
- Because leaky noisy-OR parameters are assumed to be large [5], we mainly focus on $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in$ $[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects.

We will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We consider the gradient ∇ to be small when $|\nabla| \leq 0.25$, moderate when $|\nabla| \in(0.25,0.75)$, and large when $|\nabla| \geq 0.75$.

4.3.1 Propagation effects in the causal direction

We begin by investigating the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a leaky noisy-OR parameter.
Theorem 4.12. Consider the causal mechanism in Figure 3 and assume it models a leaky noisy-OR. Let $x=$ $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the leaky noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{align*}
& \operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{2}\right)\left(\frac{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{1-p}+\operatorname{Pr}\left(\neg c_{1}\right)\right)+ \\
& \left.\quad \frac{\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p\right)}{1-p}+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right) \tag{27}
\end{align*}
$$

Proof: Using the leaky noisy-OR model, we compute that:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) & =1-(1-p)\left(\frac{\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)\right.}{1-p} \frac{\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right.}{1-p}\right) \\
& =1-(1-p)\left(\frac{(1-x)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right.}{(1-p)^{2}}\right) \\
& =1-\left(\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{1-p}\right) \\
& =\frac{1-p}{1-p}-\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{1-p} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{1-p} \tag{28}
\end{align*}
$$

Thus we have $\operatorname{Pr}(e)(x)=$

$$
\begin{aligned}
& =\left(\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{1-p}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\operatorname{pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}+\frac{x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}-\frac{x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}-\frac{\operatorname{pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+p \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =x\left(\frac{\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}-\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}+\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}-\frac{p \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p} \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+p \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(\frac{\operatorname{Pr}\left(c_{1}\right)}{1-p}-\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)}{1-p}+\operatorname{Pr}\left(\neg c_{1}\right)\right)+\frac{\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p\right)}{1-p} \\
& +\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+p \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(\frac{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{1-p}+\operatorname{Pr}\left(\neg c_{1}\right)\right)+\frac{\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p\right)}{1-p}+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\operatorname{pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) . \\
& \square
\end{aligned}
$$

Observation: Equation (27) shows that strong effects on the output probability $\operatorname{Pr}(e)$ can be expected only if both $\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(\neg c_{1}\right)$ have a large value, that is, cause C_{2} is likely to be present and C_{1} absent. Furthermore, one can observe that substituting $p=0$ in Equation (27) will result in Equation (7) again.
Note that the parameter $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ is a leaky noisy-OR parameter, which is assumed to be large. In addition, the leak probability p is small, thus we establish that the term $\frac{\operatorname{Pr}\left(c_{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)\right)}{1-p}$ will be small in any case.
Since $\operatorname{Pr}(e)$ is a probability and Equation 27) is a linear function we note that the gradient cannot become larger than 1. Also, since the size of the gradient is mainly determined by $\operatorname{Pr}\left(\neg c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$, the leak-probability p possesses a weak additional influence on the propagation effects compared to the noisy-OR model (without the leakprobability). However, if we must say whether the addition of a leak-probability has a positive/negative influence on the propagation effects, we can say that the propagation effects are slightly stronger since we have that the larger the leak-probability p, the larger the the gradient.

Analogous observations hold for the function obtained for the probability of interest $\operatorname{Pr}(e)$ if $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$.

4.3.2 Propagation effects in the diagnostic direction

Now we investigate the consequences of changes in a leaky noisy-OR parameter upon propagation in the diagnostic direction. If we write $\operatorname{Pr}\left(c_{2} \mid e\right)$ as a function of the probability $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, the result is a hyperbolic function in x. The corresponding sensitivity function is:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(c_{2}, e\right)(x)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)} \\
& \left.=\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)} \text { (where } \operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \text { is dependent of } x\right) \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\left(\operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right.}\left(\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \text { is dependent of } x\right) \\
& \left.=\frac{\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\left(\operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right.} \text { (where } \operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \text { is dependent of } x\right)
\end{aligned}
$$

We note an important difference from function (13) (obtained with the noisy-OR model), namely, the denominator now includes the extra term $\operatorname{pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)$.

Theorem 4.13. Consider the causal mechanism in Figure 3 and assume it models a leaky noisy-OR. Let $x=$ $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ be the leaky noisy-OR parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\gamma}{x+\gamma+\zeta} \tag{29}
\end{equation*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{\frac{1}{\operatorname{Pr}\left(c_{1}\right)}\left(1-\operatorname{Pr}\left(\neg c_{1}\right)\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}$ and $\zeta=\frac{\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+p \frac{P r\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{(1-p)}}$.
Proof: We have:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\left(\frac{\left.\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p\right)}{1-p}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{1-p}+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)}
\end{aligned}
$$

We have that $\operatorname{Pr}(e)(x)=\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+p \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)$. We substitute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$ with $\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{1-p}$ and divide the denominator and numerator by $\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)$ and get:

$$
\begin{aligned}
& \operatorname{Pr}\left(c_{2} \mid e\right)(x)= \frac{x\left(\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{1-p}+\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{1-p}}{x\left(\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{1-p}+\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{1-p}+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}+p \frac{\operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)}} \\
&= x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{\frac{1}{\operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}} \\
& x+\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{\frac{1}{\operatorname{Pr}\left(c_{1}\right)}-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr(c_{1})}}}+\frac{\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+p \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr(c})}\right)}{\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr(c_{1})}+\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{(1-p)}}}
\end{aligned}
$$

$$
\text { by dividing by }\left(\frac{1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}{1-p}+\frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right) \text { and rearrangement. We finally obtain: }
$$

$$
=\frac{x+\gamma}{x+\gamma+\zeta}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{\frac{1}{\operatorname{Pr}\left(c_{1}\right)}\left(1-p \operatorname{Pr}\left(\neg c_{1}\right)\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}$ and $\zeta=\frac{\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\left.\operatorname{Pr(c} c_{2}\right)}\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+p \frac{P r\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{\frac{P r\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}+\frac{1-P r\left(e \mid c_{1}, \rightarrow c_{2}\right)}{(1-p)}}$.
Observation: Equation (29) is hyperbolic in the probability $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$. We use the properties of hyperbolic functions described in Section 2.5 and discover that the vertical asymptote of Equation 29) lies at $x=s=-(\gamma+\zeta)$. Since $\gamma+\zeta>0$, the asymptote is located to the left of the unit window and the horizontal asymptote lies at $t=1$. As a result, we find that Equation (29) is a fragment of a fourth-quadrant hyperbola branch.

The effect of deviations in the x-value on the output probability of interest mainly depend on the location of the vertex of the corresponding hyperbola branch. We have that the closer the vertex of the fourth-quadrant hyperbola branch lies to the upper-left corner of the unit window, that is the point $(0,1)$, the larger the propagation effects. We find that Equation 29 has its vertex at:

$$
(s+\sqrt{|r|}, t-\sqrt{|r|})=(-(\gamma+\zeta)+\sqrt{|\zeta|}, 1-\sqrt{|\zeta|})
$$

The vertex is located within the unit window for some values of γ, ζ with $(\gamma+\zeta)<\sqrt{|\zeta|}<1$. To obtain $(\gamma+\zeta)<\sqrt{|\zeta|}$ given that $(\gamma+\zeta)>\zeta$, we discover that rather small values of ζ will result in a vertex with a positive x-coordinate.

The vertex only approaches the upper-left corner of the unit window, if in addition, the difference $(\gamma+\zeta)-\gamma=\zeta$ is rather small. For $\zeta \rightarrow 0$, we observe that $\operatorname{Pr}\left(c_{1}\right)$ should be small and $\operatorname{Pr}\left(c_{2}\right)$ large. For $\gamma \rightarrow 0$ we need that $\operatorname{Pr}\left(c_{1}\right)$ should be small as well. Unfortunately, it becomes theoretically quite difficult to say something about the effect of p on the location of the vertex within the unit window. In order to get a better idea of what the influence is of the value of p on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$, we make some plots of Equation $\sqrt{29}$) with different input parameters $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)$, and p. We set $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ equal to 0.8. See Figure 17 .

Figure 17: Several example sensitivity functions adhering to Theorem 4.13. (See Table 8 for parameter settings)

Parameter	Red	Red dashed	Green	Green dashed	Purple	Purple dashed	Orange	Orange dashed	Black	Black dashed	Blue	Blue dashed
$\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.5	0.5	0.9	0.9	0.1	0.1	0.1	0.1	0.9	0.9
$\operatorname{Pr}\left(c_{2}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.3	0.3	0.1	0.1	0.9	0.9
p	0.05	0.2	0.05	0.2	0.05	0.2	0.05	0.2	0.05	0.2	0.05	0.2

Table 8: Parameter settings for sensitivity functions from Figure 17

We observe that Equation (29) demonstrates that the largest propagation effects in the entire interval $x \in[0,1]$ on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ can be expected based on the following information:

- The influence of the leak-probability p on the propagation effects is dependent of the other parameters. However, this influence is relatively small;
- The strongest propagation effects occur when $\operatorname{Pr}\left(c_{1}\right)$ is small and $\operatorname{Pr}\left(c_{2}\right)$ is small/moderate.

We indeed observe that the vertex only approaches the upper-left corner of the unit window if $\operatorname{Pr}\left(c_{1}\right)$ is small and $\operatorname{Pr}\left(c_{2}\right)$ large, see red (dashed) function. However, as one can see in Figure 17, this parameter setting will not lead to the largest propagation effects in the entire interval $[0,1]$. For example, the orange (dashed) functions leads to larger propagation effects in the entire interval $[0,1]$ than, for example, the red (dashed) function. In addition, we note that the leak-probability p exercises only a minor influence on the propagation effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$. The propagation effects are in line with the results obtained in Section 4.1.3.1, where the leak-probability
p is absent.

To gain better insight into the behaviour of Equation (29) in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \geq 0.6$, we compute its first derivative. The sensitivity functions corresponding to Equation (29) are a fragment of a fourth-quadrant hyperbola branch indicating that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)>0$ for all $x \in[0,1]$.

Corollary 4.13.1. The first derivative of the sensitivity function from Equation (29) is:

$$
\begin{align*}
& =\frac{\zeta}{(x+\gamma+\zeta)^{2}} \tag{30}
\end{align*}
$$

where $\gamma=\frac{\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)-p}{\frac{1}{\operatorname{Pr}\left(c_{1}\right)}\left(1-p \operatorname{Pr}\left(\neg c_{1}\right)\right)-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)}$ and $\zeta=\frac{\frac{\operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)}\left(\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)+p \frac{\operatorname{Pr}\left(\neg c_{1}\right)}{\operatorname{Pr}\left(c_{1}\right)}\right)}{\frac{P r\left(c_{1}\right)}{\left.\operatorname{Pr(c} c_{1}\right)}+\frac{1-P r\left(e \mid c_{1}, \neg c_{2}\right)}{(1-p)}}$.
For specific parameter settings for some of the functions demonstrated demonstrated in Figure 17, namely the orange (dashed), black (dashed) and green (dashed) function, we plot the derivatives of Equation (30). See figure 18 .

Figure 18: Several examples of Equation 30 restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,2]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 8 for parameter settings)

In Figure 18, we observe moderate and small propagation effects for the orange (dashed) and black dashed function. We again observe, when only concentrating on the interval $x \in[0.6,1]$, that the effect of the leak is small.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=0.416666$ in the interval $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1]$ of Equation (30) with several parameter settings (see Appendix C.1). For example, one of the parameter settings is:

$$
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)=0.823118, \operatorname{Pr}\left(c_{1}\right)=2.08182 \cdot 10^{-7}, \operatorname{Pr}\left(c_{2}\right)=0.140771 \text { and } p=0.140771
$$

This maximum lies at $x=0.6$ and is the same as the result obtained in Section 4.1.3.1. We again discover that our findings concerning the propagation effects of Equation (29) in the interval $x=\overline{\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right) \in[0.6,1] \text { are moderate }}$ or small, which are in line with the results derived in Section 4.1.3.1.

We have examined the consequences of the addition of a leak-probability p on a deviating noisy-OR parameter upon the causal and diagnostic propagation through the basic mechanism from Figure 3. We observed that the influence of the leak-probability p, where $p \in(0,0.2]$, in both cases is very little. The propagation effects in the causal direction are slightly larger when the property of accountability is not satisfied, since we have that the larger the leak probability p, the larger the gradient. The effect of the leak is negligible when examining the propagation effects in the diagnostic direction; the propagation effects are again mainly determined by which output probability we look at and which noisy-OR parameter we vary. We conclude that the overall propagation effects are in line with the results obtained in Section 4.1 .

4.4 Causal mechanisms with multiple cause variables: independent causes

Up to this point, we have focused on two-cause mechanisms only. We will now continue our research to mechanisms involving three cause variables C_{1}, C_{2}, C_{3} and their common effect variable E, see Figure 19 . Given these three cause variables, the conditional probability table for E now contains eight probabilities. Using the noisy-OR model for the variable E, we now have that the values for three of these probabilities must be explicitly specified, namely the noisy-OR parameters associated with causes C_{1}, C_{2}, C_{3}. These are the conditional probabilities for the occurrence of the effect e arising in the presence of only one of the three causes.

Figure 19: A causal mechanism with the effect variable E and cause variables C_{1}, C_{2}, C_{3}.
We first assume the following:

- The prior probability distributions for cause variables C_{1}, C_{2} and C_{3} are non-degenerate, that is $\operatorname{Pr}\left(c_{i}\right) \neq 0$ and $\operatorname{Pr}\left(\neg c_{i}\right) \neq 0$ for $i=1,2,3$;
- $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, \neg c_{3}\right)=0$, by the property of accountability 1 ;
- Because noisy-OR parameters are assumed to be large [5, we mainly focus on $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right) \in[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects.

We have that probability $\operatorname{Pr}(e)$ equals:

$$
\begin{align*}
\operatorname{Pr}(e) & =\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, \neg c_{3}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \tag{31}
\end{align*}
$$

Note that the last term $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, \neg c_{3}\right) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)=0$ since $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, \neg c_{3}\right)=0$.
Furthermore, we carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We consider the gradient ∇ to be small when $|\nabla| \leq 0.25$, moderate when $|\nabla| \in(0.25,0.75)$, and large when $|\nabla| \geq 0.75$.

4.4.1 Propagation effects in the causal direction

We begin by investigating the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-OR parameter.
Theorem 4.14. Consider the causal mechanism in Figure 19 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)\right)+\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \tag{32}
\end{equation*}
$$

where $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.

Proof:

We first focus on the remaining four probabilities of the conditional probability table, that are:
$\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right), \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right)$. These probabilities can be computed from the noisy-OR model. For simplicity, we write the noisy-OR parameters associated with cause C_{2} and C_{3} as:
$\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)=\beta$
$\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)=\gamma$
Using the noisy-OR model we first compute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)\right)\right) \\
& =1-\left(\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)\right)(1-\beta)(1-\gamma)\right) \\
& =1-((1-x)(1-\beta)(1-\gamma)) \\
& =1-((1-x)(1-\beta-\gamma+\beta \gamma)) \\
& =1-(1-\beta-\gamma+\beta \gamma-x+x \beta+x \gamma-x \beta \gamma) \\
& =\beta+\gamma-\beta \gamma+x-x \beta-x \gamma+x \beta \gamma) \\
& =x(1-\gamma-\beta+\beta \gamma)+\beta+\gamma-\beta \gamma \tag{33}
\end{align*}
$$

Secondly, we compute $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)\right)\right. \\
& =1-((1-\beta)(1-\gamma) \\
& =1-(1-\beta-\gamma+\beta \gamma)) \\
& =\beta+\gamma-\beta \gamma \\
& =\beta(1-\gamma)+\gamma \tag{34}
\end{align*}
$$

Thirdly, we compute $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)\right)\right. \\
& =1-((1-x)(1-\gamma)) \\
& =1-(1-\gamma-x+x \gamma)) \\
& =x-x \gamma+\gamma \\
& =x(1-\gamma)+\gamma \tag{35}
\end{align*}
$$

Finally, we compute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right) & =1-\left(\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)\right)\left(1-\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)\right)\right. \\
& =1-((1-x)(1-\beta)) \\
& =1-(1-\beta-x+x \beta)) \\
& =x(1-\beta)+\beta \tag{36}
\end{align*}
$$

From Equation (31), we substitute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right), \operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right)$ with (33), (34), (35), and (36) respectively, which gives us:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =(x(1-\gamma-\beta+\beta \gamma)+\beta+\gamma-\beta \gamma) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+(\beta(1-\gamma)+\gamma) \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +(x(1-\gamma)+\gamma) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+(x(1-\beta)+\beta) \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
\operatorname{Pr}(e)(x) & =\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)-\beta x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)
\end{aligned}
$$

We use that $\operatorname{Pr}(i)+\operatorname{Pr}(\neg i)=1$ for $i=1,2,3$, and simplify:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =\beta \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-\gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\beta \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)-\beta x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\beta \gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
\operatorname{Pr}(e)(x) & =\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right)-\beta x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\beta \gamma x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)
\end{aligned}
$$

And we finally obtain:

$$
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)\right)+\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)
$$

where $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.
Observation: The gradient of Equation 32 equals $\operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)\right)$ and is in the interval $(0,1)$. The gradient is large when at least the probability $\operatorname{Pr}\left(c_{1}\right)$ is large. Now to attain a large gradient, it is favourable that the probabilities $\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{3}\right)$ are small because we have that $\beta \operatorname{Pr}\left(c_{2}\right)>\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)$ and $\gamma \operatorname{Pr}\left(c_{3}\right)>\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)$. The reason for this is because we have assumed that $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(c_{3}\right) \in(0,1)$, and thereby we have that the noisy-OR parameters β and γ are probabilities as well, meaning that they have a maximum value of 1 . To express this more formally:
$0<\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)<\beta \operatorname{Pr}\left(c_{2}\right)$, and
$0<\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)<\gamma \operatorname{Pr}\left(c_{3}\right)$
then we trivially find that:
$\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)<\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)$
Consequently, we find that larger probabilities for the noisy-OR parameters $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$ provide a smaller gradient value. We conclude that a large gradient for Equation will be obtained based on the following:

- $\operatorname{Pr}\left(c_{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(c_{3}\right)$ are small. In addition we have that the smaller the noisy-OR parameters associated with causes C_{2} and C_{3}, the larger the gradient.
We discovered that the causal propagation effects with the three-cause mechanism (see Figure 19) are much in line with the effects found with the basic causal mechanism (see Section 4.1.1). However, we note that more parameters are present in the gradient of Equation (32) compared to the gradient of Equation (7). The gradient of Equation (7) consists of two prior probabilities and one noisy-OR parameter. The gradient of Equation (32) consists of three prior probabilities and two noisy-OR parameters. This means that the prior probabilities of the corresponding causes of the deviating noisy-OR parameter need to have more skewed prior probability distributions to attain the same propagation effects as for a causal mechanism involving two cause variables. We conclude that large propagation effects may still happen; however, an increase in the number of cause variables will possibly lead to less propagation effects.

4.4.2 Propagation effects in the diagnostic direction

We now examine the effects of a deviating noisy-OR value upon diagnostic propagation. We express the example posterior probability of interest $\operatorname{Pr}\left(c_{1} \mid e\right)$ as a function of the value $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)$ for the probability under study.

Theorem 4.15. Consider the causal mechanism in Figure 19 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(c_{1} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{1} \mid e\right)(x)=\frac{x+\frac{\zeta}{1-\zeta}}{x+\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}} \tag{37}
\end{equation*}
$$

where $\zeta=\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)$, and wherein $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.

Proof:

We have for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(c_{1}, e\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e, c_{1}, c_{2}, c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, \neg c_{2}, c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, c_{2}, \neg c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, \neg c_{2}, \neg c_{3}\right)(x)}{\operatorname{Pr}\left(c_{1}, e\right)(x)+\operatorname{Pr}\left(\neg c_{1}, e\right)} \\
& =\frac{\operatorname{Pr}\left(e, c_{1}, c_{2}, c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, \neg c_{2}, c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, c_{2}, \neg c_{3}\right)(x)+\operatorname{Pr}\left(e, c_{1}, \neg c_{2}, \neg c_{3}\right)(x)}{\operatorname{Pr}\left(c_{1}, e\right)(x)+\operatorname{Pr}\left(e, \neg c_{1}, c_{2}, c_{3}\right)+\operatorname{Pr}\left(e, \neg c_{1}, \neg c_{2}, c_{3}\right)+\operatorname{Pr}\left(e, \neg c_{1}, c_{2}, \neg c_{3}\right)}+0
\end{aligned}
$$

We use again that $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$, and substitute $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, c_{3}\right)$, $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, c_{3}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}, c_{2}, \neg c_{3}\right)$ with (33), (34), (35), and (36) respectively.
For the numerator we have:

$$
\begin{aligned}
& x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)
\end{aligned}
$$

And for the denominator we have:

$$
\begin{aligned}
& x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right)
\end{aligned}
$$

Now we use that $\operatorname{Pr}(i)+\operatorname{Pr}(\neg i)=1$ for $i=1,2,3$, and simplify:
We now obtain for the numerator:

$$
\begin{aligned}
& x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)
\end{aligned}
$$

and denominator:

$$
\begin{aligned}
& x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+x \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(\neg c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(\neg c_{3}\right)+\gamma \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right) \\
& +\gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+\beta \operatorname{Pr}\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{2}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\gamma\left(\neg c_{1}\right) \operatorname{Pr}\left(c_{3}\right) \\
& =x \operatorname{Pr}\left(c_{1}\right)-x \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{3}\right)-x \beta \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \beta \gamma \operatorname{Pr}\left(c_{1}\right) \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)+\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)
\end{aligned}
$$

When dividing both numerator and denominator by $\operatorname{Pr}\left(c_{1}\right)$, we obtain:

$$
\operatorname{Pr}\left(c_{1} \mid e\right)(x)=\frac{x\left(1-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)+\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)}{x\left(1-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)+\frac{1}{\operatorname{Pr}\left(c_{1}\right)}\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)}
$$

Now we divide both the numerator and denominator by $\left(1-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)$, we get:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1} \mid e\right)(x) & =\frac{x+\frac{\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)}{1-\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)}}{x+\frac{\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)\right)}} \\
& =\frac{x+\frac{\zeta}{1-\zeta}}{x+\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}} .
\end{aligned}
$$

where $\zeta=\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)$, and wherein $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.
Observation: We start by noticing that Equation (37) has a similar format as Equation (14), see Section 4.1.3.1. The vertical asymptote of Equation (37) lies at $x=s=-\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}$ and the horizontal asymptote lies at $t=1$. Equation (37) is a fragment of a fourth-quadrant hyperbola branch, and has its vertex at:

$$
(s+\sqrt{|r|}, 1-\sqrt{|r|})=\left(-\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}+\sqrt{\left(\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}-\frac{\zeta}{(1-\zeta)}\right)}, 1-\sqrt{\left(\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}-\frac{\zeta}{(1-\zeta)}\right)}\right)
$$

Making use of the results obtained in Section 4.1.3.1. we here find that rather small values of $\frac{\zeta}{(1-\zeta)}$ and $\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}$ in Equation (37) produce a vertex with a positive x-coordinate. Furthermore, we have that the vertex only approaches the upper-left corner of the unit window, if in addition, the difference $\frac{\zeta}{\operatorname{Pr(c})(1-\zeta)}-\frac{\zeta}{(1-\zeta)}$ is rather small. Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$ need to be small and $\operatorname{Pr}\left(c_{1}\right)$ should be large.

We gain more insight into the effects by looking at concrete parameter settings. See Figure 20. We see that Equation (37) shows that the strongest effects on the output probability $\operatorname{Pr}\left(c_{1} \mid e\right)$ in the entire interval $[0,1]$ can be expected based on the following parameter setting:

- The prior probabilities $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(c_{3}\right)$ are small and the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is small/moderate. In addition we have that the smaller the noisy-OR parameters $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$, the larger the propagation effects.

The results obtained here are in line with the results shown in Section 4.1.3.1 Thereby, we want to emphasize that one should especially focus on the propagation effects for $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right) \geq 0.6$, since the probabilities of

Figure 20: Several example sensitivity functions adhering to Theorem 4.15 (See Table 9 for parameter settings)

Parameter	Red	Red dashed	Blue	Blue dashed	Green	Green dashed	Purple	Purple dashed	Orange	Orange dashed	Black
Black dashed											
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.9	0.9	0.5	0.5	0.3	0.3	0.5	0.5	0.9
$\operatorname{Pr}\left(c_{2}\right)$	0.1	0.1	0.9	0.9	0.5	0.5	0.1	0.1	0.1	0.1	0.1
$\operatorname{Pr}\left(c_{3}\right)$	0.1	0.1	0.9	0.9	0.5	0.5	0.1	0.1	0.1	0.1	0.1
$\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85
$\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85

Table 9: Parameter settings for sensitivity functions from Figure 20
noisy-OR parameters are assumed to be large 5. As one can observe in Figure 20, strong propagation effects only occur, with a particular parameter settings, when x is smaller than 0.5 , see orange (dashed), purple (dashed) and red (dashed) function.

To gain better insight into Equation's (37) propagation effects in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right) \geq 0.6$, we compute its first derivative. As we have mentioned, the sensitivity functions corresponding to Equation (37) are a fragment of a fourth-quadrant hyperbola branch, and as a consequence, we know that the first derivative $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)>0$ for all $x \in[0,1]$.

Corollary 4.15.1. The first derivative of the sensitivity function from Equation (37) is:

$$
\begin{align*}
\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x) & =\frac{\frac{\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)\left(1-\operatorname{Pr}\left(c_{1}\right)\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)\right)}}{\left(x+\frac{\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\left(\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)\right)\right)}\right)^{2}} \\
& =\frac{\frac{\zeta\left(1-\operatorname{Pr}\left(c_{1}\right)\right)}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}}{\left(x+\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}\right)^{2}} . \tag{38}
\end{align*}
$$

where $\zeta=\beta \operatorname{Pr}\left(c_{2}\right)+\gamma \operatorname{Pr}\left(c_{3}\right)-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)$, and wherein $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.
We plot the derivatives of Equation (38) of specific parameter settings for some functions demonstrated in Figure 20 , namely the red (dashed), green (dashed), purple (dashed) and orange (dashed) function. See Figure 21 .

Figure 21: Several examples of Equation (38) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x) \in[0,2]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 9 for parameter settings)

In Figure 21, we observe that the derivatives of the exemplar sensitivity functions for $x \geq 0.6$, all have values smaller than 0.75 . This indicates that the propagation effects considering these circumstances are moderate at most. Furthermore, we observe that the exemplar red dashed function, where the prior probability $\operatorname{Pr}\left(c_{1}\right), \operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{3}\right)$ are set to 0.1 , possesses the largest value for the derivative in the interval $[0.6,1]$.

With the help of WOLFRAM MATHEMATICA, we find a maximum of $\max \frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)=0.416666$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right) \in[0.6,1]$ of Equation (38) with the following parameter setting (see Appendix D.1):

$$
\begin{aligned}
& \quad \operatorname{Pr}\left(c_{1}\right)=6.34063 * 10^{-7}, \operatorname{Pr}\left(c_{2}\right)=2.45256 \cdot 10^{-7}, \operatorname{Pr}\left(c_{3}\right)=2.45256 \cdot 10^{-7}, \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)=0.77592 \text { and } \\
& \operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)=0.77592 .
\end{aligned}
$$

This maximum lies at $x=0.6$ and we observe that the maximum propagation effects in the interval $x \in[0.6,1]$ are the same as in Section 4.1.3.1. However, now three (instead of two) extremely small prior probabilities are needed to attain the same propagation effects as in Section 4.1.3.1. indicating more skewed prior probability distributions are needed to attain the same propagation effects as for the causal mechanism shown in Figure 3 Again, we note that the propagation effects in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{3}\right) \in[0.6,1]$ can become moderate at most. We discovered that the diagnostic propagation effects are again mainly determined by which output probability we look at and which noisy-OR parameter we vary, which are in line with the result found in Section 4.1.3.1.

We conclude that the propagation effects in both the causal and diagnostic direction of the causal mechanism shown in Figure 22 involving three cause variables, are in line with the results of the causal mechanism shown in Figure 3, involving two cause variables, see Section 4.1.1. However, more skewed prior probabilities are needed to attain the same propagation effects as for the causal mechanism shown in Figure 3. We conclude that the same propagation effects may still happen; however, the size of the propagation effects will possibly decrease when the number of cause variables increases.

4.5 Causal mechanism with leak as third cause variable: independent causes

In Section 4.3, the leaky noisy-OR model was introduced wherein the leak-probability p represents the probability that the effect e will occur as a result of unmodelled causes. Because the leak probability p attains a small value in practice 1.2, we assumed $p \in(0,0.2)$. However, since it is (almost) impossible to model all the cause variables, we
can also argue that the leak is always present. As mentioned earlier, in Section 4.3 we considered the leak p as the probability of the effect e occurring when all modelled causes are absent. If we now explicitly include the cause of the leak as a cause in our model, the noisy-OR parameter of this cause becomes equal to p (so still small). The prior probability of the leak cause is typically set to 1 .

In this section, we therefore let the leak represent an additional cause variable, namely C_{L}. The noisy-OR parameter associated with cause C_{L}, that is $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$, will be very small since it represents the case that the effect will happen spontaneously.

We will examine the propagation effects on a probability of interest due to deviations in a noisy-OR parameter if we express the leak-variable as an explicit cause variable. Thereby, we assume that the noisy-OR parameter associated with this cause variable possesses a small value. The property of accountability is still satisfied. See Figure 22 .

Figure 22: A causal mechanism with the effect variable E and cause variables C_{1}, C_{2}, C_{L}.
We assume the following:

- The prior probability distributions for cause variables C_{1} and C_{2} are non-degenerate, that is $\operatorname{Pr}\left(c_{i}\right) \neq 0$ and $\operatorname{Pr}\left(\neg c_{i}\right) \neq 0$ for $i=1,2$;
- $\operatorname{Pr}\left(c_{L}\right)=1$;
- Because regular noisy-OR parameters are assumed to be large 5, we mainly focus on $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right) \in[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects;
- The noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$ associated with cause C_{L} is in fact the leak probability p from Section 4.3, and thus has a small probability. We let $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right) \in(0,0.2$.
- We assume that the property of accountability is again satisfied, we have $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, \neg c_{L}\right)=0$.

We carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We consider the gradient ∇ to be small when $|\nabla| \leq 0.25$, moderate when $|\nabla| \in(0.25,0.75)$, and large when $|\nabla| \geq 0.75$.

4.5.1 Propagation effects in the causal direction

First we examine the propagation effects in the causal direction, that is, the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-OR parameter.
Theorem 4.16. Consider the causal mechanism in Figure 22 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma\right)+\beta \operatorname{Pr}\left(c_{2}\right)+\gamma-\beta \gamma \operatorname{Pr}\left(c_{2}\right) \tag{39}
\end{equation*}
$$

where $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$.

Proof:

The result follows directly from Equation (32) taking into account that $C_{L}=C_{3}$ and $\operatorname{Pr}\left(c_{3}\right)=1$.
Observation: The gradient of Equation 39 equals $\operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma\right)$ and is in the interval $(0,1)$. In Section 4.4.1 we found that a large gradient of Equation will be obtained based on the following:

- $\operatorname{Pr}\left(c_{1}\right)$ is large and the prior probabilities of the other causes are small. In addition we have that the smaller the noisy-OR parameters associated with causes other than C_{1}, the larger the gradient.
In contrast with the current situation, we now have that the prior probability of the leak cause is 1 . We will now analyse if this affects our earlier conclusions. We want to examine whether:

$$
\left(\operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right) \operatorname{Pr}\left(c_{3}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma \operatorname{Pr}\left(c_{3}\right)\right)\right)_{E q .}<\left(\operatorname{Pr}\left(c_{1}\right)\left(1+\beta \gamma \operatorname{Pr}\left(c_{2}\right)-\beta \operatorname{Pr}\left(c_{2}\right)-\gamma\right)\right)_{E q] 39}
$$ that is, whether the propagation effects of Equation (39) are larger than of Equation (32). Thus, we need to find out whether:

$$
\begin{equation*}
\left(\gamma \operatorname{Pr}\left(c_{3}\right)\left(\beta \operatorname{Pr}\left(c_{2}\right)-1\right)\right)_{E q \cdot \sqrt[32]{ }}<\left(\gamma\left(\beta \operatorname{Pr}\left(c_{2}\right)-1\right)\right)_{E q] 39} \tag{40}
\end{equation*}
$$

Since $\beta \operatorname{Pr}\left(c_{2}\right)-1<0$ in 40, we find that both terms are less than zero. Consequently, we want to examine when:

$$
\left(\gamma \operatorname{Pr}\left(c_{3}\right)\right)_{E q \cdot \sqrt[32]{ }}>(\gamma)_{E q[39}
$$

Now recall that we assumed that $\gamma \in(0,0.2]$ in Equation (39) and $\gamma \in[0.6,1]$ in Equation (32). We find that if $\operatorname{Pr}\left(c_{3}\right)>\frac{1}{3}$ inequality 40 always holds. Therefore, we carefully claim that the propagation effects of Equation 39) are generally slightly larger than of Equation (32). However, note that the size of the gradient is mainly determined by $\operatorname{Pr}\left(c_{1}\right)$: a large gradient can only be obtained if the prior probability $\operatorname{Pr}\left(c_{1}\right)$ is large.

We conclude that the propagation effects of Equation (39) are in line with Equation 32 .

4.5.2 Propagation effects in the diagnostic direction

In this section, we will examine the effects of a deviating noisy-OR value upon diagnostic propagation. We will express the example posterior probability of interest $\operatorname{Pr}\left(c_{1} \mid e\right)$ as a function of the value $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right)$ for the probability under study.

Theorem 4.17. Consider the causal mechanism in Figure 22 and assume it models a noisy-OR. Let $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right)$ be the noisy-OR parameter associated with cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(c_{1} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{1} \mid e\right)(x)=\frac{x+\frac{\zeta}{1-\zeta}}{x+\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}} \tag{41}
\end{equation*}
$$

where $\zeta=\beta \operatorname{Pr}\left(c_{2}\right)+\gamma-\beta \gamma \operatorname{Pr}\left(c_{2}\right)$, and wherein $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$.

Proof:

We have again that the result follows directly from Equation (37) taking into account that $C_{L}=C_{3}$ and $\operatorname{Pr}\left(c_{3}\right)=$ 1.

Observation: Making use of the results obtained in Section 4.4.2. we likewise find that rather small values of $\frac{\zeta}{(1-\zeta)}$ and $\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}$ in Equation 41 produce a vertex with a positive x-coordinate. Furthermore, we have that the vertex only approaches the upper-left corner of the unit window, if in addition, the difference $\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}-\frac{\zeta}{(1-\zeta)}$ is rather small. Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that $\operatorname{Pr}\left(c_{2}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$ need to be small and $\operatorname{Pr}\left(c_{1}\right)$ should be large. Note that we now assume that the parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$ is indeed small, in contrast to Section 4.4. If the probability $\operatorname{Pr}\left(c_{1}\right)$ approaches 1, and hence the value $\frac{\zeta(1-\zeta)}{\operatorname{Pr}\left(c_{1}\right)\left(1-\frac{\zeta}{(1-\zeta)}\right.}$ becomes very small, the x-coordinate of the vertex will indeed approach 0 . However, this might not result in the largest propagation effects in the entire interval $x \in[0,1]$. This is because $\operatorname{Pr}\left(c_{1} \mid e\right)(1)$ will then approach 1 and since we have that horizontal asymptote lies at $t=1$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)>0$ for $x \in[0,1]$, the propagation effects will be limited.

To support the above mentioned findings and gain more insight into the effects, we consider concrete parameter settings, see Figure 23. We see, when focusing on the entire interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right) \in[0,1]$, that the strongest effects on the output probability $\operatorname{Pr}\left(c_{1} \mid e\right)$ can be expected based on the following parameter setting:

- The prior probabilities $\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{1}\right)$ are small. In addition we have that the smaller the noisy-OR parameters $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right), \operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$, the larger the propagation effects.

Figure 23: Several example sensitivity functions adhering to Theorem 4.17. (See Table 10 for parameter settings)

Parameter	Red	Red dashed	Green	Green dashed	Blue	Blue dashed	Orange	Orange dashed	Black	Black dashed	Purple	Purple dashed
$\operatorname{Pr}\left(c_{1}\right)$	0.1	0.1	0.9	0.9	0.5	0.5	0.3	0.3	0.5	0.5	0.9	0.1
$\operatorname{Pr}\left(c_{2}\right)$	0.1	0.1	0.9	0.9	0.5	0.5	0.1	0.1	0.1	0.1	0.1	0.9
$\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.6	0.85	0.85
$\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$	0.2	0.05	0.2	0.05	0.2	0.05	0.2	0.05	0.2	0.05	0.2	0.2

Table 10: Parameter settings for sensitivity functions from Figure 23
To gain better insight into Equation's (41) behaviour in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right) \geq 0.6$, we compute its first derivative. We can build upon the results derived in Section 4.4.2. As before, we have that the result follows directly from Equation (38), taking into account that $C_{L}=C_{3}$ and $\operatorname{Pr}\left(c_{3}\right)=1$.

Corollary 4.17.1. The first derivative of the sensitivity function from Equation (41) is:

$$
\begin{equation*}
\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)=\frac{\frac{\zeta\left(1-\operatorname{Pr}\left(c_{1}\right)\right)}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}}{\left(x+\frac{\zeta}{\operatorname{Pr}\left(c_{1}\right)(1-\zeta)}\right)^{2}} . \tag{42}
\end{equation*}
$$

where $\zeta=\beta \operatorname{Pr}\left(c_{2}\right)+\gamma-\beta \gamma \operatorname{Pr}\left(c_{2}\right)$, and wherein $\beta=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ and $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$.
For specific parameter settings for some of the functions demonstrated in Figure 23 , namely the red (dashed), blue (dashed), black (dashed) and orange (dashed) function, we plot the derivatives of Equation (42). See Figure 24.

In Figure 24, we observe that small prior probabilities for $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ and, in addition, small probabilities for the noisy-OR parameters $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)$, lead to the largest propagation effects in the interval $x \in[0.6,1]$, see red dashed. Recall that by assumption $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right) \in[0.6,1]$ and $\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right) \in(0,0.2]$.

Figure 24: Several examples of Equation (42) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x) \in[0,2.5]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 10 for parameter settings)

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)=0.416666$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}, \neg c_{L}\right) \in[0.6,1]$ of Equation (41) with the following parameter setting (see Appendix E.1):

$$
\operatorname{Pr}\left(c_{1}\right)=6.31615 \cdot 10^{-7}, \operatorname{Pr}\left(c_{2}\right)=2.45757 \cdot 10^{-7}, \operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)=0.775591 \text { and } \operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right)=1.88362 .
$$ 10^{-7}.

This maximum lies at $x=0.6$. We note that the maximum value of $\frac{d}{d x} \operatorname{Pr}\left(c_{1} \mid e\right)(x)$, for $x \in[0,1]$, is the same as the result obtained in Section 4.4.2. Apparently, the small value of $\gamma=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{L}\right) \in(0,0.2]$ is compensated by the large value of the prior probability $\operatorname{Pr}\left(c_{L}\right)=1$. We note, in order to reach this maximum value 0.416666 , that the prior probabilities $\operatorname{Pr}\left(c_{1}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are extremely small. Furthermore, the noisy-OR parameter $\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{L}\right)$ is approximately 0.77, which is the same value as in Section 4.4.2. We find that the propagation effects can become moderate at most.

The overall results obtained in Section 4.5 demonstrate that explicitly modelling leak causes, and thereby restricting the noisy-OR parameter associated with that cause variable to a value in the interval ($0,0.2$], lead to similar propagation effects, see Section 4.4 The propagation effects in the causal and diagnostic direction are mainly in line with the results obtained in Section 4.4.

5 Propagation effects due to noisy-MAX parameter changes: independent causes

So far, we have examined the propagation effects of the (leaky) noisy-OR model. However, since the (leaky) noisyOR model involves binary variables only, its ability to model real-world Bayesian networks is limited to a certain level. To better model real-world Bayesian networks, the noisy-MAX model came into practice. The purpose of this interaction model is to extend the noisy-OR model to non-binary discrete variables. The noisy-MAX model still meets the property of accountability. We have that c_{i}^{0} denotes the absence of a given cause C_{i} and the other values of variable C_{i}, that is c_{i}^{j} where $j>0$, capture different levels of manifestation of cause C_{i}. The noisyMAX model takes in the probabilities of the parameters that represent for each cause variable individually the influence of its different manifestation levels for the effect e to arise; that is the following parameter probabilities: $\operatorname{Pr}\left(e^{i} \mid c_{1}^{0}, \ldots, c_{j-1}^{0}, c_{j}^{k}, c_{j+1}^{0}, \ldots, c_{m}^{0}\right)$ for all values $c_{j}^{k}, k>0$, of the cause variable C_{j} and all values $e^{i}, i \geq 0$, of the effect variable E. The remaining probabilities for the CPT are defined through [1,2]

$$
\operatorname{Pr}\left(e^{i} \mid \mathbf{c}\right)= \begin{cases}\operatorname{Pr}\left(E \leq e^{i} \mid \mathbf{c}\right)-\operatorname{Pr}\left(E \leq e^{i-1} \mid \mathbf{c}\right) & \text { for } i>0 \\ \operatorname{Pr}\left(E \leq e^{0} \mid \mathbf{c}\right) & \text { for } i=0\end{cases}
$$

with

$$
\operatorname{Pr}\left(E \leq e^{i} \mid \mathbf{c}\right)=\prod_{j \in J} \sum_{l=0, \ldots, i} \operatorname{Pr}\left(e^{i} \mid c_{1}^{0}, \ldots, c_{j-1}^{0}, c_{j}^{k}, c_{j+1}^{0}, \ldots, c_{m}^{0}\right)
$$

where J is the set of indices of the cause variables C_{j} that are marked as having a value c_{j}^{k} with $k>0$ in the joint value combination \mathbf{c}.

Woudenberg and van der Gaag examined the propagation effects of the noisy-MAX model by investigating the possible effects of propagating deviating model-calculated probabilities 11. They studied $\operatorname{Pr}(e)(x, y)$ and $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x, y)$ where $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $y=\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$. We will, as done through this entire thesis, examine the propagation effects of noisy-MAX parameter changes. We will again use the basic mechanism in Figure 3, and for simplicity reasons, assume that cause variable C_{1} is ternary and the cause variable C_{2} and effect variable E are binary, as Woudenberg and van der Gaag assumed in 11. We have:

$$
\begin{aligned}
& C_{1}=\left\{c_{1}^{0}, c_{1}^{1}, c_{1}^{2}\right\} \\
& C_{2}=\left\{\neg c_{2}, c_{2}\right\} \\
& E=\{\neg e, e\}
\end{aligned}
$$

For the basic mechanism from Figure 3 we now assume the following:

- The prior probability distributions for cause variables C_{1} and C_{2} are non-degenerate, that is $\operatorname{Pr}\left(c_{i}^{j}\right) \neq 0$ for $i=1,2$ and $j=0,1,2$;
- $\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right)=0$, by the property of accountability;
- For our experimental analysis, the values of the noisy-MAX parameter probabilities are ordered. With this we mean that $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)>\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)>\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right)=0$. This indicates that we assume that "higher" levels of a cause variable will be more likely to cause the effect e. We will focus on $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \in[0.7,1]$ and $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$ in our research, where we ensure that the constraint $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)>\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ always holds.
- Since cause variable C_{2} is binary, we assume, as for the noisy-OR parameters, that the presence of this single factor is likely to trigger the effect e [5]. Therefore, we will focus on $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \in[0.6,1]$ in our research. We specifically use this constraint when evaluating the propagation effects.

We will carry on with the gradation of the gradient described in Section 4.1.1 of a sensitivity function under study. We consider the gradient ∇ to be small when $|\nabla| \leq 0.25$, moderate when $|\nabla| \in(0.25,0.75)$, and large when $|\nabla| \geq 0.75$.

5.1 Propagation effects in the causal direction

First, we examine the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-MAX parameter. Since we particularly want to investigate the influence of involving ternary variables in our model, we will start with examining the possible effects due to deviations in the noisy-MAX parameter $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$; that is the noisy-MAX parameter associated with value c_{1}^{1} of the ternary cause C_{1}.

Theorem 5.1. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ be the noisy-MAX parameter associated with value c_{1}^{1} of cause C_{1}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{align*}
\operatorname{Pr}(e)(x) & =x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right) \tag{43}
\end{align*}
$$

Proof:
We have that probability $\operatorname{Pr}(e)$ is equal to:

$$
\begin{align*}
\operatorname{Pr}(e) & =\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(\neg c_{2}\right) \tag{44}
\end{align*}
$$

Note that $\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(\neg c_{2}\right)=0$ since $\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right)=0$ by the property of accountability.
We set $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and probabilities have been set for the other 2 noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$. We compute the values of $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ by the noisy-MAX model:

1. First, we compute $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$, this probability is dependent of x :

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) & =\operatorname{Pr}(E \leq e \mid \mathbf{c})-\operatorname{Pr}(E \leq \neg e \mid \mathbf{c}) \\
& =\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right)-\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{1}, c_{2}\right)
\end{aligned}
$$

We compute the first term $\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right) & =\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{1}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)\right) \cdot\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1 \cdot 1=1
\end{aligned}
$$

And the second term $\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{1}, c_{2}\right) & =\operatorname{Pr}\left(\neg e \mid c_{1}^{1}, \neg c_{2}\right) \cdot \operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right) \\
& =(1-x)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)
\end{aligned}
$$

We have for $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) & =1-\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)-x+x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \tag{45}
\end{align*}
$$

2. Now, we compute $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) & =\operatorname{Pr}(E \leq e \mid \mathbf{c})-\operatorname{Pr}(E \leq \neg e \mid \mathbf{c}) \\
& =\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right)-\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right)
\end{aligned}
$$

We compute the first term $\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right) & =\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right) \cdot\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1 \cdot 1=1
\end{aligned}
$$

And the second term $\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right) & =\operatorname{Pr}\left(\neg e \mid c_{1}^{2}, \neg c_{2}\right) \cdot \operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right) \\
& =\left(1-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)
\end{aligned}
$$

We have for $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) & =1-\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \tag{46}
\end{align*}
$$

Now we substitute $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ with the obtained values in Equations (45) and (46) respectively:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x\left(\operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x\left(\operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)
\end{aligned}
$$

Finally, we obtain:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)
\end{aligned}
$$

since we have that $\operatorname{Pr}\left(c_{1}^{0}\right)+\operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(c_{1}^{2}\right)=1$.
Observation: The gradient of the linear function from Equation (43) is large when at least the prior probability $\operatorname{Pr}\left(c_{1}^{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right)$ and/or $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ is/are small. Since $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ is a noisy-MAX parameter, and we assume that this noisy-MAX parameter has a probability in the interval [$0.6,1$], we find that the gradient of Equation (43) is large when the prior probability $\operatorname{Pr}\left(c_{1}^{1}\right)$ is large and $\operatorname{Pr}\left(c_{2}\right)$ is small. In addition we have that the smaller the noisy-MAX parameter $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$, the larger the gradient.
Analogous observations hold for the sensitivity function obtained for the probability of interest $\operatorname{Pr}(e)$ when $x=$
$\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) ; c_{1}^{2}$ and c_{1}^{1} merely exchange roles.
We now refer to Equation (7), where the possible effects on the probability $\operatorname{Pr}(e)$ due to changes in a noisy-OR parameter $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$ were examined, and all involved variables are binary. The gradient of Equation (7) is $\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}\right)\right)$. Since we assumed that both $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ (in Eq. 43p) and $\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right)$ (in Eq. (7)) are in the interval [0.6, 1], we now obtain comparable propagation effects as Equation (7). We conclude that the propagation effects are in line with the propagation effects of the noisy-OR model involving binary variables only, see Section 4.1.1. We found similar results since the noisy-MAX parameters associated with the non-binary cause variable C_{1} are absent in the gradient.

We will now examine the propagation effects on the prior probability $\operatorname{Pr}(e)$ due to changes in the noisy-MAX parameter $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$. Note that we here will study the possible effects due to deviations in the noisy-MAX parameter associated with the binary cause variable C_{2}.

Theorem 5.2. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ be the noisy-MAX parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}(e)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \tag{47}
\end{equation*}
$$

Proof:

We have that probability $\operatorname{Pr}(e)$ is equal to Equation 44).
We set $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and probabilities have been set for the other 2 noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$. The values of $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ are defined through the noisy-MAX model:

1. First, we compute $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$, this probability is dependent of x :

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) & =\operatorname{Pr}(E \leq e \mid \mathbf{c})-\operatorname{Pr}(E \leq \neg e \mid \mathbf{c}) \\
& =\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right)-\operatorname{Pr}\left(E \leq \neg \mid c_{1}^{1}, c_{2}\right)
\end{aligned}
$$

We compute the first term $\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq e \mid c_{1}^{1}, c_{2}\right) & =\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{1}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)\right) \cdot\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1 \cdot((1-x)+x) \\
& =1 \cdot 1=1
\end{aligned}
$$

And the second term $\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{1}, c_{2}\right) & =\operatorname{Pr}\left(\neg e \mid c_{1}^{1}, \neg c_{2}\right) \cdot \operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right) \\
& =\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)\right)(1-x) \\
& =1-x-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) x
\end{aligned}
$$

We have for $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) & =1-\left(1-x-\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) x\right) \\
& =x+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \tag{48}
\end{align*}
$$

2. Now, we compute $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$, which is also dependent of x :

$$
\begin{aligned}
\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) & =\operatorname{Pr}(E \leq e \mid \mathbf{c})-\operatorname{Pr}(E \leq \neg e \mid \mathbf{c}) \\
& =\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right)-\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right)
\end{aligned}
$$

We compute the first term $\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq e \mid c_{1}^{2}, c_{2}\right) & =\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right) \cdot\left(\operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \\
& =1 \cdot((1-x)+x) \\
& =1 \cdot 1=1
\end{aligned}
$$

And the second term $\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(E \leq \neg e \mid c_{1}^{2}, c_{2}\right) & =\operatorname{Pr}\left(\neg e \mid c_{1}^{2}, \neg c_{2}\right) \cdot \operatorname{Pr}\left(\neg e \mid c_{1}^{0}, c_{2}\right) \\
& =\left(1-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right)(1-x) \\
& =1-x-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) x
\end{aligned}
$$

We have for $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$:

$$
\begin{align*}
\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) & =1-\left(1-x-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) x\right) \\
& =x+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) x \tag{49}
\end{align*}
$$

Now we substitute $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ with the obtained values in Equations 48 and respectively:

$$
\begin{aligned}
\operatorname{Pr}(e)(x) & =\left(x+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& +\left(x+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(\operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)+\operatorname{Pr}\left(c_{1}^{0}\right)\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)
\end{aligned}
$$

Since we have that $\operatorname{Pr}\left(c_{1}^{0}\right)+\operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(c_{1}^{2}\right)=1$ and $\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2}\right)=1$ we finally obtain:

$$
\operatorname{Pr}(e)(x)=x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) .
$$

Observation: The gradient of Equation 47) is equal to $\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)$. This gradient will obtain a large value when the prior probabilities of the cause variables that correspond with the values in the noisy-MAX parameter $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ are large; meaning the probabilities $\operatorname{Pr}\left(c_{1}^{0}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$. In addition we have that the smaller the probabilities for the noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$, the larger the propagation effects.
We now observe that both noisy-MAX parameters associated with cause C_{1} are present in the gradient. By assumption we have that $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \in[0.7,1]$ and $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$. For the term $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$ we find that if the prior probability $\operatorname{Pr}\left(c_{1}^{2}\right)$ is large, the term $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$ presumably will be large, and thus, will decrease the gradient's value. For the term $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)$ we have that this term will presumably be smaller since $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$. This means that this term will probably not decrease the value of the gradient as much as the term $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$. However, note that the above argument is not complete. If for example $\operatorname{Pr}\left(c_{1}^{2}\right)$ is large, than $\operatorname{Pr}\left(c_{1}^{1}\right)=1-\operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(c_{1}^{0}\right)$ will probably be smaller than $\operatorname{Pr}\left(c_{1}^{2}\right)$, and thus $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)<\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$, indicating that the gradient's value is more decreased by $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$.

The value of the gradient is largely determined by the prior probabilities $\operatorname{Pr}\left(c_{2}\right)$ and $\operatorname{Pr}\left(c_{1}^{0}\right)$. This indicates that the propagation effects in the causal direction when using the noisy-MAX model, are in line when using the noisyOR model. However, by assumption we have that the lower the value c_{i}^{j} of the noisy-MAX parameters associated with cause C_{i}, the smaller the probability of the corresponding noisy-MAX parameter. For Equation (47), we find that the smaller the probabilities for the noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$, the larger the gradient. Therefore, we conclude that the propagation effects in the causal direction are possibly higher when using the noisy-MAX model than for the noisy-OR model involving binary variables only.

5.2 Propagation effects in the diagnostic direction

In this section, we will study the propagation effects of a deviating noisy-MAX parameter in the diagnostic direction. We will first study the effects on $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)$ where $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$.
Theorem 5.3. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ be the noisy-MAX parameter associated with value c_{1}^{1} of cause C_{1}. Then the sensitivity function $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)=\frac{x+\frac{\alpha}{\gamma}}{x+\frac{\beta}{\gamma}} . \tag{50}
\end{equation*}
$$

where $\gamma=\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right), \alpha=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)$ and $\beta=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-$ $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)$.

Proof:

We have for $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(c_{1}^{1}, e\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e, c_{1}^{1}, c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{1}, \neg c_{2}\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)}{\operatorname{Pr}(e)(x)} \text { where } \operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) \text { depends on } x \text { as captured in Equation 45) }
\end{aligned}
$$

Furthermore, we have that $\operatorname{Pr}(e)(x)=\operatorname{Pr}\left(c_{1}^{0}, e\right)(x)+\operatorname{Pr}\left(c_{1}^{1}, e\right)(x)+\operatorname{Pr}\left(c_{1}^{2}, e\right)(x) . \operatorname{Pr}\left(c_{1}^{0}, e\right)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1}^{0}, e\right)(x) & =\operatorname{Pr}\left(e, c_{1}^{0}, c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{0}, \neg c_{2}\right)(x) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+0 \cdot \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)
\end{aligned}
$$

and $\operatorname{Pr}\left(c_{1}^{2}, e\right)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1}^{2}, e\right)(x) & =\operatorname{Pr}\left(e, c_{1}^{2}, c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{2}, \neg c_{2}\right)(x) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)
\end{aligned}
$$

where $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ depends on x as captured in Equation 46)
We substitute $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ with the values From Equation 45) \& 46), respectively, and obtain:
For the numerator $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)$ we have:
$\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)$, working out the parentheses gives:
$\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)$
Since $\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2}\right)=1$, we find for the numerator:
$x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)$.
For the denominator $\operatorname{Pr}(e)(x)$ we have:
$\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+x-x \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\left(\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\right.$ $\left.\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right)$

Because $\operatorname{Pr}\left(c_{1}^{0}\right)+\operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(c_{1}^{2}\right)=1$ and $\operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(\neg c_{2}\right)=1$ we obtain for the denominator:

$$
x \operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)
$$

Now, if we divide both the numerator and denominator by $\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)$, we find:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x) & =\frac{x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)}}{x+\frac{\left.\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \rightarrow c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2},\right\urcorner c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)}} \\
& =\frac{x+\frac{\alpha}{\gamma}}{x+\frac{\beta}{\gamma}}
\end{aligned}
$$

where $\gamma=\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right), \alpha=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)$ and
$\beta=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)$.
Observation: Since Equation (50) is a hyperbolic function, we use the properties of hyperbolic functions described in Section 2.5 and discover that the vertical asymptote of Equation 50, lies at $x=s=-\frac{\beta}{\gamma}$. Because $\frac{\beta}{\gamma}>0$, the asymptote 1 s located to the left of the unit window and the horizontal asymptote lies at $t=1$. As a result, we find that Equation (50) is a fragment of a fourth-quadrant hyperbola branch.

From generic research of sensitivity functions from Bayesian networks, we find that the effect of deviations in the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding hyperbola branch 11. Generally, we have that the closer the vertex of the fourth-quadrant hyperbola branch lies to the upper-left corner of the unit window, the larger the propagation effects. We find that Equation (50) has its vertex at:

$$
(s+\sqrt{|r|}, 1-\sqrt{|r|})=\left(-\frac{\beta}{\gamma}+\sqrt{\left|\frac{\alpha-\beta}{\gamma}\right|}, 1-\sqrt{\left|\frac{\alpha-\beta}{\gamma}\right|}\right)
$$

The vertex is located within the unit window for values of $\frac{\alpha}{\gamma}, \frac{\beta}{\gamma}$ for which $\frac{\beta}{\gamma}<\sqrt{\left|\frac{\alpha-\beta}{\gamma}\right|}<1$. To obtain $\frac{\beta}{\gamma}<\sqrt{\left|\frac{\alpha-\beta}{\gamma}\right|}$ given that $\frac{\beta}{\gamma} \geq \frac{\alpha}{\gamma}$, we discover that merely rather small values of $\frac{\alpha}{\gamma}$ produce a vertex with an x-coordinate in the unit range. Moreover, the vertex only approaches the upper-left corner of the unit window, if in addition the difference $\frac{\beta}{\gamma}-\frac{\alpha}{\gamma}=\frac{\beta-\alpha}{\gamma}$ is rather small, thus γ should be large and $\beta-\alpha$ small. For γ to be large, $\operatorname{Pr}\left(c_{1}^{1}\right)$ should be large and $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ should be small. For $\beta-\alpha$ we have:

$$
\begin{aligned}
\beta-\alpha & =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)
\end{aligned}
$$

Thus, for $\beta-\alpha$ to be small, $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ should be small and $\operatorname{Pr}\left(c_{1}^{1}\right)$ large. Since $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)>$ $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)$ it is favourable that $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(c_{1}^{2}\right)$ are small as well.

Hence, in order to acquire a vertex approaching the upper-left corner of the unit window, we find that $\operatorname{Pr}\left(c_{1}^{1}\right)$ and $\operatorname{Pr}\left(\neg c_{2}\right)$ need to be large and $\operatorname{Pr}\left(c_{1}^{0}\right), \operatorname{Pr}\left(c_{1}^{2}\right), \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ small.

To support the above mentioned findings and gain more insight into influence of the parameter settings on Equation (50), we consider concrete parameter settings, see Figure 25 . When focusing on the entire interval $[0,1]$ for $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$, we observe that the largest propagation effects indeed occur when the prior probabilities $\operatorname{Pr}\left(c_{1}^{1}\right)$ and $\operatorname{Pr}\left(\neg c_{2}\right)$ are large (purple \& red). Moreover, we observe that smaller probabilities for the noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ will lead to a minor increase in the propagation effects, this effect is conveyed by the solid versus dashed function for each colour.

Since, by assumption $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$, we should especially focus on propagation effects for $x=$

Figure 25: Several example sensitivity functions adhering to Theorem 5.3. (See Table 11 for parameter settings)

Parameter	Red	Red dashed	Blue	Blue dashed	Green	Green dashed	Purple	Purple dashed	Orange	Orange dashed
$\operatorname{Pr}\left(c_{1}^{0}\right)$	0.05	0.05	0.25	0.25	0.45	0.45	0.005	0.005	0.3333	0.3333
$\operatorname{Pr}\left(c_{1}^{1}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.99	0.99	0.3333	0.3333
$\operatorname{Pr}\left(c_{1}^{2}\right)$	0.05	0.05	0.25	0.25	0.45	0.45	0.005	0.005	0.3333	0.3333
$\operatorname{Pr}\left(c_{2}\right)$	0.1	0.1	0.5	0.5	0.9	0.9	0.01	0.01	0.1	0.1
$\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6
$\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$	0.85	0.7	0.85	0.7	0.85	0.7	0.85	0.7	0.85	0.7

Table 11: Parameter settings for sensitivity functions from Figure 25
$\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$. In Figure 25 it is shown that large propagation effects only occur when $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ is particularly small. To acquire better insight into Equation's 50 behaviour in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in$ [0.4, 0.7], we compute its first derivative. Since the sensitivity functions corresponding to Equation (50) are a fragment of a fourth-quadrant hyperbola branch, we realize that $\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)>0$ for all $x \in[0,1]$.
Corollary 5.3.1. The first derivative of the sensitivity function from Equation (50) is:
$\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)=$

$$
\begin{align*}
& =\frac{\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(c_{1}^{1}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)\left(x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right)}\right)^{2}} \\
& =\frac{\beta-\alpha}{\gamma\left(x+\frac{\beta}{\gamma}\right)^{2}} \tag{51}
\end{align*}
$$

where $\gamma=\operatorname{Pr}\left(c_{1}^{1}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)\right), \alpha=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)$ and
$\beta=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)$.
For specific parameter settings for some of the functions demonstrated in Figure 25 namely the red (dashed), blue (dashed) and orange (dashed) function, we plot the derivatives of Equation (44). See Figure 26.

In Figure 26, the horizontal lines at $y=0.25$ and $y=0.75$ again indicate the boundaries between what we consider to be a small, moderate or large gradient. The vertical line at $x=0.4$ indicates for which x-values we
assume that the noisy-MAX parameter $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ takes on plausible probabilities. As mentioned before, we focus on the propagation effects for $x \in[0.4,0.7]$.

Figure 26: Several examples of Equation (51) restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x) \in[0,3.5]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 11 for parameter settings)

We observe, when now focusing on the interval $x \in[0.4,0.7]$, that for the sensitivity functions shown in Figure 25 the largest propagation effects occur for the orange (dashed) function. For the orange (dashed) function the prior probability $\operatorname{Pr}\left(c_{2}\right)$ is small and the prior distribution for C_{1} takes on an uniform distribution. Furthermore, we find similar results compared to Section 4.1.3.1 smaller noisy-MAX parameters don't lead to larger propagation effects anymore, this effect is conveyed by the solid versus dashed function for each colour. For the exemplar red (dashed) function we even observe the opposite effect: larger noisy-MAX parameters lead to larger propagation effects.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)=0.625$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,1]$ of Equation (51) with several parameter settings (see Appendix F.1). For example, one of the parameter settings is:

$$
\operatorname{Pr}\left(c_{1}^{0}\right)=0.205785, \operatorname{Pr}\left(c_{1}^{1}\right)=0.536938, \operatorname{Pr}\left(c_{1}^{2}\right)=0.257277, \operatorname{Pr}\left(c_{2}\right)=6.74835 \cdot 10^{-8}, \operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)=0.750893 \text { and }
$$ $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)=0.834803$.

This maximum lies at $x=0.4$.
We conclude that Equation (50) shows that the strongest effects on the output probability $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$ can be expected, based on the following:

- The probabilities $\operatorname{Pr}\left(c_{1}^{0}\right), \operatorname{Pr}\left(c_{1}^{2}\right)$ are small, $\operatorname{Pr}\left(c_{2}\right)$ is extremely small, and $\operatorname{Pr}\left(c_{1}^{1}\right)$ is moderate.

We have found that the propagation effects again can become moderate at most. However, in the noisy-OR model we assumed that the noisy-OR parameters can't attain a value smaller than 0.6 . Now, by assumption $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \in[0.4,0.7]$. As a result, we find that the maximum gradient of $\frac{d}{d x} \operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)$ can attain a larger value than we have found before: a gradient of 0.625 compared to 0.416666 .

Now we will examine the propagation effects due to changes in the noisy-MAX parameter associated with the binary cause C_{2}. We continue our research of the noisy-MAX model by studying the effects on $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ where $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$.

Theorem 5.4. Consider the causal mechanism in Figure 3 and assume it models a noisy-MAX. Let $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ be the noisy-MAX parameter associated with cause C_{2}. Then the sensitivity function $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ has the following form:

$$
\begin{equation*}
\operatorname{Pr}\left(c_{2} \mid e\right)(x)=\frac{x+\frac{\beta}{1-\beta}}{x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}} \tag{52}
\end{equation*}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$.
Note that the ternary cause variable C_{1} is absent in both $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and the output probability of interest $\operatorname{Pr}\left(c_{2} \mid e\right)$. We expect that the results will be quite similar to Theorem 4.5

Proof:

We have for $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(c_{2} \mid e\right)(x) & =\frac{\operatorname{Pr}\left(c_{2}, e\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{\operatorname{Pr}\left(e, c_{1}^{0}, c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{1}, c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{2}, c_{2}\right)(x)}{\operatorname{Pr}(e)(x)} \\
& =\frac{x \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}(e)(x)}
\end{aligned}
$$

Since $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)$ are dependent of x we compute these values with the noisy-MAX model. We find $\operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)=x+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ (by Eq. 48) and $\operatorname{Pr}\left(e \mid c_{1}^{2}, c_{2}\right)=x+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) x$ (by Eq. 49)

In addition, we have that $\operatorname{Pr}(e)(x)=\operatorname{Pr}\left(c_{2}, e\right)(x)+\operatorname{Pr}\left(\neg c_{2}, e\right)(x)$ and $\operatorname{Pr}\left(\neg c_{2}, e\right)(x)$ is equal to:

$$
\begin{aligned}
\operatorname{Pr}\left(\neg c_{2}, e\right)(x) & =\operatorname{Pr}\left(e, c_{1}^{0}, \neg c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{1}, \neg c_{2}\right)(x)+\operatorname{Pr}\left(e, c_{1}^{2}, \neg c_{2}\right)(x) \\
& =\operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right) \\
& \left.=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(\neg c_{2}\right) \quad \text { (since } \operatorname{Pr}\left(e \mid c_{1}^{0}, \neg c_{2}\right)=0\right)
\end{aligned}
$$

For the numerator we find:

$$
\begin{aligned}
& =x \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+\left(x+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\left(x \operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{1}^{0}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+x \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)-x \operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)
\end{aligned}
$$

For the denominator we find:

$$
\begin{aligned}
& =x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& +\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(\neg c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right) \\
& =x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)
\end{aligned}
$$

Thus we find $\operatorname{Pr}\left(c_{2} \mid e\right)(x)=$

$$
\begin{aligned}
= & \frac{x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{x \operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)+\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)} \\
= & x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right) \operatorname{Pr}\left(c_{2}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right) \operatorname{Pr}\left(c_{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)} \\
& x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)} \\
= & \frac{x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)}{\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)}}{x+\frac{\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)-\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)}} \\
= & \frac{x+\frac{\beta}{1-\beta}}{x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}}
\end{aligned}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$.
Observation: Since Equation (52) has exactly the same format as Equation (14), we refer to Section 4.1.3.1. We find that the vertex of Equation (52) approaches the upper-left corner of the unit window only if $\operatorname{Pr}\left(c_{1}^{0}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are large and $\operatorname{Pr}\left(c_{1}^{1}\right), \operatorname{Pr}\left(c_{1}^{2}\right), \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ are small.

In Figure 27, some sensitivity functions of Equation (52) are plotted. We indeed observe that the vertex of Equation (52) approaches the upper-left corner of the unit window if $\operatorname{Pr}\left(c_{1}^{0}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are large and $\operatorname{Pr}\left(c_{1}^{1}\right), \operatorname{Pr}\left(c_{1}^{2}\right), \operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ are small, see red (dashed) function.

Figure 27: Several example sensitivity functions adhering to Theorem 5.4. (See Table 12 for parameter settings)

Parameter	Red	Red dashed	Blue	Blue dashed	Green	Green dashed	Orange	Orange dashed
$\operatorname{Pr}\left(c_{1}^{0}\right)$	0.8	0.8	0.8	0.8	0.8	0.8	0.1	0.1
$\operatorname{Pr}\left(c_{1}^{1}\right)$	0.1	0.1	0.1	0.1	0.1	0.1	0.7	0.7
$\operatorname{Pr}\left(c_{1}^{2}\right)$	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
$\operatorname{Pr}\left(c_{2}\right)$	0.9	0.9	0.5	0.5	0.1	0.1	0.5	0.5
$\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$	0.7	0.4	0.7	0.4	0.7	0.4	0.7	0.4
$\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$	0.85	0.7	0.85	0.7	0.85	0.7	0.85	0.7

Table 12: Parameter settings for sensitivity functions from Figure 27

For better insight into the propagation effects for $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \geq 0.6$, we compute its first derivative.
Corollary 5.4.1. The first derivative of the sensitivity function from Equation (52) is:
$\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=$

$$
\begin{align*}
& =\frac{\left(\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)\left(1-\operatorname{Pr}\left(c_{2}\right)\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\left(\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)\right)\left(x+\frac{\left(\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)}{\operatorname{Pr}\left(c_{2}\right)\left(1-\left(\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)\right)\right)}\right)^{2}} \\
& =\frac{\beta\left(1-\operatorname{Pr}\left(c_{2}\right)\right)}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)\left(x+\frac{\beta}{\operatorname{Pr}\left(c_{2}\right)(1-\beta)}\right)^{2}} \tag{53}
\end{align*}
$$

where $\beta=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{1}\right)+\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right) \operatorname{Pr}\left(c_{1}^{2}\right)$.
Now, we plot the derivatives for the red (dashed), blue (dashed) and green (dashed) function, see Figure 28. We observe that only for the green (dashed) exemplar sensitivity function the propagation effects are moderate for some $x \in[0.6,1]$. The parameter settings for the green (dashed) function is shown in Table $12 \operatorname{Pr}\left(c_{1}^{0}\right)$ is large and $\operatorname{Pr}\left(c_{1}^{1}\right), \operatorname{Pr}\left(c_{1}^{2}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are small. Again we find that smaller noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ don't necessarily lead to larger propagation effect in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \in[0.6,1]$; for the blue (dashed) function we even observe the opposite effect.

With the help of WOLFRAM MATHEMATICA, we find a maximum of max $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x)=0.41666$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \in[0.6,1]$ of Equation 53 with the following parameter settings (see Appendix F.2):

$$
\operatorname{Pr}\left(c_{1}^{0}\right)=0.9999 \ldots, \operatorname{Pr}\left(c_{1}^{1}\right)=3.0174 \cdot 10^{-7}, \operatorname{Pr}\left(c_{1}^{2}\right)=2.26303 \cdot 10^{-7}, \operatorname{Pr}\left(c_{2}\right)=6.3493 \cdot 10^{-7}, \operatorname{Pr}\left(e \mid c_{1}^{1}, c_{2}\right)=0.634626
$$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)=0.837225$.

This maximum lies at $x=0.6$.
We conclude that Equation (52) shows that the strongest effects on the output probability $\operatorname{Pr}\left(c_{2} \mid e\right)$ in the interval $x=\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right) \in[0.6,1]$ can be expected, based on the following:

- The probabilities $\operatorname{Pr}\left(c_{1}^{1}\right), \operatorname{Pr}\left(c_{1}^{2}\right)$ and $\operatorname{Pr}\left(c_{2}\right)$ are small and $\operatorname{Pr}\left(c_{1}^{0}\right)$ is large. In addition we conclude that the influence of the noisy-MAX parameters $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$ is minor.

We discovered that the propagation effects in the diagnostic direction, when studying $\operatorname{Pr}\left(c_{2} \mid e\right)(x)$ where $x=$ $\operatorname{Pr}\left(e \mid c_{1}^{0}, c_{2}\right)$ and $\operatorname{Pr}\left(c_{1}^{1} \mid e\right)(x)$ where $x=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$, can again become moderate at most. The same maximum value of Equation (53) is found as the result corresponding to Equation (15) in Section 4.1.3.1, as expected. However, the maximum gradient's value of Equation (51) is higher, namely 0.625 instead of 0.41666 . This means that the properties underlying the noisy-MAX model can have more impact on the propagation effects compared to the noisy-OR model, when studying the effects in the diagnostic direction. We discovered that the propagation effects in the diagnostic direction now mainly depend on which output probability we look at and which value of c_{i}^{j} of the noisy-MAX parameter associated with cause C_{i} we vary.

Figure 28: Several examples of Equation 53 restricted to the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,2.5]$ (left) and the window $x \in[0,1]$ and $\frac{d}{d x} \operatorname{Pr}\left(c_{2} \mid e\right)(x) \in[0,0.8]$ (right). (See Table 12 for parameter settings)

Altogether, we discovered that the overall propagation effects in both the causal and diagnostic direction possibly increase when using the noisy-MAX model compared to the noisy-OR model.

6 Summary and discussion

In this section, we will first summarise our findings and subsequently describe the differences and similarities of our findings with Woudenberg and van der Gaag [1].

We started our investigation with a basic causal mechanism with a common effect variable E and two independent cause variables, involving binary variables only. The conditional probability tables (CPT) of this causal mechanism involve eight probabilities, but using the noisy-OR model and thus assuming the property of accountability, only two parameters are required beforehand. We performed a sensitivity analysis wherein we examined the effect of deviations in one of the noisy-OR parameters on an output probability of interest. In addition, we also investigated the effect of possibly dependent cause variables in the basic causal mechanism. For both causal mechanisms, we discovered that large propagation effects in the causal direction on the probability of interest can only be expected if the prior probability of the cause associated with the noisy-OR parameter under study has a large probability of being present and the prior probability of the other cause is likely to be absent. Moreover, we found that a large probability for the other noisy-OR parameter involved, namely the noisy-OR parameter that is not set to x, will positively influence the robustness of the causal mechanism. In addition, we observed that by actually establishing the presence or absence of cause C_{i}, the propagation effects are no longer dependent of $\operatorname{Pr}\left(c_{i}\right)$ or $\operatorname{Pr}\left(\neg c_{i}\right)$, respectively. Furthermore, we found that the effect of possibly dependent cause variables is merely quite strong when the conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$, that is the probability capturing the strength of the dependency between the causes, has a completely different value than $\operatorname{Pr}\left(c_{2}\right)$. The amount in which the propagation effects decrease/increase depends on the conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ compared to the prior probability $\operatorname{Pr}\left(c_{2}\right)$. We found that a small conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ can possibly increase the propagation effects and a large value for $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$ can possibly decrease the propagation effects. When examining the propagation effects in the diagnostic direction, we discovered that the propagation effects strongly depend on which output probability we look at and which noisy-OR parameter we vary.

When the accountability property is not satisfied/assumed, the leaky noisy-OR model can be used for the causal mechanism's elicitation task to complete the CPT. The same results generally hold for using the leaky noisy-OR model as for using the noisy-OR model. The leak probability increases the propagation effects slightly in the causal direction, since we discovered that the larger the leak probability, the larger the gradient of the corresponding sensitivity function. However, we again emphasize that this effect is minimal.

We demonstrated that including an additional cause variable does not lead to larger propagation effects. We observed that the prior probabilities of the corresponding causes of the deviating noisy-OR parameter need to have more skewed prior probability distributions to attain the same propagation effects as for a causal mechanism involving two cause variables, indicating possibly less propagation effects. However, a network engineer should keep in mind that the involvement of additional causes immediately enlarges the elicitation task, as the probabilities needed by an interaction model to complete the CPT increases linearly in the number of cause variables.

We also studied a situation wherein a causal mechanism modelled the leak as an explicit cause in our model. The prior probability of the leak cause was set to 1 , indicating the presence of unavoidable unmodelled causes. The noisyOR parameter associated with this cause represented the case that the effect occurred due to unmodelled causes. This parameter now attained a probability in the interval ($0,0.2$]. Again, the causal and diagnostic propagation effects were in line with what we had discovered before.

Finally, we investigated a basic causal mechanism with a common effect variable E and two independent cause variables involving a ternary cause variable. Here, an interaction model called the noisy-MAX was used to compute the parameters involving the presence of more than one cause. Recall that the assumptions underlying the noisyMAX model indicate that the lower the value of c_{i}^{j} of the noisy-MAX parameter associated with cause C_{i}, the lower the probability (interval) of the corresponding noisy-MAX parameter. In this case, we found that the propagation effects in the causal direction are possibly slightly higher than when using the noisy-OR model, involving binary variables only. The propagation effects in the diagnostic direction now mainly depend on which output probability we look at and which value of c_{i}^{j} of the noisy-MAX parameter associated with cause C_{i} we vary. The same result holds for the propagation effects in the diagnostic direction: the propagation effects are possibly higher than when using the noisy-OR model.

We conducted our research for different parameters than Woudenberg and van der Gaag since we considered a different research question. Woudenberg and van der Gaag examined the propagation effects due to deviating model-
calculated probability values. We studied the propagation effects due to an inaccurate model's input parameter. We found that inaccurate estimates of the probabilities for the input parameters of the noisy-OR model and its variants can result in different output probabilities, and therefore, possibly harm the validity of a Bayesian network's output. However, we also discovered that inaccurate estimates for the input parameters in many cases will not lead to large propagation effects. These results agree with the findings of Woudenberg and van der Gaag. We will now clearly state the differences and similarities of our findings compared to 1 .

For the causal propagation effects, when using the noisy-OR model, we obtained quite similar results as Woudenberg and van der Gaag in 1. The results of both our studies indicate that the propagation effects in the causal direction can only be large if the yet unobserved cause variables corresponding to the varied parameter in the mechanism have quite skewed prior probability distributions. For clarification, when Woudenberg and van der Gaag set $x=\operatorname{Pr}\left(e \mid c_{1}, c_{2}\right)$, they found that large propagation effects in the causal direction are possible if both causes C_{1} and C_{2} are likely to be present. When we set, e.g. $x=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right)$, then we discovered that large propagation effects are possible only if cause C_{1} is likely to be absent and C_{2} present. Contrary to [1] we found that the gradient of the corresponding sensitivity function, when studying the causal propagation effects, is dependent of the other noisy-OR parameter involved. This difference can be explained by the fact that Woudenberg and van der Gaag varied a parameter that is actually calculated from the input parameters by the model's rules; the other noisy-OR parameter is, in fact, hidden in the parameter they vary. In our study, the other noisy-OR parameter is in the gradient since the parameter we vary is not calculated from the input parameters but is an input parameter itself. However, the effect of this other noisy-OR parameter being present in the gradient in our study is rather small since the properties underlying the noisy-OR model assume that noisy-OR parameters attain high values in practice [5]. Since only a small value of the noisy-OR parameter involved in the gradient increases the propagation effects, we discovered that the effect of this parameter is rather small.

We now present the differences and similarities of our findings with Woudenberg and van der Gaag when studying the propagation effects in the diagnostic direction when using the noisy-OR model. Since the corresponding sensitivity functions are rectangular hyperbola functions when studying the propagation effects in the diagnostic direction, the effect of deviations in the x-value on the output probability of interest mainly depends on the location of the vertex of the corresponding hyperbola branch. We therefore started examining the influences of the parameters involved on the location of the vertex as done in 11. We discovered, like Woudenberg and van der Gaag, that the propagation effects in the diagnostic direction can be large if the yet unobserved cause variables corresponding to the varied parameter in the mechanism have quite skewed prior probability distributions. In addition, we found that small values for the other noisy-OR parameter involved, that is the noisy-OR parameter which is not set to x, will increase the propagation effects. These results indeed agree with the findings in [1. However, in contrast to Woudenberg and van der Gaag, we kept in mind the underlying assumptions of the noisy-OR model, and therefore our final observations are quite different. Contrary to [1] we found that the propagation effects in the diagnostic direction are mainly dependent on which output probability we studied and which noisy-OR parameter we varied.

Now we will indicate the most relevant similarities and differences, regarding the propagation effects in the causal direction, when studying the effect of possibly dependent cause variables, the leak probability, and the inclusion of (an) additional cause variable(s). When studying the effect of possibly dependent cause variables, we found similar results as Woudenberg and van der Gaag: possibly dependent cause variables can affect the propagation effects in the causal direction. The extent to which this could influence the propagation effects is dependent on the conditional probability $\operatorname{Pr}\left(c_{2} \mid c_{1}\right)$, that is the probability capturing the strength of the dependency between the causes, compared to the prior probability $\operatorname{Pr}\left(c_{2}\right)$. When studying the effect of the leak, Woudenberg and van der Gaag found that the leak probability was absent in the gradient when studying the causal propagation effects, and thus, the propagation effects were independent of the leak probability. The leak probability was absent in the gradient in their study, because again it is hidden in the parameter they vary. In our study, we discovered that the leak probability is indeed present in the gradient but can only slightly increase the propagation effects. Furthermore, we found similar results as Woudenberg and van der Gaag when including additional cause variable(s): the same propagation effects are possible as with mechanisms involving less cause variables; however, more skewed prior probabilities of the yet unobserved causes are needed to attain the same propagation effects.
Again, our most relevant findings when studying the effect of possibly dependent cause variables, the leak probability, and the inclusion of (an) additional cause variable(s) regarding the propagation effects in the diagnostic direction, are the same as before. The propagation effects in the diagnostic direction were mainly determined by which output probability we studied and which (leaky) noisy-OR parameter we varied. The effect of possibly dependent cause variables, the leak probability, and the inclusion of (an) additional cause variable(s) regarding the propagation effects
in the diagnostic direction were all rather small and in line with our findings for the basic causal mechanism using the noisy-OR model.

Finally, we discovered that the overall propagation effects possibly increase when using the noisy-MAX model instead of the noisy-OR model. Woudenberg and van der Gaag concluded that similar results hold for the noisy-OR as for the noisy-MAX. Consequently, our findings differ from theirs since we found that the propagation effects for the models are different. The propagation effects corresponding to the noisy-MAX model are possibly larger since the model's underlying assumptions are different than for the noisy-OR. In contrast to Woudenberg and van der Gaag, we kept in mind the underlying assumptions to the corresponding interaction model, and therefore obtained different results.

Lastly, we want to share a remarkable finding that emerged from our study when examining the propagation effects in the diagnostic direction due to deviations in (leaky) noisy-OR/MAX parameters. This finding relates to the maximal value of the gradient of the sensitivity functions where the propagation effects could become moderate at most. When we focused on the interval $x \in[0.6,1]$, the maximum value for the gradient was always equal to $|0.416666|$. The fact that this number at all times showed up raises questions. We acknowledge that there must be an explanation, but unfortunately, we don't have it yet.
Note that this observation only applies to the sensitivity functions where the propagation effects in the diagnostic direction can become small or moderate at most, and where we focus on the interval for $x \in[0.6,1]$.

7 Conclusion

The elicitation of all the required probabilities in a Bayesian network is often the most demanding challenge. A network engineer can use interaction models like the noisy-OR model and its generalisations to ease this elicitation task. Recall that these interaction models require limited probability estimates since the remaining probabilities of the CPT are computed by the model's rules. The input parameters of the interaction model are the probability estimates taken in by the model to compute the remaining probabilities. However, obtaining accurate probability estimates for the input parameters may be a difficult job. Therefore, it can be helpful for a network engineer to determine beforehand how much effort he/she should put into acquiring accurate estimates for the input parameters in order to ensure the validity of the Bayesian network's output.

In this thesis, we examined the consequences of inaccurate estimates of (leaky) noisy-OR/MAX parameters on output probabilities. We studied generic sensitivity functions of different models and gained insight into the consequences of specific causal interaction models' input parameters being inaccurate. In our study, we assumed that the assumptions underlying the interaction models do indeed hold.

We discovered that the use of inaccurately estimated parameters of causal interaction models can result in different output probabilities, and therefore, possibly harm the validity of a Bayesian network's output. Since large propagation effects are possible under certain conditions, a network engineer is strongly advised to check in advance how accurate the probability estimates of the input parameters of the corresponding interaction model must be. Moreover, the results obtained in this study pertain to rather basic causal mechanisms; the results might deviate, for example, for larger network structures.

Our research found that the propagation effects in the causal direction can only be large if the prior probability of the cause associated with the noisy-OR parameter under study is large and the prior probability/probabilities of the other cause(s) small. For the diagnostic direction, we discovered that the propagation effects are highly dependent on which output probability we look at and which noisy-OR parameter we vary. We also found that the causal and diagnostic propagation effects are small or moderate in many cases. Since it is quite favourable for a network engineer to make use of causal interaction models, we highly recommend that he/she should beforehand verify whether large propagation effects may happen, using the insights from this thesis. A network engineer can then decide how much effort he/she has to put into obtaining accurate estimates for those parameters.

We have examined the propagation effects due to (leaky) noisy-OR/MAX parameters changes. For further research, the propagation effects of the interaction models such as the noisy-AND/MIN can be studied [2]. Furthermore, we only performed one-way sensitivity analyses. To acquire additional insight into the effects of inaccurate input parameters of interaction models, we advise performing higher-order sensitivity analyses as well. In a higher-order sensitivity analysis, multiple probabilities are varied at the same time, and therefore the joint combined effect of deviating input parameters is examined. Lastly, we leave the finding concerning the gradient's maximal value mentioned in the discussion in Section 6 for further research.

References

[1] S.P.D. Woudenberg, L.C. van der Gaag. Propagation effects of model-calculated probabilities in Bayesian networks. International Journal of Approximate Reasoning 61, 1-15. 2015
[2] F.J. Díez, J. Druzdzel. Canonical Probabilistic Models for Knowledge Engineering. Technical Report CISIAD-0601, UNED, Madrid, Spain. 2007
[3] S. Renooij, L.C. van der Gaag. The hidden elegance of causal interaction models. Proceedings of the 13th International Conference on Scalable Uncertainty Management (SUM), 38-51. 2019
[4] L.C. van der Gaag, S. Renooij. Probabilistic Reasoning. Syllabus, Utrecht University. 2019
[5] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Networks of plausible Inference. Morgan Kaufmann, Palo Alto, 1988
[6] S. Renooij, L.C. van der Gaag. Evidence-invariant sensitivity bounds. Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Arlington, VA, 479-486. 2004
[7] P.J.F. Lucas. Bayesian network modelling through qualitative patterns. Artificial Intelligence, 163:233-263, 2005
[8] S. Renooij, L.C. van der Gaag. Evidence and scenario sensitivities in naive Bayesian classifiers. International Journal of Approximate Reasoning, 49 (2008) 398 - 416
[9] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.
[10] S. McLachlan, K. Dube, G. A. Hitman, N. E. Fenton, E. Kyrimi. Bayesian networks in healthcare: Distribution by medical condition. Artificial Intelligence In Medicine, 107, 101912. 2020
[11] A. Greppi, M. E. De Giuli, C. Tarantola, D. M. Montagna. Bayesian Networks for Financial Market Signals Detection. In book: Classification, (Big) Data Analysis and Statistical Learning, Pages 219-226. 2018
[12] E. Lazkano, B. Sierra, A. Astigarraga, J. M. Martínez-Otzeta. On the use of Bayesian Networks to develop behaviours for mobile robots. Robotics and Autonomous Systems, Volume 55, Issue 3, Pages 253-265. 2007

Appendices

Appendix A

```
4.1.3
```


A. 1 4.1.3.1

WOLFRAM MATHEMATICA |STUDENTEDITION \quad Demonstrations । MathWorld । Wolfram Community । Help

$$
\ln [22]=f\left[a_{-}, b_{-}, c_{-}, x_{-}\right]:=\frac{a * b *(1-c)}{c *(1-a * b) *\left(x+\frac{a * b}{c *(1-a * b)}\right)^{2}}
$$

FindMaximum[\{f[a,b, c, x], $0.6 \leq a \leq 1,0.6 \leq x \leq 1,0<b<1,0<c<1\},\{\{a, \# \llbracket 1 \mathbb{Z}\},\{b, \# \llbracket 2 \mathbb{Z},\{c, \# \llbracket 3 \mathbb{Z}\},\{x, \# \llbracket 4 \rrbracket\}\} \& / @\{\{1,0.001,0.001,0.6\},\{0.6,0.99,0.99,1\}\}$ Outr23] $=\left\{\left\{0.416666,\left\{a \rightarrow 0.775347, b \rightarrow 3.28813 \times 10^{-7}, c \rightarrow 4.24907 \times 10^{-7}, x \rightarrow 0.6\right\}\right\},\left\{0.416666,\left\{a \rightarrow 0.775347, b \rightarrow 3.28813 \times 10^{-7}, c \rightarrow 4.24907 \times 10^{-7}, x \rightarrow 0.6\right\}\right\}\right\}$
$\operatorname{In}[24])=\mathrm{f}\left[a_{-}, b_{-}, c_{-}, x_{-}\right]:=\frac{a * b *(1-c)}{c *(1-a * b) *\left(x+\frac{a * b}{c *(1-a * b)}\right)^{2}}$
 $\{\{1,0.001,0.001,0.6\},\{0.6,0.99,0.99,1\}\}$
Outl26] $=\{\{0.412496,\{a \rightarrow 0.600043, b \rightarrow 0.0100007, c \rightarrow 0.0100003, x \rightarrow 0.6\}\},\{0.412496,\{a \rightarrow 0.600043, b \rightarrow 0.0100007, c \rightarrow 0.0100003, x \rightarrow 0.6\}\}\}$
$\ln [26]=\mathrm{f}\left[a_{-}, b_{-}, c_{-}, x_{-}\right]:=\frac{a * b *(1-c)}{c *(1-a * b) *\left(x+\frac{a * b}{c *(1-a * b)}\right)^{2}}$
 $\{\{1,0.001,0.001,0.6\},\{0.6,0.99,0.99,1\}\}$
Out[27] $=\{\{0.395741,\{a \rightarrow 0.600012, b \rightarrow 0.050001, c \rightarrow 0.0500003, x \rightarrow 0.6\}\},\{0.395741,\{a \rightarrow 0.600012, b \rightarrow 0.050001, c \rightarrow 0.0500003, x \rightarrow 0.6\}\}\}$
$a=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), b=\operatorname{Pr}\left(c_{1}\right)$ and $c=\operatorname{Pr}\left(c_{2}\right)$.

A. 2 4.1.3.2

$$
\ln [28]:=g\left[a_{-}, \quad b_{-}, \quad c_{-}, \quad x_{-}\right]:=\frac{\frac{a}{b *(1-a)} *\left(1-\frac{1-c * a}{c *(1-a)}\right)}{\left(x * \frac{1-c * a}{c *(1-a)}+\frac{a}{b *(1-a)}\right)^{2}}
$$

$\ln [34]:=\operatorname{FindMinimum}[\{g[a, b, c, x], 0.6 \leq a \leq 1,0.6 \leq x \leq 1,0<b<1,0<c<1\},\{\{a, \# \llbracket 1 \rrbracket\},\{b, \# \llbracket 2 \rrbracket\},\{c, \# \llbracket 3 \rrbracket\},\{x, \# \llbracket 4 \rrbracket\}\}] \& / @$
$\{\{0.99,0.99,0.001,0.6\},\{0.01,0.5,0.5,0.3\},\{0.4,0.9,0.1,0.6\}\}$
Out[34] $=\{\{-0.416666,\{a \rightarrow 0.999999, b \rightarrow 0.520073, c \rightarrow 0.237831, x \rightarrow 0.6\}\}$,
$\{-0.416666,\{a \rightarrow 0.999999, b \rightarrow 0.385073, c \rightarrow 0.187681, x \rightarrow 0.6\}\},\{-0.416666,\{a \rightarrow 0.999999, b \rightarrow 0.385731, c \rightarrow 0.187942, x \rightarrow 0.6\}\}\}$
$a=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right), b=\operatorname{Pr}\left(c_{1}\right)$ and $c=\operatorname{Pr}\left(c_{2}\right)$.

Appendix B

4.2.2

B. 1 4.2.2.1

```
WOLFRAM MATHEMATICA |STUDENT EDITION
\(\ln [16]=\mathbf{m}\left[a_{-}, b_{-}, d_{-}, a_{-}, x_{-}\right]:=\frac{a(1-b)}{b\left(\frac{q}{b * d}-a\right)\left(x+\frac{a}{b \star\left(\frac{a}{b * d}-a\right)}\right)^{2}}\)
```



``` \(\{\{0.9,0.5,0.5,0.5,0.99\},\{0.6,0.5,0.5,0.5,0.99\},\{0.6,0.1,0.1,0.9,0.6\}\}\)
Ou[ [21] \(=\left\{\left\{0.416666,\left\{a \rightarrow 0.84354, b \rightarrow 2.08182 \times 10^{-7}, d \rightarrow 0.397759, q \rightarrow 0.559209, x \rightarrow 0.6\right\}\right\}\right.\),
\(\left.\left\{0.416666,\left\{a \rightarrow 0.725605, b \rightarrow 2.08182 \times 10^{-7}, d \rightarrow 0.468729, q \rightarrow 0.566853, x \rightarrow 0.6\right\}\right\},\left\{0.416666,\left\{a \rightarrow 0.769538, b \rightarrow 2.08182 \times 10^{-7}, d \rightarrow 0.446552, q \rightarrow 0.572732, x \rightarrow 0.6\right\}\right\}\right\}\)
\(a=\operatorname{Pr}\left(e \mid c_{1}, \neg c_{2}\right), b=\operatorname{Pr}\left(c_{2} \mid c_{1}\right), d=\operatorname{Pr}\left(c_{1}\right)\) and \(q=\operatorname{Pr}\left(c_{2}\right)\).
```


B. 2 4.2.2.2

WOLFRAM MATHEMATICA | STUDENT EDITION

$$
m\left[f=n\left[a_{-}, b_{-}, d_{-}, q_{-}, x_{-}\right]:=\frac{\frac{a * \frac{g}{d}}{b(1-a)}\left(1-\frac{1-a t b}{b(1-a)}\right)}{\left(x * \frac{1-a * b}{b(1-a)}+\frac{a * \frac{g}{d}}{b(1-a)}\right) \wedge 2}\right.
$$

 $\{\{0.9,0.5,0.5,0.5,0.99\},\{0.6,0.5,0.5,0.5,0.99\},\{0.6,0.1,0.1,0.9,0.6\}\}$
Out $-=\{\{-0.416666,\{a \rightarrow 0.999999, b \rightarrow 0.184973, d \rightarrow 0.560874, q \rightarrow 0.274277, x \rightarrow 0.6\}\}$,
$\{-0.416666,\{a \rightarrow 0.999988, b \rightarrow 0.0181928, d \rightarrow 0.59435, q \rightarrow 0.350127, x \rightarrow 0.6\}\},\{-0.416667,\{a \rightarrow 0.999988, b \rightarrow 0.0136418, d \rightarrow 0.571685, q \rightarrow 0.338336, x \rightarrow 0.6\}\}\}$ $a=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right), b=\operatorname{Pr}\left(c_{2} \mid c_{1}\right), d=\operatorname{Pr}\left(c_{1}\right)$ and $q=\operatorname{Pr}\left(c_{2}\right)$

Appendix C

4.3

C. 14.3 .2

$a=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}\right), b=\operatorname{Pr}\left(c_{1}\right), c=\operatorname{Pr}\left(c_{2}\right)$ and $p=p$.

Appendix D
 4.4

D. 1 4.4.2


``` \(\{\{0.8,0.8,0.8,0.6,0.6,0.6\},\{0.2,0.2,0.2,0.6,0.6,0.6\},\{0.1,0.1,0.1,0.7,0.7,0.7\}\}\)
Out 4 ) \(=\left\{\left\{0.416666,\left\{a \rightarrow 6.34063 \times 10^{-7}, b \rightarrow 2.45256 \times 10^{-7}, c \rightarrow 2.45256 \times 10^{-7}, d \rightarrow 0.775592, f \rightarrow 0.775592, x \rightarrow 0.6\right\}\right\}\right.\), \(\left\{0.416666,\left\{a \rightarrow 6.34063 \times 10^{-7}, b \rightarrow 2.45256 \times 10^{-7}, c \rightarrow 2.45256 \times 10^{-7}, d \rightarrow 0.775592, f \rightarrow 0.775592, x \rightarrow 0.6\right\}\right\}\),
\(\left.\left\{0.416666,\left\{a \rightarrow 6.34063 \times 10^{-7}, b \rightarrow 2.45256 \times 10^{-7}, c \rightarrow 2.45256 \times 10^{-7}, d \rightarrow 0.775592, f \rightarrow 0.775592, x \rightarrow 0.6\right\}\right\}\right\}\)
Assuming a ragged array | Use as a list of pairs instead
\begin{tabular}{l|l|l|l|l} 
sublengths & flatten & 重 & 目
\end{tabular}
```

$a=\operatorname{Pr}\left(c_{1}\right), b=\operatorname{Pr}\left(c_{2}\right), c=\operatorname{Pr}\left(c_{3}\right), d=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $f=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.

Appendix E

E. 14.5 .2

WOLFRAM MATHEMATICA |STUDENT EDITION
$\ln [10]=r\left[a_{-}, b_{-}, d_{-}, f_{-}, x_{-}\right]:=\frac{\frac{(d * b * f-d * f * b) *(1-a)}{d *\left(1-\left(d * b+f-d_{*} f * b\right)\right)}}{\left(x+\frac{d * b+f-d * f+t}{2 *(1-(d * b+f-d * f+b))}\right)^{2}}$
 $\{\{0.8,0.8,0.6,0.6,0.01\},\{0.2,0.2,0.6,0.6,0.1\},\{0.1,0.1,0.7,0.6,0.2\}\}$
Out [13] $=\left\{\left\{0.416666,\left\{a \rightarrow 6.31615 \times 10^{-7}, b \rightarrow 2.45757 \times 10^{-7}, d \rightarrow 0.775591, f \rightarrow 1.88362 \times 10^{-7}, x \rightarrow 0.6\right\}\right\}\right.$,
$\left\{0.416666,\left\{a \rightarrow 6.31615 \times 10^{-7}, b \rightarrow 2.45757 \times 10^{-7}, d \rightarrow 0.775591, f \rightarrow 1.88362 \times 10^{-7}, x \rightarrow 0.6\right\}\right\}$,
$\left.\left\{0.416666,\left\{a \rightarrow 6.31615 \times 10^{-7}, b \rightarrow 2.45757 \times 10^{-7}, d \rightarrow 0.775591, f \rightarrow 1.88362 \times 10^{-7}, x \rightarrow 0.6\right\}\right\}\right\}$
$a=\operatorname{Pr}\left(c_{1}\right), b=\operatorname{Pr}\left(c_{2}\right), d=\operatorname{Pr}\left(e \mid \neg c_{1}, c_{2}, \neg c_{3}\right)$ and $f=\operatorname{Pr}\left(e \mid \neg c_{1}, \neg c_{2}, c_{3}\right)$.

Appendix F

```
5.2
```


F. $1 \quad 5.2$


```
    In[{])= y[\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{\prime},\mp@subsup{d}{-}{\prime},\mp@subsup{f}{-}{\prime},\mp@subsup{g}{-}{\prime},\mp@subsup{x}{-}{\prime}]:=\frac{f*d(1-b)+g*c-g*f*c*d}{b*(1-f*d)*(x+\frac{f*d+g*c-g*f***d}{b*(1-f*d)}\mp@subsup{)}{}{2}}
```



```
        {{0.99, 0.001, 0.01, 0.6, 0.7, 0.4}, {0.9, 0.1, 0.1, 0.6, 0.7, 0.4}}
    Oul[4]={{0.625,{b->0.536938,c->0.257277, d->6.74835\times10-8,f->0.750893,g->0.834803,x->0.4}},
        {0.625,{b->0.555408,c->0.264208,d->6.49039\times1\mp@subsup{0}{}{-8},f->0.754339,g->0.840866,x->0.4}}}
b=Pr}(\mp@subsup{c}{1}{1}),c=\operatorname{Pr}(\mp@subsup{c}{1}{2}),d=\operatorname{Pr}(\mp@subsup{c}{2}{}),f=\operatorname{Pr}(e|\mp@subsup{c}{1}{0},\mp@subsup{c}{2}{})\mathrm{ and }g=\operatorname{Pr}(e|\mp@subsup{c}{1}{2},\neg\mp@subsup{c}{2}{})
```


F. $2 \quad 5.2$

WOLFRAM MATHEMATICA STUDENT EDITION Demonstrations । MathWorld । Wolfram Communil
$\ln [5]=\mathbf{q}\left[a_{-}, b_{-}, c_{-}, d_{-}, f_{-}, x_{-}\right]:=\frac{(d * a+f * b) *(1-c)}{c *(1-(d * a+f * b)) *\left(x+\frac{d * a+f * b}{c *(1-(d * *+f * b))}\right)^{2}}$
 $\{\{0.99,0.001,0.001,0.6,0.7,0.6\},\{0.9,0.1,0.1,0.6,0.7,0.6\}\}$
Ouf $[0]=\left\{\left\{0.416666,\left\{a \rightarrow 3.0174 \times 10^{-7}, b \rightarrow 2.26303 \times 10^{-7}, c \rightarrow 6.3493 \times 10^{-7}, d \rightarrow 0.634626, f \rightarrow 0.837225, x \rightarrow 0.6\right\}\right\}\right.$, $\left.\left\{0.416666,\left\{a \rightarrow 3.0174 \times 10^{-7}, b \rightarrow 2.26303 \times 10^{-7}, c \rightarrow 6.3493 \times 10^{-7}, d \rightarrow 0.634626, f \rightarrow 0.837225, x \rightarrow 0.6\right\}\right\}\right\}$
$a=\operatorname{Pr}\left(c_{1}^{1}\right), b=\operatorname{Pr}\left(c_{1}^{2}\right), c=\operatorname{Pr}\left(c_{2}\right), d=\operatorname{Pr}\left(e \mid c_{1}^{1}, \neg c_{2}\right)$ and $f=\operatorname{Pr}\left(e \mid c_{1}^{2}, \neg c_{2}\right)$.

[^0]: ${ }^{1}$ We choose 0.098 because otherwise this function would overlap with the red dashed function.

[^1]: ${ }^{2}$ We choose 0.53 because otherwise this function would overlap with the purple function.
 ${ }^{3}$ We choose 0.898 because otherwise this function would overlap with the purple dashed function.
 ${ }^{4}$ We choose 0.098 because otherwise this function would overlap with the red dashed function.

