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Chapter 1

Introduction

In our society problems of scientific nature abound. These problems involve stochastic vari-
ables, which are in some way related to each other. For example, a physician determining
whether a patient has a specific disease, needs to take into consideration symptoms and
results from diagnostic tests, which have some relation to each other. A Bayesian network
is a concise representation of a joint probability distribution on a set of stochastic variables
for such a problem. It consists of a qualitative part, which is a directed graph where the
nodes represent the variables, and a quantitative part, which is a set of conditional prob-
abilities. The qualitative part captures the independencies between the variables, while
the quantitative part captures the strength of the dependencies using parameters, which
represent the probabilities. Together the two parts uniquely define a joint probability dis-
tribution on the variables of the problem. Inserting observations into the network allows
us to compute probabilities for a variable of interest given those observations.

In general, we expect that with worse observations a worse outcome for the variable of
interest becomes more likely. For example, if a physician observes that a patient has worse
symptoms or worse test results, then he will assume that it is more likely that the patient
has a worse disease. When we use a Bayesian network to represent such a problem, we
expect the Bayesian network to also exhibit this behavior, which is called monotonicity.
This is, however, not always the case. When inserting observations, which are worse than
before, we may expect the output of the network to be that a worse outcome is more likely,
while in fact its output says that the worse outcome is less likely. In such cases we say that
there is a violation of monotonicity. If we want to restore monotonicity to the Bayesian
network, then all such violations must be resolved. In this thesis we will investigate one
method to do so.

While monotonicity may be restored to a network by changing its qualitative part,
we restrict ourselves to changes in the quantitative part. More precisely, we look for a
single parameter that may be varied such that there are no violations of monotonicity
in the Bayesian network. It is by no means certain that such a parameter exists, since
it is not necessarily possible to restore monotonicity to the network by varying a single
parameter. If, however, it is possible to do so, then this thesis provides a method to find
such a parameter and the value to which to vary it. We use the graphical structure of
the network to eliminate variables for which parameter variation cannot restore mono-
tonicity. For the remaining variables we use a method called the intersection-of-intervals
approach to determine whether a parameter can be varied to resolve specific violations of
monotonicity and, if so, to which values. The intersection-of-intervals approach must be
applied repeatedly to determine if a parameter can be varied to restore monotonicity.
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2 CHAPTER 1. INTRODUCTION

The thesis is organised as follows. In Section 2, we introduce notations and concepts
from graph theory as well as from Bayesian-network theory necessary in the rest of this
thesis. In Section 3, we give a formal definition of monotonicity and a description of
the problem. We also include some details of previous studies of monotonicity and the
approach we will use to solve our problem. In Section 4, we introduce some concepts that
allow us to shrink the Bayesian network in which we want to restore monotonicity. In
Section 5, we detail the intersection-of-intervals approach, which is used to determine if
a parameter can be varied to resolve specific violations of monotonicity. We also discuss
the complexity of this method and how it can be used to restore monotonicity. In Section
6, we discuss the application of the intersection-of-intervals approach, since under specific
conditions application is not necessary. Finally, in Section 7, we outline our results and
conclusions as well as some ideas for further study.



Chapter 2

Preliminaries

We assume that the reader has basic knowledge of graph theory and of probability theory.
Here we will just review some notations and concepts from graph theory. We will review
the basic concepts for Bayesian networks more extensively; for a more detailed description
of Bayesian networks and related concepts we refer to [1] and [2].

2.1 Graph theory

We begin by introducing some terminology and notations for the graph-theoretical aspects
of this thesis. We consider directed acyclic graphs, or DAGs for short. The set of vertices
of a DAG G is denoted V (G), and its set of arcs is denoted A(G). An arc (Vi, Vj) ∈ A(G)
is written Vi → Vj or Vj ← Vi. The set of predecessors of a vertex, or set of vertices, V
is denoted π(V ) and the set of ancestors of V is denoted π∗(V ). Analogously, the set of
successors of a vertex, or set of vertices, V is denoted σ(V ) and the set of descendants of
V is denoted σ∗(V ). A chain is a sequence of vertices Vi, Vi+1, . . . , Vi+j ∈ V (G) such that
for all k = i, i+ 1 . . . , i+ j − 1 there is an arc Vk → Vk+1 or Vk ← Vk+1.

We review the concept of blocking a chain in a DAG.

Definition 2.1.1. Let G be a DAG. A chain between two vertices Vi and Vj in G is
blocked by a set of vertices Z if there are three subsequent vertices V1, V2, V3 on the chain
such that one of the following three statements holds:

• V1 → V2 → V3 and V2 ∈ Z;

• V1 ← V2 → V3 and V2 ∈ Z;

• V1 → V2 ← V3 and σ∗(V2) ∩ Z = ∅.

Using the concept of blocking we define the d-separation criterion.

Definition 2.1.2 (d-separation criterion). Let G be a DAG. Two sets of vertices X,Y ⊆
V (G) are d-separated by a set of vertices Z ⊆ V (G), denoted 〈X |Z|Y 〉dG , if for every
Vi ∈ X and Vj ∈ Y all chains between Vi and Vj in G are blocked by Z.

2.2 Bayesian networks

A Bayesian network represents a joint probability distribution on a set of stochastic vari-
ables. Each such variable can take a number of values.

3



4 CHAPTER 2. PRELIMINARIES

Definition 2.2.1. Let Vi be a stochastic variable. The domain of Vi, denoted Ω(Vi), is
the set of all possible values for Vi.

In the sequel we assume that the domain of a variable Vi has a total ordering ≤. For
a binary variable Vi, its possible values are denoted v̄i and vi, with v̄i ≤ vi. For a non-
binary variable Vi, we use vki with k = 1, 2, . . . , |Ω(Vi)| to denote its values; we assume
that vki ≤ vk+1

i . The set of all joint value assignments to a set of variables S equals the
Cartesian product of the sets of values for each variable from S: Ω(S) = ×Vi∈SΩ(Vi). This
set of value assignments has a partial ordering � induced by the total orderings ≤ of the
sets of values for the individual variables.

A Bayesian network consists of a qualitative and a quantitative part. The qualitative
part is a directed acyclic graph in which the variables are represented by vertices. The
quantitative part is a set of probabilities.

Definition 2.2.2. A Bayesian network is a tuple B = (G ,P) where

• G is a DAG with vertices V (G) = {V1, . . . , Vn}, n ≥ 1, and arcs A(G);

• P is a set of conditional probabilities p (Vi |π(Vi)), for all Vi ∈ V (G).

The set of conditional probabilities for a variable Vi ∈ V (G) is called the conditional

probability table, or CPT, for Vi. The CPT of a variable Vi contains a parameter p
(
vji |π

)
for all vji ∈ Ω(Vi) and all π ∈ Ω(π(Vi)). The variable of interest of a Bayesian network is
denoted C , and its set of observable variables is denoted E.

The d-separation criterion, defined in the previous section, is related to the probabilistic
concept of independence as follows.

Definition 2.2.3. Let Pr be a joint probability distribution on a set V of stochastic vari-
ables, and let G be a DAG with V (G) = V . G is called an I-map for Pr if, for all sets
of variables X,Y, Z ∈ V (G), 〈X |Z|Y 〉dG in G implies that X and Y are conditionally
independent given Z in Pr.

The set of conditional probabilities P of a Bayesian network uniquely defines a joint
probability distribution on the variables which respects the independencies depicted in
the DAG G .

Proposition 2.2.4. Let B = (G ,P) be a Bayesian network. Then

Pr (V (G)) =
∏

Vi∈V (G)

p (Vi |π(Vi))

defines a joint probability distribution Pr on V (G) such that G is an I-map for Pr.

We use
∑

Ω(V ) to indicate summing over all value assignments to the set of variables V
and the notation |X = x to indicate that the variables in X take the combination of values
x in the preceding formula.

In the sequel, we will change values in the CPTs of a Bayesian network, that is we will
be varying parameters in the network like in sensitivity analysis. We denote the effect of
varying a parameter p (u |π) on a probability Pr (X) by Pr (X) (p (u |π) = x), where x is
an algebraic variable or a constant. If x is a constant, then we replace the original value
of p (u |π) by x. If x is an algebraic variable, then Pr (X) (p (u |π) = x) is a formula in
terms of x. Note that when we vary p (u |π) other parameters must also be changed. To
ensure that we change these parameters in the same way every time and that their relative
weights are maintained, we use a scheme called proportional scaling.
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Definition 2.2.5. Let B = (G ,P) be a Bayesian network, and let Ω(V ) = {v1, . . . , vn},
n ≥ 1, be the domain of a variable V ∈ V (G). Let p

(
v1 |π

)
be a parameter from the CPT

of V . Then, proportional scaling is the scheme of parameter variation such that

• p
(
v1 |π

)
is varied to x;

• for all k = 2, . . . , n, p
(
vk |π

)
is varied to

1− x
1− p (v1 |π)

· p
(
vk |π

)
;

• for all k = 1, . . . , n and π′ 6= π, p
(
vk |π′

)
remains unchanged.

Note that if a variable V can only take two values v, v̄ then there is no difference between
varying p (v |π) and varying p (v̄ |π), since p (v̄ |π) = 1− p (v |π).

We also use a well-known property from sensitivity analysis.

Proposition 2.2.6. Let B = (G ,P) be a Bayesian network with a variable of interest C ,
a set of observable variables E and a joint probability distribution Pr. Then, for c ∈ Ω(C )
and e ∈ Ω(E) we have that

Pr (c | e)
(
p (u |π) = x

)
=

Pr (c, e)

Pr (e)
=
αx+ β

γx+ δ
,

where α, β, γ and δ are constants dependent of u, π, c and e.

For more information on sensitivity analysis we refer to [3] and [4].
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Chapter 3

Problem description

In this chapter we formally describe the problem of restoring monotonicity in Bayesian
networks. We also discuss some results from previous studies of the subject, and outline
the approach we will use to solve the problem.

3.1 The problem

In general, when people make worse observations, they expect a worse outcome or cause
to become more likely. For example, if a physician observes worse symptoms for a patient,
then he assumes that the patient’s condition is more likely to be worse than that of
a patient with less severe symptoms. When a Bayesian network is used to model the
physician’s problem, it has a set of observable variables E, which represent the symptoms,
and a variable of interest, which represents the condition of the patient. The physician
will then expect that if he enters observations e′ ∈ Ω(E) which are worse than his earlier
observations e ∈ Ω(E), then the probability that the condition of the patient is no worse
than c ∈ Ω(C ) becomes smaller. This property is called monotonicity and is formally
defined as follows.

Definition 3.1.1 (Monotonicity). Let B = (G ,P) be a Bayesian network with a variable
of interest C , a set of observable variables E and a joint probability distribution Pr. B
is isotone in distribution for the variables E if e � e′ implies that Pr (C ≤ c | e′ ) ≤
Pr (C ≤ c | e) for all c ∈ Ω(C ) and e, e′ ∈ Ω(E). If e � e′ implies that Pr (C ≤ c | e) ≤
Pr (C ≤ c | e′ ) for all c ∈ Ω(C ) and e, e′ ∈ Ω(E), then B is antitone in distribution for
E.

In the sequel, when we say that the Bayesian network B exhibits monotonicity, we mean
that B is isotone in distribution for the variables E. If a Bayesian network B does not
exhibit monotonicity, then there are one or more violations of the property of monotonicity
in the network.

Definition 3.1.2. Let B = (G ,P) be a Bayesian network with C , E and Pr as before. A
violation of monotonicity is an inequality Pr (C ≤ c | e) < Pr (C ≤ c | e′ ) with e � e′, for
some c ∈ Ω(C ) and e, e′ ∈ Ω(E). Varying a parameter p (u |π) ∈ P is said to resolve this
violation of monotonicity if there is a value y ∈ [0, 1] such that Pr (C ≤ c | e)

(
p (u |π) =

y
)
≥ Pr (C ≤ c | e′ )

(
p (u |π) = y

)
.

Given a Bayesian network B = (G ,P) with a set of observable variables E and a
variable of interest C , our problem is to find a value y ∈ [0, 1] for a parameter p in the

7
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Figure 3.2.1: Assignment lattice of E = {E1, E2} with Ω(E1) = {e11, e21, e31} and Ω(E2) = {e12, e22}.

CPT of a variable V ∈ V (G) such that there are no violations of monotonicity in B . Note
that there is no guarantee that there actually is a variable V with a parameter p such that
such a y exists.

3.2 Previous studies

The concept of monotonicity in Bayesian networks and the complexity of determining
whether a network exhibits the property of monotonicity have been studied in [5] and [6].
In [5] the problem of verifying monotonicity in a Bayesian network was shown to be of a
highly unfavourable computational complexity; more specifically, the problem was shown
to be co-NPPP-complete. Note that since we could use a method for restoring monotonicity
to verify monotonicity, we cannot expect to find a computationally favourable solution to
our problem.

In [6] the concept of lattices was used in a method to verify monotonicity in Bayesian
networks in time exponential in the number of observable variables. The assignment
lattice of the set of observable variables E captures all joint value assignments to E and
the partial ordering on those assignments; Figure 3.2.1 shows a graphical representation
of such an assignment lattice. Note that in the lattice two distinct value assignments
e, e′′ to E are only directly connected if there is no third distinct value assignment e′ ∈
Ω(E) such that e � e′ � e′′. Since it follows from Pr (C ≤ c | e′′ ) ≤ Pr (C ≤ c | e′ )
and Pr (C ≤ c | e′ ) ≤ Pr (C ≤ c | e) that Pr (C ≤ c | e′′ ) ≤ Pr (C ≤ c | e), we need only
resolve all violations for value assignments which are directly connected in the assignment
lattice. If two value assignments e, e′ to E are directly connected in the lattice, then they
have a different value in a single observable variable Ei only. The value assignment to the
other observable variables is the same in both e and e′ and is called the context, denoted
by e−; we use E− to denote the set E\{Ei}. We denote a violation of monotonicity

Pr
(
C ≤ c

∣∣ eki , e− ) < Pr
(

C ≤ c
∣∣∣ ek+1
i , e−

)
by viol

(
c, eki , e

−).
3.3 Our approach

Let B = (G ,P) be a Bayesian network as before. To limit the number of variables in
V (G) for which we must investigate whether there is a parameter p in its CPT which can
be varied to a value y ∈ [0, 1] such that monotonicity is restored, we begin by eliminating
all variables for which varying parameters cannot resolve any violations of monotonicity
in B and can, therefore, also not restore monotonicity. We will perform these eliminations
based on the graphical structure of G .
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Once we have thus restricted the set of variables, we continue with a method which
checks per parameter p from the CPT of a variable V whether varying it to some value
y ∈ [0, 1] can resolve all violations. Finally, to ensure that we don’t apply the method
needlessly, we apply the method to the variables in an order which may allow us to further
restrict the set of variables under study.
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Chapter 4

Eliminating variables based on
graphical structure

We begin by eliminating variables from a Bayesian network for which parameter variation
can never restore monotonicity based on the structure of the network. To this end we
will use a concept already used in sensitivity analysis of Bayesian networks, namely the
concept of sensitivity set. Furthermore, we will introduce the concept of resolution set.
Both concepts restrict the set of variables for which varying a parameter from the CPT
may restore monotonicity.

4.1 The sensitivity set

To illustrate how a sensitivity set can be used to restrict the set of variables for which
parameter variation may restore monotonicity, we begin with its definition.

Definition 4.1.1. Let G be the DAG of a Bayesian network with a variable of interest
C and a set of observable variables E. Now, let G∗ be the DAG constructed from G by
adding an auxiliary predecessor Xi to every vertex Vi ∈ V (G). The set of all vertices
Vi ∈ V (G) for which ¬〈{Xi}|E|{C}〉dG∗ is called the sensitivity set of C given E, denoted
Sen(C ,E).

In Definition 4.1.1 we have added an auxiliary predecessor Xi to every vertex Vi ∈ V (G).
This auxiliary vertex Xi may be considered a representation of the CPT of Vi.

Lemma 4.1.2. Let B = (G ,P) be a Bayesian network with a variable of interest C , a
set of observable variables E and a joint probability distribution Pr. For all Vi ∈ V (G), if
〈{Xi}|E|{C}〉dG∗ then Pr (c | e) � p (Vi |π(Vi)) for any c ∈ Ω(C ) and e ∈ Ω(E), where �
denotes algebraic independence.

The proof of Lemma 4.1.2 can be extracted from [3]. Intuitively, since G is an I-map of
Pr, we have that if 〈{Xi}|E|{C}〉dG∗ , then C is independent of Xi given E. The variable of
interest C thus is independent of the representation of the CPT of Vi given the observed
variables E, which means that the probability of any outcome C = c given observations
E = e is not influenced by the parameter values in the CPT of Vi, i.e. Pr (c | e) �
p (Vi |π(Vi)).

To relate the concept of sensitivity set to the problem of restoring monotonicity, we
now first show that varying an arbitrary parameter from the CPT of a variable which is
not in the sensitivity set cannot resolve any violation of monotonicity.

11



12 CHAPTER 4. ELIMINATING VARIABLES

Theorem 4.1.3. Let B = (G ,P) be a Bayesian network with C , E and Pr as before. Let
Vi /∈ Sen(C ,E) and let p be an arbitrary parameter from the CPT of Vi. Then, varying p
cannot resolve any violation of monotonicity.

Proof. Let p = p (vi |π). Since Vi /∈ Sen(C ,E), we have that 〈{Xi}|E|{C}〉dG∗ and hence
that Pr (c | e) � p (vi |π) for all c ∈ Ω(C ) and e ∈ Ω(E). Pr (c | e) thus is a constant in
terms of the parameter p (vi |π) for all c ∈ Ω(C ) and e ∈ Ω(E). Varying the parameter
thus cannot resolve any violation of monotonicity.

The reverse of Theorem 4.1.3 does not hold. As shown in the following example, varying a
parameter from the CPT of a variable in the sensitivity set can, but does not necessarily,
resolve a violation of monotonicity.

C E1

Figure 4.1.1: Directed acyclic graph used in Example 1.

Example 1. Let B be a Bayesian network with a DAG as depicted in Figure 4.1.1 with
a variable of interest C and a set of observable variables E = {E1}. Let Ω(E1) = {ē1, e1}
and Ω(C) = {c1, c2, c3}, and let the parameters from the CPTs of C and E1 be as follows:

p
(
c1
)

= 0.5 p
(
c2
)

= 0.3 p
(
c3
)

= 0.2

p
(
ē1 | c1

)
= 0.6 p

(
ē1 | c2

)
= 0.8 p

(
ē1 | c3

)
= 0.7

We have that

Pr
(
C ≤ c2 | ē1

)
=

0.54

0.68
≈ 0.79 and

Pr
(
C ≤ c2 | e1

)
= 0.8125,

which is a violation of monotonicity since ē1 � e1. Since E1 ∈ Sen(C ,E), varying one of
the parameters in the CPT of E1 may resolve the violation. If we vary p

(
ē1 | c1

)
to 0.7,

for example, then we have that

Pr
(
C ≤ c2 | ē1

) (
p
(
ē1 | c1

)
= y
)

=
0.5 · y + 0.24

0.5 · y + 0.38

⇓
Pr
(
C ≤ c2 | ē1

) (
p
(
ē1 | c1

)
= 0.7

)
=

0.59

0.73
≈ 0.81,

and

Pr
(
C ≤ c2 | e1

) (
p
(
ē1 | c1

)
= y
)

=
−0.5 · y + 0.56

−0.5 · y + 0.62

⇓
Pr
(
C ≤ c2 | e1

) (
p
(
ē1 | c1

)
= 0.7

)
=

0.21

0.27
≈ 0.78.

So, varying a parameter from the CPT of E1 ∈ Sen(C ,E) indeed resolves the mentioned
violation of monotonicity. Note that varying p

(
ē1 | c1

)
to 0.7 does not restore monotonic-

ity, since Pr
(
C ≤ c1 | ē1

) (
p
(
ē1 | c1

)
= 0.7

)
≤ Pr

(
C ≤ c1 | e1

) (
p
(
ē1 | c1

)
= 0.7

)
.

Varying parameters from the CPTs of variables which are not in the sensitivity set of
C given E thus cannot restore monotonicity, while varying parameters from the CPTs of
variables which are in Sen(C ,E) may do so.
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4.2 Restricting the Bayesian network

Using the concept of sensitivity set, we now restrict a Bayesian network to the part which
is relevant for restoring monotonicity by removing variables for which varying parameters
cannot restore monotonicity. To do so, we cannot simply remove all variables not in the
sensitivity set of its variable of interest given its set of observable variables, however.

Lemma 4.2.1. Let B = (G ,P) be a Bayesian network with a variable of interest C
and a set of observable variables E. Then, for all V ∈ Sen(C ,E) we have that π(V ) ⊆
Sen(C ,E) ∪E.

Proof. Suppose that V1 ∈ Sen(C ,E) and V2 ∈ π(V1), but V2 /∈ Sen(C ,E) ∪E. So, where
¬〈{X1}|E|{C}〉dG∗ , we suppose that 〈{X2}|E|{C}〉dG∗ or V2 /∈ E. From ¬〈{X1}|E|{C}〉dG∗
we have that there is an unblocked chain betweenX1 and C . Then, there is a chain between
X2 and C on which V2 has one incoming arc X2 → V2 and one outgoing arc V2 → V1. If
V2 /∈ E, then ¬〈{X2}|E|{C}〉dG∗ and so V2 ∈ Sen(C ,E). Thus if V1 ∈ Sen(C ,E), then for
all V2 ∈ π(V1) either V2 ∈ E or V2 ∈ Sen(C ,E).

From Lemma 4.2.1 we conclude that to restrict a network to the relevant part, we can
only remove all variables not in Sen(C ,E) ∪ E, since the variables in E\Sen(C ,E) may
still be needed to input observations. This leads to the following method.

Method 1 (Restricting a Bayesian network). Let B = (G ,P) be a Bayesian network
with a variable of interest C and a set of observable variables E. To restrict the Bayesian
network B, remove from G all vertices not in Sen(C ,E) ∪ E and their incident arcs.
The DAG of the restricted Bayesian network consists only of the connected component
containing C .

Every variable Vi removed by Method 1 is removed because Vi /∈ Sen(C ,E), and therefore,
by Theorem 4.1.3, varying parameters from the CPT of Vi cannot resolve any violations
of monotonicity. Note that after removal of all vertices not in Sen(C ,E) ∪ E, the only
variables not in the connected component of C are observable variables. If an observ-
able variable Ei is removed by Method 1, because it is not in the connected component
containing C , then there is no violation viol

(
c, eki , e

−), for c ∈ Ω(C ), eki ∈ Ω(Ei) and
e− ∈ Ω(E−). Since Ei /∈ Sen(C ,E), we have that Pr (c | e) � p (Ei |π(Ei)) for all
c ∈ Ω(C ) and e ∈ Ω(E) and therefore Pr (c | e) is constant in terms of p (Ei |π(Ei)).

We will use the restricted Bayesian network in the remainder of this thesis.

4.3 The resolution set

The other set, which serves to restrict the set of variables for which varying a parameter
may restore monotonicity, is the resolution set and is defined as follows.

Definition 4.3.1. Let G be the DAG of a Bayesian network with a variable of interest C
and a set of observable variables E. Let G− be the DAG constructed from G by removing
all outgoing arcs from the variables E\{Ei} and C. The resolution set of Ei, denoted REi,
is the set of vertices of the connected component in G− containing Ei.
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The following lemma relates the resolution set to resolving a violation of monotonicity.

Lemma 4.3.2. Let B = (G ,P) be a Bayesian network with a binary variable of interest C
and a set of observable variables E. Now, let viol

(
c̄, eki , e

−) be a violation of monotinicity
for some observable variable Ei ∈ E, and let REi be the resolution set of Ei. Then, varying
a parameter from the CPT of a variable V /∈ V (G)\REi cannot resolve the violation.

Proof. Let G− be the DAG constructed from G as in Definition 4.3.1. Let S0, . . . , Sj
be the connected components of G−, which do not contain Ei. We now show that the

inequality of the violation, Pr
(
C = c̄

∣∣ eki , e− ) < Pr
(

C = c̄
∣∣∣ ek+1
i , e−

)
, can be expressed

in terms of parameters from the CPTs of variables in REi only.
We have

Pr
(
C = c̄, eki , e

−
)

=
n∏
j=1

 ∑
Ω(V (Sj))

∏
V ∈V (Sj)

p (V |π(V ))

∣∣∣∣∣∣E−=e−

C = c̄

 ·
 ∑

Ω(REi
)

∏
V ∈REi

p (V |π(V ))

∣∣∣∣∣∣E−=e−

Ei =eki
C = c̄


Pr
(
eki , e

−
)

=
∑

c′∈Ω(C)

 n∏
j=1

 ∑
Ω(V (Sj))

∏
V ∈V (Sj)

p (V |π(V ))

∣∣∣∣∣∣E−=e−

C =c′

 ·
 ∑

Ω(REi
)

∏
V ∈REi

p (V |π(V ))

∣∣∣∣∣∣E−=e−

Ei =eki
C =c′




and similarly Pr
(
C = c̄, ek+1

i , e−
)

and Pr
(
ek+1
i , e−

)
.

To simplify notations we use the following functions

f(x) =
n∏
j=1

 ∑
Ω(V (Sj))

∏
V ∈V (Sj)

p (V |π(V ))

∣∣∣∣∣∣E−=e−

C =x


g(x) =

∑
Ω(REi

)

∏
V ∈REi

p (V |π(V ))

∣∣∣∣∣∣E−=e−

Ei =eki
C =x

h(x) =
∑

Ω(REi
)

∏
V ∈REi

p (V |π(V ))

∣∣∣∣∣∣E−=e−

Ei =ek+1
i

C =x

Note that f(x) contains parameters from the CPTs of variables not in REi only, while
g(x) and h(x) contain the parameters from the CPTs of the variables in REi .

Furthermore we know that

Pr
(
C = c̄

∣∣∣ eki , e−) < Pr
(
C = c̄

∣∣∣ ek+1
i , e−

)
m

Pr
(
C = c̄, eki , e

−
)
· Pr

(
ek+1
i , e−

)
< Pr

(
C = c̄, ek+1

i , e−
)
· Pr

(
eki , e

−
)
.
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Since

Pr
(
C = c̄, eki , e

−
)
· Pr

(
ek+1
i , e−

)
= f(c̄) · g(c̄) · (f(c̄) · h(c̄) + f(c) · h(c))

= f(c̄) · f(c̄) · g(c̄) · h(c̄) + f(c̄) · f(c) · g(c̄) · h(c)

and

Pr
(
C = c̄, ek+1

i , e−
)
· Pr

(
eki , e

−
)

= f(c̄) · h(c̄) · (f(c̄) · g(c̄) + f(c) · g(c))

= f(c̄) · f(c̄) · h(c̄) · g(c̄) + f(c̄) · f(c) · h(c̄) · g(c),

it follows that

Pr
(
C = c̄, eki , e

−
)
· Pr

(
ek+1
i , e−

)
< Pr

(
C = c̄, ek+1

i , e−
)
· Pr

(
eki , e

−
)

m
g(c̄) · h(c) < h(c̄) · g(c).

Since this inequality does not contain any terms involving f(x), varying parameters from
the CPTs of variables not in the resolution set of Ei cannot resolve the violation of mono-
tonicity

Lemma 4.3.2 is restricted to Bayesian networks with |Ω(C )| = 2 only. The following
example demonstrates the necessity of this restriction.

Example 2. Suppose that Ω(C ) = {c1, c2, c3} and that we have a violation of monotonicity
viol

(
c1, e

k
i , e
−). Using the same functions as in the proof of Lemma 4.3.2, we have

Pr
(
C = c1, eki , e

−
)
· Pr

(
ek+1
i , e−

)
= f(c1) · g(c1) ·

(
f(c1) · h(c1) + f(c2) · h(c2) + f(c3) · h(c3)

)
and

Pr
(
C = c1, ek+1

i , e−
)
· Pr

(
eki , e

−
)

= f(c1) · h(c1) ·
(
f(c1) · g(c1) + f(c2) · g(c2) + f(c3) · g(c3)

)
.

It follows that

Pr
(
C = c1

∣∣∣ eki , e−) < Pr
(
C = c1

∣∣∣ ek+1
i , e−

)
m

g(c1) ·
(
f(c2) · h(c2) + f(c3) · h(c3)

)
< h(c1)

(
f(c2) · g(c2) + f(c3) · g(c3)

)
.

Since this inequality contains f(x), varying parameters from the CPTs of variables not in
the resolution set of Ei may resolve the violation of monotonicity.

Since we are only varying a single parameter from a single CPT at a time, the set
of variables for which varying a parameter may restore monotonicity is restricted by the
resolution sets of all Ei ∈ E for which there are violations of monotonicity.
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Theorem 4.3.3. Let B be a Bayesian network with a binary variable of interest C and
a set of observable variables E. Now, let EV be the set of observable variables for which
there are violations of monotonicity. Then, only varying a parameter from the CPT of a
variable in

R =
⋂

E∈EV

RE

may restore monotonicity.

Proof. Suppose that there exists a variable V /∈ R such that varying a parameter for V
restores monotonicity. Since V /∈ R, there is an Ei ∈ EV such that V /∈ REi . By Lemma
4.3.2 we have, however, that varying a single parameter from the CPT of V cannot resolve
any violation of monotonicity viol

(
c, eki , e

−) with eki ∈ Ω(Ei). Varying a parameter for V
thus cannot restore monotonicity.

Observe that R can easily be obtained by removing the outgoing arcs from all ob-
servable variable E and the variable of interest C . Note that Theorem 4.3.3 applies to
Bayesian networks with a binary variable of interest only. Such Bayesian networks are
fairly common.

4.4 Example

V1 V2 E1

C

V3 V4 E2

V6

V5

Figure 4.4.2: DAG of the unrestricted Bayesian network of the example.

Let B = (G ,P) be a Bayesian network with its DAG G as depicted in Figure 4.4.2. Let
C be its variable of interest and let E = {E1, E2} be its set of observable variables. Using
Method 1 we restrict this Bayesian network by removing all vertices not in Sen(C ,E)∪E
and their incident arcs. Since Sen(C ,E) = {C, V1, V2, V4, E2}, this means we remove V3, V5

and V6 and their incident arcs from G . The resulting DAG is depicted in Figure 4.4.3.
Since E1 is not in Sen(C ,E), we know that we cannot restore monotonicity by varying

a parameter from its CPT. If C is a binary variable, then by Theorem 4.3.3 we have
that only varying a parameter from the CPT of V4 or E2 may restore monotonicity, since
RE2 = {V4, E2}.

V1 V2 E1

C

V4 E2

Figure 4.4.3: DAG of the restricted Bayesian network of the example.



Chapter 5

The intersection-of-intervals
approach

In the previous chapter we introduced two concepts which serve to restrict the set of vari-
ables for which varying a parameter may restore monotonicity. For each of the remaining
variables we must still determine whether varying a parameter from its CPT can actually
restore monotonicity. To this end we introduce a method which determines whether vary-
ing a specific parameter from a variable’s CPT can resolve all violations of monotonicity
with respect to two given assignments for the observable variables. Using this method we
can then determine whether monotonicity can be restored.

5.1 The method

We consider a restricted Bayesian network B = (G ,P) with a variable of interest C and a
set of observable variables E. Suppose there is a violation of monotonicity viol

(
cj , eki , e

−)
in B . To resolve this violation by varying a single parameter, we must vary a parameter
p (u |π) from the CPT of a variable U ∈ V (G) to a value x ∈ [0, 1] such that

Pr
(

C ≤ cj
∣∣∣ eki , e−) (p (u |π) = x

)
≥ Pr

(
C ≤ cj

∣∣∣ ek+1
i , e−

) (
p (u |π) = x

)
. (5.1)

Note that doing so may cause a new violation viol
(
c, eki , e

−) for some c ∈ Ω(C )\{cj}.
Varying p (u |π) can only resolve all violations of monotonicity viol

(
c, eki , e

−), c ∈ Ω(C ),
if there is a value x ∈ [0, 1] for p (u |π) such that

Pr
(

C ≤ c
∣∣∣ eki , e−) (p (u |π) = x

)
≥ Pr

(
C ≤ c

∣∣∣ ek+1
i , e−

) (
p (u |π) = x

)
for all c ∈ Ω(C ). These observations give rise to the following method, called the
intersection-of-intervals approach. This method determines whether varying a parame-
ter p (u |π) from the CPT of a variable U can resolve all violations of monotonicity with
respect to the two assignments (eki , e

−), (ek+1
i , e−) ∈ Ω(Ei)× Ω(E−).

Method 2 (Intersection-of-intervals approach). Let I = [0, 1] and l = 1. Repeat the
following steps while l < |Ω(C )| and I 6= ∅:

1. Compute Il, which is the set of all intervals of values x for p (u |π) for which

0 ≤
l∑

j=1

(
Pr
(
cj
∣∣∣ eki , e−) (p (u |π) = x

)
− Pr

(
cj
∣∣∣ ek+1
i , e−

) (
p (u |π) = x

))
.

17
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2. Compute I = I ∩ Il and l = l + 1.

The result I of Method 2 is a set of intervals of values for p (u |π) for which there is no
violation viol

(
c, eki , e

−) for any c ∈ Ω(C ). Note that for j = |Ω(C )| equation (5.1) is
always an equality, since the probabilities on both sides equal 1.

Lemma 5.1.1. Let B = (G ,P) be a Bayesian network with a variable of interest C and a
set of observable variables E. Let I be the result of the intersection-of-intervals approach
when applied to eki , e

k+1
i ∈ Ω(Ei) and e− ∈ Ω(E−). Then, I 6= ∅ if and only if varying

p (u |π) can resolve all violations of monotonicity with respect to the value assignments
(eki , e

−), (ek+1
i , e−) ∈ Ω(Ei)× Ω(E−).

Proof. Since Pr
(
C ≤ cl | ei, e−

)
(p (u |π) = x) =

∑l
j=1 Pr

(
cj | ei, e−

)
(p (u |π) = x) for

all ei ∈ Ω(Ei) for all (ei, e
−) ∈ Ω(Ei) × Ω(E−), the result Il contains the values x for

which inequality (5.1) holds.

At initialization, I equals the probability interval [0, 1] containing all possible values x
for p (u |π). Suppose that after l − 1 iterations of steps 1 and 2 of Method 2, I contains
all values x for which inequality (5.1) holds for all cj ∈ {c1, . . . , cl−1}. Since Il contains all
values x for which inequality (5.1) holds for cj = cl and I contains all values x for which
inequality (5.1) holds for all cj ∈ {c1, . . . , cl−1}, the intersection of I and Il contains only
values x for which inequality (5.1) holds for all cj ∈ {c1, . . . , cl}.

If I 6= ∅, then inequality (5.1) holds for all cj ∈ Ω(C) for all values x ∈ I, which
means that varying p (u |π) can resolve all violations of monotonicity with respect to
the value assignments (eki , e

−), (ek+1
i , e−) ∈ Ω(Ei) × Ω(E−). If I = ∅, then there is

no value x such that inequality (5.1) holds for all cj ∈ Ω(C ), which means that varying
p (u |π) cannot resolve all violations of monotonicity with respect to the value assignments
(eki , e

−), (ek+1
i , e−) ∈ Ω(Ei)× Ω(E−).

5.2 Computation and complexity

We study the computations involved and the complexity of the two steps of the intersection-
of-intervals approach separately. We recall that the first step of Method 2 requires the
computation of intervals, while the second step requires the computation of intersections
of intervals.

5.2.1 Computing the intervals

To compute the set of intervals Il we compute the real values x for which

l∑
j=1

(
Pr
(
cj
∣∣∣ eki , e−) (p (u |π) = x

)
− Pr

(
cj
∣∣∣ ek+1
i , e−

) (
p (u |π) = x

))
= 0, (5.2)

since these are endpoints of the intervals in Il. As proposed in Proposition 2.2.6, we have
that

Pr
(
cj
∣∣ eki , e− ) (p (u |π) = x

)
=

αjx+ βj
γx+ δ

and

Pr
(
cj
∣∣∣ ek+1
i , e−

) (
p (u |π) = x

)
=

α′jx+ β′j
γ′x+ δ′

,

(5.3)
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where αj , α
′
j , βj , β

′
j , γ, γ

′, δ and δ′ are constants, which can be computed with the algorithm
from [7]. Using this notation, we rewrite equality (5.2) to∑l

j=1(αjx+ βj)

γx+ δ
−
∑l

j=1(α′jx+ β′j)

γ′x+ δ′
= 0.

This equality only holds if

l∑
j=1

(αjx+ βj)(γ
′x+ δ′)−

l∑
j=1

(α′jx+ β′j)(γx+ δ) = 0. (5.4)

Computing the intervals in Il thus consists of solving a quadratic equation and determining
on which side of the real solutions inequality (5.1) holds; this can be done in constant time
using the quadratic formula. However to obtain the quadratic equation we must compute
the constants αj , α

′
j , βj and β′j , for j = 1, . . . , l, as well as the constants γ, γ′, δ and δ′.

An algorithm to compute these constants is given in [7]. The complexity of step 1 of the
intersection-of-intervals approach is therefore bound by the complexity of that algorithm.
Note that for each iteration of the intersection-of-intervals approach we need only compute

the set of constants for Pr
(
cl
∣∣ eki , e− ) (p (u |π) = x

)
and Pr

(
cl
∣∣∣ ek+1
i , e−

) (
p (u |π) = x

)
;

all other constants were already computed in the previous iterations. Since the quadratic
equation (5.4) can have two solutions within the interval [0, 1], Il consists of up to two
intervals.

5.2.2 Computing the intersection of intervals

In general, computing the intersection of two intervals is simple. It can be done in constant
time by comparing the endpoints of the two intervals and taking the correct ones as
endpoints for the resulting interval, which may be the empty set. As argued above,
however, the quadratic equation (5.4) may have two real solutions in the interval [0, 1].
In step 2 of the intersection-of-intervals approach, therefore the set of intervals Il may
consist of two intervals in which inequality (5.1) holds. I itself may already consist of
up to l intervals, since each iteration can only increase the number of intervals in I by
1, as is illustrated in Figure 5.2.1. Therefore, taking the intersection of I and Il consists
of comparing the endpoints of each of the intervals in I with the endpoints of each of
the intervals in Il, which amounts to computing at most 2l intersections of two intervals
in each iteration of the intersection-of-intervals approach. Since l is incremented by 1 in
each iteration, the whole method requires taking at most m(m + 1) intersections, where
m is the number of possible values for the variable of interest. Thus, in the worst case the
complexity of step 2 of the intersection-of-intervals approach is quadratic in |Ω(C )|.

There are cases, however, in which the set of intervals Il consists of at most one interval,
namely if the coefficient of the quadratic term in equation (5.4) equals 0. Note that the
coefficient of the quadratic term is

l∑
j=1

αjγ
′ −

l∑
j=1

α′jγ,

which is equal to 0 in the following five cases:

1. γ and γ′ are both equal to 0;
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I

I1

I = I ∩ I1

I2

I = I ∩ I2

I3

I = I ∩ I3

Figure 5.2.1: Example of intersections of intervals.

2. αj and α′j are both equal to 0 for all j = 1, . . . , l;

3. there is an m ∈ {1, . . . , l} such that αm = γ and αj = 0 for all j 6= m, and there is
an m′ ∈ {1, . . . , l} such that α′m′ = γ′ and α′j = 0 for all j 6= m′;

4. for every m there is a distinct m′ such that αmγ
′ = α′m′γ;

5.
∑l

j=1 αjγ
′ =

∑l
j=1 α

′
jγ by coincidence, due to the values in the CPTs.

The fifth case overlaps with the first four cases, since the values in the CPTs can be such
that these situations occur. However, there are also graphical condtions under which the
first four cases occur. We will examine these conditions in the following lemmas, where
we assume that we have a restricted Bayesian network B with a variable of interest C and
a set of observable variables E. Furthermore, we assume that we are varying a parameter
p (u |π) from the CPT of a variable U .

The first lemma applies to case 1.

Lemma 5.2.1. If σ∗(U) ∩E = ∅, then γ = γ′ = 0.

Proof. From equations (5.3) we have that Pr (ei, e
−) is linear in the parameter p (u |π) for

every (ei, e
−) ∈ Ω(Ei)×Ω(E−). We now observe that, if σ∗(U)∩E = ∅, then σ∗(XU )∩E =

∅, where XU is the auxiliary predecessor of U in G∗. It follows that 〈{XU}| ∅ |E〉dG∗ , which,
by Lemma 4.1.2, means that Pr (ei, e

−) � p (u |π) for all (ei, e
−) ∈ Ω(Ei)×Ω(E−). Thus

if σ∗(U) ∩ E = ∅, then Pr
(
eki , e

−) � p (u |π) and Pr
(
ek+1
i , e−

)
� p (u |π). We conclude

that γ and γ′ are equal to 0.

There are no graphical conditions under which the second case occurs in the restricted
Bayesian network. The graphical condition under which αj and α′j are both equal to 0 is
σ∗(U) ∩ E ∩ {C} = ∅. We then have that σ∗(XU ) ∩ E ∩ {C} = ∅ in G∗, which means
that 〈{XU}| ∅ |E ∪ {C}〉dG∗ . By Lemma 4.1.2, that means that Pr

(
cj , ei, e

−) � p (u |π)
for all (ei, e

−) ∈ Ω(Ei) × Ω(E−) and, therefore, that αj and α′j are both equal to 0.

However, by Definition 4.1.1, 〈{XU}| ∅ |E∪{C}〉dG∗ also means that U /∈ Sen(C ,E). Thus
σ∗(U) ∩E ∩ {C} 6= ∅ for all variables U in the restricted network.

The following lemma pertains to the third case.

Lemma 5.2.2. If C ∈ π(U), then there is an m ∈ {1, . . . , l} such that αm = γ and αj = 0
for all j 6= m, and there is an m′ ∈ {1, . . . , l} such that α′m′ = γ′ and α′j = 0 for all j 6= m′.
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Proof. The constants αj and γ are defined in [3]. We have adapted them to non-binary
variables as follows.

αj =
∑

Ω(V (G))

∏
V ∈V (G)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣
E−=e−

Ei =eki
C =cj

π(U)=π
U=u

−

∑
Ω(V (G))
U 6=u

p (U |π)

1− p (u |π)

∏
V ∈V (G)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣
E−=e−

Ei =eki
C =cj

π(U)=π

(5.5)

γ =
∑

Ω(V (G))

∏
V ∈V (G)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E
−=e−

Ei =eki
π(U)=π
U=u

−

∑
Ω(V (G))
U 6=u

p (U |π)

1− p (u |π)

∏
V ∈V (G)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E−=e−

Ei =eki
π(U)=π

(5.6)

The constants α′j and γ′ are defined similarly. Now, suppose that C ∈ π(U). If cj is the

value assigned to C in π, then αj = γ. If cj is not the value assigned to C in π, then the
conditions C = cj and π(U) = π contradict each other, and therefore αj = 0. The same
arguments hold for α′j and γ′. Since C has a single specific value cj ∈ Ω(C ) assigned to it
in π, there is an m ∈ {1, . . . , l} such that αm = γ and αj = 0 for all j 6= m, and there is an
m′ ∈ {1, . . . , l} such that α′m′ = γ′ and α′j = 0 for all j 6= m′. Moreover, m = m′ = j.

In the last lemma we study the conditions under which the fourth case occurs.

Lemma 5.2.3. Let B = (G ,P) be a Bayesian network with a variable of interest C and
a set of observable variables E, and let U be the variable in the CPT of which we are
varying. Let G ′ be the DAG constructed from G by removing all outgoing arcs from the
variables E\{Ei} and π(U). Let SC be the connected component in G ′ containing C , and
let SEi be the connected component in G ′ containing Ei. If SC 6= SEi, then for every m
there is a distinct m′ ∈ {1, . . . , l} such that αmγ

′ = α′m′γ.

Proof. Let S1, . . . , Sq be the connected components in G ′, which do not contain Ei or
C. We assume that SC 6= SEi . We can compute αj , α

′
j , γ and γ′ from G using the sets

of variables V (S1), . . . , V (Sq). Note that ∪qn=1V (Sn) = V (G). We can rewrite αj from
equation (5.5) and γ from equation (5.6) as follows, where

δ(Sx, U) =


1 if U /∈ V (Sx),

1 if U = u,

− p(U |π)
1−p(u |π) otherwise.



22 CHAPTER 5. THE INTERSECTION-OF-INTERVALS APPROACH

αj =

q∏
n=1

∑
Ω(V (Sn))

δ(Sn, U)
∏

V ∈V (Sn)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E−=e−

π(U)=π

·

∑
Ω(V (SC ))

δ(SC , U)
∏

V ∈V (SC )
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E−=e−

π(U)=π
C = cj

·

∑
Ω(V (SEi

))

δ(SEi , U)
∏

V ∈V (SEi
)

V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣∣E−=e−

π(U)=π
Ei = eki

(5.7)

γ =

q∏
n=1

∑
Ω(V (Sn))

δ(Sn, U)
∏

V ∈V (Sn)
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E−=e−

π(U)=π

·

∑
Ω(V (SC ))

δ(SC , U)
∏

V ∈V (SC )
V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣E−=e−

π(U)=π

·

∑
Ω(V (SEi

))

δ(SEi , U)
∏

V ∈V (SEi
)

V 6=U

p (V |π(V ))

∣∣∣∣∣∣∣∣∣E−=e−

π(U)=π
Ei = eki

(5.8)

The constants α′j and γ′ are defined similarly.
Observe that αj and γ only differ in the terms regarding SC . The same also holds

for α′j and γ′. Furthermore, αj and α′j only differ in the terms regarding SEi , and the
same holds for γ and γ′. Therefore αjγ

′ contains exactly the same terms as α′jγ, but in
a different order. Thus if SC 6= SEi , then for every m there is a distinct m′ such that
αmγ

′ = α′m′γ, namely m′ = m.

The following theorem combines Lemmas 5.2.1, 5.2.2 and 5.2.3 to describe graphical
conditions under which a set of intervals Ii from Method 2 will consist of a single interval
if any.

Theorem 5.2.4. Let B = (G ,P) be a Bayesian network with a variable of interest C
and a set of observable variables E, and let U be the variable in the CPT of which we are
varying. For all j ∈ {1, . . . , |Ω(C )|}, the set of intervals Ij in Method 2 consist of at most
one interval if one of the following conditions holds:

• σ∗(U) ∩E = ∅;

• C ∈ π(U);
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• SC 6= SEi, where SC and SEi are as defined in Lemma 5.2.3.

Proof. By Lemmas 5.2.1, 5.2.2 and 5.2.3 the conditions described in the theorem are
conditions under which the coefficient of the quadratic term in the quadratic equation
(5.4) equals 0. If the coefficient of the quadratic term equals 0, then Il consists of at most
one interval.

Note that if the conditions in Theorem 5.2.4 hold, then in each iteration of the
intersection-of-intervals approach step 2 takes constant time. Thus for variables for which
the conditions in Theorem 5.2.4 holds, the complexity of step 2 of the intersection-of-
intervals approach is linear in |Ω(C )|.

5.3 Using the intersection-of-intervals approach to restore
monotonicity

To determine whether monotonicity can be restored by varying a single parameter, we must
find a parameter p (u |π) for which there is a value x such that x ∈ I by the intersection-of-
intervals approach for all combinations of value assignments (eki , e

−), (ek+1
i , e−) ∈ Ω(Ei)×

Ω(E−) for all Ei ∈ E. The number of parameters in the restricted Bayesian network
B = (G ,P) is exponential in |V (G)|. The number of combinations (eki , e

−), (ek+1
i , e−)

in Ω(E) is
∑

Ei∈E(|Ω(Ei)| − 1)|Ω(E\{Ei})|, which is O(|E| · |Ω(E)|). Since |Ω(E)| is
exponential in |E| and |E| < |V (G)|, we have that worst case the intersection-of-intervals
approach must be applied an exponential number of times in |V (G)|. In practice, however,
we need only continue applying the intersection-of-intervals approach for a parameter so
long as the resulting intervals overlap.

In general, if monotonicity cannot be restored by varying a single parameter, then it
may still be possible to do so by varying multiple parameters. One possibility is varying
a sequence of parameters until monotonicity is restored. We might, for instance, vary
the parameter which resolves the most violations of monotonicity and then try to re-
store monotonicity in the Bayesian network with the new value for that parameter. This
method, however, doesn’t necessarily result in the optimal sequence of parameters to vary.
Another possibility is varying multiple parameters at the same time. These possibilities
are, however, beyond the scope of this thesis.

5.4 Example

To illustrate using the intersection of intervals approach we use the same Bayesian network
as in Example 1. This Bayesian network B = (G ,P) has a DAG as depicted in Figure
5.4.2, a variable of interest C and a set of observable variables E = {E1}.

C E1

Figure 5.4.2: Directed acyclic graph used in Example 1.

Again we let Ω(E1) = {ē1, e1} and Ω(C) = {c1, c2, c3}, and let the parameters from
the CPTs of C and E1 be as follows:

p
(
c1
)

= 0.5 p
(
c2
)

= 0.3 p
(
c3
)

= 0.2

p
(
ē1 | c1

)
= 0.6 p

(
ē1 | c2

)
= 0.8 p

(
ē1 | c3

)
= 0.7
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We first use the intersection-of-intervals approach to investigate if varying parameter
p
(
ē1 | c1

)
can restore monotonicity. We begin with I = [0, 1], and we have that

Pr
(
C ≤ c1 | ē1

) (
p
(
ē1 | c1

)
= x

)
=

0.5x

0.5x+ 0.38

and

Pr
(
C ≤ c1 | e1

) (
p
(
ē1 | c1

)
= x

)
=
−0.5x+ 0.5

−0.5x+ 0.62
.

It follows that

0 ≤
1∑
j=1

(
Pr
(
cj | ē1

) (
p
(
ē1 | c1

)
= x

)
− Pr

(
cj | e1

) (
p
(
ē1 | c1

)
= x

))

only for x /∈ [0, 1]. Thus after the first iteration I = ∅, which means that varying parameter
p
(
ē1 | c1

)
cannot restore monotonicity.

Next we use the intersection-of-intervals approach to investigate if varying parameter
p
(
ē1 | c2

)
can restore monotonicity. We again begin with I = [0, 1], and we have that

Pr
(
C ≤ c1 | ē1

) (
p
(
ē1 | c2

)
= x

)
=

0.3

0.3x+ 0.44

and

Pr
(
C ≤ c1 | e1

) (
p
(
ē1 | c2

)
= x

)
=

0.2

−0.3x+ 0.56
.

It follows that

0 ≤
1∑
j=1

(
Pr
(
cj | ē1

) (
p
(
ē1 | c2

)
= x

)
− Pr

(
cj | e1

) (
p
(
ē1 | c2

)
= x

))

for all x ∈ [0, 1]. Thus I1 = [0, 1] and after the first iteration I is still [0, 1]. For the
following iteration we have that

Pr
(
C ≤ c2 | ē1

) (
p
(
ē1 | c2

)
= x

)
=

0.3x+ 0.3

0.3x+ 0.44

and

Pr
(
C ≤ c2 | e1

) (
p
(
ē1 | c2

)
= x

)
=
−0.3x+ 0.5

−0.3x+ 0.56
.

It follows that

0 ≤
2∑
j=1

(
Pr
(
cj | ē1

) (
p
(
ē1 | c2

)
= x

)
− Pr

(
cj | e1

) (
p
(
ē1 | c2

)
= x

))

for all x ∈
[

13
15 , 1

]
. Thus I2 =

[
13
15 , 1

]
and after the second, and final, iteration I is[

13
15 , 1

]
. Since ē1, e1 is the only combination of value assignments in E, we have used the

intersection-of-intervals approach on all combinations of value assignments. Thus varying
parameter p

(
ē1 | c2

)
to a value x ∈

[
13
15 , 1

]
will restore monotonicity.



Chapter 6

Application of the
intersection-of-intervals approach

There are cases in which we need not apply the intersection-of-intervals approach to any
parameter from the CPT of a variable W since we already know that parameter variation
cannot resolve a violation of monotonicity based upon investigation of some other variable
U cannot resolve that violation of monotonicity. By identifying these cases we can ensure
that the intersection-of-intervals approach is not applied needlessly. In this chapter we
investigate these cases, culminating in a general case. For each case we will show that if
we cannot resolve a violation of monotonicity by varying any parameter from the CPT of
some variable U , then we also cannot resolve it by varying any parameter from the CPT
of a specific variable W .

6.1 A simple case

To illustrate the above considerations, we begin with a simple case, which will also allow
us to make some assumptions for the general case.

We consider an arbitrary (restricted) Bayesian network B = (G ,P) in which there are
two vertices U,W ∈ V (G) such that W has no predecessors, U is its only successor, and
W is the only predecessor of U ; a graphical representation of such a Bayesian network is
depicted in Figure 6.1.1. We assume that neither U nor W equals the variable of interest
C or contains any observation, that is, we assume that {U,W} ∩ ({C} ∪E) = ∅.

. . .

W

U

Figure 6.1.1: An arbitrary restricted Bayesian network in which there are two vertices U,W
such that W has no predecessors, U is its only successor, and W is the only predecessor of U .

25



26 CHAPTER 6. APPLICATION OF THE IOI APPROACH

Now suppose that there is a violation of monotonicity viol
(
c′, eki , e

−) in this Bayesian
network. Thus we have that

Pr
(

C ≤ c′
∣∣∣ eki , e−) < Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

)
,

which can also be written as

∑
c∈Ω(C)
c≤c′

Pr
(
c, eki , e

−)
Pr
(
eki , e

−) <
∑

c∈Ω(C)
c≤c′

Pr
(
c, ek+1

i , e−
)

Pr
(
ek+1
i , e−

) .

For the Bayesian network B we have for all c ∈ Ω(C ) and e ∈ Ω(E) that

Pr (c, e) =
∑

Ω(V (G))

∏
V ∈V (G)

p (V |π(V ))

∣∣∣∣∣∣C = c
E = e

=
∑
Ω(U)

Pr (U) ·
∑

Ω(V (G)\{U})

∏
V ∈V (G)
V 6=U,V 6=W

p (V |π(V ))

∣∣∣∣∣∣∣∣C = c
E = e

 and

Pr (e) =
∑

Ω(V (G))

∏
V ∈V (G)

p (V |π(V ))

∣∣∣∣∣∣
E = e

=
∑
Ω(U)

Pr (U) ·
∑

Ω(V (G))\{U}

∏
V ∈V (G)
V 6=U,V 6=W

p (V |π(V ))

∣∣∣∣∣∣∣∣
E = e

 ,

where

Pr (U) =
∑

Ω(W )

p (U |W ) p (W ) .

We observe that varying a parameter from the CPTs of U and W can affect the probabil-

ities Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

)
only through Pr (u) and Pr (ū).

Theorem 6.1.1. Let B be as before and let U,W be binary variables and as despicted in
Figure 6.1.1. Let viol

(
c′, eki , e

−) be a violation of monotonicity. If viol
(
c′, eki , e

−) cannot
be resolved by varying a parameter from the CPT of U , then it can also not be resolved by
varying a parameter from the CPT of W .

Proof. Suppose that the violation of monotonicity cannot be resolved by varying a pa-
rameter from the CPT of U . Then, varying a parameter from the CPT of W can re-
solve the violation of monotonicity only if there are values for Pr

(
C ≤ c′

∣∣ eki , e− ) and

Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
which can be obtained by varying a parameter from the CPT of

W , but cannot be obtained by varying a parameter from the CPT of U . To prove the
property stated in the theorem, we now show that all values for Pr

(
C ≤ c′

∣∣ eki , e− ) and

Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
that can be obtained by varying any parameter p (w′′), w′′ ∈ Ω(W ),

can also be obtained by varying a parameter p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ).
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Since the parameters from the CPTs of U and W can only affect the probabilities

Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
through Pr (u) and Pr (ū), it is sufficient

to show that for every value p (w′′) = x, w′′ ∈ Ω(W ), there is a p (u′ |w′), u′ ∈ Ω(U),
w′ ∈ Ω(W ), and a value y such that

Pr (u)
(
p
(
w′′
)

= x
)

= Pr (u)
(
p
(
u′ |w′

)
= y
)
. (6.1)

Note that since the variable U is binary, we then also have that

Pr (ū)
(
p
(
w′′
)

= x
)

= Pr (ū)
(
p
(
u′ |w′

)
= y
)
.

To find such a value y for every value p (w′′) = x, we investigate for all p (u′ |w′), u′ ∈ Ω(U),
w′ ∈ Ω(W ), the interval of values for x for which there is a value y such that equality (6.1)
holds. Observe that our theorem only holds if the union of these intervals is [0, 1].

We will begin by determining for which values p (w) = x the parameter p (u |w) can
be varied to a value y such that

Pr (u)
(
p (w) = x

)
= Pr (u)

(
p (u |w) = y

)
. (6.2)

Using equality (6.2) we can express x in terms of y from

y · p (w) + p (u | w̄) p (w̄) = p (u |w) · x+ p (u | w̄) (1− x).

It follows that

x =
(y − p (u | w̄))p (w)

p (u |w)− p (u | w̄)
,

unless p (u |w)− p (u | w̄) = 0. In that case equality (6.2) holds for all x ∈ [0, 1] by taking
the original value of p (u |w) for y.

By varying y in the interval [0, 1] we obtain the interval of values for x for which there
is a y such that equality (6.2) holds. We find that x lies between the minimum and the

maximum of −p(u | w̄)p(w)
p(u |w)−p(u | w̄) and p(ū | w̄)p(w)

p(u |w)−p(u | w̄) . Since

min

( −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
,

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

)
< 0

and x is a probability, we have that the parameter p (u |w) can be varied to a value y such
that equality (6.2) holds, for all values x with

x ∈
[
0,min

(
1,max

( −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
,

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

))]
. (6.3)

Next we determine for which values p (w) = x the parameter p (u | w̄) can be varied to
a value y such that

Pr (u)
(
p (w) = x

)
= Pr (u)

(
p (u | w̄) = y

)
. (6.4)

Using equality (6.4) we can again express x in terms of y from

p (u |w) p (w) + y · p (w̄) = p (u |w) · x+ p (u | w̄) (1− x).

It follows that

x =
p (u |w) p (w) + y · p (w̄)− p (u | w̄)

p (u |w)− p (u | w̄)
= 1 +

(y − p (u |w))p (w̄)

p (u |w)− p (u | w̄)
,
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unless p (u |w)− p (u | w̄) = 0. In that case equality (6.4) holds for all x ∈ [0, 1] by taking
the original value of p (u | w̄) for y.

By varying y in the interval [0, 1] we obtain the interval of values for x for which there
is a y such that equality (6.4) holds. We have that x must lie between the minimum and

the maximum of 1− p(u |w)p(w̄)
p(u |w)−p(u | w̄) and 1 + p(ū |w)p(w̄)

p(u |w)−p(u | w̄) . Since

max

(
1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
, 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)

)
> 1

and x is a probability, we have that the parameter p (u | w̄) can be varied to values y such
that equality (6.4) holds, for all values x such that

x ∈
[
max

(
0,min

(
1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
, 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)

))
, 1

]
. (6.5)

We now have two intervals, namely (6.3) and (6.5), for which we have to show that the
union is [0, 1]. The endpoints of these intervals depend on the sign of p (u |w)− p (u | w̄).
We distinguish between these cases.

If p (u |w)− p (u | w̄) > 0 then

max

( −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
,

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

)
=

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

min

(
1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
, 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)

)
= 1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
,

and

1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
≤ p (ū | w̄) p (w)

p (u |w)− p (u | w̄)
.

If p (u |w)− p (u | w̄) < 0 then

max

( −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
,

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

)
=
−p (u | w̄) p (w)

p (u |w)− p (u | w̄)

min

(
1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
, 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)

)
= 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)
.

and

1 +
p (ū |w) p (w̄)

p (u |w)− p (u | w̄)
≤ −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
.

Therefore, regardless of the sign of p (u |w)− p (u | w̄), we have that[
0,min

(
1,max

( −p (u | w̄) p (w)

p (u |w)− p (u | w̄)
,

p (ū | w̄) p (w)

p (u |w)− p (u | w̄)

))]
∪[

max

(
0,min

(
1− p (u |w) p (w̄)

p (u |w)− p (u | w̄)
, 1 +

p (ū |w) p (w̄)

p (u |w)− p (u | w̄)

))
, 1

]
= [0, 1].

Thus for every x ∈ [0, 1] there is a value y for a parameter p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ),
from the CPT of U such that

Pr (u)
(
p (w) = x

)
= Pr (u)

(
p
(
u′ |w′

)
= y
)
.
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Since there is no conceptual difference between varying p (w) and p (w̄), we also have
that for every x = p (w̄) ∈ [0, 1] there is a value y for a parameter p (u′ |w′), u′ ∈ Ω(U),
w′ ∈ Ω(W ), from the CPT of U such that

Pr (u)
(
p (w̄) = x

)
= Pr (u)

(
p
(
u′ |w′

)
= y
)
.

Therefore for every possible value x for a parameter p (w′′), w′′ ∈ Ω(W ), there is a
value y for a parameter p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ), such that

Pr
(
C ≤ c′

∣∣∣ eki , e−) (p (w′′) = x
)

= Pr
(
C ≤ c

∣∣∣ eki , e−) (p (u′ |w′) = y
)

and

Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
w′′
)

= x
)

= Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′

)
= y
)
.

Thus if the violation of monotonicity cannot be resolved by varying a parameter from
the CPT of U , then it can also not be resolved by varying a parameter from the CPT of
W .

From Theorem 6.1.1 we have for binary variables U and W that if the violation of
monotonicity cannot be resolved by varying a parameter p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ),
of U , then it can also not be resolved by varying a parameter p (w′′), w′′ ∈ Ω(W ) of W .
From this result it might be expected that this also holds in general. However the following
examples will show that this is not the case, not even if one of the variables is binary.

Example 3. Let Ω(U) = {u1, u2, u3} and Ω(W ) = {w, w̄}. Let the parameters from the
CPTs of U and W be as follows:

p (w) = 0.2 p
(
u1 |w

)
= 0.1 p

(
u2 |w

)
= 0.3 p

(
u3 |w

)
= 0.6

p (w̄) = 0.8 p
(
u1 | w̄

)
= 0.4 p

(
u2 | w̄

)
= 0.1 p

(
u3 | w̄

)
= 0.5

Suppose that varying p (w) to 0.95 resolves the violation of monotonicity. We compute
that Pr

(
u1
)

= 0.115, Pr
(
u2
)

= 0.29 and Pr
(
u3
)

= 0.595. If there is no value y for any
p (u′ |w′) from the CPT of U such that

Pr
(
u1
) (

p
(
u′ |w′

)
= y
)

= 0.115,

Pr
(
u2
) (

p
(
u′ |w′

)
= y
)

= 0.29 and

Pr
(
u3
) (

p
(
u′ |w′

)
= y
)

= 0.595,

(6.6)

then there is no value y for any p (u′ |w′) from the CPT of U such that

Pr
(

C ≤ c′
∣∣∣ eki , e) (p (w) = 0.95

)
= Pr

(
C ≤ c′

∣∣∣ eki , e−) (p (u′ |w′) = y
)

and

Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p (w) = 0.95

)
= Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′

)
= y
)
.

The value y must be a probability and must therefore lie in the interval [0, 1].
We show that no such value y exists for any p (u′ |w′) from the CPT of U . We first

investigate the parameters p (U |w):

Pr
(
u1
) (

p
(
u1 |w

)
= y
)

= 0.32 + 0.2 · y = 0.115 ⇒ y < 0

Pr
(
u1
) (

p
(
u2 |w

)
= y
)

=
61

175
− 5

175
· y = 0.115 ⇒ y > 1

Pr
(
u1
) (

p
(
u3 |w

)
= y
)

= 0.37− 0.05 · y = 0.115 ⇒ y > 1
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Since y does not lie in the interval [0, 1] for any of the values for U , we now investigate
p (U | w̄):

Pr
(
u1
) (

p
(
u1 | w̄

)
= y
)

= 0.02 + 0.8 · y = 0.115⇒ y = 0.11875

Since we have found a value for y, we verify if Pr
(
u2
) (

p
(
u1 | w̄

)
= 0.11875

)
= 0.29:

Pr
(
u2
) (

p
(
u1 | w̄

)
= y
)

= p
(
u2 |w

)
p (w) +

1− y
1− p (u1 | w̄)

p
(
u2 | w̄

)
=

29

150
− 20

150
· y

⇓
Pr
(
u2
) (

p
(
u1 | w̄

)
= 0.11875

)
=

29

150
− 20

150
· 0.11875

= 0.1775 6= 0.29

Thus equalities (6.6) do not hold for any value y for p
(
u1 | w̄

)
. The same arguments also

hold for the parameters p
(
u2 | w̄

)
and p

(
u3 | w̄

)
:

Pr
(
u1
) (

p
(
u2 | w̄

)
= y
)

=
169

450
− 160

450
· y = 0.115 ⇒ y = 0.7328125

Pr
(
u2
) (

p
(
u2 | w̄

)
= 0.7328125

)
= 0.06 + 0.8 · 0.7328125 = 0.64625 6= 0.29

Pr
(
u1
) (

p
(
u3 | w̄

)
= y
)

= 0.66− 0.64 · y = 0.115 ⇒ y = 0.8515625

Pr
(
u2
) (

p
(
u3 | w̄

)
= 0.8515625

)
= 0.22− 0.16 · 0.8515625 = 0.08375 6= 0.29

Thus for each p (u′ |w′) we find that either y does not lie in the interval [0, 1] or the
values y for which Pr

(
u1
) (

p (u′ |w′) = y
)

= 0.115 and Pr
(
u2
) (

p (u′ |w′) = y
)

= 0.29
differ. Therefore, even if the violation of monotonicity cannot be resolved by varying any
p (u′ |w′) from the CPT of U , then it is possible to resolve the violation by varying p (w)
to 0.95.

The behaviour we observe in Example 3 is caused by the fact that when we vary a
parameter from the CPT of U , we apply proportional scaling. A result of this proportional
scaling is that, for example, varying p

(
u1 |w

)
cannot change the sign of Pr

(
u2
)
−Pr

(
u3
)
,

while varying in the CPT of W can. Thus we cannot obtain the same result by varying
in the CPT of U as we can obtain by varying in the CPT of W .

Example 4. Let Ω(U) = {u, ū} and Ω(W ) = {w1, w2, w3}. Let the parameters from the
CPTs of U and W be as follows:

p
(
w1
)

= 0.6 p
(
w2
)

= 0.3 p
(
w3
)

= 0.1

p
(
u |w1

)
= 0.9 p

(
u |w2

)
= 0.4 p

(
u |w3

)
= 0.2

Suppose that varying p
(
w1
)

to 0.95 resolves the violation of monotonicity. Then, by
proportional scaling, p

(
w2
)

= 0.025 and p
(
w3
)

= 1
120 . We compute that Pr (u) = 0.8725

and Pr (ū) = 0.1275. If there is no value y for any p (u′ |w′) from the CPT of U such that

Pr (u)
(
p
(
u′ |w′

)
= y
)

= 0.8725 and

Pr (ū)
(
p
(
u′ |w′

)
= y
)

= 0.1275,



6.2. THE GENERAL CASE 31

then there is no value y for any p (u′ |w′) from the CPT of U such that

Pr
(

C ≤ c′
∣∣∣ eki , e) (p (w1

)
= 0.95

)
= Pr

(
C ≤ c′

∣∣∣ eki , e−) (p (u′ |w′) = y
)

and

Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p
(
w1
)

= 0.95
)

= Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′

)
= y
)
.

The value y must be a probability and must therefore lie in the interval [0, 1].

We show that no such value y exists for any p (u′ |w′) from the CPT of U . For the
parameters p

(
u |w1

)
, p
(
u |w2

)
and p

(
u |w3

)
we find that y must be larger than 1 and

therefore does not lie in the interval [0, 1].

Pr (u)
(
p
(
u |w1

)
= y
)

= 0.14 + 0.6 · y = 0.8725 ⇒ y > 1

Pr (u)
(
p
(
u |w2

)
= y
)

= 0.56 + 0.3 · y = 0.8725 ⇒ y > 1

Pr (u)
(
p
(
u |w3

)
= y
)

= 0.66 + 0.1 · y = 0.8725 ⇒ y > 1

It follows that for the parameters p
(
ū |w1

)
, p
(
ū |w2

)
and p

(
ū |w3

)
we find that y must

be smaller than 0 and therefore does not lie in the interval [0, 1]. Since no y lies in the
interval [0, 1] for any p (u′ |w′) from the CPT of U , even if the violation of monotonicity
cannot be resolved by varying any p (u′ |w′) from the CPT of U , then it is possible to
resolve the violation by varying p

(
w1
)

to 0.95.

6.2 The general case

In the simple case we have seen that we can only say that if we cannot resolve a violation
of monotonicity by varying a parameter from the CPT of U , then we can also not resolve
it by varying a parameter from the CPT of W , if U and W are binary. In the general case
we will therefore assume that U and W are always binary.

We consider an arbitrary restricted Bayesian network B = (G ,P) in which there are
two vertices U,W ∈ V (G) such that U is the only successor ofW , and the only predecessors
of U are W and predecessors of W , i.e. π(U) ⊆ π(W )∪{W} and σ(W ) = {U}. We use Q
to denote π(U)\{W} and R to denote π(W )\π(U). Furthermore, if the outgoing arcs of U
are removed, then U is in a connected component Su which is distinct from the connected
component containing the variable of interest; a graphical representation of such a Bayesian
network is depicted in Figure 6.2.2. We again assume that neither U nor W equals the
variable of interest C or contains any observation, i.e. {U,W} ∩ ({C} ∪E) = ∅.

Now suppose that there is a violation of monotonicity viol
(
c′, eki , e

−) in this Bayesian
network. Thus we have that

Pr
(

C ≤ c′
∣∣∣ eki , e−) < Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

)
.

This violation of monotonicity can again be written as

∑
c∈Ω(C )
c≤c′

Pr
(
c, eki , e

−)
Pr
(
eki , e

−) <
∑

c∈Ω(C )
c≤c′

Pr
(
c, ek+1

i , e−
)

Pr
(
ek+1
i , e−

) .
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. . .

W

U

Q = π(U)\{W} R = π(W )\π(U)

. . . . . .

. . .
. . . . . .

Figure 6.2.2: An arbitrary restricted Bayesian network in which there are two vertices U,W such that
π(U) ⊆ π(W )∪{W} and σ(W ) = {U}, and U lies on all chains between W and the variable of interest C .

Until stated otherwise we assume that V (Su)∩E = ∅. Then, for the Bayesian network B
we have for all c ∈ Ω(C ) and e ∈ Ω(E) that

Pr (c, e) =
∑
Ω(U)

Pr (U) ·
∑

Ω(V (G)\V (Su))

∏
V ∈V (G)
V 6=U,V 6=W

p (V |π(V ))

∣∣∣∣∣∣∣∣C = c
E = e

 and

Pr (e) =
∑
Ω(U)

Pr (U) ·
∑

Ω(V (G)\V (Su))

∏
V ∈V (G)
V 6=U,V 6=W

p (V |π(V ))

∣∣∣∣∣∣∣∣
E = e

 ,

where

Pr (U) =
∑

Ω(W )×Ω(Q)×Ω(R)

p (U |W,Q) p (W |Q,R) Pr (Q,R) .

Therefore varying parameters from the CPTs of U and W can only affect the probabilities

Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
through Pr (u) and Pr (ū).

Theorem 6.2.1. Let B be as before and let U,W be binary and as depicted in Figure
6.2.2. If viol

(
c′, eki , e

−) cannot be resolved by varying a parameter from the CPT of U ,
then it can also not be resolved by varying a parameter from the CPT of W .

Proof. Suppose that the violation of monotonicity cannot be resolved by varying a pa-
rameter from the CPT of U . Then, varying a parameter from the CPT of W can re-
solve the violation of monotonicity only if there are values for Pr

(
C ≤ c′

∣∣ eki , e− ) and

Pr
(

C ≤ c′′
∣∣∣ ek+1
i , e−

)
which can be obtained by varying a parameter from the CPT

of W , but cannot be obtained by varying a parameter from the CPT of U . To prove
the property stated in the theorem, we show that all values for Pr

(
C ≤ c′

∣∣ eki , e− ) and
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Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

)
that can obtained by varying any parameter p (w′′ |q, r),

w′′ ∈ Ω(W ), q ∈ Ω(Q), r ∈ Ω(R), can also be obtained by a parameter p (u′ |w′,q′),
u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q).

Since the parameters from the CPTs of U and W can only affect the probabilities

Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

)
through Pr (u) and Pr (ū), it is sufficient

to show that for every value p (w′′ |q, r) = x, w′′ ∈ Ω(W ), q ∈ Ω(Q), r ∈ Ω(R), there is a
p (u′ |w′,q′), u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q), and a value y such that

Pr (u)
(
p
(
w′′ |q, r

)
= x

)
= Pr (u)

(
p
(
u′ |w′,q′

)
= y
)
. (6.7)

Note that since the variable U is binary, we then also have that

Pr (ū)
(
p
(
w′′ |q, r

)
= x

)
= Pr (ū)

(
p
(
u′ |w′,q′

)
= y
)

To find such a value y for every value p (w′′ |q, r) = x, we investigate for all p (u′ |w′,q′),
u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q), the interval of values for x for which there is a value y
such that equality (6.7) holds. Observe that our theorem only holds if the union of these
intervals is [0, 1].

We will begin by determining for which values p (w |q, r) = x the parameter p (u |w,q)
can be varied to a value y such that

Pr (u)
(
p (w |q, r) = x

)
= Pr (u)

(
p (u |w,q) = y

)
. (6.8)

Using equality (6.8) we can express x in terms of y from

(
p (u |w,q)− p (u | w̄,q)

)
· x · Pr (q, r) + p (u | w̄,q) Pr (q, r) +∑

r′∈Ω(R)\{r}

(
p (u |w,q) p

(
w |q, r′

)
+ p (u | w̄,q) p

(
w̄ |q, r′

) )
Pr
(
q, r′

)
+

∑
r′∈Ω(R)

q′∈Ω(Q)\{q}

(
p
(
u |w,q′

)
p
(
w |q′, r′

)
+ p

(
u | w̄,q′

)
p
(
w̄ |q′, r′

) )
Pr
(
q′, r′

)
=∑

r′∈Ω(R)

p
(
w |q, r′

)
Pr
(
q, r′

)
· y +

∑
r′∈Ω(R)

p (u | w̄,q) p
(
w̄ |q, r′

)
Pr
(
q, r′

)
+

∑
r′∈Ω(R)

q′∈Ω(Q)\{q}

(
p
(
u |w,q′

)
p
(
w |q′, r′

)
+ p

(
u | w̄,q′

)
p
(
w̄ |q′, r′

) )
Pr
(
q′, r′

)
.

It follows that

x =

(
y − p (u | w̄,q)

)
p (w |q, r) Pr (q, r) +

(
y − p (u |w,q)

) ∑
r′∈Ω(R)\{r}

p (w |q, r′) Pr (q, r′)

(
p (u |w,q)− p (u | w̄,q)

)
Pr (q, r)

unless p (u |w,q) − p (u | w̄,q) = 0. In that case equality (6.8) holds for all x ∈ [0, 1] by
taking the original value of p (u |w,q) for y.
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By varying y in the interval [0, 1] we obtain the interval of values for x for which there
is a y such that equality (6.8) holds. We find that x lies between the minimum and the
maximum of L1 and L2, where

L1 = −
p (u | w̄,q) p (w |q, r) Pr (q, r) + p (u |w,q)

∑
r′∈Ω(R) p (w |q, r′) Pr (q, r′)(

p (u |w,q)− p (u | w̄,q)
)
Pr (q, r)

and

L2 =
p (ū | w̄,q) p (w |q, r) Pr (q, r) + p (ū |w,q)

∑
r′∈Ω(R) p (w |q, r′) Pr (q, r′)(

p (u |w,q)− p (u | w̄,q)
)
Pr (q, r)

.

Since

min (L1, L2) < 0

and x is a probability, we have that the parameter p (u |w,q) can be varied to values y
such that equality (6.8) holds, for all values x with

x ∈
[
0,min

(
1,max (L1, L2)

)]
. (6.9)

Next we determine for which values p (w |q, r) = x the parameter p (u | w̄,q) can be
varied to a value y such that

Pr (u) (p (w |q, r) = x) = Pr (u) (p (u | w̄,q) = y) . (6.10)

Using equality (6.10) we can express x in terms of y from(
p (u |w,q)− p (u | w̄,q)

)
· x · Pr (q, r) + p (u | w̄,q) Pr (q, r) +∑

r′∈Ω(R)\{r}

(
p (u |w,q) p

(
w |q, r′

)
+ p (u | w̄,q) p

(
w̄ |q, r′

) )
Pr (q, r) +

∑
r′∈Ω(R)

q′∈Ω(Q)\{q}

(
p
(
u |w,q′

)
p
(
w |q′

)
+ p

(
u | w̄,q′

)
p
(
w̄ |q′, r′

) )
Pr
(
q′, r′

)
=∑

r′∈Ω(R)

p (u |w,q) p
(
w |q, r′

)
Pr
(
q, r′

)
+

∑
r′∈Ω(R)

p
(
w̄ |q, r′

)
Pr
(
q, r′

)
· y+

∑
r′∈Ω(R)

q′∈Ω(Q)\{q}

(
p
(
u |w,q′

)
p
(
w |q′, r′

)
+ p

(
u | w̄,q′

)
p
(
w̄ |q′, r′

) )
Pr
(
q′, r′

)
.

It follows that

x = 1 +

(
y − p (u | w̄,q)

) ∑
r′∈Ω(R)\{r}

p (w̄ |q) Pr (q, r′) +
(
y − p (u |w,q)

)
p (w̄ |q, r) Pr (q, r)

(
p (u |w,q)− p (u | w̄,q)

)
Pr (q, r)

unless p (u |w,q)− p (u | w̄,q) = 0. In that case equality (6.10) holds for all x ∈ [0, 1] by
taking the original value of p (u | w̄,q) for y.

By varying y in the interval [0, 1] we obtain the interval of values for x for which there
is a y such that equality (6.10) holds. We have that x must lie between the minimum and
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the maximum of L3 and L4, where

L3 = 1−
p (u | w̄,q)

∑
r′∈Ω(R)\{r} p (w̄ |q, r′) Pr (q, r′) + p (u |w,q) p (w̄ |q, r) Pr (q, r)(

p (u |w,q)− p (u | w̄,q)
)
Pr (q, r)

and

L4 = 1 +
p (ū | w̄,q)

∑
r′∈Ω(R)\{r} p (w̄ |q, r′) Pr (q, r′) + p (ū |w,q) p (w̄ |q, r) Pr (q, r)(

p (u |w,q)− p (u | w̄,q)
)
Pr (q, r)

.

Since
max (L3, L4) > 1

and x is a probability, we have that the parameter p (u |w,q) can be varied to values y
such that equality (6.8) holds, for all values x such that

x ∈
[

max
(
0,min (L3, L4)

)
, 1
]
. (6.11)

We now have two intervals, namely (6.9) and (6.11), for which we have to show that
the union is [0, 1]. The endpoints of these intervals depend on the sign of p (u |w,q) −
p (u | w̄,q). We distinguish between these cases.

If p (u |w,q)− p (u | w̄,q) > 0 then

max (L1, L2) = L2

min (L3, L4) = L3,

and L3 ≤ L2.
If p (u |w,q)− p (u | w̄,q) < 0 then

max (L1, L2) = L1

min (L3, L4) = L4,

and L4 ≤ L1.
Therefore, regardless of the sign of p (u |w,q)− p (u | w̄,q), we have that[

0,min
(
1,max (L1, L2)

)]
∪
[

max
(
0,min (L3, L4)

)
, 1
]

= [0, 1].

Thus for every x ∈ [0, 1] for a parameter p (w |q, r), q ∈ Ω(Q), r ∈ Ω(R), there is a
value y for a parameter p (u′ |w′,q′), u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q), from the CPT of
U such that

Pr (u)
(
p (w |q, r) = x

)
= Pr (u)

(
p
(
u′ |w′,q′

)
= y
)
.

Since there is no conceptual difference between varying p (w |q, r) and p (w̄ |q, r),
we also have that for every x = p (w̄ |q, r) ∈ [0, 1] there is a value y for a parameter
p (u′ |w′,q′), u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q), from the CPT of U such that

Pr (u)
(
p (w̄ |q, r) = x

)
= Pr (u)

(
p
(
u′ |w′,q′

)
= y
)
.

Therefore for every possible value x, namely x ∈ [0, 1], of parameter p (w′′ |q, r),
w′′ ∈ Ω(W ), q ∈ Ω(Q), r ∈ Ω(R), there is a value y for a parameter p (u′ |w′,q′),
u′ ∈ Ω(U), w′ ∈ Ω(W ), q′ ∈ Ω(Q), such that

Pr
(
C ≤ c′

∣∣∣ eki , e−) (p (w′′ |q, r) = x
)

= Pr
(
C ≤ c

∣∣∣ eki , e−) (p (u′ |w′,q′) = y
)

and

Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
w′′ |q, r

)
= x

)
= Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′,q′

)
= y
)
.
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. . .

W

U

Q

Figure 6.2.3: Directed acyclic graph used in Example 5.

Thus if the violation of monotonicity cannot be resolved by varying a parameter from
the CPT of U , then it can also not be resolved by varying a parameter from the CPT of
W .

So far, we assumed that V (Su) ∩ E = ∅. However, if (V (Su)\{U,W}) ∩ E = ES 6= ∅
and Ei /∈ ES , then Theorem 6.2.1 still holds. We can substitute Pr (U | e− ) for Pr (U)
and Pr (Q,R | e− ) for Pr (Q,R) in the proof of Theorem 6.2.1 without invalidating any
of its arguments. Note that if q ∈ Ω(Q), r ∈ Ω(R) and e− assign conflicting values to a
variable, then Pr (q, r | e− ) = 0.

We discuss examples of (restricted) Bayesian networks which do not conform to the general
case by violating one of the conditions to the associated DAG. These examples suggest
that we cannot generalize further.

Our first example violates the condition that π(U) ⊆ π(W ) ∪ {W}.

Example 5. Let B be a Bayesian network with a DAG as depicted in Figure 6.2.3 with
Ω(U) = {ū, u}, Ω(W ) = {w̄, w} and Ω(Q) = {q̄, q}. Suppose there is a violation of
monotonicity viol

(
c′, eki , e

−). Like before, varying parameters from the CPTs of U and W

can only affect Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
through Pr (u) and Pr (ū),

where

Pr (U) =
∑

Ω({W,Q})
p (U |W,Q) p (W ) p (Q) .

The following value assignments for the CPTs of U , W and Q illustrate that varying a
parameter from the CPT of W may resolve the violation of monotonicity, while varying a
parameter from the CPT of U does not.

Let the parameters from the CPTs of U and W be as follows:

p (w) = 0.6 p (u |w, q) = 0.5 p (u | w̄, q) = 0.1

p (q) = 0.7 p (u |w, q̄) = 0.8 p (u | w̄, q̄) = 0.2

Suppose that varying p (w) to 0.1 resolves the violation of monotonicity. We compute
that Pr (u) = 0.176. If there is no value y for any p (u′ |w′, q′), u′ ∈ Ω(U), w′ ∈ Ω(W ),
q′ ∈ Ω(Q), from the CPT of U such that

Pr (u) (p
(
u′ |w′, q′

)
= y) = 0.176, (6.12)
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then there is no value y for any p (u′ |w′, q′) from the CPT of U such that

Pr
(

C ≤ c′
∣∣∣ eki , e−) (p (w) = 0.1

)
= Pr

(
C ≤ c′

∣∣∣ eki , e−) (p (u′ |w′, q′) = y
)

and

Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p (w) = 0.1

)
= Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′, q′

)
= y
)
.

The value y must be a probability and must therefore lie in the interval [0, 1]. We show
that no such value y exists for any p (u′ |w′, q′) from the CPT of U .

Pr (u) (p (u |w, q) = y) = 0.42 · y + 0.196 = 0.176 ⇒ y < 0

Pr (u) (p (u |w, q̄) = y) = 0.18 · y + 0.262 = 0.176 ⇒ y < 0

Pr (u) (p (u | w̄, q) = y) = 0.28 · y + 0.378 = 0.176 ⇒ y < 0

Pr (u) (p (u | w̄, q̄) = y) = 0.12 · y + 0.382 = 0.176 ⇒ y < 0

Thus we find that for all p (u |w′, q′), w′ ∈ Ω(W ), q′ ∈ Ω(Q), from the CPT of U equation
(6.12) only holds if y < 0, and it follows that for all p (ū |w′, q′) equation (6.12) only holds
if y > 1. Therefore there is no y ∈ [0, 1] for any p (u′ |w′, q′) from the CPT of U such
that equation (6.12) holds, which means that even if the violation of monotonicity cannot
be resolved by varying any parameter from the CPT of U , then it is possible to resolve the
violation by varying p (w) to 0.1.

Our next example violates the condition that σ(W ) = {U}.

Example 6. Let B be a restricted Bayesian network with a DAG as depicted in Figure
6.2.4 with Ω(U) = {ū, u}, Ω(W ) = {w̄, w} and Ω(Q) = {q̄, q}. Suppose there is a violation
of monotonicity viol

(
c′, eki , e

−), where e− assigns the observation q to the variable Q. Like
before, varying parameters from the CPTs of U and W can only affect Pr

(
C ≤ c′

∣∣ eki , e− )
and Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

)
through Pr (u | q ) and Pr (ū | q ), where

Pr (U | q ) =
∑

Ω(W )

p (U |W ) p (q |W ) p (W ) .

The following value assignments for the CPTs of U , W and Q illustrate that varying in
the CPT of W may resolve the violation of monotonicity, while varying in the CPT of U
does not.

. . .

W

U

Q

Figure 6.2.4: Directed acyclic graph used in Example 6.
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Let the parameters from the CPTs of U and W be as follows:

p (w) = 0.3 p (q |w) = 0.7 p (u |w) = 0.6

p (q | w̄) = 0.1 p (u | w̄) = 0.8

Suppose that varying p (w) to 0.55 resolves the violation of monotonicity. We compute
that Pr (u | q ) = 0.267. If there is no value y for any p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ),
from the CPT of U such that

Pr (u | q ) (p
(
u′ |w′

)
= y) = 0.267, (6.13)

then there is no value y for any p (u′ |w′) from the CPT of U such that

Pr
(

C ≤ c′
∣∣∣ eki , e−) (p (w) = 0.55

)
= Pr

(
C ≤ c′

∣∣∣ eki , e−) (p (u′ |w′) = y
)

and

Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p (w) = 0.55

)
= Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′

)
= y
)
.

The value y must be a probability and must therefore lie in the interval [0, 1]. We show
that no such value y exists for any p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ) from the CPT of U .

Pr (u | q ) (p (u |w) = y) = 0.21 · y + 0.056 = 0.267 ⇒ y > 1

Pr (u | q ) (p (u | w̄) = y) = 0.07 · y + 0.126 = 0.267 ⇒ y > 1

Thus we find that for all p (u |w′), w′ ∈ Ω(W ), from the CPT of U equation (6.13) only
holds if y > 1, and it follows that for all p (ū |w′) equation (6.13) only holds if y < 0.
Therefore there is no y ∈ [0, 1] for any parameter from the CPT of U such that equation
(6.13) holds, which means that even if the violation of monotonicity cannot be resolved by
varying any parameter from the CPT of U , then it is possible to resolve the violation by
varying p (w) to 0.55.

The following example violates the condition that U lies on all chains between W and
C.

Example 7. Let B be a restricted Bayesian network with a DAG as depicted in Figure
6.2.5 with Ω(U) = {ū, u}, Ω(W ) = {w̄, w} and Ω(Q) = {q̄, q}. Suppose there is a violation
of monotonicity viol

(
c′, eki , e

−). Varying parameters from the CPTs of U and W can only

. . .

W

U Q

. . .

Figure 6.2.5: Directed acyclic graph used in Example 7.
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affect Pr
(
C ≤ c′

∣∣ eki , e− ) and Pr
(
C ≤ c′

∣∣∣ ek+1
i , e−

)
through Pr (u, q), Pr (u, q̄), Pr (ū, q)

and Pr (ū, q̄), where

Pr (U,Q) =
∑

Ω(W )

p (U |W ) p (W |Q) p (Q) .

The following value assignments for the CPTs of U , W and Q illustrate that varying in
the CPT of W may resolve the violation of monotonicity, while varying in the CPT of U
does not.

Let the parameters from the CPTs of U , W and Q be as follows:

p (u |w) = 0.3 p (w | q) = 0.7 p (q) = 0.2

p (u | w̄) = 0.8 p (w | q̄) = 0.4

Suppose that varying p (w | q) to 0.6 resolves the violation of monotonicity. We compute
that Pr (u, q) = 0.1 and Pr (u, q̄) = 0.48. Note that Pr (u, q̄) is not changed by varying
p (w | q). If there is no value y for any p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ), from the CPT
of U such that

Pr (u, q) (p
(
u′ |w′

)
= y) = 0.1 and

Pr (u, q̄) (p
(
u′ |w′

)
= y) = 0.48

(6.14)

then there is no value y for any p (u′ |w′) from the CPT of U such that

Pr
(

C ≤ c′
∣∣∣ eki , e−) (p (w) = 0.6

)
= Pr

(
C ≤ c′

∣∣∣ eki , e−) (p (u′ |w′) = y
)

and

Pr
(

C ≤ c′
∣∣∣ ek+1
i , e−

) (
p (w) = 0.6

)
= Pr

(
C ≤ c′

∣∣∣ ek+1
i , e−

) (
p
(
u′ |w′

)
= y
)
.

The value y must be a probability and must therefore lie in the interval [0, 1]. We show
that no such value y exists for any p (u′ |w′), u′ ∈ Ω(U), w′ ∈ Ω(W ), from the CPT of U .

Pr (u, q) (p (u |w) = y) = 0.14 · y + 0.048 = 0.1 ⇒ y =
13

35
Pr (u, q̄) (p (u |w) = y) = 0.32 · y + 0.384 = 0.48 ⇒ y = 0.3

Since these values for y are different, the equations (6.14) do not hold for any value
y ∈ [0, 1] for p (u |w).

Pr (u, q) (p (u | w̄) = y) = 0.06 · y + 0.042 = 0.1 ⇒ y =
29

30
Pr (u, q̄) (p (u | w̄) = y) = 0.48 · y + 0.096 = 0.48 ⇒ y = 0.8

Since these values for y are different, the equations (6.14) also do not hold for any value
y ∈ [0, 1] for p (u | w̄).

Thus we find that for all p (u |w′), w′ ∈ Ω(W ), from the CPT of U equations (6.14)
do not hold for any y ∈ [0, 1], and it follows that for all p (ū |w′) equations (6.14) also
do not hold for any y ∈ [0, 1]. Therefore there is no y ∈ [0, 1] for any parameter from
the CPT of U such that equations (6.14) hold, which means that even if the violation of
monotonicity cannot be resolved by varying any parameter from the CPT of U , then it is
possible to resolve the violation of monotonicity by varying p (w | q) to 0.6.
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E2

U

C

E1

Figure 6.2.6: Directed acyclic graph used in Example 8.

Our final example deals with a fairly different situation. One might expect that, for
situations like this, we can make a similar statement to the one we have been discussing,
namely that if we cannot resolve a violation of monotonicity by varying parameters from
the CPT of a variable U , then we also cannot resolve it by varying parameters from the
CPT of a variable W . The example, however, shows that we cannot make such a statement
in this situation.

Example 8. Let B be a restricted Bayesian network with a DAG as depicted in Figure
6.2.6 with Ω(C) = {c1, c2, c3}, Ω(U) = {u, ū}, Ω(E1) = {e1

2, e
2
2} and Ω(E2) = {e1

2, e
2
2}.

Suppose there is a violation of monotonicity viol
(
c′, e1

1, e
2
2

)
. We can rewrite this viola-

tion as follows.

Pr
(
C ≤ c1

∣∣ e1
1, e

2
2

)
< Pr

(
C ≤ c1

∣∣ e2
1, e

2
2

)
⇓

Pr
(
c1
∣∣ e1

1, e
2
2

)
< Pr

(
c1
∣∣ e2

1, e
2
2

)
⇓

Pr(c1,e11,e22)
Pr(e11,e22)

<
Pr(c1,e21,e22)

Pr(e21,e22)

⇓
Pr
(
c1, e1

1, e
2
2

)
· Pr

(
e2

1, e
2
2

)
< Pr

(
c1, e2

1, e
2
2

)
· Pr

(
e1

1, e
2
2

)

If we write Pr
(
e2

2

∣∣ cj ) for
∑

Ω(U) p
(
e2

2 |U
)

p
(
U | cj

)
, then we have that

Pr
(
c1, e1

1, e
2
2

)
= Pr

(
e2

2

∣∣ c1
)

p
(
e1

1 | c1
)

p
(
c1
)

Pr
(
c1, e2

1, e
2
2

)
= Pr

(
e2

2

∣∣ c1
)

p
(
e2

1 | c1
)

p
(
c1
)

Pr
(
e1

1, e
2
2

)
= Pr

(
e2

2

∣∣ c1
)

p
(
e1

1 | c1
)

p
(
c1
)

+ Pr
(
e2

2

∣∣ c2
)

p
(
e1

1 | c2
)

p
(
c2
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e1

1 | c3
)

p
(
c3
)

Pr
(
e2

1, e
2
2

)
= Pr

(
e2

2

∣∣ c1
)

p
(
e2

1 | c1
)

p
(
c1
)

+ Pr
(
e2

2

∣∣ c2
)

p
(
e2

1 | c2
)

p
(
c2
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e2

1 | c3
)

p
(
c3
)
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We can again rewrite the violation by substituting these probabilities.

Pr
(
c1, e1

1, e
2
2

)
· Pr

(
e2

1, e
2
2

)
< Pr

(
c1, e2

1, e
2
2

)
· Pr

(
e1

1, e
2
2

)
⇓

Pr
(
e2

2

∣∣ c1
)

p
(
e1

1 | c1
)

p
(
c1
) (

Pr
(
e2

2

∣∣ c1
)

p
(
e2

1 | c1
)

p
(
c1
)

+ Pr
(
e2

2

∣∣ c2
)

p
(
e2

1 | c2
)

p
(
c2
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e2

1 | c3
)

p
(
c3
) )

<

Pr
(
e2

2

∣∣ c1
)

p
(
e2

1 | c1
)

p
(
c1
) (

Pr
(
e2

2

∣∣ c1
)

p
(
e1

1 | c1
)

p
(
c1
)

+ Pr
(
e2

2

∣∣ c2
)

p
(
e1

1 | c2

)
p
(
c2
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e1

1 | c3
)

p
(
c3
) )

⇓
Pr
(
e2

2

∣∣ c2
)

p
(
e2

1 | c2
)

p
(
c2
)

p
(
e1

1 | c1
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e2

1 | c3
)

p
(
c3
)

p
(
e1

1 | c1
)

<

Pr
(
e2

2

∣∣ c2
)

p
(
e1

1 | c2
)

p
(
c2
)

p
(
e2

1 | c1
)

+ Pr
(
e2

2

∣∣ c3
)

p
(
e1

1 | c3
)

p
(
c3
)

p
(
e2

1 | c1
)

⇓
Pr
(
e2

2

∣∣ c2
)

p
(
c2
) (

p
(
e2

1 | c2
)

p
(
e1

1 | c1
)
− p

(
e1

1 | c2
)

p
(
e2

1 | c1
) )

<

Pr
(
e2

2

∣∣ c3
)

p
(
c3
) (

p
(
e1

1 | c3
)

p
(
e2

1 | c1
)
− p

(
e2

1 | c3
)

p
(
e1

1 | c1
) )

⇓
Pr
(
e2

2

∣∣ c2
)

p
(
c2
) (

p
(
e2

1 | c2
)
− p

(
e2

1 | c1
) )

< Pr
(
e2

2

∣∣ c3
)

p
(
c3
) (

p
(
e2

1 | c1
)
− p

(
e2

1 | c3
) )

Writing out Pr
(
e2

2

∣∣ c2
)

and Pr
(
e2

2

∣∣ c3
)
, we find that the violation of monotonicity is

equivalent to the following inequality.(
p
(
e2

2 |u
)

p
(
u | c2

)
+ p

(
e2

2 | ū
)

p
(
ū | c2

) )
p
(
c2
) (

p
(
e2

1 | c2
)
− p

(
e2

1 | c1
) )

< (6.15)(
p
(
e2

2 |u
)

p
(
u | c3

)
+ p

(
e2

2 | ū
)

p
(
ū | c3

) )
p
(
c3
) (

p
(
e2

1 | c1
)
− p

(
e2

1 | c3
) )

Using inequality (6.15) the following value assignments for the CPTs in B illustrate
that if varying a parameter from the CPT of U does not resolve the violation of mono-
tonicity, then varying a parameter from the CPT of E2 may still resolve it, and vice versa.

Let the parameters from the CPTs in G be as follows.

p
(
e2

1 | c1
)

= 0.4 p
(
e2

2 |u
)

= 0.3 p
(
u | c2

)
= 0.4 p

(
c2
)

= 0.1

p
(
e2

1 | c2
)

= 0.7 p
(
e2

2 | ū
)

= 0.8 p
(
u | c3

)
= 0.9 p

(
c3
)

= 0.7

p
(
e2

1 | c3
)

= 0.3

Then inequality (6.15) becomes:

(0.3 · 0.4 + 0.8 · 0.6) · 0.1 · (0.7− 0.4) < (0.3 · 0.9 + 0.8 · 0.1) · 0.7 · (0.4− 0.3)

⇓
0.018 < 0.0245
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Suppose we vary x = p
(
e2

2 |u
)

then inequality (6.15) becomes:

(x · 0.4 + 0.8 · 0.6) · 0.1 · (0.7− 0.4) < (x · 0.9 + 0.8 · 0.1) · 0.7 · (0.4− 0.3)

⇓
0.012x+ 0.0144 < 0.063 · x+ 0.0056

⇓
0.0088 < 0.051 · x

⇓
44
255 < x

Thus by varying x such that x ≤ 44
255 the violation of monotonicity can be resolved.

Next, suppose we vary y = p
(
u | c2

)
then inequality (6.15) becomes:

(0.3 · y + 0.8 · (1− y)) · 0.1 · (0.7− 0.4) < 0.0245

⇓
−0.015 · y + 0.024 < 0.0245

⇓
− 1

30 < y

Thus the violation of monotonicity cannot be resolved by varying y in [0, 1]. To resolve the
violation we would need that y ≤ − 1

30 , however this is impossible, since y is a probability.

Now, suppose we vary y = p
(
u | c3

)
then inequality (6.15) becomes:

0.018 < (0.3 · y + 0.8 · (1− y)) · 0.7 · (0.4− 0.3)

⇓
0.018 < −0.035 · y + 0.056

⇓
y < 38

35

Thus the violation of monotonicity cannot be resolved by varying y in [0, 1]. To resolve the
violation we would need that y ≥ 38

35 , however this is impossible, since y is a probability.

Therefore the violation of monotonicity can be resolved by varying in the CPT of E2,
while it cannot be resolved by varying in the CPT of U .

Now, let the parameters in B be as follows.

p
(
e2

1 | c1
)

= 0.4 p
(
e2

2 |u
)

= 0.7 p
(
u | c2

)
= 0.9 p

(
c2
)

= 0.2

p
(
e2

1 | c2
)

= 0.7 p
(
e2

2 | ū
)

= 0.1 p
(
u | c3

)
= 0.8 p

(
c3
)

= 0.7

p
(
e2

1 | c3
)

= 0.3

Then inequality (6.15) becomes:

(0.7 · 0.9 + 0.1 · 0.1) · 0.2 · (0.7− 0.4) < (0.7 · 0.8 + 0.1 · 0.2) · 0.7 · (0.4− 0.3)

⇓
0.0384 < 0.0406
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Suppose we vary y = p
(
u | c3

)
then inequality (6.15) becomes:

0.0384 < (0.7 · y + 0.1 · (1− y)) · 0.7 · (0.4− 0.3)

⇓
0.0384 < 0.042 · y + 0.007

⇓
157
210 < y

Thus by varying y such that y < 157
210 the violation of monotonicity can be resolved.

Next, suppose we vary x = p
(
e2

2 |u
)

then inequality (6.15) becomes:

(x · 0.9 + 0.1 · 0.1) · 0.2 · (0.7− 0.4) < (x · 0.8 + 0.1 · 0.2) · 0.7 · (0.4− 0.3)

⇓
0.054 · x+ 0.0006 < 0.056 · x+ 0.0014

⇓
−0.4 < x

Thus the violation of monotonicity cannot be resolved by varying x in [0, 1]. To resolve the
violation we would need that x ≤ −0.4, however this is impossible, since x is a probability.

Finally, suppose we vary x = p
(
e2

2 | ū
)

then inequality (6.15) becomes:

(0.7 · 0.9 + x · 0.1) · 0.2 · (0.7− 0.4) < (0.7 · 0.8 + x · 0.2) · 0.7 · (0.4− 0.3)

⇓
0.0378 + 0.006 · x < 0.0392 + 0.014 · x

⇓
−0.175 < x

Thus the violation of monotonicity cannot be resolved by varying x in [0, 1]. To resolve
the violation we would need that x ≤ −0.175, however this is impossible, since x is a
probability.

Therefore the violation of monotonicity can be resolved by varying in the CPT of U ,
while it cannot be resolved by varying in the CPT of E2.
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Chapter 7

Conclusion

In this thesis, we studied the problem of restoring monotonicity in a Bayesian network.
We have provided a method to find, if it exists, a single parameter which can be varied to
do so. This method, the intersection-of-intervals approach, must be applied to all relevant
pairs of observations and for every parameter in the network. There may however be
variables in the network for which varying a parameter cannot restore monotonicity. We
have determined that this is the case for all variables which are not in the sensitivity set
of the variable of interest given the observable variables. Using this information we have
therefore restricted the Bayesian network to only include the variables in the sensitivity set
and the observable variables. If the variable of interest is binary, then we can eliminate even
more variables. To that end we introduced the concept of resolution set for an observable
variable. Furthermore, we also found that if applying the intersection-of-intervals approach
to one variable does not yield possible parameter variation to restore monotonicity, then
there may be other variables to which we need no longer apply the intersection-of-intervals
approach. Due to the graphical structure of the Bayesian network, these variables then
also do not have a parameter which can be varied to restore monotonicity.

The application of our restrictions to the Bayesian network and the intersection-of-
intervals approach can yield one or more parameters which can each individually be varied
to restore monotonicity. We can then choose the parameter which requires the smallest
amount of variation and, by doing so, minimize the changes that must be made to the
Bayesian network to make it exhibit monotonicity. However, it is also possible that the
application of our restrictions and intersection-of-intervals approach does not yield any
parameter which may be varied to restore monotonicity to the network.

While we have limited ourselves to investigating restoring monotonicity by varying a
single parameter, we expect that it would be interesting to investigate restoring mono-
tonicity by varying multiple parameters, one after the other or simultaneously. We surmise
that our methods could be used to obtain a sequence of parameters which can be varied in
order to restore monotonicity, although the result may not be optimal. Another possibil-
ity would be to vary several parameters simultaneously. We expect that a fairly different
method will be required to investigate this option, but that the results could be promising
if such a method could be found. Finally, instead of attempting to restore monotonicity
by varying one or more parameters from the quantitative part of the Bayesian network,
it may be done by applying changes to the qualitative part of the network, the directed
acyclic graph.

45
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