Author name code: haugan ADS astronomy entries on 2022-09-14 author:Haugan, S.V.H. ------------------------------------------------------------------------ Title: Euclid: Calibrating photometric redshifts with spectroscopic cross-correlations Authors: Naidoo, K.; Johnston, H.; Joachimi, B.; van den Busch, J. L.; Hildebrandt, H.; Ilbert, O.; Lahav, O.; Aghanim, N.; Altieri, B.; Amara, A.; Baldi, M.; Bender, R.; Bodendorf, C.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Dinis, J.; Dubath, F.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Rosset, C.; Rossetti, E.; Saglia, R.; Sapone, D.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Starck, J. -L.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller, J.; Wetzstein, M.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Andreon, S.; Maino, D.; Scottez, V.; Wright, A. H. Bibcode: 2022arXiv220810503N Altcode: Cosmological constraints from key probes of the Euclid imaging survey rely critically on the accurate determination of the true redshift distributions $n(z)$ of tomographic redshift bins. We determine whether the mean redshift $<z>$ of ten Euclid tomographic redshift bins can be calibrated to the Euclid target uncertainties of $\sigma(<z>)<0.002\,(1+z)$ via cross-correlation, with spectroscopic samples akin to those from the Baryon Oscillation Spectroscopic Survey (BOSS), Dark Energy Spectroscopic Instrument (DESI), and Euclid's NISP spectroscopic survey. We construct mock Euclid and spectroscopic galaxy samples from the Flagship simulation and measure small-scale clustering redshifts up to redshift $z<1.8$ with an algorithm that performs well on current galaxy survey data. The clustering measurements are then fitted to two $n(z)$ models: one is the true $n(z)$ with a free mean; the other a Gaussian Process modified to be restricted to non-negative values. We show that $<z>$ is measured in each tomographic redshift bin to an accuracy of order 0.01 or better. By measuring the clustering redshifts on subsets of the full Flagship area, we construct scaling relations that allow us to extrapolate the method performance to larger sky areas than are currently available in the mock. For the full expected Euclid, BOSS, and DESI overlap region of approximately 6000 deg$^{2}$, the uncertainties attainable by clustering redshifts exceeds the Euclid requirement by at least a factor of three for both $n(z)$ models considered, although systematic biases limit the accuracy. Clustering redshifts are an extremely effective method for redshift calibration for Euclid if the sources of systematic biases can be determined and removed, or calibrated-out with sufficiently realistic simulations. We outline possible future work, in particular an extension to higher redshifts with quasar reference samples. Title: Euclid preparation. XX. The Complete Calibration of the Color-Redshift Relation survey: LBT observations and data release Authors: Euclid Collaboration; Saglia, R.; De Nicola, S.; Fabricius, M.; Guglielmo, V.; Snigula, J.; Zöller, R.; Bender, R.; Heidt, J.; Masters, D.; Stern, D.; Paltani, S.; Amara, A.; Auricchio, N.; Baldi, M.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; McCracken, H. J.; Melchior, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Rossetti, E.; Sapone, D.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.; Graciá-Carpio, J.; Maino, D.; Mauri, N.; Tramacere, A.; Zucca, E.; Alvarez Ayllon, A.; Aussel, H.; Baccigalupi, C.; Balaguera-Antolínez, A.; Ballardini, M.; Biviano, A.; Bolzonella, M.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Cooray, A.; Coupon, J.; Courtois, H. M.; Davini, S.; Desprez, G.; Dole, H.; Escartin, J. A.; Escoffier, S.; Farina, M.; Fotopoulou, S.; Ganga, K.; Garcia-Bellido, J.; George, K.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hook, I.; Ilbert, O.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Loureiro, A.; Macías-Pérez, J.; Magliocchetti, M.; Mainetti, G.; Maoli, R.; Martinelli, M.; Martinet, N.; Metcalf, R. B.; Morgante, G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Popa, V.; Porciani, C.; Potter, D.; Pourtsidou, A.; Reimberg, P.; Sánchez, A. G.; Sakr, Z.; Schirmer, M.; Sefusatti, E.; Sereno, M.; Stadel, J.; Teyssier, R.; Valieri, C.; Valiviita, J.; Veropalumbo, A.; Viel, M. Bibcode: 2022A&A...664A.196E Altcode: 2022arXiv220601620S; 2022arXiv220601620E The Complete Calibration of the Color-Redshift Relation survey (C3R2) is a spectroscopic program designed to empirically calibrate the galaxy color-redshift relation to the Euclid depth (IE = 24.5), a key ingredient for the success of Stage IV dark energy projects based on weak lensing cosmology. A spectroscopic calibration sample that is as representative as possible of the galaxies in the Euclid weak lensing sample is being collected, selecting galaxies from a self-organizing map (SOM) representation of the galaxy color space. Here, we present the results of a near-infrared H- and K-band spectroscopic campaign carried out using the LUCI instruments at the LBT. For a total of 251 galaxies, we present new highly reliable redshifts in the 1.3 ≤ z ≤ 1.7 and 2 ≤ z ≤ 2.7 ranges. The newly-determined redshifts populate 49 SOM cells that previously contained no spectroscopic measurements and almost twice the occupation numbers of an additional 153 SOM cells. A final optical ground-based observational effort is needed to calibrate the missing cells, in particular in the redshift range 1.7 ≤ z ≤ 2.7, which lack spectroscopic calibration. In the end, Euclid itself will deliver telluric-free near-IR spectra that can complete the calibration.

The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia. Title: Euclid preparation. XXIV. Calibration of the halo mass function in $\Lambda(\nu)$CDM cosmologies Authors: Euclid Collaboration; Castro, T.; Fumagalli, A.; Angulo, R. E.; Bocquet, S.; Borgani, S.; Carbone, C.; Dakin, J.; Dolag, K.; Giocoli, C.; Monaco, P.; Ragagnin, A.; Saro, A.; Sefusatti, E.; Costanzi, M.; Amara, A.; Amendola, L.; Baldi, M.; Bender, R.; Bodendorf, C.; Branchini, E.; Brescia, M.; Camera, S.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Gillis, B.; Grazian, A.; Gruppi, F.; Haugan, S. V. H.; Hormuth, F.; Hornstrup, A.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Saglia, R.; Sapone, D.; Sartoris, B.; Schneider, P.; Seidel, G.; Sirri, G.; Stanco, L.; Tallada Crespí, P.; Taylor, A. N.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller, J.; Zacchei, A.; Zamorani, G.; Andreon, S.; Bardelli, S.; Bozzo, E.; Colodro-Conde, C.; Di Ferdinando, D.; Farina, M.; Graciá-Carpio, J.; Lindholm, V.; Neissner, C.; Scottez, V.; Tenti, M.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Ballardini, M.; Bernardeau, F.; Biviano, A.; Blanchard, A.; Borlaff, A. S.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Cooray, A.; Coupon, J.; Courtois, H. M.; Davini, S.; De Lucia, G.; Desprez, G.; Dole, H.; Escartin, J. A.; Escoffier, S.; Finelli, F.; Ganga, K.; Garcia-Bellido, J.; George, K.; Gozaliasl, G.; Hildebrandt, H.; Hook, I.; Ilić, S.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.; Loureiro, A.; Macias-Perez, J.; Magliocchetti, M.; Maoli, R.; Marcin, S.; Martinelli, M.; Martinet, N.; Matthew, S.; Maturi, M.; Metcalf, R. B.; Morgante, G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Peel, A.; Popa, V.; Porciani, C.; Potter, D.; Pourtsidou, A.; Pöntinen, M.; Sánchez, A. G.; Sakr, Z.; Schirmer, M.; Sereno, M.; Spurio Mancini, A.; Teyssier, R.; Valiviita, J.; Veropalumbo, A.; Viel, M. Bibcode: 2022arXiv220802174E Altcode: Euclid's photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo-finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein--de Sitter and standard $\Lambda$CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the $\Lambda$CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass-observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference. Title: Euclid: Testing the Copernican principle with next-generation surveys Authors: Camarena, D.; Marra, V.; Sakr, Z.; Nesseris, S.; Da Silva, A.; Garcia-Bellido, J.; Fleury, P.; Lombriser, L.; Martinelli, M.; Martins, C. J. A. P.; Mimoso, J.; Sapone, D.; Clarkson, C.; Camera, S.; Carbone, C.; Casas, S.; Ilić, S.; Pettorino, V.; Tutusaus, I.; Aghanim, N.; Altieri, B.; Amara, A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Candini, G. P.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Degaudenzi, H.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kiessling, A.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Marulli, F.; Massey, R.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Riccio, G.; Rix, Hans-Walter; Rossetti, E.; Saglia, R.; Sartoris, B.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Zamorani, G.; Zoubian, J.; Andreon, S.; Di Ferdinando, D.; Scottez, V.; Tenti, M. Bibcode: 2022arXiv220709995C Altcode: The Copernican principle, the notion that we are not at a special location in the Universe, is one of the cornerstones of modern cosmology and its violation would invalidate the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, causing a major change in our understanding of the Universe. Thus, it is of fundamental importance to perform observational tests of this principle. We determine the precision with which future surveys will be able to test the Copernican principle and their ability to detect any possible violations. We forecast constraints on the inhomogeneous Lemaître-Tolman-Bondi model with a cosmological constant $\Lambda$ ($\Lambda$LTB), basically a cosmological constant $\Lambda$ and cold dark matter ($\Lambda$CDM) model, but endowed with a spherical inhomogeneity. We consider combinations of currently available data and simulated Euclid data, together with external data products, based on both $\Lambda$CDM and $\Lambda$LTB fiducial models. These constraints are compared to the expectations from the Copernican principle. When considering the $\Lambda$CDM fiducial model, we find that Euclid data, in combination with other current and forthcoming surveys, will improve the constraints on the Copernican principle by about $30\%$, with $\pm10\%$ variations depending on the observables and scales considered. On the other hand, when considering a $\Lambda$LTB fiducial model, we find that future Euclid data, combined with other current and forthcoming data sets, will be able to detect Gpc-scale inhomogeneities of contrast $-0.1$. Next-generation surveys, such as Euclid, will thoroughly test homogeneity at large scales, tightening the constraints on possible violations of the Copernican principle. Title: Euclid: Forecasts from the void-lensing cross-correlation Authors: Bonici, M.; Carbone, C.; Vielzeuf, P.; Paganin, L.; Cardone, V.; Hamaus, N.; Pisani, A.; Hawken, A. J.; Kovacs, A.; Nadathur, S.; Contarini, S.; Verza, G.; Tutusaus, I.; Marulli, F.; Moscardini, L.; Aubert, M.; Giocoli, C.; Pourtsidou, A.; Camera, S.; Escoffier, S.; Caminata, A.; Martinelli, M.; Pallavicini, M.; Pettorino, V.; Sakr, Z.; Sapone, D.; Testera, G.; Tosi, S.; Yankelevich, V.; Amara, A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Gomez-Alvarez, P.; Garilli, B.; Gillis, B.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kummel, M.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Medinaceli, E.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.; Scodeggio, M.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Surace, C.; Tallada-Crespi, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S. Bibcode: 2022arXiv220614211B Altcode: The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing and their cross-correlation. To this aim, we implement a Fisher matrix approach tailored for voids from the Euclid photometric dataset and present the first forecasts on cosmological parameters that include the void-lensing correlation. We examine two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carry out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, $M_\nu$, and a dynamical dark energy (DE) equation of state, $w(z)$, described by the CPL parametrisation. We find that void clustering constraints on $h$ and $\Omega_b$ are competitive with galaxy lensing alone, while errors on $n_s$ decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by $10-15\%$, and enhances the joint void clustering and galaxy lensing Figure of Merit (FoM) by $10\%$ and $25\%$, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void-clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on $h$, $\Omega_b$, the neutrino mass, and the DE evolution. Title: Euclid preparation. XVIII. The NISP photometric system Authors: Euclid Collaboration; Schirmer, M.; Jahnke, K.; Seidel, G.; Aussel, H.; Bodendorf, C.; Grupp, F.; Hormuth, F.; Wachter, S.; Appleton, P. N.; Barbier, R.; Brinchmann, J.; Carrasco, J. M.; Castander, F. J.; Coupon, J.; De Paolis, F.; Franco, A.; Ganga, K.; Hudelot, P.; Jullo, E.; Lançon, A.; Nucita, A. A.; Paltani, S.; Smadja, G.; Strafella, F.; Venancio, L. M. G.; Weiler, M.; Amara, A.; Auphan, T.; Auricchio, N.; Balestra, A.; Bender, R.; Bonino, D.; Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hornstrup, A.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maciaszek, T.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Nakajima, R.; Nichol, R. C.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Prieto, E.; Raison, F.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sartoris, B.; Scaramella, R.; Schneider, P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Trifoglio, M.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.; Boucaud, A.; Camera, S.; Farinelli, R.; Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei, S.; Morisset, N.; Polenta, G.; Renzi, A.; Romelli, E.; Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Biviano, A.; Blanchard, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Cooray, A. R.; Courtois, H. M.; Crocce, M.; Cuby, J. -G.; Davini, S.; de la Torre, S.; Di Ferdinando, D.; Escartin, J. A.; Farina, M.; Ferreira, P. G.; Finelli, F.; Fotopoulou, S.; Galeotta, S.; Garcia-Bellido, J.; Gaztanaga, E.; George, K.; Gozaliasl, G.; Hook, I. M.; Ilić, S.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maoli, R.; Martinelli, M.; Martinet, N.; Maturi, M.; Mauri, N.; McCracken, H. J.; Metcalf, R. B.; Monaco, P.; Morgante, G.; Nightingale, J.; Patrizii, L.; Peel, A.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.; Riccio, G.; Sánchez, A. G.; Sapone, D.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tutusaus, I.; Valieri, C.; Valiviita, J.; Viel, M.; Hildebrandt, H. Bibcode: 2022A&A...662A..92E Altcode: 2022arXiv220301650E Euclid will be the first space mission to survey most of the extragalactic sky in the 0.95-2.02 µm range, to a 5 σ point-source median depth of 24.4 AB mag. This unique photometric dataset will find wide use beyond Euclid's core science. In this paper, we present accurate computations of the Euclid YE, JE, and HE passbands used by the Near-Infrared Spectrometer and Photometer (NISP), and the associated photometric system. We pay particular attention to passband variations in the field of view, accounting for, among other factors, spatially variable filter transmission and variations in the angle of incidence on the filter substrate using optical ray tracing. The response curves' cut-on and cut-off wavelengths - and their variation in the field of view - are determined with ~0.8 nm accuracy, essential for the photometric redshift accuracy required by Euclid. After computing the photometric zero points in the AB mag system, we present linear transformations from and to common ground-based near-infrared photometric systems, for normal stars, red and brown dwarfs, and galaxies separately. A Python tool to compute accurate magnitudes for arbitrary passbands and spectral energy distributions is provided. We discuss various factors, from space weathering to material outgassing, that may slowly alter Euclid's spectral response. At the absolute flux scale, the Euclid in-flight calibration program connects the NISP photometric system to Hubble Space Telescope spectrophotometric white dwarf standards; at the relative flux scale, the chromatic evolution of the response is tracked at the milli-mag level. In this way, we establish an accurate photometric system that is fully controlled throughout Euclid's lifetime. Title: Euclid preparation. XIX. Impact of magnification on photometric galaxy clustering Authors: Euclid Collaboration; Lepori, F.; Tutusaus, I.; Viglione, C.; Bonvin, C.; Camera, S.; Castander, F. J.; Durrer, R.; Fosalba, P.; Jelic-Cizmek, G.; Kunz, M.; Adamek, J.; Casas, S.; Martinelli, M.; Sakr, Z.; Sapone, D.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.; Fabbian, G.; Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei, S.; Renzi, A.; Romelli, E.; Sureau, F.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Bernardeau, F.; Biviano, A.; Blanchard, A.; Bolzonella, M.; Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J. -G.; Davini, S.; de la Torre, S.; Di Ferdinando, D.; Farina, M.; Ferreira, P. G.; Finelli, F.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Gozaliasl, G.; Hook, I. M.; Ilić, S.; Joachimi, B.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maoli, R.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Monaco, P.; Morgante, G.; Nightingale, J.; Nucita, A.; Patrizii, L.; Popa, V.; Potter, D.; Riccio, G.; Sánchez, A. G.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti, E.; Tramacere, A.; Valiviita, J.; Viel, M.; Hildebrandt, H. Bibcode: 2022A&A...662A..93E Altcode: 2021arXiv211005435L
Aims: We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected.
Methods: We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation.
Results: We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωm, 0, w0, wa at the level of 20-35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy-galaxy lensing, magnification does not improve precision, but it leads to an up to 6σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation. Title: Euclid preparation: XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images Authors: Euclid Collaboration; Bisigello, L.; Conselice, C. J.; Baes, M.; Bolzonella, M.; Brescia, M.; Cavuoti, S.; Cucciati, O.; Humphrey, A.; Hunt, L. K.; Maraston11, C.; Pozzetti, L.; Tortora, C.; van Mierlo, S. E.; Aghanim, N.; Auricchio, N.; Baldi, M.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cimatti, A.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Medinaceli, E.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Rix, H. -W.; Romelli, E.; Roncarelli, M.; Rosset, C.; Rossetti, E.; Saglia, R.; Sapone, D.; Sartoris, B.; Schneider, P.; Scodeggio, M.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Andreon, S.; Boucaud, S. Bardelli A.; Colodro-Conde, C.; Di Ferdinando, D.; Graciá-Carpio, J.; Lindholm, V.; Maino, D.; Mei, S.; Scottez, V.; Sureau, F.; Tenti, M.; Zucca, E.; Borlaff, A. S.; Ballardini, M.; Biviano, A.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Cooray, A.; Coupon, J.; Courtois, H. M.; Cuby, J.; Davini, S.; De Lucia, G.; Desprez, G.; Dole, H.; Escartin, J. A.; Escoffier, S.; Farina, M.; Fotopoulou, S.; Ganga, K.; Garcia-Bellido, J.; George, K.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hook, I.; Huertas-Company, M.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.; Loureiro, A.; Macías-Pérez, J. F.; Magliocchetti, M.; Mainetti, G.; Marcin, S.; Martinelli, M.; Martinet, N.; Metcalf, R. B.; Monaco, P.; Morgante, G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Peel, A.; Potter, D.; Pourtsidou, A.; Pöntinen, M.; Reimberg, P.; Sánchez, A. G.; Sakr, Z.; Schirmer, M.; Sefusatti, E.; Sereno, M.; Stadel, J.; Teyssier, R.; Valieri, C.; Valiviita111, J.; Viel, M. Bibcode: 2022arXiv220614944E Altcode: Next generation telescopes, such as Euclid, Rubin/LSST, and Roman, will open new windows on the Universe, allowing us to infer physical properties for tens of millions of galaxies. Machine learning methods are increasingly becoming the most efficient tools to handle this enormous amount of data, not only as they are faster to apply to data samples than traditional methods, but because they are also often more accurate. Properly understanding their applications and limitations for the exploitation of these data is of utmost importance. In this paper we present an exploration of this topic by investigating how well redshifts, stellar masses, and star-formation rates can be measured with deep learning algorithms for galaxies within data that mimics the Euclid and Rubin/LSST surveys. We find that Deep Learning Neural Networks and Convolutional Neutral Networks (CNN), which are dependent on the parameter space of the sample used for training, perform well in measuring the properties of these galaxies and have an accuracy which is better than traditional methods based on spectral energy distribution fitting. CNNs allow the processing of multi-band magnitudes together with $H_{E}$-band images. We find that the estimates of stellar masses improve with the use of an image, but those of redshift and star-formation rates do not. Our best machine learning results are deriving i) the redshift within a normalised error of less than 0.15 for 99.9% of the galaxies in the sample with S/N>3 in the $H_{E}$-band; ii) the stellar mass within a factor of two ($\sim$0.3 dex) for 99.5% of the considered galaxies; iii) the star-formation rates within a factor of two ($\sim$0.3 dex) for $\sim$70% of the sample. We discuss the implications of our work for application to surveys, mainly but not limited to Euclid and Rubin/LSST, and how measurements of these galaxy parameters can be improved with deep learning. Title: Euclid preparation. I. The Euclid Wide Survey Authors: Euclid Collaboration; Scaramella, R.; Amiaux, J.; Mellier, Y.; Burigana, C.; Carvalho, C. S.; Cuillandre, J. -C.; Da Silva, A.; Derosa, A.; Dinis, J.; Maiorano, E.; Maris, M.; Tereno, I.; Laureijs, R.; Boenke, T.; Buenadicha, G.; Dupac, X.; Gaspar Venancio, L. M.; Gómez-Álvarez, P.; Hoar, J.; Lorenzo Alvarez, J.; Racca, G. D.; Saavedra-Criado, G.; Schwartz, J.; Vavrek, R.; Schirmer, M.; Aussel, H.; Azzollini, R.; Cardone, V. F.; Cropper, M.; Ealet, A.; Garilli, B.; Gillard, W.; Granett, B. R.; Guzzo, L.; Hoekstra, H.; Jahnke, K.; Kitching, T.; Maciaszek, T.; Meneghetti, M.; Miller, L.; Nakajima, R.; Niemi, S. M.; Pasian, F.; Percival, W. J.; Pottinger, S.; Sauvage, M.; Scodeggio, M.; Wachter, S.; Zacchei, A.; Aghanim, N.; Amara, A.; Auphan, T.; Auricchio, N.; Awan, S.; Balestra, A.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Candini, G. P.; Capobianco, V.; Carbone, C.; Carlberg, R. G.; Carretero, J.; Casas, R.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Courbin, F.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dusini, S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Fourmanoit, N.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kohley, R.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Lahav, O.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Merlin, E.; Meylan, G.; Mohr, J. J.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nichol, R. C.; Padilla, C.; Paltani, S.; Peacock, J.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Skottfelt, J.; Stanco, L.; Starck, J. L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Teplitz, H. I.; Toledo-Moreo, R.; Torradeflot, F.; Trifoglio, M.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang, Y.; Welikala, N.; Weller, J.; Wetzstein, M.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Bardelli, S.; Boucaud, A.; Camera, S.; Di Ferdinando, D.; Fabbian, G.; Farinelli, R.; Galeotta, S.; Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei, S.; Neissner, C.; Polenta, G.; Renzi, A.; Romelli, E.; Rosset, C.; Sureau, F.; Tenti, M.; Vassallo, T.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Battaglia, P.; Biviano, A.; Borgani, S.; Bozzo, E.; Cabanac, R.; Cappi, A.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J.; de la Torre, S.; Desai, S.; Dole, H.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg, P.; Fotopoulou, S.; Ganga, K.; Gozaliasl, G.; Hook, I. M.; Keihanen, E.; Kirkpatrick, C. C.; Liebing, P.; Lindholm, V.; Mainetti, G.; Martinelli, M.; Martinet, N.; Maturi, M.; McCracken, H. J.; Metcalf, R. B.; Morgante, G.; Nightingale, J.; Nucita, A.; Patrizii, L.; Potter, D.; Riccio, G.; Sánchez, A. G.; Sapone, D.; Schewtschenko, J. A.; Schultheis, M.; Scottez, V.; Teyssier, R.; Tutusaus, I.; Valiviita, J.; Viel, M.; Vriend, W.; Whittaker, L. Bibcode: 2022A&A...662A.112E Altcode: 2021arXiv210801201S Euclid is a mission of the European Space Agency that is designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (the Euclid Wide Survey: EWS) in visible and near-infrared bands, covering approximately 15 000 deg2 of extragalactic sky in six years. The wide-field telescope and instruments are optimised for pristine point spread function and reduced stray light, producing very crisp images. This paper presents the building of the Euclid reference survey: the sequence of pointings of EWS, deep fields, and calibration fields, as well as spacecraft movements followed by Euclid as it operates in a step-and-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulated the dither pattern at the pixel level to analyse the effective coverage. We used up-to-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints, and background levels; synergies with ground-based coverage were also considered. Via purposely built software, we first generated a schedule for the calibrations and deep fields observations. On a second stage, the RoI was tiled and scheduled with EWS observations, using an algorithm optimised to prioritise the best sky areas, produce a compact coverage, and ensure thermal stability. The result is the optimised reference survey RSD_2021A, which fulfils all constraints and is a good proxy for the final solution. The current EWS covers ≈14 500 deg2. The limiting AB magnitudes (5σ point-like source) achieved in its footprint are estimated to be 26.2 (visible band IE) and 24.5 (for near infrared bands YE, JE, HE); for spectroscopy, the Hα line flux limit is 2 × 10−16 erg−1 cm−2 s−1 at 1600 nm; and for diffuse emission, the surface brightness limits are 29.8 (visible band) and 28.4 (near infrared bands) mag arcsec−2. Title: Euclid: Fast two-point correlation function covariance through linear construction Authors: Keihanen, E.; Lindholm, V.; Monaco, P.; Blot, L.; Carbone, C.; Kiiveri, K.; Sánchez, A. G.; Viitanen, A.; Valiviita, J.; Amara, A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Marulli, F.; Massey, R.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.; Renzi, A.; Rhodes, J.; Romelli, E.; Saglia, R.; Sartoris, B.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Surace, C.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Maino, D.; de la Torre, S. Bibcode: 2022arXiv220511852K Altcode: We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (data-to-random objects ratio M>>1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs of size M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of these. We validate the method with PINOCCHIO simulations in range r = 20-200 Mpc/h, and show that the covariance estimate is unbiased. With M = 50 and with 2 Mpc/h bins, the theoretical speed-up of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and derive a formula for the covariance of covariance. Title: Euclid preparation: XXI. Intermediate-redshift contaminants in the search for $z>6$ galaxies within the Euclid Deep Survey Authors: Euclid Collaboration; van Mierlo, S. E.; Caputi, K. I.; Ashby, M.; Atek, H.; Bolzonella, M.; Bowler, R. A. A.; Brammer, G.; Conselice, C. J.; Cuby, J.; Dayal, P.; Díaz-Sánchez, A.; Finkelstein, S. L.; Hoekstra, H.; Humphrey, A.; Ilbert, O.; McCracken, H. J.; Milvang-Jensen, B.; Oesch, P. A.; Pello, R.; Rodighiero, G.; Schirmer, M.; Toft, S.; Weaver, J. R.; Wilkins, S. M.; Willott, C. J.; Zamorani, G.; Amara, A.; Auricchio, N.; Baldi, M.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Medinaceli, E.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Rossetti, E.; Saglia, R.; Sapone, D.; Sartoris, B.; Schneider, P.; Secroun, A.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Zacchei, A.; Zoubian, J.; Andreon, S.; Bardelli, S.; Boucaud, A.; Graciá-Carpio, J.; Maino, D.; Mauri, N.; Mei, S.; Sureau, F.; Zucca, E.; Aussel, H.; Baccigalupi, C.; Balaguera-Antolínez, A.; Biviano, A.; Blanchard, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Calura, F.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Cooray, A. R.; Coupon, J.; Courtois, H. M.; Crocce, M.; Cucciati, O.; Davini, S.; Dole, H.; Escartin, J. A.; Escoffier, S.; Fabricius, M.; Farina, M.; Ganga, K.; García-Bellido, J.; George, K.; Giacomini, F.; Gozaliasl, G.; Gwyn, S.; Hook, I.; Huertas-Company, M.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Maoli, R.; Martinelli, M.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Monaco, P.; Morgante, G.; Nucita, A. A.; Patrizii, L.; Peel, A.; Pollack, J.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.; Sánchez, A. G.; Scottez, V.; Sefusatti, E.; Stadel, J.; Teyssier, R.; Valiviita, J.; Viel, M. Bibcode: 2022arXiv220502871E Altcode: (Abridged) The Euclid mission is expected to discover thousands of z>6 galaxies in three Deep Fields, which together will cover a ~40 deg2 area. However, the limited number of Euclid bands and availability of ancillary data could make the identification of z>6 galaxies challenging. In this work, we assess the degree of contamination by intermediate-redshift galaxies (z=1-5.8) expected for z>6 galaxies within the Euclid Deep Survey. This study is based on ~176,000 real galaxies at z=1-8 in a ~0.7 deg2 area selected from the UltraVISTA ultra-deep survey, and ~96,000 mock galaxies with 25.3$\leq$H<27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from the fiducial, 28-band photometry, and fit spectral energy distributions (SEDs) to various combinations of these simulated data. Our study demonstrates that identifying z>6 with Euclid data alone will be very effective, with a z>6 recovery of 91(88)% for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z=1-5.8 contaminants amongst apparent z>6 galaxies as observed with Euclid alone is 18%, which is reduced to 4(13)% by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimized to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (I-Y)>2.8 and (Y-J)<1.4 colour criteria can separate contaminants from true z>6 galaxies, although these are applicable to only 54% of the contaminants, as many have unconstrained (I-Y) colours. In the most optimistic scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z>6 sample. For the faint mock sample, colour cuts are infeasible. Title: Euclid: Cosmological forecasts from the void size function Authors: Contarini, S.; Verza, G.; Pisani, A.; Hamaus, N.; Sahlén, M.; Carbone, C.; Dusini, S.; Marulli, F.; Moscardini, L.; Renzi, A.; Sirignano, C.; Stanco, L.; Aubert, M.; Bonici, M.; Castignani, G.; Courtois, H. M.; Escoffier, S.; Guinet, D.; Kovacs, A.; Lavaux, G.; Massara, E.; Nadathur, S.; Pollina, G.; Ronconi, T.; Ruppin, F.; Sakr, Z.; Veropalumbo, A.; Wandelt, B. D.; Amara, A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirri, G.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Maino, D.; Mei, S. Bibcode: 2022arXiv220511525C Altcode: The Euclid mission $-$ with its spectroscopic galaxy survey covering a sky area over $15\,000 \ \mathrm{deg}^2$ in the redshift range $0.9<z<1.8\ -$ will provide a sample of tens of thousands of cosmic voids. This paper explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identify voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We model the void size function considering a state-of-the art methodology: we rely on the volume conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We find an excellent agreement between model predictions and measured mock void number counts. We compute updated forecasts for the Euclid mission on DE from the void size function and provide reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analyse two different cosmological models for DE: the first described by a constant DE equation of state parameter, $w$, and the second by a dynamic equation of state with coefficients $w_0$ and $w_a$. We forecast $1\sigma$ errors on $w$ lower than the $10\%$, and we estimate an expected figure of merit (FoM) for the dynamical DE scenario $\mathrm{FoM}_{w_0,w_a} = 17$ when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes. Title: Euclid: Constraining ensemble photometric redshift distributions with stacked spectroscopy Authors: Cagliari, M. S.; Granett, B. R.; Guzzo, L.; Bolzonella, M.; Pozzetti, L.; Tutusaus, I.; Camera, S.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Ealet, A.; Ferriol, S.; Fourmanoit, N.; Frailis, M.; Franceschi, E.; Franzetti, P.; Garilli, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Scodeggio, M.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Baldi, M.; Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Vassallo, T.; Humphrey, A. Bibcode: 2022A&A...660A...9C Altcode: 2021arXiv210907303C Context. The ESA Euclid mission will produce photometric galaxy samples over 15 000 square degrees of the sky that will be rich for clustering and weak lensing statistics. The accuracy of the cosmological constraints derived from these measurements will depend on the knowledge of the underlying redshift distributions based on photometric redshift calibrations.
Aims: A new approach is proposed to use the stacked spectra from Euclid slitless spectroscopy to augment broad-band photometric information to constrain the redshift distribution with spectral energy distribution fitting. The high spectral resolution available in the stacked spectra complements the photometry and helps to break the colour-redshift degeneracy and constrain the redshift distribution of galaxy samples.
Methods: We modelled the stacked spectra as a linear mixture of spectral templates. The mixture may be inverted to infer the underlying redshift distribution using constrained regression algorithms. We demonstrate the method on simulated Vera C. Rubin Observatory and Euclid mock survey data sets based on the Euclid Flagship mock galaxy catalogue. We assess the accuracy of the reconstruction by considering the inference of the baryon acoustic scale from angular two-point correlation function measurements.
Results: We selected mock photometric galaxy samples at redshift z > 1 using the self-organising map algorithm. Considering the idealised case without dust attenuation, we find that the redshift distributions of these samples can be recovered with 0.5% accuracy on the baryon acoustic scale. The estimates are not significantly degraded by the spectroscopic measurement noise due to the large sample size. However, the error degrades to 2% when the dust attenuation model is left free. We find that the colour degeneracies introduced by attenuation limit the accuracy considering the wavelength coverage of Euclid near-infrared spectroscopy.

This paper is published on behalf of the Euclid Consortium. Title: Euclid: Forecast constraints on consistency tests of the ΛCDM model Authors: Nesseris, S.; Sapone, D.; Martinelli, M.; Camarena, D.; Marra, V.; Sakr, Z.; Garcia-Bellido, J.; Martins, C. J. A. P.; Clarkson, C.; Da Silva, A.; Fleury, P.; Lombriser, L.; Mimoso, J. P.; Casas, S.; Pettorino, V.; Tutusaus, I.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Poncet, M.; Popa, L.; Racca, G. D.; Raison, F.; Rhodes, J.; Roncarelli, M.; Saglia, R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.; Medinaceli, E.; Mei, S.; Renzi, A. Bibcode: 2022A&A...660A..67N Altcode: 2021arXiv211011421N Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics.
Aims: We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant Λ and the cold dark matter (ΛCDM) model in the redshift range 0 < z < 1.8.
Methods: We considered both currently available data and simulated Euclid and external data products based on a ΛCDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaître-Tolman-Bondi model with a cosmological constant Λ, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model.
Results: We find that in combination with external probes, Euclid can improve current constraints on null tests of the ΛCDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from ΛCDM.
Conclusions: Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm.

This paper is published on behalf of the Euclid Consortium. Title: Euclid: Covariance of weak lensing pseudo-C estimates. Calculation, comparison to simulations, and dependence on survey geometry Authors: Upham, R. E.; Brown, M. L.; Whittaker, L.; Amara, A.; Auricchio, N.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Marggraf, O.; Markovic, K.; Marulli, F.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.; Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valenziano, L.; Wang, Y.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.; Cardone, V. F.; Fabbian, G.; Polenta, G.; Renzi, A.; Joachimi, B.; Hall, A.; Loureiro, A.; Sellentin, E. Bibcode: 2022A&A...660A.114U Altcode: 2021arXiv211207341U An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-C estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but farther away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters that describe matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10-20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component.

This paper is published on behalf of the Euclid Consortium. Title: Euclid: Searching for pair-instability supernovae with the Deep Survey Authors: Moriya, T. J.; Inserra, C.; Tanaka, M.; Cappellaro, E.; Della Valle, M.; Hook, I.; Kotak, R.; Longo, G.; Mannucci, F.; Mattila, S.; Tao, C.; Altieri, B.; Amara, A.; Auricchio, N.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; McCracken, H. J.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Poncet, M.; Popa, L.; Raison, F.; Rhodes, J.; Riccio, G.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Wang, Y.; Zamorani, G.; Zoubian, J.; Andreon, S.; Scottez, V.; Morris, P. W. Bibcode: 2022arXiv220408727M Altcode: Pair-instability supernovae are theorized supernovae that have not yet been observationally confirmed. They are predicted to exist in low-metallicity environments. Because overall metallicity becomes lower at higher redshifts, deep near-infrared transient surveys probing high-redshift supernovae are suitable to discover pair-instability supernovae. The Euclid satellite, which is planned to be launched in 2023, has a near-infrared wide-field instrument that is suitable for a high-redshift supernova survey. The Euclid Deep Survey is planned to make regular observations of three Euclid Deep Fields (40 deg2 in total) spanning the Euclid's 6 year primary mission period. While the observations of the Euclid Deep Fields are not frequent, we show that the predicted long duration of pair-instability supernovae would allow us to search for high-redshift pair-instability supernovae with the Euclid Deep Survey. Based on the current observational plan of the Euclid mission, we conduct survey simulations in order to estimate the expected numbers of pair-instability supernova discoveries. We find that up to several hundred pair-instability supernovae at z < ~ 3.5 can be discovered within the Euclid Deep Survey. We also show that pair-instability supernova candidates can be efficiently identified by their duration and color that can be determined with the current Euclid Deep Survey plan. We conclude that the Euclid mission can lead to the first confirmation of pair-instability supernovae if their event rates are as high as those predicted by recent theoretical studies. We also update the expected numbers of superluminous supernova discoveries in the Euclid Deep Survey based on the latest observational plan. Title: The Solar ALMA Science Archive (SALSA). First release, SALAT, and FITS header standard Authors: Henriques, Vasco M. J.; Jafarzadeh, Shahin; Guevara Gómez, Juan Camilo; Eklund, Henrik; Wedemeyer, Sven; Szydlarski, Mikołaj; Haugan, Stein Vidar H.; Mohan, Atul Bibcode: 2022A&A...659A..31H Altcode: 2021arXiv210902374H In December 2016, the Atacama Large Millimeter/submillimeter Array (ALMA) carried out the first regular observations of the Sun. These early observations and the reduction of the respective data posed a challenge due to the novelty and complexity of observing the Sun with ALMA. The difficulties with producing science-ready, time-resolved imaging products in a format familiar to and usable by solar physicists based on the measurement sets delivered by ALMA had limited the availability of such data to this point. With the development of the Solar ALMA Pipeline, it has now become possible to routinely reduce such data sets. As a result, a growing number of science-ready solar ALMA data sets are now offered in the form of the Solar ALMA Science Archive (SALSA). So far, SALSA contains primarily time series of single-pointing interferometric images at cadences of one or two seconds, accompanied by the respective single-dish full-disc solar images. The data arrays are provided in FITS format. We also present the first version of a standardised header format that accommodates future expansions and fits within the scope of other standards including the ALMA Science Archive itself and SOLARNET. The headers include information designed to aid the reproduction of the imaging products from the raw data. Links to co-observations, if available, with a focus on those of the Interface Region Imaging Spectrograph, are also provided. SALSA is accompanied by the Solar ALMA Library of Auxiliary Tools (SALAT), which contains Interactive Data Language and Python routines for convenient loading and a quick-look analysis of SALSA data.

Movies associated to Figs. 3 and 4 are available at https://www.aanda.org Title: Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids Authors: Hamaus, N.; Aubert, M.; Pisani, A.; Contarini, S.; Verza, G.; Cousinou, M. -C.; Escoffier, S.; Hawken, A.; Lavaux, G.; Pollina, G.; Wandelt, B. D.; Weller, J.; Bonici, M.; Carbone, C.; Guzzo, L.; Kovacs, A.; Marulli, F.; Massara, E.; Moscardini, L.; Ntelis, P.; Percival, W. J.; Radinović, S.; Sahlén, M.; Sakr, Z.; Sánchez, A. G.; Winther, H. A.; Auricchio, N.; Awan, S.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.; Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Rebolo, R.; Rhodes, J.; Rix, H.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Starck, J. -L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.; Mei, S.; Neissner, C.; Romelli, E. Bibcode: 2022A&A...658A..20H Altcode: 2021arXiv210810347H Euclid is poised to survey galaxies across a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have their spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein and the unique benefit they provide for cosmological studies. In particular, we study the imprints of dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we made use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arranged the data into four adjacent redshift bins, each of which contains about 11 000 voids and we estimated the stacked void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtained constraints on f/b and DMH, where f is the linear growth rate of density fluctuations, b the galaxy bias, DM the comoving angular diameter distance, and H the Hubble rate. In addition, we marginalized over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach, Euclid will be able to reach a relative precision of about 4% on measurements of f/b and 0.5% on DMH in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter, w, for dark energy will be measured with a precision of about 10%, consistent with previous more approximate forecasts.

This paper is published on behalf of the Euclid Consortium. Title: Euclid preparation. XVII. Cosmic Dawn Survey: Spitzer Space Telescope observations of the Euclid deep fields and calibration fields Authors: Euclid Collaboration; Moneti, A.; McCracken, H. J.; Shuntov, M.; Kauffmann, O. B.; Capak, P.; Davidzon, I.; Ilbert, O.; Scarlata, C.; Toft, S.; Weaver, J.; Chary, R.; Cuby, J.; Faisst, A. L.; Masters, D. C.; McPartland, C.; Mobasher, B.; Sanders, D. B.; Scaramella, R.; Stern, D.; Szapudi, I.; Teplitz, H.; Zalesky, L.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Granett, B. R.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.; Camera, S.; Graciá-Carpio, J.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Sureau, F.; Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Bernardeau, F.; Biviano, A.; Bolzonella, M.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Di Ferdinando, D.; Farina, M.; Finelli, F.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Gozaliasl, G.; Hook, I.; Joachimi, B.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Maoli, R.; Martinelli, M.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Morgante, G.; Morisset, N.; Nucita, A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Sánchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tubio, O.; Tutusaus, I.; Valiviita, J.; Viel, M.; Hildebrandt, H. Bibcode: 2022A&A...658A.126E Altcode: 2021arXiv211013928M We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope's Infrared Array Camera (IRAC). We combined these new observations with all relevant IRAC archival data of these fields in order to produce the deepest possible mosaics of these regions. In total, these observations represent nearly 11 % of the total Spitzer Space Telescope mission time. The resulting mosaics cover a total of approximately 71.5 deg2 in the 3.6 and 4.5 μm bands, and approximately 21.8 deg2 in the 5.8 and 8 μm bands. They reach at least 24 AB magnitude (measured to 5σ, in a 2″.5 aperture) in the 3.6 μm band and up to ∼5 mag deeper in the deepest regions. The astrometry is tied to the Gaia astrometric reference system, and the typical astrometric uncertainty for sources with 16 < [3.6]< 19 is ≲0″.15. The photometric calibration is in excellent agreement with previous WISE measurements. We extracted source number counts from the 3.6 μm band mosaics, and they are in excellent agreement with previous measurements. Given that the Spitzer Space Telescope has now been decommissioned, these mosaics are likely to be the definitive reduction of these IRAC data. This survey therefore represents an essential first step in assembling multi-wavelength data on the Euclid deep fields, which are set to become some of the premier fields for extragalactic astronomy in the 2020s. Title: Euclid preparation. XVI. Exploring the ultra-low surface brightness Universe with Euclid/VIS Authors: Euclid Collaboration; Borlaff, A. S.; Gómez-Alvarez, P.; Altieri, B.; Marcum, P. M.; Vavrek, R.; Laureijs, R.; Kohley, R.; Buitrago, F.; Cuillandre, J. -C.; Duc, P. -A.; Gaspar Venancio, L. M.; Amara, A.; Andreon, S.; Auricchio, N.; Azzollini, R.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Bender, R.; Biviano, A.; Bodendorf, C.; Bonino, D.; Bozzo, E.; Branchini, E.; Brescia, M.; Brinchmann, J.; Burigana, C.; Cabanac, R.; Camera, S.; Candini, G. P.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C. S.; Casas, S.; Castander, F. J.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Coupon, J.; Courtois, H. M.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Di Ferdinando, D.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Fabricius, M.; Farina, M.; Farrens, S.; Ferreira, P. G.; Ferriol, S.; Finelli, F.; Flose-Reimberg, P.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Ganga, K.; Garilli, B.; Gillis, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kirkpatrick, C. C.; Kitching, T.; Knapen, J. H.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Liebing, P.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maino, D.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinelli, M.; Martinet, N.; Martínez-Delgado, D.; Marulli, F.; Massey, R.; Maturi, M.; Maurogordato, S.; Medinaceli, E.; Mei, S.; Meneghetti, M.; Merlin, E.; Metcalf, R. B.; Meylan, G.; Moresco, M.; Morgante, G.; Moscardini, L.; Munari, E.; Nakajima, R.; Neissner, C.; Niemi, S. M.; Nightingale, J. W.; Nucita, A.; Padilla, C.; Paltani, S.; Pasian, F.; Patrizii, L.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Potter, D.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rosset, C.; Rossetti, E.; Saglia, R.; Sánchez, A. G.; Sapone, D.; Sauvage, M.; Schneider, P.; Scottez, V.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Skottfelt, J.; Stanco, L.; Starck, J. L.; Sureau, F.; Tallada-Crespí, P.; Taylor, A. N.; Tenti, M.; Tereno, I.; Teyssier, R.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Viel, M.; Wang, Y.; Weller, J.; Whittaker, L.; Zacchei, A.; Zamorani, G.; Zucca, E. Bibcode: 2022A&A...657A..92E Altcode: 2021arXiv210810321B Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∼15 000 deg2), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested.
Aims: We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey.
Methods: We simulated a realistic set of Euclid/VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view.
Results: We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of μlim = 29.5−0.27+0.08 mag arcsec−2 (3σ, 10 × 10 arcsec2) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid/VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-to-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below μlim = 31 mag arcsec−2 and beyond. Title: Euclid preparation. XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models Authors: Euclid Collaboration; Bretonnière, H.; Huertas-Company, M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.; Castellano, M.; Brinchmann, J.; Conselice, C. J.; Dole, H.; Cabanac, R.; Courtois, H. M.; Castander, F. J.; Duc, P. A.; Fosalba, P.; Guinet, D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere, A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Baldi, M.; Bardelli, S.; Camera, S.; Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Biviano, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; de la Torre, S.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Gozaliasl, G.; Hook, I. M.; Joachimi, B.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Maoli, R.; Martinelli, M.; Martinet, N.; McCracken, H. J.; Metcalf, R. B.; Morgante, G.; Morisset, N.; Nightingale, J.; Nucita, A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Sánchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tutusaus, I.; Valiviita, J.; Viel, M.; Whittaker, L.; Knapen, J. H. Bibcode: 2022A&A...657A..90E Altcode: 2021arXiv210512149B; 2021arXiv210512149E We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M (resp. 109.6 M) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies. Title: Euclid preparation. XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis Authors: Euclid Collaboration; Ilić, S.; Aghanim, N.; Baccigalupi, C.; Bermejo-Climent, J. R.; Fabbian, G.; Legrand, L.; Paoletti, D.; Ballardini, M.; Archidiacono, M.; Douspis, M.; Finelli, F.; Ganga, K.; Hernández-Monteagudo, C.; Lattanzi, M.; Marinucci, D.; Migliaccio, M.; Carbone, C.; Casas, S.; Martinelli, M.; Tutusaus, I.; Natoli, P.; Ntelis, P.; Pagano, L.; Wenzl, L.; Gruppuso, A.; Kitching, T.; Langer, M.; Mauri, N.; Patrizii, L.; Renzi, A.; Sirri, G.; Stanco, L.; Tenti, M.; Vielzeuf, P.; Lacasa, F.; Polenta, G.; Yankelevich, V.; Blanchard, A.; Sakr, Z.; Pourtsidou, A.; Camera, S.; Cardone, V. F.; Kilbinger, M.; Kunz, M.; Markovic, K.; Pettorino, V.; Sánchez, A. G.; Sapone, D.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kohley, R.; Kubik, B.; Kümmel, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Marulli, F.; Massey, R.; Maurogordato, S.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Starck, J. L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Medinaceli, E.; Mei, S.; Rosset, C.; Sureau, F.; Vassallo, T.; Zacchei, A.; Andreon, S.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Biviano, A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J.; de la Torre, S.; Di Ferdinando, D.; Dole, H.; Farina, M.; Ferreira, P. G.; Flose-Reimberg, P.; Galeotta, S.; Gozaliasl, G.; Graciá-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Morgante, G.; Neissner, C.; Nightingale, J.; Nucita, A. A.; Potter, D.; Riccio, G.; Romelli, E.; Schirmer, M.; Schultheis, M.; Scottez, V.; Teyssier, R.; Tramacere, A.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca, E. Bibcode: 2022A&A...657A..91E Altcode: 2021arXiv210608346E; 2021arXiv210608346I The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid-only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data. Title: KiDS & Euclid: Cosmological implications of a pseudo angular power spectrum analysis of KiDS-1000 cosmic shear tomography Authors: Loureiro, A.; Whittaker, L.; Spurio Mancini, A.; Joachimi, B.; Cuceu, A.; Asgari, M.; Stölzner, B.; Tröster, T.; Wright, A. H.; Bilicki, M.; Dvornik, A.; Giblin, B.; Heymans, C.; Hildebrandt, H.; Shan, H.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kuijken, K.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.; Rhodes, J.; Rix, H.; Roncarelli, M.; Saglia, R.; Schneider, P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck, J. L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.; Farinelli, R.; Polenta, G.; Tessore, N. Bibcode: 2021arXiv211006947L Altcode: We present a tomographic weak lensing analysis of the Kilo Degree Survey Data Release 4 (KiDS-1000), using a new pseudo angular power spectrum estimator (pseudo-$C_{\ell}$) under development for the ESA Euclid mission. Over 21 million galaxies with shape information are divided into five tomographic redshift bins, ranging from 0.1 to 1.2 in photometric redshift. We measured pseudo-$C_{\ell}$ using eight bands in the multipole range $76<\ell<1500$ for auto- and cross-power spectra between the tomographic bins. A series of tests were carried out to check for systematic contamination from a variety of observational sources including stellar number density, variations in survey depth, and point spread function properties. While some marginal correlations with these systematic tracers were observed, there is no evidence of bias in the cosmological inference. B-mode power spectra are consistent with zero signal, with no significant residual contamination from E/B-mode leakage. We performed a Bayesian analysis of the pseudo-$C_{\ell}$ estimates by forward modelling the effects of the mask. Assuming a spatially flat $\Lambda$CDM cosmology, we constrained the structure growth parameter $S_8 = \sigma_8(\Omega_{\rm m}/0.3)^{1/2} = 0.754_{-0.029}^{+0.027}$. When combining cosmic shear from KiDS-1000 with baryon acoustic oscillation and redshift space distortion data from recent Sloan Digital Sky Survey (SDSS) measurements of luminous red galaxies, as well as the Lyman-$\alpha$ forest and its cross-correlation with quasars, we tightened these constraints to $S_8 = 0.771^{+0.006}_{-0.032}$. These results are in very good agreement with previous KiDS-1000 and SDSS analyses and confirm a $\sim 3\sigma$ tension with early-Universe constraints from cosmic microwave background experiments. Title: VizieR Online Data Catalog: Euclid preparation. XIV. C3R2 survey DR3 (Stanford+, 2021) Authors: Stanford, S. A.; Masters, D.; Darvish, B.; Stern, D.; Cohen, J. G.; Capak, P.; Hernitschek, N.; Davidzon, I.; Rhodes, J.; Sanders, D. B.; Mobasher, B.; Castander, F. J.; Paltani, S.; Aghanim, N.; Amara, A.; Auricchio, N.; Balestra, A.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kummel, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang, Y.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.; Copin, Y.; Kermiche, S.; Kohley, R.; Medinaceli, E.; Mei, S.; Moresco, M.; Morin, B.; Munari, E.; Polenta, G.; Sureau, F.; Tallada Crespi, P.; Vassallo, T.; Zacchei, A.; Andreon, S.; Aussel, H.; Baccigalupi, C.; Balaguera-Antolinez, A.; Baldi, M.; Bardelli, S.; Biviano, A.; Borsato, E.; Bozzo, E.; Burigana, C.; Cabanac, R.; Camera, S.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J. -G.; da Silva, A.; de la Torre, S.; di Ferdinando, D.; Duncan, C. A. J.; Dupac, X.; Fabricius, M.; Farina, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Gillard, W.; Gozaliasl, G.; Gracia-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Martinet, N.; Marulli, F.; Maturi, M.; Maurogordato, S.; Metcalf, R. B.; Nakajima, R.; Neissner, C.; Nightingale, J. W.; Nucita, A. A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Romelli, E.; Sanchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Stanco, L.; Tenti, M.; Teyssier, R.; Torradeflot, F.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca, E. Bibcode: 2021yCat..22560009S Altcode: The observations were carried out at the Keck Observatory located on Maunakea in Hawaii. Both of the two 10m telescopes were used, as the Low Resolution Imaging Spectrometer (LRIS) and Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) are located on KeckI and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on KeckII. The 19 observing nights span 2017 Dec 11 to 2020 Oct 19.

Observations for DR3 were carried out essentially in the same manner as described in M17 (Masters+ 2017, J/ApJ/841/111) and M19 (Masters+ 2019, J/ApJ/877/81) for the previous data releases.

(2 data files). Title: Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data Authors: Martinelli, M.; Martins, C. J. A. P.; Nesseris, S.; Tutusaus, I.; Blanchard, A.; Camera, S.; Carbone, C.; Casas, S.; Pettorino, V.; Sakr, Z.; Yankelevich, V.; Sapone, D.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Corcione, L.; Costille, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Ealet, A.; Ferriol, S.; Frailis, M.; Franceschi, E.; Garilli, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kiessling, A.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Starck, J. -L.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valenziano, L.; Wang, Y.; Zamorani, G.; Zoubian, J.; Baldi, M.; Brescia, M.; Congedo, G.; Conversi, L.; Copin, Y.; Fabbian, G.; Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Vassallo, T. Bibcode: 2021A&A...654A.148M Altcode: 2021arXiv210509746M In physically realistic, scalar-field-based dynamical dark energy models (including, e.g., quintessence), one naturally expects the scalar field to couple to the rest of the model's degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence in the fine-structure constant and a violation of the weak equivalence principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, α, and local experimental constraints, and it includes both parametric and non-parametric methods. For the astrophysical measurements of α, we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements that are expected to be available in the 2030s. Our parametric analysis shows that in the latter case, the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between 8% and 26%, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.

This paper is published on behalf of the Euclid Consortium. Title: Euclid: Estimation of the Impact of Correlated Readout Noise for Flux Measurements with the Euclid NISP Instrument Authors: Jiménez Muñoz, A.; Macías-Pérez, J.; Secroun, A.; Gillard, W.; Kubik, B.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Ealet, A.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Medinaceli, E.; Mei, S.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sauvage, M.; Scaramella, R.; Schneider, P.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Tavagnacco, D.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Valenziano, L.; Vassallo, T.; Verdoes Kleijn, G. A.; Wang, Y.; Weller, J.; Wetzstein, M.; Zamorani, G.; Zoubian, J. Bibcode: 2021PASP..133i4502J Altcode: 2021arXiv210412752J The Euclid satellite, to be launched by ESA in 2022, will be a major instrument for cosmology for the next decades. Euclid is composed of two instruments: the Visible instrument and the Near Infrared Spectrometer and Photometer (NISP). In this work, we estimate the implications of correlated readout noise in the NISP detectors for the final in-flight flux measurements. Considering the multiple accumulated readout mode, for which the UTR (Up The Ramp) exposure frames are averaged in groups, we derive an analytical expression for the noise covariance matrix between groups in the presence of correlated noise. We also characterize the correlated readout noise properties in the NISP engineering-grade detectors using long dark integrations. For this purpose, we assume a (1/f) α-like noise model and fit the model parameters to the data, obtaining typical values of $\sigma ={19.7}_{-0.8}^{+1.1}$ e- Hz-0.5, ${f}_{\mathrm{knee}}=({5.2}_{-1.3}^{+1.8})\times {10}^{-3}\,\mathrm{Hz}$ and $\alpha ={1.24}_{-0.21}^{+0.26}$ . Furthermore, via realistic simulations and using a maximum likelihood flux estimator we derive the bias between the input flux and the recovered one. We find that using our analytical expression for the covariance matrix of the correlated readout noise we diminish this bias by up to a factor of four with respect to the white noise approximation for the covariance matrix. Finally, we conclude that the final bias on the in-flight NISP flux measurements should still be negligible even in the white readout noise approximation, which is taken as a baseline for the Euclid on-board processing to estimate the on-sky flux. * This paper is published on behalf of the Euclid Consortium. Title: Euclid Preparation. XIV. The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Data Release 3 Authors: Stanford, S. A.; Masters, D.; Darvish, B.; Stern, D.; Cohen, J. G.; Capak, P.; Hernitschek, N.; Davidzon, I.; Rhodes, J.; Sanders, D. B.; Mobasher, B.; Castander, F. J.; Paltani, S.; Aghanim, N.; Amara, A.; Auricchio, N.; Balestra, A.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang, Y.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.; Copin, Y.; Kermiche, S.; Kohley, R.; Medinaceli, E.; Mei, S.; Moresco, M.; Morin, B.; Munari, E.; Polenta, G.; Sureau, F.; Tallada Crespí, P.; Vassallo, T.; Zacchei, A.; Andreon, S.; Aussel, H.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Biviano, A.; Borsato, E.; Bozzo, E.; Burigana, C.; Cabanac, R.; Camera, S.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J. -G.; Da Silva, A.; de la Torre, S.; Di Ferdinando, D.; Duncan, C. A. J.; Dupac, X.; Fabricius, M.; Farina, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Gillard, W.; Gozaliasl, G.; Graciá-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Martinet, N.; Marulli, F.; Maturi, M.; Maurogordato, S.; Metcalf, R. B.; Nakajima, R.; Neissner, C.; Nightingale, J. W.; Nucita, A. A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Romelli, E.; Sánchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Stanco, L.; Tenti, M.; Teyssier, R.; Torradeflot, F.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca, E.; Euclid Collaboration Bibcode: 2021ApJS..256....9S Altcode: 2021arXiv210611367S; 2021arXiv210611367E The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i ~ 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage IV dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < zp < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman. Title: SSTRED: Data- and metadata-processing pipeline for CHROMIS and CRISP Authors: Löfdahl, Mats G.; Hillberg, Tomas; de la Cruz Rodríguez, Jaime; Vissers, Gregal; Andriienko, Oleksii; Scharmer, Göran B.; Haugan, Stein V. H.; Fredvik, Terje Bibcode: 2021A&A...653A..68L Altcode: 2018arXiv180403030L Context. Data from ground-based, high-resolution solar telescopes can only be used for science with calibrations and processing, which requires detailed knowledge about the instrumentation. Space-based solar telescopes provide science-ready data, which are easier to work with for researchers whose expertise is in the interpretation of data. Recently, data-processing pipelines for ground-based instruments have been constructed.
Aims: We aim to provide observers with a user-friendly data pipeline for data from the Swedish 1-meter Solar Telescope (SST) that delivers science-ready data together with the metadata needed for proper interpretation and archiving.
Methods: We briefly describe the CHROMospheric Imaging Spectrometer (CHROMIS) instrument, including its (pre)filters, as well as recent upgrades to the CRisp Imaging SpectroPolarimeter (CRISP) prefilters and polarization optics. We summarize the processing steps from raw data to science-ready data cubes in FITS files. We report calibrations and compensations for data imperfections in detail. Misalignment of Ca II data due to wavelength-dependent dispersion is identified, characterized, and compensated for. We describe intensity calibrations that remove or reduce the effects of filter transmission profiles as well as solar elevation changes. We present REDUX, a new version of the MOMFBD image restoration code, with multiple enhancements and new features. It uses projective transforms for the registration of multiple detectors. We describe how image restoration is used with CRISP and CHROMIS data. The science-ready output is delivered in FITS files, with metadata compliant with the SOLARNET recommendations. Data cube coordinates are specified within the World Coordinate System (WCS). Cavity errors are specified as distortions of the WCS wavelength coordinate with an extension of existing WCS notation. We establish notation for specifying the reference system for Stokes vectors with reference to WCS coordinate directions. The CRIsp SPectral EXplorer (CRISPEX) data-cube browser has been extended to accept SSTRED output and to take advantage of the SOLARNET metadata.
Results: SSTRED is a mature data-processing pipeline for imaging instruments, developed and used for the SST/CHROMIS imaging spectrometer and the SST/CRISP spectropolarimeter. SSTRED delivers well-characterized, science-ready, archival-quality FITS files with well-defined metadata. The SSTRED code, as well as REDUX and CRISPEX, is freely available through git repositories. Title: Euclid : Effects of sample covariance on the number counts of galaxy clusters Authors: Fumagalli, A.; Saro, A.; Borgani, S.; Castro, T.; Costanzi, M.; Monaco, P.; Munari, E.; Sefusatti, E.; Amara, A.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, V.; Carbone, C.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Ealet, A.; Fosalba, P.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Giocoli, C.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.; Mei, S.; Moresco, M.; Vassallo, T. Bibcode: 2021A&A...652A..21F Altcode: 2021arXiv210208914F
Aims: We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from cluster number counts, in the context of the Euclid survey.
Methods: By analysing 1000 Euclid-like light cones, produced with the PINOCCHIO approximate method, we validated the analytical model of Hu & Kravtsov (2003, ApJ, 584, 702) for the covariance matrix, which takes into account both sources of statistical error. Then, we used such a covariance to define the likelihood function that is better equipped to extract cosmological information from cluster number counts at the level of precision that will be reached by the future Euclid photometric catalogs of galaxy clusters. We also studied the impact of the cosmology dependence of the covariance matrix on the parameter constraints.
Results: The analytical covariance matrix reproduces the variance measured from simulations within the 10 percent; such a difference has no sizeable effect on the error of cosmological parameter constraints at this level of statistics. Also, we find that the Gaussian likelihood with full covariance is the only model that provides an unbiased inference of cosmological parameters without underestimating the errors, and that the cosmology-dependence of the covariance must be taken into account.

This paper is published on behalf of the Euclid Consortium. Title: Euclid: Forecasts for k-cut 3×2 Point Statistics Authors: Taylor, Peter L.; Kitching, T.; Cardone, V. F.; Ferté, A.; Huff, E. M.; Bernardeau, F.; Rhodes, J.; Deshpande, A. C.; Tutusaus, I.; Pourtsidou, Alkistis; Camera, S.; Carbone, C.; Casas, S.; Martinelli, M.; Pettorino, V.; Sakr, Z.; Sapone, D.; Yankelevich, V.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Boucaud, A.; Branchini, Enzo; Brescia, M.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Corcione, L.; Cropper, Mark; Franceschi, E.; Garilli, B.; Gillis, B.; Giocoli, C.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, Knud; Kermiche, S.; Kilbinger, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, Per B.; Lloro, I.; Marggraf, O.; Markovic, K.; Massey, R.; Mei, S.; Medinaceli, E.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, Lauro; Niemi, S.; Padilla, C.; Pasian, F.; Paltani, S.; Pedersen, K.; Pires, S.; Percival, Will J.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, Peter; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Sureau, F.; Crespí, P. Tallada; Tavagnacco, D.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Yun; Weller, Jochen; Zacchei, A.; Zoubian, J. Bibcode: 2021OJAp....4E...6T Altcode: 2020arXiv201204672T Modelling uncertainties at small scales, i.e. high $k$ in the power spectrum $P(k)$, due to baryonic feedback, nonlinear structure growth and the fact that galaxies are biased tracers poses a significant obstacle to fully leverage the constraining power of the {\it Euclid} wide-field survey. $k$-cut cosmic shear has recently been proposed as a method to optimally remove sensitivity to these scales while preserving usable information. In this paper we generalise the $k$-cut cosmic shear formalism to $3 \times 2$ point statistics and estimate the loss of information for different $k$-cuts in a $3 \times 2$ point analysis of the {\it Euclid} data. Extending the Fisher matrix analysis of~\citet{blanchard2019euclid}, we assess the degradation in constraining power for different $k$-cuts. We work in the idealised case and assume the galaxy bias is linear, the covariance is Gaussian, while neglecting uncertainties due to photo-z errors and baryonic feedback. We find that taking a $k$-cut at $2.6 \ h \ {\rm Mpc} ^{-1}$ yields a dark energy Figure of Merit (FOM) of 1018. This is comparable to taking a weak lensing cut at $\ell = 5000$ and a galaxy clustering and galaxy-galaxy lensing cut at $\ell = 3000$ in a traditional $3 \times 2$ point analysis. We also find that the fraction of the observed galaxies used in the photometric clustering part of the analysis is one of the main drivers of the FOM. Removing $50 \% \ (90 \%)$ of the clustering galaxies decreases the FOM by $19 \% \ (62 \%)$. Given that the FOM depends so heavily on the fraction of galaxies used in the clustering analysis, extensive efforts should be made to handle the real-world systematics present when extending the analysis beyond the luminous red galaxy (LRG) sample. Title: Euclid preparation. XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography Authors: Euclid Collaboration; Ilbert, O.; de la Torre, S.; Martinet, N.; Wright, A. H.; Paltani, S.; Laigle, C.; Davidzon, I.; Jullo, E.; Hildebrandt, H.; Masters, D. C.; Amara, A.; Conselice, C. J.; Andreon, S.; Auricchio, N.; Azzollini, R.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Balestra, A.; Bardelli, S.; Bender, R.; Biviano, A.; Bodendorf, C.; Bonino, D.; Borgani, S.; Boucaud, A.; Bozzo, E.; Branchini, E.; Brescia, M.; Burigana, C.; Cabanac, R.; Camera, S.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C. S.; Casas, S.; Castander, F. J.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Coupon, J.; Courtois, H. M.; Cropper, M.; Cuby, J.; Da Silva, A.; Degaudenzi, H.; Di Ferdinando, D.; Dubath, F.; Duncan, C.; Dupac, X.; Dusini, S.; Ealet, A.; Fabricius, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Fosalba, P.; Fotopoulou, S.; Franceschi, E.; Franzetti, P.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kiessling, A.; Kirkpatrick, C. C.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maino, D.; Maiorano, E.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maturi, M.; Mauri, N.; Maurogordato, S.; McCracken, H. J.; Medinaceli, E.; Mei, S.; Metcalf, R. Benton; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nakajima, R.; Neissner, C.; Niemi, S.; Nightingale, J.; Padilla, C.; Pasian, F.; Patrizii, L.; Pedersen, K.; Pello, R.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Potter, D.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sánchez, A. G.; Sapone, D.; Schneider, P.; Schrabback, T.; Scottez, V.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Sureau, F.; Tallada Crespá, P.; Tenti, M.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tramacere, A.; Valentijn, E. A.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Wang, Y.; Welikala, N.; Weller, J.; Whittaker, L.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Zucca, E. Bibcode: 2021A&A...647A.117E Altcode: 2021arXiv210102228E The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450). Title: Euclid preparation. X. The Euclid photometric-redshift challenge Authors: Euclid Collaboration; Desprez, G.; Paltani, S.; Coupon, J.; Almosallam, I.; Alvarez-Ayllon, A.; Amaro, V.; Brescia, M.; Brodwin, M.; Cavuoti, S.; De Vicente-Albendea, J.; Fotopoulou, S.; Hatfield, P. W.; Hartley, W. G.; Ilbert, O.; Jarvis, M. J.; Longo, G.; Rau, M. M.; Saha, R.; Speagle, J. S.; Tramacere, A.; Castellano, M.; Dubath, F.; Galametz, A.; Kuemmel, M.; Laigle, C.; Merlin, E.; Mohr, J. J.; Pilo, S.; Salvato, M.; Andreon, S.; Auricchio, N.; Baccigalupi, C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Bender, R.; Biviano, A.; Bodendorf, C.; Bonino, D.; Bozzo, E.; Branchini, E.; Brinchmann, J.; Burigana, C.; Cabanac, R.; Camera, S.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C. S.; Casas, R.; Casas, S.; Castander, F. J.; Castignani, G.; Cimatti, A.; Cledassou, R.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courtois, H. M.; Cuby, J. -G.; Da Silva, A.; de la Torre, S.; Degaudenzi, H.; Di Ferdinando, D.; Douspis, M.; Duncan, C. A. J.; Dupac, X.; Ealet, A.; Fabbian, G.; Fabricius, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Fosalba, P.; Fourmanoit, N.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.; Grupp, F.; Guzzo, L.; Hailey, M.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Humphrey, A.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kilbinger, M.; Kirkpatrick, C. C.; Kitching, T. D.; Kohley, R.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maino, D.; Maiorano, E.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Maturi, M.; Mauri, N.; Maurogordato, S.; Medinaceli, E.; Mei, S.; Meneghetti, M.; Metcalf, R. Benton; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S.; Padilla, C.; Pasian, F.; Patrizii, L.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Potter, D.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Rossetti, E.; Saglia, R.; Sapone, D.; Schneider, P.; Scottez, V.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Stern, D.; Sureau, F.; Tallada Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tenti, M.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Viel, M.; Wang, Y.; Welikala, N.; Whittaker, L.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Zucca, E. Bibcode: 2020A&A...644A..31E Altcode: 2020arXiv200912112E Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-zs at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 - 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo-z deviates by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift (z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo-z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority. Title: Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes Authors: Martinelli, M.; Martins, C. J. A. P.; Nesseris, S.; Sapone, D.; Tutusaus, I.; Avgoustidis, A.; Camera, S.; Carbone, C.; Casas, S.; Ilić, S.; Sakr, Z.; Yankelevich, V.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conversi, L.; Corcione, L.; Dubath, F.; Ealet, A.; Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.; Kilbinger, M.; Kitching, T. D.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Marggraf, O.; Markovic, K.; Massey, R.; Mei, S.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S.; Padilla, C.; Paltani, S.; Pasian, F.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Roncarelli, M.; Saglia, R.; Schneider, P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Sureau, F.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valenziano, L.; Vassallo, T.; Wang, Y.; Welikala, N.; Weller, J.; Zacchei, A. Bibcode: 2020A&A...644A..80M Altcode: 2020arXiv200716153M Context. In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance duality relation (DDR). A violation of this relation would rule out the standard cosmological paradigm and point to the presence of new physics.
Aims: We quantify the ability of Euclid, in combination with contemporary surveys, to improve the current constraints on deviations from the DDR in the redshift range 0 < z < 1.6.
Methods: We start with an analysis of the latest available data, improving previously reported constraints by a factor of 2.5. We then present a detailed analysis of simulated Euclid and external data products, using both standard parametric methods (relying on phenomenological descriptions of possible DDR violations) and a machine learning reconstruction using genetic algorithms.
Results: We find that for parametric methods Euclid can (in combination with external probes) improve current constraints by approximately a factor of six, while for non-parametric methods Euclid can improve current constraints by a factor of three.
Conclusions: Our results highlight the importance of surveys like Euclid in accurately testing the pillars of the current cosmological paradigm and constraining physics beyond the standard cosmological model.

This paper is published on behalf of the Euclid Consortium. Title: SOLARNET Metadata Recommendations for Solar Observations Authors: Haugan, Stein Vidar Hagfors; Fredvik, Terje Bibcode: 2020arXiv201112139H Altcode: 2020arXiv201112139V Metadata descriptions of Solar observations have so far only been standardized for space-based observations, but the standards have been mostly within a single space mission at a time, at times with significant differences between different mission standards. In the context of ground-based Solar observations, data has typically not been made freely available to the general research community, resulting in an even greater lack of standards for metadata descriptions. This situation makes it difficult to construct multi-instrument archives/virtual observatories with anything more than the most basic metadata available for searching, as well as making it difficult to write generic software for instrument-agnostic data analysis. This document describes the metadata recommendations developed under the SOLARNET EU project, which aims foster more collaboration and data sharing between both ground-based and space-based Solar observatories. The recommendations will be followed by data pipelines developed under the SOLARNET project as well as e.g. the Solar Orbiter SPICE pipeline and the SST CHROMIS/CRISP common pipeline. These recommendations are meant to function as a common reference to which even existing diverse data sets may be related, for ingestion into solar virtual observatories and for analysis by generic software. Title: The Solar Orbiter SPICE instrument. An extreme UV imaging spectrometer Authors: SPICE Consortium; Anderson, M.; Appourchaux, T.; Auchère, F.; Aznar Cuadrado, R.; Barbay, J.; Baudin, F.; Beardsley, S.; Bocchialini, K.; Borgo, B.; Bruzzi, D.; Buchlin, E.; Burton, G.; Büchel, V.; Caldwell, M.; Caminade, S.; Carlsson, M.; Curdt, W.; Davenne, J.; Davila, J.; Deforest, C. E.; Del Zanna, G.; Drummond, D.; Dubau, J.; Dumesnil, C.; Dunn, G.; Eccleston, P.; Fludra, A.; Fredvik, T.; Gabriel, A.; Giunta, A.; Gottwald, A.; Griffin, D.; Grundy, T.; Guest, S.; Gyo, M.; Haberreiter, M.; Hansteen, V.; Harrison, R.; Hassler, D. M.; Haugan, S. V. H.; Howe, C.; Janvier, M.; Klein, R.; Koller, S.; Kucera, T. A.; Kouliche, D.; Marsch, E.; Marshall, A.; Marshall, G.; Matthews, S. A.; McQuirk, C.; Meining, S.; Mercier, C.; Morris, N.; Morse, T.; Munro, G.; Parenti, S.; Pastor-Santos, C.; Peter, H.; Pfiffner, D.; Phelan, P.; Philippon, A.; Richards, A.; Rogers, K.; Sawyer, C.; Schlatter, P.; Schmutz, W.; Schühle, U.; Shaughnessy, B.; Sidher, S.; Solanki, S. K.; Speight, R.; Spescha, M.; Szwec, N.; Tamiatto, C.; Teriaca, L.; Thompson, W.; Tosh, I.; Tustain, S.; Vial, J. -C.; Walls, B.; Waltham, N.; Wimmer-Schweingruber, R.; Woodward, S.; Young, P.; de Groof, A.; Pacros, A.; Williams, D.; Müller, D. Bibcode: 2020A&A...642A..14S Altcode: 2019arXiv190901183A; 2019arXiv190901183S
Aims: The Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission.
Methods: The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument's signal.
Results: The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument's design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument's performance. The paper concludes with descriptions of the operations concept and data processing.
Conclusions: The performance measurements of the various instrument parameters meet the requirements derived from the mission's science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission. Title: A virtual appliance as proxy pipeline for the Solar Orbiter/Metis coronagraph Authors: Pancrazzi, M.; Straus, T.; Andretta, V.; Spadaro, D.; Haugan, S. V.; de Groof, A.; Carr, R.; Focardi, M.; Nicolini, G.; Landini, F.; Baccani, C.; Romoli, M.; Antonucci, E. Bibcode: 2016SPIE.9913E..4LP Altcode: Metis is the coronagraph on board Solar Orbiter, the ESA mission devoted to the study of the Sun that will be launched in October 2018. Metis is designed to perform imaging of the solar corona in the UV at 121.6 nm and in the visible range where it will accomplish polarimetry studies thanks to a variable retarder plate. Due to mission constraints, the telemetry downlink on the spacecraft will be limited and data will be downloaded with delays that could reach, in the worst case, several months. In order to have a quick overview on the ongoing operations and to check the safety of the 10 instruments on board, a high-priority downlink channel has been foreseen to download a restricted amount of data. These so-called Low Latency Data will be downloaded daily and, since they could trigger possible actions, they have to be quickly processed on ground as soon as they are delivered. To do so, a proper processing pipeline has to be developed by each instrument. This tool will then be integrated in a single system at the ESA Science Operation Center that will receive the downloaded data by the Mission Operation Center. This paper will provide a brief overview of the on board processing and data produced by Metis and it will describe the proxy-pipeline currently under development to deal with the Metis low-latency data. Title: Tools for the evaluation of the possibilities of using parallax measurements of gravitationally lensed sources Authors: Haugan, Stein Vidar Hagfors Bibcode: 2008PhDT.......291H Altcode: No abstract at ADS Title: 10 years of SOHO Authors: Fleck, Bernhard; Müller, Daniel; Haugan, Stein; Sánchez Duarte, Luis; Siili, Tero; Gurman, Joseph B. Bibcode: 2006ESABu.126...24F Altcode: Since its launch on 2 December 1995, SOHO has revolutionised our understanding of the Sun. It has provided the first images of structures and flows below the Sun's surface and of activity on the far side. SOHO has revealed the Sun's extremely dynamic atmosphere, provided evidence for the transfer of magnetic energy from the surface the outer solar atmosphere, the corona, through a "magnetic carpet", and identified the source regions of the fast solar wind. It has revolutionised our understanding of solar-terrestrial relations and dramatically improved our space weather-forecasting by its continuous stream of images covering the atmosphere, extended corona and far side. The findings are documented in an impressive number of scientific publications: over 2500 papers in refereed journals since launch, representing the work of over 2300 individual scientists. At the same time, SOHO's easily accessible, spectacular data and fundamental scientific results have captured the imagination of the space science community and the general public alike. As a byproduct of the efforts to provide real-time data to the public, amateurs now dominate SOHO's discovery of over 1100 Sungrazing comets. Title: Space Weather Effects on SOHO and its Leading Role as a Space Weather Wãtchdog Authors: Brekke, P.; Fleck, B.; Haugan, S. V.; van Overbeek, T.; Schweitzer, H.; Simonin, B. Bibcode: 2005mcsp.conf...83B Altcode: No abstract at ADS Title: Coordinating with SOHO Authors: Haugan, Stein V. H. Bibcode: 2005AdSpR..36.1557H Altcode: I describe how to maximise the chances of achieving a successful coordinated observation campaign together with SOHO instruments (and TRACE). The ground rules, common pitfalls, useful resources and some essential “tricks of the trade” are covered. The most important hints are: start early, make contact with the instrument teams and the SOCs (soc@soc.nascom.nasa.gov), ask whenever in doubt, check the calendar, and be specific. Title: Coordinating with SOHO Authors: Haugan, S. V. H. Bibcode: 2004cosp...35.3150H Altcode: 2004cosp.meet.3150H I will describe how to maximise the chances of achieving a successful coordinated observation campaign together with SOHO instruments (and TRACE). The ground rules, common pitfalls, useful resources and some essential "tricks of the trade" will be covered. The most important hints are: start early, make contact with the instrument teams, ask the SOCs when in doubt (soc@soc.nascom.nasa.gov), check our calendar, and be specific. Title: Variability and dynamic state of active region loops Authors: Fredvik, T.; Kjeldseth-Moe, O.; Haugan, S. V. H.; Brekke, P.; Gurman, J. B.; Wilhelm, K. Bibcode: 2002AdSpR..30..635F Altcode: A set of 218 consecutive CDS rasters taken at the solar limb on October 26-28 1999 has been used to investigate the variability and plasma dynamics of active region loops. Each raster contains simultaneous images in 6 different lines, covering the full temperature range of CDS, 10 000 K (He I) to 2.7 MK (Fe XVI). Activity is seen to go on without breaks at temperatures below 1 MK for the full 39 hours of the series. Transition region loops or extended sections of loops, 50-200 Mm long, appear and disappear in intervals as short as 11 minutes, the observing cadence. In the corona the emission is less variable, but significant changes are seen. Measured Doppler shifts correspond to typical plasma velocities of 20 km s -1 to 100 km s -1, at temperatures 10 000 K to 450 000 K, and siphon flows may occur in some of the loops. High velocities are frequently seen where the emitted intensities are weak, often on the outer edges of loops as defined in that particular spectral line. At coronal temperatures, 1 MK and higher, systematic loop velocities occur only occasionally. Simultaneous observations with EIT and SUMER were made during part of the raster series and are compared with the CDS result. Title: The Sun During The Ulysses Fast Latitude Scan and Northern Polar Pass As Seen By Soho Authors: Fleck, B.; Brekke, P.; Haugan, S. V. H. Bibcode: 2002EGSGA..27.3839F Altcode: In 2001, during the Ulysses fast latitude scan (January - September) and second north- ern polar pass (September - December), the Sun showed a remarkable resurgence of solar activity after its rapid drop-off following the activity maximum in the summer of 2000. In early April active region 9393, the largest active region of the current cycle, produced a series of events, among them the biggest X-ray flare on record. In the fall there were three severe proton storms, one of them the third largest on record since measurements began in 1976. It is interesting to note that five out of the eight proton storms with flux densities greater than 10,000 cm-2 s-1 sr-1 (>10 MeV) since 1976 occurred in cycle 23, and three of these five in 2001. The overall change in solar ac- tivity in 2001 will be reviewed and some of the most dramatic events from that year discussed. Title: Space Weather Effects on SOHO Authors: Brekke, P.; Fleck, B.; Haugan, S.; Schweitzer, H.; Chaloupy, M. Bibcode: 2002cosp...34E2156B Altcode: 2002cosp.meetE2156B Since its launch on 2 December 1995, the Solar and Heliospheric Observatory (SOHO) has provided an unparalleled breadth and depth of information about the Sun, from its interior, through the hot and dynamic atmosphere, and out to the solar wind. SOHO is in a halo orbit around L1 Lagrangian point where it views the Sun 24 hours a day. Thus, it is situated outside the Earth's protective magnetosphere which shields other satellites from high energy particles from the Sun. We present a summary of the observed effects on the instruments and electronics on SOHO throughout the mission. In particular we will focus on a number of large particle events during the recent years while the Sun was approaching maximum activity, and how they affected both the scientific data as well as hardware components. Title: Anomalous Line Shifts on the SOHO/CDS NIS Detector Authors: Haugan, S. V. H. Bibcode: 2001IAUS..203..396H Altcode: Observations with the SOHO/CDS NIS detector prior to the recovery of SOHO show strong correlations between line shifts and local intensity gradients along the slit. The most plausible explanation is an elliptical, tilted point spread function inducing anomalous line shifts. This must be taken into account when interpreting NIS observations with strong intensity gradients. The optical properties of SOHO/CDS changed quite significantly during the time period when SOHO was out of control. Initial results from a similar analysis of post-recovery data will also be presented. Title: Observed Variability and Dynamics of Active Region Loops Authors: Haugan, S. V. H.; Brekke, P.; Fredvik, T.; Kjeldseth-Moe, O.; Wilhelm, K.; Gurman, J. B. Bibcode: 2000SPD....31.0205H Altcode: 2000BAAS...32..811H A series of 218 rasters taken with the Coronal Diagnostic Spectrometer (CDS) on SOHO demonstrates the strong time variability and dynamical state of the plasma in active region loops at transition region temperatures, i.e. 10 000 K to 500 000 K, first reported by Kjeldseth-Moe and Brekke (1998). The continuous raster series, which covered 39 hours, show how transition region loops or sections of loops, 50-200 Mm in length, appear and disappear in intervals as short as 10 minutes, the observing cadence. At the same temperatures plasma velocities of 20 km s-1 to 100 km s-1 are indicated from observed Doppler shifts. Siphon flows may occur in some of the loops, but in other loops patterns are less obvious. High velocities are frequently seen where the emitted intensities are weak, often on the ``outside'' of the loops as defined by the emission in that particular spectral line. At coronal temperatures the emission is less time variable, but significant changes are seen. Systematic loop velocities occur only occasionally in the corona. Simultaneous observations with EIT and SUMER were made during part of the raster series and is compared with the CDS result. Title: Four years of SOHO discoveries - some highlights. Authors: Fleck, B.; Brekke, P.; Haugan, S.; Duarte, L. S.; Domingo, V.; Gurman, J. B.; Poland, A. I. Bibcode: 2000ESABu.102...68F Altcode: Analysis of the helioseismic data from SOHO has shed new light on solar and heliosheric physics: the structure and dynamics of the solar interior, the heating and dynamics of the solar corona, and the acceleration and composition of the solar wind. Title: Structure and Dynamics in the Atmosphere Above Sunspot Regions Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Wikstøl, Ø. Bibcode: 2000AdSpR..25.1743B Altcode: Based on simultaneous observations of 10 EUV emission lines with the Coronal Diagnostic Spectrometer - CDS on the Solar and Heliospheric Observatory - SOHO we study the spatial distributions of both line emission and line-of-sight velocity in the atmosphere above 17 sunspots. We find that both the enhanced EUV line emissions and the velocities are distributed non-uniformly over the sunspot regions. Areas with enhanced line emission tend to be red shifted, but they seldom coincide exactly with areas with enhanced velocity. Bright sunspot plumes with motion directed away from the observer are observed in most of the sunspot regions Title: EUV Observations of Sunspot Regions with CDS on SOHO Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P. Bibcode: 1999ASPC..184..266B Altcode: The spatial distributions of line emission and line-of-sight velocity in seventeen different sunspot regions are studied, based on observations with the Coronal Diagnostic Spectrometer - CDS on SOHO. Ten EUV emission lines, formed in the chromosphere, transition region, and corona are observed. Enhanced EUV line emissions in the transition region are distributed non-uniformly over the active regions and are located both inside and outside sunspots. Most sunspot regions show strongly enhanced transition region line emission above the spot, i.e. sunspot plumes are reinvented. From wavelength shifts we derive the line-of-sight velocity, relative to the average velocity in the rastered area, 120" x 120". In sunspot plumes we find that the motion is directed away from the observer and increases with increasing line formation temperature, T, reaches a maximum up to 40 km s-1 close to log T ≅ 5.5, then decreases abruptly. The spatial extent of both emission features and flow regions increase with increasing temperature within the transition region. The observations show a marked difference between the transition region and the low corona, both regarding the spatial distributions of line emission and line-of-sight velocity. Title: A Transition Region Eruption Observed with CDS, TRACE and EIT Authors: Brekke, P.; Kjeldseth-Moe, O.; Fredvik, T.; Haugan, S. V. H.; Tarbell, T. D.; Gurman, J. B. Bibcode: 1999AAS...194.5905B Altcode: 1999BAAS...31..918B An ejection of plasma on the west limb has been observed with CDS, TRACE and EIT on 19 May 1998. The start of the eruption coincided with a weak flare observed with GOES. Erupting material rose to 120 Mm above the solar surface in 17 min, and then fell back to the solar surface. Vertical velocities of 200 km s(-1) are estimated from a series of TRACE images in the C(+3) resonance lines at 155 nm and from EIT images in the 19.5 nm band, while Doppler shifts of the transition region lines observed with CDS yield maximum horizontal velocities of 300 km s(-1) at the top of the plasma trajectories. The similar appearance and time variation of the eruption as seen with all three instruments indicate the presence of a multi-temperature plasma in spatial regions less than 1-2 arc seconds, with temperatures ranging from 10(5) K to 1.5 MK. The material did not have the momentum to break loose from the Sun and was not associated with any CME observed with LASCO. However, we may speculate that CMEs are similar to the eruption observed, with even higher speeds involved. Title: Time Variation of Active Region Loops Observed with CDS on SOHO Authors: Fredvik, T.; Kjeldseth-Moe, O.; Brekke, P.; Haugan, S. V. H. Bibcode: 1999AAS...194.5904F Altcode: 1999BAAS...31R.918F The emission from plasma filled loops, 10(4) K < T <1.5 MK, above active regions are much more time variable than previously considered. These loops, which define the solar atmosphere above active regions in this temperature range, appear or disappear, the emission along their length change, or they change shape or expand outward, all on time scales of 10-20 minutes. In this paper we report on an investigation with CDS on SOHO of 20 loop systems observed on the solar limb between September 1997 and May 1998. We describe the apparent isothermal appearance of many loops and discuss to what extent loops radiating in different emission lines, i.e. at different temperatures, are co-located within their recorded widths. Finally, we demonstrate the time variability of loop systems at different temperatures, and show how the rapidly changing conditions require a new conception of loop systems that has never before been seriously considered. Title: SOHO Observations of the Structure and Dynamics of Sunspot Region Atmospheres Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe, O. Bibcode: 1999SoPh..186..141B Altcode: We present results from a study of the spatial distributions of line emission and relative line-of-sight velocity in the atmosphere above 17 sunspot regions, from the chromosphere, through the transition region and into the corona, based on simultaneous observations of ten EUV emission lines with the Coronal Diagnostic Spectrometer - CDS on SOHO. We find that the spatial distributions are nonuniform over the sunspot region and introduce the notation 'sunspot loop' to describe an enhanced transition region emission feature that looks like a magnetic loop, extending from inside the sunspot to the surrounding regions. We find little evidence for the siphon flow. Attention is given to the time variations since we observe both a rapid variation with a characteristic time of a few to several minutes and a slow variation with a time constant of several hours to ≈ 1 day. The most prominent features in the transition region intensity maps are the sunspot plumes. We introduce an updated criterion for the presence of plumes and find that 15 out of 17 sunspots contain a plume in the temperature range logT≈5.2-5.6. The relative line-of-sight velocity in sunspot plumes is high and directed into the Sun in the transition region. Almost all the sunspot regions contain one or a few prominent, strongly redshifted velocity channels, several of the channels extend from the sunspot plume to considerable distances from the sunspot. The flow appears to be maintained by plasmas at transition region temperatures, moving from regions located at a greater height outside the sunspots and towards the sunspot. The spatial correlation is high to moderate between emission lines formed in the transition region lines, but low between the transition region lines and the coronal lines. From detailed comparisons of intensity and velocity maps we find transition region emission features without any sign of coronal emission in the vicinity. A possible explanation is that the emission originates in magnetic flux tubes that are too cold to emit coronal emission. The comparisons suggest that gas at transition region temperature occur in loops different from loops with coronal temperature. However, we cannot exclude the presence of transition region temperatures close to the footpoints of flux tubes emitting at coronal temperatures. Regions with enhanced transition region line emission tend to be redshifted, but the correlation between line emission and relative line-of-sight velocity is weak. We extend our conditional probability studies and confirm that there is a tendency for line profiles with large intensities and red shifts (blue shifts) above the average to constitute an increasing (decreasing) fraction of the profiles as the wavelength shift increases. Title: Anomalous Line Shifts From Local Intensity Gradients on the Soho/cds NIS Detector Authors: Haugan, S. V. H. Bibcode: 1999SoPh..185..275H Altcode: Line shifts for some emission lines on the SOHO/CDS NIS detector appear to be strongly correlated with local intensity gradients along the slit in a way that seems impossible to explain with a physical solar model. Line widths also show a correlation with local intensity gradients. The most plausible instrumental explanation seems to be an elliptical, tilted point-spread function inducing the line shifts. A toy model demonstrating the essentials of the observed behaviour is presented. The effective point-spread function of the instrument appears to modify the line shape into something other than a Gaussian, leaving highly structured residuals after line fitting, including 'ghost' images in some pixel planes. The cause of these effects is yet unknown, but they should warrant experiments on the engineering model to reproduce the observed effects, shedding light on the nature of the aberrations. Title: Systematic errors in one-dimensional light-curve convolution for extended sources Authors: Haugan, S. V. H. Bibcode: 1999MNRAS.303..471H Altcode: One-dimensional contour-following methods have proved an effective means of studying the statistics of microlensing light curves for point sources. For extended sources, however, convolving a point source light curve with a one-dimensional source profile results in systematic deviations from the true light curve. This paper demonstrates that these effects are generic (regardless of source size), and attempts to quantify the effects so that proper caution may be taken when interpreting previous results. Title: Flows in Sunspot Plumes Detected with SOHO Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Wikstol, O. Bibcode: 1998ApJ...504L.135B Altcode: 1998astro.ph..5249B In the Letter, ``Flows in Sunspot Plumes Detected with the Solar and Heliospheric Observatory'' by N. Brynildsen, P. Maltby, P. Brekke, T. Fredvik, S. V. H. Haugan, O. Kjeldseth-Moe, and Ø. Wikstøl (ApJ, 502, L85 [1998]), the following correction should be made:

In the last line on page L86, which reads ``peak line intensity I>=5 are located (1) above the umbra or, '' an ``Ī'' should be inserted so that the revised line reads ``peak line intensity I>=5Ī are located (1) above the umbra or.'' Title: Flows in Sunspot Plumes Detected with the Solar and Heliospheric Observatory Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Wikstøl, Ø. Bibcode: 1998ApJ...502L..85B Altcode: Bright extreme-UV sunspot plumes have been observed in eight out of 11 different sunspot regions with the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory. From wavelength shifts, we derive the line-of-sight velocity relative to the average velocity in the rastered area, 120''×120''. In sunspot plumes, we find that the motion is directed away from the observer and increases with increasing line formation temperature, reaches a maximum between 15 and 41 km s-1 close to log logT~5.5, then decreases abruptly. The flow field in the corona is not well correlated with the flow in the transition region, and we discuss briefly the implication of this finding. Title: SOHO Observations of the Connection Between Line Profile Parameters in Active and Quiet Regions and the Net Red Shift in EUV Emission Lines Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Wilhelm, K. Bibcode: 1998SoPh..181...23B Altcode: We present high spatial and spectral resolution observations of one active and one quiet-Sun region, obtained with CDS and SUMER on SOHO. The connections between the line profile parameters are studied and a systematic wavelength shift towards the red with increasing peak line intensity (line broadening) is detected. The large scatter in the data calls for another approach. We apply conditional probability analysis to a series of EUV emission lines and find significant correlations between line profile parameters. For a given interval in wavelength shift we find that: (1) line profiles with large intensities (line widths) and red shifts above the average constitute an increasing fraction of the profiles as the relative wavelength shift increases, (2) line profiles with large intensities (line widths) and blue shifts compared to the average, on the other hand, constitute a decreasing fraction of the profiles as the relative wavelength shift increases. These results extend the findings of an earlier quiet-Sun study from one to several emission lines and expand the validity to include the active region. Interestingly, the active region observations show correlations between peak line intensity and wavelength shift in the coronal lines. Title: EUV Spectroscopy of the Sunspot Region NOAA 7981 Using SOHO - II. Velocities and Line Profiles Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele, T.; Thompson, W. T.; Wilhelm, K. Bibcode: 1998SoPh..179..279B Altcode: We have studied the dynamics in the sunspot transition region between the chromosphere and the corona and investigated the extension of the flow field into the corona. Based on EUV spectra of a medium size sunspot and its surroundings, NOAA 7981, observed with CDS and SUMER on SOHO, we derive line-of-sight velocities and study the line profiles for a series of emission lines. Title: Extreme-Ultraviolet Sunspot Plumes Observed with SOHO Authors: Maltby, P.; Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Wikstøl, Ø.; Rimmele, T. Bibcode: 1998ApJ...496L.117M Altcode: 1998astro.ph..1144M Bright EUV sunspot plumes have been observed in five out of nine sunspot regions with the Coronal Diagnostic Spectrometer on the Solar and Heliospheric Observatory. In the other four regions, the brightest line emissions may appear inside the sunspot but are mainly concentrated in small regions outside the sunspot areas. These results are in contrast to those obtained during the Solar Maximum Mission but are compatible with the Skylab mission results. The present observations show that sunspot plumes are formed in the upper part of the transition region, occur in both magnetic unipolar and bipolar regions, and may extend from the umbra into the penumbra. Title: EUV Spectroscopy of the Sunspot Region NOAA 7981 Using SOHO - I. Line Emission and Time Dependence Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele, T.; Thompson, W. T.; Wilhelm, K. Bibcode: 1998SoPh..179...43B Altcode: EUV spectra of a medium-size sunspot and its surroundings, NOAA 7981, were obtained on 2 August 1996 with the Coronal Diagnostic Spectrometer (CDS) and the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on the Solar and Heliospheric Observatory (SOHO). The spectral lines formed in the transition region and corona show considerable structure and large deviations from a uniform spatial distribution over the active region. Enhanced EUV emissions in transition region lines are concentrated in small regions outside the umbra of the sunspot throughout most of the observing sequence. Only during a short, active period do we find an enhanced line emission that reaches into the umbra. Preliminary values for the umbral intensity are given. Title: Three Dimensional EUV Imaging of Sunspot Regions Observed with SOHO Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Rimmele, T.; Wilhelm, K. Bibcode: 1998ASPC..155..171B Altcode: 1998sasp.conf..171B No abstract at ADS Title: Inconstancy of the Transition Region - Variable and Dynamic Active Region Loops Authors: Kjeldseth-Moe, O.; Brekke, P.; Haugan, S. V. H. Bibcode: 1998ESASP.417..153K Altcode: 1998cesh.conf..153K No abstract at ADS Title: The Non-Uniformity in the Sunspot Transition Region Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Rimmele, T.; Wilhelm, K. Bibcode: 1997ESASP.404..257B Altcode: 1997cswn.conf..257B No abstract at ADS Title: Transition Region Velocities and Line Profiles in the Sunspot Region 7981 Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele, T. Thompson, W. T.; Wilhelm, K. Bibcode: 1997ESASP.404..251B Altcode: 1997cswn.conf..251B No abstract at ADS Title: The Net Redshifts in EUV Emission Lines and the Connection Between Intensity and Doppler Shift Authors: Brynildsen, N.; Fredvik, T.; Maltby, P.; Kjeldseth-Moe, O.; Brekke, P.; Haugan, S. V. H.; Harrison, R. A.; Wilhelm, K. Bibcode: 1997ESASP.404..263B Altcode: 1997cswn.conf..263B No abstract at ADS Title: EUV Line Emission and Time Dependence in the Sunspot Region NOAA 7981 Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.; Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele, T.; Thompson, W. T.; Wilhelm, K. Bibcode: 1997ESASP.404..245B Altcode: 1997cswn.conf..245B No abstract at ADS Title: Flows and Dynamics in the Corona Observed with the Coronal Diagnostic Spectrometer (cds) Authors: Brekke, P.; Kjeldseth-Moe, O.; Brynildsen, N.; Maltby, P.; Haugan, S. V. H.; Harrison, R. A.; Thompson, W. T.; Pike, C. D. Bibcode: 1997SoPh..170..163B Altcode: EUV spectra obtained with the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) show significant flows of plasma in active region loops, both at coronal and transition region temperatures. Wavelength shifts in the coronal lines Mgix 368 Å and Mgx 624 Å corresponding to upflows in the plasma reaching velocities of 50 km s-1 have been observed in an active region. Smaller velocities are detected in the coronal lines Fexvi 360 Å and Sixii 520 Å. Flows reaching 100 km s-1 are observed in spectral lines formed at transition region temperatures, i.e., Ov 629 Å and Oiii 599 Å, demonstrating that both the transition region and the corona are clearly dynamic in nature. Some high velocity events show even higher velocities with line profiles corresponding to a velocity dispersion of 300-400 km s-1. Even in the quiet Sun there are velocity fluctuations of 20 km s-1 in transition region lines. Velocities of the magnitude presented in this paper have never previously been observed in coronal lines except in explosive events and flares. Thus, the preliminary results from the CDS spectrometer promise to put constraints on existing models of the flows and energy balance in the solar atmosphere. The present results are compared to previous attempts to observe flows in the corona. Title: Simulation of Microlensing Lightcurves by Combining Contouring and Rayshooting Authors: Haugan, S. V. H. Bibcode: 1996IAUS..173..275H Altcode: 1995astro.ph..8109H The contouring methods described by Lewis et al. (1993) and Witt (1993) are very efficient and elegant for obtaining the magnification of a point source moving along a straight track in the source plane. The method is, however, not very efficient for extended sources, because the amplification needs to be computed for numerous parallel tracks and then convolved with the source profile. Rayshooting is an efficient algorithm for relatively large sources, but the computing time increases with the inverse of the source area for a given noise level. This poster presents a hybrid method, using the contouring method in order to find only those parts of the lens area that contribute to the light curve through the rayshooting. Calculations show that this method has the potential to be $10$--$10^5$ times more efficient than crude rayshooting techniques. Title: Separating Intrinsic and Microlensing Variability Using Parallax Measurements Authors: Haugan, S. V. H. Bibcode: 1996IAUS..173..277H Altcode: 1995astro.ph..8112H In gravitational lens systems with 3 or more resolved images of a quasar, the intrinsic variability may be unambiguously separated from the microlensing variability through parallax measurements from 3 observers when there is no relative motion of the lens masses (Refsdal 1993). In systems with fewer than 3 resolved images, however, this separation is not straightforward. A general approach that may be used for this purpose is presented. For simplicity, only the one-dimensional case is considered in detail: Given a well-sampled time series of the observed flux at two points in space with a known separation, choosing a velocity $v_{\perp}$ of the observers perpendicular to the line of sight determines the microlensing magnification history, and thereby also the intrinsic variability. The velocity is chosen by minimizing some measure ($\chi^2$) of the residual intrinsic variability. In many cases this gives a close approximation to the true magnification. In cases where the relative motion of the lensing point masses is important, only a partial separation will be possible. Title: The Microlensing Events In Q2237+0305A: No Case Against Small Masses/Large Sources Authors: Haugan, S. V. H. Bibcode: 1996IAUS..173..255H Altcode: 1995astro.ph..8103H It is demonstrated that the 1988-90 microlensing events in image A of Q2237+0305 reported by Racine (1992) do not exclude microlensing models with very low average mass, making the source radius larger than the projected Einstein radius $\eta_0$ (Refsdal and Stabell 1991, 1993). This is contrary to what has been claimed by Witt and Mao (1994). Since these events are the best resolved microlensing events recorded in Q2237+0305, further work should not exclude the possibility of a large source when interpreting lightcurve data. Title: CDS quicklook display software Authors: Brekke, P.; Haugan, S. V. H.; Brynildsen, Nils Bibcode: 1994ESASP.373..437B Altcode: 1994soho....3..437B No abstract at ADS Title: Correlation analysis of microlensing lightcurves Authors: Haugan, S. V.; Refsdal, S.; Stabell, R. Bibcode: 1993LIACo..31..447H Altcode: 1993glu..conf..447H No abstract at ADS