Author name code: lin-haosheng ADS astronomy entries on 2022-09-14 author:"Lin, Haosheng" AND aff:"Hawaii" ------------------------------------------------------------------------ Title: Dark Energy Survey year 3 results: Constraints on cosmological parameters and galaxy-bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample Authors: Pandey, S.; Krause, E.; DeRose, J.; MacCrann, N.; Jain, B.; Crocce, M.; Blazek, J.; Choi, A.; Huang, H.; To, C.; Fang, X.; Elvin-Poole, J.; Prat, J.; Porredon, A.; Secco, L. F.; Rodriguez-Monroy, M.; Weaverdyck, N.; Park, Y.; Raveri, M.; Rozo, E.; Rykoff, E. S.; Bernstein, G. M.; Sánchez, C.; Jarvis, M.; Troxel, M. A.; Zacharegkas, G.; Chang, C.; Alarcon, A.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Baxter, E.; Bechtol, K.; Becker, M. R.; Camacho, H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Chen, R.; Chintalapati, P.; Davis, C.; Di Valentino, E.; Diehl, H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.; Everett, S.; Farahi, A.; Ferté, A.; Fosalba, P.; Friedrich, O.; Gatti, M.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Huff, E. M.; Huterer, D.; Kovacs, A.; Leget, P. F.; McCullough, J.; Muir, J.; Myles, J.; Navarro-Alsina, A.; Omori, Y.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troja, A.; Tutusaus, I.; Varga, T. N.; Wechsler, R. H.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.; Bertin, E.; Brooks, D.; Burke, D. L.; Carretero, J.; Conselice, C.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Ferrero, I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morgan, R.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Plazas Malagón, A. A.; Sanchez, E.; Scarpine, V.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Tarle, G.; Thomas, D.; Weller, J.; DES Collaboration Bibcode: 2022PhRvD.106d3520P Altcode: 2021arXiv210513545P We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey (DES) year-3 data. We describe our modeling framework and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy-bias model and redMaGiC galaxy sample, we obtain 10% constraints on the matter density of the Universe. We also implement a nonlinear galaxy-bias model to probe smaller scales that includes parametrization based on hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes in the theory model. Using the redMaGiC galaxy sample as foreground lens galaxies and adopting the best-fitting cosmological parameters from DES year-1 data, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the S8 parameter. We find that a scale-, redshift- and sky-area-independent phenomenological decorrelation parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing. We trace the source of this correlation to a color-dependent photometric issue and minimize its impact on our result by changing the selection criteria of redMaGiC galaxies. Using this new sample, our constraints on the S8 parameter are consistent with previous studies and we find a small shift in the Ωm constraints compared to the fiducial redMaGiC sample. We infer the constraints on the mean host-halo mass of the redMaGiC galaxies in this new sample from the large-scale bias constraints, finding the galaxies occupy halos of mass approximately 1.6 ×1013 M/h . Title: Dark Energy Survey Year 3 results: Exploiting small-scale information with lensing shear ratios Authors: Sánchez, C.; Prat, J.; Zacharegkas, G.; Pandey, S.; Baxter, E.; Bernstein, G. M.; Blazek, J.; Cawthon, R.; Chang, C.; Krause, E.; Lemos, P.; Park, Y.; Raveri, M.; Sanchez, J.; Troxel, M. A.; Amon, A.; Fang, X.; Friedrich, O.; Gruen, D.; Porredon, A.; Secco, L. F.; Samuroff, S.; Alarcon, A.; Alves, O.; Andrade-Oliveira, F.; Bechtol, K.; Becker, M. R.; Camacho, H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Chen, R.; Choi, A.; Crocce, M.; Davis, C.; De Vicente, J.; DeRose, J.; Di Valentino, E.; Diehl, H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.; Elvin-Poole, J.; Everett, S.; Ferté, A.; Fosalba, P.; Gatti, M.; Giannini, G.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner, K.; Huff, E. M.; Huterer, D.; Jarvis, M.; Jain, B.; Kuropatkin, N.; Leget, P. -F.; MacCrann, N.; McCullough, J.; Muir, J.; Myles, J.; Navarro-Alsina, A.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Rykoff, E. S.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troja, A.; Tutusaus, I.; Varga, T. N.; Wechsler, R. H.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Bacon, D.; Bertin, E.; Bhargava, S.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; Desai, S.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Ferrero, I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Morgan, R.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Plazas Malagón, A. A.; Rodriguez-Monroy, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; To, C.; DES Collaboration Bibcode: 2022PhRvD.105h3529S Altcode: 2021arXiv210513542S Using the first three years of data from the Dark Energy Survey (DES), we use ratios of small-scale galaxy-galaxy lensing measurements around the same lens sample to constrain source redshift uncertainties, intrinsic alignments and other systematics or nuisance parameters of our model. Instead of using a simple geometric approach for the ratios as has been done in the past, we use the full modeling of the galaxy-galaxy lensing measurements, including the corresponding integration over the power spectrum and the contributions from intrinsic alignments and lens magnification. We perform extensive testing of the small-scale shear-ratio (SR) modeling by studying the impact of different effects such as the inclusion of baryonic physics, nonlinear biasing, halo occupation distribution descriptions and lens magnification, among others, and using realistic N -body simulations of the DES data. We validate the robustness of our constraints in the data by using two independent lens samples with different galaxy properties, and by deriving constraints using the corresponding large-scale ratios for which the modeling is simpler. The results applied to the DES Y3 data demonstrate how the ratios provide significant improvements in constraining power for several nuisance parameters in our model, especially on source redshift calibration and intrinsic alignments. For source redshifts, SR improves the constraints from the prior by up to 38% in some redshift bins. Such improvements, and especially the constraints it provides on intrinsic alignments, translate to tighter cosmological constraints when shear ratios are combined with cosmic shear and other 2pt functions. In particular, for the DES Y3 data, SR improves S8 constraints from cosmic shear by up to 31%, and for the full combination of probes (3 ×2 pt ) by up to 10%. The shear ratios presented in this work are used as an additional likelihood for cosmic shear, 2 ×2 pt and the full 3 ×2 pt in the fiducial DES Y3 cosmological analysis. Title: Dark energy survey year 3 results: High-precision measurement and modeling of galaxy-galaxy lensing Authors: Prat, J.; Blazek, J.; Sánchez, C.; Tutusaus, I.; Pandey, S.; Elvin-Poole, J.; Krause, E.; Troxel, M. A.; Secco, L. F.; Amon, A.; DeRose, J.; Zacharegkas, G.; Chang, C.; Jain, B.; MacCrann, N.; Park, Y.; Sheldon, E.; Giannini, G.; Bocquet, S.; To, C.; Alarcon, A.; Alves, O.; Andrade-Oliveira, F.; Baxter, E.; Bechtol, K.; Becker, M. R.; Bernstein, G. M.; Camacho, H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Chen, R.; Choi, A.; Cordero, J.; Crocce, M.; Davis, C.; De Vicente, J.; Diehl, H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.; Everett, S.; Fang, X.; Farahi, A.; Ferté, A.; Fosalba, P.; Friedrich, O.; Gatti, M.; Gruen, D.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner, K.; Huang, H.; Huff, E. M.; Huterer, D.; Jarvis, M.; Kuropatkin, N.; Leget, P. -F.; Lemos, P.; Liddle, A. R.; McCullough, J.; Muir, J.; Myles, J.; Navarro-Alsina, A.; Porredon, A.; Raveri, M.; Rodriguez-Monroy, M.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Ross, A. J.; Rykoff, E. S.; Sanchez, J.; Sevilla-Noarbe, I.; Shin, T.; Troja, A.; Varga, T. N.; Weaverdyck, N.; Wechsler, R. H.; Yanny, B.; Yin, B.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.; Brooks, D.; Burke, D. L.; Carretero, J.; Conselice, C.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; Desai, S.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Ferrero, I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lin, H.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morgan, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Plazas Malagón, A. A.; Sanchez, E.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Tarle, G.; Thomas, D.; Weller, J.; DES Collaboration Bibcode: 2022PhRvD.105h3528P Altcode: 2021arXiv210513541P We present and characterize the galaxy-galaxy lensing signal measured using the first three years of data from the Dark Energy Survey (DES Y3) covering 4132 deg2 . These galaxy-galaxy measurements are used in the DES Y3 3 ×2 pt cosmological analysis, which combines weak lensing and galaxy clustering information. We use two lens samples: a magnitude-limited sample and the redMaGiC sample, which span the redshift range ∼0.2 - 1 with 10.7 and 2.6 M galaxies, respectively. For the source catalog, we use the METACALIBRATION shape sample, consisting of ≃100 M galaxies separated into four tomographic bins. Our galaxy-galaxy lensing estimator is the mean tangential shear, for which we obtain a total SNR of ∼148 for MagLim (∼120 for redMaGiC), and ∼67 (∼55 ) after applying the scale cuts of 6 Mpc /h . Thus we reach percent-level statistical precision, which requires that our modeling and systematic-error control be of comparable accuracy. The tangential shear model used in the 3 ×2 pt cosmological analysis includes lens magnification, a five-parameter intrinsic alignment model, marginalization over a point mass to remove information from small scales and a linear galaxy bias model validated with higher-order terms. We explore the impact of these choices on the tangential shear observable and study the significance of effects not included in our model, such as reduced shear, source magnification, and source clustering. We also test the robustness of our measurements to various observational and systematics effects, such as the impact of observing conditions, lens-source clustering, random-point subtraction, scale-dependent METACALIBRATION responses, point spread function residuals, and B modes. Title: Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration Authors: Amon, A.; Gruen, D.; Troxel, M. A.; MacCrann, N.; Dodelson, S.; Choi, A.; Doux, C.; Secco, L. F.; Samuroff, S.; Krause, E.; Cordero, J.; Myles, J.; DeRose, J.; Wechsler, R. H.; Gatti, M.; Navarro-Alsina, A.; Bernstein, G. M.; Jain, B.; Blazek, J.; Alarcon, A.; Ferté, A.; Lemos, P.; Raveri, M.; Campos, A.; Prat, J.; Sánchez, C.; Jarvis, M.; Alves, O.; Andrade-Oliveira, F.; Baxter, E.; Bechtol, K.; Becker, M. R.; Bridle, S. L.; Camacho, H.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Chang, C.; Chen, R.; Chintalapati, P.; Crocce, M.; Davis, C.; Diehl, H. T.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elvin-Poole, J.; Everett, S.; Fang, X.; Fosalba, P.; Friedrich, O.; Gaztanaga, E.; Giannini, G.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner, K.; Huang, H.; Huff, E. M.; Huterer, D.; Kuropatkin, N.; Leget, P.; Liddle, A. R.; McCullough, J.; Muir, J.; Pandey, S.; Park, Y.; Porredon, A.; Refregier, A.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Ross, A. J.; Rykoff, E. S.; Sanchez, J.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troja, A.; Tutusaus, I.; Tutusaus, I.; Varga, T. N.; Weaverdyck, N.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.; Bertin, E.; Bhargava, S.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Desai, S.; Dietrich, J. P.; Doel, P.; Ferrero, I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Kron, R.; Kuehn, K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Morgan, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Serrano, S.; Smith, M.; Soares-Santos, M.; Tarle, G.; Thomas, D.; To, C.; Weller, J.; DES Collaboration Bibcode: 2022PhRvD.105b3514A Altcode: 2021arXiv210513543A <related-article ext-link-type="doi" related-article-type="companion" xlink:href="10.1103/PhysRevD.105.023515"/>This work, together with its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515 (2022), 10.1103/PhysRevD.105.023515], present the Dark Energy Survey Year 3 cosmic-shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg2 on the sky, divided into four redshift bins, we produce a measurement with a signal-to-noise of 40. We conduct a blind analysis in the context of the Lambda-Cold Dark Matter (Λ CDM ) model and find a 3% constraint of the clustering amplitude, S8≡σ8m/0.3 )0.5=0.75 9-0.023+0.025. A Λ CDM -Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of S8=0.77 2-0.017+0.018 that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered S8 values are lower than the high-redshift prediction by 2.3 σ and 2.1 σ (p -values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the S8 posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit S8 by 0.5 σ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics. Title: Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty Authors: Secco, L. F.; Samuroff, S.; Krause, E.; Jain, B.; Blazek, J.; Raveri, M.; Campos, A.; Amon, A.; Chen, A.; Doux, C.; Choi, A.; Gruen, D.; Bernstein, G. M.; Chang, C.; DeRose, J.; Myles, J.; Ferté, A.; Lemos, P.; Huterer, D.; Prat, J.; Troxel, M. A.; MacCrann, N.; Liddle, A. R.; Kacprzak, T.; Fang, X.; Sánchez, C.; Pandey, S.; Dodelson, S.; Chintalapati, P.; Hoffmann, K.; Alarcon, A.; Alves, O.; Andrade-Oliveira, F.; Baxter, E. J.; Bechtol, K.; Becker, M. R.; Brandao-Souza, A.; Camacho, H.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; Cordero, J. P.; Crocce, M.; Davis, C.; Di Valentino, E.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elidaiana, M.; Elsner, F.; Elvin-Poole, J.; Everett, S.; Fosalba, P.; Friedrich, O.; Gatti, M.; Giannini, G.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner, K.; Huang, H.; Huff, E. M.; Jarvis, M.; Jeffrey, N.; Kuropatkin, N.; Leget, P. -F.; Muir, J.; Mccullough, J.; Navarro Alsina, A.; Omori, Y.; Park, Y.; Porredon, A.; Rollins, R.; Roodman, A.; Rosenfeld, R.; Ross, A. J.; Rykoff, E. S.; Sanchez, J.; Sevilla-Noarbe, I.; Sheldon, E. S.; Shin, T.; Troja, A.; Tutusaus, I.; Varga, T. N.; Weaverdyck, N.; Wechsler, R. H.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.; Bertin, E.; Bhargava, S.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; De Vicente, J.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Ferrero, I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Jeltema, T.; Kuehn, K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Morgan, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Plazas Malagón, A. A.; Rodriguez-Monroy, M.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Scolnic, D.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; To, C.; DES Collaboration Bibcode: 2022PhRvD.105b3515S Altcode: 2021arXiv210513544S This work and its companion paper, Amon et al. [Phys. Rev. D 105, 023514 (2022), 10.1103/PhysRevD.105.023514], present cosmic shear measurements and cosmological constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain the lensing amplitude parameter S8≡σ8√{Ωm/0.3 } at the 3% level in Λ CDM : S8=0.75 9-0.023+0.025 (68% CL). Our constraint is at the 2% level when using angular scale cuts that are optimized for the Λ CDM analysis: S8=0.77 2-0.017+0.018 (68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare our measurement with constraints from two other contemporary weak lensing experiments: the Kilo-Degree Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES Y3 result under the assumption of Λ CDM is found to be in statistical agreement with Planck 2018, although favors a lower S8 than the CMB-inferred value by 2.3 σ (a p -value of 0.02). This paper explores the robustness of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than 0.3 σ in the plane of S8×Ωm caused by uncertainties in the theoretical models. Title: Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing Authors: Abbott, T. M. C.; Aguena, M.; Alarcon, A.; Allam, S.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Annis, J.; Avila, S.; Bacon, D.; Baxter, E.; Bechtol, K.; Becker, M. R.; Bernstein, G. M.; Bhargava, S.; Birrer, S.; Blazek, J.; Brandao-Souza, A.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Camacho, H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cawthon, R.; Chang, C.; Chen, A.; Chen, R.; Choi, A.; Conselice, C.; Cordero, J.; Costanzi, M.; Crocce, M.; da Costa, L. N.; da Silva Pereira, M. E.; Davis, C.; Davis, T. M.; De Vicente, J.; DeRose, J.; Desai, S.; Di Valentino, E.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.; Elvin-Poole, J.; Everett, S.; Evrard, A. E.; Fang, X.; Farahi, A.; Fernandez, E.; Ferrero, I.; Ferté, A.; Fosalba, P.; Friedrich, O.; Frieman, J.; García-Bellido, J.; Gatti, M.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Giannini, G.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Harrison, I.; Hartley, W. G.; Herner, K.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; Huff, E. M.; Huterer, D.; Jain, B.; James, D. J.; Jarvis, M.; Jeffrey, N.; Jeltema, T.; Kovacs, A.; Krause, E.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Leget, P. -F.; Lemos, P.; Liddle, A. R.; Lidman, C.; Lima, M.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; McCullough, J.; Melchior, P.; Mena-Fernández, J.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Morgan, R.; Muir, J.; Myles, J.; Nadathur, S.; Navarro-Alsina, A.; Nichol, R. C.; Ogando, R. L. C.; Omori, Y.; Palmese, A.; Pandey, S.; Park, Y.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Plazas Malagón, A. A.; Porredon, A.; Prat, J.; Raveri, M.; Rodriguez-Monroy, M.; Rollins, R. P.; Romer, A. K.; Roodman, A.; Rosenfeld, R.; Ross, A. J.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Sanchez, E.; Sanchez, J.; Sanchez Cid, D.; Scarpine, V.; Schubnell, M.; Scolnic, D.; Secco, L. F.; Serrano, S.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tabbutt, M.; Tarle, G.; Thomas, D.; To, C.; Troja, A.; Troxel, M. A.; Tucker, D. L.; Tutusaus, I.; Varga, T. N.; Walker, A. R.; Weaverdyck, N.; Wechsler, R.; Weller, J.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; DES Collaboration Bibcode: 2022PhRvD.105b3520A Altcode: 2021arXiv210513549D We present the first cosmology results from large-scale structure using the full 5000 deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3 ×2 pt ): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy-galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat Λ CDM and w CDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude S8=0.77 6-0.017+0.017 and matter density Ωm=0.33 9-0.031+0.032 in Λ CDM , mean with 68% confidence limits; S8=0.77 5-0.024+0.026, Ωm=0.35 2-0.041+0.035, and dark energy equation-of-state parameter w =-0.9 8-0.20+0.32 in w CDM . These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3 ×2 pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed p =0.13 -0.48. We find better agreement between DES 3 ×2 pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3 ×2 pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find p =0.34 . Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of S8=0.81 2-0.008+0.008, Ωm=0.30 6-0.005+0.004, h =0.68 0-0.003+0.004, and ∑mν<0.13 eV (95% C.L.) in Λ CDM ; S8=0.81 2-0.008+0.008, Ωm=0.30 2-0.006+0.006, h =0.68 7-0.007+0.006, and w =-1.03 1-0.027+0.030 in w CDM . Title: Quantitative Validation of the Linear Polarization Tomographic Inversion for the 3D Coronal Magnetic Field. Authors: Kramar, Maxim; Lin, Haosheng Bibcode: 2021AGUFMSH12C..08K Altcode: Due to the low optical density of the solar corona, direct inference of the plasma properties of the corona is constrained by integration over a line-of-sight (LOS) of coronal radiation signals. In order to dis-entangle the LOS integrated observations to unveil the underlying 3D coronal plasma structures, tomographic inversion methods should be applied. Information about the coronal magnetic field, electron density and temperature are encoded in coronal emission lines through the normal and saturated Hanle effect and the Zeeman effect observed in linear (LP) and circular (CP) polarization components, respectively, of the Fe XIII 1074.7 nm forbidden line. We will present a quantitative study of the accuracy of the LP regularized tomographic inversion for the coronal magnetic field in expectation of the new synoptics Fe XIII 1074.7 nm LP data that will become available from the Upgraded Coronal Multichannel Polarimeter (UCoMP). Although the LP signal is stronger than CP, it only contains information about the magnetic field orientation, but not its strength. However, the photospheric magnetic field boundary condition provides the constraint to the magnetic fields strength. We use the divergence free property of the magnetic field as additional constraint in the tomographic inversion. A magnetogydrodynamic (MHD) model for the global solar coronal by Predictive Science Inc. was used to synthesize spectropolarimetric observations of the Fe XIII line during a half of the solar rotation period. The inversion result based on that synthesized LP data showed that the standard deviation of the relative error of the reconstructed magnetic field strength lies within about 20% for regions with the field strength greater than 0.1 Gauss. Title: The National Science Foundation's Daniel K. Inouye Solar Telescope — Status Update Authors: Rimmele, T.; Woeger, F.; Tritschler, A.; Casini, R.; de Wijn, A.; Fehlmann, A.; Harrington, D.; Jaeggli, S.; Anan, T.; Beck, C.; Cauzzi, G.; Schad, T.; Criscuoli, S.; Davey, A.; Lin, H.; Kuhn, J.; Rast, M.; Goode, P.; Knoelker, M.; Rosner, R.; von der Luehe, O.; Mathioudakis, M.; Dkist Team Bibcode: 2021AAS...23810601R Altcode: The National Science Foundation's 4m Daniel K. Inouye Solar Telescope (DKIST) on Haleakala, Maui is now the largest solar telescope in the world. DKIST's superb resolution and polarimetric sensitivity will enable astronomers to unravel many of the mysteries the Sun presents, including the origin of solar magnetism, the mechanisms of coronal heating and drivers of flares and coronal mass ejections. Five instruments, four of which provide highly sensitive measurements of solar magnetic fields, including the illusive magnetic field of the faint solar corona. The DKIST instruments will produce large and complex data sets, which will be distributed through the NSO/DKIST Data Center. DKIST has achieved first engineering solar light in December of 2019. Due to COVID the start of the operations commissioning phase is delayed and is now expected for fall of 2021. We present a status update for the construction effort and progress with the operations commissioning phase. Title: DKIST First-light Instrumentation Authors: Woeger, F.; Rimmele, T.; Casini, R.; von der Luehe, O.; Lin, H.; Kuhn, J.; Dkist Team Bibcode: 2021AAS...23810602W Altcode: The NSF's Daniel K. Inouye Solar Telescope's (DKIST) four meter aperture and state-of-the-art wavefront correction system and instrumentation will facilitate new insights into the complexities of the solar atmosphere. We will describe the details and status of the diverse first light instruments, including the high order adaptive optics system, that are being commissioned: The Visible Spectro-Polarimeter (ViSP), the Visible Broadband Imager (VBI), the Visible Tunable Filter (VTF), the Diffraction-Limited Spectro-Polarimeter (DL-NIRSP) and the Cryogenic Spectro-Polarimeter (Cryo-NIRSP). We will present first data demonstrating the telescope's instrument systems performance. Title: The Daniel K. Inouye Solar Telescope - Observatory Overview Authors: Rimmele, Thomas R.; Warner, Mark; Keil, Stephen L.; Goode, Philip R.; Knölker, Michael; Kuhn, Jeffrey R.; Rosner, Robert R.; McMullin, Joseph P.; Casini, Roberto; Lin, Haosheng; Wöger, Friedrich; von der Lühe, Oskar; Tritschler, Alexandra; Davey, Alisdair; de Wijn, Alfred; Elmore, David F.; Fehlmann, André; Harrington, David M.; Jaeggli, Sarah A.; Rast, Mark P.; Schad, Thomas A.; Schmidt, Wolfgang; Mathioudakis, Mihalis; Mickey, Donald L.; Anan, Tetsu; Beck, Christian; Marshall, Heather K.; Jeffers, Paul F.; Oschmann, Jacobus M.; Beard, Andrew; Berst, David C.; Cowan, Bruce A.; Craig, Simon C.; Cross, Eric; Cummings, Bryan K.; Donnelly, Colleen; de Vanssay, Jean-Benoit; Eigenbrot, Arthur D.; Ferayorni, Andrew; Foster, Christopher; Galapon, Chriselle Ann; Gedrites, Christopher; Gonzales, Kerry; Goodrich, Bret D.; Gregory, Brian S.; Guzman, Stephanie S.; Guzzo, Stephen; Hegwer, Steve; Hubbard, Robert P.; Hubbard, John R.; Johansson, Erik M.; Johnson, Luke C.; Liang, Chen; Liang, Mary; McQuillen, Isaac; Mayer, Christopher; Newman, Karl; Onodera, Brialyn; Phelps, LeEllen; Puentes, Myles M.; Richards, Christopher; Rimmele, Lukas M.; Sekulic, Predrag; Shimko, Stephan R.; Simison, Brett E.; Smith, Brett; Starman, Erik; Sueoka, Stacey R.; Summers, Richard T.; Szabo, Aimee; Szabo, Louis; Wampler, Stephen B.; Williams, Timothy R.; White, Charles Bibcode: 2020SoPh..295..172R Altcode: We present an overview of the National Science Foundation's Daniel K. Inouye Solar Telescope (DKIST), its instruments, and support facilities. The 4 m aperture DKIST provides the highest-resolution observations of the Sun ever achieved. The large aperture of DKIST combined with state-of-the-art instrumentation provide the sensitivity to measure the vector magnetic field in the chromosphere and in the faint corona, i.e. for the first time with DKIST we will be able to measure and study the most important free-energy source in the outer solar atmosphere - the coronal magnetic field. Over its operational lifetime DKIST will advance our knowledge of fundamental astronomical processes, including highly dynamic solar eruptions that are at the source of space-weather events that impact our technological society. Design and construction of DKIST took over two decades. DKIST implements a fast (f/2), off-axis Gregorian optical design. The maximum available field-of-view is 5 arcmin. A complex thermal-control system was implemented in order to remove at prime focus the majority of the 13 kW collected by the primary mirror and to keep optical surfaces and structures at ambient temperature, thus avoiding self-induced local seeing. A high-order adaptive-optics system with 1600 actuators corrects atmospheric seeing enabling diffraction limited imaging and spectroscopy. Five instruments, four of which are polarimeters, provide powerful diagnostic capability over a broad wavelength range covering the visible, near-infrared, and mid-infrared spectrum. New polarization-calibration strategies were developed to achieve the stringent polarization accuracy requirement of 5×10−4. Instruments can be combined and operated simultaneously in order to obtain a maximum of observational information. Observing time on DKIST is allocated through an open, merit-based proposal process. DKIST will be operated primarily in "service mode" and is expected to on average produce 3 PB of raw data per year. A newly developed data center located at the NSO Headquarters in Boulder will initially serve fully calibrated data to the international users community. Higher-level data products, such as physical parameters obtained from inversions of spectro-polarimetric data will be added as resources allow. Title: Diverse Rock Types Detected in the Lunar South Pole-Aitken Basin by Chang'E 4 Authors: Huang, J.; Xiao, Z.; Xiao, L.; Horgan, B. H. N.; Hu, X.; Lucey, P. G.; Xiao, X.; Zhao, S.; Qian, Y.; Zhang, H.; Li, C.; Xu, R.; He, Z.; Yang, J.; Xue, B.; He, Q.; Zhong, J.; Lin, H.; Huang, C.; Xie, J. Bibcode: 2019AGUFM.P31C3471H Altcode: South Pole-Aitken (SPA) basin is the largest confirmed lunar impact structure between the South Pole and Aitken crater on the far side. The pre-Nectarian SPA basin has a 2400-km-by-2050-km elliptical structure centered at 53º S, 191º E, which should have exposed lower crust and upper mantle. The Earth mantle dominant mineral olivine has only been identified in small and localized exposures in the margins of the SPA basin, within which the dominant mafic component is pyroxene. The mineralogical characteristics could be explained by the recent hypothesis that the lunar upper mantle is dominated by low-calcium pyroxene (LCP), not olivine. Here we present observations from imaging and spectral data of China Chang'E-4 (CE-4) mission in the first 4 synodic days, especially the first in-situ visible/near infrared spectrometer (VNIS) observation of an exposed boulder. We have identified a variety of rock types, but not olivine-rich materials in the landing region, which is consistent with orbital observations. The obtained mineralogical information provides a better understanding of the nature and origin of SPA materials. Title: Tomographic Measurements of Magnetic Free Energy in CME Source Regions Authors: Lin, H.; Kramar, M.; Tomczyk, S. Bibcode: 2019AGUFMSH53B3378L Altcode: Magnetic free energies (MFEs) contained in highly non-potential coronal magnetic field in active regions are believed to be the primary source of energy of solar eruptions. Recent progresses in observational capabilities and tomographic inversion techniques have allowed us to directly determine the 3D structures of the temperature, density and magnetic fields of the solar corona (Kramar et al., 2016) using space EUV coronal emission line (CEL) data and ground-based synoptic IR CELs polarization observations. The magnetic free energy of the solar corona can now be directly derived from these observationally determined coronal models. We will present measurements of the MFEs at the source regions of coronal mass ejections (CMEs) and comparisons of the MFEs with direct measurements of kinetic energies of the CMEs. These studies will help us understand the energetics of the solar eruptions. Title: ngGONG: The Next Generation GONG - A New Solar Synoptic Observational Network Authors: Hill, Frank; Hammel, Heidi; Martinez-Pillet, Valentin; de Wijn, A.; Gosain, S.; Burkepile, J.; Henney, C. J.; McAteer, J.; Bain, H. M.; Manchester, W.; Lin, H.; Roth, M.; Ichimoto, K.; Suematsu, Y. Bibcode: 2019BAAS...51g..74H Altcode: 2019astro2020U..74H The white paper describes a next-generation GONG, a ground-based geographically distributed network of instrumentation to continually observe the Sun. This would provide data for solar magnetic field research and space weather forecasting, and would extend the time coverage of helioseismology. Title: Investigating Coronal Magnetism with COSMO: Science on the Critical Path To Understanding The ``Weather'' of Stars and Stellarspheres Authors: McIntosh, Scott; Tomczyk, Steven; Gibson, Sarah E.; Burkepile, Joan; de Wijn, Alfred; Fan, Yuhong; deToma, Giuliana; Casini, Roberto; Landi, Enrico; Zhang, Jie; DeLuca, Edward E.; Reeves, Katharine K.; Golub, Leon; Raymond, John; Seaton, Daniel B.; Lin, Haosheng Bibcode: 2019BAAS...51g.165M Altcode: 2019astro2020U.165M The Coronal Solar Magnetism Observatory (COSMO) is a unique ground-based facility designed to address the shortfall in our capability to measure magnetic fields in the solar corona. Title: TSMM - A Tomographic Solar Magnetism Mission Authors: Lin, Haosheng; Kramar, Maxim Bibcode: 2019AAS...23412606L Altcode: Detailed knowledges of the magnetic and thermal environment of the solar atmosphere, including the photosphere, chromosphere, and the corona, and how the plasma and the magnetic fields interact with each other, are crucial for the understanding of the physics of solar eruptions, which directly influences space weather in interplanetary space. However, the inference of the 3D coronal vector magnetic fields from observations is not straightforward due to the complex nature of the emission process (resonance scattering through Hanle and Zeeman effects) and line-of-sight (LOS) integration through the optically thin corona. Recent progresses in spectropolarimetric measurements of the polarized spectra of magnetically sensitive corona emission lines and their interpretation, and the development of tomographic inversion techniques now provides a viable path toward quantitative characterization of the 3-dimensional coronal temperature, density, and magnetic field structures.

Tomographic inversion relies on observations of the object under study from multiple sight lines. For earth-bound observers, tomographic inversion of the static temperature, density, and magnetic fields structures can be realized using pseudo tomographic observations due to the rotation of the sun. However, to resolve the temporal evolution of the structures of the solar atmosphere before, during, and after solar eruptions, a space mission consisting of multiple spacecraft deployed in deep space circumsolar orbits is needed to observe the sun from many sight lines simultaneously. This paper describes recent progresses in tomographic inversion techniques, and an instrument development effort to develop compact and high-performance instrumentation that will enable the deployment of a deep-space tomographic solar magnetism mission in the near future. Title: Optical Alignment of DL-NIRSP Spectrograph Authors: Jaeggli, Sarah A.; Anan, Tetsu; Kramar, Maxim; Lin, Haosheng Bibcode: 2019AAS...23410612J Altcode: The Diffraction-Limited Near-Infrared Spectropolarimeter (DL-NIRSP) will be delivered as part of the first light instrumentation for the Daniel K. Inouye Solar Telescope (DKIST) and is currently undergoing lab integration at the University of Hawai'i Institute for Astronomy's Advanced Technology Research Center on Maui. An off-axis hyperbolic mirror, with a focal length of 1250 mm, is used as both collimator and camera in the spectrograph, and makes this system particularly difficult to align. The optical axis, or vertex, of the parent surface is located approximately 260 mm from the center of the off-axis section of the mirror, but there is no direct physical or optical reference for the location and orientation of the optical axis. We have made use of vendor data and a coordinate measuring machine (CMM) arm to transfer coordinates from the back and perimeter surfaces of the mirror to locate the optical axis focus and place the other optical components in reference to this mechanical model. In coordination, we have conducted tests of the optical quality at various points during the alignment to ensure that the mechanical tolerances maintain the optical quality of the system so that the instrument will be able to achieve excellent spectral resolution limited by the spectrograph slit width (λ/Δλ 250,000), and preserve the diffraction limited spatial resolution provided by the telescope and feed optics (0.06" at 1 μm). Title: Retrieving 3D coronal magnetic field from ground and space based spectropolarimetric observations Authors: Kramar, Maxim; Lin, Haosheng Bibcode: 2019AAS...23430213K Altcode: Solar coronal magnetic fields play a key role in the energetics and dynamics of coronal heating, solar wind, solar flares, coronal mass ejections (CME), filament eruptions, and determine space weather processes. Therefore, precise knowledge of the 3D magnetic field and thermodynamic structures of the corona is essential for the heliophysics community's effort to understand the physics of the solar wind and solar eruptive phenomena. With the recent advancement of scalar and vector tomographic inversion techniques (Kramar et al., 2016), it is now possible to directly derive the 3D coronal magnetic, temperature, and electron density structures using synoptic Fe XIII 1075 nm coronal emission line (CEL) linear polarization data of the Coronal Multichannel Polarimeter (CoMP, Tomczyk et al., 2008), and UV coronal images from STEREO mission. This is a major milestone in our effort to establish the capabilities to directly observe 3D magnetic and thermodynamic structures of the corona.

Although the vector tomography based on linear polarization (LP) data can be used to probe certain coronal field configuration (Kramar et al. 2013), linear polarization data alone does not allow us to uniquely reconstruct all possible field configurations in general. In the near future, the arrival of DKIST will provide the multi-CEL full-Stokes data more accurate determination of the static corona using the rotation of the Sun to emulate tomographic observations.

On the longer term, observational determination of spatially and temporally resolved B(r; t), T(r; t), and n(r; t) will require the deployment of a Space Coronal Magnetometry Mission (SCMM) with a fleet of spacecraft observing the Sun from many non-redundant circumsolar orbits simultaneously.

We will discuss how the use of full Stokes polarization data and multiple observing geometry from and out of the ecliptic plane will improve the accuracy of coronal magnetic field reconstruction. Title: COSMO Science Authors: Gibson, Sarah; Tomczyk, Steven; Burkepile, Joan; Casini, Roberto; Deluca, Ed; de Toma, Giuliana; deWijn, Alfred; Fan, Yuhong; Golub, Leon; Judge, Philip; Landi, Enrico; Lin, Haosheng; McIntosh, Scott; Reeves, Kathy; Seaton, Dan; Zhang, Jie Bibcode: 2019shin.confE..32G Altcode: Space-weather forecast capability is held back by our current lack of basic scientific understanding of CME magnetic evolution, and the coronal magnetism that structures and drives the solar wind. Comprehensive observations of the global magnetothermal environment of the solar atmosphere are needed for progress. When fully implemented, the COSMO suite of synoptic ground-based telescopes will provide the community with comprehensive and simultaneous measurements of magnetism, temperature, density and plasma flows and waves from the photosphere through the chromosphere and out into the corona. We will discuss how these observations will uniquely address a set of science objectives that are central to the field of solar and space physics: in particular, to understand the storage and release of magnetic energy, to understand CME dynamics and consequences for shocks, to determine the role of waves in solar atmospheric heating and solar wind acceleration, to understand how the coronal magnetic field relates to the solar dynamo, and to constrain and improve space-weather forecast models. Title: Measuring the Magnetic Free Energy in pre-CME Corona by the Vector Tomographic Reconstruction of 3D Coronal Magnetic Fields Authors: Kramar, Maxim; Lin, Haosheng Bibcode: 2019shin.confE.198K Altcode: The ejecta of Coronal Mass Ejections (CMEs) carry approximately between 10**28 to 10**32 erg of kinetic energy (https://cdaw.gsfc.nasa.gov/CME_list/). Magnetic free energy contained in non-potential magnetic fields in solar active regions is believed to be the energy source powering these energetic eruptions. This hypothesis can be tested by direct measurement of the total energy content, including thermodynamic and magnetic free energy, contained in the pre- and post-CME active regions. Recent advancements of the vector tomographic reconstruction technique (Kramar et al. 2016), and capability for synoptic observation of global coronal emission lines (CELs) linear polarization (CoMP instrument, Tomczyk et al. 2008) have allowed, for the first time, direct observational inference of the quasi-static 3D magnetic field structure of the solar corona. We describe measurements of the magnetic free energy contained in pre-CME corona derived from tomographically reconstructed coronal magnetic field, and compare these measurements to the kinetic energy of CMEs obtained by independent measurements of the mass and velocity of the CMEs.

Rotational tomography with a single sight line from the Earth limits the observational cadence of the coronal magnetic fields to approximately two weeks (in some cases it can be reduced to about a week). Future space mission idea that can provide information on how the coronal magnetic fields evolve with temporal cadence appropriate for the study of energetic solar eruptions will be presented also. Title: Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations Authors: Li, W.; Wang, X.; Vinkó, J.; Mo, J.; Hosseinzadeh, G.; Sand, D. J.; Zhang, J.; Lin, H.; PTSS/TNTS; Zhang, T.; Wang, L.; Zhang, J.; Chen, Z.; Xiang, D.; Rui, L.; Huang, F.; Li, X.; Zhang, X.; Li, L.; Baron, E.; Derkacy, J. M.; Zhao, X.; Sai, H.; Zhang, K.; Wang, L.; LCO; Howell, D. A.; McCully, C.; Arcavi, I.; Valenti, S.; Hiramatsu, D.; Burke, J.; KEGS; Rest, A.; Garnavich, P.; Tucker, B. E.; Narayan, G.; Shaya, E.; Margheim, S.; Zenteno, A.; Villar, A.; UCSC; Dimitriadis, G.; Foley, R. J.; Pan, Y. -C.; Coulter, D. A.; Fox, O. D.; Jha, S. W.; Jones, D. O.; Kasen, D. N.; Kilpatrick, C. D.; Piro, A. L.; Riess, A. G.; Rojas-Bravo, C.; ASAS-SN; Shappee, B. J.; Holoien, T. W. -S.; Stanek, K. Z.; Drout, M. R.; Auchettl, K.; Kochanek, C. S.; Brown, J. S.; Bose, S.; Bersier, D.; Brimacombe, J.; Chen, P.; Dong, S.; Holmbo, S.; Muñoz, J. A.; Mutel, R. L.; Post, R. S.; Prieto, J. L.; Shields, J.; Tallon, D.; Thompson, T. A.; Vallely, P. J.; Villanueva, S., Jr.; Pan-STARRS; Smartt, S. J.; Smith, K. W.; Chambers, K. C.; Flewelling, H. A.; Huber, M. E.; Magnier, E. A.; Waters, C. Z.; Schultz, A. S. B.; Bulger, J.; Lowe, T. B.; Willman, M.; Konkoly/Texas; Sárneczky, K.; Pál, A.; Wheeler, J. C.; Bódi, A.; Bognár, Zs.; Csák, B.; Cseh, B.; Csörnyei, G.; Hanyecz, O.; Ignácz, B.; Kalup, Cs.; Könyves-Tóth, R.; Kriskovics, L.; Ordasi, A.; Rajmon, I.; Sódor, A.; Szabó, R.; Szakáts, R.; Zsidi, G.; Arizona, University of; Milne, P.; Andrews, J. E.; Smith, N.; Bilinski, C.; Swift; Brown, P. J.; ePESSTO; Nordin, J.; Williams, S. C.; Galbany, L.; Palmerio, J.; Hook, I. M.; Inserra, C.; Maguire, K.; Cartier, Régis; Razza, A.; Gutiérrez, C. P.; North Carolina, University of; Hermes, J. J.; Reding, J. S.; Kaiser, B. C.; ATLAS; Tonry, J. L.; Heinze, A. N.; Denneau, L.; Weiland, H.; Stalder, B.; K2 Mission Team; Barentsen, G.; Dotson, J.; Barclay, T.; Gully-Santiago, M.; Hedges, C.; Cody, A. M.; Howell, S.; Kepler Spacecraft Team; Coughlin, J.; Van Cleve, J. E.; Cardoso, J. Vinícius de Miranda; Larson, K. A.; McCalmont-Everton, K. M.; Peterson, C. A.; Ross, S. E.; Reedy, L. H.; Osborne, D.; McGinn, C.; Kohnert, L.; Migliorini, L.; Wheaton, A.; Spencer, B.; Labonde, C.; Castillo, G.; Beerman, G.; Steward, K.; Hanley, M.; Larsen, R.; Gangopadhyay, R.; Kloetzel, R.; Weschler, T.; Nystrom, V.; Moffatt, J.; Redick, M.; Griest, K.; Packard, M.; Muszynski, M.; Kampmeier, J.; Bjella, R.; Flynn, S.; Elsaesser, B. Bibcode: 2019ApJ...870...12L Altcode: 2018arXiv181110056L Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3 ± 0.3 days and Δm 15(B) = 0.96 ± 0.03 mag, but it seems to have bluer B - V colors. We construct the “UVOIR” bolometric light curve having a peak luminosity of 1.49 × 1043 erg s-1, from which we derive a nickel mass as 0.55 ± 0.04 M by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The C II features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers. Title: K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova Authors: Dimitriadis, G.; Foley, R. J.; Rest, A.; Kasen, D.; Piro, A. L.; Polin, A.; Jones, D. O.; Villar, A.; Narayan, G.; Coulter, D. A.; Kilpatrick, C. D.; Pan, Y. -C.; Rojas-Bravo, C.; Fox, O. D.; Jha, S. W.; Nugent, P. E.; Riess, A. G.; Scolnic, D.; Drout, M. R.; K2 Mission Team; Barentsen, G.; Dotson, J.; Gully-Santiago, M.; Hedges, C.; Cody, A. M.; Barclay, T.; Howell, S.; KEGS; Garnavich, P.; Tucker, B. E.; Shaya, E.; Mushotzky, R.; Olling, R. P.; Margheim, S.; Zenteno, A.; Kepler spacecraft Team; Coughlin, J.; Van Cleve, J. E.; Cardoso, J. Vinícius de Miranda; Larson, K. A.; McCalmont-Everton, K. M.; Peterson, C. A.; Ross, S. E.; Reedy, L. H.; Osborne, D.; McGinn, C.; Kohnert, L.; Migliorini, L.; Wheaton, A.; Spencer, B.; Labonde, C.; Castillo, G.; Beerman, G.; Steward, K.; Hanley, M.; Larsen, R.; Gangopadhyay, R.; Kloetzel, R.; Weschler, T.; Nystrom, V.; Moffatt, J.; Redick, M.; Griest, K.; Packard, M.; Muszynski, M.; Kampmeier, J.; Bjella, R.; Flynn, S.; Elsaesser, B.; Pan-STARRS; Chambers, K. C.; Flewelling, H. A.; Huber, M. E.; Magnier, E. A.; Waters, C. Z.; Schultz, A. S. B.; Bulger, J.; Lowe, T. B.; Willman, M.; Smartt, S. J.; Smith, K. W.; DECam; Points, S.; Strampelli, G. M.; ASAS-SN; Brimacombe, J.; Chen, P.; Muñoz, J. A.; Mutel, R. L.; Shields, J.; Vallely, P. J.; Villanueva, S., Jr.; PTSS/TNTS; Li, W.; Wang, X.; Zhang, J.; Lin, H.; Mo, J.; Zhao, X.; Sai, H.; Zhang, X.; Zhang, K.; Zhang, T.; Wang, L.; Zhang, J.; Baron, E.; DerKacy, J. M.; Li, L.; Chen, Z.; Xiang, D.; Rui, L.; Wang, L.; Huang, F.; Li, X.; Cumbres Observatory, Las; Hosseinzadeh, G.; Howell, D. A.; Arcavi, I.; Hiramatsu, D.; Burke, J.; Valenti, S.; ATLAS; Tonry, J. L.; Denneau, L.; Heinze, A. N.; Weiland, H.; Stalder, B.; Konkoly; Vinkó, J.; Sárneczky, K.; Pál, A.; Bódi, A.; Bognár, Zs.; Csák, B.; Cseh, B.; Csörnyei, G.; Hanyecz, O.; Ignácz, B.; Kalup, Cs.; Könyves-Tóth, R.; Kriskovics, L.; Ordasi, A.; Rajmon, I.; Sódor, A.; Szabó, R.; Szakáts, R.; Zsidi, G.; ePESSTO; Williams, S. C.; Nordin, J.; Cartier, R.; Frohmaier, C.; Galbany, L.; Gutiérrez, C. P.; Hook, I.; Inserra, C.; Smith, M.; Arizona, University of; Sand, D. J.; Andrews, J. E.; Smith, N.; Bilinski, C. Bibcode: 2019ApJ...870L...1D Altcode: 2018arXiv181110061D We present an exquisite 30 minute cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid Response System 1 and Cerro Tololo Inter-American Observatory 4 m Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical supernovae (SNe) Ia. This “flux excess” relative to canonical SN Ia behavior is confirmed in our i-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14 ± 0.04 days after explosion, has a FWHM of 3.12 ± 0.04 days, a blackbody temperature of T=17,{500}-9,000+11,500 K, a peak luminosity of 4.3+/- 0.2× {10}37 {erg} {{{s}}}-1, and a total integrated energy of 1.27+/- 0.01× {10}43 {erg}. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of ∼2× {10}12 {cm} based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system. Title: Status of the Daniel K. Inouye Solar Telescope: unraveling the mysteries the Sun. Authors: Rimmele, Thomas R.; Martinez Pillet, Valentin; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini, Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich; Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt, Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka, Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin, Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team Bibcode: 2018AAS...23231601R Altcode: The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to address many of the fundamental problems in solar and stellar astrophysics, including the origin of stellar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar and stellar output. DKIST will also address basic research aspects of Space Weather and help improve predictive capabilities. In combination with synoptic observations and theoretical modeling DKIST will unravel the many remaining mysteries of the Sun.The construction of DKIST is progressing on schedule with 80% of the facility complete. Operations are scheduled to begin early 2020. DKIST will replace the NSO facilities on Kitt Peak and Sac Peak with a national facility with worldwide unique capabilities. The design allows DKIST to operate as a coronagraph. Taking advantage of its large aperture and infrared polarimeters DKIST will be capable to routinely measure the currently illusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Achieving this resolution is critical for the ability to observe magnetic structures at their intrinsic, fundamental scales. Five instruments will be available at the start of operations, four of which will provide highly sensitive measurements of solar magnetic fields throughout the solar atmosphere - from the photosphere to the corona. The data from these instruments will be distributed to the world wide community via the NSO/DKIST data center located in Boulder. We present examples of science objectives and provide an overview of the facility and project status, including the ongoing efforts of the community to develop the critical science plan for the first 2-3 years of operations. Title: Infrared Imaging Spectroscopy Using Massively Multiplexed Slit-Based Techniques and Sub-Field Motion Correction Authors: Schad, Thomas; Lin, Haosheng Bibcode: 2017SoPh..292..158S Altcode: 2018arXiv180905132S Targeting dynamic spatially extended phenomena in the upper solar atmosphere, a new instrument concept has been developed and demonstrated at the Dunn Solar Telescope in New Mexico, USA, which provides wide-field, rapid-scanning, high-resolution imaging spectroscopy of the neutral helium λ 10830 spectral triplet. The instrument combines a narrowband imaging channel with a novel cospatial grating-based spectrograph with 17 parallel long slits that are simultaneously imaged on a single HgCdTe detector. Over a 175×125 field of view, a temporal cadence of 8.5 s is achieved between successive maps that critically sample the diffraction limit of the Dunn Solar Telescope at 1083 nm (1.22 λ /D =0.36) and provide a resolving power (R =λ /δ λ ) up to ≈25 ,000 with a 1 nm bandwidth (i.e.275 kms−1 Doppler coverage). Capitalizing on the strict simultaneity of the narrowband channel relative to each spectral image (acquired at a rate of 9.53 Hz), this work demonstrates that sub-field image motion introduced by atmospheric seeing may be corrected post-facto in each mapped spectral data cube. This instrument furnishes essential infrared spectral imaging capabilities for current investigations while pioneering techniques for high-resolution wide-field time-domain solar astronomy. Title: A gravitational-wave standard siren measurement of the Hubble constant Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.; Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos, M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen, D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.; Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.; Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.; Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner, J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen, B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi, E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.; Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.; Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.; Rebolo, R.; Serra-Ricart, M. Bibcode: 2017Natur.551...85A Altcode: 2017arXiv171005835A On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision. Title: Multi-messenger Observations of a Binary Neutron Star Merger Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.; Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen, R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro, M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev, R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.; Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan, G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks, D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration; Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao, X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen, Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du, Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.; Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia, S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li, C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li, Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.; Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.; Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.; Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.; Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang, Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.; Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang, C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.; Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang, Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.; Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu, Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.; Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.; de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall, C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall, F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.; Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration; Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma, I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo, F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti, F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico, F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia, M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley, R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.; Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley, W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.; Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.; Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti, S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola, L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti, A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli, L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.; Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta, A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti, N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera, M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.; Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria, T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu, S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.; Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu, L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini, Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin, D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau, M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.; Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.; Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma, K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz, D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao, J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA: GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.; Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello, G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison, J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch, C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array, ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon, R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi, I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.; Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller, A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.; Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken, C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.; Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.; Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.; Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li, X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.; Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff, J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program, Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.; Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner, J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen, B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun, S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.; Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas, T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers, R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.; Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato, H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.; Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov, D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo, R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.; Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa, H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim, J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi, K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata, K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata, F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito, Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi, J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.; Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi, M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.; Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.; Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.; Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.; Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.; Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.; Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou, G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.; Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim, N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.; Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.; Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.; Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.; Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.; Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.; Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH; JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers, K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.; Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman, M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.; Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai, H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima, K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.; Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki, R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita, S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.; Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka, K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team; Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier, R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.; Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee, S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.; Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo, J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt, S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz, A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice, S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen, B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.; pre="(">ePESSTO, 2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

Any correspondence should be addressed to . Title: Critical Infrared Science with the Daniel K. Inouye Solar Telescope Authors: Schad, Thomas A.; Fehlmann, Andre; Jaeggli, Sarah A.; Kuhn, Jeffrey Richard; Lin, Haosheng; Penn, Matthew J.; Rimmele, Thomas R.; Woeger, Friedrich Bibcode: 2017SPD....4811703S Altcode: Critical science planning for early operations of the Daniel K. Inouye Solar Telescope is underway. With its large aperture, all-reflective telescope design, and advanced instrumentation, DKIST provides unprecedented access to the important infrared (IR) solar spectrum between 1 and 5 microns. Breakthrough IR capabilities in coronal polarimetry will sense the coronal magnetic field routinely for the first time. The increased Zeeman resolution near the photospheric opacity minimum will provide our deepest and most sensitive measurement of quiet sun and active region magnetic fields to date. High-sensitivity He I triplet polarimetry will dynamically probe the chromospheric magnetic field in fibrils, spicules, and filaments, while observations of molecular CO transitions will characterize the coolest regions of the solar atmosphere. When combined with the longer timescales of good atmospheric seeing compared with the visible, DKIST infrared diagnostics are expected to be mainstays of solar physics in the DKIST era. This paper will summarize the critical science areas addressed by DKIST infrared instrumentation and invite the community to further contribute to critical infrared science planning. Title: An Update on the Diffraction-Limited Near Infrared Spectropolarimeter for the Daniel K. Inouye Solar Telescope Authors: Jaeggli, Sarah A.; Lin, Haosheng; Onaka, Peter; McGregor, Helen; Yamada, Hubert Bibcode: 2017SPD....4811704J Altcode: DL-NIRSP is an integral field imaging spectropolarimeter for photospheric, chromospheric, and coronal magnetic field studies which is currently under development by the University of Hawaii’s Institute for Astronomy as part of the first light instrument suite for DKIST. DL-NIRSP pairs a multi-slit fiber-optic image slicer with narrow bandpass isolation filters and large format detectors to achieve very high cadence observations in three simultaneous wavelength channels in the Visible-IR. Planned diagnostics at first light include Fe XI 789.2 nm, Ca II 854.2 nm, Fe XIII 1074.7 nm, Si I/He I 1083.0 nm, Si X 1430.0 nm, and Fe I 1565.0 nm. More spectral lines will be added in the future. As the last stop in the DKIST light distribution system, DL-NIRSP will receive an AO corrected beam and will be able to operate simultaneously with the other visible light instruments. We provide an update on the current challenges and rewards yet to come with DL-NIRSP. Title: Vector Magnetic Field Measurements along a Cooled Stereo-imaged Coronal Loop Authors: Schad, T. A.; Penn, M. J.; Lin, H.; Judge, P. G. Bibcode: 2016ApJ...833....5S Altcode: 2016arXiv161005332S The variation of the vector magnetic field along structures in the solar corona remains unmeasured. Using a unique combination of spectropolarimetry and stereoscopy, we infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability. We analyze spectropolarimetric data of the He I λ10830 triplet (1s2s{}3{S}1-1s2p{}3{P}{2,1,0}) obtained at the Dunn Solar Telescope with the Facility Infrared Spectropolarimeter on 2011 September 19. Cool coronal loops are identified by their prominent drainage signatures in the He I data (redshifts up to 185 km s-1). Extinction of EUV background radiation along these loops is observed by both the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Extreme Ultraviolet Imager on board spacecraft A of the Solar Terrestrial Relations Observatory, and is used to stereoscopically triangulate the loop geometry up to heights of 70 Mm (0.1R Sun) above the solar surface. The He I polarized spectra along this loop exhibit signatures indicative of atomic-level polarization, as well as magnetic signatures through the Hanle and Zeeman effects. Spectropolarimetric inversions indicate that the magnetic field is generally oriented along the coronal loop axis, and provide the height dependence of the magnetic field intensity. The technique we demonstrate is a powerful one that may help better understand the thermodynamics of coronal fine-structure magnetism. Title: Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun Authors: Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team Bibcode: 2016AN....337.1064T Altcode: The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan. Title: Construction status of the Daniel K. Inouye solar telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Casini, Roberto; Berukoff, Steve; Craig, Simon C.; Elmore, David; Ferayorni, Andrew; Goodrich, Bret D.; Hubbard, Robert P.; Harrington, David; Hegwer, Steve; Jeffers, Paul; Johansson, Erik M.; Kuhn, Jeff; Lin, Haosheng; Marshall, Heather; Mathioudakis, Mihalis; McBride, William R.; McVeigh, William; Phelps, LeEllen; Schmidt, Wolfgang; Shimko, Steve; Sueoka, Stacey; Tritschler, Alexandra; Williams, Timothy R.; Wöger, Friedrich Bibcode: 2016SPIE.9906E..1BM Altcode: We provide an update on the construction status of the Daniel K. Inouye Solar Telescope. This 4-m diameter facility is designed to enable detection and spatial/temporal resolution of the predicted, fundamental astrophysical processes driving solar magnetism at their intrinsic scales throughout the solar atmosphere. These data will drive key research on solar magnetism and its influence on solar winds, flares, coronal mass ejections and solar irradiance variability. The facility is developed to support a broad wavelength range (0.35 to 28 microns) and will employ state-of-the-art adaptive optics systems to provide diffraction limited imaging, resolving features approximately 20 km on the Sun. At the start of operations, there will be five instruments initially deployed: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF (a Fabry-Perot tunable spectropolarimeter); Kiepenheuer Institute for Solarphysics), Diffraction Limited NIR Spectropolarimeter (DL-NIRSP; University of Hawaii, Institute for Astronomy) and the Cryogenic NIR Spectropolarimeter (Cryo-NIRSP; University of Hawaii, Institute for Astronomy). As of mid-2016, the project construction is in its 4th year of site construction and 7th year overall. Major milestones in the off-site development include the conclusion of the polishing of the M1 mirror by University of Arizona, College of Optical Sciences, the delivery of the Top End Optical Assembly (L3), the acceptance of the Deformable Mirror System (Xinetics); all optical systems have been contracted and are either accepted or in fabrication. The Enclosure and Telescope Mount Assembly passed through their factory acceptance in 2014 and 2015, respectively. The enclosure site construction is currently concluding while the Telescope Mount Assembly site erection is underway. The facility buildings (Utility and Support and Operations) have been completed with ongoing work on the thermal systems to support the challenging imaging requirements needed for the solar research. Finally, we present the construction phase performance (schedule, budget) with projections for the start of early operations. Title: Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory Authors: Tomczyk, S.; Landi, E.; Burkepile, J. T.; Casini, R.; DeLuca, E. E.; Fan, Y.; Gibson, S. E.; Lin, H.; McIntosh, S. W.; Solomon, S. C.; Toma, G.; Wijn, A. G.; Zhang, J. Bibcode: 2016JGRA..121.7470T Altcode: Magnetic influences increase in importance in the solar atmosphere from the photosphere out into the corona, yet our ability to routinely measure magnetic fields in the outer solar atmosphere is lacking. We describe the scientific objectives and capabilities of the COronal Solar Magnetism Observatory (COSMO), a proposed synoptic facility designed to measure magnetic fields and plasma properties in the large-scale solar atmosphere. COSMO comprises a suite of three instruments chosen to enable the study of the solar atmosphere as a coupled system: (1) a coronagraph with a 1.5 m aperture to measure the magnetic field, temperature, density, and dynamics of the corona; (2) an instrument for diagnostics of chromospheric and prominence magnetic fields and plasma properties; and (3) a white light K-coronagraph to measure the density structure and dynamics of the corona and coronal mass ejections. COSMO will provide a unique combination of magnetic field, density, temperature, and velocity observations in the corona and chromosphere that have the potential to transform our understanding of fundamental physical processes in the solar atmosphere and their role in the origins of solar variability and space weather. Title: Supplement: “Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory, Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration Bibcode: 2016ApJS..225....8A Altcode: 2016arXiv160407864A This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands. Title: Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.; di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot, Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration Bibcode: 2016ApJ...826L..13A Altcode: 2016arXiv160208492A A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. Title: Construction Status and Early Science with the Daniel K. Inouye Solar Telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang Bibcode: 2016SPD....4720101M Altcode: The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations. Title: mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona Authors: Lin, Haosheng Bibcode: 2016FrASS...3....9L Altcode: remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important of our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture. Title: Direct Observation of Solar Coronal Magnetic Fields by Vector Tomography of the Coronal Emission Line Polarizations Authors: Kramar, M.; Lin, H.; Tomczyk, S. Bibcode: 2016ApJ...819L..36K Altcode: 2015arXiv150207200K We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments. Title: Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters Authors: Saro, A.; Bocquet, S.; Rozo, E.; Benson, B. A.; Mohr, J.; Rykoff, E. S.; Soares-Santos, M.; Bleem, L.; Dodelson, S.; Melchior, P.; Sobreira, F.; Upadhyay, V.; Weller, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Bayliss, M.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brodwin, M.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J. E.; Capasso, R.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Chiu, I.; Covarrubias, R.; Crawford, T. M.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; de Haan, T.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Cunha, C. E.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Gupta, N.; Hennig, C.; Holzapfel, W. L.; Honscheid, K.; Jain, B.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lin, H.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, Paul; McDonald, M.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Stalder, B.; Stark, A. A.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D.; Vikram, V.; von der Linden, A.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Zenteno, A.; Ziegler, K. E. Bibcode: 2015MNRAS.454.2305S Altcode: 2015arXiv150607814S We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function <ln λ|M500> ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find B_λ = 1.14^{+0.21}_{-0.18} and C_λ =0.73^{+0.77}_{-0.75}. The associated scatter in mass at fixed richness is σ _{ln M|λ } = 0.18^{+0.08}_{-0.05} at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ∈ [4, 4.5]. Title: 3D Observation of the Global Coronal Magnetic Field by Vector Tomography using the Coronal Emission Linear Polarization Data. Authors: Kramar, Maxim; Lin, Haosheng; Tomczyk, Steven Bibcode: 2015IAUGA..2257404K Altcode: Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. However, due to the low density and opacity of the solar atmosphere, the coronal emission measurements are result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. Therefore, except in a few special cases, a direct inference of the 3D coronal magnetic field structure from polarization data is in general not possible. Tomography methods allow to resolve the LOS problem.We will present the global-scale, 3D coronal vector magnetic fields obtained by a vector tomographic inversion technique.The Vector tomographic inversion uses measurements of the Fe XIII 10747 A Hanle effect linear polarization signals by the Coronal Multichannel Polarimeter (CoMP) as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. The 3D electron density and temperature, needed as additional input, have been reconstructed by scalar field tomography method based on STEREO/EUVI data. We will present the 3D coronal vector magnetic field, electron density and temperature resulted from these inversions.While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by MagnetoHydroDynamic (MHD) simulation based on observed photospheric magnetic fields and with 3D coronal density structures obtained by scalar field tomography based on coronal observations. We will discuss the utilities and limitations of the inversion technique, and present ideas for future developments. Title: He I Vector Magnetic Field Maps of a Sunspot and Its Superpenumbral Fine-Structure Authors: Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A. Bibcode: 2015SoPh..290.1607S Altcode: 2015arXiv150505567S; 2015SoPh..tmp...60S Advanced inversions of high-resolution spectropolarimetric observations of the He I triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions because superpenumbral Stokes profiles are dominated by atomic-level polarization, while sunspot profiles are Zeeman-dominated, but also exhibit signatures that might be induced by symmetry-breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere and furthermore show that the superpenumbral magnetic field does not appear to be finely structured, unlike the observed intensity structure. This suggests that fibrils are not concentrations of magnetic flux, but are instead distinguished by individualized thermalization. We also directly compare our inverted values with a current-free extrapolation of the chromospheric field. With improved measurements in the future, the average shear angle between the inferred magnetic field and the potential field may offer a means to quantify the non-potentiality of the chromospheric magnetic field to study the onset of explosive solar phenomena. Title: DKIST: Observing the Sun at High Resolution Authors: Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Craig, S. C.; Elmore, D. F.; Hubbard, R. P.; Kuhn, J. R.; Lin, H.; McMullin, J. P.; Reardon, K. P.; Schmidt, W.; Warner, M.; Woger, F. Bibcode: 2015csss...18..933T Altcode: The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) and currently under construction on Haleakalā (Maui, Hawai'i) will be the largest solar ground-based telescope and leading resource for studying the dynamic Sun and its phenomena at high spatial, spectral and temporal resolution. Accurate and sensitive polarimetric observations at high-spatial resolution throughout the solar atmosphere including the corona is a high priority and a major science driver. As such the DKIST will offer a combination of state-of-the-art instruments with imaging and/or spectropolarimetric capabilities covering a broad wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a double Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed 2D Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of e.g. the CO lines at 4.7 microns. We will provide a brief overview of the DKIST's unique capabilities to perform spectroscopic and spectropolarimetric measurements of the solar atmosphere using its first-light instrumentation suite, the status of the construction project, and how facility and data access is provided to the US and international community. Title: The Coronal Solar Magnetism Observatory (COSMO) Authors: Tomczyk, S.; Landi, E.; Lin, H.; Zhang, J. Bibcode: 2014AGUFMSH53B4212T Altcode: Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required in our understanding of the emergence of magnetic flux into the solar atmosphere and the processes responsible for the production of solar activity, coronal heating and coronal dynamics. However, routine observations of the strength and orientation of coronal and chromospheric magnetic fields are not currently available. COSMO is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment. We will present an overview of the COSMO and show recent progress in development of the COSMO observatory. Title: Polarization properties of a birefringent fiber optic image slicer for diffraction-limited dual-beam spectropolarimetry Authors: Schad, Thomas; Lin, Haosheng; Ichimoto, Kiyoshi; Katsukawa, Yukio Bibcode: 2014SPIE.9147E..6ES Altcode: The birefringent fiber optic image slicer design, or BiFOIS, adapts integral field spectroscopy methods to the special needs of high-sensitivity, spatially-resolved spectropolarimetry. In solar astronomy these methods are of particular importance, as dynamic magnetism lies at the heart of various multi-scaled phenomena in the solar atmosphere. While integral field units (IFU) based on fiber optics have been in continual development for some time, standard stock multimode fibers do not typically preserve polarization. The importance of a birefringent fiber optic IFU design stems from the need for dual-beam spatio-temporal polarimetric modulation to correct for spurious polarization signals induced either by platform jitter or atmospheric seeing. Here we characterize the polarization response of a second generation BiFOIS IFU designed for solar spectropolarimetry. The unit provides 60 × 64 spatial imaging pixels in a densely-packed, high filling factor configuration. Particular attention is placed on the spatial uniformity of the IFU polarization response. Calibrated first-light solar observations are also presented to demonstrate the performance of the device in a real application. Title: Construction status of the Daniel K. Inouye Solar Telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Martínez Pillet, Valentin; Berger, Thomas E.; Casini, Roberto; Craig, Simon C.; Elmore, David F.; Goodrich, Bret D.; Hegwer, Steve L.; Hubbard, Robert P.; Johansson, Erik M.; Kuhn, Jeffrey R.; Lin, Haosheng; McVeigh, William; Schmidt, Wolfgang; Shimko, Steve; Tritschler, Alexandra; Warner, Mark; Wöger, Friedrich Bibcode: 2014SPIE.9145E..25M Altcode: The Daniel K. Inouye Solar Telescope (DKIST, renamed in December 2013 from the Advanced Technology Solar Telescope) will be the largest solar facility built when it begins operations in 2019. Designed and developed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the Sun, the observatory will enable key research for the study of solar magnetism and its influence on the solar wind, flares, coronal mass ejections and solar irradiance variations. The 4-meter class facility will operate over a broad wavelength range (0.38 to 28 microns, initially 0.38 to 5 microns), using a state-of-the-art adaptive optics system to provide diffraction-limited imaging and the ability to resolve features approximately 25 km on the Sun. Five first-light instruments will be available at the start of operations: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF; Kiepenheuer Institut für Sonnenphysik), Diffraction Limited Near InfraRed SpectroPolarimeter (DL-NIRSP; University of Hawai'i, Institute for Astronomy) and the Cryogenic Near InfraRed SpectroPolarimeter (Cryo-NIRSP; University of Hawai'i, Institute for Astronomy). As of mid-2014, the key subsystems have been designed and fabrication is well underway, including the site construction, which began in December 2012. We provide an update on the development of the facilities both on site at the Haleakalā Observatories on Maui and the development of components around the world. We present the overall construction and integration schedule leading to the handover to operations in mid 2019. In addition, we outline the evolving challenges being met by the project, spanning the full spectrum of issues covering technical, fiscal, and geographical, that are specific to this project, though with clear counterparts to other large astronomical construction projects. Title: mxSPEC: a massively multiplexed full-disk spectroheliograph for solar physics research Authors: Lin, Haosheng Bibcode: 2014SPIE.9147E..12L Altcode: The Massively Multiplexed Spectrograph (mxSPEC) is a new instrument concept that takes advantage of modern high-speed large-format focal plane arrays (FPAs) and high efficiency bandpass isolation filters to multiplex spectra from many slices of the telescope field simultaneously onto the FPAs within a single grating spectrograph. This design greatly reduces the time required to scan a large telescope field, and with current technologies can achieve more than a factor of 50 or more improvement of the system efficiency over a conventional long-slit spectrograph. Furthermore, several spectral lines can be observed at the same time with proper selection of the diffraction grating, further improving the efficiency of this design to more than two orders of magnitude over conventional single-slit, single-wavelength instrument. This paper describes an experimental, proof-of-concept, 40-slit full-disk spectrograph that demonstrates the feasibility of this new instrument concept and its potential for solar physics research including helioseismology, dynamic solar events, and global scale magnetic field observation of the solar disk and the corona. We also present the preliminary design of a 4-line, 55-slit spectroheliograph that can serve as the template for the instruments of the next generation synoptic solar observatory. Title: The Daniel K. Inouye Solar Telescope first light instruments and critical science plan Authors: Elmore, David F.; Rimmele, Thomas; Casini, Roberto; Hegwer, Steve; Kuhn, Jeff; Lin, Haosheng; McMullin, Joseph P.; Reardon, Kevin; Schmidt, Wolfgang; Tritschler, Alexandra; Wöger, Friedrich Bibcode: 2014SPIE.9147E..07E Altcode: The Daniel K. Inouye Solar Telescope is a 4-meter-class all-reflecting telescope under construction on Haleakalā mountain on the island of Maui, Hawai'i. When fully operational in 2019 it will be the world's largest solar telescope with wavelength coverage of 380 nm to 28 microns and advanced Adaptive Optics enabling the highest spatial resolution measurements of the solar atmosphere yet achieved. We review the first-generation DKIST instrument designs, select critical science program topics, and the operations and data handling and processing strategies to accomplish them. Title: Tools for 3D Spectropolarimetry - A Birefringent Fiber Optic Image Slicer Authors: Schad, Thomas A.; Lin, Haosheng Bibcode: 2014AAS...22412358S Altcode: Image-slicing technology benefits astronomical spectropolarimetry by transposing a three-dimensional informational set--two spatial and one spectral dimension--into a format more amenable to simultaneous coverage by conventional spectrographs. To probe, for example, the magnetism of the fine-scaled, dynamic chromosphere, methods beyond slit-based spectropolarimetry are essential. Fiber optic integral field units (IFUs) present one promising solution. The importance of a birefringent fiber-optic IFU design stems from the need of spatio-temporal modulation to correct for spurious polarization signals induced either by platform jitter or atmospheric seeing. Standard stock fibers do not typically preserve polarization. Here we characterize the polarization response of a close-packed IFU based on rectangular optical fibers, currently under development for the Diffraction-Limited Near-IR Spectropolarimeter, a facility instrument of the Advanced Technology Solar Telescope. Solar observations utilizing this device will be presented. Title: 3D Coronal Magnetic Field Reconstruction based on infrared polarimetric observations Authors: Kramar, Maxim; Lin, Haosheng; Tomczyk, Steven Bibcode: 2014shin.confE.102K Altcode: Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal density, temperature and magnetic field resulted from these inversions. Title: From static to dynamic mapping of chromospheric magnetism - FIRS and SPIES Authors: Schad, Thomas A.; Lin, Haosheng Bibcode: 2014AAS...22430204S Altcode: Advancements in theoretical forward modeling and observational techniques now allow the mapping of the chromospheric magnetic field vector in some regions. We report on full maps of the chromospheric magnetic field vector across a sunspot and its superpenumbra within NOAA AR 11408. These maps are derived from full Stokes observations of the He I triplet at 1083 nm, which show both Zeeman and atomic-level polarization signatures. Yet, due to the long time to acquire these observations with the slit-based Facility Infrared Spectropolarimeter (FIRS), our measurements primarily probe long-lived chromospheric structures, albeit at very high polarization sensitivity. The fast temporal scales remain difficult to probe with conventional slit-based spectropolarimeters. Alternatively, SPIES is an instrument based on a birefringent fiber optic IFU, designed to multiplex a two-dimensional spatial field with high spectral resolution spectropolarimetry, and is an ideal tool for probing small-scale, dynamic magnetic features. We will present movies of the dynamic chromosphere acquired from SPIES across a sunspot and its fine-scaled superpenumbra. Title: Pan-STARRS 1 Observations of the Unusual Active Centaur P/2011 S1(Gibbs) Authors: Lin, H. W.; Chen, Y. T.; Lacerda, P.; Ip, W. H.; Holman, M.; Protopapas, P.; Chen, W. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Price, P. A. Bibcode: 2014AJ....147..114L Altcode: 2014arXiv1402.6403L P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur with a similar orbit to that of the famous 29P/Schwassmann-Wachmann 1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1) sky survey from 2010 to 2012. The resulting data allow us to perform multi-color studies of the nucleus and coma of the comet. Analysis of PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus <4 km radius, with colors g P1 - r P1 = 0.5 ± 0.02, r P1 - i P1 = 0.12 ± 0.02, and i P1 - z P1 = 0.46 ± 0.03. The comet remained active from 2010 to 2012, with a model-dependent mass-loss rate of ~100 kg s-1. The mass-loss rate per unit surface area of P/2011 S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making it one of the most active Centaurs. The mass-loss rate also varies with time from ~40 kg s-1 to 150 kg s-1. Due to its rather circular orbit, we propose that P/2011 S1 (Gibbs) has 29P/Schwassmann-Wachmann 1-like outbursts that control the outgassing rate. The results indicate that it may have a similar surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical simulations show that the future orbital evolution of P/2011 S1 (Gibbs) is more similar to that of the main population of Centaurs than to that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that P/2011 S1 (Gibbs) is dynamically unstable and can only remain near its current orbit for roughly a thousand years. Title: Prominence Science with ATST Instrumentation Authors: Rimmele, Thomas; Berger, Thomas; Casini, Roberto; Elmore, David; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Wöger, Friedrich Bibcode: 2014IAUS..300..362R Altcode: The 4m Advance Technology Solar Telescope (ATST) is under construction on Maui, HI. With its unprecedented resolution and photon collecting power ATST will be an ideal tool for studying prominences and filaments and their role in producing Coronal Mass Ejections that drive Space Weather. The ATST facility will provide a set of first light instruments that enable imaging and spectroscopy of the dynamic filament and prominence structure at 8 times the resolution of Hinode. Polarimeters allow high precision chromospheric and coronal magnetometry at visible and infrared (IR) wavelengths. This paper summarizes the capabilities of the ATST first-light instrumentation with focus on prominence and filament science. Title: Vector Tomography for the Coronal Magnetic Field. II. Hanle Effect Measurements Authors: Kramar, M.; Inhester, B.; Lin, H.; Davila, J. Bibcode: 2013ApJ...775...25K Altcode: In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field. Title: Coronal Magnetic Field Reconstruction based on HAO/CoMP observations. Authors: Kramar, Maxim; Lin, H.; Tomczyk, S.; Davila, J. Bibcode: 2013shin.confE..89K Altcode: The magnetic field is the dominant force source in the solar coronal plasma, the one that shapes its structure. Synoptic observations that provide a direct information about the magnetic field have been recently became available by High Altitude Observatory (HAO) Coronal Multichannel Polarimeter (CoMP). The instrument provides linear polarization maps of the Fe XIII 10747 A 'forbidden' line. The observed linear polarization depends on magnetic field orientation through Hanle effect. These observation, supplied with additional photospheric magnetic field measurements and UV observations, are used for 3D reconstruction of the coronal magnetic field by applying the vector tomography technique. Title: He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils Authors: Schad, T. A.; Penn, M. J.; Lin, H. Bibcode: 2013ApJ...768..111S Altcode: 2013arXiv1303.4463S Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 Å in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the Hα 6563 Å and Ca II 8542 Å spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the "Hanle and Zeeman Light" modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of ±10°. We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow (~40 m s-2) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established. Title: The Advanced Technology Solar Telescope: Science Drivers and Construction Status Authors: Rimmele, Thomas; Berger, Thomas; McMullin, Joseph; Keil, Stephen; Goode, Phil; Knoelker, Michael; Kuhn, Jeff; Rosner, Robert; Casini, Roberto; Lin, Haosheng; Woeger, Friedrich; von der Luehe, Oskar; Tritschler, Alexandra; Atst Team Bibcode: 2013EGUGA..15.6305R Altcode: The 4-meter Advance Technology Solar Telescope (ATST) currently under construction on the 3000 meter peak of Haleakala on Maui, Hawaii will be the world's most powerful solar telescope and the leading ground-based resource for studying solar magnetism. The solar atmosphere is permeated by a 'magnetic carpet' that constantly reweaves itself to control solar irradiance and its effects on Earth's climate, the solar wind, and space weather phenomena such as flares and coronal mass ejections. Precise measurement of solar magnetic fields requires a large-aperture solar telescope capable of resolving a few tens of kilometers on the solar surface. With its 4 meter aperture, the ATST will for the first time resolve magnetic structure at the intrinsic scales of plasma convection and turbulence. The ATST's ability to perform accurate and precise spectroscopic and polarimetric measurements of magnetic fields in all layers of the solar atmosphere, including accurate mapping of the elusive coronal magnetic fields, will be transformative in advancing our understanding of the magnetic solar atmosphere. The ATST will utilize the Sun as an important astro- and plasma-physics "laboratory" demonstrating key aspects of omnipresent cosmic magnetic fields. The ATST construction effort is led by the US National Solar Observatory. State-of-the-art instrumentation will be constructed by US and international partner institutions. The technical challenges the ATST is facing are numerous and include the design of the off-axis main telescope, the development of a high order adaptive optics system that delivers a corrected beam to the instrument laboratory, effective handling of the solar heat load on optical and structural elements, and minimizing scattered light to enable observations of the faint corona. The ATST project has transitioned from design and development to its construction phase. The project has awarded design and fabrication contracts for major telescope subsystems. Site construction has commenced following the successful conclusion of the site permitting process. Science goals and construction status of telescope and instrument systems will be discussed. Title: Reconstruction of the 3D Coronal Magnetic Field by Vector Tomography with Infrared Spectropolarimetric Observations from CoMP Authors: Kramar, M.; Lin, H.; Tomczyk, S.; Davila, J. M.; Inhester, B. Bibcode: 2012AGUFMSH42A..06K Altcode: Magnetic fields determine the static and dynamic properties of the solar corona. A significant progress has been achieved in direct measurement of the magnetically sensitive coronal emission with deployment of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument provides polarization measurements of Fe XIII 10747 A forbidden line emission. The observed polarization depends on magnetic field through the Hanle and Zeeman effects. However, because the coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). The vector tomography techniques based on the infrared polarimetric measurements from several viewing directions has been developed in order to resolve the 3D coronal magnetic field structure over LOS. Because of the non-linear character of the Hanle effect, the reconstruction result based on such data is not straightforward and depends on the particular coronal field configuration. For several possible cases of coronal magnetic field configuration, it has been found that even just Stokes-Q and -U data (supplied with 3D coronal density and temperature) can be used in the vector tomography to provide a realistic 3D coronal magnetic field. The 3D coronal density and temperature needed as an supplemental input are reconstructed by the scalar field tomography method using ultraviolet observations from EUVI/STEREO. We will present the reconstructed 3D coronal density, temperature and magnetic field in the range of ∼ 1.3 R obtained by the scalar and vector tomography. Title: SPIES: the spectropolarimetric imager for the energetic sun Authors: Lin, Haosheng Bibcode: 2012SPIE.8446E..1DL Altcode: The SpectroPolarimetric Imager for the Energetic Sun (SPIES) is a project to develop a new class of spectropolarimetric instrument for the study of highly dynamic solar phenomena. Understanding the physics of dynamic solar phenomena requires detailed information about the magnetic, thermal, and dynamic properties of the solar atmosphere at every stage of their evolution. Although these properties can be obtained with existing highperformance spectropolarimeters such as the SpectroPolarimeter onboard the Hinode space solar observatory or the Facility IR Spectropolarimeter of the Dunn Solar Telescope, these instruments cannot observe the required field of view with temporal resolution that can resolve the dynamic timescale of these energetic events. SPIES-2K is an experimental true-imaging spectropolarimeter developed under this program to address this deficiency in our observing capability. It is based on a fiber-optic integral field unit containing 2,048 standard multimode fused silica fibers, and is capable of observing a 64 x 32 pixels field simultaneously with high spatial and spectral resolution. Moreover, it can obtain the full Stokes spectra of the field with a maximum temporal resolution of a few seconds. This paper presents the design and characteristics of the instrument, as well as preliminary results obtained at Fe I 1565 nm wavelength. Additionally, this paper also reports on recent studies of the polarization maintenance optical fiber ribbon constructed from rectangular element fibers for the Birefringence Fiber-Optic Image Slicer, and discusses its application to future generation of SPIES and other astronomical spectropolarimetry projects. Title: 3D Coronal Magnetic Field reconstructed by Vector Tomography Method using CoMP data Authors: Kramar, Maxim; Lin, H.; Tomczyk, S.; Inhester, B.; Davila, J. Bibcode: 2012shin.confE.141K Altcode: Magnetic fields in the solar corona dominates the gas pressure and therefore determine the static and dynamic properties of the corona. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy and recently a significant progress has been achieved here with deployment of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument provides polarization measurements of Fe XIII 10747 A forbidden line emission. The observed polarization depends on magnetic field through the Hanle and Zeeman effects. However, because the coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). The vector tomography techniques based on measurements from several viewing directions has the potential to resolve the 3D coronal magnetic field structure over LOS. Because of the non-linear character of the Hanle effect, the reconstruction result based on such data is not straightforward and depends on the particular coronal field configuration. Therefore, previously we also studied what is the sensitivity of the vector tomographic inversion to various coronal magnetic field models. For several possible cases of coronal magnetic field configuration, it has been found that even just Stokes-Q and -U data (supplied with 3D coronal density and temperature) can be used in vector tomography to provide a realistic 3D coronal magnetic field configuration. The 3D coronal density and temperature needed as an supplemental input are reconstructed by the scalar field tomography method using ultraviolet observations from EUVI/STEREO. We will present the reconstructed 3D coronal magnetic field in the range of ∼1.3 R_⊙ obtained by the vector tomographic technique that has been applied to the CoMP data. Title: Multi-height Spectropolarimetry Of Sunspots With Firs And Ibis Authors: Jaeggli, Sarah A.; Lin, H.; Tritschler, A. Bibcode: 2012AAS...22020606J Altcode: The effects of radiative transfer prevent the characterization of the magnetic field at a single geometric height in the photosphere of a sunspot. Therefore, a full 3D characterization of the magnetic field is necessary to understand many properties of sunspots, such as the true state of hydrostatic equilibrium. Many current and proposed solar spectropolarimeters are capable of taking near-simultaneous observations at multiple wavelengths. Combining these rich datasets provides a welcome problem to the community. We present the first joint observations of the magnetically sensitive photospheric Fe I lines at 630 and 1565 nm taken with the Facility Infrared Spectropolarimeter (FIRS); and the chromospheric Ca II line at 854 nm taken with the Interferometric Bi-Dimensional Spectrometer (IBIS); both instruments operated at the Dunn Solar Telescope. These wavelengths allow us to probe the magnetic field over a broad range of heights, from the bottom of the photosphere to the chromosphere. We investigate the magnetic field topologies of several sunspots of different size and magnetic complexity. Title: Spies - Spectral Polarimetric Imager For The Energetic Sun Authors: Lin, Haosheng; Jaeggli, S. Bibcode: 2012AAS...22012306L Altcode: Spectropolarimetric observation with uncompromised spatial, spectral, and temporal resolution simulatneously over a substantial 2D field and multiple spectral lines is the key to the resolution of many important questions in modern solar physics. While 2D imaging spectroscopy based on fiber optics integral field unit and image slicer has a long history nighttime astronomy, adaptation for solar observation occured only recently. This paper will present preliminary results of magnetic field observation in the HeI 1083 nm and FeI 1565 nm lines obtained with SPIES --- a true imaging spectropolarimeter based on a large format (64 x 32 fibers input array) fiber-optic array optimized for the study of evolution of magnetic and thermodynamic properties of energetic and dynamic phenomena of the sun. We will also discuss considerations for the use of fiber-optic array for solar spectropolarimetric applications, as well as the design of SPIES. Title: On Molecular Hydrogen Formation and the Magnetohydrostatic Equilibrium of Sunspots Authors: Jaeggli, S. A.; Lin, H.; Uitenbroek, H. Bibcode: 2012ApJ...745..133J Altcode: 2011arXiv1110.0575J We have investigated the problem of sunspot magnetohydrostatic equilibrium with comprehensive IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 15650 Å and nearby OH lines. We have found that some sunspots show isothermal increases in umbral magnetic field strength which cannot be explained by the simplified sunspot model with a single-component ideal gas atmosphere assumed in previous investigations. Large sunspots universally display nonlinear increases in magnetic pressure over temperature, while small sunspots and pores display linear behavior. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field, and we propose that this may explain the observed rapid increase in umbral magnetic field strength relative to temperature. Existing multi-component sunspot atmospheric models predict that a significant amount of molecular hydrogen (H2) exists in the sunspot umbra. The formation of H2 can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. In addition to the survey observations, we have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H2, and demonstrate that a significant population of H2 exists in the coolest regions of large sunspots. Title: SPIES: Spectropolarimetric Imager for Energetic Sun Authors: Weis, Andrew; Lin, H. Bibcode: 2012AAS...21914409W Altcode: Solar magnetic fields are responsible for the appearance of the solar atmosphere. These magnetic fields are non-uniform, and are strongest over sunspots. Magnetic fields are thought to cause energetic phenomena such as solar flares and coronal mass ejections, which can have damaging consequences in the near-Earth space environment and high latitude regions, providing practical in addition to scientific reasons to study them. Current instrumentation for observations of solar magnetic fields use scanning slit spectrograph or tunable filter, which allow us to resolve the time evolution of the fields to the scale of minutes or longer. We are constructing a new instrument, SPIES, based on a large-format (32 x 64) fiber-optic integral field unit (IFU). The fiber-optic IFU allows us to observe over two spatial dimensions and one spectral dimension simultaneously rather than in steps, thus allowing for resolution of the time evolution to the level of seconds. Due to fiber modal noise and small thermal drift of the instrument over time, flat-fielding of the intensity spectra from the discrete fiber-optic 'slits' becomes time dependent. An observing scheme that records time-sensitive flat-fields was devised for SPIES. We will present preliminary analysis of the full-Stokes polarization spectra of a sunspot obtained with SPIES over a 90 minute time span. This work was conducted through a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and was funded by the NSF. Title: Vector Tomography Inversion for the 3D Coronal Magnetic Field Based on CoMP data Authors: Kramar, M.; Lin, H.; Tomczyk, S.; Inhester, B.; Davila, J. M. Bibcode: 2011AGUFMSH43B1948K Altcode: Magnetic fields in the solar corona dominates the gas pressure and therefore determine the static and dynamic properties of the corona. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy and recently a significant progress has been achieved here with deployment of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument provides polarization measurements of Fe XIII 10747 A forbidden line emission. The observed polarization depends on magnetic field through the Hanle and Zeeman effects. However, because the coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). The vector tomography techniques based on measurements from several viewing directions has the potential to resolve the 3D coronal magnetic field structure over LOS. Because of the non-linear character of the Hanle effect, the reconstruction result based on such data is not straightforward and depends on the particular coronal field configuration. Therefore we study here what is the sensitivity of the vector tomographic inversion to sophisticated (MHD) coronal magnetic field models. For several important cases of magnetic field configuration, it has been found that even just Stokes-Q and -U data (supplied with 3D coronal density and temperature) can be used in vector tomography to provide a realistic 3D coronal magnetic field configuration. This vector tomograpic technique is applied to CoMP data. Title: Vector Tomography for the 3D Coronal Magnetic Field with CoMP Authors: Kramar, Maxim; Lin, Haosheng; Inhester, Bernd; Gibson, Sarah Bibcode: 2011shin.confE..29K Altcode: Magnetic fields in the solar corona dominates the gas pressure and therefore determine the static and dynamic properties of the corona. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy and recently a significant progress has been achieved here with deployment of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument provides polarization measurements of Fe XIII 10747 A forbidden line emission. The observed polarization depends on magnetic field through the Hanle and Zeeman effects. However, because the coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). The vector tomography techniques based on measurements from several viewing directions has the potential to resolve the 3D coronal magnetic field structure over LOS. Because of the non-linear character of the Hanle effect, the reconstruction result based on such data is not straightforward and depends on the particular coronal field configuration. Therefore we study here what is the sensitivity of the vector tomographic inversion to sophisticated (MHD) coronal magnetic field models.

For several important cases of magnetic field configuration, it has been found that even just Stokes-Q and -U data (supplied with 3D coronal density and temperature) can be used in vector tomography to provide a realistic 3D coronal magnetic field configuration. Effect of noise in the all input data has been also studied. Inclusion of the Stokes-V data into the inversion will significantly increase a number of of magnetic field configuration which are possible to reconstruct.

Particularly, the reconstructions may be used to analyze non-potential pre-CME magnetic configurations or for improving a potential field model when the field is potential. Title: An Observational Study of the Formation and Evolution of Sunspots Authors: Jaeggli, Sarah A.; Lin, H.; Uitenbroek, H. Bibcode: 2011SPD....42.0302J Altcode: 2011BAAS..43S.0302J It is well known that the thermal-magnetic relation in sunspots can be non-linear. Previous investigations ascribe the non-linearity of the relation to changing geometrical height of the measurement due to radiative transfer effects (Wilson Depression) and the poorly determined magnetic field curvature force. However, the very coolest regions of some sunspots show a rapid increase in umbral magnetic field strength relative to temperature which cannot be explained by the simplified sunspot model with single-component ideal gas atmosphere which has been previously assumed. This represents a fundamental flaw in our understanding of the sunspot equilibrium problem. Existing multiple-component sunspot atmospheric models predict that a large amount of molecular hydrogen (H2) exists in the sunspot umbra. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field which may explain the observed rapid increase in umbral magnetic field strength relative to temperature. We have characterized the equilibrium forces in sunspots using simultaneous visible and IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 6302 and 15650 Angstroms and nearby OH lines which have been conducted with the new Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope. We have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H2, and demonstrate that a significant population of H2 exists in the coolest regions of large and more mature sunspots. We further point out that the formation of H2 can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. Title: Vector Tomography Based on Hanle and Zeeman Effects Observed from Ecliptic Plane Authors: Kramar, Maxim; Lin, H.; Gibson, S. Bibcode: 2011SPD....42.1830K Altcode: 2011BAAS..43S.1830K The magnetically sensitive coronal emission lines provide information about coronal magnetic field via Hanle and Zeeman effects. As the measured emission are integrated over line-of-sight, the vector tomography must be used for deriving 3D magnetic field configuration. The unique solution for any field configuration exists when observations are done from both ecliptic and out of ecliptic plane and supplied by photospheric magnetic field measurements. When observations are only from the ecliptic plane, the number of field configurations which are possible to reconstruct are reduced. We study here what types of coronal magnetic field configurations can be reconstructed based on Hanle and Zeeman effects provided by CoMP and SOLARC instruments. Effect of noise in the data and uncertainty in 3D reconstruction of the coronal density and temperature are also studied. Title: Whole Earth Telescope observations of the subdwarf B star KPD 1930+2752: a rich, short-period pulsator in a close binary Authors: Reed, M. D.; Harms, S. L.; Poindexter, S.; Zhou, A. -Y.; Eggen, J. R.; Morris, M. A.; Quint, A. C.; McDaniel, S.; Baran, A.; Dolez, N.; Kawaler, S. D.; Kurtz, D. W.; Moskalik, P.; Riddle, R.; Zola, S.; Østensen, R. H.; Solheim, J. -E.; Kepler, S. O.; Costa, A. F. M.; Provencal, J. L.; Mullally, F.; Winget, D. W.; Vuckovic, M.; Crowe, R.; Terry, D.; Avila, R.; Berkey, B.; Stewart, S.; Bodnarik, J.; Bolton, D.; Binder, P. -M.; Sekiguchi, K.; Sullivan, D. J.; Kim, S. -L.; Chen, W. -P.; Chen, C. -W.; Lin, H. -C.; Jian, X. -J.; Wu, H.; Gou, J. -P.; Liu, Z.; Leibowitz, E.; Lipkin, Y.; Akan, C.; Cakirli, O.; Janulis, R.; Pretorius, R.; Ogloza, W.; Stachowski, G.; Paparo, M.; Szabo, R.; Csubry, Z.; Zsuffa, D.; Silvotti, R.; Marinoni, S.; Bruni, I.; Vauclair, G.; Chevreton, M.; Matthews, J. M.; Cameron, C.; Pablo, H. Bibcode: 2011MNRAS.412..371R Altcode: 2011MNRAS.tmp..184R; 2010arXiv1011.0387R KPD 1930+2752 is a short-period pulsating subdwarf B (sdB) star. It is also an ellipsoidal variable with a known binary period of 2.3 h. The companion is most likely a white dwarf and the total mass of the system is close to the Chandresekhar limit. In this paper, we report the results of Whole Earth Telescope (WET) photometric observations during 2003 and a smaller multisite campaign of 2002. From 355 h of WET data, we detect 68 pulsation frequencies and suggest an additional 13 frequencies within a crowded and complex temporal spectrum between 3065 and 6343 μHz (periods between 326 and 157 s). We examine pulsation properties including phase and amplitude stability in an attempt to understand the nature of the pulsation mechanism. We examine a stochastic mechanism by comparing amplitude variations with simulated stochastic data. We also use the binary nature of KPD 1930+2752 for identifying pulsation modes via multiplet structure and a tidally induced pulsation geometry. Our results indicate a complicated pulsation structure that includes short-period (≈16 h) amplitude variability, rotationally split modes, tidally induced modes and some pulsations which are geometrically limited on the sdB star. Title: Testing the vector tomography method for 3D reconstruction of the coronal magnetic field for different coronal field models Authors: Kramar, M.; Lin, H.; Inhester, B. Bibcode: 2010AGUFMSH31A1789K Altcode: Magnetic fields in the solar corona dominates the gas pressure and therefore determine the static and dynamic properties of the corona. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy and recently had significant progress (Lin et al. 2004; Tomczyk et al. 2008). The polarization of infrared Fe XIII 10747 A forbidden line depends on magnetic field through the Hanle and Zeeman effects. However, because the coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). The vector tomography techniques based on measurements from several viewing directions has the potential to resolve the 3D coronal magnetic field structure over LOS. Previously, the potential of the method was demonstrated for two basic model field configurations (Kramar et al. 2006). Because of the non-linear character of the Hanle effect, the reconstruction result based on such data is not straightforward and depends on the particular coronal field configuration. Therefore we study here what is the sensitivity of the vector tomographic inversion to more sophisticated (MHD) coronal magnetic field models. Title: Magnetic Field Measurements at the Photosphere and Coronal Base Authors: Judge, P. G.; Centeno, R.; Tritschler, A.; Uitenbroek, H.; Jaeggli, S.; Lin, H. Bibcode: 2010AGUFMSH31A1783J Altcode: We have obtained vector polarimetric measurements in lines of Fe I (630nm), Ca II (854nm) and He I (1083nm) of several active regions during 3-14 June 2010. The measurements were made at the Dunn Solar Telescope at Sacramento Peak Observatory, using the FIRS and IBIS instruments simultaneously. We discuss these and SDO data for NOAA 11076. The seeing was very good or excellent and the adaptive optics system functioned well. In this preliminary analysis we compare extrapolations of photospheric fields with the constraints available from Stokes polarimetry, including the morphology and kinematic properties of fibrils. Connections to the corona will also be discussed. The implications for field extrapolations from photospheric measurements will be discussed. We will make the reduced data freely available on the web for interested researchers. Title: Utilization of redundant polarized solar spectra to infer the polarization properties of the new generation of large aperture solar telescopes Authors: Elmore, David F.; Lin, Haosheng; Socas Navarro, Héctor; Jaeggli, Sarah A. Bibcode: 2010SPIE.7735E..4EE Altcode: 2010SPIE.7735E.147E Spectro-polarimetry plays an important role in the study of solar magnetism and strongly influences the design of the new generation of solar telescopes. Calibration of the polarization properties of the telescope is a critical requirement needed to use these observations to infer solar magnetic fields. However, the large apertures of these new telescopes make direct calibration with polarization calibration optics placed before all the telescope optical elements impractical. It is therefore desirable to be able to infer the polarization properties of the telescope optical elements utilizing solar observations themselves. Taking advantage of the fact that the un-polarized, linearly, and circularly polarized spectra originating from the Sun are uncorrelated, we have developed techniques to utilize observations of solar spectra with redundant combination of the polarization states measured at several different telescope configurations to infer the polarization properties of the telescope as a whole and of its optical elements. We show results of these techniques applied to spectro-plarimetric data obtained at the Dunn Solar Telescope. Title: Magnetic field measurements at the photosphere and coronal base Authors: Judge, Philip; Centeno, R.; Tritschler, A.; Uitenbroek, H.; Jaeggli, S.; Lin, H. Bibcode: 2010shin.confE..56J Altcode: We have obtained vector polarimetric measurements in lines of Fe I (630nm), Ca II (854nm) and He I (1083) of several active regions during 3-14 June 2010. The measurements were made at the Dunn Solar Telescope at Sacramento Peak Observatory, using the FIRS and IBIS instruments simultaneously. We discuss data for NOAA 11076 observed on 4 June 2010. The seeing was very good or excellent and the adaptive optics system functioned well. In this preliminary analysis we compare linear extrapolations of photospheric fields with the constraints available from Stokes polarimetry, including the morphology and kinematic properties of fibrils. The implications for field extrapolations from photospheric measurements will be discussed. We will make the reduced data freely available on the web for interested researchers. Title: On the Vector Tomographic Reconstruction for the pre-CME Coronal Magnetic Field from Fe XIII 10747 A Emission Line Observations Authors: Kramar, Maxim; Lin, H.; Inhester, B.; Davila, J. Bibcode: 2010AAS...21630203K Altcode: Magnetic fields are the dominant fields that determine the static and dynamic properties of the solar corona. The coronal mass ejections (CMEs) involve the release of the magnetic energy stored in the magnetic field. Therefore, analyzing the magnetic field could help to understand the nature of CMEs. One of the more promising coronal magnetic field measurement methods that have been successfully demonstrated is the spectropolarimetric observations of the Fe XIII 10747 A forbidden emission line (Lin, Penn & Tomczyk 2000; Lin, Kuhn & Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, these measurements are integrated over line-of-sight (LOS). Therefore it is impossible to determine the configuration of the coronal magnetic field from a single observation (single viewing direction).

Vector tomography based on polarimetric observations of the forbidden coronal emission lines can reconstruct the coronal magnetic field when the observations are obtained from several viewing directions. As the tomography method requires observations from many directions, a rigid rotation of the coronal structures during a half of solar rotation is assumed. However, many pre-CME magnetic configurations evolve more rapidly causing significant reduce in the number of available observing directions. Here we study the sensitivity of the vector tomographic inversion to possible pre-CME coronal magnetic field configurations and the number of available observing directions. We show that the vector tomography techniques has the potential to resolve the 3D coronal non-potential magnetic field structure. Title: Coronal magnetic fields from the inversion of linear polarization measurements Authors: Liu, Yu; Lin, Haosheng; Kuhn, Jeff Bibcode: 2010IAUS..264...96L Altcode: Real 3-D coronal magnetic field reconstruction is expected to be made based on the technologies of IR spectrometry and tomography, in which the data from other wavelengths can be used as critical reference. Our recent studies focused on this issue are briefly reviewed in this paper. Liu & Lin (2008) first evaluated the validity of potential field source surface model applied to one of five limb regions in the corona by comparing the theoretical polarization maps with SOLARC observations in the IR Fe XIII 10747 Å forbidden coronal emission line (CEL). The five limb coronal regions were then studied together in order to study the spatial relation between the bright EUV features on the solar disk and the inferred IR emission sources, which were obtained from the inversion of the SOLARC linear polarization (LP) measurements (Liu 2009). The inversion for each fiber data in the field of view was made by finding the best location where the difference between the synthesized and the observed polarizations reaches the minimum in the integration path along the line of sight. We found a close relationship between the inferred IR emission source locations and the EUV strong emission positions. Title: FIRS: a new instrument for photospheric and chromospheric studies at the DST. Authors: Jaeggli, S. A.; Lin, H.; Mickey, D. L.; Kuhn, J. R.; Hegwer, S. L.; Rimmele, T. R.; Penn, M. J. Bibcode: 2010MmSAI..81..763J Altcode: The simultaneous observation of select spectral lines at optical and infrared wavelengths allows for the determination of the magnetic field at several photospheric and chromospheric heights and thus the 3D magnetic field gradient in the solar atmosphere. The Facility Infrared Spectropolarimeter (FIRS) is a newly completed, multi-slit, dual-beam spectropolarimeter installed at the Dunn Solar Telescope (DST) at Sacramento Peak (NSO/SP). Separate optics and polarimeters simultaneously observe two band-passes at visible and infrared wavelengths with a choice of two modes: the Fe I 6302 Å and 15648 Å lines in the photosphere; or the Fe I 6302 Å and He I 10830 Å line in the photosphere and high chromosphere, respectively. FIRS can also operate simultaneously with a white light camera, G-band imager, and the Interferometric Bi-dimensional Spectrometer (IBIS) observing the mid-chromospheric Ca II 8542 Å line. The instrument uses four parallel slits to sample four slices of the solar surface simultaneously to achieve fast, diffraction-limited precision imaging spectropolarimetry, enabling the study of MHD phenomena with short dynamic time scales. Title: Vector tomographic reconstruction for the coronal magnetic field from Fe XIII 10747 A emission line observations Authors: Kramar, Maxim; Lin, Haosheng; Inhester, Bernd; Davila, Joseph Bibcode: 2010cosp...38.1862K Altcode: 2010cosp.meet.1862K Magnetic fields in the solar corona are the dominant fields that determine the static and dy-namic properties of this outermost region of the solar atmosphere. It is within this tenuous region that the magnetic force dominates the gas pressure. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy. To date, one of the promising measurement methods that have been successfully demonstrated is the spectropolarimetric measurement of the Fe XIII 10747 A forbidden emission line (Lin, Penn Tomczyk 2000; Lin, Kuhn Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, because coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single obser-vation (from a single viewing direction). In this paper, we study the sensitivity of the vector tomographic inversion to possible pre-CME coronal magnetic field configurations and number of available observations. We show that the vector tomography techniques based on Hanle and/or Zeeman effect observations has the potential to resolve the 3D coronal non-potential magnetic field structure. Title: On the reconstructing the coronal magnetic field from Fe XIII 10747 A emission line observations Authors: Kramar, M.; Lin, H.; Inhester, B. Bibcode: 2009AGUFMSH41B1662K Altcode: Magnetic fields in the solar corona are the dominant fields that determine the static and dynamic properties of this outermost region of the solar atmosphere. It is within this tenuous region that the magnetic force dominates the gas pressure. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy. To date, one of the promising measurement methods that have been successfully demonstrated is the spectropolarimetric measurement of the Fe XIII 10747 A forbidden emission line (CEL) (Lin, Penn, Tomczyk 2000; Lin, Kuhn, Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, because coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single observation (from a single viewing direction). Recent development in vector tomography techniques based on IR forbidden CEL polarization measurements from several viewing direction (Kramar, Inhester, Solanki 2006; Kramar, Inhester 2007) has the potential to resolve the 3D coronal magnetic field structure. In this paper, we will present a study of the effects of instrumental characteristics on the results of vector tomographic inversion using simulated data. We also investigate the sensitivity of the vector tomographic inversion to different coronal magnetic field configuration. Title: New Observation of Failed Filament Eruptions: The Influence of Asymmetric Coronal Background Fields on Solar Eruptions Authors: Liu, Y.; Su, J.; Xu, Z.; Lin, H.; Shibata, K.; Kurokawa, H. Bibcode: 2009ApJ...696L..70L Altcode: Failed filament eruptions not associated with a coronal mass ejection (CME) have been observed and reported as evidence for solar coronal field confinement on erupting flux ropes. In those events, each filament eventually returns to its origin on the solar surface. In this Letter, a new observation of two failed filament eruptions is reported which indicates that the mass of a confined filament can be ejected to places far from the original filament channel. The jetlike mass motions in the two failed filament eruptions are thought to be due to the asymmetry of the background coronal magnetic fields with respect to the locations of the filament channels. The asymmetry of the coronal fields is confirmed by an extrapolation based on a potential field model. The obvious imbalance between the positive and negative magnetic flux (with a ratio of 1:3) in the bipolar active region is thought to be the direct cause of the formation of the asymmetric coronal fields. We think that the asymmetry of the background fields can not only influence the trajectories of ejecta, but also provide a relatively stronger confinement for flux rope eruptions than the symmetric background fields do. Title: 2006 Whole Earth Telescope Observations of GD358: A New Look at the Prototype DBV Authors: Provencal, J. L.; Montgomery, M. H.; Kanaan, A.; Shipman, H. L.; Childers, D.; Baran, A.; Kepler, S. O.; Reed, M.; Zhou, A.; Eggen, J.; Watson, T. K.; Winget, D. E.; Thompson, S. E.; Riaz, B.; Nitta, A.; Kleinman, S. J.; Crowe, R.; Slivkoff, J.; Sherard, P.; Purves, N.; Binder, P.; Knight, R.; Kim, S. -L.; Chen, Wen-Ping; Yang, M.; Lin, H. C.; Lin, C. C.; Chen, C. W.; Jiang, X. J.; Sergeev, A. V.; Mkrtichian, D.; Andreev, M.; Janulis, R.; Siwak, M.; Zola, S.; Koziel, D.; Stachowski, G.; Paparo, M.; Bognar, Zs.; Handler, G.; Lorenz, D.; Steininger, B.; Beck, P.; Nagel, T.; Kusterer, D.; Hoffman, A.; Reiff, E.; Kowalski, R.; Vauclair, G.; Charpinet, S.; Chevreton, M.; Solheim, J. E.; Pakstiene, E.; Fraga, L.; Dalessio, J. Bibcode: 2009ApJ...693..564P Altcode: 2008arXiv0811.0768P We report on the analysis of 436.1 hr of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transform (FT) of the light curve contains power between 1000 and 4000 μHz, with the dominant peak at 1234 μHz. We find 27 independent frequencies distributed in 10 modes, as well as numerous combination frequencies. Our discussion focuses on a new asteroseismological analysis of GD358, incorporating the 2006 data set and drawing on 24 years of archival observations. Our results reveal that, while the general frequency locations of the identified modes are consistent throughout the years, the multiplet structure is complex and cannot be interpreted simply as l = 1 modes in the limit of slow rotation. The high-k multiplets exhibit significant variability in structure, amplitude and frequency. Any identification of the m components for the high-k multiplets is highly suspect. The k = 9 and 8 modes typically do show triplet structure more consistent with theoretical expectations. The frequencies and amplitudes exhibit some variability, but much less than the high-k modes. Analysis of the k = 9 and 8 multiplet splittings from 1990 to 2008 reveal a long-term change in multiplet splittings coinciding with the 1996 sforzando event, where GD358 dramatically altered its pulsation characteristics on a timescale of hours. We explore potential implications, including the possible connections between convection and/or magnetic fields and pulsations. We suggest future investigations, including theoretical investigations of the relationship between magnetic fields, pulsation, growth rates, and convection. Title: Pair Analysis of Field Galaxies from the Red-Sequence Cluster Survey Authors: Hsieh, B. C.; Yee, H. K. C.; Lin, H.; Gladders, M. D.; Gilbank, D. G. Bibcode: 2008ApJ...683...33H Altcode: 2008arXiv0804.1604H We study the evolution of the number of close companions of similar luminosities per galaxy (Nc) by choosing a volume-limited subset of the photometric redshift catalog from the Red-Sequence Cluster Survey (RCS-1). The sample contains over 157,000 objects with a moderate redshift range of 0.25 <= z<= 0.8 and MRc <= - 20. This is the largest sample used for pair evolution analysis, providing data over nine redshift bins with about 17,500 galaxies in each. After applying incompleteness and projection corrections, Nc shows a clear evolution with redshift. The Nc value for the whole sample grows with redshift as (1 + z)m, where m = 2.83 +/- 0.33 in good agreement with N-body simulations in a ΛCDM cosmology. We also separate the sample into two different absolute magnitude bins: -25 <= MRc <= - 21 and -21 < MRc <= - 20, and find that the brighter the absolute magnitude, the smaller the m-value. Furthermore, we study the evolution of the pair fraction for different projected separation bins and different luminosities. We find that the m-value becomes smaller for larger separation, and the pair fraction for the fainter luminosity bin has stronger evolution. We derive the major merger remnant fraction frem = 0.06, which implies that about 6% of galaxies with -25 <= MRc <= - 20 have undergone major mergers since z = 0.8. Title: Observational Test of Coronal Magnetic Field Models. I. Comparison with Potential Field Model Authors: Liu, Yu; Lin, Haosheng Bibcode: 2008ApJ...680.1496L Altcode: 2007arXiv0710.3223L Recent advances have made it possible to obtain two-dimensional line-of-sight magnetic field maps of the solar corona from spectropolarimetric observations of the Fe XIII 1075 nm forbidden coronal emission line. Together with the linear polarization measurements that map the azimuthal direction of the coronal magnetic field projected in the plane of the sky containing Sun center, these coronal vector magnetograms allow for direct and quantitative observational testing of theoretical coronal magnetic field models. This paper presents a study testing the validity of potential-field coronal magnetic field models. We constructed a theoretical coronal magnetic field model of active region AR 10582 observed by the SOLARC coronagraph in 2004 by using a global potential field extrapolation of the synoptic map of Carrington Rotation 2014. Synthesized linear and circular polarization maps from thin layers of the coronal magnetic field model above the active region along the line of sight are compared with the observed maps. We found that the observed linear and circular polarization signals are consistent with the synthesized ones from layers located just above the sunspot of AR 10582 near the plane of the sky containing the Sun center. Title: The Facility IR Spectropolarimeter for the Dunn Solar Telescope Authors: Jaeggli, S. A.; Lin, H.; Mickey, D. L.; Kuhn, J. R.; Hegwer, S. L.; Rimmele, T. R.; Penn, M. J. Bibcode: 2008AGUSMSH31A..11J Altcode: The Facility IR Spectropolarimeter(FIRS) is a multi-slit spectropolarimeter designed for the Dunn Solar Telescope (DST) at the National Solar Observatory on Sacramento Peak (NSO/SP) in New Mexico to study magnetism on the solar surface. The instrument samples adjacent slices of the solar surface using four parallel slits to achieve high cadence, diffraction-limited, precision imaging-spectropolarimetry. Due to the versatile, multi-armed design of the spectrograph, up to four spectral lines at visible and infrared wavelengths, covering four different heights in the solar atmosphere, can be observed simultaneously. In this poster-paper we will describe the design, capabilities, and performance of the instrument. Title: Developmental Aspects of a Multi-Slit Spectro-Polarimeter Authors: George, K.; Sankarasubramanian, R.; Bayanna, R.; Lin, H.; Venkatakrishnan, P. Bibcode: 2008eic..work..515G Altcode: We report the development aspects of an integral field unit, multi-slit spectro-polarimeter (MSSP) optimized for optical to near infrared regime, which can be used to derive simultaneous spectral and vector magnetic field information at high spatial, spectral and temporal resolution of any extended astronomical object like the Sun, with limited spectral coverage of few Angstrom. The instrument will be first developed and tested in laboratory which in a later stage will be used as a focal plane instrument for the Multi Application Solar Telescope (MAST). The major technological challenges involved in setting up and calibration of the instrument are discussed. The scientific motivation for the system is highlighted, with special emphasis on science limitations imposed by similar existing instruments elsewhere. Title: The COronal Solar Magnetism Observatory Authors: Burkepile, J.; Tomczyk, S.; Lin, H.; Zurbuchen, T.; Judge, P.; Casini, R. Bibcode: 2007AGUFMSH53A1070B Altcode: Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the emergence of magnetic flux into the solar atmosphere and the processes responsible for the production of solar activity, coronal heating and coronal dynamics. The COronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment. The facility consists of 3 instruments: 1) a meter-class aperture coronal magnetometer devoted to obtaining the highest quality polarimetric data of forbidden lines of Fe XIII 1074.7 and 1079.8 nm.; 2) a chromosphere and prominence magnetometer devoted primarily to measurements of lines of helium (D3, 1083 nm) and perhaps Halpha, that will provide full disk vector magnetic field observations; 3) a white-light polarized-brightness (pB) coronagraph that will observe down to 1.05 solar radii at very high time cadence (15 seconds) at high signal-to-noise. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) in collaboration with the University of Hawaii and the University of Michigan. COSMO will enhance the value of existing and new observatories on the ground (SOLIS, ATST, and FASR) and in space (SOHO, TRACE, GOES, SOLAR-B, STEREO, SDO) by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. Title: Commissioning of the Dual-Beam Imaging Polarimeter for the University of Hawaii 88 inch Telescope Authors: Masiero, Joseph; Hodapp, Klaus; Harrington, Dave; Lin, Haosheng Bibcode: 2007PASP..119.1126M Altcode: 2007arXiv0708.1335M In this paper we present the design, calibration method, and initial results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument is designed to measure the optical polarization properties of point sources, in particular, Main Belt asteroids. This instrument interfaces between the Tek 2048×2048 camera and the University of Hawaii's 88 inch telescope and is available for facility use. Using DBIP we are able to measure linear polarization with a 1 σ Poisson signal noise of 0.03% per measurement and a systematic error of order 0.06%+/-0.02%. In addition, we discuss measurements of the polarization of the asteroid 16 Psyche that were taken as part of the instrument commissioning. We confirm Psyche's negative polarization of -1.037%+/-0.006% but find no significant modulation of the signal with rotation above the 0.05% polarization level. Title: Mees Imaging Solar Spectrometer Authors: Lin, Haosheng; Li, J.; Kuhn, J. R.; Mickey, D.; Habbal, S. R.; Jaeggli, S. S. Bibcode: 2007AAS...210.9215L Altcode: 2007BAAS...39R.210L We propose the construction of a new instrument, the Mees Imaging Solar Spectrometer (MISS), optimized for spectroscopic study of energetic solar events such as filament eruptions and solar flares, and their relationship to coronal mass ejections. MISS is a fiber-optics-based imaging spectrograph. It will be able to perform simultaneous spectroscopic observations of selected spectral lines and continuum over an extended field with high spatial and spectral resolution and high cadence. It will operate nominally in a low-resolution (20" per pixel), full-disk patrol mode, and can be rapidly switched to a high-resolution (1" per pixel) region-of-interest mode of observation when energetic events are detected. Several spectral lines, from CaII H & K to HeI 1083 nm can be recorded in rapid succession. These advanced imaging spectroscopic capabilities make it an ideal instrument for the study of the rapid change of the physical conditions of the solar atmosphere during these energetic events. Title: Coronal Magnetic Field Authors: Lin, Haosheng Bibcode: 2007AAS...210.5201L Altcode: 2007BAAS...39..164L Centuries after the birth of modern solar astronomy, the Sun's corona still keeps many of its secrets: How is it heated to a million-degree temperature? How does it harbor the cool and dense prominence gas amid the tenuous and hot atmosphere? How does it drive the energetic events that eject particles into interplanetary space with speed exceeding 1% of the speed of light? We have greatly improved our knowledge of the solar corona with decades of space X-ray and EUV coronal observations, and many theories and models were put forward to address these problems. In our current understanding, magnetic fields are undoubtedly the most important fields in the corona, shaping its structure and driving its dynamics. It is clear that the resolution of these important questions all hinge on a better understanding of the organization, evolution, and interaction of the coronal magnetic field. However, as the direct measurement of coronal magnetic field is a very challenging observational problem, most of our theories and models were not experimentally verified. Nevertheless, we have finally overcome the experimental difficulties and can now directly measure the coronal magnetic field with great accuracy. This new capability can now be used to study the static magnetic structure of the corona, and offers hope that we will, in the near future, be able to directly observe the evolution of the coronal magnetic field of energetic solar events. More importantly, it finally allows us to conduct vigorous observational tests of our theories and models. In this lecture, I will review current research activities related to the observation, interpretation, and modeling of the coronal magnetic field, and discuss how they can help us resolve some of the long standing mysteries of the solar corona. Title: The Coronal Magnetic Field Measurements On April 7, 2004 Authors: Liu, Yu; Lin, H. Bibcode: 2007AAS...210.9105L Altcode: 2007BAAS...39..204L The magnetic field measurements in the corona above two quiet, close active regions NOAA 10581 and 10582 at the solar west limb were taken by the new coronagraph SOLARC installed on Haleakala. Spatially resolved measurements of line-of-sight magnetic field strength and transverse magnetic field direction of the solar corona were obtained at the wavelength of IR 1074.7 nm. In the two-dimensional coronal magnetogram made from the circular polarization, the observations showed a magnetic neutral line at a height of about 0.16 solar radii above the solar limb. Signatures of the the van Vleck effect were also shown from the linear polarization measurements. These new coronal data, for the first time, direct observational tests for theoretical coronal magnetic field models. In this paper, we present a study comparing the observed coronal magnetic field structures with the theoretical results derived from the global potential field model. One important conclusion in the study is that the SOLARC observations should reveal the local coronal structures above strong photospheric field regions, since both the observed linear and circular polarization signals are found to have a best consistence with the calculated results for a 100 Mm-thick coronal region along the line of sight above the sunspot in NOAA 10582. The usefulness and limitations of the potential field extrapolation and various linear and non-linear force-free field extrapolation methods, as well as directions for a more sophisticated modelling effort involving MHD simulations and forward modeling of the polarization signals that take full account of atomic polarization and radiative transfer effects will be further studied and discussed. Title: COSMO: The Coronal Solar Magnetism Observatory Authors: Burkepile, Joan; Tomczyk, S.; Lin, H.; Zurbuchen, T.; Casini, R. Bibcode: 2007AAS...210.2519B Altcode: 2007BAAS...39..134B The COronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed to study coronal magnetic fields and their environment using the polarization of forbidden emission lines in the infrared. Supporting instruments focus on prominence and chromospheric magnetometry and imaging and the evolution of the electron scattered corona (K-corona). COSMO will address one of the least understood problems in Sun-Earth connections: the coronal magnetic field using breakthrough techonologies that have been successfully demonstrated with proof-of-concept instrumentation. We will present information about COSMO and science results from the prototype instruments, including the detection of Alfven waves in the corona. Title: The Coronal Solar Magnetic Observatory (COSMO) Authors: Tomczyk, S.; Zurbuchen, T.; Kuhn, J.; Lin, H.; Judge, P.; Burkepile, J.; Casini, R. Bibcode: 2006AGUFMSM12A..03T Altcode: Measurement of magnetic fields in the corona is arguably the most important observable required for advances in our understanding of the emergence of magnetic flux into the solar atmosphere and the processes responsible for the production of solar activity, coronal heating and coronal dynamics. We discuss plans for the COronal Solar Magnetic Observatory (COSMO), which is a proposed ground-based suite of instruments designed to routinely study coronal magnetic fields and their environment. The core of the facility includes a meter-class coronagraph with instrumentation dedicated to measuring the coronal magnetic field using the polarization of forbidden emission lines in the infrared. Supporting instruments focus on prominence magnetometry and the dynamics of the electron-scattered corona (K-corona) and chromosphere. In addition to acquiring routine synoptic observations of coronal magnetic fields, the COSMO project will include the establishment of a community-based user advisory panel to accept observational campaigns submitted by members of the scientific community at-large. COSMO will enhance the value of existing and new observatories on the ground (SOLIS, ATST, FASR) and in space (SOHO, TRACE, GOES, Solar-B, STEREO and SDO) by providing unique and crucial observations of the global coronal magnetic field and its evolution and dynamics. Title: Coronal Magnetic Field Measurements and Comparison with Theoretical Model Authors: Liu, Y.; Lin, H. Bibcode: 2006AGUFMSH23B0363L Altcode: Spatially resolved measurements of line-of-sight magnetic field strength and transverse magnetic field direction of the solar corona were obtained with the new SOLARC coronagraph and an optical fiber imaging spectropolarimeter. Observations of the corona above active regions NOAA 0581 and 0582 showed a reversal in the direction of the line-of-sight component of the coronal magnetic field at a height of 0.16 solar radii above the solar limb. The linear polarization map also showed signatures of the van Vleck effect. These new data allow, for the first time, direct observational tests of theoretical coronal magnetic field models. In this paper, we present a study comparing the observed coronal magnetic field structures with the theoretical model derived from potential field extrapolation. The usefulness and limitations of potential field extrapolation, as well as directions for a more sophisticated modeling effort involving MHD simulations and forward modeling of the polarization signals that take full account of atomic polarization and radiative transfer effects will be discussed. Title: VisIRIS: a visible/IR imaging spectropolarimeter based on a birefringent fiber-optic image slicer Authors: Lin, HaoSheng; Versteegh, Alex Bibcode: 2006SPIE.6269E..0KL Altcode: 2006SPIE.6269E..18L High-resolution imaging spectropolarimetry in the visible and infrared wavelengths is the most effective and accurate observational diagnostic tool for many astrophysical problems, but many among them also require a spatially resolved two-dimensional field of view. However, it is difficult to achieve simultaneous three-dimensional (x, y, and λ) coverage using instruments with a conventional design. A conventional spectrograph achieves three-dimensional coverage either by scanning a tunable filter through the spectral window of interest, or by scanning a diffraction-grating-based long-slit spectrograph through the target region. Scanning in either spectral or spatial direction unavoidably degrades the quality of the data, and is time consuming. This paper describes a new visible/IR imaging spectropolarimeter design based on a novel birefringent fiber-optic image slicer and multiple-slit spectrograph. With this design, simultaneous 3-D imaging spectropolarimetry of astronomical objects with a large field of view and high spatial and spectral resolution can be achieved. Title: Site testing for the Advanced Technology Solar Telescope Authors: Hill, F.; Beckers, J.; Brandt, P.; Briggs, J.; Brown, T.; Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Horst, T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn, M.; Radick, R.; Rimmele, T.; Socas-Navarro, H.; Streander, K. Bibcode: 2006SPIE.6267E..1TH Altcode: 2006SPIE.6267E..59H The Advanced Solar Technology Telescope (ATST) is a 4-m solar telescope being designed for high spatial, spectral and temporal resolution, as well as IR and low-scattered light observations. The overall limit of performance of the telescope is strongly influenced by the qualities of the site at which it is located. Six sites were tested with a seeing monitor and a sky brightness instrument for 1.5 to 2 years. The sites were Big Bear (California), Haleakala (Hawaii), La Palma (Canary Islands, Spain), Panguitch Lake (Utah), Sacramento Peak (New Mexico), and San Pedro Martir (Baja California, Mexico). In this paper we will describe the methods and results of the site survey, which chose Haleakala as the location of the ATST. Title: Using Imaging Infrared Coronal Spectropolarimetry to Measure the Near-Sun Plasma Authors: Kuhn, J.; Lin, H.; Arnaud, J.; Jaeggli, S. Bibcode: 2005AGUFMSH44A..08K Altcode: A moderate aperture ground-based coronagraph and an imaging infrared spectropolarimeter have provided our first direct longitudinal coronal magnetograms. This talk will describe the advantages and subtleties of these techniques for direct coronal magnetometry. We also summarize some of the diagnostic potential of current and likely future IR spectropolarimetric instruments (like the Advanced Technology Solar Telescope) for measuring the properties of the near-solar plasma. Title: Solar Site Survey for the Advanced Technology Solar Telescope. I. Analysis of the Seeing Data Authors: Socas-Navarro, H.; Beckers, J.; Brandt, P.; Briggs, J.; Brown, T.; Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Hill, F.; Horst, T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn, M.; Rimmele, T.; Streander, K. Bibcode: 2005PASP..117.1296S Altcode: 2005astro.ph..8690S The site survey for the Advanced Technology Solar Telescope concluded recently after more than 2 years of data gathering and analysis. Six locations, including lake, island, and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial, because daytime seeing is often very different between the actual telescope aperture (~30 m) and the ground. Two independent inversion codes have been developed to simultaneously analyze data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from 2003 May that was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample data presented in this paper reveal a qualitatively different behavior for the lake sites (dominated by high-altitude seeing) and the rest (dominated by near-ground turbulence). Title: A Photometric Redshift Galaxy Catalog from the Red-Sequence Cluster Survey Authors: Hsieh, B. C.; Yee, H. K. C.; Lin, H.; Gladders, M. D. Bibcode: 2005ApJS..158..161H Altcode: 2005astro.ph..2157H The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and Rc bands for 90 deg2 of sky, and supplemental V and B data have been obtained for 33.6 deg2. We compile a photometric redshift catalog from these four-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts <1.5 and Rc<24, giving an rms scatter σ(Δz)<0.06 within the redshift range 0.2<z<0.5 and σ(Δz)<0.11 for galaxies at 0.0<z<1.5. We describe the empirical quadratic polynomial photometric redshift fitting technique that we use to determine the relation between redshift and photometry. A kd-tree algorithm is used to divide up our sample to improve the accuracy of our catalog. We also present a method for estimating the photometric redshift error for individual galaxies. We show that the redshift distribution of our sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys. Title: The ATST Site Survey Authors: Hill, F.; Beckers, J.; Brandt, P.; Briggs, J. W.; Brown, T.; Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Horst, T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn, M.; Radick, R.; Rimmele, T.; Socas-Navarro, H.; Soltau, D.; Streander, K. Bibcode: 2005AGUSMSP34A..04H Altcode: The Advanced Technology Solar Telescope (ATST) will be the world's largest aperture solar telescope, and is being designed for high resolution, IR, and coronal research. It must be located at a site that maximizes the scientific return of this substantial investment. We present the instrumentation, analysis and results of the ATST site survey. Two instrumentation sets were deployed at each of six sites to measure seeing as a function of height, and sky brightness as a function of wavelength and off-limb position. Analysis software was developed to estimate the structure function Cn2 as a function of height near the ground, and the results were verified by comparison with in-situ measurements. Additional software was developed to estimate the sky brightness. The statistics of the conditions at the sites were corrected for observing habits and the annualized hours of specific observing conditions were estimated. These results were used to identify three excellent sites suitable to host the ATST: Haleakala, Big Bear and La Palma. Among them, Haleakala is proposed as the optimal location of the ATST, La Palma and Big Bear being viable alternative sites. Title: First-Light Instrumentation for the Advanced Technology Solar Telescope Authors: Rimmele, T.; Balasubramaniam, K.; Berger, T.; Elmore, D.; Gary, A.; Keller, C.; Kuhn, J.; Lin, H.; Mickey, D.; Pevtsov, A.; Robinson, B.; Sigwarth, M.; Soccas-Navarro, H. Bibcode: 2005AGUSMSP34A..03R Altcode: The 4m Advanced Technology Solar Telescope (ATST) is the next generation ground based solar telescope. In this paper we provide an overview of the ATST post-focus instrumentation. The majority of ATST instrumentation is located in an instrument Coude lab facility, where a rotating platform provides image de-rotation. A high order adaptive optics system delivers a corrected beam to the Coude lab facility. Alternatively, instruments can be mounted at the Nasmyth focus. For example, instruments for observing the faint corona preferably will be mounted at Nasmyth where maximum throughput is achieved. In addition, the Nasmyth focus has minimum telescope polarization and minimum stray light. We give an overview of the initial set of first generation instruments: the Visible-Light Broadband Imager (VLBI), the Visible Spectro-Polarimeter (ViSP), the Near-IR Spectro-Polarimeter (NIRSP), which includes a coronal module, and the Visible Tunable Filter. We also discuss the unique and efficient approach to the ATST instrumentation, which builds on the use of common components such as detector systems, polarimetry packages and various opto-mechanical components. For example, the science requirement for polarimetric sensitivity (10-5 relative to intensity) and accuracy (5'10-4 relative to intensity) place strong constraints on the polarization analysis and calibration units. Consequently, these systems are provided at the facility level, rather than making it part of the requirement for each instrument. Title: Coronal Magnetic Field Measurements Authors: Lin, H.; Kuhn, J. R.; Coulter, R. Bibcode: 2004ApJ...613L.177L Altcode: A long-standing solar problem has been to measure the coronal magnetic field. We believe it determines the coronal structure and dynamics from the upper chromosphere out into the heliospheric environment. It is only recently that Zeeman splitting observations of infrared coronal emission lines have been successfully used to deduce the coronal magnetic flux density. Here we extend this technique and report first results from a novel coronal magnetometer that uses an off-axis reflecting coronagraph and optical fiber-bundle imaging spectropolarimeter. We determine the line-of-sight magnetic flux density and transverse field orientation in a two-dimensional map with a sensitivity of about 1 G with 20" spatial resolution after 70 minutes of integration. These full-Stokes spectropolarimetric measurements of the forbidden Fe XIII 1075 nm coronal emission line reveal the line-of-sight coronal magnetic field 100" above an active region to have a flux density of about 4 G. Title: Solar site testing for the Advanced Technology Solar Telescope Authors: Hill, Frank; Beckers, Jacques; Brandt, Peter; Briggs, John; Brown, Timothy; Brown, W.; Collados, Manuel; Denker, Carsten; Fletcher, Steven; Hegwer, Steven; Horst, T.; Komsa, Mark; Kuhn, Jeff; Lecinski, Alice; Lin, Haosheng; Oncley, Steve; Penn, Matthew; Rimmele, Thomas R.; Socas-Navarro, Hector; Streander, Kim Bibcode: 2004SPIE.5489..122H Altcode: The location of the Advanced Technology Solar Telescope (ATST) is a critical factor in the overall performance of the telescope. We have developed a set of instrumentation to measure daytime seeing, sky brightness, cloud cover, water vapor, dust levels, and weather. The instruments have been located at six sites for periods of one to two years. Here we describe the sites and instrumentation, discuss the data reduction, and present some preliminary results. We demonstrate that it is possible to estimate seeing as a function of height near the ground with an array of scintillometers, and that there is a distinct qualitative difference in daytime seeing between sites with or without a nearby lake. Title: Instrumentation for the Advanced Technology Solar Telescope Authors: Rimmele, Thomas R.; Hubbard, Robert P.; Balasubramaniam, K. S.; Berger, Tom; Elmore, David; Gary, G. Allen; Jennings, Don; Keller, Christoph; Kuhn, Jeff; Lin, Haosheng; Mickey, Don; Moretto, Gilberto; Socas-Navarro, Hector; Stenflo, Jan O.; Wang, Haimin Bibcode: 2004SPIE.5492..944R Altcode: The 4-m aperture Advanced Technology Solar Telescope (ATST) is the next generation ground based solar telescope. In this paper we provide an overview of the ATST post-focus instrumentation. The majority of ATST instrumentation is located in an instrument Coude lab facility, where a rotating platform provides image de-rotation. A high order adaptive optics system delivers a corrected beam to the Coude lab facility. Alternatively, instruments can be mounted at Nasmyth or a small Gregorian area. For example, instruments for observing the faint corona preferably will be mounted at Nasmyth focus where maximum throughput is achieved. In addition, the Nasmyth focus has minimum telescope polarization and minimum stray light. We describe the set of first generation instruments, which include a Visible-Light Broadband Imager (VLBI), Visible and Near-Infrared (NIR) Spectropolarimeters, Visible and NIR Tunable Filters, a Thermal-Infrared Polarimeter & Spectrometer and a UV-Polarimeter. We also discuss unique and efficient approaches to the ATST instrumentation, which builds on the use of common components such as detector systems, polarimetry packages and various opto-mechanical components. Title: The Advanced Technology Solar Telescope Site Survey Sky Brightness Monitor Authors: Lin, Haosheng; Penn, Matthew J. Bibcode: 2004PASP..116..652L Altcode: The Advanced Technology Solar Telescope (ATST) will be a 4 m aperture off-axis telescope with advanced high-resolution and low scattered light capabilities for the observation of the solar photosphere and corona. The site characteristics that are critical to the success of the ATST coronal observations are the sky brightness, the precipitable water vapor content, and the number and size distributions of the dust particles. Therefore, part of the ATST site survey effort is to obtain measurements of these atmospheric properties at all the potential ATST sites. The ATST site survey Sky Brightness Monitor (SBM) is a new instrument specifically developed for this task. The SBM is a modified externally occulted coronagraph capable of imaging the solar disk and sky simultaneously. The ability to image the Sun and the sky simultaneously greatly simplifies the calibration of the sky-brightness measurements. The SBM has a very simple optical configuration that makes it a compact and low-maintenance instrument. The SBM is sensitive to sky brightness below 1×10-6 disk center intensity, with a field of view extending from 4 to 8 Rsolar. It measures the solar disk and sky brightness at three continuum bandpasses located at 450, 530, and 890 nm. A fourth bandpass is centered at the 940 nm water vapor absorption band. With measurements of disk and sky brightness at these four wavelengths, site characteristics such as extinctions, aerosol content, and precipitable water vapor content can be derived. This paper documents the design, specifications, calibration procedures, and performance of the SBM. Title: Background-Induced Measurement Errors of the Coronal Intensity, Density, Velocity, and Magnetic Field Authors: Penn, M. J.; Lin, H.; Tomczyk, S.; Elmore, D.; Judge, P. Bibcode: 2004SoPh..222...61P Altcode: The effect of a background signal on the signal-to-noise ratio is discussed, with particular application to ground-based observations of emission lines in the solar corona with the proposed Advanced Technology Solar Telescope. The concepts of effective coronal aperture and effective coronal integration time are introduced. Specific expressions are developed for the 1σ measurement errors for coronal intensity, coronal electron density, coronal velocity, and coronal magnetic field measurements using emission lines and including a background. Title: Latest Results from the ATST Site Survey Authors: Hill, F.; Collados, M.; Navarro, H.; Beckers, J.; Brandt, P.; Briggs, J.; Brown, T.; Denker, C.; Hegwer, S.; Horst, T.; Komsa, M.; Kuhn, J.; Lin, H.; Oncley, S.; Penn, M.; Rimmele, T.; Soltau, D.; Streander, K. Bibcode: 2004AAS...204.6909H Altcode: 2004BAAS...36..795H We present the latest results and current status of the site survey portion of the Advanced Technology Solar Telescope (ATST) project. The ATST will provide high resolution solar data in the visible and IR. The site is a major factor determining the performance of the telescope. The most critical site characteristics are the statistics of daytime seeing quality and sky clarity. These conditions are being measured by a suite of instruments at three sites (Big Bear, Haleakala, La Palma). These sites were chosen from a set of six that have been tested starting in November 2001. The instrumentation includes a solar differential image motion monitor, an array of scintillometers, a miniature coronagraph, a dust monitor, and a weather station. The analysis of the data provides an estimate of the seeing as a function of height near the ground. We will present the latest results of the analysis of the survey data set. Title: Title Requested Authors: Lin, H.; Kuhn, J. R.; Coulter, R. Bibcode: 2004AAS...204.9807L Altcode: 2004BAAS...36Q.985L A critical problem for understanding the solar corona has been to measure its magnetic field that we believe determines its structure and dynamics from the upper chromosphere out into the heliospheric environment. The direct measurement of this field has been a longstanding problem. Only recently have Zeeman splitting observations of infrared coronal emission lines (Lin et al. 2000) been used to deduce the coronal magnetic flux density. We have extended this technique and report here our first results from a novel coronal magnetometer that uses an off-axis reflecting coronagraph (SOLARC) and optical fiber-bundle imaging spectropolarimeter (OFIS). Our results reveal the line-of-sight magnetic flux density with a sensitivity of a few gauss with 20 arcsec spatial resolution and approximately 60min temporal resolution. These full Stokes spectropolarimetric data of the forbidden FeXIII emission line at 1075nm imply a line-of-sight coronal magnetic field above an active region with a flux density of 9G. Although these first results from SOLARC/OFIS have relatively coarse resolution, they have potential for solving our coronal "dark energy" problem with infrared magnetometry. This research has been supported by the Multidisciplinary University Research Initiative (MURI) of the DOD, NASA, and the National Science Foundation Atmospheric Research Program. Title: Extinction and Sky Brightness at Two Solar Observatories Authors: Penn, M. J.; Lin, H.; Schmidt, A. M.; Gerke, J.; Hill, F. Bibcode: 2004SoPh..220..107P Altcode: The Advanced Technology Solar Telescope site survey Sky Brightness Monitor simultaneously images the solar disk and the sky to about 8 solar radii in four wavelengths at 450, 530, 890 and 940 nm. One day of data from Mees Solar Observatory on Haleakala and from the National Solar Observatory at Sacramento Peak (Sunspot, New Mexico) are analyzed. Both sites show strong Rayleigh extinction, but while Haleakala shows a larger aerosol component, Sunspot shows a large variation in the aerosol component. Overall the Haleakala extinction varies as λ−2 whereas the Sunspot extinction changes from about λ−3.5 to about λ−2, suggesting an increasing aerosol component during the day. Water vapor absorption measurements from both sites are similar, though Sunspot shows larger time variations than Haleakala. The instrument-corrected sky brightness from both sites show comparable values, and again the Sunspot data show more variations. The sky brightness values show a radial dependence of sky brightness of r−0.1 at Haleakala, but a dependence of r−1.0 at Sunspot. The wavelength variation of the sky brightness at Haleakala is relatively constant at λ−1.5 but varies at Sunspot from λ−1.5 to λ−0.1 again suggesting an increasing aerosol contribution during the day at Sunspot. Finally, dust measurements near the ground are compared with the extinction wavelength exponent for data taken at Haleakala on 24 Feb. 2003. The measurements suggest more large dust particles are present near the ground than averaged over the whole air column. Title: Measuring Coronal Magnetic Fields with Coronal Emission Line Polarimetry Authors: Lin, H. Bibcode: 2003AGUFMSH42D..02L Altcode: Magnetic field is the dominating field in the solar corona, responsible for the majestic coronal structures and dynamic events. However, no direct measurements of the coronal magnetic fields are routinely available and we can only infer the coronal magnetic field structures from observed intensity images. Although several methods for the diagnostics of coronal magnetic fields have been demonstrated, measurement of the coronal magnetic fields remains a very challenging observational task. This paper reports on a concerted effort at the Institute for Astronomy (IfA) to establish routine vector coronal magnetic field measurement capabilities using spectropolarimetric observation of the near infrared Fe XIII 1074.7 nm coronal emission line. The IfA effort includes observations of two-dimensional circular polarization maps of the emission line which carry information about the coronal magnetic field strength. High resolution observation of the linear polarization maps which yield the projected direction of the coronal magnetic field in the plane of the sky will also be obtained. The latest results from these experiments will be presented. Title: ATST near-IR spectropolarimeter Authors: Lin, Haosheng Bibcode: 2003SPIE.4853..215L Altcode: The development of new solar IR instrumentation in the past decade had opened new windows of opportunity for solar physics research which were not accessible before. Many spectral lines in the near-IR wavelength range from 1 to 2 microns offer powerful diagnostics for the study of solar magnetism in the photosphere, the chromosphere, and the corona. Significant progress and breakthroughs were made in areas such as the generation of weak background magnetic fields by small-scale surface dynamos, the physics of the sunspot, and the direct measurement of magnetic fields in the corona. The combination of these new IR diagnostics tools, and the unprecedented 4-meter aperture and versatile photospheric and coronal capabilities of the Advanced Technology Solar Telescope (ATST), will greatly enhance our capability to study the Sun. It further promises breakthrough observations that can help to resolve many of the long-standing mysteries of solar physics. The instruments for the ATST will need to accommodate a broad range of science subjects, each with its unique observational requirements. This paper examine the near-IR instrumentation required to achieve the ATST science goals, and present conceptual designs of a near-IR SpectroPolarimeter (NIRSP) aimed at addressing the new challenges of observational solar physics brought upon by the ATST. Title: Strategies for prime focus instrumentation in off-axis Gregorian systems Authors: Coulter, Roy; Kuhn, Jeff R.; Lin, Haosheng Bibcode: 2003SPIE.4853..558C Altcode: A new generation of off-axis telescopes has been proposed to address a number of high dynamic range problems in astrophysics. These systems present unusual problems and opportunities for the instrument designer. We will discuss some of the issues that must be resolved when placing instrumentation at the prime focus. The heat stop and occulter systems for the SOLARC off-axis coronagraph will be used to illustrate strategies for solar telescope applications. Title: The SOLARC off-axis coronagraph Authors: Kuhn, Jeff R.; Coulter, Roy; Lin, Haosheng; Mickey, Donald L. Bibcode: 2003SPIE.4853..318K Altcode: A 0.5m aperture off-axis coronagraphic telescope is described. Its fabrication, imaging, and scattered light performance is discussed in the context of simple model expectations. Title: Near-infrared chromospheric observatory Authors: Labonte, Barry; Rust, David M.; Bernasconi, Pietro N.; Georgoulis, Manolis K.; Fox, Nicola J.; Kalkofen, Wolfgang; Lin, Haosheng Bibcode: 2003SPIE.4853..140L Altcode: NICO, the Near Infrared Chromosphere Observatory, is a platform for determining the magnetic structure and fources of heating for the solar chromosphere. NICO, a balloon-borne observatory, will use the largest solar telescope flying to map the magnetic fields, velocities, and heating events of the chromosphere and photosphere in detail. NICO will introduce new technologies to solar flight missions, such as wavefront sensing for monitoring telescope alignment, real-time correlation tracking and high-speed image motion compensation, and wide aperture Fabry-Perot etalons for extended spectral scanning. Title: The Near-Infrared Chromosphere Observatory (NICO) Authors: Rust, D. M.; Bernasconi, P. N.; LaBonte, B. J.; Georgoulis, M. K.; Kalkofen, W.; Fox, N. J.; Lin, H. Bibcode: 2002AAS...200.3902R Altcode: 2002BAAS...34..701R NICO is a proposed cost-effective platform for determining the magnetic structure and sources of heating for the solar chromosphere. It is a balloon-borne observatory that will use the largest solar telescope flying and very high data rates to map the magnetic fields, velocities, and heating events of the chromosphere and photosphere in unprecedented detail. NICO is based on the Flare Genesis Experiment (FGE), which has pioneered in the application of technologies important to NASA's flight program. NICO will also introduce new technologies, such as wavefront sensing for monitoring telescope alignment; real-time correlation tracking and high-speed image motion compensation for smear-free imaging; and wide aperture Fabry-Perot filters for extended spectral scanning. The telescope is a classic Cassegrain design with an 80-cm diameter F/1.5 primary mirror made of Ultra-Low-Expansion glass. The telescope structure is graphite-epoxy for lightweight, temperature-insensitive support. The primary and secondary mirror surfaces are coated with silver to reflect more than 97% of the incident solar energy. The secondary is made of single-crystal silicon, which provides excellent thermal conduction from the mirror surface to its mount, with negligible thermal distortion. A third mirror acts as a heat dump. It passes the light from a 15-mm diameter aperture in its center, corresponding to a 322"-diameter circle on the solar surface, while the rest of the solar radiation is reflected back out of the front of the telescope. The telescope supplies the selected segment of the solar image to a polarization and spectral analysis package that operates with an image cadence 1 filtergram/sec. On-board data storage is 3.2 Terabytes. Quick-look images will be sent in near real time to the ground via the TDRSS communications link. Title: Near Infrared Magnetometry in the Photosphere and Corona Authors: Lin, H. Bibcode: 2002AAS...200.3404L Altcode: 2002BAAS...34..690L The interplay between the magnetic fields and the highly conductive plasma in the atmosphere of the sun generates some of the most fascinating and puzzling astronomical phenomena known to the mankind. Because of its proximity to the earth, these solar activities also have profound effect on life on earth. Therefore, understanding solar magnetism is not only an intellectual inquiry of the curious minds, it is also an endeavor to better the human life. The near infrared wavelength regime between 1 to 2 microns contains many spectral lines with powerful diagnostics capability for the study of solar magnetic fields. These spectral lines offer enhanced magnetic sensitivity in both the photosphere and corona, which not only allows us to explore regions of the solar atmosphere not easily accessible by other diagnostics, in many cases, it also provides critical measurements to distinguish competing models, and therefore, advances our knowledge of the sun. While the potential of the near-IR tools for the study of solar magnetism was well recognized by the pioneers of the field many decades ago, realization of some of their capabilities was achieved only recently, due to the advance of the IR array detector technology. In this talk, we will first review past achievements and the current status of the near-IR solar physics research. Of course, the excitement of the field is in the future challenges and progress we are going to face and achieve with the Advanced Technology Solar Telescope (ATST). Therefore, we will also discuss the scientific goals of the ATST and present ideas on how to achieve these goals. Title: A Classical Model for the Damped, Magnetic Dipole Oscillator Authors: Casini, Roberto; Lin, Haosheng Bibcode: 2002ApJ...571..540C Altcode: We propose a simple classical model for the damped, magnetic dipole oscillator based on a circuit analogy. The solution for the dynamical equation of the associated magnetic moment is found to be similar in form to the well-known solution for the damped, electric dipole oscillator, but with the magnetic vector of the incident electromagnetic wave as the forcing field, instead of the electric vector. This model has been successfully applied to a classical derivation of the polarization properties of the forbidden (M1) coronal emission lines. Title: Dynamically Close Galaxy Pairs and Merger Rate Evolution in the CNOC2 Redshift Survey Authors: Patton, D. R.; Pritchet, C. J.; Carlberg, R. G.; Marzke, R. O.; Yee, H. K. C.; Hall, P. B.; Lin, H.; Morris, S. L.; Sawicki, M.; Shepherd, C. W.; Wirth, G. D. Bibcode: 2002ApJ...565..208P Altcode: 2001astro.ph..9428P We investigate redshift evolution in the galaxy merger and accretion rates, using a well-defined sample of 4184 galaxies with 0.12<=z<=0.55 and RC<=21.5. We identify 88 galaxies in close (5<=rp<=20 h-1 kpc) dynamical (Δv<=500 km s-1) pairs. These galaxies are used to compute global pair statistics, after accounting for selection effects resulting from the flux limit, k-corrections, luminosity evolution, and spectroscopic incompleteness. We find that the number of companions per galaxy (for -21<=Mk,eB<=-18) is Nc=0.0321+/-0.0077 at z=0.3. The luminosity in companions, per galaxy, is Lc=0.0294+/-0.0084×1010 h2 Lsolar. We assume that Nc is proportional to the galaxy merger rate, while Lc is directly related to the mass accretion rate. After increasing the maximum pair separation to 50 h-1 kpc and comparing with the low-redshift SSRS2 pair sample, we infer evolution in the galaxy merger and accretion rates of (1+z)2.3+/-0.7 and (1+z)2.3+/-0.9, respectively. These are the first such estimates to be made using only confirmed dynamical pairs. When combined with several additional assumptions, this implies that approximately 15% of present epoch galaxies with -21<=MB<=-18 have undergone a major merger since z=1. Title: Environment and Galaxy Evolution at Intermediate Redshift in the CNOC2 Survey Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Hall, P. B.; Patton, D. R.; Sawicki, M.; Shepherd, C. W. Bibcode: 2001ApJ...563..736C Altcode: 2001astro.ph..6506C The systematic variation of galaxy colors and types with clustering environment could either be the result of local conditions at formation or subsequent environmental effects as larger scale structures draw together galaxies whose stellar mass is largely in place. Below redshift 0.7 galaxy luminosities (k-corrected and evolution compensated) are relatively invariant, whereas galaxy star formation rates, as reflected in their colors, are a ``transient'' property that have a wide range for a given luminosity. The relations between these galaxy properties and the clustering properties are key statistics for understanding the forces driving late-time galaxy evolution. At z~0.4 the comoving galaxy correlation length, r0, measured in the CNOC2 sample is strongly color dependent, rising from 2 h-1 Mpc to nearly 10 h-1 Mpc as the volume-limited subsamples range from blue to red. The luminosity dependence of r0 at z~0.4 is weak below L* in the R band, although there is an upturn at high luminosity, where its interpretation depends on separating it from the r0-color relation. In the B band there is a slow, smooth increase of r0 with luminosity, at least partially related to the color dependence. Study of the evolution of galaxies within groups, which create much of the strongly nonlinear correlation signal, allows a physical investigation of the source of these relations. The dominant effect of the group environment on star formation is seen in the radial gradient of the mean galaxy colors, which on the average become redder than the field toward the group centers. The color differentiation begins around the dynamical radius of virialization of the groups. The redder-than-field trend applies to groups with a line-of-sight velocity dispersion, σ1>150 km s-1. There is an indication, somewhat statistically insecure, that the high-luminosity galaxies in groups with σ1<125 km s-1 become bluer toward the group center. Monte Carlo orbit integrations initiated at the measured positions and velocities show that the rate of galaxy merging in the σ1>150 km s-1 groups is very low, whereas for σ1<150 km s-1 about 25% of the galaxies will merge in 0.5 Gyr. We conclude that the higher velocity dispersion groups largely act to suppress star formation relative to the less clustered field, leading to ``embalmed'' galaxies. On the other hand, the low velocity dispersion groups are prime sites of both strong merging and enhanced star formation that leads to the formation of some new massive galaxies at intermediate redshifts. The tidal fields within the groups appear to be a strong candidate for the physical source of the reduction of star formation in group galaxies relative to field. Tides operate effectively at all velocity dispersions to remove gas-rich companions and low-density gas in galactic halos. We find a close resemblance of the color-dependent galaxy luminosity function evolution in the field and groups, suggesting that the clustering-dependent star formation reduction mechanism is important for the evolution of field galaxies as a whole. Title: The Galaxy Correlation Function in the CNOC2 Redshift Survey: Dependence on Color, Luminosity, and Redshift Authors: Shepherd, C. W.; Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Sawicki, M.; Hall, P. B.; Patton, D. R. Bibcode: 2001ApJ...560...72S Altcode: 2001astro.ph..6250S We examine how the spatial correlation function of galaxies from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) depends on galaxy color, luminosity, and redshift. The projected correlation function wp is determined for volume-limited samples of objects with 0.12<=z<0.51 and evolution-compensated RC-band absolute magnitudes M0R<-20, over the comoving projected separation range 0.04 h-1 Mpc<rp<10 h-1 Mpc. Our sample consists of 2937 galaxies that are classified as being either early- or late-type objects according to their spectral energy distribution (SED), as determined from UBVRCIC photometry. For the sake of simplicity, galaxy SEDs are classified independently of redshift: Our classification scheme therefore does not take into account the color evolution of galaxies. Objects with SEDs corresponding to early-type galaxies are found to be more strongly clustered by a factor of ~3 and to have a steeper correlation function than those with late-type SEDs. Modeling the spatial correlation function, as a function of comoving separation r, as ξ(r)=(r/r0), we find r0=5.45+/-0.28 h-1 Mpc and γ=1.91+/-0.06 for early-type objects, and r0=3.95+/-0.12 h-1 Mpc and γ=1.59+/-0.08 for late-type objects (for ΩM=0.2, ΩΛ=0). While changing the cutoff between early- and late-type SEDs does affect the correlation amplitudes of the two samples, the ratio of the amplitudes remains constant to within 10%. The redshift dependence of the correlation function also depends on SED type. Modeling the redshift dependence of the comoving correlation amplitude rγ0 as rγ0(z)~(1+z)γ-3-ɛ, we find that early-type objects have ɛ=-3.9+/-1.0, and late-type objects have ɛ=-7.7+/-1.3. Both classes of objects therefore have clustering amplitudes, measured in comoving coordinates, which appear to decrease rapidly with cosmic time. The excess clustering of galaxies with early-type SEDs, relative to late-type objects, is present at all redshifts in our sample. In contrast to the early- and late-type SED samples, the combined sample undergoes little apparent evolution, with ɛ=-2.1+/-1.3, which is consistent with earlier results. The apparent increase with redshift of the clustering amplitude in the early- and late-type samples is almost certainly caused by evolution of the galaxies themselves rather than by evolution of the correlation function. If galaxy SEDs have evolved significantly since z~0.5, then our method of classifying SEDs may cause us to overestimate the true evolution of the clustering amplitude for the unevolved counterparts to our early- and late-type samples. However, if color evolution is to explain the apparent clustering evolution, the color evolution experienced by a galaxy must be correlated with the galaxy correlation function. We also investigate the luminosity dependence of the correlation function for volume-limited samples with 0.12<=z<0.40 and M0R<-19.25. We detect a weak luminosity dependence of the correlation amplitude for galaxies with early-type SEDs, dlogξ/dM0R=-0.35+/-0.17, but no significant dependence for late-type objects, dlogξ/dM0R=0.02+/-0.16. Title: Galaxy Groups at Intermediate Redshift Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Hall, P. B.; Patton, D. R.; Sawicki, M.; Shepherd, C. W. Bibcode: 2001ApJ...552..427C Altcode: 2000astro.ph..8201C Galaxy groups likely to be virialized are identified within the CNOC2 intermediate-redshift galaxy survey. The resulting groups have a median velocity dispersion, σ1~=200 km s-1. The virial mass-to-light ratios, using k-corrected and evolution-compensated luminosities, have medians in the range of 150-250 h Msolar/Lsolar, depending on group definition details. The number-velocity dispersion relation at σ1>~200 km s-1 is in agreement with the low-mass extrapolation of the cluster-normalized Press-Schechter model. Lower velocity dispersion groups are deficient relative to the Press-Schechter model. The two-point group-group autocorrelation function has r0=6.8+/-0.3 h-1 Mpc, which is much larger than the correlations of individual galaxies, but about as expected from biased clustering. The mean number density of galaxies around group centers falls nearly as a power law with r-2.5 and has no well-defined core. The projected velocity dispersion of galaxies around group centers is either flat or slowly rising outward. The combination of a steeper than isothermal density profile and the outward rising velocity dispersion implies that the mass-to-light ratio of groups rises with radius if the velocity ellipsoid is isotropic but could be nearly constant if the galaxy orbits are nearly circular. Such strong tangential anisotropy is not supported by other evidence. Although the implication of a rising M/L must be viewed with caution, it could naturally arise through dynamical friction acting on the galaxies in a background of ``classical'' collisionless dark matter. Title: Weak-Lensing Study of Low-Mass Galaxy Groups: Implications for Ωm Authors: Hoekstra, H.; Franx, M.; Kuijken, K.; Carlberg, R. G.; Yee, H. K. C.; Lin, H.; Morris, S. L.; Hall, P. B.; Patton, D. R.; Sawicki, M.; Wirth, G. D. Bibcode: 2001ApJ...548L...5H Altcode: 2000astro.ph.12169H We report on the first measurement of the average mass and mass-to-light ratio of galaxy groups by analyzing the weak-lensing signal induced by these systems. The groups, which have velocity dispersions of 50-400 km s-1, have been selected from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2). This survey allows the identification of a large number of groups with redshifts ranging from z=0.12 to 0.55, ideal for a weak-lensing analysis of their mass distribution. For our analysis we use a sample of 50 groups that are selected on the basis of a careful dynamical analysis of group candidates. We detect a signal at the 99% confidence limit. The best-fit singular isothermal sphere model yields an Einstein radius rE=0.72"+/-0.29". This corresponds to a velocity dispersion of <σ2>1/2=274+48- 59 km s-1 (using photometric redshift distributions for the source galaxies), which is in good agreement with the dynamical estimate. Under the assumption that the light traces the mass, we find an average mass-to-light ratio of 191+/-83 h Msolar/LBsolar in the rest-frame B band. Unlike dynamical estimates, this result is insensitive to problems associated with determining group membership. After correction of the observed mass-to-light ratio for luminosity evolution to z=0, we find 254+/-110 h Msolar/LBsolar, lower than what is found for rich clusters. We use the observed mass-to-light ratio to estimate the matter density of the universe, for which we find Ωm=0.19+/-0.10 (ΩΛ=0), in good agreement with other recent estimates. For a closed universe (ΩmΛ=1), we obtain Ωm=0.13+/-0.07. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Title: The Evolution of Population Gradients in Galaxy Clusters: The Butcher-Oemler Effect and Cluster Infall Authors: Ellingson, E.; Lin, H.; Yee, H. K. C.; Carlberg, R. G. Bibcode: 2001ApJ...547..609E Altcode: 2000astro.ph.10141E We present photometric and spectroscopic measurements of the galaxy populations in clusters from the CNOC1 sample of rich, X-ray-luminous clusters at 0.18<z<0.55. A classical measure of the galaxy blue fraction for spectroscopically confirmed cluster members shows a significant Butcher-Oemler effect for the sample, but only when radii larger than 0.5r200 are considered. We perform a principal component analysis of galaxy spectra to divide the total cluster light into contributions from stellar populations of different ages. Composite radial distributions of different stellar populations show strong gradients as a function of clustercentric radius. The composite population is dominated by evolved populations in the core, and gradually changes at radii greater than the virial radius to one which is similar to coeval field galaxies. We do not see evidence at any radius within the clusters for an excess of star formation over that seen in the coeval field. Within this redshift range, significant evolution in the fractional population gradient is seen. Both low- and high-redshift clusters have similar populations in the cluster cores, but higher redshift clusters have steeper gradients and more star-forming galaxies at radii outside of the core region-in effect, a restatement of the Butcher-Oemler effect. Luminosity density profiles are consistent with a scenario where this phenomenon is due to a decline over time in the infall rate of field galaxies into clusters. Depending on how long galaxies reside in clusters before their star formation rates are diminished, this suggests a decrease in the infall into clusters of a factor of ~3 between z>0.8 and z~0.5. We also discuss alternative scenarios for the evolution of cluster populations. Title: Data From the Precision Solar Photometric Telescope (Pspt) in Hawaii From March 1998 to March 1999 Authors: White, Oran R.; Fox, Peter A.; Meisner, Randy; Rast, Mark P.; Yasukawa, Eric; Koon, Darryl; Rice, Crystal; Lin, Haosheng; Kuhn, Jeff; Coulter, Roy Bibcode: 2000SSRv...94...75W Altcode: Two Precision Solar Photometric Telescopes (PSPT) designed and built at the U.S. National Solar Observatory (NSO) are in operation in Rome and Hawaii. A third PSPT is now in operation the NSO at Sunspot, NM. The PSPT system records full disk solar images at three wavelengths: K line at 393.3 nm and two continua at 409 nm and 607 nm throughout the observing day. We currently study properties of limb darkening, sunspots, and network in these images with particular emphasis on data taken in July and September 1998. During this period, the number of observations per month was high enough to show directional properties of the radiation field surrounding sunspots. We show examples of our PSPT images and describe our study of bright rings around sunspots. Title: Galaxy Clustering Evolution in the CNOC2 High-Luminosity Sample Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Hall, P. B.; Patton, D.; Sawicki, M.; Shepherd, C. W. Bibcode: 2000ApJ...542...57C Altcode: 1999astro.ph.10250C The redshift evolution of the galaxy two-point correlation function is a fundamental cosmological statistic. To identify similar galaxy populations at different redshifts, we select a strict volume-limited sample culled from the 6100 cataloged Canadian Network for Observational Cosmology field galaxy redshift survey (CNOC2) galaxies. Our high-luminosity subsample selects galaxies having k-corrected and evolution-compensated R luminosities, Mk,eR, above -20 mag (H0=100 km s-1 Mpc-1 ), where Mk,e*(R)~=-20.3 mag. This subsample contains about 2300 galaxies distributed between redshifts 0.1 and 0.65 spread over a total of 1.55 deg2 of sky. A similarly defined low-redshift sample is drawn from the Las Campanas Redshift Survey. We find that the comoving two-point correlation function can be described as ξ(r|z)=(r00/r)γ(1+z)-(3+ɛ- γ), with r00=5.03+/-0.08 h-1 Mpc, ɛ=-0.17+/-0.18, and γ=1.87+/-0.07 over the z=0.03-0.65 redshift range, for ΩM=0.2 and Λ=0. The measured clustering amplitude and its evolution are dependent on the adopted cosmology. The measured evolution rates for ΩM=1 and flat ΩM=0.2 background cosmologies are ɛ=0.80+/-0.22 and ɛ=-0.81+/-0.19, respectively, with r00=5.30+/-0.1 and 4.85+/-0.1 h-1 Mpc, respectively. The sensitivity of the derived correlations to the evolution corrections and details of the measurements is presented. The analytic prediction of biased clustering evolution for only the low-density, ΛCDM cosmology is readily consistent with the observations, with biased clustering in an open cosmology somewhat marginally excluded and a biased ΩM=1 model predicting clustering evolution that is more than 6 standard deviations from the measured value. Title: The CNOC2 Field Galaxy Redshift Survey. I. The Survey and the Catalog for the Patch CNOC 0223+00 Authors: Yee, H. K. C.; Morris, S. L.; Lin, H.; Carlberg, R. G.; Hall, P. B.; Sawicki, Marcin; Patton, D. R.; Wirth, G. D.; Ellingson, E.; Shepherd, C. W. Bibcode: 2000ApJS..129..475Y Altcode: 2000astro.ph..4026Y The Canadian Network for Observational Cosmology (CNOC2) Field Galaxy Redshift Survey is a spectroscopic/photometric survey of faint galaxies over 1.5 deg2 of sky with a nominal spectroscopic limit of RC~21.5 mag. The primary goals of the survey are to investigate the evolution of galaxy clustering and galaxy populations over the redshift range of ~0.1-0.6. The survey area contains four widely separated patches on the sky with a total sample of over 6000 redshifts, representing a sampling rate of about 45%. In addition, five-color photometry (in IC, RC, V, B, and U) for a complete sample of approximately 40,000 galaxies to RC~23.0 mag is also available. We describe the survey and observational strategies, multiobject spectroscopy mask design procedure, and data reduction techniques for creating the spectroscopic-photometric catalogs. We also discuss the derivations of statistical weights, including corrections for the effects of limited spectral bandwidth, for the redshift sample, which allow it to be used as a complete sample. As the initial release of the survey data, we present the full data set and some statistics for the patch CNOC 0223+00. Title: Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to Redshift 1 from Kinematic Pairs Authors: Carlberg, R. G.; Cohen, Judith G.; Patton, D. R.; Blandford, Roger; Hogg, David W.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Hall, Patrick B.; Sawicki, M.; Wirth, Gregory D.; Cowie, Lennox L.; Hu, Esther; Songaila, Antoinette Bibcode: 2000ApJ...532L...1C Altcode: 2000astro.ph..2036C The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator that is relatively insensitive to population evolution. Here we use a k-corrected and evolution-compensated volume-limited sample having an R-band absolute magnitude of Mk,eR<=-19.8+5logh mag drawing about 300 redshifts from the Caltech Faint Galaxy Redshift Survey and 3000 from the Canadian Network for Observational Cosmology field galaxy survey to measure the rate and redshift evolution of merging. The combined sample has an approximately constant comoving number and luminosity density from redshift 0.1 to 1.1 (ΩM=0.2, ΩΛ=0.8) hence, any merger evolution will be dominated by correlation and velocity evolution, not density evolution. We identify kinematic pairs with projected separations less than either 50 or 100 h-1 kpc and rest-frame velocity differences of less than 1000 km s-1. The fractional luminosity in pairs is modeled as fL(Δv,rp,Mk,er) (1+z)mL, where [fL,mL] are [0.14+/-0.07,0+/-1.4] and [0.37+/-0.7,0.1+/-0.5] for rp<=50 and 100 h-1 kpc, respectively (ΩM=0.2, ΩΛ=0.8). The value of mL is about 0.6 larger if Λ=0. To convert these redshift-space statistics to a merger rate, we use the data to derive a conversion factor to a physical space pair density, a merger probability, and a mean in-spiral time. The resulting mass accretion rate per galaxy (M1,M2>=0.2M*) is 0.02+/-0.01(1+z)0.1+/-0.5M* Gyr-1. Present-day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift 1. Since merging is likely only weakly dependent on the host mass, the fractional effect, δM/M~=0.15M*/M, is dramatic for lower mass galaxies but is, on the average, effectively perturbative for galaxies above 1M*. Title: Probable Detection of a Bright Infrared Coronal Emission Line of Si IX near 3.93 Microns Authors: Kuhn, J. R.; MacQueen, R. M.; Streete, J.; Tansey, G.; Mann, I.; Hillebrand, P.; Coulter, R.; Lin, H.; Edmunds, D.; Judge, P. Bibcode: 1999ApJ...521..478K Altcode: We report here the probable detection of an emission line of Si IX that was observed from an open C130 aircraft over the Pacific Ocean during the 1998 total solar eclipse. Although the IR data themselves are inconclusive because of the uncertainty in the precise central wavelengths of the narrowband filters during the eclipse, the consistency of the measured IR limb excess with simultaneous EUV emission measured by SOHO/Coronal Diagnostic Spectrometer and the EUV Imager Telescope support our detection claim. This line appears to be the brightest IR coronal line yet observed, and its existence may significantly improve future prospects for obtaining optical coronal magnetic field measurements. Title: The ΩMΛ Dependence of the Apparent Cluster Ω Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Ellingson, E.; Patton, D.; Sawicki, M.; Shepherd, C. W. Bibcode: 1999ApJ...516..552C Altcode: The Canadian Network for Observational Cosmology cluster data are used to constrain the ΩMΛ pair to the region ΩM~=0.24e+/-0.3(1-0.4ΩΛ) for 0<=ΩΛ<=1. The constraint is based on estimating the apparent mass density of the universe, Ωe(z), as the product of cluster mass-to-light ratios, M/L, with the field luminosity density at the same redshift. The luminosity density contains a volume element, which for measurements at z>0 causes Ωe(z) to depend on both the density parameter ΩM and the cosmological constant, ΩΛ. The ΩΛ-dependence of the Ωe(z) measurement is about 25% less than the volume-redshift relation but about 50% greater than the luminosity-redshift relation. Most usefully this constraint is approximately orthogonal to the luminosity-redshift relation in the ΩMΛ plane. The practical application to measuring cosmological parameters has the considerable benefit that all quantities are used in a differential sense, so that common selection effects and galaxy evolution effects will cancel. The residual differential galaxy evolution between field, and the clustered galaxies can be estimated from the sample data. The inferred ΩM has an inverse correlation with ΩΛ, giving a constraint complementary to both the cosmic microwave background and the supernovae distances. Monte Carlo simulations, calibrated with observational data, show that 100 clusters spread over the 0-1 redshift range, each having M/L values of about 25% accuracy, will measure ΩΛ to about 7% statistical error. Title: Evolution of Galaxy Correlations Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Sawicki, M.; Wirth, G.; Patton, D.; Shepherd, C. W.; Ellingson, E.; Schade, D.; Pritchet, C. J.; Hartwick, F. D. A. Bibcode: 1998wfsc.conf..143C Altcode: The CNOC field galaxy redshift survey, CNOC2, investigates the relations between the dramatic evolution of field galaxies and their clustering over the redshift range 0 to 0.7. We report preliminary results based on two of the sky patches and within the redshift range of 0.12 to 0.55. The spatial two point correlation functions have a strong colour dependence with scale, and a weaker, apparently scale free, luminosity dependence. The population most likely to be conserved with redshift is the high luminosity galaxies. In particular, we choose galaxies with M_r^{k,e} <= -20 mag as our tracer population. We find that the evolution of the clustered density in proper co-ordinates at r ls 10hmpc, rhogg propto r_0(z)^gamma(1+z)^3, where r_0(z) is the proper correlation length, is best described as a "de-clustering", propto (1+z)^{0.6 +- 0.4}. Or equivalently, there is a weak growth of clustering in co-moving co-ordinates, x_0 propto (1+z)^{-0.3 +- 0.2}. Title: The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey Authors: Lin, H.; Yee, H. K. C.; Carlberg, R. G.; Ellingson, E. Bibcode: 1997ApJ...475..494L Altcode: 1996astro.ph..8056L We have computed the luminosity function for a sample of 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1) over the redshift range z = 0.2-0.6. We find Schechter parameters M*r-5 log h = -20.8 +/- 0.4 and α = -1.3 +/- 0.2 in rest-frame Gunn r, and M*BAB- 5 log h = -19.6 +/- 0.3 and α = -0.9 +/- 0.2 in rest-frame BAB. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope α ~ -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep α ~ -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to analogous intermediate-redshift luminosity functions from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density versus redshift relations seen in the CFRS, although the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z ~ 0.1 is only about half that seen at z ~ 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.