Author name code: martinez-pillet ADS astronomy entries on 2022-09-14 author:"Martinez Pillet, Valentin" ------------------------------------------------------------------------ Title: A Compact Full-disk Solar Magnetograph based on miniaturization of GONG instrument Authors: Gosain, Sanjay; Harvey, Jack; Martinez-Pillet, Valentin; Woods, Tom; Hill, Frank Bibcode: 2022arXiv220707728G Altcode: Designing compact instruments is the key for the scientific exploration by smaller spacecrafts such as cubesats or by deep space missions. Such missions require compact instrument designs to have minimal instrument mass. Here we present a proof of concept for miniaturization of the Global Oscillation Network Group GONG instrument. GONG instrument routinely obtains solar full disk Doppler and magnetic field maps of the solar photosphere using Ni 676 nm absorption line. A key concept for miniaturization of GONG optical design is to replace the bulky Lyot filter with a narrow-band interference filter and reduce the length of feed telescope. We present validation of the concept via numerical modeling as well as by proof of concept observations. Title: Observational Approach to Computing the Poynting Flux in the Quiet Sun Photosphere Authors: Tilipman, Dennis; Martínez Pillet, Valentin; Tremblay, Benoit; Kazachenko, Maria; Milic, Ivan; Yadav, Rahul Bibcode: 2022cosp...44.2516T Altcode: Understanding magnetically-driven processes in the quiet Sun is crucial for understanding chromospheric and coronal heating. The main goal of our study is to quantify the energy output of the quiet Sun photosphere. The amount of magnetic energy being transported upwards from the photosphere can be expressed in terms of the vertical component of Poynting flux, which is a cross-product of magnetic and electric fields. While magnetic fields and energy fluxes within active regions and plage have been evaluated before, quiet Sun magnetograms have only recently become available with the launch of missions such as Hinode and Sunrise and the Daniel K. Inouye Solar Telescope (DKIST) coming online early this year. In this presentation, we present estimates of Poynting flux using IMaX data. As the electric field E is one of the two principal quantities required to compute Poynting flux, we use two distinct approaches to infer E. In the first approach, we derive the electric field using ideal plasma assumption with horizontal velocities obtained from the convolutional neural network (DeepVel, Asensio Ramos et al. 2017). In the second approach, we derive E using the PDFI-SS approach uncurling Faraday's law (Fisher et al. 2020). We discuss the distribution of Poynting flux and whether it is sufficient to explain chromospheric and coronal heating. Title: Searching for a Solar Source of Magnetic-Field Switchbacks in Parker Solar Probe's First Encounter Authors: de Pablos, D.; Samanta, T.; Badman, S. T.; Schwanitz, C.; Bahauddin, S. M.; Harra, L. K.; Petrie, G.; Mac Cormack, C.; Mandrini, C. H.; Raouafi, N. E.; Martinez Pillet, V.; Velli, M. Bibcode: 2022SoPh..297...90D Altcode: Parker Solar Probe observations show ubiquitous magnetic-field reversals closer to the Sun, often referred to as "switchbacks". The switchbacks have been observed before in the solar wind near 1 AU and beyond, but their occurrence was historically rare. PSP measurements below ∼ 0.2 AU show that switchbacks are, however, the most prominent structures in the "young" solar wind. In this work, we analyze remote-sensing observations of a small equatorial coronal hole to which PSP was connected during the perihelion of Encounter 1. We investigate whether some of the switchbacks captured during the encounter were of coronal origin by correlating common switchback in situ signatures with remote observations of their expected coronal footpoint. We find strong evidence that timescales present in the corona are relevant to the outflowing, switchback-filled solar wind, as illustrated by strong linear correlation. We also determine that spatial analysis of the observed region is optimal, as the implied average solar-wind speed more closely matches that observed by PSP at the time. We observe that hemispherical structures are strongly correlated with the radial proton velocity and the mass flux in the solar wind. The above findings suggest that a subpopulation of the switchbacks are seeded at the corona and travel into interplanetary space. Title: The early spectropolarimetric inversions Authors: Martinez Pillet, V. Bibcode: 2022fysr.confE..51M Altcode: In the late 80's A. Skumanich played a leading role in advancing our understanding of radiative transfer processes in stellar atmospheres in the presence of a magnetic field. Of his multiple contributions, developing robust inferences of the vector magnetic field estimates on the sun from spectropolarimetric observations were particularly important. It demonstrated how consistent and reliable vector magnetic field estimates could be obtained limited only by noise in the data. Andy's links with the international community that develop the theory of polarized radiative transfer were vital. In the early 90's, the Advanced Stokes Polarimeter (ASP) demonstrated from a practical standpoint the relevance of the theoretical developments in which Andy participated. The ASP convinced the solar community that reliable vector magnetic field measurements are possible. This significant achievement paved the way for proposing a facility equipped with four spectro-polarimeters —the Daniel K Inouye Solar Telescope— to the community. Title: Velocities of an Erupting Filament Authors: Wang, Shuo; Jenkins, Jack M.; Muglach, Karin; Martinez Pillet, Valentin; Beck, Christian; Long, David M.; Choudhary, Debi Prasad; McAteer, James Bibcode: 2022ApJ...926...18W Altcode: 2021arXiv211107830W Solar filaments exist as stable structures for extended periods of time before many of them form the core of a coronal mass ejection (CME). We examine the properties of an erupting filament on 2017 May 29-30 with high-resolution He I 10830 Å and Hα spectra from the Dunn Solar Telescope, full-disk Dopplergrams of He I 10830 Å from the Chromospheric Telescope, and EUV and coronograph data from SDO and STEREO. Pre-eruption line-of-sight velocities from an inversion of He I with the HAZEL code exhibit coherent patches of 5 Mm extent that indicate counter-streaming and/or buoyant behavior. During the eruption, individual, aligned threads appear in the He I velocity maps. The distribution of velocities evolves from Gaussian to strongly asymmetric. The maximal optical depth of He I 10830 Å decreased from τ = 1.75 to 0.25, the temperature increased by 13 kK, and the average speed and width of the filament increased from 0 to 25 km s-1 and 10 to 20 Mm, respectively. All data sources agree that the filament rose with an exponential acceleration reaching 7.4 m s-2 that increased to a final velocity of 430 km s-1 at 22:24 UT; a CME was associated with this filament eruption. The properties during the eruption favor a kink/torus instability, which requires the existence of a flux rope. We conclude that full-disk chromospheric Dopplergrams can be used to trace the initial phase of on-disk filament eruptions in real time, which might potentially be useful for modeling the source of any subsequent CMEs. Title: An Alternative Approach to Measuring Solar Velocities on the Solar Dynamics Observatory (SDO) Using the Helioseismic and Magnetic Imager (HMI) Authors: Cavin, Brittany; Martinez-Pillet, Valentin Bibcode: 2021AGUFMSH55D1864C Altcode: Aboard the Solar Dynamics Observatory (SDO), the Helioseismic and Magnetic Imager (HMI) measures the velocity of the Sun's magnetic fields. However, there is a calibration issue causing an artificial 24h periodicity. The SDO spacecraft's velocity leaks into the solar velocities data. The spacecraft's velocity is much greater than the solar velocities and causes inaccurate data. I compared the current HMI Method results with a Gaussian Fit Method, that could help bypass the calibration error and avoid the leak of spacecraft velocity on the solar data. By plotting the Sun's spectra at six different wavelengths, I could use a Gaussian fit to calculate the center at each pixel. After noticing trends in the two methods, we show that the Gaussian Method does not display a 24h leakage. However, it can be sensitive at identifying the velocities at Sunspot locations, varying only slightly from the original HMI data. We demonstrate that the main difference between the gaussian and the HMI methods is the use of the calibration provided by the sensitivity curves. Title: Quantifying Magnetic Energy Flux in the Quiet Sun Photosphere using Sunrise/IMaX Observations Authors: Tilipman, Dennis; Kazachenko, Maria; Tremblay, Benoit; Martinez-Pillet, Valentin; Milic, Ivan Bibcode: 2021AGUFMSH42B..04T Altcode: Understanding magnetically-driven processes in the quiet Sun is crucial for understanding chromospheric and coronal heating. The main goal of our study is to quantify the energy output of the quiet Sun photosphere. The amount of magnetic energy can be expressed in terms of the Poynting flux, which is a cross-product of magnetic and electric fields. Poynting flux has been computed for active regions and plage, but the weakness of polarimetric signal in the quiet Sun presents a bigger challenge. Quiet Sun magnetic fields have only recently become observable with the launch of missions such as Hinode and Sunrise. The Daniel K. Inouye Solar Telescope (DKIST) is expected to further improve the quality of these observations -- both spatial and temporal resolutions, as well as polarimetric signal, are expected to improve significantly, allowing us to perform reliable inversions of magnetic, electric, and velocity fields, all of which are required to compute the Poynting flux. We test different inversion methods on Sunrise/IMaX data in order to streamline this process once DKIST becomes operational and to understand the limitations of these inversion techniques. In this work, we present our results obtained from velocity and electric field inversions of photospheric images, magnetograms and Doppler velocities from Sunrise/IMaX, the challenges associated with these inversions, and implications for future DKIST observations. We also discuss approaches to extend this analysis from photosphere to overlying layers of the atmosphere, which would allow us to study how these layers respond to magnetic energy injections from below. Title: Diagnostic capabilities of spectropolarimetric observations for understanding solar phenomena. I. Zeeman-sensitive photospheric lines Authors: Quintero Noda, C.; Barklem, P. S.; Gafeira, R.; Ruiz Cobo, B.; Collados, M.; Carlsson, M.; Martínez Pillet, V.; Orozco Suárez, D.; Uitenbroek, H.; Katsukawa, Y. Bibcode: 2021A&A...652A.161Q Altcode: 2021arXiv210605084Q Future ground-based telescopes will expand our capabilities for simultaneous multi-line polarimetric observations in a wide range of wavelengths, from the near-ultraviolet to the near-infrared. This creates a strong demand to compare candidate spectral lines to establish a guideline of the lines that are most appropriate for each observation target. We focused in this first work on Zeeman-sensitive photospheric lines in the visible and infrared. We first examined their polarisation signals and response functions using a 1D semi-empirical atmosphere. Then we studied the spatial distribution of the line core intensity and linear and circular polarisation signals using a realistic 3D numerical simulation. We ran inversions of synthetic profiles, and we compared the heights at which we obtain a high correlation between the input and the inferred atmosphere. We also used this opportunity to revisit the atomic information we have on these lines and computed the broadening cross-sections due to collisions with neutral hydrogen atoms for all the studied spectral lines. The results reveal that four spectral lines stand out from the rest for quiet-Sun and network conditions: Fe I 5250.2, 6302, 8468, and 15 648 Å. The first three form higher in the atmosphere, and the last line is mainly sensitive to the atmospheric parameters at the bottom of the photosphere. However, as they reach different heights, we strongly recommend using at least one of the first three candidates together with the Fe I 15 648 Å line to optimise our capabilities for inferring the thermal and magnetic properties of the lower atmosphere. Title: A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high helio-latitude Authors: Harra, Louise; Andretta, Vincenzo; Appourchaux, Thierry; Baudin, Frédéric; Bellot-Rubio, Luis; Birch, Aaron C.; Boumier, Patrick; Cameron, Robert H.; Carlsson, Matts; Corbard, Thierry; Davies, Jackie; Fazakerley, Andrew; Fineschi, Silvano; Finsterle, Wolfgang; Gizon, Laurent; Harrison, Richard; Hassler, Donald M.; Leibacher, John; Liewer, Paulett; Macdonald, Malcolm; Maksimovic, Milan; Murphy, Neil; Naletto, Giampiero; Nigro, Giuseppina; Owen, Christopher; Martínez-Pillet, Valentín; Rochus, Pierre; Romoli, Marco; Sekii, Takashi; Spadaro, Daniele; Veronig, Astrid; Schmutz, W. Bibcode: 2021ExA...tmp...93H Altcode: 2021arXiv210410876H A mission to view the solar poles from high helio-latitudes (above 60°) will build on the experience of Solar Orbiter as well as a long heritage of successful solar missions and instrumentation (e.g. SOHO Domingo et al. (Solar Phys. 162(1-2), 1-37 1995), STEREO Howard et al. (Space Sci. Rev. 136(1-4), 67-115 2008), Hinode Kosugi et al. (Solar Phys. 243(1), 3-17 2007), Pesnell et al. Solar Phys. 275(1-2), 3-15 2012), but will focus for the first time on the solar poles, enabling scientific investigations that cannot be done by any other mission. One of the major mysteries of the Sun is the solar cycle. The activity cycle of the Sun drives the structure and behaviour of the heliosphere and of course, the driver of space weather. In addition, solar activity and variability provides fluctuating input into the Earth climate models, and these same physical processes are applicable to stellar systems hosting exoplanets. One of the main obstructions to understanding the solar cycle, and hence all solar activity, is our current lack of understanding of the polar regions. In this White Paper, submitted to the European Space Agency in response to the Voyage 2050 call, we describe a mission concept that aims to address this fundamental issue. In parallel, we recognise that viewing the Sun from above the polar regions enables further scientific advantages, beyond those related to the solar cycle, such as unique and powerful studies of coronal mass ejection processes, from a global perspective, and studies of coronal structure and activity in polar regions. Not only will these provide important scientific advances for fundamental stellar physics research, they will feed into our understanding of impacts on the Earth and other planets' space environment. Title: Preparing for DKIST: Using SUNRISE/IMaX Magnetic Field and Doppler Data to Estimate Velocity, Electric Fields and Energy Fluxes in the Quiet Sun Authors: Tilipman, D.; Kazachenko, M.; Tremblay, B.; Martinez Pillet, V. Bibcode: 2021AAS...23821306T Altcode: Understanding processes in the quiet Sun is crucial for understanding the Sun in general. The overarching goal of our study is to quantify the energy output of the quiet Sun, which can be expressed in terms of the Poynting flux. To know this quantity, one needs to know the vector magnetic and the electric fields. The latter can be obtained using Maxwell's equations and the observed magnetic fields and Doppler velocities.

Quiet Sun magnetic fields have only recently become observable with the launch of missions such as Hinode and SUNRISE. The Daniel K. Inouye Solar Telescope (DKIST) is expected to improve the quality of these observations even further. While the SUNRISE/IMaX images have a resolution of 0.15 arcsec/pixel, the DKIST ViSP instrument available in the first cycle will provide magnetograms with a resolution of 0.05 arcsec/pixel. The cadence of images provided by the VBI is 7 seconds compared to 12 seconds by IMaX. The signal-to-noise ratio of Stokes vectors measurements is likewise expected to improve.

In this presentation, we present our preliminary results obtained from velocity and electric field inversions of photospheric images, magnetograms and Doppler velocities from SUNRISE/IMaX, the challenges associated with these inversions, and implications for DKIST observations. Specifically, we use Fourier Local Correlation Tracking (FLCT) and machine-learning-based algorithm, DeepVel, to obtain, respectively, optical flows and velocity fields, and compare these with quantities derived using the PDFI electric-field inversion method. Title: Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST) Authors: Rast, Mark P.; Bello González, Nazaret; Bellot Rubio, Luis; Cao, Wenda; Cauzzi, Gianna; Deluca, Edward; de Pontieu, Bart; Fletcher, Lyndsay; Gibson, Sarah E.; Judge, Philip G.; Katsukawa, Yukio; Kazachenko, Maria D.; Khomenko, Elena; Landi, Enrico; Martínez Pillet, Valentín; Petrie, Gordon J. D.; Qiu, Jiong; Rachmeler, Laurel A.; Rempel, Matthias; Schmidt, Wolfgang; Scullion, Eamon; Sun, Xudong; Welsch, Brian T.; Andretta, Vincenzo; Antolin, Patrick; Ayres, Thomas R.; Balasubramaniam, K. S.; Ballai, Istvan; Berger, Thomas E.; Bradshaw, Stephen J.; Campbell, Ryan J.; Carlsson, Mats; Casini, Roberto; Centeno, Rebecca; Cranmer, Steven R.; Criscuoli, Serena; Deforest, Craig; Deng, Yuanyong; Erdélyi, Robertus; Fedun, Viktor; Fischer, Catherine E.; González Manrique, Sergio J.; Hahn, Michael; Harra, Louise; Henriques, Vasco M. J.; Hurlburt, Neal E.; Jaeggli, Sarah; Jafarzadeh, Shahin; Jain, Rekha; Jefferies, Stuart M.; Keys, Peter H.; Kowalski, Adam F.; Kuckein, Christoph; Kuhn, Jeffrey R.; Kuridze, David; Liu, Jiajia; Liu, Wei; Longcope, Dana; Mathioudakis, Mihalis; McAteer, R. T. James; McIntosh, Scott W.; McKenzie, David E.; Miralles, Mari Paz; Morton, Richard J.; Muglach, Karin; Nelson, Chris J.; Panesar, Navdeep K.; Parenti, Susanna; Parnell, Clare E.; Poduval, Bala; Reardon, Kevin P.; Reep, Jeffrey W.; Schad, Thomas A.; Schmit, Donald; Sharma, Rahul; Socas-Navarro, Hector; Srivastava, Abhishek K.; Sterling, Alphonse C.; Suematsu, Yoshinori; Tarr, Lucas A.; Tiwari, Sanjiv; Tritschler, Alexandra; Verth, Gary; Vourlidas, Angelos; Wang, Haimin; Wang, Yi-Ming; NSO and DKIST Project; DKIST Instrument Scientists; DKIST Science Working Group; DKIST Critical Science Plan Community Bibcode: 2021SoPh..296...70R Altcode: 2020arXiv200808203R The National Science Foundation's Daniel K. Inouye Solar Telescope (DKIST) will revolutionize our ability to measure, understand, and model the basic physical processes that control the structure and dynamics of the Sun and its atmosphere. The first-light DKIST images, released publicly on 29 January 2020, only hint at the extraordinary capabilities that will accompany full commissioning of the five facility instruments. With this Critical Science Plan (CSP) we attempt to anticipate some of what those capabilities will enable, providing a snapshot of some of the scientific pursuits that the DKIST hopes to engage as start-of-operations nears. The work builds on the combined contributions of the DKIST Science Working Group (SWG) and CSP Community members, who generously shared their experiences, plans, knowledge, and dreams. Discussion is primarily focused on those issues to which DKIST will uniquely contribute. Title: A Journey of Exploration to the Polar Regions of a Star: Probing the Solar Poles and the Heliosphere from High Helio-Latitude Authors: Finsterle, W.; Harra, L.; Andretta, V.; Appourchaux, T.; Baudin, F.; Bellot Rubio, L.; Birch, A.; Boumier, P.; Cameron, R. H.; Carlsson, M.; Corbard, T.; Davies, J. A.; Fazakerley, A. N.; Fineschi, S.; Gizon, L. C.; Harrison, R. A.; Hassler, D.; Leibacher, J. W.; Liewer, P. C.; Macdonald, M.; Maksimovic, M.; Murphy, N.; Naletto, G.; Nigro, G.; Owen, C. J.; Martinez-Pillet, V.; Rochus, P. L.; Romoli, M.; Sekii, T.; Spadaro, D.; Veronig, A. Bibcode: 2020AGUFMSH0110005F Altcode: A mission to view the solar poles from high helio-latitudes (above 60°) will build on the experience of Solar Orbiter as well as a long heritage of successful solar missions and instrumentation (e.g. SOHO, STEREO, Hinode, SDO), but will focus for the first time on the solar poles, enabling scientific investigations that cannot be done by any other mission. One of the major mysteries of the Sun is the solar cycle. The activity cycle of the Sun drives the structure and behaviour of the heliosphere and is, of course, the driver of space weather. In addition, solar activity and variability provides fluctuating input into the Earth climate models, and these same physical processes are applicable to stellar systems hosting exoplanets. One of the main obstructions to understanding the solar cycle, and hence all solar activity, is our current lack of understanding of the polar regions. We describe a mission concept that aims to address this fundamental issue. In parallel, we recognise that viewing the Sun from above the polar regions enables further scientific advantages, beyond those related to the solar cycle, such as unique and powerful studies of coronal mass ejection processes, from a global perspective, and studies of coronal structure and activity in polar regions. Not only will these provide important scientific advances for fundamental stellar physics research, they will feed into our understanding of impacts on the Earth and other planets' space environment. Title: Power spectrum of turbulent convection in the solar photosphere Authors: Yelles Chaouche, L.; Cameron, R. H.; Solanki, S. K.; Riethmüller, T. L.; Anusha, L. S.; Witzke, V.; Shapiro, A. I.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2020A&A...644A..44Y Altcode: 2020arXiv201009037Y The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two balloon-borne SUNRISE missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations are consistent with each other and exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with a power-law index of ≈ - 2. The unsmeared simulations exhibit a power law that extends over the full range between the integral and Taylor scales with a power-law index of ≈ - 2.25. The smearing, reminiscent of observational conditions, considerably reduces the extent of the power-law-like portion of the power spectra. This suggests that the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index (at the subgranular range) from roughly the optical depth unity layer, that is, the solar surface, to 300 km above it. We propose that the cause of the steepening of the power-law index is the transition from a super- to a subadiabatic region, in which the dominant source of motions is overshooting convection. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below 180 km. Above this height, the gravity work progressively gains importance at all relevant scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law. Radiative heating and cooling of the plasma is shown to play a dominant role in the plasma energetics in this region, which is important in terms of nonadiabatic damping of the convective motions. Title: Challenges and Advances in Modeling of the Solar Atmosphere: A White Paper of Findings and Recommendations Authors: Criscuoli, Serena; Kazachenko, Maria; Kitashvili, Irina; Kosovichev, Alexander; Martínez Pillet, Valentín; Nita, Gelu; Sadykov, Viacheslav; Wray, Alan Bibcode: 2021arXiv210100011C Altcode: The next decade will be an exciting period for solar astrophysics, as new ground- and space-based instrumentation will provide unprecedented observations of the solar atmosphere and heliosphere. The synergy between modeling effort and comprehensive analysis of observations is crucial for the understanding of the physical processes behind the observed phenomena. However, the unprecedented wealth of data on one hand, and the complexity of the physical phenomena on the other, require the development of new approaches in both data analysis and numerical modeling. In this white paper, we summarize recent numerical achievements to reproduce structure, dynamics, and observed phenomena from the photosphere to the low corona and outline challenges we expect to face for the interpretation of future observations. Title: Coordination within the remote sensing payload on the Solar Orbiter mission Authors: Auchère, F.; Andretta, V.; Antonucci, E.; Bach, N.; Battaglia, M.; Bemporad, A.; Berghmans, D.; Buchlin, E.; Caminade, S.; Carlsson, M.; Carlyle, J.; Cerullo, J. J.; Chamberlin, P. C.; Colaninno, R. C.; Davila, J. M.; De Groof, A.; Etesi, L.; Fahmy, S.; Fineschi, S.; Fludra, A.; Gilbert, H. R.; Giunta, A.; Grundy, T.; Haberreiter, M.; Harra, L. K.; Hassler, D. M.; Hirzberger, J.; Howard, R. A.; Hurford, G.; Kleint, L.; Kolleck, M.; Krucker, S.; Lagg, A.; Landini, F.; Long, D. M.; Lefort, J.; Lodiot, S.; Mampaey, B.; Maloney, S.; Marliani, F.; Martinez-Pillet, V.; McMullin, D. R.; Müller, D.; Nicolini, G.; Orozco Suarez, D.; Pacros, A.; Pancrazzi, M.; Parenti, S.; Peter, H.; Philippon, A.; Plunkett, S.; Rich, N.; Rochus, P.; Rouillard, A.; Romoli, M.; Sanchez, L.; Schühle, U.; Sidher, S.; Solanki, S. K.; Spadaro, D.; St Cyr, O. C.; Straus, T.; Tanco, I.; Teriaca, L.; Thompson, W. T.; del Toro Iniesta, J. C.; Verbeeck, C.; Vourlidas, A.; Watson, C.; Wiegelmann, T.; Williams, D.; Woch, J.; Zhukov, A. N.; Zouganelis, I. Bibcode: 2020A&A...642A...6A Altcode: Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements.
Aims: Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together.
Methods: A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis.
Results: The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner. Title: The Solar Orbiter Science Activity Plan. Translating solar and heliospheric physics questions into action Authors: Zouganelis, I.; De Groof, A.; Walsh, A. P.; Williams, D. R.; Müller, D.; St Cyr, O. C.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T. S.; Howard, R. A.; Krucker, S.; Maksimovic, M.; Owen, C. J.; Rodríguez-Pacheco, J.; Romoli, M.; Solanki, S. K.; Watson, C.; Sanchez, L.; Lefort, J.; Osuna, P.; Gilbert, H. R.; Nieves-Chinchilla, T.; Abbo, L.; Alexandrova, O.; Anastasiadis, A.; Andretta, V.; Antonucci, E.; Appourchaux, T.; Aran, A.; Arge, C. N.; Aulanier, G.; Baker, D.; Bale, S. D.; Battaglia, M.; Bellot Rubio, L.; Bemporad, A.; Berthomier, M.; Bocchialini, K.; Bonnin, X.; Brun, A. S.; Bruno, R.; Buchlin, E.; Büchner, J.; Bucik, R.; Carcaboso, F.; Carr, R.; Carrasco-Blázquez, I.; Cecconi, B.; Cernuda Cangas, I.; Chen, C. H. K.; Chitta, L. P.; Chust, T.; Dalmasse, K.; D'Amicis, R.; Da Deppo, V.; De Marco, R.; Dolei, S.; Dolla, L.; Dudok de Wit, T.; van Driel-Gesztelyi, L.; Eastwood, J. P.; Espinosa Lara, F.; Etesi, L.; Fedorov, A.; Félix-Redondo, F.; Fineschi, S.; Fleck, B.; Fontaine, D.; Fox, N. J.; Gandorfer, A.; Génot, V.; Georgoulis, M. K.; Gissot, S.; Giunta, A.; Gizon, L.; Gómez-Herrero, R.; Gontikakis, C.; Graham, G.; Green, L.; Grundy, T.; Haberreiter, M.; Harra, L. K.; Hassler, D. M.; Hirzberger, J.; Ho, G. C.; Hurford, G.; Innes, D.; Issautier, K.; James, A. W.; Janitzek, N.; Janvier, M.; Jeffrey, N.; Jenkins, J.; Khotyaintsev, Y.; Klein, K. -L.; Kontar, E. P.; Kontogiannis, I.; Krafft, C.; Krasnoselskikh, V.; Kretzschmar, M.; Labrosse, N.; Lagg, A.; Landini, F.; Lavraud, B.; Leon, I.; Lepri, S. T.; Lewis, G. R.; Liewer, P.; Linker, J.; Livi, S.; Long, D. M.; Louarn, P.; Malandraki, O.; Maloney, S.; Martinez-Pillet, V.; Martinovic, M.; Masson, A.; Matthews, S.; Matteini, L.; Meyer-Vernet, N.; Moraitis, K.; Morton, R. J.; Musset, S.; Nicolaou, G.; Nindos, A.; O'Brien, H.; Orozco Suarez, D.; Owens, M.; Pancrazzi, M.; Papaioannou, A.; Parenti, S.; Pariat, E.; Patsourakos, S.; Perrone, D.; Peter, H.; Pinto, R. F.; Plainaki, C.; Plettemeier, D.; Plunkett, S. P.; Raines, J. M.; Raouafi, N.; Reid, H.; Retino, A.; Rezeau, L.; Rochus, P.; Rodriguez, L.; Rodriguez-Garcia, L.; Roth, M.; Rouillard, A. P.; Sahraoui, F.; Sasso, C.; Schou, J.; Schühle, U.; Sorriso-Valvo, L.; Soucek, J.; Spadaro, D.; Stangalini, M.; Stansby, D.; Steller, M.; Strugarek, A.; Štverák, Š.; Susino, R.; Telloni, D.; Terasa, C.; Teriaca, L.; Toledo-Redondo, S.; del Toro Iniesta, J. C.; Tsiropoula, G.; Tsounis, A.; Tziotziou, K.; Valentini, F.; Vaivads, A.; Vecchio, A.; Velli, M.; Verbeeck, C.; Verdini, A.; Verscharen, D.; Vilmer, N.; Vourlidas, A.; Wicks, R.; Wimmer-Schweingruber, R. F.; Wiegelmann, T.; Young, P. R.; Zhukov, A. N. Bibcode: 2020A&A...642A...3Z Altcode: 2020arXiv200910772Z Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed. Title: The Polarimetric and Helioseismic Imager on Solar Orbiter Authors: Solanki, S. K.; del Toro Iniesta, J. C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Gómez Cama, J. M.; Michalik, H.; Deutsch, W.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Busse, D.; Enge, R.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M. -F.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Bellot Rubio, L. R.; Cobos Carracosa, J. P.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J. L.; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.; Garranzo-García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Vera, I.; Villanueva, J.; Fourmond, J. -J.; de Galarreta, C. Ruiz; Bouzit, M.; Hervier, V.; Le Clec'h, J. C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Dominguez-Tagle, C.; Philippon, A.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Berkefeld, Th.; Baumgartner, J.; Heidecke, F.; Maue, T.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Blanco Rodríguez, J.; Domingo, V.; Ferreres Sabater, A.; Gasent Blesa, J. L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Herms, A.; Roma, D.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Fiethe, B.; Guan, Y.; Lange, T.; Michel, H.; Bonet, J. A.; Fahmy, S.; Müller, D.; Zouganelis, I. Bibcode: 2020A&A...642A..11S Altcode: 2019arXiv190311061S
Aims: This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science.
Methods: SO/PHI measures the Zeeman effect and the Doppler shift in the Fe I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.
Results: SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit. Title: Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories Authors: Velli, M.; Harra, L. K.; Vourlidas, A.; Schwadron, N.; Panasenco, O.; Liewer, P. C.; Müller, D.; Zouganelis, I.; St Cyr, O. C.; Gilbert, H.; Nieves-Chinchilla, T.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T. S.; Howard, R. A.; Krucker, S.; Maksimovic, M.; Owen, C. J.; Rodríguez-Pacheco, J.; Romoli, M.; Solanki, S. K.; Wimmer-Schweingruber, R. F.; Bale, S.; Kasper, J.; McComas, D. J.; Raouafi, N.; Martinez-Pillet, V.; Walsh, A. P.; De Groof, A.; Williams, D. Bibcode: 2020A&A...642A...4V Altcode: Context. The launch of Parker Solar Probe (PSP) in 2018, followed by Solar Orbiter (SO) in February 2020, has opened a new window in the exploration of solar magnetic activity and the origin of the heliosphere. These missions, together with other space observatories dedicated to solar observations, such as the Solar Dynamics Observatory, Hinode, IRIS, STEREO, and SOHO, with complementary in situ observations from WIND and ACE, and ground based multi-wavelength observations including the DKIST observatory that has just seen first light, promise to revolutionize our understanding of the solar atmosphere and of solar activity, from the generation and emergence of the Sun's magnetic field to the creation of the solar wind and the acceleration of solar energetic particles.
Aims: Here we describe the scientific objectives of the PSP and SO missions, and highlight the potential for discovery arising from synergistic observations. Here we put particular emphasis on how the combined remote sensing and in situ observations of SO, that bracket the outer coronal and inner heliospheric observations by PSP, may provide a reconstruction of the solar wind and magnetic field expansion from the Sun out to beyond the orbit of Mercury in the first phases of the mission. In the later, out-of-ecliptic portions of the SO mission, the solar surface magnetic field measurements from SO and the multi-point white-light observations from both PSP and SO will shed light on the dynamic, intermittent solar wind escaping from helmet streamers, pseudo-streamers, and the confined coronal plasma, and on solar energetic particle transport.
Methods: Joint measurements during PSP-SO alignments, and magnetic connections along the same flux tube complemented by alignments with Earth, dual PSP-Earth, and SO-Earth, as well as with STEREO-A, SOHO, and BepiColumbo will allow a better understanding of the in situ evolution of solar-wind plasma flows and the full three-dimensional distribution of the solar wind from a purely observational point of view. Spectroscopic observations of the corona, and optical and radio observations, combined with direct in situ observations of the accelerating solar wind will provide a new foundation for understanding the fundamental physical processes leading to the energy transformations from solar photospheric flows and magnetic fields into the hot coronal plasma and magnetic fields and finally into the bulk kinetic energy of the solar wind and solar energetic particles.
Results: We discuss the initial PSP observations, which already provide a compelling rationale for new measurement campaigns by SO, along with ground- and space-based assets within the synergistic context described above. Title: On the Magnetic Nature of an Exploding Granule as Revealed by Sunrise/IMaX Authors: Guglielmino, Salvo L.; Martínez Pillet, Valentín; Ruiz Cobo, Basilio; Bellot Rubio, Luis R.; del Toro Iniesta, José Carlos; Solanki, Sami K.; Riethmüller, Tino L.; Zuccarello, Francesca Bibcode: 2020ApJ...896...62G Altcode: 2020arXiv200503371G We study the photospheric evolution of an exploding granule observed in the quiet Sun at high spatial (∼0"3) and temporal (31.5 s) resolution by the imaging magnetograph Sunrise/IMaX in 2009 June. These observations show that the exploding granule is cospatial to a magnetic flux emergence event occurring at mesogranular scale (up to ∼12 Mm2 area). Using a modified version of the SIR code for inverting the IMaX spectropolarimetric measurements, we obtain information about the magnetic configuration of this photospheric feature. In particular, we find evidence of highly inclined emerging fields in the structure, carrying a magnetic flux content up to ∼4 × 1018 Mx. The balance between gas and magnetic pressure in the region of flux emergence, compared with a very quiet region of the Sun, indicates that the additional pressure carried by the emerging flux increases the total pressure by about 5% and appears to allow the granulation to be modified, as predicted by numerical simulations. The overall characteristics suggest that a multipolar structure emerges into the photosphere, resembling an almost horizontal flux sheet. This seems to be associated with exploding granules. Finally, we discuss the origin of such flux emergence events. Title: Solar Disk Center Shows Scattering Polarization in the Sr I 4607 Å Line Authors: Zeuner, Franziska; Manso Sainz, Rafael; Feller, Alex; van Noort, Michiel; Solanki, Sami K.; Iglesias, Francisco A.; Reardon, Kevin; Martínez Pillet, Valentín Bibcode: 2020ApJ...893L..44Z Altcode: 2020arXiv200403679Z Magnetic fields in turbulent, convective high-β plasma naturally develop highly tangled and complex topologies - the solar photosphere being the paradigmatic example. These fields are mostly undetectable by standard diagnostic techniques with finite spatio-temporal resolution due to cancellations of Zeeman polarization signals. Observations of resonance scattering polarization have been considered to overcome these problems. But up to now, observations of scattering polarization lack the necessary combination of high sensitivity and high spatial resolution in order to directly infer the turbulent magnetic structure at the resolution limit of solar telescopes. Here, we report the detection of clear spatial structuring of scattering polarization in a magnetically quiet solar region at disk center in the Sr I 4607 Å spectral line on granular scales, confirming theoretical expectations. We find that the linear polarization presents a strong spatial correlation with the local quadrupole of the radiation field. The result indicates that polarization survives the dynamic and turbulent magnetic environment of the middle photosphere and is thereby usable for spatially resolved Hanle observations. This is an important step toward the long-sought goal of directly observing turbulent solar magnetic fields at the resolution limit and investigating their spatial structure. Title: Magnetic Structure of an Erupting Filament Authors: Wang, Shuo; Jenkins, Jack M.; Martinez Pillet, Valentin; Beck, Christian; Long, David M.; Prasad Choudhary, Debi; Muglach, Karin; McAteer, James Bibcode: 2020ApJ...892...75W Altcode: 2020arXiv200202104W The full 3D vector magnetic field of a solar filament prior to eruption is presented. The filament was observed with the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope in the chromospheric He I line at 10830 Å on 2017 May 29 and 30. We inverted the spectropolarimetric observations with the Hanle and Zeeman Light code to obtain the chromospheric magnetic field. A bimodal distribution of field strength was found in or near the filament. The average field strength was 24 Gauss, but prior to the eruption we find the 90th percentile of field strength was 435 Gauss for the observations on May 29. The field inclination was about 67° from the solar vertical. The field azimuth made an angle of about 47°-65° to the spine axis. The results suggest an inverse configuration indicative of a flux rope topology. He I intensity threads were found to be coaligned with the magnetic field direction. The filament had a sinistral configuration as expected for the southern hemisphere. The filament was stable on 2017 May 29 and started to rise during two observations on May 30, before erupting and causing a minor coronal mass ejection. There was no obvious change of the magnetic topology during the eruption process. Such information on the magnetic topology of erupting filaments could improve the prediction of the geoeffectiveness of solar storms. Title: Solar physics in the 2020s: DKIST, parker solar probe, and solar orbiter as a multi-messenger constellation Authors: Martinez Pillet, V.; Tritschler, A.; Harra, L.; Andretta, V.; Vourlidas, A.; Raouafi, N.; Alterman, B. L.; Bellot Rubio, L.; Cauzzi, G.; Cranmer, S. R.; Gibson, S.; Habbal, S.; Ko, Y. K.; Lepri, S. T.; Linker, J.; Malaspina, D. M.; Matthews, S.; Parenti, S.; Petrie, G.; Spadaro, D.; Ugarte-Urra, I.; Warren, H.; Winslow, R. Bibcode: 2020arXiv200408632M Altcode: The National Science Foundation (NSF) Daniel K. Inouye Solar Telescope (DKIST) is about to start operations at the summit of Haleakala (Hawaii). DKIST will join the early science phases of the NASA and ESA Parker Solar Probe and Solar Orbiter encounter missions. By combining in-situ measurements of the near-sun plasma environment and detail remote observations of multiple layers of the Sun, the three observatories form an unprecedented multi-messenger constellation to study the magnetic connectivity inside the solar system. This white paper outlines the synergistic science that this multi-messenger suite enables. Title: ngGONG: The Next Generation GONG - A New Solar Synoptic Observational Network Authors: Hill, Frank; Hammel, Heidi; Martinez-Pillet, Valentin; de Wijn, A.; Gosain, S.; Burkepile, J.; Henney, C. J.; McAteer, J.; Bain, H. M.; Manchester, W.; Lin, H.; Roth, M.; Ichimoto, K.; Suematsu, Y. Bibcode: 2019BAAS...51g..74H Altcode: 2019astro2020U..74H The white paper describes a next-generation GONG, a ground-based geographically distributed network of instrumentation to continually observe the Sun. This would provide data for solar magnetic field research and space weather forecasting, and would extend the time coverage of helioseismology. Title: On the Magnetic Nature of Solar Exploding Granules Authors: Guglielmino, S. L.; Martínez Pillet, V.; Ruiz Cobo, B.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Solanki, S. K.; Zuccarello, F. Bibcode: 2019ASPC..526..299G Altcode: We report on spectropolarimetric observations acquired by the imaging magnetograph SUNRISE/IMaX at high spatial 0.''3 and temporal (31.5 s) resolution during the first science flight of this balloon-borne solar observatory. We describe the photospheric evolution of an exploding granule observed in the quiet Sun. This granule is cospatial with a magnetic flux emergence event occurring at mesogranular scales (up to ∼12 Mm2 area). Using a modified version of the SIR code, we show that we can estimate the longitudinal field also in the presence of a residual cross-talk in these IMaX longitudinal measurements. We determine the magnetic flux content of the structure (∼3 ×1018 Mx), which appears to have a multipolar configuration, and discuss the origin of such flux emergence events. Title: Synoptic Studies of the Sun as a Key to Understanding Stellar Astrospheres Authors: Martinez Pillet, Valentin; Hill, Frank; Hammel, Heidi B.; de Wijn, Alfred G.; Gosain, Sanjay; Burkepile, Joan; Henney, Carl; McAteer, R. T. James; Bain, Hazel; Manchester, Ward; Lin, Haosheng; Roth, Markus; Ichimoto, Kiyoshi; Suematsu, Yoshinori Bibcode: 2019BAAS...51c.110M Altcode: 2019astro2020T.110M; 2019arXiv190306944M Ground-based solar observations provide key contextual data (i.e., the "big picture") to produce a complete description of the only astrosphere we can study in situ: our Sun's heliosphere. This white paper outlines the current paradigm for ground-based solar synoptic observations, and indicates those areas that will benefit from focused attention. Title: Doppler Events in the Solar Photosphere: The Coincident Superposition of Fast Granular Flows and p-Mode Coherence Patches Authors: McClure, R. Lee; Rast, Mark P.; Martínez Pillet, Valentin Bibcode: 2019SoPh..294...18M Altcode: 2018arXiv181108944M Observations of the solar photosphere show spatially compact large-amplitude Doppler velocity events with short lifetimes. In data from the Imaging Magnetograph eXperiment (IMaX) on the first flight of the SUNRISE balloon in 2009, events with velocities in excess of 4σ from the mean can be identified in both intergranular downflow lanes and granular upflows. We show that the statistics of such events are consistent with the random superposition of strong convective flows and p-mode coherence patches. Such coincident superposition complicates the identification of acoustic wave sources in the solar photosphere, and may be important in the interpretation of spectral line profiles formed in solar photosphere. Title: The Critical Science Plan for DKIST Authors: Rast, M.; Cauzzi, G.; Martinez Pillet, V. Bibcode: 2019NCimC..42....7R Altcode: The 4-meter Daniel K. Inouye Solar Telescope is nearing completion on Haleakala, Maui, with first light expected in 2020. In preparation for early science, the National Solar Observatory is reaching out to the solar community in order to define the critical science goals for the first two years of DKIST operations. The overall aim of this "Critical Science Plan" is to be ready, by start of operations, to execute a set of observations that take full advantage of the DKIST capabilities to address critical compelling science. Title: SOPHISM: Software Instrument Simulator Authors: Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L. Bibcode: 2018ascl.soft10017B Altcode: SOPHISM models astronomical instrumentation from the entrance of the telescope to data acquisition at the detector, along with software blocks dealing with, for example, demodulation, inversion, and compression. The code performs most analyses done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator offers flexibility and implementation of new effects and subsystems, making it user-adaptable for a wide variety of instruments. SOPHISM can be used for all stages of instrument definition, design, operation, and lifetime tracking evaluation. Title: SOPHISM: An End-to-end Software Instrument Simulator Authors: Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L. Bibcode: 2018ApJS..237...35B Altcode: We present a software simulator for the modeling of astronomical instrumentation, which includes platform effects and software processing. It is an end-to-end simulator, from the entrance of the telescope to the data acquisition at the detector, along with software blocks dealing, e.g., with demodulation, inversion, and compression. Developed following the Solar Orbiter/Polarimetric and Helioseismic Imager (SO/PHI) instrument, it comprises elements such as a filtergraph, polarimetric modulator, detector, vibrations, and accumulations. Through these, the simulator performs most of the analyses that can be done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator is coded with high flexibility and ease of implementation of new effects and subsystems. Thus, it allows for the user to adapt it to a wide variety of instruments, even not exclusively solar ones, as illustrated with an example of application to a night-time observation. The simulator can provide support in the phase of instrument design and help assess tolerances and test solutions to underperformances arising during the instrument operations. All this makes SOPHISM a very valuable tool for all the stages of astronomical instrument definition, design, operation, and lifetime tracking evaluation. Title: Construction update of the Daniel K. Inouye Solar Telescope project Authors: Warner, Mark; Rimmele, Thomas R.; Martinez Pillet, Valentin; Casini, Roberto; Berukoff, Steve; Craig, Simon C.; Ferayorni, Andrew; Goodrich, Bret D.; Hubbard, Robert P.; Harrington, David; Jeffers, Paul; Johansson, Erik M.; Kneale, Ruth; Kuhn, Jeff; Liang, Chen; Lin, Haosheng; Marshall, Heather; Mathioudakis, Mihalis; McBride, William R.; McMullin, Joseph; McVeigh, William; Sekulic, Predrag; Schmidt, Wolfgang; Shimko, Steve; Sueoka, Stacey; Summers, Rich; Tritschler, Alexandra; Williams, Timothy R.; Wöger, Friedrich Bibcode: 2018SPIE10700E..0VW Altcode: Construction of the Daniel K. Inouye Solar Telescope (DKIST) is well underway on the Haleakalā summit on the Hawaiian island of Maui. Featuring a 4-m aperture and an off-axis Gregorian configuration, the DKIST will be the world's largest solar telescope. It is designed to make high-precision measurements of fundamental astrophysical processes and produce large amounts of spectropolarimetric and imaging data. These data will support research on solar magnetism and its influence on solar wind, flares, coronal mass ejections, and solar irradiance variability. Because of its large aperture, the DKIST will be able to sense the corona's magnetic field—a goal that has previously eluded scientists—enabling observations that will provide answers about the heating of stellar coronae and the origins of space weather and exo-weather. The telescope will cover a broad wavelength range (0.35 to 28 microns) and operate as a coronagraph at infrared (IR) wavelengths. Achieving the diffraction limit of the 4-m aperture, even at visible wavelengths, is paramount to these science goals. The DKIST's state-of-the-art adaptive optics systems will provide diffraction-limited imaging, resolving features that are approximately 20 km in size on the Sun. At the start of operations, five instruments will be deployed: a visible broadband imager (VTF), a visible spectropolarimeter (ViSP), a visible tunable filter (VTF), a diffraction-limited near-IR spectropolarimeter (DLNIRSP), and a cryogenic near-IR spectropolarimeter (cryo-NIRSP). At the end of 2017, the project finished its fifth year of construction and eighth year overall. Major milestones included delivery of the commissioning blank, the completed primary mirror (M1), and its cell. Commissioning and testing of the coudé rotator is complete and the installation of the coudé cleanroom is underway; likewise, commissioning of the telescope mount assembly (TMA) has also begun. Various other systems and equipment are also being installed and tested. Finally, the observatory integration, testing, and commissioning (IT&C) activities have begun, including the first coating of the M1 commissioning blank and its integration within its cell assembly. Science mirror coating and initial on-sky activities are both anticipated in 2018. Title: Inferring telescope polarization properties through spectral lines without linear polarization Authors: Derks, A.; Beck, C.; Martínez Pillet, V. Bibcode: 2018A&A...615A..22D Altcode: 2018arXiv180401153D Context. Polarimetric observations taken with ground- or space-based telescopes usually need to be corrected for changes of the polarization state in the optical path.
Aims: We present a technique to determine the polarization properties of a telescope through observations of spectral lines that have no or negligible intrinsic linear polarization signals. For such spectral lines, any observed linear polarization must be induced by the telescope optics. We apply the technique to observations taken with the Spectropolarimeter for Infrared and Optical Regions (SPINOR) at the Dunn Solar Telescope (DST) and demonstrate that we can retrieve the characteristic polarization properties of the DST at three wavelengths of 459, 526, and 615 nm.
Methods: We determine the amount of crosstalk between the intensity Stokes I and the linear and circular polarization states Stokes Q, U, and V, and between Stokes V and Stokes Q and U in spectropolarimetric observations of active regions. We fit a set of parameters that describe the polarization properties of the DST to the observed crosstalk values. We compare our results to parameters that were derived using a conventional telescope calibration unit (TCU).
Results: The values for the ratio of reflectivities X = rs/rp and the retardance τ of the DST turret mirrors from the analysis of the crosstalk match those derived with the TCU within the error bars. We find a negligible contribution of retardance from the entrance and exit windows of the evacuated part of the DST. Residual crosstalk after applying a correction for the telescope polarization stays at a level of 3-10% regardless of which parameter set is used, but with an rms fluctuation in the input data of already a few percent. The accuracy in the determination of the telescope properties is thus more limited by the quality of the input data than the method itself.
Conclusions: It is possible to derive the parameters that describe the polarization properties of a telescope from observations of spectral lines without intrinsic linear polarization signal. Such spectral lines have a dense coverage (about 50 nm separation) in the visible part of the spectrum (400-615 nm), but none were found at longer wavelengths. Using spectral lines without intrinsic linear polarization is a promising tool for the polarimetric calibration of current or future solar telescopes such as the Daniel K. Inouye Solar Telescope (DKIST). Title: Getting Ready for the Third Science Flight of SUNRISE Authors: Barthol, Peter; Katsukawa, Yukio; Lagg, Andreas; Solanki, Sami K.; Kubo, Masahito; Riethmueller, Tino; Martínez Pillet, Valentin; Gandorfer, Achim; Feller, Alex; Berkefeld, . Thomas; Orozco Suárez, David; Del Toro Iniesta, Jose Carlos; Bernasconi, Pietro; Álvarez-Herrero, Alberto; Quintero Noda, Carlos Bibcode: 2018cosp...42E.215B Altcode: SUNRISE is a balloon-borne, stratospheric solar observatory dedicated to the investigation of the structure and dynamics of the Sun's magnetic field and its interaction with convective plasma flows and waves. The previous science flights of SUNRISE in 2009 and 2013 have led to many new scientific results, so far described in around 90 refereed publications. This success has shown the huge potential of the SUNRISE concept and the recovery of the largely intact payload offers the opportunity for a third flight.The scientific instrumentation of SUNRISE 3 will have extended capabilities in particular to measure magnetic fields, plasma velocities and temperatures with increased sensitivity and over a larger height range in the solar atmosphere, from the convectively dominated photosphere up to the still poorly understood chromosphere. The latter is the key interaction region between magnetic field, waves and radiation and plays a central role in transporting energy to the outer layers of the solar atmosphere including the corona.SUNRISE 3 will carry 2 new grating-based spectro-polarimeters with slit-scanning and context imaging with slitjaw cameras. The SUNRISE UV Spectro-polarimeter and Imager (SUSI) will explore the rich near-UV range between 300 nm and 430 nm which is poorly accessible from the ground. The SUNRISE Chromospheric Infrared spectro-Polarimeter (SCIP) will sample 2 spectral windows in the near-infrared, containing many spectral lines highly sensitive to magnetic fields at different formation heights. In addition to the two new instruments the Imaging Magnetograph eXperiment (IMaX), an etalon-based tunable filtergraph and spectro-polarimeter flown on both previous missions, will be upgraded to IMaX+, enhancing its cadence and giving access to 2 spectral lines in the visible spectral range. All three instruments will allow investigating both the photosphere and the chromosphere and will ideally complement each other in terms of sensitivity, height coverage and resolution.A new gondola with a sophisticated attitude control system including roll damping will provide improved pointing/tracking performance. Upgraded image stabilization with higher bandwidth will further reduce residual jitter, maximizing the quality of the science data.SUNRISE 3 is a joint project of the German Max-Planck-Institut für Sonnensystemforschung together with the Spanish SUNRISE consortium, the Johns Hopkins University Applied Physics Laboratory, USA, the German Kiepenheuer Institut für Sonnenphysik, the National Astronomical Observatory of Japan and the Japan Aerospace eXploraion Agency (JAXA). Title: Design of a next generation synoptic solar observing network: solar physics research integrated network group (SPRING) Authors: Gosain, Sanjay; Roth, Markus; Hill, Frank; Pevtsov, Alexei; Martinez Pillet, Valentin; Thompson, Michael J. Bibcode: 2018SPIE10702E..4HG Altcode: Long-term synoptic observations of the Sun in different wavelength regions are essential to understand its secular behavior. Such observations have proven very important for discovery of 11 year solar activity cycle, 22 year magnetic cycle, polar field reversals, Hale's polarity law, Joy's law, that helped Babcock and Leighton to propose famous solar dynamo model. In more recent decades, the societal impact of the secular changes in Sun's output has been felt in terms of solar inputs to terrestrial climate-change and space-weather hazards. Further, it has been realized that to better understand the activity phenomena such as flares and coronal mass ejections (CMEs) one needs synoptic observations in multiple spectral lines to enable tomographic inference of physical parameters. Currently, there are both space and ground based synoptic observatories. However, given the requirements for the long-term stability and reliability of such synoptic datasets, ground-based facilities are more preferable. Also, the ground based observatories are easy to maintain or upgrade while detailed and frequent calibrations are easily possible. The only ground-based facility that currently provides full-disk velocity and magnetic field maps of the Sun around the clock and at good cadence, is the Global Oscillations Network Group (GONG) network of National Solar Observatory (NSO) which is operational since the mid 90s. Due to its aging instrumentation, operating for nearly three decades, and new requirements to obtain multiwavelength observations, a need is felt in the solar community to build a next generation synoptic observatory network. A group of international observatories have come together under the auspices of SOLARNET program, funded by European Union (EU), to carryout a preliminary design study of such a synoptic solar observing facility called "SPRING", which stands for Solar Physics Research Integrated Network Group. In this article we will present concept of SPRING and the optical design concept of its major instruments.ts. Title: Status of the Daniel K. Inouye Solar Telescope: unraveling the mysteries the Sun. Authors: Rimmele, Thomas R.; Martinez Pillet, Valentin; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini, Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich; Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt, Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka, Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin, Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team Bibcode: 2018AAS...23231601R Altcode: The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to address many of the fundamental problems in solar and stellar astrophysics, including the origin of stellar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar and stellar output. DKIST will also address basic research aspects of Space Weather and help improve predictive capabilities. In combination with synoptic observations and theoretical modeling DKIST will unravel the many remaining mysteries of the Sun.The construction of DKIST is progressing on schedule with 80% of the facility complete. Operations are scheduled to begin early 2020. DKIST will replace the NSO facilities on Kitt Peak and Sac Peak with a national facility with worldwide unique capabilities. The design allows DKIST to operate as a coronagraph. Taking advantage of its large aperture and infrared polarimeters DKIST will be capable to routinely measure the currently illusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Achieving this resolution is critical for the ability to observe magnetic structures at their intrinsic, fundamental scales. Five instruments will be available at the start of operations, four of which will provide highly sensitive measurements of solar magnetic fields throughout the solar atmosphere - from the photosphere to the corona. The data from these instruments will be distributed to the world wide community via the NSO/DKIST data center located in Boulder. We present examples of science objectives and provide an overview of the facility and project status, including the ongoing efforts of the community to develop the critical science plan for the first 2-3 years of operations. Title: Inferring Telescope Polarization Properties Through Spectral Lines Without Linear Polarization Authors: Derks, Alysa; Beck, Christian; Martinez Pillet, Valentin Bibcode: 2018tess.conf21060D Altcode: We present a technique to determine the polarization properties of a telescope through observations of spectral lines that have no or negligible intrinsic linear polarization signals. For such spectral lines, any observed linear polarization must be induced by the telescope optics. We apply the technique to observations taken with SPINOR at the Dunn Solar Telescope (DST) and demonstrate that we can retrieve the characteristic polarization properties of the DST at three wavelengths of 459, 526, and 615 nm. The values for the ratio of reflectivities X = rs/rp and the retardance τ of the DST turret mirrors from the analysis of the crosstalk match those derived with the TCU within the error bars.

We conclude that it is possible to derive the parameters that describe the polarization properties of a telescope from observations of spectral lines without intrinsic linear polarization signal. Such spectral lines have a dense coverage (about 50 nm separation) in the visible part of the spectrum (400-615 nm), but none were found at longer wavelengths. Using spectral lines without intrinsic linear polarization is a promising tool for the polarimetric calibration of current or future solar telescopes such as the Daniel K. Inouye Solar Telescope (DKIST). Title: The Life Cycle of Active Region Magnetic Fields Authors: Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J. Bibcode: 2018smf..book..317C Altcode: No abstract at ADS Title: The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun Authors: Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..233....5G Altcode: 2017arXiv171008361G The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite. Title: The Life Cycle of Active Region Magnetic Fields Authors: Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J. Bibcode: 2017SSRv..210..317C Altcode: 2016SSRv..tmp...46C We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed. Title: Slender Ca II H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere Authors: Jafarzadeh, S.; Rutten, R. J.; Solanki, S. K.; Wiegelmann, T.; Riethmüller, T. L.; van Noort, M.; Szydlarski, M.; Blanco Rodríguez, J.; Barthol, P.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Martínez Pillet, V.; Orozco Suárez, D.; Schmidt, W. Bibcode: 2017ApJS..229...11J Altcode: 2016arXiv161003104J A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots. Title: Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II Authors: Wiegelmann, T.; Neukirch, T.; Nickeler, D. H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...18W Altcode: 2017arXiv170101458N; 2017arXiv170101458W Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110-130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents. Title: The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results Authors: Solanki, S. K.; Riethmüller, T. L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H. -P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Lagg, A.; Meller, R.; Tomasch, G.; van Noort, M.; Blanco Rodríguez, J.; Gasent Blesa, J. L.; Balaguer Jiménez, M.; Del Toro Iniesta, J. C.; López Jiménez, A. C.; Orozco Suarez, D.; Berkefeld, T.; Halbgewachs, C.; Schmidt, W.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Pérez Grande, I.; Martínez Pillet, V.; Card, G.; Centeno, R.; Knölker, M.; Lecinski, A. Bibcode: 2017ApJS..229....2S Altcode: 2017arXiv170101555S The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg II k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere. Title: A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region Authors: Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Orozco Suárez, D.; Berkefeld, T.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....3C Altcode: 2016arXiv161003531C In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼ 5\prime\prime ) emerging flux patches in the polarized filtergrams of a photospheric Fe I spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun’s surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere. Title: Photospheric Response to an Ellerman Bomb-like Event—An Analogy of Sunrise/IMaX Observations and MHD Simulations Authors: Danilovic, S.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....5D Altcode: 2016arXiv160903817D Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper, we analyze Sunrise/IMaX data, along with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe I 525.02 nm line gives no information on the height where reconnection takes place. It can only give clues about the heating in the aftermath of the reconnection. However, the information on the magnetic field vector and velocity at this spatial resolution is extremely valuable because it shows what numerical models miss and how they can be improved. Title: Kinematics of Magnetic Bright Features in the Solar Photosphere Authors: Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Martínez Pillet, V.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.; van Noort, M. Bibcode: 2017ApJS..229....8J Altcode: 2016arXiv161007634J Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet-Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, γ =1.0), travelers with constant speeds over a supergranule (γ =1.9{--}2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (γ =1.4{--}1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km2 s-1, 80-90 km2 s-1, and 25-70 km2 s-1, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%. Title: Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube Authors: Requerey, Iker S.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...15R Altcode: 2016arXiv161106732R We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe I line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube. Title: A New MHD-assisted Stokes Inversion Technique Authors: Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...16R Altcode: 2016arXiv161105175R We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations. Title: Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields Authors: Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....4C Altcode: 2016arXiv161007484C How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca II H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona. Title: Moving Magnetic Features around a Pore Authors: Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; vanNoort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...13K Altcode: 2016arXiv160905664K Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s-1 and 1.2 km s-1, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 1017 Mx. Title: Convectively Driven Sinks and Magnetic Fields in the Quiet-Sun Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2017ApJS..229...14R Altcode: 2016arXiv161007622R We study the relation between mesogranular flows, convectively driven sinks and magnetic fields using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board Sunrise. We obtain the horizontal velocity flow fields of two quiet-Sun regions (31.2 × 31.2 Mm2) via local correlation tracking. Mesogranular lanes and the central position of sinks are identified using Lagrange tracers. We find 6.7× {10}-2 sinks per Mm2 in the two observed regions. The sinks are located at the mesogranular vertices and turn out to be associated with (1) horizontal velocity flows converging to a central point and (2) long-lived downdrafts. The spatial distribution of magnetic fields in the quiet-Sun is also examined. The strongest magnetic fields are preferentially located at sinks. We find that 40% of the pixels with longitudinal components of the magnetic field stronger than 500 G are located in the close neighborhood of sinks. In contrast, the small-scale magnetic loops detected by Martínez González et al. in the same two observed areas do not show any preferential distribution at mesogranular scales. The study of individual examples reveals that sinks can play an important role in the evolution of quiet-Sun magnetic features. Title: A science driven update to the Daniel K Inouye Solar Telescope Authors: Martínez Pillet, Valentín Bibcode: 2017psio.confE..79M Altcode: No abstract at ADS Title: Blending of Ground- and Space-Based Magnetograms: Application to L1-L5 Solar Wind and Coronal Hole Predictions Authors: Berger, T. E.; Pevtsov, A. A.; Martinez-Pillet, V.; Bertello, L.; Petrie, G. J. D.; Arge, C. N.; Henney, C. J.; Biesecker, D. A. Bibcode: 2016AGUFMSH11C2241B Altcode: We examine the effect of blending ground-based Global Oscillations Network Group (GONG) line-of-sight solar magnetic flux maps ("magnetograms") with space-based magnetograms from the Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) instrument on solar wind and coronal hole model-based forecasts. The longitudinally blended maps are used to "reforecast" solar wind conditions using the Wang-Sheeley-Arge (WSA) solar wind model during historical periods of coronal hole High Speed Streams (HSS) and Corotating Interaction Regions (CIRs) and compared to Advanced Composition Explorer (ACE) data at the L1 Lagrangian point. The same WSA runs are repeated using GONG and HMI data alone to determine the effect of data blending. The blended maps are also used to create Potential Field Source Surface (PFSS) maps of open coronal field lines and compared with historical coronal hole data from SDO Atmospheric Imaging Assembly (AIA) images. The study addresses the feasibility of combining ground- and space-based data from instruments with widely disparate and varying spatiotemporal resolution and flux sensitivity levels for use as inputs to solar wind and coronal hole forecasting models. The results are relevant to mission studies considering blended data inputs from, e.g., L5 Lagrangian point satellite instruments with ground-based measurements on the Sun-Earth line, as well as to expected magnetogram data from the Solar Orbiter Polarimetric and Helioseismic Imager (PHI) instrument. This study complements others that examine the utility of having multiple viewpoint (e.g. L1 and L5) magnetogram inputs to solar wind models by exploring data blending from disparate instruments. Title: Construction status of the Daniel K. Inouye solar telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Casini, Roberto; Berukoff, Steve; Craig, Simon C.; Elmore, David; Ferayorni, Andrew; Goodrich, Bret D.; Hubbard, Robert P.; Harrington, David; Hegwer, Steve; Jeffers, Paul; Johansson, Erik M.; Kuhn, Jeff; Lin, Haosheng; Marshall, Heather; Mathioudakis, Mihalis; McBride, William R.; McVeigh, William; Phelps, LeEllen; Schmidt, Wolfgang; Shimko, Steve; Sueoka, Stacey; Tritschler, Alexandra; Williams, Timothy R.; Wöger, Friedrich Bibcode: 2016SPIE.9906E..1BM Altcode: We provide an update on the construction status of the Daniel K. Inouye Solar Telescope. This 4-m diameter facility is designed to enable detection and spatial/temporal resolution of the predicted, fundamental astrophysical processes driving solar magnetism at their intrinsic scales throughout the solar atmosphere. These data will drive key research on solar magnetism and its influence on solar winds, flares, coronal mass ejections and solar irradiance variability. The facility is developed to support a broad wavelength range (0.35 to 28 microns) and will employ state-of-the-art adaptive optics systems to provide diffraction limited imaging, resolving features approximately 20 km on the Sun. At the start of operations, there will be five instruments initially deployed: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF (a Fabry-Perot tunable spectropolarimeter); Kiepenheuer Institute for Solarphysics), Diffraction Limited NIR Spectropolarimeter (DL-NIRSP; University of Hawaii, Institute for Astronomy) and the Cryogenic NIR Spectropolarimeter (Cryo-NIRSP; University of Hawaii, Institute for Astronomy). As of mid-2016, the project construction is in its 4th year of site construction and 7th year overall. Major milestones in the off-site development include the conclusion of the polishing of the M1 mirror by University of Arizona, College of Optical Sciences, the delivery of the Top End Optical Assembly (L3), the acceptance of the Deformable Mirror System (Xinetics); all optical systems have been contracted and are either accepted or in fabrication. The Enclosure and Telescope Mount Assembly passed through their factory acceptance in 2014 and 2015, respectively. The enclosure site construction is currently concluding while the Telescope Mount Assembly site erection is underway. The facility buildings (Utility and Support and Operations) have been completed with ongoing work on the thermal systems to support the challenging imaging requirements needed for the solar research. Finally, we present the construction phase performance (schedule, budget) with projections for the start of early operations. Title: Construction Status and Early Science with the Daniel K. Inouye Solar Telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark; Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler, Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis, Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang Bibcode: 2016SPD....4720101M Altcode: The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh year of overall development and its fourth year of site construction on the summit of Haleakala, Maui. The Site Facilities (Utility Building and Support & Operations Building) are in place with ongoing construction of the Telescope Mount Assembly within. Off-site the fabrication of the component systems is completing with early integration testing and verification starting.Once complete this facility will provide the highest sensitivity and resolution for study of solar magnetism and the drivers of key processes impacting Earth (solar wind, flares, coronal mass ejections, and variability in solar output). The DKIST will be equipped initially with a battery of first light instruments which cover a spectral range from the UV (380 nm) to the near IR (5000 nm), and capable of providing both imaging and spectro-polarimetric measurements throughout the solar atmosphere (photosphere, chromosphere, and corona); these instruments are being developed by the National Solar Observatory (Visible Broadband Imager), High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer Institute (Visible Tunable Filter) and the University of Hawaii (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium led by Queen's University Belfast is driving the development of high speed cameras essential for capturing the highly dynamic processes measured by these instruments. Finally, a state-of-the-art adaptive optics system will support diffraction limited imaging capable of resolving features approximately 20 km in scale on the Sun.We present the overall status of the construction phase along with the current challenges as well as a review of the planned science testing and the transition into early science operations. Title: Ca II 854.2 nm Spectromagnetograms: A Powerful Chromospheric Diagnostic Authors: Harvey, J. W.; Bertello, Luca; Branston, D.; Britanik, J.; Bulau, S.; Cole, L.; Gosain, Sanjay; Harker, Brian; Jones, Harrison P.; Marble, A.; Martinez Pillet, V.; Pevtsov, A.; Schramm, K.; Streander, Kim; Villegas, H. Bibcode: 2016SPD....4710106H Altcode: The transition from physical dominance by plasma flows in the photosphere to magnetic pressure in the solar chromosphere motivates as many diagnostic observations as possible across this important region. Among the few ground-accessible spectral lines formed within the chromosphere, the Ca II 854.2 nm line has the desirable properties of presence everywhere on the solar disk, Zeeman sensitivity, and narrow line width. Mapped observations of circular polarization within this line (spectromagnetograms) have been made at NSO infrequently since 1974, with regular daily full-disk observations starting in August 1996. Full-disk spectral observations of the complete Stokes polarization vector are now being made regularly since November 2015. It is not easy to estimate chromospheric magnetic field properties from the 854.2 nm line profile polarization. To provide rough quick-look vector field maps we found that the weak-field approximation provides a fair first estimate of the line-of-sight component but appears to be too simple to interpret the transverse magnetic field from frequently asymmetric, linearly-polarized line profiles. More realistic estimates of the chromospheric vector field, short of extremely lengthy, full 3D, non-local radiative transfer inversions, are being investigated. We briefly introduce recent instrumental modifications and observational characteristics, sample observations, and results concerning the expansion of the chromospheric field with increasing height, the presence of large areas of weak, nearly horizontal fields, and field estimates in plages, sunspots, flares, filaments, and filament channels. The Stokes spectra will be freely available to the community.This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Title: Resolving the source of the solar acoustic oscillations: What will be possible with DKIST? Authors: Rast, Mark; Martinez Pillet, Valentin Bibcode: 2016SPD....4720105R Altcode: The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them. Title: Magnetic flux submergence in the photosphere: A target for DKIST Authors: Martinez Pillet, Valentin Bibcode: 2016SPD....47.0404M Altcode: While magnetic flux emergence is ubiquitous on the Sun and relatively well observed, the opposite process, flux submergence, is elusive. In the absence of large-scale submergence processes, it has always been assumed that submergence occurs at granular or smaller scales. Models that explain flux rope and filament formation near neutral lines, specifically need small-scale submergence. The same is true for dynamo models that propose the repair of the large-scale toroidal tubes after they have emerged to the surface. However, the detection of field lines being pulled back down into the solar photosphere has escaped clear detection. In this work, I demonstrate that DKIST capabilities are uniquely tailored to observe and characterize small-scale flux submergence, if it indeed happens on the Sun. By searching for transverse fields at small scales and studying their Doppler shifts, an understanding of the nature of flux submergence can be achieved. Such studies are particularly relevant near magnetic neutral lines where filaments are formed though poorly understood processes. Title: Magneto-static Modeling of the Mixed Plasma Beta Solar Atmosphere Based on Sunrise/IMaX Data Authors: Wiegelmann, T.; Neukirch, T.; Nickeler, D. H.; Solanki, S. K.; Martínez Pillet, V.; Borrero, J. M. Bibcode: 2015ApJ...815...10W Altcode: 2015arXiv151105568W Our aim is to model the three-dimensional magnetic field structure of the upper solar atmosphere, including regions of non-negligible plasma beta. We use high-resolution photospheric magnetic field measurements from SUNRISE/IMaX as the boundary condition for a magneto-static magnetic field model. The high resolution of IMaX allows us to resolve the interface region between the photosphere and corona, but modeling this region is challenging for the following reasons. While the coronal magnetic field is thought to be force-free (the Lorentz force vanishes), this is not the case in the mixed plasma β environment in the photosphere and lower chromosphere. In our model, pressure gradients and gravity forces are self-consistently taken into account and compensate for the non-vanishing Lorentz force. Above a certain height (about 2 Mm) the non-magnetic forces become very weak and consequently the magnetic field becomes almost force-free. Here, we apply a linear approach where the electric current density consists of a superposition of a field-line parallel current and a current perpendicular to the Sun's gravity field. We illustrate the prospects and limitations of this approach and give an outlook for an extension toward a nonlinear model. Title: ADAHELI: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared Authors: Berrilli, Francesco; Soffitta, Paolo; Velli, Marco; Sabatini, Paolo; Bigazzi, Alberto; Bellazzini, Ronaldo; Bellot Rubio, Luis Ramon; Brez, Alessandro; Carbone, Vincenzo; Cauzzi, Gianna; Cavallini, Fabio; Consolini, Giuseppe; Curti, Fabio; Del Moro, Dario; Di Giorgio, Anna Maria; Ermolli, Ilaria; Fabiani, Sergio; Faurobert, Marianne; Feller, Alex; Galsgaard, Klaus; Gburek, Szymon; Giannattasio, Fabio; Giovannelli, Luca; Hirzberger, Johann; Jefferies, Stuart M.; Madjarska, Maria S.; Manni, Fabio; Mazzoni, Alessandro; Muleri, Fabio; Penza, Valentina; Peres, Giovanni; Piazzesi, Roberto; Pieralli, Francesca; Pietropaolo, Ermanno; Martinez Pillet, Valentin; Pinchera, Michele; Reale, Fabio; Romano, Paolo; Romoli, Andrea; Romoli, Marco; Rubini, Alda; Rudawy, Pawel; Sandri, Paolo; Scardigli, Stefano; Spandre, Gloria; Solanki, Sami K.; Stangalini, Marco; Vecchio, Antonio; Zuccarello, Francesca Bibcode: 2015JATIS...1d4006B Altcode: Advanced Astronomy for Heliophysics Plus (ADAHELI) is a project concept for a small solar and space weather mission with a budget compatible with an European Space Agency (ESA) S-class mission, including launch, and a fast development cycle. ADAHELI was submitted to the European Space Agency by a European-wide consortium of solar physics research institutes in response to the "Call for a small mission opportunity for a launch in 2017," of March 9, 2012. The ADAHELI project builds on the heritage of the former ADAHELI mission, which had successfully completed its phase-A study under the Italian Space Agency 2007 Small Mission Programme, thus proving the soundness and feasibility of its innovative low-budget design. ADAHELI is a solar space mission with two main instruments: ISODY: an imager, based on Fabry-Pérot interferometers, whose design is optimized to the acquisition of highest cadence, long-duration, multiline spectropolarimetric images in the visible/near-infrared region of the solar spectrum. XSPO: an x-ray polarimeter for solar flares in x-rays with energies in the 15 to 35 keV range. ADAHELI is capable of performing observations that cannot be addressed by other currently planned solar space missions, due to their limited telemetry, or by ground-based facilities, due to the problematic effect of the terrestrial atmosphere. Title: Dynamics of Multi-cored Magnetic Structures in the Quiet Sun Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2015ApJ...810...79R Altcode: 2015arXiv150806998R We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15-0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes. Title: Division II: Commission 12: Solar Radiation and Structure Authors: Kosovichev, Alexander; Cauzzi, Gianna; Martinez Pillet, Valentin; Asplund, Martin; Brandenburg, Axel; Chou, Dean-Yi; Christensen-Dalsgaard, Jorgen; Gan, Weiqun; Kuznetsov, Vladimir D.; Rovira, Marta G.; Shchukina, Nataliya; Venkatakrishnan, P. Bibcode: 2015IAUTB..28..109K Altcode: The President of C12, Alexander Kosovichev, presented the status of the Commission and its working Group(s). Primary activities included organization of international meetings (IAU Symposia, Special Sessions and Joint Discussion); review and support of proposals for IAU sponsored meetings; organization of working groups on the Commission topics to promote the international cooperation; preparation of triennial report on the organizational and science activities of Commission members. Commission 12 broadly encompasses topics of solar research which include studies of the Sun's internal structure, composition, dynamics and magnetism (through helioseismology and other techniques), studies of the quiet photosphere, chromosphere and corona, and also research of the mechanisms of solar radiation, and its variability on various time scales. Some overlap with topics covered by Commission 10 Solar Activity is unavoidable, and many activities are sponsored jointly by these two commissions. The Commission website can be found at http://sun.stanford.edu/IAU-Com12/, with information about related IAU Symposiums and activities, and links to appropriate web sites. Title: Centre-to-limb properties of small, photospheric quiet-Sun jets Authors: Rubio da Costa, F.; Solanki, S. K.; Danilovic, S.; Hizberger, J.; Martínez-Pillet, V. Bibcode: 2015A&A...574A..95R Altcode: 2014arXiv1412.1620R Context. Strongly Doppler-shifted Stokes V profiles have been detected in the quiet Sun with the IMaX instrument on-board the SUNRISE stratospheric balloon-borne telescope. High velocities are required to produce such signals, hence these events have been interpreted as jets, although other sources are also possible.
Aims: We aim to characterize the variation of the main properties of these events (occurrence rate, lifetime, size, and velocities) with their position on the solar disk between disk centre and the solar limb.
Methods: These events were identified in SUNRISE/IMaX data according to the same objective criteria at all available positions on the solar disk. Their properties were determined using standard techniques.
Results: Our study yielded a number of new insights into this phenomenon. Most importantly, the number density of these events is independent of the heliocentric angle, meaning that the investigated supersonic flows are nearly isotropically distributed. Size and lifetime are also nearly independent of the heliocentric angle, while their intensity contrast increases towards the solar limb. The Stokes V jets are associated with upflow velocities deduced from Stokes I, which are stronger towards the limb. Their intensity decreases with time, while their line-of-sight velocity does not display a clear temporal evolution. Their association with linear polarization signals decreases towards the limb.
Conclusions: The density of events appears to be independent of heliocentric angle, establishing that they are directed nearly randomly. If these events are jets triggered by magnetic reconnection between emerging magnetic flux and the ambient field, then our results suggest that there is no preferred geometry for the reconnection process. Title: The Formation and Disintegration of Magnetic Bright Points Observed by Sunrise/IMaX Authors: Utz, D.; del Toro Iniesta, J. C.; Bellot Rubio, L. R.; Jurčák, J.; Martínez Pillet, V.; Solanki, S. K.; Schmidt, W. Bibcode: 2014ApJ...796...79U Altcode: 2014arXiv1411.3240U The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First, we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next, we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km s-1 set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Also, only relatively weak downflows are found on average at this stage of the evolution. Only 16% of the features display upflows at the time that the field weakens, or the MBP disappears. This speaks either for a very fast evolving dynamic process at the end of the lifetime, which could not be temporally resolved, or against strong upflows as the cause of the weakening of the field of these magnetic elements, as has been proposed based on simulation results. It is noteworthy that in about 10% of the cases, we observe in the vicinity of the downflows small-scale strong (exceeding 2 km s-1) intergranular upflows related spatially and temporally to these downflows. The paper is complemented by a detailed discussion of aspects regarding the applied methods, the complementary literature, and in depth analysis of parameters like magnetic field strength and velocity distributions. An important difference to magnetic elements and associated bright structures in active region plage is that most of the quiet Sun bright points display significant downflows over a large fraction of their lifetime (i.e., in more than 46% of time instances/measurements they show downflows exceeding 1 km s-1). Title: Comparison of solar photospheric bright points between Sunrise observations and MHD simulations Authors: Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J. Bibcode: 2014A&A...568A..13R Altcode: 2014arXiv1406.1387R Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the center of the mean BP in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. More or less vertical kilogauss magnetic fields are found for 98% of the synthetic BPs underlining that basically every BP is associated with kilogauss fields. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, the mean BP field strength is found to be 1750 G, and the mean inclination is 17°, supporting the physical flux-tube paradigm to describe BPs. On average, the synthetic BPs harbor downflows increasing with depth. The origin of these downflows is not yet understood very well and needs further investigation. Title: Construction status of the Daniel K. Inouye Solar Telescope Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Martínez Pillet, Valentin; Berger, Thomas E.; Casini, Roberto; Craig, Simon C.; Elmore, David F.; Goodrich, Bret D.; Hegwer, Steve L.; Hubbard, Robert P.; Johansson, Erik M.; Kuhn, Jeffrey R.; Lin, Haosheng; McVeigh, William; Schmidt, Wolfgang; Shimko, Steve; Tritschler, Alexandra; Warner, Mark; Wöger, Friedrich Bibcode: 2014SPIE.9145E..25M Altcode: The Daniel K. Inouye Solar Telescope (DKIST, renamed in December 2013 from the Advanced Technology Solar Telescope) will be the largest solar facility built when it begins operations in 2019. Designed and developed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the Sun, the observatory will enable key research for the study of solar magnetism and its influence on the solar wind, flares, coronal mass ejections and solar irradiance variations. The 4-meter class facility will operate over a broad wavelength range (0.38 to 28 microns, initially 0.38 to 5 microns), using a state-of-the-art adaptive optics system to provide diffraction-limited imaging and the ability to resolve features approximately 25 km on the Sun. Five first-light instruments will be available at the start of operations: Visible Broadband Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF; Kiepenheuer Institut für Sonnenphysik), Diffraction Limited Near InfraRed SpectroPolarimeter (DL-NIRSP; University of Hawai'i, Institute for Astronomy) and the Cryogenic Near InfraRed SpectroPolarimeter (Cryo-NIRSP; University of Hawai'i, Institute for Astronomy). As of mid-2014, the key subsystems have been designed and fabrication is well underway, including the site construction, which began in December 2012. We provide an update on the development of the facilities both on site at the Haleakalā Observatories on Maui and the development of components around the world. We present the overall construction and integration schedule leading to the handover to operations in mid 2019. In addition, we outline the evolving challenges being met by the project, spanning the full spectrum of issues covering technical, fiscal, and geographical, that are specific to this project, though with clear counterparts to other large astronomical construction projects. Title: The History of a Quiet-Sun Magnetic Element Revealed by IMaX/SUNRISE Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Bonet, José A.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2014ApJ...789....6R Altcode: 2014arXiv1405.2837R Isolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective collapse mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studied in fully resolved structures. Here, we report on the formation and subsequent evolution of one such photospheric magnetic flux tube, observed in the quiet Sun with unprecedented spatial resolution (0.''15-0.''18) and high temporal cadence (33 s). The observations were acquired by the Imaging Magnetograph eXperiment on board the SUNRISE balloon-borne solar observatory. The equipartition field strength magnetic element is the result of the merging of several same polarity magnetic flux patches, including a footpoint of a previously emerged loop. The magnetic structure is then further intensified to kG field strengths by convective collapse. The fine structure found within the flux concentration reveals that the scenario is more complex than can be described by a thin flux tube model with bright points and downflow plumes being established near the edges of the kG magnetic feature. We also observe a daisy-like alignment of surrounding granules and a long-lived inflow toward the magnetic feature. After a subsequent weakening process, the field is again intensified to kG strengths. The area of the magnetic feature is seen to change in anti-phase with the field strength, while the brightness of the bright points and the speed of the downflows varies in phase. We also find a relation between the brightness of the bright point and the presence of upflows within it. Title: A Spectro-polarimetric Analysis of Sunspot Umbrae Authors: Watson, Fraser; Tritschler, Alexandra; Penn, Matthew J.; Beck, Christian; Livingston, William; Martinez Pillet, Valentin Bibcode: 2014AAS...22411202W Altcode: The recent quiet solar cycle has invited new questions as to the nature of the solar magnetic field and how it changes over time. To investigate this, we use the National Solar Observatory’s McMath-Pierce Solar Telescope Facility (McMP) and Dunn Solar Telescope (DST) to compare measurements of sunspots from five active regions observed in 2013. Both BABO at the McMP and FIRS at the DST were used to provide spectra of the Fe 1564.8nm line, which is affected by the presence of magnetic fields. The magnetic field is derived from Zeeman splitting in Stokes-I by BABO, and by inversion of the Stokes parameters from FIRS data allowing for comparisons of sunspot properties between the two instruments.. We present the first results from this study including the magnetic fields in sunspot umbrae from five active regions measured simultaneously by BABO and FIRS. Title: Solar Surface and Atmospheric Dynamics Authors: Martínez Pillet, V. Bibcode: 2014mpcp.book...65M Altcode: 2014mcp..book...65M Various aspects of the magnetism of the quiet sun are reviewed. The suggestion that a small scale dynamo acting at granular scales generates what we call the quiet sun fields is studied in some detail. Although dynamo action has been proved numerically, it is argued that current simulations are still far from achieving the complexity that might be present on the Sun. We based this statement not so much on the low magnetic Reynolds numbers used in the simulations but, above all, in the smallness of the kinetic Reynolds numbers employed by them. It is argued that the low magnetic Prandtl number at the solar surface may pose unexpected problems for the identification of the observed internetwork fields with dynamo action at granular scales. Some form of turbulent dynamo at bigger (and deeper) scales is favored. The comparison between the internetwork fields observed by Hinode and the magnetism inferred from Hanle measurements are converging towards a similar description. They are both described as randomly oriented, largely transverse fields in the several hecto-Gauss range. These similarities are ever making more natural to assume that they are the same. However, and because of the large voids of magnetic flux observed in the spatial distribution of the internetwork fields, it is argued that they are not likely to be generated by dynamo action in the intergranular lanes. It is concluded that if a dynamo is acting at granular scales, the end product might have not been observed yet at current spatial resolutions and sensitivities with the Zeeman effect. Thus an effort to increase these resolutions and polarimetric sensitivities must be made. New ground- and space-based telescopes are needed. The opportunity offered by the Solar Orbiter mission to observe the Quiet Sun dynamics at the poles is seen as one of the most important tests for confirming the existence, or otherwise, of a granularly driven surface dynamo. Title: Solar Surface and Atmospheric Dynamics. The Photosphere Authors: Martínez Pillet, V. Bibcode: 2013SSRv..178..141M Altcode: 2013SSRv..tmp...21M; 2013arXiv1301.6933M; 2013SSRv..tmp...14M Various aspects of the magnetism of the quiet sun are reviewed. The suggestion that a small scale dynamo acting at granular scales generates what we call the quiet sun fields is studied in some detail. Although dynamo action has been proved numerically, it is argued that current simulations are still far from achieving the complexity that might be present on the Sun. We based this statement not so much on the low magnetic Reynolds numbers used in the simulations but, above all, in the smallness of the kinetic Reynolds numbers employed by them. It is argued that the low magnetic Prandtl number at the solar surface may pose unexpected problems for the identification of the observed internetwork fields with dynamo action at granular scales. Some form of turbulent dynamo at bigger (and deeper) scales is favored. The comparison between the internetwork fields observed by Hinode and the magnetism inferred from Hanle measurements are converging towards a similar description. They are both described as randomly oriented, largely transverse fields in the several hecto-Gauss range. These similarities are ever making more natural to assume that they are the same. However, and because of the large voids of magnetic flux observed in the spatial distribution of the internetwork fields, it is argued that they are not likely to be generated by dynamo action in the intergranular lanes. It is concluded that if a dynamo is acting at granular scales, the end product might have not been observed yet at current spatial resolutions and sensitivities with the Zeeman effect. Thus an effort to increase these resolutions and polarimetric sensitivities must be made. New ground- and space-based telescopes are needed. The opportunity offered by the Solar Orbiter mission to observe the Quiet Sun dynamics at the poles is seen as one of the most important tests for confirming the existence, or otherwise, of a granularly driven surface dynamo. Title: Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE Authors: Quintero Noda, C.; Martínez Pillet, V.; Borrero, J. M.; Solanki, S. K. Bibcode: 2013A&A...558A..30Q Altcode: 2013arXiv1309.0627Q Context. Localized strongly Doppler-shifted Stokes V signals were detected by IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that are observed as linear polarization features.
Aims: We aim to set constraints on the physical nature and causes of these highly Doppler-shifted signals. In particular, the temporal relation between the appearance of transverse fields and the strong Doppler shifts is analyzed in some detail.
Methods: We calculated the time difference between the appearance of the strong flows and the linear polarization. We also obtained the distances from the center of various features to the nearest neutral lines and whether they overlap or not. These distances were compared with those obtained from randomly distributed points on observed magnetograms. Various cases of strong flows are described in some detail.
Results: The linear polarization signals precede the appearance of the strong flows by on average 84 ± 11 s. The strongly Doppler-shifted signals are closer (0.″19) to magnetic neutral lines than randomly distributed points (0.″5). Eighty percent of the strongly Doppler-shifted signals are close to a neutral line that is located between the emerging field and pre-existing fields. That the remaining 20% do not show a close-by pre-existing field could be explained by a lack of sensitivity or an unfavorable geometry of the pre-existing field, for instance, a canopy-like structure.
Conclusions: Transverse fields occurred before the observation of the strong Doppler shifts. The process is most naturally explained as the emergence of a granular-scale loop that first gives rise to the linear polarization signals, interacts with pre-existing fields (generating new neutral line configurations), and produces the observed strong flows. This explanation is indicative of frequent small-scale reconnection events in the quiet Sun. Title: First evidence of interaction between longitudinal and transverse waves in solar magnetic elements Authors: Stangalini, M.; Solanki, S. K.; Cameron, R.; Martínez Pillet, V. Bibcode: 2013A&A...554A.115S Altcode: 2013arXiv1304.7088S Small-scale magnetic fields are thought to play an important role in the heating of the outer solar atmosphere. By taking advantage of the unprecedented high-spatial and temporal cadence of the Imaging Magnetograph eXperiment (IMaX), the filter vector polarimeter on board the Sunrise balloon-borne observatory, we study the transversal and longitudinal velocity oscillations in small magnetic elements. The results of this analysis are then compared to magnetohydrodynamic (MHD) simulations, showing excellent agreement. We found buffeting-induced transverse oscillations with velocity amplitudes of the order of 1-2 km s-1 to be common along with longitudinal oscillations with amplitudes ~0.4 km s-1. Moreover, we also found an interaction between transverse oscillations and longitudinal velocity oscillations, showing a ± 90° phase lag at the frequency at which they exhibit the maximum coherence in the power spectrum. Our results are consistent with the theoretical picture in which MHD longitudinal waves are excited inside small magnetic elements as a response of the flux tube to the forcing action of the granular flows. Title: Is Magnetic Reconnection the Cause of Supersonic Upflows in Granular Cells? Authors: Borrero, J. M.; Martínez Pillet, V.; Schmidt, W.; Quintero Noda, C.; Bonet, J. A.; del Toro Iniesta, J. C.; Bellot Rubio, L. R. Bibcode: 2013ApJ...768...69B Altcode: 2013arXiv1303.2557B In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the best result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role. Title: Evolution of the Fine Structure of Magnetic Fields in the Quiet Sun: Observations from Sunrise/IMaX and Extrapolations Authors: Wiegelmann, T.; Solanki, S. K.; Borrero, J. M.; Peter, H.; Barthol, P.; Gandorfer, A.; Martínez Pillet, V.; Schmidt, W.; Knölker, M. Bibcode: 2013SoPh..283..253W Altcode: Observations with the balloon-borne Sunrise/Imaging Magnetograph eXperiment (IMaX) provide high spatial resolution (roughly 100 km at disk center) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona, we extrapolate these photospheric measurements into the upper solar atmosphere and analyze a 22-minute long time series with a cadence of 33 seconds. Using the extrapolated magnetic-field lines as tracer, we investigate temporal evolution of the magnetic connectivity in the quiet Sun's atmosphere. The majority of magnetic loops are asymmetric in the sense that the photospheric field strength at the loop foot points is very different. We find that the magnetic connectivity of the loops changes rapidly with a typical connection recycling time of about 3±1 minutes in the upper solar atmosphere and 12±4 minutes in the photosphere. This is considerably shorter than previously found. Nonetheless, our estimate of the energy released by the associated magnetic-reconnection processes is not likely to be the sole source for heating the chromosphere and corona in the quiet Sun. Title: Structure and dynamics of isolated internetwork Ca II H bright points observed by SUNRISE Authors: Jafarzadeh, S.; Solanki, S. K.; Feller, A.; Lagg, A.; Pietarila, A.; Danilovic, S.; Riethmüller, T. L.; Martínez Pillet, V. Bibcode: 2013A&A...549A.116J Altcode: 2012arXiv1211.4836J
Aims: We aim to improve our picture of the low chromosphere in the quiet-Sun internetwork by investigating the intensity, horizontal velocity, size and lifetime variations of small bright points (BPs; diameter smaller than 0.3 arcsec) observed in the Ca II H 3968 Å passband along with their magnetic field parameters, derived from photospheric magnetograms.
Methods: Several high-quality time series of disc-centre, quiet-Sun observations from the Sunrise balloon-borne solar telescope, with spatial resolution of around 100 km on the solar surface, have been analysed to study the dynamics of BPs observed in the Ca II H passband and their dependence on the photospheric vector magnetogram signal.
Results: Parameters such as horizontal velocity, diameter, intensity and lifetime histograms of the isolated internetwork and magnetic Ca II H BPs were determined. Mean values were found to be 2.2 km s-1, 0.2 arcsec (≈150 km), 1.48 ⟨ ICa ⟩ and 673 s, respectively. Interestingly, the brightness and the horizontal velocity of BPs are anti-correlated. Large excursions (pulses) in horizontal velocity, up to 15 km s-1, are present in the trajectories of most BPs. These could excite kink waves travelling into the chromosphere and possibly the corona, which we estimate to carry an energy flux of 310 W m-2, sufficient to heat the upper layers, although only marginally.
Conclusions: The stable observing conditions of Sunrise and our technique for identifying and tracking BPs have allowed us to determine reliable parameters of these features in the internetwork. Thus we find, e.g., that they are considerably longer lived than previously thought. The large velocities are also reliable, and may excite kink waves. Although these wave are (marginally) energetic enough to heat the quiet corona, we expect a large additional contribution from larger magnetic elements populating the network and partly also the internetwork. Title: Inversions of L12-2 IMaX data of an emerging flux mantle Authors: Guglielmino, S. L.; Martínez Pillet, V.; Ruiz Cobo, B.; del Toro Iniesta, J. C.; Bellot Rubio, L. R.; Solanki, S. K.; Sunrise/IMaX Team Bibcode: 2013MmSAI..84..355G Altcode: We present the analysis of a flux emergence event observed with the IMaX magnetograph flown aboard the SUNRISE balloon. IMaX took a 15' sequence with cadence of 31 s along the Fe I line at 525.0 nm, acquiring only Stokes I and V at 12 line positions (L12-2 mode). This sequence shows the emergence of a flux mantle at mesogranular scale, cospatial with a large exploding granule. An undesired cross-talk between Stokes U and V was found in such L12-2 data. We show that the use of a modified version of the SIR inversion code is able to remove such effect in inferring the physical quantities of interest. Title: Towards the next frontier in high precision solar polarimetry: 10^-4 Authors: Martinez Pillet, V. Bibcode: 2012IAUSS...6E.304M Altcode: In the last two decades, solar physics has greatly explored the 10^-3 polarimetric sensitivity level (referred to the continuum intensity). This has provided us with a quantitatively accurate picture of the photospheric magnetism for mean longitudinal fields in the range of about 5 Gauss. However, the same 10^-3 detection levels translate into a sensitivity to transverse fields of the order of 100 Gauss, which shows that our picture of the magnetic field is fundamentally biased. The Zeeman effect is perverse enough to tell us that a 5 G sensitivity in the transverse fields will only be achieved when we reach the 10^-5 sensitivity level. While the Hanle effect is already helping us to detect hidden transverse fields at the photosphere, it is also clear that it biases our results in other ways. Thus, we are left with the imperious need to progress towards increasing our polarimetric sensitivities one order of magnitude or even better. In this talk, I will present the science cases that expect us in the 10^-4 sensitivity world and the technical challenges that we must face for that. Title: The GREGOR Fabry-Pérot Interferometer Authors: Puschmann, K. G.; Denker, C.; Kneer, F.; Al Erdogan, N.; Balthasar, H.; Bauer, S. M.; Beck, C.; Bello González, N.; Collados, M.; Hahn, T.; Hirzberger, J.; Hofmann, A.; Louis, R. E.; Nicklas, H.; Okunev, O.; Martínez Pillet, V.; Popow, E.; Seelemann, T.; Volkmer, R.; Wittmann, A. D.; Woche, M. Bibcode: 2012AN....333..880P Altcode: 2012arXiv1210.2921P The GREGOR Fabry-Pérot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large-format, high-cadence CCD detectors with sophisticated computer hard- and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field-of-view (FOV) of 50 arcsec × 38 arcsec is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25 arcsec × 38 arcsec. The spectral coverage in the spectroscopic mode extends from 530-860 nm with a theoretical spectral resolution of R ≈ 250,000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580-660 nm. The combination of fast narrow-band imaging and post-factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface. Title: LEMUR: Large European module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission Authors: Teriaca, Luca; Andretta, Vincenzo; Auchère, Frédéric; Brown, Charles M.; Buchlin, Eric; Cauzzi, Gianna; Culhane, J. Len; Curdt, Werner; Davila, Joseph M.; Del Zanna, Giulio; Doschek, George A.; Fineschi, Silvano; Fludra, Andrzej; Gallagher, Peter T.; Green, Lucie; Harra, Louise K.; Imada, Shinsuke; Innes, Davina; Kliem, Bernhard; Korendyke, Clarence; Mariska, John T.; Martínez-Pillet, Valentin; Parenti, Susanna; Patsourakos, Spiros; Peter, Hardi; Poletto, Luca; Rutten, Robert J.; Schühle, Udo; Siemer, Martin; Shimizu, Toshifumi; Socas-Navarro, Hector; Solanki, Sami K.; Spadaro, Daniele; Trujillo-Bueno, Javier; Tsuneta, Saku; Dominguez, Santiago Vargas; Vial, Jean-Claude; Walsh, Robert; Warren, Harry P.; Wiegelmann, Thomas; Winter, Berend; Young, Peter Bibcode: 2012ExA....34..273T Altcode: 2011ExA...tmp..135T; 2011arXiv1109.4301T The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 Å and 1270 Å. The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s - 1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission. Title: Resolving the Internal Magnetic Structure of the Solar Network Authors: Martínez González, M. J.; Bellot Rubio, L. R.; Solanki, S. K.; Martínez Pillet, V.; Del Toro Iniesta, J. C.; Barthol, P.; Schmidt, W. Bibcode: 2012ApJ...758L..40M Altcode: 2012arXiv1209.2584M We analyze the spectral asymmetry of Stokes V (circularly polarized) profiles of an individual network patch in the quiet Sun observed by Sunrise/IMaX. At a spatial resolution of 0farcs15-0farcs18, the network elements contain substructure which is revealed by the spatial distribution of Stokes V asymmetries. The area asymmetry between the red and blue lobes of Stokes V increases from nearly zero at the core of the structure to values close to unity at its edges (single-lobed profiles). Such a distribution of the area asymmetry is consistent with magnetic fields expanding with height, i.e., an expanding magnetic canopy (which is required to fulfill pressure balance and flux conservation in the solar atmosphere). Inversion of the Stokes I and V profiles of the patch confirms this picture, revealing a decreasing field strength and increasing height of the canopy base from the core to the periphery of the network patch. However, the non-roundish shape of the structure and the presence of negative area and amplitude asymmetries reveal that the scenario is more complex than a canonical flux tube expanding with height surrounded by downflows. Title: Assessing the Behavior of Modern Solar Magnetographs and Spectropolarimeters Authors: Del Toro Iniesta, J. C.; Martínez Pillet, V. Bibcode: 2012ApJS..201...22D Altcode: 2012arXiv1205.4845D The design and later use of modern spectropolarimeters and magnetographs require a number of tolerance specifications that allow the developers to build the instrument and then the scientists to interpret the data accuracy. Such specifications depend both on device-specific features and on the physical assumptions underlying the particular measurement technique. Here we discuss general properties of every magnetograph, such as the detectability thresholds for the vector magnetic field and the line-of-sight velocity, as well as specific properties of a given type of instrument, namely, that based on a pair of nematic liquid crystal variable retarders and a Fabry-Pérot etalon (or several) for carrying out the light polarization modulation and spectral analysis, respectively. We derive formulae that give the detection thresholds in terms of the signal-to-noise ratio of the observations and the polarimetric efficiencies of the instrument. Relationships are also established between inaccuracies in the solar physical quantities and instabilities in the instrument parameters. Such relationships allow, for example, one to translate scientific requirements for the velocity or the magnetic field into requirements for temperature or voltage stability. We also demonstrate that this type of magnetograph can theoretically reach the optimum polarimetric efficiencies of an ideal polarimeter, regardless of the optics in between the modulator and the analyzer. Such optics induce changes in the instrument parameters that are calculated. Title: An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities Authors: Kuckein, C.; Martínez Pillet, V.; Centeno, R. Bibcode: 2012A&A...542A.112K Altcode: 2012arXiv1204.5090K Context. Paper I presents the magnetic structure, inferred for the photosphere and the chromosphere, of a filament that developed in active region (AR) NOAA 10781, observed on 2005 July 3 and July 5.
Aims: In this paper we complement those results with the velocities retrieved from Doppler shifts measured at the chromosphere and the photosphere in the AR filament area.
Methods: The velocities and magnetic field parameters were inferred from full Stokes inversions of the photospheric Si I 10 827 Å line and the chromospheric He i 10 830 Å triplet. Various inversion methods with different numbers of atmospheric components and different weighting schemes of the Stokes profiles were used. The velocities were calibrated on an absolute scale.
Results: A ubiquitous chromospheric downflow is found in the faculae surrounding the filament, with an average velocity of 1.6 km s-1. The filament region, however, displays upflows in the photosphere on both days, when the linear polarization (which samples the transverse component of the fields) is given more weight in the inversions. The upflow speeds of the transverse fields in the filament region average -0.15 km s-1. In the chromosphere, the situation is different for the two days of observation. On July 3, the chromospheric portion of the filament is moving upward as a whole with a mean speed of -0.24 km s-1. However, on July 5 only the section above an orphan penumbra shows localized upflow patches, while the rest of the filament is dominated by the same downflows observed elsewhere in the facular region. Photospheric supersonic downflows that last for tens of minutes are detected below the filament, close to the PIL.
Conclusions: The observed velocity pattern in this AR filament strongly suggests a scenario where the transverse fields are mostly dominated by upflows. The filament flux rope is seen to be emerging at all places and both heights, with a few exceptions in the chromosphere. This happens within a surrounding facular region that displays a generalized downflow in the chromosphere and localized downflows of supersonic character at the photosphere. No large scale downflow of transverse field lines is observed at the photosphere.

Appendices A and B are available in electronic form at http://www.aanda.org Title: The ESA/NASA mission Solar Orbiter Authors: Martínez Pillet, V. Bibcode: 2012iac..talk..388M Altcode: 2012iac..talk..305M No abstract at ADS Title: Division II: Sun and Heliosphere Authors: Martínez Pillet, Valentín; Klimchuk, James A.; Melrose, Donald B.; Cauzzi, Gianna; van Driel-Gesztelyi, Lidia; Gopalswamy, Natchimuthuk; Kosovichev, Alexander; Mann, Ingrid; Schrijver, Carolus J. Bibcode: 2012IAUTA..28...61M Altcode: 2012IAUTA..28...61P The solar activity cycle entered a prolonged quiet phase that started in 2008 and ended in 2010. This minimum lasted for a year longer than expected and all activity proxies, as measured from Earth and from Space, reached minimum values never observed before (de Toma, 2012). The number of spotless days from 2006 to 2009 totals 800, the largest ever recorded in modern times. Solar irradiance was at historic minimums. The interplanetary magnetic field was measured at values as low as 2.9 nT and the cosmic rays were observed at records-high. While rumors spread that the Sun could be entering a grand minimum quiet phase (such as the Maunder minimum of the XVII century), activity took over in 2010 and we are now well into Solar Cycle 24 (albeit, probably, a low intensity cycle), approaching towards a maximum due by mid 2013. In addition to bringing us the possibility to observe a quiet state of the Sun and of the Heliosphere that was previously not recorded with modern instruments, the Sun has also shown us how little we know about the dynamo mechanism that drives its activity as all solar cycle predictions failed to see this extended minimum coming. Title: Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star Authors: Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N. -E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J. -C. Bibcode: 2012ExA....33..271P Altcode: 2011arXiv1108.5304P; 2011ExA...tmp..134P The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations. Title: Solar Particle Acceleration Radiation and Kinetics (SPARK). A mission to understand the nature of particle acceleration Authors: Matthews, Sarah A.; Williams, David R.; Klein, Karl-Ludwig; Kontar, Eduard P.; Smith, David M.; Lagg, Andreas; Krucker, Sam; Hurford, Gordon J.; Vilmer, Nicole; MacKinnon, Alexander L.; Zharkova, Valentina V.; Fletcher, Lyndsay; Hannah, Iain G.; Browning, Philippa K.; Innes, Davina E.; Trottet, Gerard; Foullon, Clare; Nakariakov, Valery M.; Green, Lucie M.; Lamoureux, Herve; Forsyth, Colin; Walton, David M.; Mathioudakis, Mihalis; Gandorfer, Achim; Martinez-Pillet, Valentin; Limousin, Olivier; Verwichte, Erwin; Dalla, Silvia; Mann, Gottfried; Aurass, Henri; Neukirch, Thomas Bibcode: 2012ExA....33..237M Altcode: 2011ExA...tmp..124M Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, γ-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in other regimes, including terrestrial gamma-ray flashes (TGF), the origin of γ-ray bursts, and the possible existence of axions. Title: Influence of phase-diversity image reconstruction techniques on circular polarization asymmetries Authors: Asensio Ramos, A.; Martínez González, M. J.; Khomenko, E.; Martínez Pillet, V. Bibcode: 2012A&A...539A..42A Altcode: 2011arXiv1111.2496A Context. Full Stokes filter-polarimeters are key instruments for investigating the rapid evolution of magnetic structures on the solar surface. To this end, the image quality is routinely improved using a-posteriori image reconstruction methods.
Aims: We analyze the robustness of circular polarization asymmetries to phase-diversity image reconstruction techniques.
Methods: We used snapshots of magneto-hydrodynamical simulations carried out with different initial conditions to synthesize spectra of the magnetically sensitive Fe i line at 5250.2 Å. We degraded the synthetic profiles spatially and spectrally to simulate observations with the IMaX full Stokes filter-polarimeter. We also simulated the focused/defocused pairs of images used by the phase-diversity algorithm for reconstruction and the polarimetric modulation scheme. We assume that standard optimization methods are able to infer the projection of the wavefront on the Zernike polynomials with 10% precision. We also consider the less favorable case of 25% precision. We obtain reconstructed monochromatic modulated images that are later demodulated and compared with the original maps.
Results: Although asymmetries are often difficult to define in the quiet Sun due to the complexity of the Stokes V profiles, we show how asymmetries are degraded with spatial and spectral smearing. The results indicate that, although image reconstruction techniques reduce the spatial smearing, they can modify the asymmetries of the profiles, which are mainly caused by the appearance of spatially-correlated noise. Title: Diffusivity of Isolated Internetwork Ca II H Bright Points Observed by SuFI/SUNRISE Authors: Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Feller, A.; Pietarila, A.; Lagg, A.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knoelker, M.; Martinez Pillet, V.; Schmidt, W.; Title, A. Bibcode: 2012decs.confE..99J Altcode: We analyze trajectories of the proper motion of intrinsically magnetic, isolated internetwork Ca II H BPs (with mean lifetime of 461 sec) to obtain their diffusivity behaviors. We use high spatial and temporal resolution image sequences of quiet-Sun, disc-centre observations obtained in the Ca II H 397 nm passband of the Sunrise Filter Imager (SuFI) on board the SUNRISE balloon-borne solar observatory. In order to avoid misidentification, the BPs are semi-manually selected and then automatically tracked. The trajectory of each BP is then calculated and its diffusion index is described by a power law exponent, using which we classify the BPs' trajectories into sub-, normal and super- diffusive. In addition, the corresponding diffusion coefficients (D) based on the observed displacements are consequently computed. We find a strong super-diffusivity at a height sampled by the SuFI/SUNRISE Ca II H passband (i.e. a height corresponding roughly to the temperature minimum). We find that 74% of the identified tiny BPs are super-diffusive, 18% move randomly (i.e. their motion corresponds to normal diffusion) and only 8% belong to the sub-diffusion regime. In addition, we find that 53% of the super-diffusion regime (i.e. 39% of all BPs) have the diffusivity index of 2 which are termed as "Ballistic BPs". Finally, we explore the distribution of diffusion index with the help of a simple simulation. The results suggest that the BPs are random walkers superposed by a systematic (background) velocity in which the magnitude of each component (and hence their ratio) depends on the time and spatial scales. We further discuss a simple sketch to explain the diffusivity of observed BPs while they migrate within a supergranule (i.e. internetwork areas) or close to the network regions. Title: Doppler velocities studied simultaneously in the chromosphere and photosphere of an active region filament Authors: Kuckein, C.; Martinez Pillet, V.; Centeno, R. Bibcode: 2012decs.confE..42K Altcode: We present line-of-sight velocities retrieved simultaneously at two different heights (chromosphere and photosphere) on two days in an active region (AR) filament. The velocities, as well as the magnetic field parameters, were inferred from full Stokes inversions of the photospheric Si I 10827A line and the chromospheric He I 10830A triplet. Various inversion methods with different number of components and different weights of the Stokes parameters were used. Moreover, the velocities were calibrated on an absolute scale. We found a ubiquitous chromospheric downflow in the faculae surrounding the AR filament with an average velocity of 1.6 km/s. However, in the filament region, upflows in the photosphere were detected, when the Stokes signals from the transverse fields are given more weight in the inversions. In the chromosphere, the filament is also moving upward as a whole with a mean speed of -0.24 km/s as deduced from the He I inversions. However, on the second day the chromospheric portion above an orphan penumbra shows localized upflow patches while the rest of the filament is dominated by the same downflows observed elsewhere in the plage region. Photospheric supersonic downflows are detected below the filament, close to the PIL, that last for tens of minutes. The observed velocities in this AR filament strongly suggest a scenario where the transverse fields are mostly dominated by upflows. The filament flux rope is seen to be emerging at all heights with a few exceptions in the chromosphere. No large scale downflow of transverse field lines is observed in the photosphere. Title: An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure Authors: Kuckein, C.; Martínez Pillet, V.; Centeno, R. Bibcode: 2012A&A...539A.131K Altcode: 2011arXiv1112.1672K
Aims: A thorough multiwavelength, multiheight study of the vector magnetic field in a compact active region filament (NOAA 10781) on 2005 July 3 and 5 is presented. We suggest an evolutionary scenario for this filament.
Methods: Two different inversion codes were used to analyze the full Stokes vectors acquired with the Tenerife Infrared Polarimeter (TIP-II) in a spectral range that comprises the chromospheric He i 10 830 Å multiplet and the photospheric Si i 10 827 Å line. In addition, we used SOHO/MDI magnetograms, as well as BBSO and TRACE images, to study the evolution of the filament and its active region (AR). High-resolution images of the Dutch Open Telescope were also used.
Results: An active region filament (formed before our observing run) was detected in the chromospheric helium absorption images on July 3. The chromospheric vector magnetic field in this portion of the filament was strongly sheared (parallel to the filament axis), whereas the photospheric field lines underneath had an inverse polarity configuration. From July 3 to July 5, an opening and closing of the polarities on either side of the polarity inversion line (PIL) was recorded, resembling the recently discovered process of the sliding door effect seen by Hinode. This is confirmed with both TIP-II and SOHO/MDI data. During this time, a newly created region that contained pores and orphan penumbrae at the PIL was observed. On July 5, a normal polarity configuration was inferred from the chromospheric spectra, while strongly sheared field lines aligned with the PIL were found in the photosphere. In this same data set, the spine of the filament is also observed in a different portion of the field of view and is clearly mapped by the silicon line core.
Conclusions: The inferred vector magnetic fields of the filament suggest a flux rope topology. Furthermore, the observations indicate that the filament is divided in two parts, one which lies in the chromosphere and another one that stays trapped in the photosphere. Therefore, only the top of the helical structure is seen by the helium lines. The pores and orphan penumbrae at the PIL appear to be the photospheric counterpart of the extremely low-lying filament. We suggest that orphan penumbrae are formed in very narrow PILs of compact ARs and are the photospheric manifestation of flux ropes in the photosphere. Title: The Three-dimensional Structure of an Active Region Filament as Extrapolated from Photospheric and Chromospheric Observations Authors: Yelles Chaouche, L.; Kuckein, C.; Martínez Pillet, V.; Moreno-Insertis, F. Bibcode: 2012ApJ...748...23Y Altcode: 2012arXiv1201.2456Y The three-dimensional structure of an active region filament is studied using nonlinear force-free field extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 Å line and the He I 10830 Å triplet obtained with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 Å signal of ≈2 Mm above the surface of the Sun. It allows, as well, a cross-check of the obtained three-dimensional magnetic structures to verify a possible deviation from the force-free condition, especially at the photosphere. The extrapolations yield a filament formed by a twisted flux rope whose axis is located at about 1.4 Mm above the solar surface. The twisted field lines make slightly more than one turn along the filament within our field of view, which results in 0.055 turns Mm-1. The convex part of the field lines (as seen from the solar surface) constitutes dips where the plasma can naturally be supported. The obtained three-dimensional magnetic structure of the filament depends on the choice of the observed horizontal magnetic field as determined from the 180° solution of the azimuth. We derive a method to check for the correctness of the selected 180° ambiguity solution. Title: The Frontier between Small-scale Bipoles and Ephemeral Regions in the Solar Photosphere: Emergence and Decay of an Intermediate-scale Bipole Observed with SUNRISE/IMaX Authors: Guglielmino, S. L.; Martínez Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. Carlos; Bellot Rubio, L. R.; Solanki, S. K.; Schmidt, W.; Gandorfer, A.; Barthol, P.; Knölker, M. Bibcode: 2012ApJ...745..160G Altcode: 2011arXiv1110.1405G We report on the photospheric evolution of an intermediate-scale (≈4 Mm footpoint separation) magnetic bipole, from emergence to decay, observed in the quiet Sun at high spatial (0farcs3) and temporal (33 s) resolution. The observations were acquired by the Imaging Magnetograph Experiment imaging magnetograph during the first science flight of the SUNRISE balloon-borne solar observatory. The bipole flux content is 6 × 1017 Mx, representing a structure bridging the gap between granular scale bipoles and the smaller ephemeral regions. Footpoints separate at a speed of 3.5 km s-1 and reach a maximum distance of 4.5 Mm before the field dissolves. The evolution of the bipole is revealed to be very dynamic: we found a proper motion of the bipole axis and detected a change of the azimuth angle of 90° in 300 s, which may indicate the presence of some writhe in the emerging structure. The overall morphology and behavior are in agreement with previous analyses of bipolar structures emerging at the granular scale, but we also found several similarities with emerging flux structures at larger scales. The flux growth rate is 2.6 × 1015 Mx s-1, while the mean decay rate is one order of magnitude smaller. We describe in some detail the decay phase of the bipole footpoints that includes break up into smaller structures, and interaction with preexisting fields leading to cancellation, but it appears to be dominated by an as-yet unidentified diffusive process that removes most of the flux with an exponential flux decay curve. The diffusion constant (8 × 102 km2 s-1) associated with this decay is similar to the values used to describe the large-scale diffusion in flux transport models. Title: Magnetic field emergence in mesogranular-sized exploding granules observed with sunrise/IMaX data Authors: Palacios, J.; Blanco Rodríguez, J.; Vargas Domínguez, S.; Domingo, V.; Martínez Pillet, V.; Bonet, J. A.; Bellot Rubio, L. R.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Berkefeld, T.; Schmidt, W.; Knölker, M. Bibcode: 2012A&A...537A..21P Altcode: 2011arXiv1110.4555P We report on magnetic field emergences covering significant areas of exploding granules. The balloon-borne mission Sunrise provided high spatial and temporal resolution images of the solar photosphere. Continuum images, longitudinal and transverse magnetic field maps and Dopplergrams obtained by IMaX onboard Sunrise are analyzed by local correlation traking (LCT), divergence calculation and time slices, Stokes inversions and numerical simulations are also employed. We characterize two mesogranular-scale exploding granules where ~1018 Mx of magnetic flux emerges. The emergence of weak unipolar longitudinal fields (~100 G) start with a single visible magnetic polarity, occupying their respective granules' top and following the granular splitting. After a while, mixed polarities start appearing, concentrated in downflow lanes. The events last around 20 min. LCT analyses confirm mesogranular scale expansion, displaying a similar pattern for all the physical properties, and divergence centers match between all of them. We found a similar behaviour with the emergence events in a numerical MHD simulation. Granule expansion velocities are around 1 kms-1 while magnetic patches expand at 0.65 kms-1. One of the analyzed events evidences the emergence of a loop-like structure. Advection of the emerging magnetic flux features is dominated by convective motion resulting from the exploding granule due to the magnetic field frozen in the granular plasma. Intensification of the magnetic field occurs in the intergranular lanes, probably because of being directed by the downflowing plasma.

Movies associated to Figs. 2-4 are available in electronic form at http://www.aanda.org Title: Evolution of the fine structure of magnetic fields in the quiet Sun: Combining Sunrise observations and modelling Authors: Wiegelmann, T.; Solanki, S.; Borrero, J.; Martinez Pillet, V.; Sunrise Team Bibcode: 2011AGUFMSH41B..06W Altcode: Observations with the balloon borne SUNRISE/IMAX instrument provide us with unprecedented high spatial resolution (pixel size 40 km) measurements of the magnetic field in the photosphere of the quiet Sun. To investigate the magnetic structure of the chromosphere and corona we extrapolate these photospheric measurements into the upper solar atmosphere and analyse a timeseries with a cadence of 33s. We find that the majority of closed loops which reach into the chromosphere or corona have one foot point in strong photospheric magnetic field regions (B>300 G). Most loops are asymmetric and the weaker foot point is often located in the internetwork. We find that the magnetic connectivity of the loops changes rapidly with a typical recycling time of about 2 min in the upper solar atmosphere and 14 min in the photosphere. We discuss, to which extend the observed topological changes can be interpreted as evidence for magnetic reconnection and the relevance of these processes for coronal heating. Title: Continuous upflow of material in an active region filament from thephotosphere to the corona Authors: Kuckein, C.; Centeno, R.; Martinez Pillet, V. Bibcode: 2011hsa6.conf..636K Altcode: Using spectropolarimetric data of an Active Region (AR) filament we have carried out inversions in order to infer vector magnetic fields in the photosphere (Si I line) and in the chromosphere (He I line). Our filament lies above the polarity inversion line (PIL) situated close to disk center and presents strong Zeeman-like signatures in both photospheric and chromospheric lines. Pore-like formations with both polarities are identified in the continuum under the PIL. The azimuth ambiguity is solved at both heights using the AZAM code. A comparison between the photospheric and chromospheric vector magnetic fields revealed that they are well aligned in some areas of the filament. However, especially at chromospheric heights, the magnetic field is mostly aligned with the dark threads of the filament. Velocity signatures indicating upflows of field lines are found at both heights. The combination of all these findings strongly suggests an emerging flux rope scenario. Title: Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs Authors: Uribe-Patarroyo, N.; Alvarez-Herrero, A.; García Parejo, P.; Vargas, J.; Heredero, R. L.; Restrepo, R.; Martínez Pillet, V.; del Toro Iniesta, J. C.; López, A.; Fineschi, S.; Capobianco, G.; Georges, M.; López, M.; Boer, G.; Manolis, I. Bibcode: 2011SPIE.8148E..10U Altcode: 2011SPIE.8148E..31U Liquid-crystal variable retarders (LCVRs) are an emergent technology for space-based polarimeters, following its success as polarization modulators in ground-based polarimeters and ellipsometers. Wide-field double nematic LCVRs address the high angular sensitivity of nematic LCVRs at some voltage regimes. We present a work in which wide-field LCVRs were designed and built, which are suitable for wide-field-of-view instruments such as polarimetric coronagraphs. A detailed model of their angular acceptance was made, and we validated this technology for space environmental conditions, including a campaign studying the effects of gamma, proton irradiation, vibration and shock, thermo-vacuum and ultraviolet radiation. Title: Sunspots and Active Region Filaments: What do they have in common? Authors: Martinez Pillet, V. Bibcode: 2011sdmi.confE...7M Altcode: Sunspots are preceded by a well documented and spectacular phase of magnetic flux emergence, easy to idnetify in almost any spectral range. This phase is followed by a more subtle process of flux disappearance that includes diffusion and magnetic cancellation. The decay phase coincides with the development of an active region filament at the Neutral Line that slowly evolves and often gets spelled in CME events. These Active Region filaments harbor field strengths of several hundredths of Gauss which represent the strongest field concentrations second only to the sunspots themselves. However, no link between the sunspots and the Active Region filaments are known to exists. The conditions under which these two ingredients of Active Regions can indeed be related to each other will be reviewed in the light of recent observations made in the He 10830 A spectral region. Title: Ubiquitous quiet-Sun jets Authors: Martínez Pillet, V.; Del Toro Iniesta, J. C.; Quintero Noda, C. Bibcode: 2011A&A...530A.111M Altcode: 2011arXiv1104.5564M Context. IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun.
Aims: We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set.
Methods: We generate combinations of linear polarization magnetograms with blue- and redshifted far-wing circular polarization magnetograms to allow an easy identification of the quiet-Sun jets.
Results: The jets are identified in the Hinode data where both red- and blueshifted cases are often found in pairs. They appear next to regions of transverse fields that exhibit quiet-Sun neutral lines. They also have a clear tendency to occur in the outer boundary of the granules. These regions always display highly displaced and anomalous Stokes V profiles.
Conclusions: The quiet Sun is pervaded with jets formed when new field regions emerge at granular scales loaded with horizontal field lines that interact with their surroundings. This interaction is suggestive of some form of reconnection of the involved field lines that generates the observed high speed flows. Title: Continuous Upflow of Material in an Active Region Filament from the Photosphere to the Corona Authors: Kuckein, C.; Centeno, R.; Martínez Pillet, V. Bibcode: 2011ASPC..437..275K Altcode: 2010arXiv1010.4260K Using spectropolarimetric data of an Active Region (AR) filament we have carried out inversions in order to infer vector magnetic fields in the photosphere (Si I line) and in the chromosphere (He I line). Our filament lies above the polarity inversion line (PIL) situated close to disk center and presents strong Zeeman-like signatures in both photospheric and chromospheric lines. Pore-like formations with both polarities are identified in the continuum under the PIL. The azimuth ambiguity is solved at both heights using the AZAM code. A comparison between the photospheric and chromospheric vector magnetic fields revealed that they are well aligned in some areas of the filament. However, especially at chromospheric heights, the magnetic field is mostly aligned with the dark threads of the filament. Velocity signatures indicating upflows of field lines are found at both heights. The combination of all these findings strongly suggests an emerging flux rope scenario. Title: Unnoticed Magnetic Field Oscillations in the Very Quiet Sun Revealed by SUNRISE/IMaX Authors: Martínez González, M. J.; Asensio Ramos, A.; Manso Sainz, R.; Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; López Ariste, A.; Schmidt, W.; Barthol, P.; Gandorfer, A. Bibcode: 2011ApJ...730L..37M Altcode: 2011arXiv1103.0145M We present observational evidence for oscillations of magnetic flux density in the quiet areas of the Sun. The majority of magnetic fields on the solar surface have strengths of the order of or lower than the equipartition field (300-500 G). This results in a myriad of magnetic fields whose evolution is largely determined by the turbulent plasma motions. When granules evolve they squash the magnetic field lines together or pull them apart. Here, we report on the periodic deformation of the shapes of features in circular polarization observed at high resolution with SUNRISE. In particular, we note that the area of patches with a constant magnetic flux oscillates with time, which implies that the apparent magnetic field intensity oscillates in antiphase. The periods associated with this oscillatory pattern are compatible with the granular lifetime and change abruptly, which suggests that these oscillations might not correspond to characteristic oscillatory modes of magnetic structures, but to the forcing by granular motions. In one particular case, we find three patches around the same granule oscillating in phase, which means that the spatial coherence of these oscillations can reach 1600 km. Interestingly, the same kind of oscillatory phenomenon is also found in the upper photosphere. Title: Mesogranulation and the Solar Surface Magnetic Field Distribution Authors: Yelles Chaouche, L.; Moreno-Insertis, F.; Martínez Pillet, V.; Wiegelmann, T.; Bonet, J. A.; Knölker, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Barthol, P.; Gandorfer, A.; Schmidt, W.; Solanki, S. K. Bibcode: 2011ApJ...727L..30Y Altcode: 2010arXiv1012.4481Y The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (≈100 km) and temporal (≈30 s) resolution data obtained with the IMaX instrument on board SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through local correlation tracking. After ≈20 minutes of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Second, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density function (PDF) is calculated for the distribution of distances between the footpoints of individual magnetic field lines. The PDF has an exponential shape at scales between 1 and 10 Mm, with a constant characteristic decay distance, indicating the absence of preferred convection scales in the mesogranular range. Our results support the view that mesogranulation is not an intrinsic convective scale (in the sense that it is not a primary energy-injection scale of solar convection), but also give quantitative confirmation that, nevertheless, the magnetic elements are preferentially found along mesogranular lanes. Title: The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI) Authors: Gandorfer, Achim; Solanki, Sami K.; Woch, Joachim; Martínez Pillet, Valentin; Álvarez Herrero, Alberto; Appourchaux, Thierry Bibcode: 2011JPhCS.271a2086G Altcode: We briefly outline the scientific and instrumental aspects of ESA's Solar Orbiter mission. Special emphasis is given to the Polarimetric and Helioseismic Imager, the instrument with the highest relevance for helioseismology applications, which will observe gas motions and the vector magnetic field in the photosphere at high spatial and temporal resolution. Title: The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory Authors: Martínez Pillet, V.; del Toro Iniesta, J. C.; Álvarez-Herrero, A.; Domingo, V.; Bonet, J. A.; González Fernández, L.; López Jiménez, A.; Pastor, C.; Gasent Blesa, J. L.; Mellado, P.; Piqueras, J.; Aparicio, B.; Balaguer, M.; Ballesteros, E.; Belenguer, T.; Bellot Rubio, L. R.; Berkefeld, T.; Collados, M.; Deutsch, W.; Feller, A.; Girela, F.; Grauf, B.; Heredero, R. L.; Herranz, M.; Jerónimo, J. M.; Laguna, H.; Meller, R.; Menéndez, M.; Morales, R.; Orozco Suárez, D.; Ramos, G.; Reina, M.; Ramos, J. L.; Rodríguez, P.; Sánchez, A.; Uribe-Patarroyo, N.; Barthol, P.; Gandorfer, A.; Knoelker, M.; Schmidt, W.; Solanki, S. K.; Vargas Domínguez, S. Bibcode: 2011SoPh..268...57M Altcode: 2010SoPh..tmp..181M; 2010arXiv1009.1095M The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne solar observatory in June 2009 for almost six days over the Arctic Circle. As a polarimeter, IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual-beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mÅ. IMaX uses the high-Zeeman-sensitive line of Fe I at 5250.2 Å and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15 - 0.18 arcsec range over a 50×50 arcsec field of view. Time cadences vary between 10 and 33 s, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are 4 G for longitudinal fields and 80 G for transverse fields per wavelength sample. The line-of-sight velocities are estimated with statistical errors of the order of 5 - 40 m s−1. The design, calibration, and integration phases of the instrument, together with the implemented data reduction scheme, are described in some detail. Title: The Wave-Front Correction System for the Sunrise Balloon-Borne Solar Observatory Authors: Berkefeld, T.; Schmidt, W.; Soltau, D.; Bell, A.; Doerr, H. P.; Feger, B.; Friedlein, R.; Gerber, K.; Heidecke, F.; Kentischer, T.; v. d. Lühe, O.; Sigwarth, M.; Wälde, E.; Barthol, P.; Deutsch, W.; Gandorfer, A.; Germerott, D.; Grauf, B.; Meller, R.; Álvarez-Herrero, A.; Knölker, M.; Martínez Pillet, V.; Solanki, S. K.; Title, A. M. Bibcode: 2011SoPh..268..103B Altcode: 2010SoPh..tmp..236B; 2010arXiv1009.3196B This paper describes the wave-front correction system developed for the Sunrise balloon telescope, and it provides information about its in-flight performance. For the correction of low-order aberrations, a Correlating Wave-Front Sensor (CWS) was used. It consisted of a six-element Shack - Hartmann wave-front sensor (WFS), a fast tip-tilt mirror for the compensation of image motion, and an active telescope secondary mirror for focus correction. The CWS delivered a stabilized image with a precision of 0.04 arcsec (rms), whenever the coarse pointing was better than ± 45 arcsec peak-to-peak. The automatic focus adjustment maintained a focus stability of 0.01 waves in the focal plane of the CWS. During the 5.5 day flight, good image quality and stability were achieved during 33 hours, containing 45 sequences, which lasted between 10 and 45 min. Title: The Sunrise Mission Authors: Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T. L.; Tomasch, G.; Knölker, M.; Lites, B. W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Title, A. M.; Domingo, V.; Gasent Blesa, J. L.; del Toro Iniesta, J. C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E. Bibcode: 2011SoPh..268....1B Altcode: 2010arXiv1009.2689B; 2010SoPh..tmp..224B The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. Title: The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description Authors: Gandorfer, A.; Grauf, B.; Barthol, P.; Riethmüller, T. L.; Solanki, S. K.; Chares, B.; Deutsch, W.; Ebert, S.; Feller, A.; Germerott, D.; Heerlein, K.; Heinrichs, J.; Hirche, D.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Schäfer, R.; Tomasch, G.; Knölker, M.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Feger, B.; Heidecke, F.; Soltau, D.; Tischenberg, A.; Fischer, A.; Title, A.; Anwand, H.; Schmidt, E. Bibcode: 2011SoPh..268...35G Altcode: 2010SoPh..tmp..176G; 2010arXiv1009.1037G We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data. Title: SUNRISE: Instrument, Mission, Data, and First Results Authors: Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmüller, T. L.; Schüssler, M.; Bonet, J. A.; Martínez Pillet, V.; del Toro Iniesta, J. C.; Domingo, V.; Palacios, J.; Knölker, M.; Bello González, N.; Berkefeld, T.; Franz, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.127S Altcode: 2010arXiv1008.3460S The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond. Title: Supersonic Magnetic Upflows in Granular Cells Observed with SUNRISE/IMAX Authors: Borrero, J. M.; Martínez-Pillet, V.; Schlichenmaier, R.; Solanki, S. K.; Bonet, J. A.; del Toro Iniesta, J. C.; Schmidt, W.; Barthol, P.; Gandorfer, A.; Domingo, V.; Knölker, M. Bibcode: 2010ApJ...723L.144B Altcode: 2010arXiv1009.1227B Using the IMaX instrument on board the SUNRISE stratospheric balloon telescope, we have detected extremely shifted polarization signals around the Fe I 5250.217 Å spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec2 and last for about 80 s, with larger events having longer lifetimes. These supersonic events occur at a rate of 1.3 × 10-5 occurrences per second per arcsec2. Title: Detection of Vortex Tubes in Solar Granulation from Observations with SUNRISE Authors: Steiner, O.; Franz, M.; Bello González, N.; Nutto, Ch.; Rezaei, R.; Martínez Pillet, V.; Bonet Navarro, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A. Bibcode: 2010ApJ...723L.180S Altcode: 2010arXiv1009.4723S We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface. Title: Where the Granular Flows Bend Authors: Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Bonet, J. A.; Domingo, V.; Schmidt, W.; Barthol, P.; Knölker, M. Bibcode: 2010ApJ...723L.159K Altcode: 2010arXiv1008.0517K Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 Å line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon. Title: Bright Points in the Quiet Sun as Observed in the Visible and Near-UV by the Balloon-borne Observatory SUNRISE Authors: Riethmüller, T. L.; Solanki, S. K.; Martínez Pillet, V.; Hirzberger, J.; Feller, A.; Bonet, J. A.; Bello González, N.; Franz, M.; Schüssler, M.; Barthol, P.; Berkefeld, T.; del Toro Iniesta, J. C.; Domingo, V.; Gandorfer, A.; Knölker, M.; Schmidt, W. Bibcode: 2010ApJ...723L.169R Altcode: 2010arXiv1009.1693R Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here, we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using SUNRISE balloon-borne observatory data of the quiet Sun at the disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm, we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m s-1, but some display strong down- or upflows reaching a few km s-1. Title: Transverse Component of the Magnetic Field in the Solar Photosphere Observed by SUNRISE Authors: Danilovic, S.; Beeck, B.; Pietarila, A.; Schüssler, M.; Solanki, S. K.; Martínez Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.149D Altcode: 2010arXiv1008.1535D We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 × 10-4 s-1 arcsec-2, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%). Title: Detection of Large Acoustic Energy Flux in the Solar Atmosphere Authors: Bello González, N.; Franz, M.; Martínez Pillet, V.; Bonet, J. A.; Solanki, S. K.; del Toro Iniesta, J. C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; Berkefeld, T.; Knölker, M. Bibcode: 2010ApJ...723L.134B Altcode: 2010arXiv1009.4795B We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m-2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules. Title: Magnetic Loops in the Quiet Sun Authors: Wiegelmann, T.; Solanki, S. K.; Borrero, J. M.; Martínez Pillet, V.; del Toro Iniesta, J. C.; Domingo, V.; Bonet, J. A.; Barthol, P.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.185W Altcode: 2010arXiv1009.4715W We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields. Title: SUNRISE/IMaX Observations of Convectively Driven Vortex Flows in the Sun Authors: Bonet, J. A.; Márquez, I.; Sánchez Almeida, J.; Palacios, J.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Domingo, V.; Berkefeld, T.; Schmidt, W.; Gandorfer, A.; Barthol, P.; Knölker, M. Bibcode: 2010ApJ...723L.139B Altcode: 2010arXiv1009.1992B We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams, and images obtained with the 1 m balloon-borne SUNRISE telescope. By visual inspection of time series, we find some 3.1 × 10-3 vortices Mm-2 minute-1, which is a factor of ~1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 minutes, with a standard deviation of 3.2 minutes. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 minutes). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are lsim6 × 10-3 s-1, which corresponds to a period of rotation of some 35 minutes. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation. Title: Retrieval of solar magnetic fields from high-spatial resolution filtergraph data: the Imaging Magnetograph eXperiment (IMaX) Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Martínez Pillet, V.; Bonet, J. A.; Vargas Domínguez, S.; Del Toro Iniesta, J. C. Bibcode: 2010A&A...522A.101O Altcode: 2010arXiv1006.5510O Context. The design of modern instruments does not only imply thorough studies of instrumental effects but also a good understanding of the scientific analysis planned for the data.
Aims: We investigate the reliability of Milne-Eddington (ME) inversions of high-resolution magnetograph measurements such as those to be obtained with the Imaging Magnetograph eXperiment (IMaX) aboard the Sunrise balloon. We also provide arguments to choose either Fe I 525.02 or 525.06 nm as the most suitable line for IMaX.
Methods: We reproduce an IMaX observation using magnetoconvection simulations of the quiet Sun and synthesizing the four Stokes profiles emerging from them. The profiles are degraded by spatial and spectral resolution, noise, and limited wavelength sampling, just as real IMaX measurements. We invert these data and estimate the uncertainties in the retrieved physical parameters caused by the ME approximation and the spectral sampling.
Results: It is possible to infer the magnetic field strength, inclination, azimuth, and line-of-sight velocity from standard IMaX measurements (4 Stokes parameters, 5 wavelength points, and a signal-to-noise ratio of 1000) applying ME inversions to any of the Fe I lines at 525 nm. We also find that telescope diffraction has important effects on the spectra coming from very high resolution observations of inhomogeneous atmospheres. Diffration reduces the amplitude of the polarization signals and changes the asymmetry of the Stokes profiles.
Conclusions: The two Fe I lines at 525 nm meet the scientific requirements of IMaX, but Fe I 525.02 nm is to be preferred because it leads to smaller uncertainties in the retrieved parameters and offers a better detectability of the weakest (linear) polarization signals prevailing in the quiet Sun. Title: Surface Waves in Solar Granulation Observed with SUNRISE Authors: Roth, M.; Franz, M.; Bello González, N.; Martínez Pillet, V.; Bonet, J. A.; Gandorfer, A.; Barthol, P.; Solanki, S. K.; Berkefeld, T.; Schmidt, W.; del Toro Iniesta, J. C.; Domingo, V.; Knölker, M. Bibcode: 2010ApJ...723L.175R Altcode: 2010arXiv1009.4790R Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument on board the SUNRISE observatory reveal solar oscillations at high spatial resolution, which allow the study of the properties of oscillations with short wavelengths. We analyze two time series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32 minutes and 23 minutes, respectively, recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-degree running waves are visible. The standing waves are visible as temporary enhancements of the amplitudes of the large-scale velocity field due to the stochastic superposition of the acoustic waves. We focus on the high-degree small-scale waves by suitable filtering in the Fourier domain. Investigating the propagation and excitation of f- and p 1-modes with wavenumbers k>1.4 Mm-1, we also find that exploding granules contribute to the excitation of solar p-modes in addition to the contribution of intergranular lanes. Title: Fully Resolved Quiet-Sun Magnetic flux Tube Observed with the SUNRISE/IMAX Instrument Authors: Lagg, A.; Solanki, S. K.; Riethmüller, T. L.; Martínez Pillet, V.; Schüssler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Schmidt, W.; del Toro Iniesta, J. C.; Bonet, J. A.; Barthol, P.; Berkefeld, T.; Domingo, V.; Gandorfer, A.; Knölker, M.; Title, A. M. Bibcode: 2010ApJ...723L.164L Altcode: 2010arXiv1009.0996L Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube. Title: Quiet-sun Intensity Contrasts in the Near-ultraviolet as Measured from SUNRISE Authors: Hirzberger, J.; Feller, A.; Riethmüller, T. L.; Schüssler, M.; Borrero, J. M.; Afram, N.; Unruh, Y. C.; Berdyugina, S. V.; Gandorfer, A.; Solanki, S. K.; Barthol, P.; Bonet, J. A.; Martínez Pillet, V.; Berkefeld, T.; Knölker, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.154H Altcode: We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures—up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain. Title: The Electrical Current Density Vector in the Inner Penumbra of a Sunspot Authors: Puschmann, K. G.; Ruiz Cobo, B.; Martínez Pillet, V. Bibcode: 2010ApJ...721L..58P Altcode: 2010arXiv1008.2131P We determine the entire electrical current density vector in a geometrical three-dimensional volume of the inner penumbra of a sunspot from an inversion of spectropolarimetric data obtained with Hinode/SP. Significant currents are seen to wrap around the hotter, more elevated regions with lower and more horizontal magnetic fields that harbor strong upflows and radial outflows (the intraspines). The horizontal component of the current density vector is 3-4 times larger than the vertical; nearly all previous studies only obtain the vertical component Jz , thus strongly underestimating the current density. The current density \vec{J} and the magnetic field \vec{B} form an angle of about 20°. The plasma β at the 0 km level is larger than 1 in the intraspines and is one order of magnitude lower in the background component of the penumbra (spines). At the 200 km level, the plasma β is below 0.3, nearly everywhere. The plasma β surface as well as the surface optical depth unity is very corrugated. At the borders of intraspines and inside, \vec{B} is not force-free at deeper layers and nearly force-free at the top layers. The magnetic field of the spines is close to being potential everywhere. The dissipated ohmic energy is five orders of magnitudes smaller than the solar energy flux and thus negligible for the energy balance of the penumbra. Title: A Geometrical Height Scale for Sunspot Penumbrae Authors: Puschmann, K. G.; Ruiz Cobo, B.; Martínez Pillet, V. Bibcode: 2010ApJ...720.1417P Altcode: 2010arXiv1007.2779P Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion. Title: Quiet-Sun intensity contrasts in the near ultraviolet Authors: Hirzberger, Johann; Feller, Alex; Riethmüller, Tino L.; Schüssler, Manfred; Borrero, Juan M.; Afram, Nadine; Unruh, Yvonne C.; Berdyugina, Svetlana V.; Gandorfer, Achim; Solanki, Sami K.; Barthol, Peter; Bonet, Jose A.; Martínez Pillet, Valentin; Berkefeld, Thomas; Knölker, Michael; Schmidt, Wolfgang; Title, Alan M. Bibcode: 2010arXiv1009.1050H Altcode: We present high-resolution images of the Sun in the near ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1-m Sunrise balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures - up to 32.8% at a wavelength of 214 nm. We compare with theoretical intensity contrasts obtained from numerical magneto-hydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain. Title: Flight control software for the wave-front sensor of SUNRISE 1m balloon telescope Authors: Bell, Alexander; Barthol, Peter; Berkefeld, Thomas; Feger, Bernhard; Gandorfer, Achim M.; Heidecke, Frank; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Sigwarth, Michael; Solanki, Sami K.; Soltau, Dirk; Title, Alan M. Bibcode: 2010SPIE.7740E..03B Altcode: 2010SPIE.7740E...2B This paper describes the flight control software of the wave-front correction system that flew on the 2009 science flight of the Sunrise balloon telescope. The software discussed here allowed fully automated operations of the wave-front sensor, communications with the adaptive optics sub-system, the pointing system, the instrument control unit and the main telescope controller. The software was developed using modern object oriented analysis and design techniques, and consists of roughly 13.000 lines of C++ code not counting code written for the on-board communication layer. The software operated error free during the 5.5 day flight. Title: SUNRISE Impressions from a successful science flight Authors: Schmidt, W.; Solanki, S. K.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Martínez Pillet, V.; Schüssler, M.; Title, A. Bibcode: 2010AN....331..601S Altcode: SUNRISE is a balloon-borne telescope with an aperture of one meter. It is equipped with a filter imager for the UV wavelength range between 214 nm and 400 nm (SUFI), and with a spectro-polarimeter that measures the magnetic field of the photosphere using the Fe I line at 525.02 nm that has a Landé factor of 3. SUNRISE performed its first science flight from 8 to 14 June 2009. It was launched at the Swedish ESRANGE Space Center and cruised at an altitude of about 36 km and geographic latitudes between 70 and 74 degrees to Somerset Island in northern Canada. There, all data, the telescope and the gondola were successfully recovered. During its flight, Sunrise achieved high pointing stability during 33 hours, and recorded about 1.8 TB of science data. Already at this early stage of data processing it is clear that SUNRISE recorded UV images of the solar photosphere, and spectropolarimetric measurements of the quiet Sun's magnetic field of unprecedented quality. Title: Characterization of horizontal flows around solar pores from high-resolution time series of images Authors: Vargas Domínguez, S.; de Vicente, A.; Bonet, J. A.; Martínez Pillet, V. Bibcode: 2010A&A...516A..91V Altcode: 2010arXiv1003.2134V Context. Though there is increasing evidence linking the moat flow and the Evershed flow along the penumbral filaments, there is not a clear consensus regarding the existence of a moat flow around umbral cores and pores, and the debate is still open. Solar pores appear to be a suitable scenario to test the moat-penumbra relation as they correspond to a direct interaction between the umbra and the convective plasma in the surrounding photosphere without any intermediate structure in between.
Aims: We study solar pores based on high-resolution ground-based and satellite observations.
Methods: Local correlation tracking techniques were applied to different-duration time series to analyze the horizontal flows around several solar pores.
Results: Our results establish that the flows calculated from different solar pore observations are coherent among each other and show the determining and overall influence of exploding events in the granulation around the pores. We do not find any sign of moat-like flows surrounding solar pores, but a clearly defined region of inflows surrounding them.
Conclusions: The connection between moat flows and flows associated to penumbral filaments is hereby reinforced. Title: The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program Authors: Alvarez-Herrero, A.; Martínez-Pillet, V.; Del Toro Iniesta, J. C.; Domingo, V. Bibcode: 2010EPJWC...505002A Altcode: On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (<10-3) and a high resolution spectrograph (bandwidth <70mÅ). The magnetic vectorial map can be extracted thanks to the well-know Zeeman effect, which takes place in the solar atoms, allowing to relate polarization and spectral measurements to magnetic fields. The technological challenge of the IMaX development has a special relevance due to the utilization of innovative technologies in the Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics. Title: Division II: Sun and Heliosphere Authors: Melrose, Donald B.; Martinez Pillet, Valentin; Webb, David F.; Bougeret, Jean-Louis; Klimchuk, James A.; Kosovichev, Alexander; van Driel-Gesztelyi, Lidia; von Steiger, Rudolf Bibcode: 2010IAUTB..27..146M Altcode: This report is on activities of the Division at the General Assembly in Rio de Janeiro. Summaries of scientific activities over the past triennium have been published in Transactions A, see Melrose et al. (2008), Klimchuk et al. (2008), Martinez Pillet et al. (2008) and Bougeret et al. (2008). The business meeting of the three Commissions were incorporated into the business meeting of the Division. This report is based in part on minutes of the business meeting, provided by the Secretary of the Division, Lidia van Driel-Gesztelyi, and it also includes reports provided by the Presidents of the Commissions (C10, C12, C49) and of the Working Groups (WGs) in the Division. Title: Spectropolarimetric inversions of the He I 10830 Å multiplet in an active region filament. Authors: Kuckein, C.; Centeno, R.; Martínez Pillet, V. Bibcode: 2010MmSAI..81..668K Altcode: 2010arXiv1001.2434K Full-Stokes spectropolarimetric data (in the 10830 Å region) of an active region filament were obtained in July 2005 using the Tenerife Infrared Polarimeter instrument. The polarization profiles in the filament show Zeeman-like signatures. Milne-Eddington inversions were performed to infer the chromospheric magnetic field, inclination, azimuth, velocity and Doppler width from the He I 10830 Å multiplet. Field strengths of the order of 600-800 G were found in the filament. Strong transverse fields at chromospheric levels were detected near the polarity inversion line. To our knowledge, these are the highest field strengths reliably measured in these structures. Our findings suggest the possible presence of a flux rope. Title: High resolution imaging and polarimetry with SUNRISE, a balloon-borne stratospheric solar observatory Authors: Barthol, Peter; Chares, Bernd; Deutsch, Werner; Feller, Alex; Gandorfer, Achim; Grauf, Bianca; Hirzberger, Johann; Meller, Reinhard; Riethmueller, Tino; Schuessler, Manfred; Solanki, Sami K.; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Title, Alan Bibcode: 2010cosp...38.4063B Altcode: 2010cosp.meet.4063B SUNRISE is an international collaboration for the development and operation of a meter-class balloon-borne stratospheric solar observatory. Prime science goal is the study of structure and dynamics of the magnetic field in the solar atmosphere and the interaction of the magnetic field with convective plasma flows. These processes are studied by high resolution imaging in the UV and polarimetry at visible wavelengths. The instrument has been successfully launched on June 8, 2009 from ESRANGE, Kiruna, Northern Sweden. During the more than 5 days flight about 1.5 TByte of scientific data were collected. The paper gives an overview of the instrument and mission, examples of the scientific output will also be presented. SUNRISE is a joint project of the Max-Planck-Institut fuer Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Spanish IMaX consortium. Title: The Ultraviolet Filter Imager (SuFI) onboard the Sunrise balloon-borne solar observatory: Instrument description and first results Authors: Gandorfer, Achim; Barthol, Peter; Feller, Alex; Grauf, Bianca; Hirzberger, Johann; Riethmueller, Tino; Solanki, Sami K.; Berkefeld, Thomas; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Title, Alan Bibcode: 2010cosp...38.4064G Altcode: 2010cosp.meet.4064G We describe the design of the near UV filter imager SuFi onboard Sunrise, which was successfully flown in the stratosphere in June 2009. During its five days flight SuFI captured the highest contrast images of solar granulation ever. SuFI is a diffraction limited filter imager with an effective focal length of 121m, working in 5 distinct wavelength bands between 210nm and 397nm. It is based on a two mirror modified Schwarzschild microscope, which is integral part of the central Image stabilization and light Distribution unit (ISLiD) of Sunrise, which acts as the reimaging optics between the 1m telescope and the science instruments. The key technical features of the instrument are presented under the view of the specific demands of balloon-borne optical systems. First results obtained with the instrument are presented to demonstrate the capabilities of the instrument. Title: UV intensity distributions of the quiet Sun observed with Sunrise Authors: Hirzberger, Johann; Feller, A.; Riethmueller, T.; Borrero, J. M.; Schüssler, M.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knoelker, M.; Martínez Pillet, V.; Schmidt, W.; Solanki, S.; Title, A. Bibcode: 2010cosp...38.1735H Altcode: 2010cosp.meet.1735H High resolution solar images in the near UV have been obtained with the Solar UV Filtergraph (SUFI) onboard the Sunrise balloon borne observatory, amongst others in wavelength regions not accessible from the ground. We present intensity distributions of the quiet Sun at different heliocentric angles, from disk center to the solar limb. These results, obtained in spectral windows at 214 nm, 313 nm (OH band), 388 nm (CN band) and 396.7 nm (CaIIH), represent an important validation of numerical models of the solar photosphere and are, thus, fundamental ingredients for our understanding of the thermal processes in the solar surface region. Title: Relation between the Sunrise photospheric magnetic field and the Ca II H bright features Authors: Jafarzadeh, Shahin; Hirzberger, J.; Feller, A.; Lagg, A.; Solanki, S. K.; Pietarila, A.; Danilovic, S.; Riethmueller, T.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knülker, M.; Martínez Pillet, V.; Schmidt, W.; Schüssler, M.; Title, A. Bibcode: 2010cosp...38.2856J Altcode: 2010cosp.meet.2856J Recent observations from the Sunrise balloon-borne solar telescope have enabled us to reach an unprecedented high spatial resolution on the solar surface with the near-ultraviolet photo-spheric and chromospheric images as well as the magnetograms. We use these high resolution observations to investigate the structure of the solar upper photosphere and lower chromosphere as well as their temporal evolutions. We study the relation between the inter-granular Ca II 397 nm bright structures in images obtained by the Sunrise Filter Imager (SuFI) and their corresponding photospheric vector magnetic field computed from the Imaging Magnetogram eXperiment (IMaX) observations. The targets under study are in a quiet Sun region and close to disc-centre. Title: Supersonic Continuation of the Evershed Flow Outside a Sunspot as Observed with Hinode Authors: Martínez Pillet, V.; Katsukawa, Y.; Puschmann, K. G.; Ruiz Cobo, B. Bibcode: 2009ApJ...701L..79M Altcode: 2009arXiv0907.3835M We report on the discovery of mostly horizontal field channels just outside sunspot penumbrae (in the so-called "moat" region) that are seen to sustain supersonic flows (line-of-sight component of 6 km s-1). The spectral signature of these supersonic flows corresponds to circular polarization profiles with an additional, satellite, third lobe of the same sign as the parent sunspot' Stokes V blue lobe, for both downflows and upflows. This is consistent with an outward directed flow that we interpret as the continuation of the magnetized Evershed flow outside sunspots at supersonic speeds. In Stokes Q and U, a clear signature of a transverse field connecting the two flow streams is observed. Such an easily detectable spectral signature should allow for a clear identification of these horizontal field channels in other spectropolarimetric sunspot data. For the spot analyzed in this paper, a total of five channels with this spectral signature have been unambiguously found. Title: Magnetic field strength of active region filaments Authors: Kuckein, C.; Centeno, R.; Martínez Pillet, V.; Casini, R.; Manso Sainz, R.; Shimizu, T. Bibcode: 2009A&A...501.1113K Altcode: 2009arXiv0904.4876K Aims: We study the vector magnetic field of a filament observed over a compact active region neutral line.
Methods: Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10 830 Å spectral region provide full Stokes vectors that were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions, and PCA-based atomic polarization inversions.
Results: The inferred magnetic field strengths in the filament are around 600-700 G by all these three methods. Longitudinal fields are found in the range of 100-200 G whereas the transverse components become dominant, with fields as high as 500-600 G. We find strong transverse fields near the neutral line also at photospheric levels.
Conclusions: Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in active region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the helium 10 830 Å lines observed in this active region filament are dominated by the Zeeman effect. Title: POLAR investigation of the Sun—POLARIS Authors: Appourchaux, T.; Liewer, P.; Watt, M.; Alexander, D.; Andretta, V.; Auchère, F.; D'Arrigo, P.; Ayon, J.; Corbard, T.; Fineschi, S.; Finsterle, W.; Floyd, L.; Garbe, G.; Gizon, L.; Hassler, D.; Harra, L.; Kosovichev, A.; Leibacher, J.; Leipold, M.; Murphy, N.; Maksimovic, M.; Martinez-Pillet, V.; Matthews, B. S. A.; Mewaldt, R.; Moses, D.; Newmark, J.; Régnier, S.; Schmutz, W.; Socker, D.; Spadaro, D.; Stuttard, M.; Trosseille, C.; Ulrich, R.; Velli, M.; Vourlidas, A.; Wimmer-Schweingruber, C. R.; Zurbuchen, T. Bibcode: 2009ExA....23.1079A Altcode: 2008ExA...tmp...40A; 2008arXiv0805.4389A The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS’s primary objective: determining the relation between the magnetism and dynamics of the Sun’s polar regions and the solar cycle. Title: Entrega de IMaX al globo polar SUNRISE Authors: Martínez Pillet, V. Bibcode: 2009iac..talk...44M Altcode: 2009iac..talk...49M No abstract at ADS Title: Division II: Sun and Heliosphere Authors: Melrose, Donald B.; Martínez Pillet, Valentin; Webb, David F.; van Driel-Gesztelyi, Lidia; Bougeret, Jean-Louis; Klimchuk, James A.; Kosovichev, Alexander; von Steiger, Rudolf Bibcode: 2009IAUTA..27...73M Altcode: Division II of the IAU provides a forum for astronomers and astrophysicists studying a wide range of phenomena related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system. Division II encompasses three Commissions, 10, 12 and 49, and four Working Groups. Title: Commission 12: Solar Radiation and Structure Authors: Martínez Pillet, Valentin; Kosovichev, Alexander; Mariska, John T.; Bogdan, Thomas J.; Asplund, Martin; Cauzzi, Gianna; Christensen-Dalsgaard, Jørgen; Cram, Lawrence E.; Gan, Weiqun; Gizon, Laurent; Heinzl, Petr; Rovira, Marta G.; Venkatakrishnan, P. Bibcode: 2009IAUTA..27..104M Altcode: Commission 12 encompasses investigations on the internal structure and dynamics of the Sun, mostly accessible through the techniques of local and global helioseismology, the quiet solar atmosphere, solar radiation and its variability, and the nature of relatively stable magnetic structures like sunspots, faculae and the magnetic network. A revision of the progress made in these fields is presented. For some specific topics, the review has counted with the help of experts outside the Commission Organizing Committee that are leading and/or have recently presented relevant works in the respective fields. In this cases the contributor's name is given in parenthesis. Title: SUNRISE: High resolution UV/VIS observations of the sun from the stratosphere Authors: Sunrise Team; Barthol, P.; Gandorfer, A. M.; Solanki, S. K.; Knölker, M.; Martinez Pillet, V.; Schmidt, W.; Title, A. M.; SUNRISE Team Bibcode: 2008AdSpR..42...70S Altcode: SUNRISE is an international project for the development, construction and operation of a balloon-borne solar telescope with an aperture of 1 m, working in the UV/VIS spectral domain. The main scientific goal of SUNRISE is to understand the structure and dynamics of the magnetic field in the atmosphere of the Sun. SUNRISE will provide near diffraction-limited images of the photosphere and chromosphere with an unprecedented resolution down to 35 km on the solar surface at wavelengths around 220 nm. Active in-flight alignment and image stabilization techniques are used. The focal-plane instrumentation consists of a polarization sensitive spectrograph, a Fabry Perot filter magnetograph and a phase-diverse filter imager working in the near UV. The first stratospheric long-duration balloon flight of SUNRISE is planned in summer 2009 from the Swedish ESRANGE station. SUNRISE is a joint project of the German Max-Planck-Institut für Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg, Germany, the High-Altitude Observatory (HAO), Boulder, USA, the Lockheed-Martin Solar and Astrophysics Laboratory (LMSAL), Palo Alto, USA, and the Spanish IMaX consortium. This paper will give an overview about the mission and a description of its scientific and technological aspects. Title: Moat Flow in the Vicinity of Sunspots for Various Penumbral Configurations Authors: Vargas Domínguez, S.; Rouppe van der Voort, L.; Bonet, J. A.; Martínez Pillet, V.; Van Noort, M.; Katsukawa, Y. Bibcode: 2008ApJ...679..900V Altcode: 2008arXiv0802.1457V High-resolution time series of sunspots have been obtained with the Swedish 1 m Solar Telescope between 2003 and 2006 at different locations on the solar disk. Proper motions in seven different active regions have been studied. The analysis was performed by applying local correlation tracking to every series of sunspots, each of them more than 40 minutes long. The sunspots' shapes include a different variety of penumbral configurations. We report on the systematic behavior of the large-scale outflows surrounding the sunspots, commonly known as moat flows, that are essentially present only when preceded by a penumbra not tangential but perpendicular to the sunspot border. We present one case for which this rule appears not to be confirmed. We speculate that the magnetic neutral line, which is located in the vicinity of the anomalous region, might be responsible for blocking the outflow. These new results confirm the systematic and strong relation between the moat flows and the existence of penumbrae. A comparative statistical study between moats and standard granulation is also performed. Title: Spectropolarimetry of a Decaying Sunspot Penumbra Authors: Bellot Rubio, L. R.; Tritschler, A.; Martínez Pillet, V. Bibcode: 2008ApJ...676..698B Altcode: 2007arXiv0712.2937B We report on high angular resolution, high-precision spectropolarimetric measurements of a decaying sunspot. The spot gradually lost its penumbra during the course of 3 days. In the late stages of evolution, where the only remnant of the spot is a naked umbra, we find small-scale inhomogeneities in the magnetic canopy surrounding it. The inhomogeneities are observed as finger-like structures of weak and nearly horizontal magnetic fields extending 1''-2'' from the border of the umbra. These fields are not associated with filamentary structures in continuum intensity or with conspicuous Evershed flows. The Stokes profiles emerging from the fingers exhibit blueshifts, which we interpret as upward motions. This previously unknown fine structure may be related to penumbral field lines that no longer carry strong Evershed flows and rise to the chromosphere, producing the disappearance of the penumbra at photospheric levels. Title: Multiline Spectropolarimetry of the Quiet Sun at 5250 and 6302 Å Authors: Socas-Navarro, H.; Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Domínguez Cerdeña, I.; Khomenko, E. V.; Martínez González, M. J.; Martínez Pillet, V.; Ruiz Cobo, B.; Sánchez Almeida, J. Bibcode: 2008ApJ...674..596S Altcode: The reliability of quiet-Sun magnetic field diagnostics based on the Fe I lines at 6302 Å has been questioned by recent work. Here we present the results of a thorough study of high-resolution multiline observations taken with the new spectropolarimeter SPINOR, comprising the 5250 and 6302 Å spectral domains. The observations were analyzed using several inversion algorithms, including Milne-Eddington, LTE with 1 and 2 components, and MISMA codes. We find that the line-ratio technique applied to the 5250 Å lines is not sufficiently reliable to provide a direct magnetic diagnostic in the presence of thermal fluctuations and variable line broadening. In general, one needs to resort to inversion algorithms, ideally with realistic magnetohydrodynamic constrains. When this is done, the 5250 Å lines do not seem to provide any significant advantage over those at 6302 Å. In fact, our results point toward a better performance with the latter (in the presence of turbulent line broadening). In any case, for very weak flux concentrations, neither spectral region alone provides sufficient constraints to fully disentangle the intrinsic field strengths. Instead, we advocate for a combined analysis of both spectral ranges, which yields a better determination of the quiet-Sun magnetic properties. Finally, we propose the use of two other Fe I lines (at 4122 and 9000 Å) with identical line opacities that seem to work much better than the others. Title: In-situ Flux Losses in Active Regions Authors: Dalda, A. S.; Martinez Pillet, V. M. Bibcode: 2008ASPC..383..115D Altcode: We have investigated the total magnetic flux losses of three active regions, and the contribution of the cancellations that occur in the decay phase. Magnetic flux losses represent about 50%--70% of the magnetic flux in the active region. We have also found a clear correlation between cancellations and outward directed events in the chromosphere and the corona. Title: Division II: Sun and Heliosphere Authors: Webb, David F.; Melrose, Donald B.; Benz, Arnold O.; Bogdan, Thomas J.; Bougeret, Jean-Louis; Klimchuk, James A.; Martinez-Pillet, Valentin Bibcode: 2007IAUTB..26..101W Altcode: Division II provides a forum for astronomers studying a wide range of problems related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system. Title: Supersonic Downflows in the Photosphere Discovered in Sunspot Moat Regions Authors: Shimizu, T.; Martinez-Pillet, V.; Collados, M.; Ruiz-Cobo, B.; Centeno, R.; Beck, C.; Katsukawa, Y. Bibcode: 2007ASPC..369..113S Altcode: This paper reports on our new findings from the International Time Program observations at the Canaries islands, Spain, in July 2005. We have found small-scale photospheric events with extremely red-shifted Stokes V signals in sunspot moat regions. A preliminary estimate of the physical conditions for an observed Stokes V profile indicates the presence of a downward motion with a supersonic speed in the order of 10 km/s. With the currently evaluated observational information, we interprete the supersonic flows as downward motion from magnetic reconnection occurring at the upper chromosphere or lower photosphere. With coordinated observations of the Solar-B onboard telescopes, Stokes measurements by the SOT spectro-polarimeter would give new information for further understanding the nature of these events with strongly red-shifted Stokes V, and for discussing the physical conditions involving in possible magnetic reconnections in the lower solar atmosphere. Title: Multi-Line Quiet Sun Spectro-Polarimetry at 5250 and 6302 Å Authors: Socas-Navarro, H.; Borrero, J.; Asensio Ramos, A.; Collados, M.; Domínguez Cerdeña, I.; Khomenko, E. V.; Martínez González, M. J.; Martínez Pillet, V.; Ruiz Cobo, B.; Sánchez Almeida, J. Bibcode: 2007arXiv0710.1099S Altcode: The reliability of quiet Sun magnetic field diagnostics based on the \ion{Fe}{1} lines at 6302 Åhas been questioned by recent work. We present here the results of a thorough study of high-resolution multi-line observations taken with the new spectro-polarimeter SPINOR, comprising the 5250 and 6302 Åspectral domains. The observations were analyzed using several inversion algorithms, including Milne-Eddington, LTE with 1 and 2 components, and MISMA codes. We find that the line-ratio technique applied to the 5250 Ålines is not sufficiently reliable to provide a direct magnetic diagnostic in the presence of thermal fluctuations and variable line broadening. In general, one needs to resort to inversion algorithms, ideally with realistic magneto-hydrodynamical constrains. When this is done, the 5250 Ålines do not seem to provide any significant advantage over those at 6302 Å. In fact, our results point towards a better performance with the latter (in the presence of turbulent line broadening). In any case, for very weak flux concentrations, neither spectral region alone provides sufficient constraints to fully disentangle the intrinsic field strengths. Instead, we advocate for a combined analysis of both spectral ranges, which yields a better determination of the quiet Sun magnetic properties. Finally, we propose the use of two other \ion{Fe}{1} lines (at 4122 and 9000 Å) with identical line opacities that seem to work much better than the others. Title: The Use of Spectro-Polarimetric Measurements to determine the Plasma Heating Authors: Jurčák, J.; Martinez Pillet, V.; Sobotka, M. Bibcode: 2007ASPC..369..171J Altcode: We present the possible use of spectro-polarimetric measurements on a set of data recorded with La Palma Stokes Polarimeter attached to the Swedish Vacuum Solar Telescope. The stratification over the solar atmosphere of different physical parameters is retrieved from these data using the Stokes Inversion based on Response functions (SIR). We derive the vertical component of electric current density coming out from the stratification of the magnetic field strength and orientation of the magnetic field vector. We also found spatial and height correlation between the temperature enhancement and increase of electric current density, this could be caused by the energy dissipation stored in the magnetic field configuration. Title: On the Moat-Penumbra Relation Authors: Vargas Domínguez, S.; Bonet, J. A.; Martínez Pillet, V.; Katsukawa, Y.; Kitakoshi, Y.; Rouppe van der Voort, L. Bibcode: 2007ApJ...660L.165V Altcode: 2007astro.ph..2713V Proper motions in a sunspot group with a δ-configuration and close to the solar disk center have been studied by employing local correlation tracking techniques. The analysis is based on a more than 1 hr time series of G-band images. Radial outflows with a mean speed of 0.67 km s-1 have been detected around the spots, the well-known sunspots moats. However, these outflows are not found in those umbral core sides without penumbra. Moreover, moat flows are only found in those sides of penumbrae located in the direction marked by the penumbral filaments. Penumbral sides perpendicular to them show no moat flow. These results strongly suggest a relation between the moat flow and the well-known, filament-aligned Evershed flow. The standard picture of a moat flow originating from a blocking of the upward propagation of heat is discussed in some detail. Title: Properties of sunspots in cycle 23. I. Dependence of brightness on sunspot size and cycle phase Authors: Mathew, S. K.; Martínez Pillet, V.; Solanki, S. K.; Krivova, N. A. Bibcode: 2007A&A...465..291M Altcode: 2007astro.ph..1401M Aims:In this paper we investigate the dependence of umbral core brightness, as well as the mean umbral and penumbral brightness on the phase of the solar cycle and on the size of the sunspot.
Methods: Albregtsen & Maltby (1978, Nature, 274, 41) reported an increase in umbral core brightness from the early to the late phase of solar cycle from the analysis of 13 sunspots which cover solar cycles 20 and 21. Here we revisit this topic by analysing continuum images of more than 160 sunspots observed by the MDI instrument on board the SOHO spacecraft for the period between 1998 March to 2004 March, i.e. a sizable part of solar cycle 23. The advantage of this data set is its homogeneity, with no seeing fluctuations. A careful stray light correction, which is validated using the Mercury transit of 7th May, 2003, is carried out before the umbral and penumbral intensities are determined. The influence of the Zeeman splitting of the nearby Ni I spectral line on the measured "continuum" intensity is also taken into account.
Results: We did not observe any significant variation in umbral core, mean umbral and mean penumbral intensities with solar cycle, which is in contrast to earlier findings for the umbral core intensity. We do find a strong and clear dependence of the umbral brightness on sunspot size, however. The penumbral brightness also displays a weak dependence. The brightness-radius relationship has numerous implications, some of which, such as those for the energy transport in umbrae, are pointed out. Title: Commission 12: Solar Radiation & Structure Authors: Bogdan, Thomas. J.; Martínez Pillet, Valentin; Asplund, M.; Christensen-Dalsgaard, J.; Cauzzi, G.; Cram, L. E.; Dravins, D.; Gan, W.; Henzl, P.; Kosovichev, A.; Mariska, J. T.; Rovira, M. G.; Venkatakrishnan, P. Bibcode: 2007IAUTA..26...89B Altcode: Commission 12 covers research on the internal structure and dynamics of the Sun, the "quiet" solar atmosphere, solar radiation and its variability, and the nature of relatively stable magnetic structures like sunspots, faculae and the magnetic network. There is considerable productive overlap with the other Commissions of Division II as investigations move progressively toward the fertile intellectual boundaries between traditional research disciplines. In large part, the solar magnetic field provides the linkage that connects these diverse themes. The same magnetic field that produces the more subtle variations of solar structure and radiative output over the 11 yr activity cycle is also implicated in rapid and often violent phenomena such as flares, coronal mass ejections, prominence eruptions, and episodes of sporadic magnetic reconnection.The last three years have again brought significant progress in nearly all the research endeavors touched upon by the interests of Commission 12. The underlying causes for this success remain the same: sustained advances in computing capabilities coupled with diverse observations with increasing levels of spatial, temporal and spectral resolution. It is all but impossible to deal with these many advances here in anything except a cursory and selective fashion. Thankfully, the Living Reviews in Solar Physics; has published several extensive reviews over the last two years that deal explicitly with issues relevant to the purview of Commission 12. The reader who is eager for a deeper and more complete understanding of some of these advances is directed to http://www.livingreviews.org for access to these articles. Title: Division II: Sun and Heliosphere Authors: Webb, David F.; Melrose, Donald B.; Benz, Arnold O.; Bogdan, Thomas J.; Bougeret, Jean-Louis; Klimchuk, James A.; Martinez Pillet, Valentin Bibcode: 2007IAUTA..26...69W Altcode: Division II of the IAU provides a forum for astronomers studying a wide range of phenomena related to the structure, radiation and activity of the Sun, and its interaction with the Earth and the rest of the solar system. Division II encompasses three Commissions, 10, 12 and 49, and four working groups. During the last triennia the activities of the division involved some reorganization of the division and its working groups, developing new procedures for election of division and commission officers, promoting annual meetings from within the division and evaluating all the proposed meetings, evaluating the division's representatives for the IAU to international scientific organizations, and participating in general IAU business. Title: L iquid Crystal Variable Retarders For Aerospace Applications Authors: Álavarez-Herrero, A.; Heredero, R. L.; Uribe-Patarroyo, N.; Sánchez, A.; Reina, M.; Ramos, G.; Belenguer, T.; del Toro, J. C.; Jochum, L.; Martínez-Pillet, V. Bibcode: 2007ESASP.641E..54A Altcode: Polarization modulators based on Liquid Crystal Variable Retarders (LCVRs) are envisaged as a powerful and versatile solution whose main advantage is the lack of mechanisms (i.e. rotating plates). An extensive test campaign has been carried out in order to demonstrate the feasibility of the LCVRs for the IMaX/SUNRISE magnetograph in environmental conditions similar to space conditions. Analysis of the influence of vacuum, temperature, vibration, gamma and ultraviolet radiation was performed by measuring the effects of these tests on the optical retardance, the response time, the wavefront distortion and the transmittance, including "in-situ" measurements. Outgassing rates of the different parts of the LCVRs were also studied. From the results obtained it can be concluded that these optical devices are suitable for SUNRISE and seem to be excellent candidates for aerospace missions as Solar Orbiter. Title: Evidence Of An Association Between The Presence Of Penumbrae And Strong Radial Outflows In Sunspots Authors: Santiago, Vargas Domínguez; Bonet, J. A.; Martinez Pillet, V.; Katsukawa, Y. Bibcode: 2007ESASP.641E..87S Altcode: Time series of high-resolution images of the complex ac-tive region NOAA 10786 are studied. The observations were performed in G-band (430.5 nm) and in the nearby continuum (463.3 nm), on July 9, 2005 at the Swedish 1-meter Solar Telecope (SST) in La Palma. Granular proper motions in the surroundings of the sunspots have been quantified. A large-scale radial outflow in the velocity range 0.3 - 1 km s-1 has been measured around the sunspots by using local correlation tracking techniques. However, this outflow is not found in those regions around the sunspots with no penumbral structure. This result evidences an association between penumbrae and the existence of strong horizontal outflows (the moat) in sunspots. Title: SUNRISE: High resolution UV/VIS observations of the Sun from the stratosphere Authors: Gandorfer, A. M.; Solanki, S. K.; Barthol, P.; Martínez Pillet, V.; Schmidt, W.; Title, A. M.; Knölker, M. Bibcode: 2007msfa.conf...69G Altcode: SUNRISE is an international project for the development, construction, and operation of a balloon-borne solar telescope with an aperture of 1 m, working in the UV/VIS spectral domain. The main scientific goal of SUNRISE is to understand the structure and dynamics of the magnetic field in the atmosphere of the Sun. SUNRISE will provide near diffraction-limited images of the photosphere and chromosphere with an unpredecented resolution down to 35 km on the solar surface at wavelengths around 220 nm. The focal-plane instrumentation consists of a polarization sensitive spectrograph, a Fabry-Perot filter magnetograph, and a phase-diverse filter imager working in the near UV. The first stratospheric long-duration balloon flight of SUNRISE is planned in summer 2009 from the Swedish ESRANGE station. SUNRISE is a joint project of the German Max-Planck-Institut für Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg, Germany, the High-Altitude Observatory (HAO), Boulder, USA, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, USA, and the Spanish IMaX consortium. In this paper we will present a brief description of the scientific and technological aspects of SUNRISE. Title: Instrumental Approaches to Magnetic and Velocity Measurements in and out of the Ecliptic Plane Authors: Martinez Pillet, V. Bibcode: 2007ESASP.651E..27M Altcode: Velocity and magnetic fields are derived from subtracting intensity measurements made at different times and, normally, under different conditions. This differential imaging property puts important requirements on image stabilization. Examples of the implications for the Solar Orbiter mission are discussed. Similarly, we review how spectral and polarization measurements can be done and analyzed in the context of the Solar Orbiter mission. Title: Design Of A Fabry Perot Interferometer For The VIM Instrument Aboard Solar Orbiter Authors: Trosseille, C.; Appourchaux, T.; Martinez Pillet, V. Bibcode: 2007ESASP.641E..85T Altcode: The spectral analyser of the Visible light Imager and Magnetograph (VIM) is a critical device whose concept is dependent on scientific requirements and technical trade-offs, which are directly driven by the nature of the mission. Here, we report on the choices that were made to fulfill the scientific needs, while constantly keeping an eye on feasibility. We also list the critical points and remaining issues that should be investigated and addressed properly in further work. Title: T hermal Feasibility Study Of The Solar Orbiter Visible Light Imager And Magnetograph (VIM) Authors: Pérez-Grande, I.; Martínez-Pillet, V.; Woch, J.; Hartwig, H. Bibcode: 2007ESASP.641E..76P Altcode: In order to determine the feasibility of the Solar Orbiter instrument Visible Light Imager and Magnetograph (VIM), a thermal analysis focused on the critical elements of the instrument has been carried out. The thermal solution has been sought for the hot case and the performance in the cold operational and survival modes has been analysed. Title: S pace Qualification Of A Thin Wafer Lithium Niobate Etalon For The Visible Light Imager And Magnetograph (Vim) Authors: Schühle, U.; Mathew, S. K.; Wedemeier, M.; Hartwig, H.; Ballesteros, E.; Martinez Pillet, V.; Solanki, S. K. Bibcode: 2007ESASP.641E..82S Altcode: For the Visible Light Imager and Magnetograph (VIM) a high-resolution filtergraph is under design. The system takes advantage of a lithium niobate (LiNbO3) crystal which can be used as a scanning filter using high voltage for tuning. We have undertaken first studies to qualify a lithium niobate wafer of 70 mm aperture size for deployment and use in space. We show the results of the mechanical mounting and vibration and thermal cycling tests as well as stability tests under fast voltage tuning in vacuum. Although these tests have all been very successful, further environmental testing is necessary to fully space-qualify the filter for the Solar Orbiter mission. Title: Instrumental Approaches To Magnetic And Velocity Measurements In And Out Of The Ecliptic Plane Authors: Martínez Pillet, V. Bibcode: 2007ESASP.641E..27M Altcode: 2006ESASP.641E..27M Velocity and magnetic fields are derived from subtracting intensity measurements made at different times and, normally, under different conditions. This differential imaging property puts important requirements on image stabilization. Examples of the implications for the Solar Orbiter mission are discussed. Similarly, we review how spectral and polarization measurements can be done and analyzed in the context of the Solar Orbiter mission. Title: Evidence of an association between the presence of penumbrae and strong radial outflows in sunspots Authors: Vargas Domínguez, S.; Bonet, J. A.; Martinez Pillet, V.; Katsukawa, Y. Bibcode: 2006astro.ph.11500V Altcode: Time series of high-resolution images of the complex active region NOAA 10786 are studied. The observations were performed in G-band (430.5 nm) and in the nearby continuum (463.3 nm), on July 9, 2005 at the Swedish 1-meter Solar Telecope (SST) in La Palma. Granular proper motions in the surroundings of the sunspots have been quantified. A large-scale radial outflow in the velocity range 0.3 - 1 km s^[-1] has been measured around the sunspots by using local correlation tracking techniques. However, this outflow is not found in those regions around the sunspots with no penumbral structure. This result evidences an association between penumbrae and the existence of strong horizontal outflows (the moat) in sunspots. Title: The magnetic canopy above light bridges Authors: Jurčák, J.; Martínez Pillet, V.; Sobotka, M. Bibcode: 2006A&A...453.1079J Altcode: An analysis of high-resolution Stokes observations of two light bridges in active region NOAA 8990 is presented. The observations were recorded with the La Palma Stokes Polarimeter attached to the Swedish Vacuum Solar Telescope. The stratification over the solar atmosphere of different physical parameters is retrieved from these data using the Stokes inversion based on response functions (SIR). Our results confirm previous observations of features such as the decrease in magnetic field strength and the increase in inclination in the light bridges. We also confirm a temperature increase in these structures with respect to the surrounding umbrae. The maps of the magnetic field strength and of the orientation of the magnetic field vector indicate the presence of a canopy structure above the light bridges. We derive the vertical component of electric current density (J_z) from the configuration of the magnetic field. The increased temperature found in the upper layers is studied in the context of the proposed canopy topology and could also explain the recently observed chromospheric heating processes found above light bridges. Title: SUNRISE: high resolution UV/VIS observations of the Sun from the stratosphere Authors: Gandorfer, A. M.; Solanki, S. K.; Barthol, P.; Lites, B. W.; Martínez Pillet, V.; Schmidt, W.; Soltau, D.; Title, A. M. Bibcode: 2006SPIE.6267E..0SG Altcode: 2006SPIE.6267E..25G SUNRISE is an international project for the development, construction, and operation of a balloon-borne solar telescope with an aperture of 1 m, working in the UV/VIS spectral domain. The main scientific goal of SUNRISE is to understand the structure and dynamics of the magnetic field in the atmosphere of the Sun. SUNRISE will provide near diffraction-limited images of the photosphere and chromosphere with an unpredecented resolution down to 35 km on the solar surface at wavelengths around 220 nm. The focal-plane instrumentation consists of a polarization sensitive spectrograph, a Fabry-Perot filter magnetograph, and a phase-diverse filter imager working in the near UV. The first stratospheric long-duration balloon flight of SUNRISE is planned in Summer 2009 from the swedish ESRANGE station. SUNRISE is a joint project of the german Max-Planck-Institut fur Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut fur Sonnenphysik (KIS), Freiburg, Germany, the High-Altitude Observatory (HAO), Boulder, USA, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, USA, and the spanish IMaX consortium. In this paper we will present an actual update on the mission and give a brief description of its scientific and technological aspects. Title: Detailed design of the imaging magnetograph experiment (IMaX): a visible imager magnetograph for the Sunrise mission Authors: Álvarez-Herrero, A.; Belenguer, T.; Pastor, C.; González, L.; Heredero, R. L.; Ramos, G.; Reina, M.; Sánchez, A.; Villanueva, J.; Sabau, L.; Martínez Pillet, V.; Bonet, J. A.; Collados, M.; Jochum, L.; Ballesteros, E.; Medina Trujillo, J. L.; Ruiz, Cobo B.; González, J. C.; del Toro Iniesta, J. C.; López Jiménez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jerónimo, J. M.; Mellado, P.; Morales, R.; Rodríguez, J.; Domingo, V.; Gasent, J. L.; Rodríquez, P. Bibcode: 2006SPIE.6265E..4CA Altcode: 2006SPIE.6265E.132A In this work, it is described the Imaging Magnetograph eXperiment, IMaX, one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists on a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX will provide vector magnetograms of the solar surface with a spatial resolution of 70 m. This data is relevant for understanding how the magnetic fields emerge in the solar surface, how they couple the photospheric base with the million degrees of temperature of the solar corona and which are the processes that are responsible of the generation of such an immense temperatures. To meet this goal IMaX should work as a high sensitivity polarimeter, high resolution spectrometer and a near diffraction limited imager. Liquid Crystal Variable Retarders will be used as polarization modulators taking advantage of the optical retardation induced by application of low electric fields and avoiding mechanical mechanisms. Therefore, the interest of these devices for aerospace applications is envisaged. The spectral resolution required will be achieved by using a LiNbO 3 Fabry-Perot etalon in double pass configuration as spectral filter before the two CCDs detectors. As well phase-diversity techniques will be implemented in order to improve the image quality. Nowadays, IMaX project is in the detailed design phase before fabrication, integration, assembly and verification. This paper briefly describes the current status of the instrument and the technical solutions developed to fulfil the scientific requirements. Title: Lithium niobate Fabry-Perot etalons in double-pass configuration for spectral filtering in the visible imager magnetograph IMaX for the SUNRISE mission Authors: Álvarez-Herrero, A.; Belenguer, T.; Pastor, C.; Heredero, R. L.; Ramos, G.; Martínez Pillet, V.; Bonet Navarro, J. A. Bibcode: 2006SPIE.6265E..2GA Altcode: 2006SPIE.6265E..74A The Imaging MAgnetograph eXperiment, IMaX, is one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists of a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX should work as a diffraction limited imager and it should be capable to carry out polarization measurements and spectroscopic analysis with high resolution (50.000-100.000 range). The spectral resolution required will be achieved by using a LiNbO 3 (z-cut) Fabry-Perot etalon in double pass configuration as spectral filter. Up to our knowledge, few works in the literature describe the associated problems of using these devices in an imager instrument (roughness, off-normal incidence, polarization sensitivity...). Because of that, an extensive and detailed analysis of etalon has been carried out. Special attention has been taken in order to determine the wavefront transmission error produced by the imperfections of a real etalon in double pass configuration working in collimated beam. Different theoretical models, numeric simulations and experimental data are analysed and compared obtaining a complete description of the etalon response. Title: A Detailed Analysis of an Ephemeral Region . Authors: Guglielmino, S. L.; Martínez Pillet, V.; Ruiz Cobo, B.; Zuccarello, F.; Lites, B. W. Bibcode: 2006MSAIS...9..103G Altcode: In order to improve the understanding of the process of emergence of magnetic flux on the solar surface, we studied the temporal evolution of an ephemeral region using \emph{Advanced Stokes Polarimeter} data. We adopted two different approaches: first, we used a Milne-Eddington inversion to obtain mean parameters of the emerging bipole magnetic configuration. Then, we considered the full radiative transfer equation, and we studied the trend of all the previous parameters as a function of the optical depth tau . We pointed out peculiar flows, such as an initial upflow of 1.5 ;textrm {km s}-1 where the zenith angle is essentially horizontal, and downflows decreasing in time in footpoints, characterized by a vertical field. These results seem to confirm the emerging bipole topology, due to magnetic flux tube emergence. The results obtained with this inversion confirm the structure found with Milne-Eddington code. However we found regions in which the presence of two distinct magnetic components is highly significant. It also seems very interesting the trend of the temperature with optical depth: the plasma temperature appears to grow up in the high photosphere above the emerging bipole. Title: SUNRISE: high-resolution UV/VIS observations of the Sun from the stratosphere Authors: Solanki, S. K.; Barthol, P.; Gandorfer, A.; Schüssler, M.; Lites, B. W.; Martinez Pillet, V.; Schmidt, W.; Title, A. M. Bibcode: 2006cosp...36.2416S Altcode: 2006cosp.meet.2416S SUNRISE is a balloon-borne solar telescope with an aperture of 1m working in the UV VIS optical domain The main scientific goal of SUNRISE is to study the structure and dynamics of the magnetic field in the atmosphere of the Sun at high spatial resolution SUNRISE will provide diffraction-limited images of the photosphere and chromosphere with an unprecedented resolution down to 35km at wavelengths around 220nm Focal-plane instruments are a UV filter imager a Fabry-Perot filter magnetograph and a spectrograph polarimeter Stratospheric long-duration balloon flights of SUNRISE over the North Atlantic and or Antarctica are planned SUNRISE is a joint project of the Max-Planck-Institut fuer Sonnensystemforschung MPS Katlenburg-Lindau with the Kiepenheuer-Institut fuer Sonnenphysik KIS Freiburg the High-Altitude Observatory HAO Boulder the Lockheed-Martin Solar and Astrophysics Lab LMSAL Palo Alto and the spanish IMaX consortium The presentation will give an overview about the mission and a description of the instrumentation now at the beginning of the hardware construction phase Title: The Canopy Structure above Light Bridges Authors: Jurčák, J.; Sobotka, M.; Martínez Pillet, V. Bibcode: 2006CEAB...30...55J Altcode: An analysis of high-resolution Stokes observations of two light bridges in the active region NOAA 8990 is presented. The observations were recorded with the La Palma Stokes Polarimeter attached to the Swedish Vacuum Solar Telescope. The stratification of different physical parameters is retrieved using the Stokes Inversion based on Response functions (SIR). Our results confirm the decrease of magnetic field strength and the increase of inclination in light bridges. We find a complex temperature stratification in these structures Coming out from the stratification of the magnetic field strength and the orientation of the magnetic field vector, we suggest a canopy structure above the light bridge. We derive the vertical component of electric current density (Jz). The increase of Jz corresponds to temperature enhancements that might be caused by the energy dissipation stored in the magnetic field. Title: The Magnetic Configuration in Light Bridges Authors: Jurčák, J.; Sobotka, M.; Martínez Pillet, V. Bibcode: 2005ESASP.600E...8J Altcode: 2005dysu.confE...8J; 2005ESPM...11....8J No abstract at ADS Title: The scientific case for spectropolarimetry from space: a novel diagnostic window on cosmic magnetic fields Authors: Trujillo Bueno, J.; Landi Degl'Innocenti, E.; Casini, R.; Martínez Pillet, V. Bibcode: 2005ESASP.588..203T Altcode: 2005tssc.conf..203T No abstract at ADS Title: The Scientific Case for Quantum Spectropolarimetry from Space Authors: Trujillo Bueno, J.; Landi Degl'Innocenti, E.; Casini, R.; Martínez Pillet, V. Bibcode: 2005ESASP.596E...4T Altcode: 2005ccmf.confE...4T No abstract at ADS Title: Moving Magnetic Features as Prolongation of Penumbral Filaments Authors: Sainz Dalda, A.; Martínez Pillet, V. Bibcode: 2005ApJ...632.1176S Altcode: A sequence of 633 high spatial resolution magnetograms and continuum images from SOHO MDI of NOAA AR 0330 is used to study moving magnetic feature (MMF) activity in the moat surrounding a mature leader sunspot. The time-averaged frame shows that the moat region is covered by a magnetic field that exhibits the same polarity distribution as that observed in the penumbra. The moat field displays the true polarity of the spot in the sector where the penumbra displays it. Similarly, on the side where the penumbra shows a polarity opposite the true one (due to projection effects after the so-called apparent neutral line), the moat field also displays a polarity opposite the true one. This is only compatible with a moat field that is horizontal almost everywhere, as in the outer penumbra. Indeed, this horizontal moat field is seen to be physically connected with the penumbra. This connection is made evident when analyzing the individual structures detected in the averaged images, which we call moat filaments. The filaments stretch out for 12" in the moat and can be traced back into the penumbra. The observed polarity distribution along them is only compatible with mean inclinations in the range of 80°-90°. Inside the spot, these filaments are linked to the more horizontal magnetic field component that is thought to carry a large part of the Evershed flow. Several bipolar MMFs are seen to originate inside the penumbra and cross the sunspot outer boundary to enter the moat region, following the paths outlined by the moat filaments. These results are discussed in the frame of our current theoretical understanding of the Evershed flow and MMF activity. Title: Velocity Fields in an Irregular Sunspot Authors: Jurčák, J.; Sobotka, M.; Martínez-Pillet, V. Bibcode: 2005ASSL..320..227J Altcode: 2005smp..conf..227J No abstract at ADS Title: SUNRISE: high-resolution UV/VIS observations of the Sun from the stratosphere Authors: Gandorfer, Achim M.; Solanki, Sami K.; Schüssler, Manfred; Curdt, Werner; Lites, Bruce W.; Martínez Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M. Bibcode: 2004SPIE.5489..732G Altcode: SUNRISE is a balloon-borne solar telescope with an aperture of 1m, working in the UV/VIS optical domain. The main scientific goal of SUNRISE is to understand the structure and dynamics of the magnetic field in the atmosphere of the Sun. SUNRISE will provide diffraction-limited images of the photosphere and chromosphere with an unpredecented resolution down to 35km at wavelengths around 220nm. Focal-plane instruments are a spectrograph/polarimeter, a Fabry-Perot filter magnetograph, and a filter imager. The first stratospheric long-duration balloon flight of SUNRISE over Antarctica is planned in winter 2006/2007. SUNRISE is a joint project of the Max-Planck-Institut fur Sonnensystemforschung (MPS), Katlenburg-Lindau, with the Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofisica de Canarias, La Laguna, Tenerife. In this paper we will present an overview on the mission and give a description of the instrumentation, now, at the beginning of the hardware construction phase. Title: The Thermal and Magnetic Structure of Umbral Dots from the Inversion of High-Resolution Full Stokes Observations Authors: Socas-Navarro, H.; Martínez Pillet, V.; Sobotka, M.; Vázquez, M. Bibcode: 2004ApJ...614..448S Altcode: This paper presents the analysis of high-resolution Stokes observations of eight different umbral dots in a sunspot. The spectra were recorded with the La Palma Stokes Polarimeter, attached to the Swedish Vacuum Solar Telescope. The observed line profiles have been inverted to yield the height stratifications of temperature, magnetic field, and line-of-sight velocity, as well as their respective Wilson depressions. We report on systematic differences in the properties of umbral dots with respect to the nearby umbra, including small upflows (~100 m s-1), higher temperatures (~1 kK), and weaker fields (~500 G) with more horizontal orientations (~10°). The field weakening is strongly correlated with the Wilson depression, suggesting that it may be due to an opacity effect (as one is looking at higher layers). The inclination excess, on the other hand, is real and cannot be ascribed to formation height issues. The results obtained from our semiempirical modeling are discussed within the context of the currently existing scenarios for the subsurface structure of sunspots. The observational signatures revealed by our analysis fit well within both the ``spaghetti'' and the monolithic models. Title: The imaging magnetograph eXperiment for the SUNRISE balloon Antarctica project Authors: Martinez Pillet, Valentin; Bonet, Jose A.; Collados, Manuel V.; Jochum, Lieselotte; Mathew, S.; Medina Trujillo, J. L.; Ruiz Cobo, B.; del Toro Iniesta, Jose Carlos; Lopez Jimenez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jeronimo, J. M.; Mellado, P.; Morales, R.; Rodriguez, J.; Alvarez-Herrero, Alberto; Belenguer, Tomas; Heredero, R. L.; Menendez, M.; Ramos, G.; Reina, Manuel; Pastor, C.; Sanchez, A.; Villanueva, J.; Domingo, Vicente; Gasent, J. L.; Rodriguez, P. Bibcode: 2004SPIE.5487.1152M Altcode: The SUNRISE balloon project is a high-resolution mission to study solar magnetic fields able to resolve the critical scale of 100 km in the solar photosphere, or about one photon mean free path. The Imaging Magnetograph eXperiment (IMaX) is one of the three instruments that will fly in the balloon and will receive light from the 1m aperture telescope of the mission. IMaX should take advantage of the 15 days of uninterrupted solar observations and the exceptional resolution to help clarifying our understanding of the small-scale magnetic concentrations that pervade the solar surface. For this, IMaX should act as a diffraction limited imager able to carry out spectroscopic analysis with resolutions in the 50.000-100.000 range and capable to perform polarization measurements. The solutions adopted by the project to achieve all these three demanding goals are explained in this article. They include the use of Liquid Crystal Variable Retarders for the polarization modulation, one LiNbO3 etalon in double pass and two modern CCD detectors that allow for the application of phase diversity techniques by slightly changing the focus of one of the CCDs. Title: Magnetic Properties of the Solar Internetwork Authors: Socas-Navarro, H.; Martínez Pillet, V.; Lites, B. W. Bibcode: 2004ApJ...611.1139S Altcode: Advanced Stokes Polarimeter observations are used to study the weakest polarization signals observed in the quiet photosphere with flux densities in the range of 1.5-50 Mx cm-2, which are found in internetwork regions. Our analysis allows us to reach an unprecedented spectropolarimetric sensitivity at the cost of sacrificing spatial resolution. We find evidence for intrinsically different fields in granules and lanes and characterize the average properties of the weakest observable flux concentrations. The magnetic signals observed suggest a strong coupling between magnetic fields and convective flows. Upflows bring up weak fields (equipartition or weaker) to the surface, with stronger upflows carrying larger amounts of flux. The circular polarization profiles observed in the granular regions display a very strongly asymmetric shape, which contrasts with the less asymmetric profiles observed in the downflowing regions. At downflowing locations with speeds of 0.5 km s-1, both weak and strong fields can be found. However, when the downflow speed increases (up to about 1 km s-1) both the mean flux and the intrinsic field strength show a tendency to increase. The asymmetry of the circular polarization profiles also shows a clear trend as a function of magnetic flux density. Low-flux regions display the negative area asymmetry one naturally expects for field strengths decreasing with height embedded in a downflowing environment. As we move to stronger flux density locations, the well-known positive area asymmetry develops and reaches even higher values than those typically found in network regions. These results may have important implications for our understanding of the coupling between magnetic fields and convective processes that pervade the solar photosphere. Title: Flux Cancellation in a Decaying Active Region Authors: Martinez Pillet, V.; Sainz Dalda, A.; van Driel-Gesztelyi, L. Bibcode: 2004cosp...35.1133M Altcode: 2004cosp.meet.1133M Flux Cancellation in a Decaying Active Region Flux cancellation is observed in many regions on the Sun as internetwork, network and active regions fields. It clearly plays a crucial role in the constant flux processing observed in the solar surface. During the decay of an active region, we have observed the in-situ dissapearance of 70 % of its flux (from SOHO/MDI). Active region flux decay is a global, large-scale, process crucial to the solar cycle. But the flux cancellations, where the flux actually disappears, do take place in very small scale regions. There opposite polarities meet and vanish. The process needs of observations with sufficient sensitivity and angular resolution. In the example presented here, we show how up to 4 of these cancellations are associated with outward moving material in the Corona (as observed by TRACE), including a major active region filament eruption. Solar Orbiter, profiting from the advantage observing position and near-corotation can follow these subtle, but crucial, processes with the necessary set of instruments: Magnetographs, Coronal imagers and spectrographs. For those events occurring in the spacecraft solar vertical, one should not exclude the detection of the phenomena in the in-situ instruments. Title: Velocity fields in an irregular sunspot Authors: Jurčák, J.; Sobotka, M.; Martínez-Pillet, V. Bibcode: 2003ESASP.535..109J Altcode: 2003iscs.symp..109J Line-of-sight velocity fields in an irregular sunspot (NOAA 8990) have been determined from Stokes-I spectra of the line Fe I 630.15 nm, obtained with the La Palma Stokes Polarimeter at the Swedish Vacuum Solar Telescope on May 13, 2000. We show and discuss the resulting velocity maps, the dependence of velocities on the continuum intensities, and the correlation between velocities and line asymmetries. Title: SUNRISE: Balloon-borne High-Resolution Observation of the Sun Authors: Solanki, S. K.; Curdt, W.; Gandorfer, A.; Schüssler, M.; Lites, B. W.; Martinez Pillet, V.; Schmidt, W.; Title, A. M.; Sunrise Team Bibcode: 2003ANS...324..113S Altcode: 2003ANS...324..P20S No abstract at ADS Title: SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV Authors: Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M. Bibcode: 2003SPIE.4853..129S Altcode: Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes. Title: Liquid crystal optical retarders for IMaX to fly with SUNRISE Authors: Jochum, Lieselotte; Herrero, Pilar; Collados, Manuel; Martinez Pillet, Valentin; Rodriguez, Javier; Lopez, Manuel Bibcode: 2003SPIE.4843...30J Altcode: The Instituto de Astrofísica de Canarias (IAC), Spain, together with the Spanish company Tecdis Displays Ibérica, S.A., are developing voltage tunable optical retarders using liquid crystals as phase retarding medium. The ROCLIs are built for being used in the Imaging Magnetograph eXperiment (IMaX), which is one of the instruments aboard of the SUNRISE balloon mission (details about IMaX are described in a different paper in this session). A big advantage of using voltage tuned retarder plates is that no mechanisms are needed, which reduces significantly failure risk, weight, power and cost, aspects of particular importance in the SUNRISE balloon mission and for many future space borne applications. A set of prototypes has already been fabricated by Tecdis S.A. and is being characterized in the IAC laboratories. The purpose of these prototypes is to evaluate and demonstrate conceptually the suitability of the chosen liquid crystal for our use in IMaX. First results are very promising. In this paper we will present a full technical description of the ROCLIs for IMaX together with the laboratory test and verification results. Title: IMax: a visible magnetograph for SUNRISE Authors: Jochum, Lieselotte; Collados, Manuel; Martínez Pillet, Valentin; Bonet, Jose A.; del Toro Iniesta, Jose Carlos; Lopez, Antonio; Alvarez-Herrero, Alberto; Reina, Manuel; Fabregat, Juan; Domingo, Vicente Bibcode: 2003SPIE.4843...20J Altcode: The description of the Imaging Magnetograph eXperiment (IMaX) is presented in this contribution. This is a magnetograph which will fly by the end of 2006 on a stratospheric balloon, together with other instruments (to be described elsewhere). Especial emphasis is put on the scientific requirements to obtain diffraction-limited visible magnetograms, on the optical design and several constraining characteristics, such as the wavelength tuning or the crosstalk between the Stokes parameters. Title: Sunrise: a 1-m balloon borne solar telescope Authors: Solanki, S. K.; Schüssler, M.; Curdt, W.; Lites, B. W.; Martinez Pillet, V.; Schmidt, W.; Title, A. M.; Sunrise Team Bibcode: 2002ESASP.505...27S Altcode: 2002solm.conf...27S; 2002IAUCo.188...27S Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ≅200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Interacting with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Title: Decay of sunspots Authors: Martínez Pillet, V. Bibcode: 2002AN....323..342M Altcode: The photometric decay of sunspots is studied in some detail. Aspects related to leader vs. follower sunspot decay are presented and our current understanding of the physical mechanisms involved critically reviewed. The intrinsic instability of follower spots to form a stable sunspot cannot be understood in terms of the fluting stability as proposed long time ago. For leader sunspots, the slow decay phase is considered in the light of diffusive models that spread the flux of the spot over a larger area. It is shown that the Moving Magnetic Feature (MMF) phenomenon, while probably part of the decay process, has an origin not related to the decay process itself. Magnetic flux losses from leader sunspots are 3 to 8 times slower than the pace of net flux generation seen in the moat region. It is argued that MMFs are originated from the interaction of the field free convection (moat flows) and the Evershed magnetized channels outside the spot. Title: Small-Scale Magnetic Structure in the Photosphere: Relevance to Space Weather Phenomena Authors: Martínez Pillet, V. Bibcode: 2002stma.conf....9M Altcode: No abstract at ADS Title: High-resolution solar polarimetry with Sunrise Authors: Schmidt, W.; Solanki, S. K.; Lites, B. W.; Title, A. M.; Martínez Pillet, V. Bibcode: 2001AN....322..363S Altcode: Sunrise is a solar telescope with an aperture of 1 m, and is dedicated for spectropolarimetric measurements in the visible and the near UV. The total wavelength range is 200 to 1000 nm for narrowband imaging and diagnostic spectroscopy. Sunrise is planned as a stratospheric long-duration balloon mission with a first flight in 2006 Title: A proposal for the visible-light imager magnetograph Authors: von der Lühe, O.; Martinez Pillet, V.; Schmidt, W.; Collados, M. Bibcode: 2001ESASP.493..421V Altcode: 2001sefs.work..421V No abstract at ADS Title: Solar encounter Authors: Battrick, Bruce; Sawaya-Lacoste, H.; Marsch, E.; Martinez Pillet, V.; Fleck, B.; Marsden, R. Bibcode: 2001ESASP.493.....B Altcode: 2001sefs.work.....B The prime objectives of the workshop were to: inform the community about the science opportunities of the Solar Orbiter mission; to provide a forum for sharpening and focussing the science goals; allow the hardware groups and instrument proposers to critically review the payload; establish international contacts and collaborations. Title: Intercomparison of SOUP, ASP, LPSP, and MDI magnetograms Authors: Berger, T.; Lites, B.; Martinez-Pillet, V.; Tarbell, T.; Title, A. Bibcode: 2001AGUSM..SP51B12B Altcode: We compare simultaneous magnetograms of a solar active region taken by the Advanced Stokes Polarimeter (ASP) and the Solar Optical Universal Polimeter (SOUP) in 1998. In addition we compare magnetograms taken by the La Palma Stokes Polarimeter (LPSP), the Michelson Doppler Imager (MDI) on SOHO, and the SOUP instrument in 2000. The SOUP instrument on the Swedish Vacuum Solar Telescope (SVST) attains the highest spatial resolution but has the least understood calibration; the ASP on the Dunn Solar Telescope (DST) at Sacramento Peak attains the highest magnetic field precision. The goal of the program is to better quantify the SOUP magnetograms and thereby study magnetic element dynamics in the photosphere with higher precision. Title: A Photometric and Magnetic Analysis of the Wilson Effect Authors: Steinegger, M.; Bonet, J. A.; Vázquez, M.; Martinez Pillet, V. Bibcode: 2001ASSL..259..279S Altcode: 2001dysu.conf..279S For two sunspot groups observed in June 1992 we analyze the center-to-limb variation and height dependence of various geometrical parameters describing the Wilson effect by using continuum observations and simultaneously obtained images of the degree of polarization. Title: Spectral signature of uncombed penumbral magnetic fields. Reply Authors: Martínez Pillet, V. Bibcode: 2001A&A...369..644M Altcode: A combination of two penumbral models similar to those used by Martínez Pillet (2000) is presented. One matches the observed rms fluctuations perfectly while the other reproduces the observed Net Circular Polarization. No factor three mismatch exists in this case. The rationale of using two different, but strongly coupled, models is explained. Title: Optical Tomography of a Sunspot. II. Vector Magnetic Field and Temperature Stratification Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 2001ApJ...547.1130W Altcode: An observational determination of the three-dimensional magnetic and thermal structure of a sunspot is presented. It has been obtained through the application of the SIR inversion technique (Stokes Inversion based on Response functions) on a low-noise, full Stokes profile two-dimensional map of the sunspot as observed with the Advanced Stokes Polarimeter. As a result of the inversion, maps of the magnetic field strength, B, zenith angle, γ, azimuth, χ, and temperature, T, over 25 layers at given optical depths (i.e., an optical tomography) are obtained, of which those between logτ5=0 and logτ5=-2.8 are considered to provide accurate information on the physical parameters. All over the penumbra γ increases with depth, while B is larger at the bottom layers of the inner penumbra (as in the umbra) but larger at the top layers of the outer penumbra (as in the canopy). The corrugation of the penumbral magnetic field already observed by other authors has been confirmed by our different inversion technique. Such a corrugation is especially evident in the zenith angle maps of the intermediate layers, featuring the presence of the so-called spines that we further characterize: spines are warmer and have a less inclined magnetic field than the spaces between them and tend to have a smaller gradient of γ with optical depth over the entire penumbra, but with a field strength which is locally stronger in the middle penumbra and locally weaker in the outer penumbra and beyond in the canopy. In the lower layers of these external parts of the sunspot, most of the field lines are seen to return to the solar surface, a result that is closely connected with the Evershed effect (e.g., Westendorp et al., the third paper in this series). The Stokes V net area asymmetry map as well as the average B, γ, and T radial distributions (and that of the line-of-sight velocities; see the third paper in this series) show a border between an inner and an outer penumbra with different three-dimensional structure. We suggest that it is in this middle zone where most of a new family of penumbral flux tubes (some of them with Evershed flow) emerge interlaced (both horizontally and vertically) among themselves and with the ``background'' magnetic field of the penumbra. The interlacing along the line of sight is witnessed by the indication of many points in the outer penumbra showing rapid transitions with height between two structures, one with very weak and inclined magnetic field at the bottom of the photosphere and the other with a stronger and less inclined magnetic field. Over the whole penumbra, and at all optical layers, a constant but weak deviation from radiality of some 5° is detected for the azimuth of the vector magnetic field, which may be in agreement with former detections but which is not significantly higher than the size of the errors for this parameter. Title: Optical Tomography of a Sunspot. III. Velocity Stratification and the Evershed Effect Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V. Bibcode: 2001ApJ...547.1148W Altcode: The stratification with optical depth of the line-of-sight (LOS) velocity of a simple, isolated, round sunspot observed with the Advanced Stokes Polarimeter (ASP; Elmore et al.) presented here completes this series of papers that investigates the stratification in optical depths of such a typical sunspot. These results have been obtained through the use of the SIR technique (Stokes Inversion based on Response functions of Ruiz Cobo & del Toro Iniesta). From these data we have confirmed that there are strong downflowing velocities at logτ5=0 that coincide spatially with the places where the magnetic field points downward (Westendorp Plaza et al.). Further confirmation is obtained by the application of the same method on a different sunspot, already analyzed with the Milne-Eddington inversion technique (Stanchfield, Thomas, & Lites). These downflows reconcile observations that have detected Evershed velocities outside sunspots together with suggestions of the possible return of the flow within the penumbra. The Evershed flow seems to be concentrated in elevated channels not thicker than 1 or 2 scale heights that are mostly located in the space between magnetic spines, i.e., in places where the magnetic field is more inclined, weaker in the inner-middle penumbra, and stronger in the outer penumbra and beyond the visible limits of the sunspot. This conclusion is based upon the tight correlation found between LOS velocities and the (reported in the second paper of this series) magnetic field strength and zenith angle. The upstreaming material is seen in the inner penumbra and the downstreaming in the outer penumbra. A strong increase with optical depth has been obtained for the LOS velocities that provides indications of the superposition of Evershed channels along the LOS. The differential opacity effect between the center-side and the limb-side penumbra, already reported in the second paper in this series, is also seen in the velocity maps and has suggested the comparison of the vertical mass flux through the upstreaming zones (mostly seen in the center side) and the downstreaming zones (mostly seen in the limb side), obtaining a fairly good balance between the two. Title: Full Stokes LPSP Observations of the Na D1 and D2 Lines in Magnetized Regions close to the Solar Limb Authors: Martínez Pillet, V.; Trujillo Bueno, J.; Collados, M. Bibcode: 2001ASPC..236..133M Altcode: 2001aspt.conf..133M No abstract at ADS Title: ASP Observations - First Analysis of Mgb2 Stokes Parameters Authors: Briand, C.; Martínez Pillet, V. Bibcode: 2001ASPC..236..565B Altcode: 2001aspt.conf..565B No abstract at ADS Title: High-resolution Solar Polarimetry with Sunrise Authors: Schmidt, W.; Solanki, S. K.; Schüssler, M.; Curdt, W.; Lites, B. W.; Title, A. M.; Martinez Pillet, V. Bibcode: 2001AGM....18S1001S Altcode: Sunrise is a 1m balloon-borne solar telescope. It is equipped with a spectrograph polarimeter which combines vector-polarimetry in the visible with diagnostic spectroscopy in the visible and the UV, down to 200 nm. The instrumentation includes a filter-magnetograph and a medium-band filtergraph. The wavelength bands of the latter include the CH-band (430.6 nm) and a UV continuum at 205 nm. Diffraction limited resolution in the UV will be achieved by employing a phase diversity technique. The main telescope is based on a lightweight silicon-carbide mirror, developed within the Solar Lite program. During the long-duration flight at Antarctica, foreseen for late 2005, Sunrise will continuously observe the sun for a period of about ten days, with constant image quality across the full field of view. In-flight alignment of the telescope optics will be controlled by a wavefront sensor. The main goal of Sunrise is to understand the structure and dynamics of the magnetic field in the atmosphere of the sun. To this end, Sunrise will observe small magnetic flux concentrations with dimensions of less than 70 km with high polarimetric accuracy. At the same time, Sunrise will provide diffraction-limited filtergrams of the photosphere and chromosphere with a resolution down to 35 km at a wavelength of 200 nm. Title: Chromosphere: Emerging Flux Regions Authors: Martínez Pillet, V. Bibcode: 2000eaa..bookE2000M Altcode: A description of the emergence of large concentrations of magnetic fields (active regions) at the solar surface is presented. The dark structures known as SUNSPOTS are a consequence of this process.... Title: Spectral signature of uncombed penumbral magnetic fields Authors: Martínez Pillet, V. Bibcode: 2000A&A...361..734M Altcode: The uncombed penumbral model proposed by Solanki & Montavon (\cite{sol93a}) is used to understand some recent observational results found in penumbrae. This model uses a penumbral magnetic field structured into horizontal flux tubes embedded in a more vertical background field. A modified version of this model, with a weaker field strength in the horizontal tubes, is used to explain the gradient with height of field strength and inclination found in studies using inversion techniques. These studies have found that over a range of 300 km, the field strength of the outer penumbra increases with height by more than 500 G. Similarly, the field inclination decreases with height by 30o in the same range of heights. We show that spectra generated by the uncombed model can give rise to these two effects as long as the horizontal tubes (of ~ 100 km diameter) remain unresolved. We also study the linear, quadratic and rms fluctuations of the inclination gradients that can be generated by the uncombed model. These gradients are found to be compatible with those obtained from the null divergence condition and those derived from observations of net circular polarization. A key ingredient to explain these gradients is the contribution of the two boundary layers that enclose the horizontal magnetic tubes as seen by the line-of-sight. Our realization of the uncombed model also predicts values of the net circular polarization observed with the Advanced Stokes Polarimeter. The existence of a pure background penumbral field as proposed by the model is, however, put into question. Title: Long-Term Observations of Solar Active Regions at the VNT Authors: Bonet, J. A.; Casas, R.; Giammanco, C.; Martinez Pillet, V.; Vazquez Bibcode: 2000ESASP.463..635B Altcode: 2000sctc.proc..635B No abstract at ADS Title: Working Group 1: Magnetic Field Structuring Authors: van Driel-Gesztelyi, L.; Martinez Pillet, V. Bibcode: 1999ESASP.446...71V Altcode: 1999soho....8...71V No abstract at ADS Title: Making sense of sunspot decay - II. Deviations from the Mean Law and Plage Effects Authors: Petrovay, K.; Martínez Pillet, V.; van Driel-Gesztelyi, L. Bibcode: 1999SoPh..188..315P Altcode: 1999astro.ph..6258P In a statistical analysis of Debrecen Photoheliographic Results sunspot area data we find that the logarithmic deviation (log D)' of the area decay rate D from the parabolic mean decay law (derived in the first paper in this series) follows a Gaussian probability distribution. As a consequence, the actual decay rate D and the time-averaged decay rate are also characterized by approximately lognormal distributions, as found in an earlier work. The correlation time of (log D)' is about 3 days. We find a significant physical anticorrelation between (log D)' and the amount of plage magnetic flux of the same polarity in an annulus around the spot on Kitt Peak magnetograms. The anticorrelation is interpreted in terms of a generalization of the turbulent erosion model of sunspot decay to the case when the flux tube is embedded in a preexisting homogeneous `plage' field. The decay rate is found to depend inversely on the value of this plage field, the relation being very close to logarithmic, i.e., the plage field acts as multiplicative noise in the decay process. A Gaussian probability distribution of the field strength in the surrounding plage will then naturally lead to a lognormal distribution of the decay rates, as observed. It is thus suggested that, beside other multiplicative noise sources, the environmental effect of surrounding plage fields is a major factor in the origin of lognormally distributed large random deviations from the mean law in the sunspot decay rates. Title: TIP: The Tenerife Infrared Polarimeter Authors: Martínez Pillet, V.; Collados, M.; Bellot Rubio, L. R.; Rodríiguez Hidalgo, I.; Ruiz Cobo, B.; Soltau, D. Bibcode: 1999AGAb...15...89M Altcode: 1999AGM....15..P05M The aim of the IAC Tenerife Infrared Polarimeter is to obtain quantitative measurements of the polarization state of the solar radiation collected in near-infrared wavelengths by the Gregory Coudé Telescope and the Vacuum Tower Telescope of the Observatorio del Teide (Spain). In this contribution we describe the analyzer, instrumental calibration, and detector subsystems of TIP, and give details concerning the specifications of the instrument. Title: Measurements of the solar aureole at the Teide Observatory Authors: González Jorge, H.; Martínez Pillet, V.; Vázquez, M.; Pallé, P.; McGovern, F.; Raes, F. Bibcode: 1998NewAR..42..515G Altcode: Daily measurements of the solar aureole were made at the Vacuum Newton Telescope ( D=40 cm) at the Teide Observatory (Tenerife) for various airmasses. We use these measurements to understand how the aureole is produced and to extrapolate visible measurements to the infrared range (1.6 μm). This information will be used to correct sunspot photometric measurements. This programme is included in the second Aerosol Characterization Experiment (ACE-2) held on Tenerife from mid June to July 1997. During this period a large variety of aerosol measurements were made at different altitudes on the island and by aircraft flying over this area of the North Atlantic Ocean. This information will be used to constrain the physical parameters of the aerosols needed for our extrapolation. Title: Velocity Oscillations in Active Sunspot Groups Authors: Balthasar, H.; Martínez Pillet, V.; Schleicher, H.; Wöhl, H. Bibcode: 1998SoPh..182...65B Altcode: Time series of two-dimensional spectra were taken with the Göttingen 2D spectrometer at the VTT on Tenerife in 1996. They were investigated for Doppler velocities and velocity oscillations in small spots and pores of rapidly evolving sunspot groups. For the present measurements the magnetically insensitive lines Fe i 557.6 nm and Fe i 709.0 nm were selected. Title: Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence Authors: Lites, B. W.; Skumanich, A.; Martinez Pillet, V. Bibcode: 1998A&A...333.1053L Altcode: Several small emerging bipolar regions have been observed with the Advanced Stokes Polarimeter (ASP), including extensive time series measurements of one small region. Both new and previously recognized properties of the actual site of first emergence, where the magnetic field is nearly horizontal to the surface, are revealed by these observations. They provide the most complete and accurate observational description to date of newly emerging vector magnetic fields. We find that: 1) the strength of the magnetic field at the site of the emergence (where the vector field is nearly parallel to the solar surface) ranges from about 200 to 600 G, 2) as individual flux elements migrate rapidly away from the emergence zone, they attain kiloGauss strengths only after becoming oriented nearly vertically, 3) the emergence zone is dotted by small, transient, upward rising ( ~ 1 km s(-1) ) horizontal magnetic elements as indicated by the Doppler shift of the polarized spectral profiles, 4) the leading polarity flux coalesces immediately into a compact region which forms a pore, but the emerging following polarity flux is spatially much less compact, 5) some ``moving magnetic features'' having the same magnetic polarity as the growing pore, but on the opposite side of the pore from the emergence zone, coalesce with the pore during the observation period, and 6) the observations suggest a low canopy of weak horizontal magnetic fields arches over the emergence zone. These observations support a widely accepted picture of emerging bipolar flux: the buoyantly rising flux transports mass from the photosphere into the chromosphere, where it then may drain downward along arched magnetic loops. The observed formation of a pore suggests that emergence of subsurface structure, not organized flows near the surface, is largely responsible for the apparent coalescence of sunspots from more diffuse fields viewed at the solar surface. These observations neither confirm nor refute the operation of convective collapse of flux tubes. Title: Optical Tomography of a Sunspot. I. Comparison between Two Inversion Techniques Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1998ApJ...494..453W Altcode: A quantitative comparison between the Milne-Eddington (ME) inversion technique implemented by Skumanich & Lites and the SIR (Stokes Inversion based on Response Functions) proposed by Ruiz Cobo & del Toro Iniesta is presented. Numerical experiments are carried out to explore the capabilities and limitations of both diagnostic techniques. Such experiments consist of inversions of Stokes profiles previously synthesized in ``realistic'' solar atmospheric models. The results show that the ME inversion provides accurate, line-of-sight (LOS) averaged values for the input stratification of the vector magnetic field. Its greater speed compared to SIR makes it useful for quick analysis of large quantities of data (such as those currently provided by modern spectropolarimeters) if one is only interested in LOS-averaged quantities. However, the higher order description of the atmosphere used by SIR (which acknowledges variation of the thermal, dynamic, and magnetic parameters through the photosphere) allows retrieval of the stratification of all these parameters to good accuracy. This is so even in the presence of discontinuities such as those foreseen in magnetic canopies of sunspots. The trade-offs between thermodynamic and magnetic parameters observed in some ME inversions are reduced considerably in the case of SIR inversions because of the more realistic treatment of the thermodynamics in this analysis. Notably, both allow one to extract quantitative inferences of fairly weak magnetic fields (below 500 G), even when they are applied to Zeeman-sensitive lines in the visible spectrum; i.e., well below the commonly accepted limit of 500 G. The thermodynamic parameters resulting from the ME inversion are understood theoretically in terms of the generalized response functions introduced by Ruiz Cobo & del Toro Iniesta and through the concept of height of formation for inferred values proposed by Sánchez Almeida, Ruiz Cobo, & del Toro Iniesta.

The present comparison and verification of the reliability of inversion methods is a natural first step toward the ongoing analysis of the three-dimensional magnetic structure of a sunspot. By using SIR (with ME results for initialization) on maps of a whole sunspot observed by the Advanced Stokes Polarimeter, we obtain maps at different optical layers (i.e., an optical tomography) of the temperature, vector magnetic field, and LOS velocity. Such a tomography will appear in subsequent papers of the present series. To illustrate fits to the observed Stokes profiles, we show here actual inversion results for three points observed within a sunspot: one within the umbra, another from the outermost parts of the penumbra, and a third from the magnetic canopy surrounding the sunspot. Title: Vector Magnetic Fields of Emerging Solar Flux Authors: Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1998ESASP.417..259M Altcode: 1998cesh.conf..259M No abstract at ADS Title: Evidence for a downward mass flux in the penumbral region of a sunspot Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997Natur.389...47W Altcode: No abstract at ADS Title: The Calibration of the Advanced Stokes Polarimeter Authors: Skumanich, A.; Lites, B. W.; Martínez Pillet, V.; Seagraves, P. Bibcode: 1997ApJS..110..357S Altcode: We describe and apply the methods that have been developed to calibrate the Advanced Stokes Polarimeter and to compensate for the polarization effects introduced by the Vacuum Tower Telescope at the National Solar Observatory/Sunspot. A seven-parameter model of the telescope is fitted to data obtained at a variety of mirror angles using observations of both the center of the solar disk and that point within a sunspot umbra at which the magnetic field is oriented as close to the line of sight as possible. The response matrix of the polarimeter itself is determined by the use of polarizing calibration optics that modify the polarization state of the beam exiting the telescope but before entering the polarimeter. A global least-squares solution is obtained simultaneously for the response matrix and the telescope parameters. A detailed gain-correction procedure is described that reduces the multiplicative gain errors in the spectral images to typically less than 1%. We have successfully recovered net-linear polarization profiles with peak amplitudes of 1 × 10-3Ic against an instrumentally produced background polarization of ~=1-5 × 10-2Ic. Net-polarization signals smaller than ~=3 × 10-4Ic are lost, even with sufficient averaging, in a background due to photometric and other calibration errors. Title: Space Certifiability of LCVRs Authors: del Toro Iniesta, J. C.; Martinez Pillet, V.; Gonzalez Escalera, V. Bibcode: 1997ASPC..118..356D Altcode: 1997fasp.conf..356D This contribution is a report on a test campaign carried out by the IAC, in collaboration with Construcciones Aeronauticas, S.A. (CASA) as a main contrac tor, for exploring the capabilities of liquid crystal variable retarders (LCVRs) to be u sed in future space missions as the core of the modulation package of a polarimetric device, used as a post-focus instrument of a visible solar telescope. Title: Active Region Magnetic Fields. I. Plage Fields Authors: Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997ApJ...474..810M Altcode: We present observations taken with the Advanced Stokes Polarimeter (ASP) in active-region plages and study the frequency distribution of the magnetic field strength (B), inclination with respect to vertical (γ), azimuthal orientation (χ), and filling factor (f). The most common values at disk center are B = 1400 G, γ < 10°, no preferred east-west orientation, and f = 15%. At disk center, there is a component of weak (<1000 G), more horizontal fields that corresponds to arching field lines connecting footpoints of different polarities. The center-to-limb variation (CLV) of the field strength shows that, close to the limb (μ = 0.3), the field strength is reduced to 800 G from its disk-center value. This can be interpreted as a gradient of B with height in solar plages of around -3 G km-1. From this CLV study, we also deduce that magnetic field lines remain vertical for the entire range of heights involved. A similar analysis is performed for structures found in active regions that show a continuous distribution of azimuths (resembling sunspots) but that do not have a darkening in continuum. These ``azimuth centers'' show slightly larger values of B than normal plages, in particular at their magnetic center. Filling factors are also larger on average for these structures.

The velocities in the magnetic component of active regions have been studied for both averaged Stokes profiles over the entire active region and for the spatially resolved data. The averaged profiles (more representative of high filling factor regions) do not show any significant mean velocities. However, the spatial average of Doppler velocities derived from the spatially resolved profiles (i.e., unweighted by filling factor) show a net redshift at disk center of 200 m s-1. The spatially resolved velocities show a strong dependence on filling factor. Both mean velocities and standard deviations are reduced when the filling factor increases. This is interpreted as a reduction of the p-mode amplitude within the magnetic component. Strong evidence for velocities transverse to the magnetic field lines has been found. Typical rms values are between 200 and 300 m s-1, depending on the filling factor. The possible importance of these transverse motions for the dynamics of the upper atmospheric layers is discussed.

The asymmetries of the Stokes profiles and their CLV have been studied. The averaged Stokes V profiles show amplitude and area asymmetries that are positive at disk center and become negative at the limb. Both asymmetries, and for the two Fe I lines, are maximized away from disk center. The spatially resolved amplitude asymmetries show a clear dependence on filling factor: the larger the filling factor, the smaller the amplitude asymmetry. On the other hand, the area asymmetry is almost independent of the filling factor. The only observed dependence is the existence of negative area-asymmetry profiles at disk center for filling factors smaller than 0.2. Around 20% of the observed points in a given plage have negative area asymmetry. The amplitude asymmetry of Stokes V is, on the other hand, always positive. The amplitude asymmetries of the linear polarization profiles are observed to have the same sign as the Stokes V profiles. Similarly, the same CLV variation of the linear polarization amplitude asymmetries as for Stokes V has been found. The scenarios in which this similarity can exist are studied in some detail. Title: Polarimetric Measurements of Sunspots Authors: Martinez Pillet, V. Bibcode: 1997ASPC..118..212M Altcode: 1997fasp.conf..212M Making emphasis on observations that have included some type of polarization analysis, I concentrate on two subjects. First, the vector magnetic field configuration of structures with different sizes is reviewed. I cover from magnetic knots, and their relation to small scale magnetic elements, to large sunspots. In doing so, a different concept of how a pore should be described is proposed. Second, the fibril organization of the magnetic field in penumbrae is reviewed. Both, field strength and inclination fluctuations in the azimuthal direction are seen. The necessary gas pressure fluctuations needed to achieve force balance are analyzed. As a solution to the missing Evershed flow problem, the findings of a return flux surrounding sunspots by Westendorp et al. (1997b) are considered. Title: The IAC Solar Polarimeters: Goals and Review of Two Ongoing Projects Authors: Sanchez Almeida, J.; Collados, M.; Martinez Pillet, V.; Gonzalez Escalera, V.; Scharmer, G. B.; Shand, M.; Moll, L.; Joven, E.; Cruz, A.; Diaz, J. J.; Rodriguez, L. F.; Fuentes, J.; Jochum, L.; Paez, E.; Ronquillo, B.; Carranza, J. M.; Escudero-Sanz, I. Bibcode: 1997ASPC..118..366S Altcode: 1997fasp.conf..366S The IAC is currently developing two similar polarimeters, one for optical wavelengths and one for near infra-red wavelengths (1.5 mu m). Both instruments will provide spectra of the four Stokes parameters over 2D solar regions. The visible spectro-polarimeter will be operated at the Swedish Tower (La Palma), and it is being developed in collaboration with the Royal Swedish Academy of Sciences. We intend to take advantage of the excellent seeing conditions at this telescope, while maintaining high polarimetric precision. The IR polarimeter is being designed for the German VTT (Tenerife) which has better angular resolution in the near infra-red. This report describes the goals and technical solutions. It also briefs on the current status of the projects. Title: Velocity oscillations in active sunspot groups. Authors: Balthasar, H.; Martínez Pillet, V.; Schleicher, H.; Wöhl, H. Bibcode: 1997AGAb...13...12B Altcode: No abstract at ADS Title: Inversion Techniques Applied to Sunspot Spectropolarimetric Data Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997ASPC..118..197W Altcode: 1997fasp.conf..197W Two inversion techniques are compared: the Unno-Rachkov\-sky fitting method (UR) and the Stokes Inversion based on Response functions (SIR). Results with synthetic profiles in sunspot model atmospheres and real data show that whilst UR is well suited for recovering a constant vec B, SIR enables us to know the run with depth of vec B and the line of sight velocity together with the temperature stratification. Title: Optical Tomography of a Sunspot: Preliminary Results Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997ASPC..118..202W Altcode: 1997fasp.conf..202W Preliminary results of the inversion of spectropolarimetric maps of a sunspot observed with the Advanced Stokes Polarimeter (ASP) are presented. The method used, Stokes Inversion based on Response functions (SIR), does not assume constancy of the different parameters with depth, thus enabling us to embark on an analysis of the information at different layers in continuum optical depth (i.e. optical tomography), of a sunspot's photosphere. Maps of the vector magnetic field and other physical quantities like temperature or line-of-sight velocity at several optical depths show a new and promising view of the structure of a sunspot, casting light on long standing debates as those over penumbral `corrugated' fields (spines), superpenumbral canopies, return flux, or the nature of the Evershed effect. Title: The magnetic structure of pores and sunspots derived from Advanced Stokes Polarimeter data. Authors: Keppens, R.; Martinez Pillet, V. Bibcode: 1996A&A...316..229K Altcode: We investigate the radial variation of the magnetic field structure across sunspots, pores and azimuth centers (ACs). We define ACs as magnetic structures of about the same size as pores (all structures studied here are larger than 3 Mm diameter), but without a clear (at least 5%) continuum decrease associated with them. We start from the full 3D vector fields as observed with the Advanced Stokes Polarimeter (ASP), and perform a statistical study of the azimuthally averaged field components in the local cylindrical reference frame centered on the structures. Our statistical study comprises a sample of 16 sunspot observations, a sample of 51 pores, and a sample of 22 ACs. For all structures, we derive mean radial profiles and their standard deviations. Due to the relatively large sample of pores, we are able to investigate variations of this mean radial field structure with the size of the pores. On the basis of our statistics, we identify systematic changes in the magnetic field structure over a considerable size range. We suggest how this may be the natural consequence of a formation scenario for the largest pores, by a lateral clustering of magnetic elements. Indeed, in this process, an AC may develop into a dark pore and gradually grow in size through the incremental addition of magnetic flux. Several observations where ACs turn into pores provide an estimate of about 4-5x10^19^Mx for the critical magnetic flux at which such transitions occur. We confirm the existence of a magnetic canopy for pores of all sizes, as their magnetic extent is virtually always larger than the associated continuum darkening. We observe a relatively rapid change in the continuum appearance of a large pore in the sample. We identify the associated changes in the field structure, and confront it with the determined mean field variation across sunspots. It appears that we have witnessed the formation of a partial penumbra. Title: Line Asymmetries and the Microstructure of Photospheric Magnetic Fields Authors: Sanchez Almeida, J.; Landi Degl'Innocenti, E.; Martinez Pillet, V.; Lites, B. W. Bibcode: 1996ApJ...466..537S Altcode: A systematic structuring of magnetic fields over scales much smaller than the mean free path of photospheric photons may be responsible for the observed asymmetrical Stokes profiles. We explore this possibility by deriving the radiative transfer equation for microstructured magnetic atmospheres (the MISMA approximation). This equation is subsequently employed to show that very schematic MISMA scenarios for the penumbrae of sunspots, plage and network regions, and internetwork regions produce Stokes profiles that have the observed asymmetries. The details of these model atmospheres are of secondary importance, but the ease of generating the type of observed asymmetries with MISMAs is significant, so the existence of MISMAs deserves serious consideration. Should such microstructures exist, the techniques currently employed to infer properties of the solar photosphere need to be revised. MISMAs are also of concern for the physics of the photosphere itself. These two topics are briefly discussed. Title: Magnetic Flux Emergence Observed with the Advanced Stokes Polarimeter Authors: Lites, B.; Martinez Pillet, V. Bibcode: 1996AAS...188.3313L Altcode: 1996BAAS...28Q.870L We have carried out quantitative observations of the vector magnetic field during the emergence of three small bipolar active regions in June, 1992, July 1993, and September 1994 using the Advanced Stokes Polarimeter (ASP). The region of horizontal magnetic field at the actual site of emergence is always characterized by low magnetic field strength (i.e. considerably less than 1000 Gauss). We find a strong relationship between field strength and inclination in these regions. This suggests that 1) flux emerging from below the photosphere does not coalesce into strong flux tubes until it reaches the photosphere, becomes nearly vertical as a result of magnetic buoyancy, and is then acted upon by convective collapse, and 2) the field strength of flux rising through the convection zone may be in rough equipartition with the fluid motions. We find the flux emergence zone to be characterized by highly variable (both spatially and temporally) fill factors for the magnetic field, suggesting that the flux below the surface is filamentary, that it rises rapidly through the photosphere to form a magnetic canopy above the emergence region. Sequences of Hα on- and off-band images obtained with the ASP reveal the accompanying development of the arch-filament system, and suggest that the material within the Hα structures is supplied by a siphon flow as evidenced by apparent chromospheric red shifts on the sides of the loops closest to a large pore, and blue shifts where the fields anchor in plage regions. Proper motions of the magnetic flux images throughout a day's observation indicate the presence of a persistent vortex flow on a small scale (a few arcseconds). The National Center for Atmospheric Research is sponsored by the National Science Foundation. Title: Small-Scale Horizontal Magnetic Fields in the Solar Photosphere Authors: Lites, B. W.; Leka, K. D.; Skumanich, A.; Martinez Pillet, V.; Shimizu, T. Bibcode: 1996ApJ...460.1019L Altcode: We present recent observations of quiet regions near the center of the solar disk using the Advanced Stokes Polarimeter. These observations reveal a component of the solar magnetic field heretofore unobserved: isolated, small-scale (typically 1"-2" or smaller), predominantly horizontal magnetic flux structures in the solar photosphere. These features occur in isolation of the well-known, nearly vertical flux concentrations usually seen in the photospheric "network." Hence we ascribe this horizontal flux to the photospheric "internetwork." They reveal themselves by the distinct signature of the Stokes Q and U polarization profiles, which are symmetric about the line center. The polarization signals are weak, with peak amplitudes typically ∼0.1%-0.2% of the continuum intensity in the resolved spectral profiles, but they are well above the noise level of these observations (≍0.05%). Such magnetic fields are weak (significantly less than 1000 G) and largely horizontal owing to the absence, or near absence, of accompanying Stokes V polarization when observed at the center of the solar disk. These horizontal field elements are often associated with blueshifted Stokes line profiles, and they often occur between regions of opposite polarity (but weak) Stokes V profiles. The horizontal elements are short-lived, typically lasting ∼5 minutes. Our observations suggest that we are viewing the emergence of small, concentrated loops of flux, carried upward either by granular convection or magnetic buoyancy. Even though these entities show weak field strengths, they also seem to be fairly common, implying that they could carry the order of 1024 Mx of magnetic flux to the surface on a daily basis. However, further observational study is needed to identify the specific nature of this phenomenon. Title: A proposal for a low instrumental polarization coude telescope. II. The German Gregory-Coude Telescope at the Observatorio del Teide. Authors: Sanchez Almeida, J.; Martinez Pillet, V.; Kneer, F. Bibcode: 1995A&AS..113..359S Altcode: We have put into practice the technique to minimize the instrumental polarization (IP) of coude telescopes proposed by Martinez Pillet & Sanchez Almeida (1991): a λ/2-plate inserted into the optical path, with the proper orientation, cancels the IP. The compensation of the Gregory-Coude Telescope at the Observatorio del Teide turns out to fulfil theoretical expectations. Empirical tests at 630nm demonstrate that its IP decreases by a factor ~4. We show that the residual IP is not intrinsic to the method but it is due to the limited precision of the retarder presently used. In addition, observations indicate that the insertion of the λ/2-plate does not noticeably deteriorate the optical quality of the whole telescope. In short, this work proves the practical soundness of the λ/2-plate technique to reduce IP. Title: The Possible Ascent of a Closed Magnetic System through the Photosphere Authors: Lites, B. W.; Low, B. C.; Martinez Pillet, V.; Seagraves, P.; Skumanich, A.; Frank, Z. A.; Shine, R. A.; Tsuneta, S. Bibcode: 1995ApJ...446..877L Altcode: We present a comprehensive interpretation of the evolution of a small magnetic region observed during its entire disk passage. The vector magnetic field measurements from the Advanced Stokes Polarimeter, along with Hα and magnetogram measurements from the Lockheed SOUP instrument operating at the Swedish Solar Observatory on La Palma, and soft X-ray images from the Yohkoh satellite support the hypothesis that we have observed the passage of a nearly closed magnetic system through the photosphere into the corona. The observations suggest that as the magnetic flux begins to emerge into the photosphere it shows a rather simple geometry, but it subsequently develops a small δ-sunspot configuration with a highly sheared vector field along the polarity inversion line running through it. At that stage, the vector field is consistent with a concave upward magnetic topology, indicative of strong electric currents above the photosphere. An Hα prominence is found above this inversion line when the δ-sunspot is fully formed. These observed features and the sequence of events are interpreted in terms of a nearly closed magnetic system that rises through the photosphere into the corona as a result of magnetic buoyancy. The magnetic system persists in the corona well after the dark δ-sunspot has disappeared in the photosphere We suggest that this coronal structure is in quasi-static equilibrium with its buoyancy partially countered by the weight of the plasma trapped at the bottom of closed magnetic loops. The plausibility of such a scenario is demonstrated by a three-dimensional magnetostatic model of the emergence of a closed, spheroidal magnetic system in the corona, in which the Lorentz force arising from cross-field currents is balanced by the gravitational and pressure forces. This theoretical model carries many features in common with the observed morphology of our active region. Title: Small scale horizontal magnetic fields in the solar photosphere Authors: Leka, K. D.; Lites, B. W.; Skumanich, A.; Martínez Pillet, V.; Shimizu, T. Bibcode: 1995IAUS..176P.120L Altcode: No abstract at ADS Title: Observed differences between large and small sunspots. Authors: Collados, M.; Martinez Pillet, V.; Ruiz Cobo, B.; del Toro Iniesta, J. C.; Vazquez, M. Bibcode: 1994A&A...291..622C Altcode: We confirm recent results about the differences in temperature and magnetic field strength between the umbra of large and small sunspots. Five Stokes I- and V-spectra from the darkest cores of three different umbrae have been analysed with the inversion code of the radiative transfer equation by Ruiz Cobo & del Toro Iniesta (1992). The run with depth of temperature, magnetic field (strength and inclination) and velocity along the line of sight are obtained. The larger sunspots turn out to be cooler and possesing a larger magnetic field strength, practically throughout the whole atmosphere. Neither significant gradients of the line-of-sight velocity, nor of the magnetic field inclination, are detected in any of the spots analysed. Two model atmospheres are given corresponding to hot (small) and cool (large) sunspots. The models are, to a large extent, free from effects of penumbral/photospheric stray-light because it is nearly absent in the large spots and because in the small one, where it is important for the Stokes I-profile, only Stokes V is considered to obtain the model atmosphere. These are the first umbral models in the literature for which a simultaneous determination of the magnetic field and thermodynamic stratifications is presented. The implications of these stratifications for the energy transport in sunspot umbrae are discussed. Title: A Quantitative Comparison of Vector Magnetic Field Measurement and Analysis Techniques Authors: Lites, B. W.; Martinez Pillet, V.; Skumanich, A. Bibcode: 1994SoPh..155....1L Altcode: We make a quantitative comparison between spectral vs filter measurement and analysis techniques for extraction of solar vector magnetic fields from polarimetric data using as a basis the accurately calibrated, high angular resolution Stokes profile data from the Advanced Stokes Polarimeter. It is shown that filter-based measurements deliver qualitative images of the field alignment for sunspots that are visually similar to images derived from the more detailed analysis of the Stokes profiles. However, quantitative comparison with least-squares fits to the full Stokes profiles show that both the strength of the field predicted by the filter-based analysis and its orientation contain substantial errors. These errors are largest for plage regions outside of sunspots, where the field strengths are inferred to be only a fraction of their true values, and errors in the orientation of 40-50° are common. Within sunspots, errors of 20° are commonplace. The greatest source of these errors is the inability of the filter-based measurements to account for the small fill fraction of magnetic fields or, equivalently, scattered light in the instrument, which reduce the degree of polarization. The uncertainties of the full profile fitting methods are also discussed, along with the errors introduced by coarser wavelength sampling of the observed Stokes profiles. The least-squares fitting procedure operates best when the profiles are sampled at least as frequently as one Doppler width of the line. Title: Evidence for Supersonic Downflows in the Photosphere of a Delta Sunspot Authors: Martinez Pillet, V.; Lites, B. W.; Skumanich, A.; Degenhardt, D. Bibcode: 1994ApJ...425L.113M Altcode: 1994ApJ...425L.113P We present polarization profiles observed with the High Altitude Observatory/National Solar Observatory (HAO/NSO) Advanced Stokes Polarimeter (ASP) that demonstrate, in a model-independent way, the presence of strong downflows close to the neutral line of a delta sunspot (a spot with both polarities contained within the same penumbra). The flows are as large as 14 km/s, a velocity that, at photospheric levels, strongly suggests the presence of supersonic compressive fluid flows in a region only 100-200 km above the visible surface. These velocities are probably the largest ever reported at photospheric levels. The region containing the downflows is large enough (about 2 sec on a side) to be resolved, although it is likely to contain fine structure at or below our spatial resolution. The origin of these flows is discussed in terms of the funneling of material through an isolated magnetic nozzle in an otherwise closed magnetic system which is rising through the surface. Title: The Inclination of Network Magnetic Fields Authors: Sanchez Almeida, J.; Martinez Pillet, V. Bibcode: 1994ApJ...424.1014S Altcode: We have observed the linear polarization of 21 bright grains of the photospheric network close to the disk center. The linear polarization of Fe I 6302.5 A was always lower than 1.9 x 10-3 (referred to continuum intensity). This level of linear polarization implies a very small magnetic field inclination with respect to the vertical, which we estimate below 10 deg. Our finding is in apparent disagreement with previous studies which claim large inclinations; however, it fulfills theoretical expectations. Plage regions close to sunspots might show inclination, but isolated network elements do not. Title: Vector spectropolarimetry with the Advanced Stokes Polarimeter (ASP) for quantitative solar magnetometry Authors: Skumanich, A.; Lites, B. W.; Martínez Pillet, V. Bibcode: 1994ASIC..433...99S Altcode: No abstract at ADS Title: Magnetic Configuration of a Short-Lived Delta SPOT Authors: Martinez Pillet, V.; Lites, B. W.; Skumanich, A. P.; Seagraves, P. Bibcode: 1994ASPC...68..244M Altcode: 1994sare.conf..244M No abstract at ADS Title: The inclination of magnetic fields in small-scale flux concentrations Authors: Sánchez Almeida, J.; Martínez Pillet, V. Bibcode: 1994smf..conf..316S Altcode: No abstract at ADS Title: Physical conditions in magnetic elements of different polarities surrounding sunspots Authors: Martínez Pillet, V.; Lites, B. W.; Skumanich, A. P.; Elmore, D. F.; Seagraves, P. Bibcode: 1994smf..conf..219M Altcode: No abstract at ADS Title: Instrumental polarization of telescopes: a laboratory test of the diffraction model Authors: Sánchez Almeida, J.; Martínez Pillet, V. Bibcode: 1994smf..conf..343S Altcode: No abstract at ADS Title: Polarizing properties of grazing-incidence X-ray mirrors - Comment Authors: Sanchez Almeida, J.; Martinez Pillet, V. Bibcode: 1993ApOpt..32.4231S Altcode: We show that grazing-incidence telescopes, like those used for X-ray imaging, present negligible instrumental polarization. This property does not depend on the number of reflections the telescope employs to lead light from the entrance pupil to the focal plane. The result applies to the various mirrors of the advanced X-ray astrophysics facility satellite. In this particular case we have quantified the residual instrumental polarization to be between 10 exp -3 and 5 x 10 exp -5, depending on the size of the resolution elements. Title: The distribution of sunspot decay rates. Authors: Martinez Pillet, V.; Moreno-Insertis, F.; Vazquez, M. Bibcode: 1993A&A...274..521M Altcode: The distribution of sunspot decay rates is studied using the Greenwich Photoheliographic Results (GPR) for a total of approximately hundred years between 1874 and 1976.

The decay rates are seen to be lognormally distributed. The discrepancies between the decay rates given in the past by different authors are shown to originate as a consequence of this asymmetric distribution. It is pointed out that the extended tails shown by the lognormal distributions are associated to spots decaying much faster than suggested by Bumba's (1963) work. A cycle by cycle analysis of the lognormal distributions associated with each sunspot group type and for single spots is presented. The differences between the nine solar cycles involved are studied.

As a remarkable property of the decay process, we show that it happens at a nearly constant total to umbral area ratio. This property holds for decaying spots which are still large enough to show a penumbra.

We have studied the suitability of a decay law with the instantaneous decay rate proportional to the length of the spot boundary. This law predicts a parabolic decay pattern with some specific characteristics. No definite conclusion in favour of this law is reached, but it is suggested that a linear decay is as weakly supported by the GPR data as a peripheral one. On the other hand, weak non-linearities are seen in the decay of isolated spots with a clear tendency to produce a convex pattern in the area vs. time diagram. The implication is that sunspot decay is braked as time proceeds. Title: The continuum intensity-magnetic field relation in sunspot umbrae Authors: Martinez Pillet, V.; Vazquez, M. Bibcode: 1993A&A...270..494M Altcode: We describe the work carried out to obtain observational evidence of a local relation between the temperature and the magnetic field in different regions of several sunspots. Information about the temperature is extracted from the continuum intensity. The magnetic field is deduced by using the Stokes V profile of lines with different excitation potentials. A scaling relation between Stokes V and continuum intensity is used to estimate the stray-light contamination. The observed local relation between continuum intensity and magnetic field can be adapted to the equations describing magnetostatic horizontal force balance. The commonly accepted value for the Wilson depression suggests that the tension forces are as important as the magnetic pressure in defining horizontal equilibrium. The local relation observed holds for spatial scales larger than 1 arcsec. Evidence of unresolved hot magnetic regions inside the umbra is presented. Our study provides clues pointing to a dependence of continuum intensity with sunspot area. Small spots are seen to be brighter than big ones. Title: The Continuum Intensity Magnetic Field Relation in Sunspot Umbrae Authors: Martinez Pillet, V.; Vazquez, M. Bibcode: 1993ASPC...46...60M Altcode: 1993mvfs.conf...60M; 1993IAUCo.141...60M No abstract at ADS Title: Atomic orientation in chromospheric lines. Authors: Trujillo Bueno, J.; Martínez Pillet, V.; Sánchez Almeida, J.; Landi Degl'Innocenti, E. Bibcode: 1993ASPC...46..526T Altcode: 1993ASPC...46..526B; 1993mvfs.conf..526T; 1993IAUCo.141..526T Observations of the Stokes I and V profiles of the Ca II H and K lines in solar magnetic regions are presented. Least-squares fits of dI/dλ to V are obtained and the wavelength variation of the residuals, i.e. V-kdI/dλ, calculated. The authors find significant symmetric residuals in umbrae, which are in agreement with the effect on the V profiles due to atomic orientation, i.e. with the existence of an unequal population of the Zeeman sublevels with M > 0 with respect to those with M < 0. Title: The Distribution of Sunspot Decay Rates Authors: Martinez Pillet, V.; Moreno-Insertis, F.; Vazquez, M. Bibcode: 1993ASPC...46...67M Altcode: 1993mvfs.conf...67M; 1993IAUCo.141...67M No abstract at ADS Title: High Angular Resolution Stokes V Spectra in Penumbrae Authors: Sanchez Almeida, J.; Martinez Pillet, V.; Lites, J. T. Buenol B. W. Bibcode: 1993ASPC...46..192S Altcode: 1993mvfs.conf..192S; 1993IAUCo.141..192S No abstract at ADS Title: Stray Light Effects on the Solar Intensity Distribution Authors: Martinez Pillet, V. Bibcode: 1992SoPh..140..207M Altcode: A description of the stray-light problem based on a radiative transfer approach is presented. The two-dimensional convolution that describes the effect of the stray-light is recovered in this formalism. On the other hand, the normalization condition used for the spread function in our procedure is different from the one used in the old approach. The controversy raised by the old normalization condition is satisfactorily eliminated within our description. We have applied our formalism to aureole observations and derived the spread function parameters. These parameters are similar to the ones used in the standard approach but now a new quantity appears. It is derived consistently within our formalism and it allows a description of different atmospheric quality conditions without changing the actual shape of the spread function. This possibility is also a new characteristic of our formalism that has no analogy to the old one. Finally, the information derived from limb profiles is used to correct sunspot images. The correction does not need to make any assumption about the shape of the spot but it uses the information contained on the image itself. It is shown how, for large spots, the contamination of stray-light can be considered as an added constant level of light throughout the umbra. Title: Instrumental polarization in the focal plane of telescopes Authors: Sanchez Almeida, J.; Martinez Pillet, V. Bibcode: 1992A&A...260..543S Altcode: We present a technique to model the instrumental polarization in the focal plane of a telescope. It takes into account that different rays of an incoming beam suffer different variation of the original polarization in their paths through the system. It also considers that the net effect depends on the way in which the different rays interfere with each other. We show that the Mueller matrix which describes this instrumental polarization greatly simplifies if the polarimetric measurements have poor spatial resolution. The Mueller matrices corresponding to a pair of academic cases are worked out: a diffraction limited telescope when the source lies on its axis and an axisymmetric mirror with the source off the axis. We discuss the consequences of these mathematical results on real telescopes (e.g. LEST). Finally, we briefly consider the seeing-induced instrumental polarization. Title: Relations between fundamental parameters of sunspots Authors: Martínez Pillet, Valentín Juan Bibcode: 1992PhDT.......298M Altcode: No abstract at ADS Title: A proposal for a low instrumental polarization coude telescope Authors: Martinez Pillet, V.; Sanchez Almeida, J. Bibcode: 1991A&A...252..861M Altcode: 1991A&A...252..861P A technique for obtaining an ideal two-mirror coude system with no instrumental polarization is described. A half-wave plate positioned between the two mirrors with the proper orientation produces the desired effect. The level of spurious polarization is limited by the characteristics of the retarder and the similarity of the mirrors. The telescope design and accuracy are discussed. Title: Spectrograph distortion in sunspot line profiles Authors: Martinez Pillet, V.; Sanchez Almeida, J. Bibcode: 1991SoPh..134..403M Altcode: We show empirically how the effect of the instrumental polarization of the spectrograph can distort the shape of the intensity profiles in sunspots. In order to avoid the problems an analysis of the polarization of the light should be performed at the entrance slit of the spectrograph. Title: The instrumental polarization of a Gregory-Coudé telescope Authors: Sanchez Almeida, J.; Martinez Pillet, V.; Wittmann, A. D. Bibcode: 1991SoPh..134....1A Altcode: We calculate a theoretical model of the polarization properties of a Gregory-Coudé telescope to predict the behaviour of the German Gregory-Coudé Telescope installed at the Observatorio del Teide (Spain). Measurements of the real effects produced by this telescope acting upon light of known polarization are compared with the model. We estimate an uncertainty in its predictions of about 10%, which is produced by the uncertainties of the (complex) refractive index of the metallic layers covering the mirrors. The paper concludes by briefly considering the way in which the plain telescope changes the Stokes' profiles. Title: Performance of the IAC Stokes I and V analyzer. Authors: Sánchez Almeida, J.; Martínez Pillet, V. Bibcode: 1991sopo.work..191S Altcode: The chromatic behaviour of the IAC analyzer, commonly used at the German Vacuum Gregory-Coude telesope at the Spanish Observatorio del Teide (Canary Islands), is investigated. It is shown that, through careful alignment of the optical components, a nearly perfect circular analysis can be obtained at wavelengths of 4000 Å and 6000 Å. For other visible regions the crosstalk between linear and circular polarization can be always made lower than 10%. Title: Spectropolarimetry of active regions. Authors: Del Toro Iniesta, J. C.; Martínez Pillet, V.; Vázquez, M. Bibcode: 1991sopo.work..224D Altcode: A circular analyzer has been used at the focal plane of a telescope in days of absence of instrumental polarization to simultaneously record I±V spectrograms at two different wavelength ranges: ≡6300 Å and ≡3930 - 3970 Å. The observations have been analyzed within two, also different, frames: on the one hand, an empirical relationship between brightness temperature and the magnetic field strength has been found for sunspot umbrae, which allows a determination of the Wilson depression; on the other, estimates of the chromospheric longitudinal component of the magnetic field (magnetic flux if the filling factor is not unity) in two umbrae, in a penumbra, and in a plage have been found by using profiles of the resonance lines H and K of Ca II. A ratio of order 2 - 3 between the longitudinal components of the field at the chromospheric height of formation of the Ca II lines and the photospheric height of formation of the 6302.5 Å Fe I line is also found in umbrae. Title: Circular Polarization of the CA II H and K Lines in Solar Quiet and Active Regions Authors: Martinez Pillet, V.; Garcia Lopez, R. J.; del Toro Iniesta, J. C.; Rebolo, R.; Vazquez, M.; Beckman, J. E.; Char, S. Bibcode: 1990ApJ...361L..81M Altcode: A representative set of profiles is presented for the Ca II H resonace line in Stokes V and I, for the quiet sun, plages, sunspot umbrae, and a flare, as well as one example of the Ca II K line in a sunspot penumbra. The degree of polarization is highest in the spots and zero in the quiet sun, within error limits. The V profile asymmetries are, however, highest in the flare. The spectra of the Ca II K line are used to obtain a linear relation between V(lambda) and -dI/d(lambda) and a value for B(parallel) of 820 + or - 40 G using the weak-field approximation. Title: Decay rates of sunspot groups from 1874 to 1976 Authors: Martinez Pillet, V.; Moreno-Insertis, F.; Vazquez, M. Bibcode: 1990Ap&SS.170....3M Altcode: The global behaviour and fine structure of the distribution of sunspot decay rates from activity cycle 13 to 20 are presented. It is shown that the distribution of this parameter is lognormal. Statistically significantly lower values of decay rates are found in cycles 13, 14, and 18 for isolated spots. The complex groups had no appreciable changes. Title: On the Continuum Intensity Magnetic Field Relation Along the Decay Phase of Sunspots Authors: Martinez Pillet, V.; Vazquez, M. Bibcode: 1990Ap&SS.170...75M Altcode: We present continuum intensity-magnetic field distributions for a decaying sunspot. It is shown that a very simple model accounts for the observed correlation. The Wilson depression is determined. Title: Facular points and small-scale magnetic elements Authors: del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J.; Martinez Pillet, V.; Ruiz Cobo, B. Bibcode: 1990Ap&SS.170....9D Altcode: We present spectroscopic observations, with high spatial resolution, of Ca ii K bright points very near the disc centre. Magnetic concentrations have been detected in these network (facular) points by only using intensity profiles of the well-known pair of lines Fe i5250.22 Å and 5247.06 Å. No brightening of these structures with respect to the quiet photosphere can be ascertained within an accuracy threshold of 1.2%. Title: Are small-scale magnetic concentrations spatially coincident with bright facular points? Authors: del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J.; Martinez Pillet, V.; Ruiz Cobo, B. Bibcode: 1990A&A...233..570D Altcode: The usually assumed identification of small-scale magnetic concentrations with bright facular or network points on the photosphere is observationally checked by using high spatial resolution spectra of Ca II K bright points very near the disk center. The detection of spatially unresolved magnetic structures is made via a new differential analysis of the well-known pair of Fe I lines 5247.06 A and 5250.22 A; these concentrations are present in the central part of a line weakening zone, which is of some 2 arcsec wide. No continuum intensity enhancement with respect to the quiet photosphere can be ascertained of these structures, within an accuracy threshold of 1.2 percent. In spite of this, magnetic concentrations brighter than the quiet photosphere are compatible with the observations, but if so, they must be narrower than 0.2 arcsec. Title: Stray-light measurements at the Observatorio del Teide Authors: Martinez Pillet, V.; Ruiz Cobo, B.; Vazquez, M. Bibcode: 1990SoPh..125..211M Altcode: A new procedure to separate the instrumental and atmospheric components of stray light is presented. It is based on the dependence of the aureole's atmospheric component on the air mass and is applied to measurements taken with the Vacuum Newton Telescope (VNT) at the Observatorio del Teide (Tenerife). The resulting instrumental part is independent of the air mass. The variation of both components with wavelength is also studied. The instrumental component shows no dependence on wavelength, in contrast to the atmospheric one which is greater in the blue than in the red. It is concluded that observations with air masses larger than two will probably be strongly affected by stray light.