Author name code: shimizu ADS astronomy entries on 2022-09-14 author:"Shimizu, Toshifumi" ------------------------------------------------------------------------ Title: Quiet Sun Center to Limb Variation of the Linear Polarization Observed by CLASP2 Across the Mg II h and k Lines Authors: Rachmeler, L. A.; Bueno, J. Trujillo; McKenzie, D. E.; Ishikawa, R.; Auchère, F.; Kobayashi, K.; Kano, R.; Okamoto, T. J.; Bethge, C. W.; Song, D.; Ballester, E. Alsina; Belluzzi, L.; Pino Alemán, T. del; Ramos, A. Asensio; Yoshida, M.; Shimizu, T.; Winebarger, A.; Kobelski, A. R.; Vigil, G. D.; Pontieu, B. De; Narukage, N.; Kubo, M.; Sakao, T.; Hara, H.; Suematsu, Y.; Štěpán, J.; Carlsson, M.; Leenaarts, J. Bibcode: 2022ApJ...936...67R Altcode: 2022arXiv220701788R The CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket mission was launched on 2019 April 11. CLASP2 measured the four Stokes parameters of the Mg II h and k spectral region around 2800 Å along a 200″ slit at three locations on the solar disk, achieving the first spatially and spectrally resolved observations of the solar polarization in this near-ultraviolet region. The focus of the work presented here is the center-to-limb variation of the linear polarization across these resonance lines, which is produced by the scattering of anisotropic radiation in the solar atmosphere. The linear polarization signals of the Mg II h and k lines are sensitive to the magnetic field from the low to the upper chromosphere through the Hanle and magneto-optical effects. We compare the observations to theoretical predictions from radiative transfer calculations in unmagnetized semiempirical models, arguing that magnetic fields and horizontal inhomogeneities are needed to explain the observed polarization signals and spatial variations. This comparison is an important step in both validating and refining our understanding of the physical origin of these polarization signatures, and also in paving the way toward future space telescopes for probing the magnetic fields of the solar upper atmosphere via ultraviolet spectropolarimetry. Title: GRAVITY faint: reducing noise sources in GRAVITY$^+$ with a fast metrology attenuation system Authors: Widmann, F.; Gillessen, S.; Ott, T.; Shimizu, T.; Eisenhauer, F.; Fabricius, M.; Woillez, J.; Gonté, F.; Horrobin, M.; Shangguan, J.; Yazici, S.; Perrin, G.; Paumard, T.; Brandner, W.; Kreidberg, L.; Straubmeier, C.; Perraut, K.; Le Bouquin, J. -B.; Garcia, P.; Hönig, S.; Defrère, D.; Bourdarot, G.; Drescher, A.; Feuchtgruber, H.; Genzel, R.; Hartl, M.; Lutz, D.; More, N.; Rau, C.; Uysal, S.; Wieprecht, E. Bibcode: 2022arXiv220905593W Altcode: With the upgrade from GRAVITY to GRAVITY$^+$ the instrument will evolve into an all-sky interferometer that can observe faint targets, such as high redshift AGN. Observing the faintest targets requires reducing the noise sources in GRAVITY as much as possible. The dominant noise source, especially in the blue part of the spectrum, is the backscattering of the metrology laser light onto the detector. To reduce this noise we introduce two new metrology modes. With a combination of small hardware changes and software adaptations, we can dim the metrology laser during the observation without losing the phase referencing. For single beam targets, we can even turn off the metrology laser for the maximum SNR on the detector. These changes lead to an SNR improvement of over a factor of two averaged over the whole spectrum and up to a factor of eight in the part of the spectrum currently dominated by laser noise. Title: A high angular resolution view of the PAH emission in Seyfert galaxies using JWST/MRS data Authors: García-Bernete, I.; Rigopoulou, D.; Alonso-Herrero, A.; Donnan, F. R.; Roche, P. F.; Pereira-Santella, M.; Labiano, A.; Peralta de Arriba, L.; Izumi, T.; Ramos Almeida, C.; Shimizu, T.; Hönig, S.; García-Burillo, S.; Rosario, D. J.; Ward, M. J.; Bellocchi, E.; Hicks, E. K. S.; Fuller, L.; Packham, C. Bibcode: 2022arXiv220811620G Altcode: Polycyclic Aromatic Hydrocarbons (PAHs) are carbon-based molecules, which are ubiquitous in a variety of astrophysical objects and environments. In this work, we use JWST/MIRI MRS spectroscopy of 3 Seyferts to compare their nuclear PAH emission with that of star-forming regions. This study represents the first of its kind using sub-arcsecond angular resolution data of local luminous Seyferts (Lbol>10^44.89 erg/s) on a wide wavelength coverage (4.9-28.1 micron). We present an analysis of their nuclear PAH properties by comparing the observed ratios with PAH diagnostic model grids, derived from theoretical spectra. Our results show that a suite of PAH features is present in the innermost parts (~0.45 arcsec at 12 micron; in the inner ~142-245 pc) of luminous Seyfert galaxies. We find that the nuclear regions of AGN lie at different positions of the PAH diagnostic diagrams, whereas the SF regions are concentrated around the average values of SF galaxies. In particular, we find that the nuclear PAH emission mainly originates in neutral PAHs. In contrast, PAH emission originating in the SF regions favours ionised PAH grains. The observed PAH ratios in the nuclear region of AGN-dominated galaxy NGC 6552 indicate the presence of larger-sized PAH molecules compared with those of the SF regions. Therefore, our results provide evidence that the AGN have a significant impact on the ionization state (and probably the size) of the PAH grains on scales of ~142-245 pc. Title: Direct Discovery of the Inner Exoplanet in the HD206893 System Authors: Hinkley, S.; Lacour, S.; Marleau, G. D.; Lagrange, A. M.; Wang, J. J.; Kammerer, J.; Cumming, A.; Nowak, M.; Rodet, L.; Stolker, T.; Balmer, W. -O.; Ray, S.; Bonnefoy, M.; Mollière, P.; Lazzoni, C.; Kennedy, G.; Mordasini, C.; Abuter, R.; Aigrain, S.; Amorim, A.; Asensio-Torres, R.; Babusiaux, C.; Benisty, M.; Berger, J. -P.; Beust, H.; Blunt, S.; Boccaletti, A.; Bohn, A.; Bonnet, H.; Bourdarot, G.; Brandner, W.; Cantalloube, F.; Caselli, P.; Charnay, B.; Chauvin, G.; Chomez, A.; Choquet, E.; Christiaens, V.; Clénet, Y.; Coudé du Foresto, V.; Cridland, A.; Delorme, P.; Dembet, R.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Feuchtgruber, H.; Galland, F.; Garcia, P.; Garcia Lopez, R.; Gardner, T.; Gendron, E.; Genzel, R.; Gillessen, S.; Girard, J. H.; Grandjean, A.; Haubois, X.; Heißel, G.; Henning, Th.; Hippler, S.; Horrobin, M.; Houllé, M.; Hubert, Z.; Jocou, L.; Keppler, M.; Kervella, P.; Kreidberg, L.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Maire, A. -L.; Mang, F.; Mérand, A.; Meunier, N.; Monnier, J. D.; Mordasini, C.; Mouillet, D.; Nasedkin, E.; Ott, T.; Otten, G. P. P. L.; Paladini, C.; Paumard, T.; Perraut, K.; Perrin, G.; Philipot, F.; Pfuhl, O.; Pourré, N.; Pueyo, L.; Rameau, J.; Rickman, E.; Rubini, P.; Rustamkulov, Z.; Samland, M.; Shangguan, J.; Shimizu, T.; Sing, D.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; van Dishoeck, E. F.; Vigan, A.; Vincent, F.; Ward-Duong, K.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Zicher, N.; the GRAVITY Collaboration Bibcode: 2022arXiv220804867H Altcode: Long term precise radial velocity (RV) monitoring of HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. In this work we describe the results of a search for the companion responsible for this RV drift and proper motion anomaly. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. We report a high significance detection of the purported companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with $\sim$50-100 $\mu$arcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.3$^{+1.1}_{-1.2}$ M$_{\rm Jup}$ and an orbital separation of 3.53$^{+0.80}_{-0.70}$ au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 170 Myr. Importantly, we find that the bolometric luminosity of the newly discovered HD206893c is anomalously high, and that standard cooling curves are unable to simultaneously account for the brightness of both members of the system at a common age of 170 Myr. However, we find that incorporating an elevated helium abundance into our cooling models in turn results in an enhanced level of deuterium burning in the "c" companion, bringing the predicted luminosity in line with our measured value. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Title: Development of Fast and Precise Scan Mirror Mechanism for an Airborne Solar Telescope Authors: Oba, Takayoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Kubo, Masahito; Kawabata, Yusuke; Hara, Hirohisa; Uraguchi, Fumihiro; Tsuzuki, Toshihiro; Tamura, Tomonori; Shinoda, Kazuya; Kodeki, Kazuhide; Fukushima, Kazuhiko; Morales Fernández, José Miguel; Sánchez Gómez, Antonio; Balaguer Jimenéz, María; Hernández Expósito, David; Gandorfer, Achim Bibcode: 2022arXiv220713864O Altcode: We developed a scan mirror mechanism (SMM) that enable a slit-based spectrometer or spectropolarimeter to precisely and quickly map an astronomical object. The SMM, designed to be installed in the optical path preceding the entrance slit, tilts a folding mirror and then moves the reflected image laterally on the slit plane, thereby feeding a different one-dimensional image to be dispersed by the spectroscopic equipment. In general, the SMM is required to scan quickly and broadly while precisely placing the slit position across the field-of-view (FOV). These performances are highly in demand for near-future observations, such as studies on the magnetohydrodynamics of the photosphere and the chromosphere. Our SMM implements a closed-loop control system by installing electromagnetic actuators and gap-based capacitance sensors. Our optical test measurements confirmed that the SMM fulfils the following performance criteria: i) supreme scan-step uniformity (linearity of 0.08%) across the wide scan range (${\pm}$1005 arcsec), ii) high stability (3${\sigma}$ = 0.1 arcsec), where the angles are expressed in mechanical angle, and iii) fast stepping speed (26 ms). The excellent capability of the SMM will be demonstrated soon in actual use by installing the mechanism for a near-infrared spectropolarimeter onboard the balloon-borne solar observatory for the third launch, Sunrise III. Title: A spectral solar irradiance monitor (SoSpIM) on the JAXA Solar-C (EUVST) space mission Authors: Harra, Louise K.; Watanabe, Kyoko; Haberreiter, Margit; Hori, Tomoaki; Hara, Hirohisa; Kretzschmar, Matthieu; Woods, Thomas; Shimizu, Toshifumi; Krucker, Samuel; Berghmans, David; Jin, Hidekatsu; Dominique, Marie; Eparvier, Francis G.; Gissot, Samuel; Leng Yeo, Kok; Pfiffner, Dany; Milligan, Ryan; Thiemann, Edward; Miyoshi, Yoshizumi; Imada, Shinsuke; Kawate, Tomoko; Chamberlin, Phillip; Rozanov, Eugene; Silvio Koller, -.; Barczynski, Krzysztof; Nozomu; Nishitani; Ieda, Akimasa; Langer, Patrick; Meier, Leandro; Tye, Daniel; Alberti, Andrea Bibcode: 2022cosp...44..834H Altcode: The JAXA Solar-C (EUVST) mission (Shimizu et al., 2020) is designed to comprehensively understand how mass and energy are transferred throughout the solar atmosphere. The EUV High-Throughput Spectroscopic Telescope (EUVST) onboard does this by observing all the temperature regimes of the atmosphere from the chromosphere to the corona simultaneously. To enhance the EUVST scientific capabilities, there will be a Solar Spectral Irradiance Monitor (SoSpIM). SoSpIM will work hand-in-hand scientifically with EUVST, by providing the full Sun irradiance at sub-second time cadence combined with the spatially resolved spectroscopy from EUVST. The SoSPIM instrument will specifically address two aspects. These are: · Understand how the solar atmosphere becomes unstable, releasing the energy that drives solar flares - achieved through probing fast time cadence solar flare variations. · Measuring solar irradiance that impacts the Earth's thermosphere and the mesosphere, linking to spatially resolved measurements of the solar atmosphere with EUVST. SoSpIM will provide high time resolution measurements in 2 channels (a) in the corona through channel 1 (EUV) and (b) in the lower atmosphere through channel 2 (Lyman alpha). Each channel impacts different layers of the Earth's atmosphere. Title: How Can Solar-C/SOSPIM Contribute to the Understanding of Quasi-Periodic Pulsations in Solar Flares? Authors: Dominique, Marie; Harra, Louise K.; Watanabe, Kyoko; Hara, Hirohisa; Zhukov, Andrei; Shimizu, Toshifumi; Berghmans, David; Dolla, Laurent; Gissot, Samuel; Pfiffner, Dany; Imada, Shinsuke; Silvio Koller, -.; Meier, Leandro; Tye, Daniel; Alberti, Andrea Bibcode: 2022cosp...44.2524D Altcode: Quasi-periodic pulsations (QPPs) refer to nearly-periodic oscillations that are often observed in irradiance time series during solar flares and have also been reported in several stellar flares. In the last years, several statistical studies based on Soft X-ray measurements have reached the conclusion that QPPs are present in most solar flares of class M and above. Still, as of today, we are still unsure of what causes QPPs. Several models could explain the presence of QPPs with periods matching the ones observed. More detailed analysis of the observational signatures of QPPs might help determine which of those models are actually playing a role in the generation of QPPs. However, as QPPs is a small timescale process (the period of QPPs is often reported to be less than a minute), such an analysis requires instruments with a good signal-to-noise and high sampling rate. In this context, the spectral solar irradiance monitor SOSPIM, that will be part of the JAXA SOLAR C mission and that will complement the EUVST spectrograph measurements, could be a valuable asset. SOSPIM will observe the solar chromosphere and corona in the Lyman-alpha and EUV spectral ranges at high cadence. In this presentation, we review the current knowledge of QPPs and describe what could be the contribution of SOSPIM to push their understanding one step forward. Title: Space-based instruments for small scale dynamics in the solar upper atmosphere Authors: Shimizu, Toshifumi Bibcode: 2022cosp...44.2523S Altcode: Physical mechanisms on elemental small scales are believed to be a key for understanding the formation mechanisms of the hot and dynamic outer solar atmosphere and mechanisms of solar eruptions. High resolution focus of space-based instruments will be rich scientifically. Discoveries may be found on the elemental small scales, such as the nature of magnetic stresses resulting from braiding of magnetic field lines; the magnetic topology at the footpoints of spicules, jets, and prominences; the transport of energy via Alfvén waves; and the development and effects of turbulence in all levels of the solar atmosphere. In the early 2020s, large aperture telescopes, such as DKIST, have started their observations, providing new diagnostics of magnetic and velocity fields in the lower atmosphere with super high spatial resolution. In space, Parker Solar Probe, Solar Orbiter, and BepiColomb are flying to explore the inner heliosphere. New instruments are needed to link high resolution information in the low atmosphere with observations from the inner heliosphere. This means high resolution instruments for diagnosing the upper atmosphere from the upper chromosphere to the corona and linking to the inner heliosphere. Ideal state-of-art instruments for this purpose will be realized in the latter half of 2020s: Solar-C (EUVST) and MUSE. The combination of these two spacecraft with ground-based DKIST would be the most powerful for dynamics in small-scales. Title: An ALMA Observation of Time Variations in Chromospheric Temperature of a Solar Plage Region Authors: Abe, Masashi; Shimizu, Toshifumi; Shimojo, Masumi Bibcode: 2022FrASS...9.8249A Altcode: Nanoflares and the shock formation of magnetohydrodynamic waves in the solar chromosphere have been considered as key physical mechanisms of the heating of the chromosphere and corona. To investigate candidates of their signature in the mm-wavelength, a tiny active region located on the solar disk was observed with the Atacama Large millimeter and sub-millimeter Array (ALMA) at 3 mm, coordinated with observatories on orbit including Hinode SOT spectro-polarimeter in the Cycle 4 solar campaign (19 March 2017). ALMA's spatial resolution was moderate, far from the best performance, but it provided stable conditions that are suitable to investigate temporal variations in the mm-wavelength. We determined that the noise level is less than 20 K (σ) over 1 hour in the 20-s cadence time series of synthesized ALMA images. The time variations with amplitudes above the noise level were observed throughout the field of view, but variations exceeding 200 K, corresponding to energy input to the chromosphere on the order of 1020-22 erg, were localized in two locations. One location was on the polarity inversion line, where tiny concentrated magnetic patches exist in weak field and a tiny magnetic flux may be emergent. The other location was at the outer edge of a bipolar magnetic region, which was under development with a successive series of magnetic flux emergence. This observation suggests that nanoflare-class energy inputs in the chromosphere can occur associated with emerging flux activities. Title: First Light for GRAVITY Wide: Large Separation Fringe Tracking for the Very Large Telescope Interferometer Authors: GRAVITY+ Collaboration; :; Abuter, R.; Allouche, F.; Amorim, A.; Bailet, C.; Bauböck, M.; Berger, J. -P.; Berio, P.; Bigioli, A.; Boebion, O.; Bolzer, M. L.; Bonnet, H.; Bourdarot, G.; Bourget, P.; Brandner, W.; Clénet, Y.; Courtney-Barrer, B.; Dallilar, Y.; Davies, R.; Defrère, D.; Delboulbé, A.; Delplancke, F.; Dembet, R.; de Zeeuw, P. T.; Drescher, A.; Eckart, A.; Édouard, C.; Eisenhauer, F.; Fabricius, M.; Feuchtgruber, H.; Finger, G.; Förster Schreiber, N. M.; Garcia, E.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gil, J. P.; Gillessen, S.; Gomes, T.; Gonté, F.; Gouvret, C.; Guajardo, P.; Guieu, S.; Hartl, M.; Haubois, X.; Haußmann, F.; Heißel, G.; Henning, Th.; Hippler, S.; Hönig, S.; Horrobin, M.; Hubin, N.; Jacqmart, E.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Korhonen, H.; Kreidberg, L.; Lacour, S.; Lagarde, S.; Lai, O.; Lapeyrère, V.; Laugier, R.; Le Bouquin, J. -B.; Leftley, J.; Léna, P.; Lutz, D.; Mang, F.; Marcotto, A.; Maurel, D.; Mérand, A.; Millour, F.; More, N.; Nowacki, H.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Paumard, T.; Perraut, K.; Perrin, G.; Petrov, R.; Pfuhl, O.; Pourré, N.; Rabien, S.; Rau, C.; Robbe-Dubois, S.; Rochat, S.; Salman, M.; Schöller, M.; Schubert, J.; Schuhler, N.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Sevin, A.; Soulez, F.; Spang, A.; Stadler, E.; Stadler, J.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vincent, F.; von Fellenberg, S.; Uysal, S.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Zins, G. Bibcode: 2022arXiv220600684G Altcode: GRAVITY+ is the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) with wide-separation fringe tracking, new adaptive optics, and laser guide stars on all four 8~m Unit Telescopes (UTs), for ever fainter, all-sky, high contrast, milliarcsecond interferometry. Here we present the design and first results of the first phase of GRAVITY+, called GRAVITY Wide. GRAVITY Wide combines the dual-beam capabilities of the VLTI and the GRAVITY instrument to increase the maximum separation between the science target and the reference star from 2 arcseconds with the 8 m UTs up to several 10 arcseconds, limited only by the Earth's turbulent atmosphere. This increases the sky-coverage of GRAVITY by two orders of magnitude, opening up milliarcsecond resolution observations of faint objects, and in particular the extragalactic sky. The first observations in 2019 - 2022 include first infrared interferometry of two redshift $z\sim2$ quasars, interferometric imaging on the binary system HD 105913A, and repeated observations of multiple star systems in the Orion Trapezium Cluster. We find the coherence loss between the science object and fringe-tracking reference star well described by the turbulence of the Earth's atmosphere. We confirm that the larger apertures of the UTs result in higher visibilities for a given separation due to larger overlap of the projected pupils on sky and give predictions for visibility loss as a function of separation to be used for future planning. Title: CASPER: A mission to study the time-dependent evolution of the magnetic solar chromosphere and transition regions Authors: Orozco Suárez, D.; del Toro Iniesta, J. C.; Bailén, F. J.; López Jiménez, A.; Balaguez Jiménez, M.; Bellot Rubio, L. R.; Ishikawa, R.; Katsukawa, Y.; Kano, R.; Shimizu, T.; Trujillo Bueno, J.; Asensio Ramos, A.; del Pino Alemán, T. Bibcode: 2022ExA...tmp...26O Altcode: Our knowledge about the solar chromosphere and transition region (TR) has increased in the last decade thanks to the huge scientific return of space-borne observatories like SDO, IRIS, and Hinode, and suborbital rocket experiments like CLASP1, CLASP2, and Hi-C. However, the magnetic nature of those solar regions remain barely explored. The chromosphere and TR of the Sun harbor weak fields and are in a low ionization stage both having critical effects on their thermodynamic behavior. Relatively cold gas structures, such as spicules and prominences, are located in these two regions and display a dynamic evolution in high-resolution observations that static and instantaneous 3D-magnetohydrodynamic (MHD) models are not able to reproduce. The role of the chromosphere and TR as the necessary path to a (largely unexplained) very hot corona calls for the generation of observationally based, time-dependent models of these two layers that include essential, up to now disregarded, ingredients in the modeling such as the vector magnetic field. We believe that the community is convinced that the origin of both the heat and kinetic energy observed in the upper layers of the solar atmosphere is of magnetic origin, but reliable magnetic field measurements are missing. The access to sensitive polarimetric measurements in the ultraviolet wavelengths has been elusive until recently due to limitations in the available technology. We propose a low-risk and high-Technology Readiness Level (TRL) mission to explore the magnetism and dynamics of the solar chromosphere and TR. The mission baseline is a low-Earth, Sun-synchronous orbit at an altitude between 600 and 800 km. The proposed scientific payload consists of a 30 cm aperture telescope with a spectropolarimeter covering the hydrogen Ly-alpha and the Mg II h&k ultraviolet lines. The instrument shall record high-cadence, full spectropolarimetric observations of the solar upper atmosphere. Besides the answers to a fundamental solar problem the mission has a broader scientific return. For example, the time-dependent modeling of the chromospheres of stars harboring exoplanets is fundamental for estimating the planetary radiation environment. The mission is based on technologies that are mature enough for space and will provide scientific measurements that are not available by other means. Title: Kiloparsec view of a typical star-forming galaxy when the Universe was $\sim$1 Gyr old II. Regular rotating disk and evidence for baryon dominance on galactic scales Authors: Herrera-Camus, R.; Förster Schreiber, N. M.; Price, S. H.; Übler, H.; Bolatto, A. D.; Davies, R. L.; Fisher, D.; Genzel, R.; Lutz, D.; Naab, T.; Nestor, A.; Shimizu, T.; Sternberg, A.; Tacconi, L.; Tadaki, K. Bibcode: 2022arXiv220300689H Altcode: We present a kinematic analysis of the main-sequence galaxy HZ4 at $z=5.5$. Our study is based on deep, spatially resolved observations of the [CII] 158 $\mu$m transition obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA). From the combined analysis of the disk morphology, the two-dimensional velocity structure, and forward-modeling of the one-dimensional velocity and velocity dispersion profiles, we conclude that HZ4 has a regular rotating disk in place. The intrinsic velocity dispersion in HZ4 is high ($\sigma_{0}=65.8^{+2.9}_{-3.3}$ km s$^{-1}$), and the ratio between the rotational velocity and the intrinsic velocity dispersion is $V_{\rm rot}/\sigma_{0}=2.2$. These values are consistent with the expectations from the trends of increasing $\sigma_{0}$ and decreasing $V_{\rm rot}/\sigma_{0}$ as a function of redshift observed in main-sequence galaxies up to $z\approx4$. Galaxy evolution models suggest that the high level of turbulence observed in HZ4 can only be achieved if, in addition to stellar feedback, there is radial transport of gas within the disk. Finally, we find that HZ4 is baryon dominated on galactic scales ($\lesssim2\times R_{\rm e}$), with a dark matter fraction at one effective radius of $f_{\rm DM}(R_{\rm e})=0.41^{+0.25}_{-0.22}$. This value is comparable to the dark matter fractions found in lower redshift galaxies that could be the descendants of HZ4: massive ($M_{\star}\approx10^{11}~M_{\odot}$), star-forming galaxies at $z\sim2$, and passive, early type galaxies at $z\approx0$. Title: Deep images of the Galactic center with GRAVITY Authors: GRAVITY Collaboration; Abuter, R.; Aimar, N.; Amorim, A.; Arras, P.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Brandner, W.; Bourdarot, G.; Cardoso, V.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Dallilar, Y.; Drescher, A.; Eisenhauer, F.; Enßlin, T.; Förster Schreiber, N. M.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Jiménez-Rosales, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Mang, F.; Nowak, M.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rabien, S.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Zins, G. Bibcode: 2022A&A...657A..82G Altcode: 2021arXiv211207477G Stellar orbits at the Galactic Center provide a very clean probe of the gravitational potential of the supermassive black hole. They can be studied with unique precision, beyond the confusion limit of a single telescope, with the near-infrared interferometer GRAVITY. Imaging is essential to search the field for faint, unknown stars on short orbits which potentially could constrain the black hole spin. Furthermore, it provides the starting point for astrometric fitting to derive highly accurate stellar positions. Here, we present GR, a new imaging tool specifically designed for Galactic Center observations with GRAVITY. The algorithm is based on a Bayesian interpretation of the imaging problem, formulated in the framework of information field theory and building upon existing works in radio-interferometric imaging. Its application to GRAVITY observations from 2021 yields the deepest images to date of the Galactic Center on scales of a few milliarcseconds. The images reveal the complicated source structure within the central 100 mas around Sgr A*, where we detected the stars S29 and S55 and confirm S62 on its trajectory, slowly approaching Sgr A*. Furthermore, we were able to detect S38, S42, S60, and S63 in a series of exposures for which we offset the fiber from Sgr A*. We provide an update on the orbits of all aforementioned stars. In addition to these known sources, the images also reveal a faint star moving to the west at a high angular velocity. We cannot find any coincidence with any known source and, thus, we refer to the new star as S300. From the flux ratio with S29, we estimate its K-band magnitude as mK(S300) ≃ 19.0 − 19.3. Images obtained with CLEAN confirm the detection. To assess the sensitivity of our images, we note that fiber damping reduces the apparent magnitude of S300 and the effect increases throughout the year as the star moves away from the field center. Furthermore, we performed a series of source injection tests. Under favorable circumstances, sources well below a magnitude of 20 can be recovered, while 19.7 is considered the more universal limit for a good data set. Title: Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits Authors: GRAVITY Collaboration; Abuter, R.; Aimar, N.; Amorim, A.; Ball, J.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Bourdarot, G.; Brandner, W.; Cardoso, V.; Clénet, Y.; Dallilar, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Foschi, A.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rabien, S.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Stadler, J.; Stephens, A. W.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vincent, F.; von Fellenberg, S.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A. Bibcode: 2022A&A...657L..12G Altcode: Stars orbiting the compact radio source Sgr A* in the Galactic Center serve as precision probes of the gravitational field around the closest massive black hole. In addition to adaptive optics-assisted astrometry (with NACO/VLT) and spectroscopy (with SINFONI/VLT, NIRC2/Keck and GNIRS/Gemini) over three decades, we have obtained 30-100 μas astrometry since 2017 with the four-telescope interferometric beam combiner GRAVITY/VLTI, capable of reaching a sensitivity of mK = 20 when combining data from one night. We present the simultaneous detection of several stars within the diffraction limit of a single telescope, illustrating the power of interferometry in the field. The new data for the stars S2, S29, S38, and S55 yield significant accelerations between March and July 2021, as these stars pass the pericenters of their orbits between 2018 and 2023. This allows for a high-precision determination of the gravitational potential around Sgr A*. Our data are in excellent agreement with general relativity orbits around a single central point mass, M = 4.30 × 106 M, with a precision of about ±0.25%. We improve the significance of our detection of the Schwarzschild precession in the S2 orbit to 7σ. Assuming plausible density profiles, the extended mass component inside the S2 apocenter (≈0.23″ or 2.4 × 104 RS) must be ≲3000 M (1σ), or ≲0.1% of M. Adding the enclosed mass determinations from 13 stars orbiting Sgr A* at larger radii, the innermost radius at which the excess mass beyond Sgr A* is tentatively seen is r ≈ 2.5″ ≥ 10× the apocenter of S2. This is in full harmony with the stellar mass distribution (including stellar-mass black holes) obtained from the spatially resolved luminosity function. Title: Simultaneous ALMA-Hinode-IRIS Observations on Footpoint Signatures of a Soft X-Ray Loop-like Microflare Authors: Shimizu, Toshifumi; Shimojo, Masumi; Abe, Masashi Bibcode: 2021ApJ...922..113S Altcode: 2021arXiv210911215S Microflares have been considered to be among the major energy input sources to form active solar corona. To investigate the response of the low atmosphere to events, we conducted an Atacama Large Millimeter/submillimeter Array (ALMA) observation at 3 mm, coordinated with Interface Region Imaging Spectrograph (IRIS) and Hinode observations, on 2017 March 19. During the observations, a soft X-ray loop-type microflare (active region transient brightening) was captured using the Hinode X-ray telescope in high temporal cadence. A brightening loop footpoint is located within narrow fields of view of ALMA, IRIS slit-jaw imager, and Hinode spectropolarimeter. Counterparts of the microflare at the footpoint were detected in Si IV and ALMA images, while the counterparts were less apparent in C II and Mg II k images. Their impulsive time profiles exhibit the Neupert effect pertaining to soft X-ray intensity evolution. The magnitude of thermal energy measured using ALMA was approximately 100 times smaller than that measured in the corona. These results suggest that impulsive counterparts can be detected in the transition region and upper chromosphere, where the plasma is thermally heated via impinging nonthermal particles. Our energy evaluation indicates a deficit of accelerated particles that impinge the footpoints for a small class of soft X-ray microflares. The footpoint counterparts consist of several brightening kernels, all of which are located in weak (void) magnetic areas formed in patchy distribution of strong magnetic flux at the photospheric level. The kernels provide a conceptual image in which the transient energy release occurs at multiple locations on the sheaths of magnetic flux bundles in the corona. Title: The mass distribution in the Galactic Centre from interferometric astrometry of multiple stellar orbits Authors: GRAVITY Collaboration; Abuter, R.; Aimar, N.; Amorim, A.; Ball, J.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Bourdarot, G.; Brandner, W.; Cardoso, V.; Clénet, Y.; Dallilar, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Foschi, A.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rabien, S.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Stadler, J.; Stephens, A. W.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vincent, F.; von Fellenberg, S.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Zins, G. Bibcode: 2021arXiv211207478G Altcode: The stars orbiting the compact radio source Sgr A* in the Galactic Centre are precision probes of the gravitational field around the closest massive black hole. In addition to adaptive optics assisted astrometry (with NACO / VLT) and spectroscopy (with SINFONI / VLT, NIRC2 / Keck and GNIRS / Gemini) over three decades, since 2016/2017 we have obtained 30-100 mu-as astrometry with the four-telescope interferometric beam combiner GRAVITY / VLTI reaching a sensitivity of mK = 20 when combining data from one night. We present the simultaneous detection of several stars within the diffraction limit of a single telescope, illustrating the power of interferometry. The new data for the stars S2, S29, S38 and S55 yield significant accelerations between March and July 2021, as these stars pass the pericenters of their orbits between 2018 and 2023. This allows for a high-precision determination of the gravitational potential around Sgr A*. Our data are in excellent agreement with general relativity orbits around a single central point mass, M = 4.30 x 10^6 M_sun with a precision of about +-0.25%. We improve the significance of our detection of the Schwarzschild precession in the S2 orbit to 7 sigma. Assuming plausible density profiles, an extended mass component inside S2's apocentre (= 0.23" or 2.4 x 10^4 R_S) must be 3000 M_sun (1 sigma), or 0.1% of M. Adding the enclosed mass determinations from 13 stars orbiting Sgr A* at larger radii, the innermost radius at which the excess mass beyond Sgr A* tentatively is seen is r = 2.5" >= 10x the apocentre of S2. This is in full harmony with the stellar mass distribution (including stellar-mass black holes) obtained from the spatially resolved luminosity function. Title: How Can Solar-C/SOSPIM Contribute to the Understanding of Quasi-Periodic Pulsations in Solar Flares? Authors: Dominique, Marie; Dolla, Laurent; Zhukov, Andrei; Alberti, Andrea; Berghmans, David; Gissot, Samuel; Hara, Hirohisa; Harra, Louise; Imada, Shinsuke; Koller, Silvio; Meier, Leandro; Pfiffner, Daniel; Shimizu, Toshifumi; Tye, Daniel; Watanabe, Kyoko Bibcode: 2021AGUFMSH25E2124D Altcode: Quasi-periodic pulsations (QPPs) refer to nearly-periodic oscillations that are often observed in irradiance time series during solar flares and have also been reported in several stellar flares. In the last years, several statistical studies based on Soft X-ray measurements have reached the conclusion that QPPs are present in most solar flares of class M and above. Still, the mechanism at the origin of QPPs is under debate. Are they caused by waves or periodic fluctuations of the magnetic reconnection driving the flare? Analyzing the characteristics of QPPs and their evolution during the flare could help identifying their origin. However, QPPs sometimes exhibit very different periodicities, and do not always happen during the same phase of the flare. All this could point to the coexistence of QPPs with different origin mechanism, and indicates the need for more observations. In this context, the spectral solar irradiance monitor SOSPIM, that will be part of the JAXA SOLAR C mission and that will complement the EUVST spectrograph measurements, could be a valuable asset. SOSPIM will observe the solar chromosphere and corona in the Lyman-alpha and EUV spectral ranges at high cadence. In this presentation, we review the current knowledge of QPPs and describe what could be the contribution of SOSPIM to push their understanding one step forward. Title: Rotation Curves in z 1-2 Star-forming Disks: Comparison of Dark Matter Fractions and Disk Properties for Different Fitting Methods Authors: Price, S. H.; Shimizu, T. T.; Genzel, R.; Übler, H.; Förster Schreiber, N. M.; Tacconi, L. J.; Davies, R. I.; Coogan, R. T.; Lutz, D.; Wuyts, S.; Wisnioski, E.; Nestor, A.; Sternberg, A.; Burkert, A.; Bender, R.; Contursi, A.; Davies, R. L.; Herrera-Camus, R.; Lee, M. -J.; Naab, T.; Neri, R.; Renzini, A.; Saglia, R.; Schruba, A.; Schuster, K. Bibcode: 2021ApJ...922..143P Altcode: 2021arXiv210902659P We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z ~ 0.67 - 2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, turbulent disk, and an NFW dark matter halo, using code that fully forward-models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I: the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of noncircular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z ~ 1 - 2 are baryon-dominated on galactic scales, with lower dark matter fractions toward higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis. Title: PSTEP: project for solar-terrestrial environment prediction Authors: Kusano, Kanya; Ichimoto, Kiyoshi; Ishii, Mamoru; Miyoshi, Yoshizumi; Yoden, Shigeo; Akiyoshi, Hideharu; Asai, Ayumi; Ebihara, Yusuke; Fujiwara, Hitoshi; Goto, Tada-Nori; Hanaoka, Yoichiro; Hayakawa, Hisashi; Hosokawa, Keisuke; Hotta, Hideyuki; Hozumi, Kornyanat; Imada, Shinsuke; Iwai, Kazumasa; Iyemori, Toshihiko; Jin, Hidekatsu; Kataoka, Ryuho; Katoh, Yuto; Kikuchi, Takashi; Kubo, Yûki; Kurita, Satoshi; Matsumoto, Haruhisa; Mitani, Takefumi; Miyahara, Hiroko; Miyoshi, Yasunobu; Nagatsuma, Tsutomu; Nakamizo, Aoi; Nakamura, Satoko; Nakata, Hiroyuki; Nishizuka, Naoto; Otsuka, Yuichi; Saito, Shinji; Saito, Susumu; Sakurai, Takashi; Sato, Tatsuhiko; Shimizu, Toshifumi; Shinagawa, Hiroyuki; Shiokawa, Kazuo; Shiota, Daikou; Takashima, Takeshi; Tao, Chihiro; Toriumi, Shin; Ueno, Satoru; Watanabe, Kyoko; Watari, Shinichi; Yashiro, Seiji; Yoshida, Kohei; Yoshikawa, Akimasa Bibcode: 2021EP&S...73..159K Altcode: Although solar activity may significantly impact the global environment and socioeconomic systems, the mechanisms for solar eruptions and the subsequent processes have not yet been fully understood. Thus, modern society supported by advanced information systems is at risk from severe space weather disturbances. Project for solar-terrestrial environment prediction (PSTEP) was launched to improve this situation through synergy between basic science research and operational forecast. The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. By this project, we sought to answer the fundamental questions concerning the solar-terrestrial environment and aimed to build a next-generation space weather forecast system to prepare for severe space weather disasters. The PSTEP consists of four research groups and proposal-based research units. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced. Title: The GRAVITY young stellar object survey. VII. The inner dusty disks of T Tauri stars Authors: GRAVITY Collaboration; Perraut, K.; Labadie, L.; Bouvier, J.; Ménard, F.; Klarmann, L.; Dougados, C.; Benisty, M.; Berger, J. -P.; Bouarour, Y. -I.; Brandner, W.; Caratti O Garatti, A.; Caselli, P.; de Zeeuw, P. T.; Garcia-Lopez, R.; Henning, T.; Sanchez-Bermudez, J.; Sousa, A.; van Dishoeck, E.; Alécian, E.; Amorim, A.; Clénet, Y.; Davies, R.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Förster-Schreiber, N. M.; Garcia, P.; Gendron, E.; Genzel, R.; Gillessen, S.; Grellmann, R.; Heißel, G.; Hippler, S.; Horrobin, M.; Hubert, Z.; Jocou, L.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Ott, T.; Paumard, T.; Perrin, G.; Scheithauer, S.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L.; Vincent, F.; von Fellenberg, S.; Widmann, F. Bibcode: 2021A&A...655A..73G Altcode: 2021arXiv210911826T Context. T Tauri stars are surrounded by dust and gas disks. As material reservoirs from which matter is accreted onto the central star and planets are built, these protoplanetary disks play a central role in star and planet formation.
Aims: We aim at spatially resolving at sub-astronomical unit (sub-au) scales the innermost regions of the protoplanetary disks around a sample of T Tauri stars to better understand their morphology and composition.
Methods: Thanks to the sensitivity and the better spatial frequency coverage of the GRAVITY instrument of the Very Large Telescope Interferometer, we extended our homogeneous data set of 27 Herbig stars and collected near-infrared K-band interferometric observations of 17 T Tauri stars, spanning effective temperatures and luminosities in the ranges of ~4000-6000 K and ~0.4-10 L, respectively. We focus on the continuum emission and develop semi-physical geometrical models to fit the interferometric data and search for trends between the properties of the disk and the central star.
Results: As for those of their more massive counterparts, the Herbig Ae/Be stars, the best-fit models of the inner rim of the T Tauri disks correspond to wide rings. The GRAVITY measurements extend the radius-luminosity relation toward the smallest luminosities (0.4-10 L). As observed previously, in this range of luminosities, the R ∝ L1∕2 trend line is no longer valid, and the K-band sizes measured with GRAVITY appear to be larger than the predicted sizes derived from sublimation radius computation. We do not see a clear correlation between the K-band half-flux radius and the mass accretion rate onto the central star. Besides, having magnetic truncation radii in agreement with the K-band GRAVITY sizes would require magnetic fields as strong as a few kG, which should have been detected, suggesting that accretion is not the main process governing the location of the half-flux radius of the inner dusty disk. The GRAVITY measurements agree with models that take into account the scattered light, which could be as important as thermal emission in the K band for these cool stars. The N-to-K band size ratio may be a proxy for disentangling disks with silicate features in emission from disks with weak and/or in absorption silicate features (i.e., disks with depleted inner regions and/or with large gaps). The GRAVITY data also provide inclinations and position angles of the inner disks. When compared to those of the outer disks derived from ALMA images of nine objects of our sample, we detect clear misalignments between both disks for four objects.
Conclusions: The combination of improved data quality with a significant and homogeneous sample of young stellar objects allows us to revisit the pioneering works done on the protoplanetary disks by K-band interferometry and to test inner disk physics such as the inner rim morphology and location.

GTO programs with run IDs: 0103.C-0347, 0102.C-0408, 0101.C-0311, 0100.C-0278, and 099.C-0667. Title: The GRAVITY young stellar object survey. VIII. Gas and dust faint inner rings in the hybrid disk of HD141569 Authors: GRAVITY Collaboration; Ganci, V.; Labadie, L.; Klarmann, L.; de Valon, A.; Perraut, K.; Benisty, M.; Brandner, W.; Caratti O Garatti, A.; Dougados, C.; Eupen, F.; Garcia Lopez, R.; Grellmann, R.; Sanchez-Bermudez, J.; Wojtczak, A.; Garcia, P.; Amorim, A.; Bauböck, M.; Berger, J. -P.; Caselli, P.; Clénet, Y.; Coudé Du Foresto, V.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Filho, M.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Heissel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Hubert, Z.; Jiménez-Rosales, A.; Jocou, L.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Ott, T.; Paumard, T.; Perrin, G.; Pfuhl, O.; Heißel, G.; Rousset, G.; Scheithauer, S.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; van Dishoeck, E.; Vincent, F.; von Fellenberg, S. D.; Widmann, F.; Woillez, J. Bibcode: 2021A&A...655A.112G Altcode: 2021arXiv210910070G Context. The formation and evolution of planetary systems impact the evolution of the primordial accretion disk in its dust and gas content. HD 141569 is a peculiar object in this context as it is the only known pre-main sequence star characterized by a hybrid disk. Observations with 8 m class telescopes probed the outer-disk structure showing a complex system of multiple rings and outer spirals. Furthermore, interferometric observations attempted to characterize its inner 5 au region, but derived limited constraints.
Aims: The goal of this work was to explore with new high-resolution interferometric observations the geometry, properties, and dynamics of the dust and gas in the internal regions of HD 141569.
Methods: We observed HD 141569 on milliarcsecond scales with GRAVITY/VLTI in the near-infrared (IR) at low (R ~ 20) and high (R ~ 4000) spectral resolution. We interpreted the interferometric visibilities and spectral energy distribution with geometrical models and through radiative transfer techniques using the code MCMax to constrain the dust emission. We analyzed the high spectral resolution quantities (visibilities and differential phases) to investigate the properties of the Brackett-γ (Brγ) line emitting region.
Results: Thanks to the combination of three different epochs, GRAVITY resolves the inner dusty disk in the K band with squared visibilities down to V2 ~ 0.8. A differential phase signal is also detected in the region of the Brγ line along most of the six baselines. Data modeling shows that an IR excess of about 6% is spatially resolved and that the origin of this emission is confined in a ring of material located at a radius of ~1 au from the star with a width ≲0.3 au. The MCMax modeling suggests that this emission could originate from a small amount (1.4 × 10−8 M) of quantum-heated particles, while large silicate grain models cannot reproduce at the same time the observational constraints on the properties of near-IR and mid-IR fluxes. The high spectral resolution differential phases in the Brγ line clearly show an S-shape that can be best reproduced with a gaseous disk in Keplerian rotation, confined within 0.09 au (or 12.9 R). This is also hinted at by the double-peaked Brγ emission line shape, known from previous observations and confirmed by GRAVITY. The modeling of the continuum and gas emission shows that the inclination and position angle of these two components are consistent with a system showing relatively coplanar rings on all scales.
Conclusions: With a new and unique observational dataset on HD 141569, we show that the complex disk of this source is composed of a multitude of rings on all scales. This aspect makes HD 141569 a potentially unique source to investigate planet formation and disk evolution in intermediate-mass pre-main sequence stars. Title: VizieR Online Data Catalog: BAT AGN Spectroscopic Survey. XVIII. Periodic var. (Liu+, 2020) Authors: Liu, T.; Koss, M.; Blecha, L.; Ricci, C.; Trakhtenbrot, B.; Mushotzky, R.; Harrison, F.; Ichikawa, K.; Kakkad, D.; Oh, K.; Powell, M.; Privon, G. C.; Schawinski, K.; Shimizu, T. T.; Smith, K. L.; Stern, D.; Treister, E.; Urry, C. M. Bibcode: 2021yCat..18960122L Altcode: Theory predicts that a supermassive black hole binary (SMBHB) could be observed as a luminous active galactic nucleus (AGN) that periodically varies on the order of its orbital timescale. In X-rays, periodic variations could be caused by mechanisms including relativistic Doppler boosting and shocks. Here we present the first systematic search for periodic AGNs using 941 hard X-ray light curves (14-195keV) from the first 105 months of the Swift Burst Alert Telescope (BAT) survey (2004-2013). We do not find evidence for periodic AGNs in Swift-BAT, including the previously reported SMBHB candidate MCG+11-11-032. We find that the null detection is consistent with the combination of the upper-limit binary population in AGNs in our adopted model, their expected periodic variability amplitudes, and the BAT survey characteristics. We have also investigated the detectability of SMBHBs against normal AGN X-ray variability in the context of the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) survey. Under our assumptions of a binary population and the periodic signals they produce, which have long periods of hundreds of days, up to 13% true periodic binaries can be robustly distinguished from normal variable AGNs with the ideal uniform sampling. However, we demonstrate that realistic eROSITA sampling is likely to be insensitive to long-period binaries because longer observing gaps reduce their detectability. In contrast, large observing gaps do not diminish the prospect of detecting binaries of short, few-day periods, as 19% can be successfully recovered, the vast majority of which can be identified by the first half of the survey.

(1 data file). Title: Constraining particle acceleration in Sgr A with simultaneous GRAVITY, Spitzer, NuSTAR, and Chandra observations Authors: GRAVITY Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Baganoff, F.; Berger, J. P.; Boyce, H.; Bonnet, H.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Dallilar, Y.; Drescher, A.; Eckart, A.; Eisenhauer, F.; Fazio, G. G.; Förster Schreiber, N. M.; Foster, K.; Gammie, C.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Ghisellini, G.; Gillessen, S.; Gurwell, M. A.; Habibi, M.; Haggard, D.; Hailey, C.; Harrison, F. A.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Hora, J. L.; Horrobin, M.; Jiménez-Rosales, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lowrance, P. J.; Lutz, D.; Markoff, S.; Mori, K.; Morris, M. R.; Neilsen, J.; Nowak, M.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Ponti, G.; Pfuhl, O.; Rabien, S.; Rodríguez-Coira, G.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Smith, H. A.; Stadler, J.; Stern, D. K.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Vincent, F.; von Fellenberg, S. D.; Waisberg, I.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Willner, S. P.; Witzel, G.; Woillez, J.; Yazici, S.; Young, A.; Zhang, S.; Zins, G. Bibcode: 2021A&A...654A..22G Altcode: 2021arXiv210701096A We report the time-resolved spectral analysis of a bright near-infrared and moderate X-ray flare of Sgr A. We obtained light curves in the M, K, and H bands in the mid- and near-infrared and in the 2 − 8 keV and 2 − 70 keV bands in the X-ray. The observed spectral slope in the near-infrared band is νLν ∝ ν0.5 ± 0.2; the spectral slope observed in the X-ray band is νLν ∝ ν−0.7 ± 0.5. Using a fast numerical implementation of a synchrotron sphere with a constant radius, magnetic field, and electron density (i.e., a one-zone model), we tested various synchrotron and synchrotron self-Compton scenarios. The observed near-infrared brightness and X-ray faintness, together with the observed spectral slopes, pose challenges for all models explored. We rule out a scenario in which the near-infrared emission is synchrotron emission and the X-ray emission is synchrotron self-Compton. Two realizations of the one-zone model can explain the observed flare and its temporal correlation: one-zone model in which the near-infrared and X-ray luminosity are produced by synchrotron self-Compton and a model in which the luminosity stems from a cooled synchrotron spectrum. Both models can describe the mean spectral energy distribution (SED) and temporal evolution similarly well. In order to describe the mean SED, both models require specific values of the maximum Lorentz factor γmax, which differ by roughly two orders of magnitude. The synchrotron self-Compton model suggests that electrons are accelerated to γmax ∼ 500, while cooled synchrotron model requires acceleration up to γmax ∼ 5 × 104. The synchrotron self-Compton scenario requires electron densities of 1010 cm−3 that are much larger than typical ambient densities in the accretion flow. Furthermore, it requires a variation of the particle density that is inconsistent with the average mass-flow rate inferred from polarization measurements and can therefore only be realized in an extraordinary accretion event. In contrast, assuming a source size of 1 RS, the cooled synchrotron scenario can be realized with densities and magnetic fields comparable with the ambient accretion flow. For both models, the temporal evolution is regulated through the maximum acceleration factor γmax, implying that sustained particle acceleration is required to explain at least a part of the temporal evolution of the flare. Title: A geometric distance to the supermassive black Hole of NGC 3783 Authors: GRAVITY Collaboration; Amorim, A.; Bauböck, M.; Bentz, M. C.; Brandner, W.; Bolzer, M.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Hönig, S.; Kaltenbrunner, D.; Kishimoto, M.; Lacour, S.; Lutz, D.; Millour, F.; Netzer, H.; Onken, C. A.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Petrucci, P. O.; Pfuhl, O.; Prieto, M. A.; Rouan, D.; Shangguan, J.; Shimizu, T.; Stadler, J.; Sternberg, A.; Straub, O.; Straubmeier, C.; Street, R.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vermot, P.; von Fellenberg, S.; Widmann, F.; Woillez, J. Bibcode: 2021A&A...654A..85G Altcode: 2021arXiv210714262G The angular size of the broad line region (BLR) of the nearby active galactic nucleus NGC 3783 has been spatially resolved by recent observations with VLTI/GRAVITY. A reverberation mapping (RM) campaign has also recently obtained high quality light curves and measured the linear size of the BLR in a way that is complementary to the GRAVITY measurement. The size and kinematics of the BLR can be better constrained by a joint analysis that combines both GRAVITY and RM data. This, in turn, allows us to obtain the mass of the supermassive black hole in NGC 3783 with an accuracy that is about a factor of two better than that inferred from GRAVITY data alone. We derive MBH = 2.54−0.72+0.90 × 107 M. Finally, and perhaps most notably, we are able to measure a geometric distance to NGC 3783 of 39.9−11.9+14.5 Mpc. We are able to test the robustness of the BLR-based geometric distance with measurements based on the Tully-Fisher relation and other indirect methods. We find the geometric distance is consistent with other methods within their scatter. We explore the potential of BLR-based geometric distances to directly constrain the Hubble constant, H0, and identify differential phase uncertainties as the current dominant limitation to the H0 measurement precision for individual sources. Title: The GRAVITY young stellar object survey. VI. Mapping the variable inner disk of HD 163296 at sub-au scales Authors: GRAVITY Collaboration; Sanchez-Bermudez, J.; Caratti O Garatti, A.; Garcia Lopez, R.; Perraut, K.; Labadie, L.; Benisty, M.; Brandner, W.; Dougados, C.; Garcia, P. J. V.; Henning, Th.; Klarmann, L.; Amorim, A.; Bauböck, M.; Berger, J. P.; Le Bouquin, J. B.; Caselli, P.; Clénet, Y.; Coudé Du Foresto, V.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Filho, M.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Grellmann, R.; Heissel, G.; Horrobin, M.; Hubert, Z.; Jiménez-Rosales, A.; Jocou, L.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Léna, P.; Ott, T.; Paumard, T.; Perrin, G.; Pineda, J. E.; Rodríguez-Coira, G.; Rousset, G.; Segura-Cox, D. M.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; van Dishoeck, E.; Vincent, F.; von Fellenberg, S. D.; Widmann, F.; Woillez, J. Bibcode: 2021A&A...654A..97G Altcode: 2021arXiv210702391S Context. Protoplanetary disks drive some of the formation process (e.g., accretion, gas dissipation, formation of structures) of stars and planets. Understanding such physical processes is one of the most significant astrophysical questions. HD 163296 is an interesting young stellar object for which infrared and sub-millimeter observations have shown a prominent circumstellar disk with gaps plausibly created by forming planets.
Aims: This study aims to characterize the morphology of the inner disk in HD 163296 with multi-epoch, near-infrared interferometric observations performed with GRAVITY at the Very Large Telescope Interferometer. Our goal is to depict the K-band (λ0 ~ 2.2 μm) structure of the inner rim with milliarcsecond (sub-au) angular resolution. Our data is complemented with archival Precision Integrated-Optics Near-infrared Imaging ExpeRiment (H-band; λ0 ~ 1.65 μm) data of the source.
Methods: We performed a gradient descent parametric model fitting to recover the sub-au morphology of our source.
Results: Our analysis shows the existence of an asymmetry in the disk surrounding the central star of HD 163296. We confirm variability of the disk structure in the inner ~2 mas (0.2 au). While variability of the inner disk structure in this source has been suggested by previous interferometric studies, this is the first time that it is confirmed in the H- and K-bands by using a complete analysis of the closure phases and squared visibilities over several epochs. Because of the separation from the star, position changes, and the persistence of this asymmetric structure on timescales of several years, we argue that it is probably a dusty feature (e.g., a vortex or dust clouds) made by a mixing of silicate and carbon dust and/or refractory grains, inhomogeneously distributed above the mid-plane of the disk. Title: LLAMA: Stellar populations in the nuclei of ultra-hard X-ray-selected AGN and matched inactive galaxies Authors: Burtscher, L.; Davies, R. I.; Shimizu, T. T.; Riffel, R.; Rosario, D. J.; Hicks, E. K. S.; Lin, M. -Y.; Riffel, R. A.; Schartmann, M.; Schnorr-Müller, A.; Storchi-Bergmann, T.; Orban de Xivry, G.; Veilleux, S. Bibcode: 2021A&A...654A.132B Altcode: 2021arXiv210505309B The relation between nuclear (≲50 pc) star formation and nuclear galactic activity is still elusive; theoretical models predict a link between the two, but it is unclear whether active galactic nuclei (AGNs) should appear at the same time, before, or after nuclear star formation activity. We present a study of this relation in a complete, volume-limited sample of nine of the most luminous (log L14 − 195 keV > 1042.5 erg s−1) local AGNs (the LLAMA sample), including a sample of 18 inactive control galaxies (six star-forming; 12 passive) that are matched by Hubble type, stellar mass (9.5 ≲ log M/M ≲ 10.5), inclination, and distance. This allows us to calibrate our methods on the control sample and perform a differential analysis between the AGN and control samples. We performed stellar population synthesis on VLT/X-shooter spectra in an aperture corresponding to a physical radius of ≈150 pc. We find young (≲30 Myr) stellar populations in seven out of nine AGNs and in four out of six star-forming control galaxies. In the non-star-forming control population, in contrast, only two out of 12 galaxies show such a population. We further show that these young populations are not indicative of ongoing star formation, providing evidence for models that see AGN activity as a consequence of nuclear star formation. Based on the similar nuclear star formation histories of AGNs and star-forming control galaxies, we speculate that the latter may turn into the former for some fraction of their time. Under this assumption, and making use of the volume completeness of our sample, we infer that the AGN phase lasts for about 5% of the nuclear starburst phase.

Spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A132 Title: The mass of β Pictoris c from β Pictoris b orbital motion Authors: Lacour, S.; Wang, J. J.; Rodet, L.; Nowak, M.; Shangguan, J.; Beust, H.; Lagrange, A. -M.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Benisty, M.; Berger, J. -P.; Blunt, S.; Boccaletti, A.; Bohn, A.; Bolzer, M. -L.; Bonnefoy, M.; Bonnet, H.; Bourdarot, G.; Brandner, W.; Cantalloube, F.; Caselli, P.; Charnay, B.; Chauvin, G.; Choquet, E.; Christiaens, V.; Clénet, Y.; Coudé Du Foresto, V.; Cridland, A.; Dembet, R.; Dexter, J.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Gao, F.; Garcia, P.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Girard, J. H.; Haubois, X.; Heißel, G.; Henning, Th.; Hinkley, S.; Hippler, S.; Horrobin, M.; Houllé, M.; Hubert, Z.; Jocou, L.; Kammerer, J.; Keppler, M.; Kervella, P.; Kreidberg, L.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Maire, A. -L.; Mérand, A.; Mollière, P.; Monnier, J. D.; Mouillet, D.; Nasedkin, E.; Ott, T.; Otten, G. P. P. L.; Paladini, C.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rickman, E.; Pueyo, L.; Rameau, J.; Rousset, G.; Rustamkulov, Z.; Samland, M.; Shimizu, T.; Sing, D.; Stadler, J.; Stolker, T.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; van Dishoeck, E. F.; Vigan, A.; Vincent, F.; von Fellenberg, S. D.; Ward-Duong, K.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Gravity Collaboration Bibcode: 2021A&A...654L...2L Altcode: 2021arXiv210910671L
Aims: We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.
Methods: We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.
Results: From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04−3.10+4.53 MJup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15−1.06+1.08 MJup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89−0.75+0.75 MJup. With a semimajor axis of 2.68 ± 0.02 au, a period of 1221 ± 15 days, and an eccentricity of 0.32 ± 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet. Title: The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies Authors: García-Burillo, S.; Alonso-Herrero, A.; Ramos Almeida, C.; González-Martín, O.; Combes, F.; Usero, A.; Hönig, S.; Querejeta, M.; Hicks, E. K. S.; Hunt, L. K.; Rosario, D.; Davies, R.; Boorman, P. G.; Bunker, A. J.; Burtscher, L.; Colina, L.; Díaz-Santos, T.; Gandhi, P.; García-Bernete, I.; García-Lorenzo, B.; Ichikawa, K.; Imanishi, M.; Izumi, T.; Labiano, A.; Levenson, N. A.; López-Rodríguez, E.; Packham, C.; Pereira-Santaella, M.; Ricci, C.; Rigopoulou, D.; Rouan, D.; Shimizu, T.; Stalevski, M.; Wada, K.; Williamson, D. Bibcode: 2021A&A...652A..98G Altcode: 2021arXiv210410227G We present the first results of the Galaxy Activity, Torus, and Outflow Survey (GATOS), a project aimed at understanding the properties of the dusty molecular tori and their connection to the host galaxy in nearby Seyfert galaxies. Our project expands the range of active galactic nuclei (AGN) luminosities and Eddington ratios covered by previous surveys of Seyferts conducted by the Atacama Large Millimeter Array (ALMA), allowing us to study the gas feeding and feedback cycle in a combined sample of 19 Seyferts. We used ALMA to obtain new images of the emission of molecular gas and dust using the CO(3-2) and HCO+(4-3) lines as well as their underlying continuum emission at 870 μm with high spatial resolutions (0.1″ ∼ 7 − 13 pc) in the circumnuclear disks (CND) of ten nearby (D < 28 Mpc) Seyfert galaxies selected from an ultra-hard X-ray survey. Our new ALMA observations detect 870 μm continuum and CO line emission from spatially resolved disks located around the AGN in all the sources. The bulk of the 870 μm continuum flux can be accounted for by thermal emission from dust in the majority of the targets. For most of the sources, the disks show a preponderant orientation perpendicular to the AGN wind axes, as expected for dusty molecular tori. The median diameters and molecular gas masses of the tori are ∼42 pc and ∼6 × 105 M, respectively. We also detected the emission of the 4-3 line of HCO+ in four GATOS targets. The order of magnitude differences found in the CO/HCO+ ratios within our combined sample point to a very different density radial stratification inside the dusty molecular tori of these Seyferts. We find a positive correlation between the line-of-sight gas column densities responsible for the absorption of X-rays and the molecular gas column densities derived from CO toward the AGN in our sources. Furthermore, the median values of both column densities are similar. This suggests that the neutral gas line-of-sight column densities of the dusty molecular tori imaged by ALMA significantly contribute to the obscuration of X-rays. The radial distributions of molecular gas in the CND of our combined sample show signs of nuclear-scale molecular gas deficits. We also detect molecular outflows in the sources that show the most extreme nuclear-scale gas deficits in our sample. These observations find for the first time supporting evidence that the imprint of AGN feedback is more extreme in higher luminosity and/or higher Eddington ratio Seyfert galaxies. Title: VizieR Online Data Catalog: X-shooter spectra of AGN and inactive galaxies (Burtscher+, 2021) Authors: Burtscher, L.; Davies, R. I.; Shimizu, T. T.; Riffel, R.; Rosario, D. J.; Hicks, E. K. S.; Lin, M. -Y.; Riffel, R. A.; Schartmann, M.; Schnorr-Mueller, A.; Storchi-Bergmann, T.; Orban de Xivry, G.; Veilleux, S. Bibcode: 2021yCat..36540132B Altcode: Spectra of all observations considered for this publication, i.e. all 49 observations mentioned in Table 2 of the paper. Please see Table 2 for the authors' judgement regarding the data quality of these observations.

For any questions regarding the data or its quality, please contact Dr. Leonard Burtscher, burtscher(at)strw.leidenuniv.nl, www.ileo.de or on Twitter as (at)LeoBurtscher.

(2 data files). Title: GRAVITY K-band spectroscopy of HD 206893 B. Brown dwarf or exoplanet Authors: Kammerer, J.; Lacour, S.; Stolker, T.; Mollière, P.; Sing, D. K.; Nasedkin, E.; Kervella, P.; Wang, J. J.; Ward-Duong, K.; Nowak, M.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Beust, H.; Blunt, S.; Boccaletti, A.; Bohn, A.; Bolzer, M. -L.; Bonnefoy, M.; Bonnet, H.; Brandner, W.; Cantalloube, F.; Caselli, P.; Charnay, B.; Chauvin, G.; Choquet, E.; Christiaens, V.; Clénet, Y.; Coudé du Foresto, V.; Cridland, A.; Dembet, R.; Dexter, J.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Gao, F.; Garcia, P.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Girard, J.; Haubois, X.; Heißel, G.; Henning, T.; Hinkley, S.; Hippler, S.; Horrobin, M.; Houllé, M.; Hubert, Z.; Jocou, L.; Keppler, M.; Kreidberg, L.; Lagrange, A. -M.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Maire, A. -L.; Mérand, A.; Monnier, J. D.; Mouillet, D.; Müller, A.; Ott, T.; Otten, G. P. P. L.; Paladini, C.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Pueyo, L.; Rameau, J.; Rodet, L.; Rousset, G.; Rustamkulov, Z.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; van Dishoeck, E. F.; Vigan, A.; Vincent, F.; von Fellenberg, S. D.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S. Bibcode: 2021A&A...652A..57K Altcode: 2021arXiv210608249K Context. Near-infrared interferometry has become a powerful tool for studying the orbital and atmospheric parameters of substellar companions.
Aims: We aim to reveal the nature of the reddest known substellar companion HD 206893 B by studying its near-infrared colors and spectral morphology and by investigating its orbital motion.
Methods: We fit atmospheric models for giant planets and brown dwarfs and perform spectral retrievals with petitRADTRANS and ATMO on the observed GRAVITY, SPHERE, and GPI spectra of HD 206893 B. To recover its unusual spectral features, first and foremost its extremely red near-infrared color, we include additional extinction by high-altitude dust clouds made of enstatite grains in the atmospheric model fits. However, forsterite, corundum, and iron grains predict similar extinction curves for the grain sizes considered here. We also infer the orbital parameters of HD 206893 B by combining the ~100 μas precision astrometry from GRAVITY with data from the literature and constrain the mass and position of HD 206893 C based on the Gaia proper motion anomaly of the system.
Results: The extremely red color and the very shallow 1.4 μm water absorption feature of HD 206893 B can be fit well with the adapted atmospheric models and spectral retrievals. By comparison with AMES-Cond evolutionary tracks, we find that only some atmosphericmodels predict physically plausible objects. Altogether, our analysis suggests an age of ~ 3-300 Myr and a mass of ~ 5-30 MJup for HD 206893 B, which is consistent with previous estimates but extends the parameter space to younger and lower-mass objects. The GRAVITY astrometry points to an eccentric orbit (e = 0.29−0.11+0.06) with a mutual inclination of <34.4 deg with respectto the debris disk of the system.
Conclusions: While HD 206893 B could in principle be a planetary-mass companion, this possibility hinges on the unknown influence of the inner companion on the mass estimate of 10−4+5 MJup from radial velocity and Gaia as well as a relatively small but significant Argus moving group membership probability of ~ 61%. However, we find that if the mass of HD 206893 B is <30 MJup, then the inner companion HD 206893 C should have a mass between ~ 8-15 MJup. Finally, further spectroscopic or photometric observations at higher signal-to-noise and longer wavelengths are required to learn more about the composition and dust cloud properties of HD 206893 B.

Based on observations made with ESO telescopes at Paranal Observatory under program IDs 1103.B-0626 and 1104.C-0651. Title: The Galaxy Activity, Torus, and Outflow Survey (GATOS). II. Torus and polar dust emission in nearby Seyfert galaxies Authors: Alonso-Herrero, A.; García-Burillo, S.; Hönig, S. F.; García-Bernete, I.; Ramos Almeida, C.; González-Martín, O.; López-Rodríguez, E.; Boorman, P. G.; Bunker, A. J.; Burtscher, L.; Combes, F.; Davies, R.; Díaz-Santos, T.; Gandhi, P.; García-Lorenzo, B.; Hicks, E. K. S.; Hunt, L. K.; Ichikawa, K.; Imanishi, M.; Izumi, T.; Labiano, A.; Levenson, N. A.; Packham, C.; Pereira-Santaella, M.; Ricci, C.; Rigopoulou, D.; Roche, P.; Rosario, D. J.; Rouan, D.; Shimizu, T.; Stalevski, M.; Wada, K.; Williamson, D. Bibcode: 2021A&A...652A..99A Altcode: 2021arXiv210700244A We compare high angular resolution mid-infrared (mid-IR) and Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared (far-IR) images of twelve nearby (median 21 Mpc) Seyfert galaxies selected from the Galaxy Activity, Torus, and Outflow Survey (GATOS). The mid-IR unresolved emission contributes more than 60% of the nuclear (diameters of 1.5″ ∼ 150 pc) emission in most galaxies. By contrast, the ALMA 870 μm continuum emission is mostlyresolved with a median diameter of 42 pc and typically along the equatorial direction of the torus (Paper I). The Eddington ratios and nuclear hydrogen column densities (NH) of half the sample are favorable to launching polar and/or equatorial dusty winds, according to numerical simulations. Six of these show mid-IR extended emission approximately in the polar direction as traced by the narrow line region and perpendicular to the ALMA emission. In a few galaxies, the nuclear NH might be too high to uplift large quantities of dusty material along the polar direction. Five galaxies have low NH and/or Eddington ratios and thus polar dusty winds are not likely. We generated new radiative transfer CAT3D-WIND disk+wind models and model images at 8, 12, and 700 μm. We tailored these models to the properties of the GATOS Seyferts in this work. At low wind-to-disk cloud ratios, the far-IR model images have disk- and ring-like morphologies. The characteristic "X"-shape associated with dusty winds is seen better in the far-IR at intermediate-high inclinations for the extended-wind configurations. In most of the explored models, the mid-IR emission mainly comes from the inner part of the disk and cone. Extended biconical and one-sided polar mid-IR emission is seen in extended-wind configurations and high wind-to-disk cloud ratios. When convolved to the typical angular resolution of our observations, the CAT3D-WIND model images reproduce qualitative aspects of the observed mid- and far-IR morphologies. However, low to intermediate values of the wind-to-disk ratio are required to account for the observed large fractions of unresolved mid-IR emission in our sample. This work and Paper I provide observational support for the torus+wind scenario. The wind component is more relevant at high Eddington ratios and/or active galactic nucleus luminosities, and polar dust emission is predicted at nuclear column densities of up to ∼1024 cm−2. The torus or disk component, on the other hand, prevails at low luminosities and/or Eddington ratios. Title: MOLsphere and pulsations of the Galactic Center's red supergiant GCIRS 7 from VLTI/GRAVITY Authors: GRAVITY Collaboration; Rodríguez-Coira, G.; Paumard, T.; Perrin, G.; Vincent, F.; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Brandner, W.; Clénet, Y.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Gao, F.; Garcia, P.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Henning, T.; Hippler, S.; Horrobin, M.; Jimenez-Rosales, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. B.; Léna, P.; Nowak, M.; Ott, T.; Perraut, K.; Pfuhl, O.; Sanchez-Bermudez, J.; Shangguan, J.; Scheithauer, S.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Shimizu, T.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Zins, G. Bibcode: 2021A&A...651A..37G Altcode: 2021arXiv210509832G Context. GCIRS 7, the brightest star in the Galactic central parsec, formed 6 ± 2 Myr ago together with dozens of massive stars in a disk orbiting the central black-hole. It has been argued that GCIRS 7 is a pulsating body, on the basis of photometric variability.
Aims: Our goal is to confirm photospheric pulsations based on interferometric size measurements to better understand how the mass loss from these massive stars enriches the local interstellar medium.
Methods: We present the first medium-resolution (R = 500), K-band spectro-interferometric observations of GCIRS 7, using the GRAVITY instrument with the four auxiliary telescopes of the ESO VLTI. We looked for variations using two epochs, namely 2017 and 2019.
Results: We find GCIRS 7 to be moderately resolved with a uniform-disk photospheric diameter of θUD* = 1.55 ± 0.03 mas (RUD* = 1368 ± 26 R) in the K-band continuum. The narrow-band uniform-disk diameter increases above 2.3 μm, with a clear correlation with the CO band heads in the spectrum. This correlation is aptly modeled by a hot (TL = 2368 ± 37 K), geometrically thin molecular shell with a diameter of θL = 1.74 ± 0.03 mas, as measured in 2017. The shell diameter increased (θL = 1.89 ± 0.03 mas), while its temperature decreased (TL = 2140 ± 42 K) in 2019. In contrast, the photospheric diameter θUD* and the extinction up to the photosphere of GCIRS 7 (AKS = 3.18 ± 0.16) have the same value within uncertainties at the two epochs.
Conclusions: In the context of previous interferometric and photo-spectrometric measurements, the GRAVITY data allow for an interpretation in terms of photospheric pulsations. The photospheric diameter measured in 2017 and 2019 is significantly larger than previously reported using the PIONIER instrument (θ* = 1.076 ± 0.093 mas in 2013 in the H band). The parameters of the photosphere and molecular shell of GCIRS 7 are comparable to those of other red supergiants that have previously been studied using interferometry. The extinction we measured here is lower than previous estimates in the direction of GCIRS 7 but typical for the central parsec region.

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under the programme IDs 098.D-0250 and 103.B-0032. Title: Instrumental design of the Solar Observing Satellite: solar-C_EUVST Authors: Suematsu, Yoshinori; Shimizu, Toshifumi; Hara, Hirohisa; Kawate, Tomoko; Katsukawa, Yukio; Ichimoto, Kiyoshi; Imada, Shinsuke Bibcode: 2021SPIE11852E..3KS Altcode: The EUV High-Throughput Spectroscopic Telescope (EUVST) of Solar-C mission is a revolutionary spectrometer that is designed to provide high-quality and high cadence spectroscopic data covering a wide temperature range of the chromosphere to flaring corona to investigate the energetics and dynamics of the solar atmosphere. The EUVST consists of only two imaging optical components; a 28-cm clear aperture off-axis parabolic primary mirror and a two-split ellipsoidal grating without a blocking filter for visible light before the primary mirror to achieve unprecedented high spatial and temporal resolution in EUV-UV imaging spectroscopic observations. For this reason, about 53 W of sunlight is absorbed by the multilayer coating on the mirror. We present an instrumental design of the telescope, particularly, primary mirror assembly which enables slit-scan observations for imaging spectroscopy, an image stabilizing tip-tilt control, and a focus adjustment on orbit, together with an optomechanical design of the primary mirror and its supporting system which gives optically tolerant wavefront error against a large temperature increase due to an absorption of visible and IR lights. Title: Kiloparsec view of a typical star-forming galaxy when the Universe was ∼1 Gyr old. I. Properties of outflow, halo, and interstellar medium Authors: Herrera-Camus, R.; Förster Schreiber, N.; Genzel, R.; Tacconi, L.; Bolatto, A.; Davies, R. L.; Fisher, D.; Lutz, D.; Naab, T.; Shimizu, T.; Tadaki, K.; Übler, H. Bibcode: 2021A&A...649A..31H Altcode: 2021arXiv210105279H We present new Atacama Large Millimeter/Submillimeter Array observations of the [C II] 158 μm transition and the dust continuum in HZ4, a typical star-forming galaxy when the Universe was only ∼1 Gyr old (z ≈ 5.5). Our high ≈0.3″ spatial resolution allows us to study the relationships between [C II] line emission, star formation rate, and far-infrared emission on spatial scales of ∼2 kpc. In the central ∼4 kpc of HZ4, the [C II]/FIR is ∼3 × 10−3 on global scales as well as on spatially resolved scales of ∼2 kpc, comparable to the ratio observed in local moderate starburst galaxies such as M 82 or M 83. For the first time in an individual normal galaxy at this redshift, we find evidence for outflowing gas from the central star-forming region in the direction of the minor axis of the galaxy. The projected velocity of the outflow is ∼400 km s−1, and the neutral gas-mass outflow rate is ∼3 − 6 times higher than the star formation rate in the central region. Finally, we detect a diffuse component of [C II] emission, or [C II] halo, that extends beyond the star-forming disk and has a diameter of ∼12 kpc. The outflow, which has a velocity approximately half of the escape velocity of the system, most likely partly fuels the [C II] extended emission. Together with the kinematic analysis of HZ4 (presented in a forthcoming paper), the analysis supports the hypothesis that HZ4 is a typical star-forming disk at z ∼ 5 with interstellar medium conditions similar to present-day galaxies forming stars at a similar level, driving a galactic outflow that may already play a role in its evolution.

The reduced images and datacubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A31 Title: VizieR Online Data Catalog: Completed KMOS3D survey NIR obs. (Wisnioski+, Authors: Wisnioski, E.; Schreiber, N. M. F.; Fossati, M.; Mendel, J. T.; Wilman, D.; Genzel, R.; Bender, R.; Wuyts, S.; Davies, R. L.; Ubler, H.; Bandara, K.; Beifiori, A.; Belli, S.; Brammer, G.; Chan, J.; Davies, R. I.; Fabricius, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Price, S.; Rosario, D.; Saglia, R.; Seitz, S.; Shimizu, T.; Tacconi, L. J.; Tadaki, K.; van Dokkum, P. G.; Wuyts, E. Bibcode: 2021yCat..18860124W Altcode: Observations with the multi-IFU K-band Multi Object Spectrograph (KMOS) at the VLT took place in Visitor Mode over 75 guaranteed time nights between 2013 October and 2018 April (ESO periods 92-101). The spectral resolution of KMOS (R~3000-4000) varies for the 24 different IFUs.

(3 data files). Title: VizieR Online Data Catalog: BAT AGN Spectroscopic Survey. XX. Molecular gas (Koss+, 2021) Authors: Koss, M. J.; Strittmatter, B.; Lamperti, I.; Shimizu, T.; Trakhtenbrot, B.; Saintonge, A.; Treister, E.; Cicone, C.; Mushotzky, R.; Oh, K.; Ricci, C.; Stern, D.; Ananna, T. T.; Bauer, F. E.; Privon, G. C.; Bar, R. E.; De Breuck, C.; Harrison, F.; Ichikawa, K.; Powell, M. C.; Rosario, D.; Sanders, D. B.; Schawinski, K.; Shao, Li; Megan Urry, C.; Veilleux, S. Bibcode: 2021yCat..22520029K Altcode: Our AGN parent sample consists of 836 ultrahard-X-ray-selected (14-195keV) AGN included in the 70-month Swift-BAT all-sky catalog (Baumgartner+ 2013, J/ApJS/207/19).

In total, 200 AGN galaxies were newly observed: 165 with the Atacama Pathfinder Experiment (APEX) and 35 with the James Clerk Maxwell Telescope (JCMT), while 13 were obtained from the literature (see col. Tel in table 2 and Section 2.1.3).

The APEX 12m antenna observations totalled 254hr with 2288 400s long scans, taken over 67 days between 2016 March and 2017 September. The observing programs involved were mainly an ESO Large program (PI M. Koss, ~150hr), a follow-up ESO program (PI B. Trakthenbrot, ~50hr), and Chilean time (PI E. Treister, ~75hr). In addition to our own programs, we also reduced data from archival programs for six BAT AGN galaxies. We observed the CO(2-1) transition (vrest=230.538GHz) using the Swedish Heterodyne Facility Instrument (SHFI) with the eXtended Fast Fourier Transform Spectrometer (XFFTS) backend (213-275GHz).

JCMT observations of the CO(2-1) molecular line were taken between 2011 February and 2013 April. Archival data for one additional galaxy were also reduced (NGC 6240). We used the A3 (211-279GHz) receiver with the ACSIS spectrometer with a beam size of 20.4" HPBW.

The results for the complementary sample of z<0.01 BAT AGN galaxies are presented in Rosario+ (2018MNRAS.473.5658R).

(2 data files). Title: VizieR Online Data Catalog: [CCJ2015b] HZ4 [CII] 158um datacube (Herrera-Camus+, 2021) Authors: Herrera-Camus, R.; Foerster Schreiber, N.; Genzel, R.; Tacconi, L.; Bolatto, A.; Davies, R. L.; Fisher, D.; Lutz, D.; Naab, T.; Shimizu, T.; Tadaki, K.; Uebler, H. Bibcode: 2021yCat..36490031H Altcode: Between November 2018 and April 2019 (Cycle 6), HZ4 (R.A. 9:58:28.5, Dec. +2:03:06.7) was observed for 8.4hr in total (4.7hr on-source) using ALMA as part of project 2018.1.01605.S (PI Herrera-Camus). The observations were carried out in the C43-4 configuration. We centered one spectral window on the [CII] line (νrest=1900.537GHz), which for the source is redshifted to νobs=290.386GHz and falls in Band 7.

(2 data files). Title: The GRAVITY young stellar object survey. V. The orbit of the T Tauri binary star WW Cha Authors: GRAVITY Collaboration; Eupen, F.; Labadie, L.; Grellmann, R.; Perraut, K.; Brandner, W.; Duchêne, G.; Köhler, R.; Sanchez-Bermudez, J.; Garcia Lopez, R.; Caratti O Garatti, A.; Benisty, M.; Dougados, C.; Garcia, P.; Klarmann, L.; Amorim, A.; Bauböck, M.; Berger, J. P.; Caselli, P.; Clénet, Y.; Coudé Du Foresto, V.; de Zeeuw, P. T.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Filho, M.; Ganci, V.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Heissel, G.; Henning, Th.; Hippler, S.; Horrobin, M.; Hubert, Z.; Jiménez-Rosales, A.; Jocou, L.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. B.; Léna, P.; Ott, T.; Paumard, T.; Perrin, G.; Pfuhl, O.; Rodríguez-Coira, G.; Rousset, G.; Scheithauer, S.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; van Dishoeck, E.; Vincent, F.; von Fellenberg, S. D.; Widmann, F.; Woillez, J.; Wojtczak, A. Bibcode: 2021A&A...648A..37G Altcode: 2021arXiv210200122G Context. Close young binary stars are unique laboratories for the direct measurement of pre-main-sequence (PMS) stellar masses and their comparison to evolutionary theoretical models. At the same time, a precise knowledge of their orbital parameters when still in the PMS phase offers an excellent opportunity for understanding the influence of dynamical effects on the morphology and lifetime of the circumstellar as well as circumbinary material.
Aims: The young T Tauri star WW Cha was recently proposed to be a close binary object with strong infrared and submillimeter excess associated with circum-system emission, which makes it dynamically a very interesting source in the above context. The goal of this work is to determine the astrometric orbit and the stellar properties of WW Cha using multi-epoch interferometric observations.
Methods: We derive the relative astrometric positions and flux ratios of the stellar companion in WW Cha from the interferometric model fitting of observations made with the VLTI instruments AMBER, PIONIER, and GRAVITY in the near-infrared from 2011 to 2020. For two epochs, the resulting uv-coverage in spatial frequencies permits us to perform the first image reconstruction of the system in the K band. The positions of nine epochs are used to determine the orbital elements and the total mass of the system. Combining the orbital solution with distance measurements from Gaia DR2 and the analysis of evolutionary tracks, we constrain the mass ratio.
Results: We find the secondary star orbiting the primary with a period of T = 206.55 days, a semimajor axis of a = 1.01 au, and a relatively high eccentricity of e = 0.45. The dynamical mass of Mtot = 3.20 M can be explained by a mass ratio between ∼0.5 and 1, indicating an intermediate-mass T Tauri classification for both components. The orbital angular momentum vector is in close alignment with the angular momentum vector of the outer disk as measured by ALMA and SPHERE, resulting in a small mutual disk inclination. The analysis of the relative photometry suggests the presence of infrared excess surviving in the system and likely originating from truncated circumstellar disks. The flux ratio between the two components appears variable, in particular in the K band, and may hint at periods of triggered higher and lower accretion or changes in the disks' structures.
Conclusions: The knowledge of the orbital parameters, combined with a relatively short period, makes WW Cha an ideal target for studying the interaction of a close young T Tauri binary with its surrounding material, such as time-dependent accretion phenomena. Finding WW Cha to be composed of two (probably similar) stars led us to reevaluate the mass of WW Cha, which had been previously derived under the assumption of a single star. This work illustrates the potential of long baseline interferometry to precisely characterize close young binary stars separated by a few astronomical units. Finally, when combined with radial velocity measurements, individual stellar masses can be derived and used to calibrate theoretical PMS models.

GRAVITY is developed in collaboration by the Max Planck Institute for Extraterrestrial Physics, LESIA of Paris Observatory, IPAG of Université Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Centro de Astrofísica e Gravitação, and the European Southern Observatory. Title: The central parsec of NGC 3783: a rotating broad emission line region, asymmetric hot dust structure, and compact coronal line region Authors: GRAVITY Collaboration; Amorim, A.; Bauböck, M.; Brandner, W.; Bolzer, M.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Gao, F.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Hönig, S.; Kaltenbrunner, D.; Kishimoto, M.; Lacour, S.; Lutz, D.; Millour, F.; Netzer, H.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. O.; Pfuhl, O.; Prieto, M. A.; Rouan, D.; Sanchez-Bermudez, J.; Shangguan, J.; Shimizu, T.; Schartmann, M.; Stadler, J.; Sternberg, A.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vermot, P.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Woillez, J. Bibcode: 2021A&A...648A.117G Altcode: 2021arXiv210200068G Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Brγ emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca VIII] and narrow Brγ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc.

GRAVITY is developed in a collaboration by the Max Planck Institute for Extraterrestrial Physics, LESIA of Observatoire de Paris/Université PSL/CNRS/Sorbonne Université/Université de Paris and IPAG of Université Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the CENTRA - Centro de Astrofisica e Gravitação, and the European Southern Observatory. Title: Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY Authors: Wang, J. J.; Vigan, A.; Lacour, S.; Nowak, M.; Stolker, T.; De Rosa, R. J.; Ginzburg, S.; Gao, P.; Abuter, R.; Amorim, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. P.; Beust, H.; Beuzit, J. -L.; Blunt, S.; Boccaletti, A.; Bohn, A.; Bonnefoy, M.; Bonnet, H.; Brandner, W.; Cantalloube, F.; Caselli, P.; Charnay, B.; Chauvin, G.; Choquet, E.; Christiaens, V.; Clénet, Y.; Coudé Du Foresto, V.; Cridland, A.; de Zeeuw, P. T.; Dembet, R.; Dexter, J.; Drescher, A.; Duvert, G.; Eckart, A.; Eisenhauer, F.; Facchini, S.; Gao, F.; Garcia, P.; Garcia Lopez, R.; Gardner, T.; Gendron, E.; Genzel, R.; Gillessen, S.; Girard, J.; Haubois, X.; Heißel, G.; Henning, T.; Hinkley, S.; Hippler, S.; Horrobin, M.; Houllé, M.; Hubert, Z.; Jiménez-Rosales, A.; Jocou, L.; Kammerer, J.; Keppler, M.; Kervella, P.; Meyer, M.; Kreidberg, L.; Lagrange, A. -M.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Maire, A. -L.; Ménard, F.; Mérand, A.; Mollière, P.; Monnier, J. D.; Mouillet, D.; Müller, A.; Nasedkin, E.; Ott, T.; Otten, G. P. P. L.; Paladini, C.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Pueyo, L.; Rameau, J.; Rodet, L.; Rodríguez-Coira, G.; Rousset, G.; Scheithauer, S.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; van Dishoeck, E. F.; Vincent, F.; von Fellenberg, S. D.; Ward-Duong, K.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Gravity Collaboration Bibcode: 2021AJ....161..148W Altcode: 2021arXiv210104187W We present K-band interferometric observations of the PDS 70 protoplanets along with their host star using VLTI/GRAVITY. We obtained K-band spectra and 100 μas precision astrometry of both PDS 70 b and c in two epochs, as well as spatially resolving the hot inner disk around the star. Rejecting unstable orbits, we found a nonzero eccentricity for PDS 70 b of 0.17 ± 0.06, a near-circular orbit for PDS 70 c, and an orbital configuration that is consistent with the planets migrating into a 2:1 mean motion resonance. Enforcing dynamical stability, we obtained a 95% upper limit on the mass of PDS 70 b of 10 MJup, while the mass of PDS 70 c was unconstrained. The GRAVITY K-band spectra rules out pure blackbody models for the photospheres of both planets. Instead, the models with the most support from the data are planetary atmospheres that are dusty, but the nature of the dust is unclear. Any circumplanetary dust around these planets is not well constrained by the planets' 1-5 μm spectral energy distributions (SEDs) and requires longer wavelength data to probe with SED analysis. However with VLTI/GRAVITY, we made the first observations of a circumplanetary environment with sub-astronomical-unit spatial resolution, placing an upper limit of 0.3 au on the size of a bright disk around PDS 70 b. Based on observations collected at the European Southern Observatory under ESO programmes 0101.C-0281(B), 1103.B-0626(A), 2103.C-5018(A), and 1104.C-0651(A). Title: Improved GRAVITY astrometric accuracy from modeling optical aberrations Authors: GRAVITY Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Dallilar, Y.; Drescher, A.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Jiménez-Rosales, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Nowak, M.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rabien, S.; Rodríguez-Coira, G.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Young, A.; Zins, G. Bibcode: 2021A&A...647A..59G Altcode: 2021arXiv210112098G The GRAVITY instrument on the ESO VLTI pioneers the field of high-precision near-infrared interferometry by providing astrometry at the 10-100 μas level. Measurements at this high precision crucially depend on the control of systematic effects. We investigate how aberrations introduced by small optical imperfections along the path from the telescope to the detector affect the astrometry. We develop an analytical model that describes the effect of these aberrations on the measurement of complex visibilities. Our formalism accounts for pupil-plane and focal-plane aberrations, as well as for the interplay between static and turbulent aberrations, and it successfully reproduces calibration measurements of a binary star. The Galactic Center observations with GRAVITY in 2017 and 2018, when both Sgr A* and the star S2 were targeted in a single fiber pointing, are affected by these aberrations at a level lower than 0.5 mas. Removal of these effects brings the measurement in harmony with the dual-beam observations of 2019 and 2020, which are not affected by these aberrations. This also resolves the small systematic discrepancies between the derived distance R0 to the Galactic Center that were reported previously.

GRAVITY is developed in a collaboration by the Max Planck Institute for extraterrestrial Physics, LESIA of Observatoire de Paris/Université PSL/CNRS/Sorbonne Université/Université de Paris and IPAG of Université Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the CENTRA - Centro de Astrofisica e Gravitação, and the European Southern Observatory. Title: The KMOS3D Survey: Investigating the Origin of the Elevated Electron Densities in Star-forming Galaxies at 1 ≲ z ≲ 3 Authors: Davies, Rebecca L.; Förster Schreiber, N. M.; Genzel, R.; Shimizu, T. T.; Davies, R. I.; Schruba, A.; Tacconi, L. J.; Übler, H.; Wisnioski, E.; Wuyts, S.; Fossati, M.; Herrera-Camus, R.; Lutz, D.; Mendel, J. T.; Naab, T.; Price, S. H.; Renzini, A.; Wilman, D.; Beifiori, A.; Belli, S.; Burkert, A.; Chan, J.; Contursi, A.; Fabricius, M.; Lee, M. M.; Saglia, R. P.; Sternberg, A. Bibcode: 2021ApJ...909...78D Altcode: 2020arXiv201210445D We investigate what drives the redshift evolution of the typical electron density (ne) in star-forming galaxies, using a sample of 140 galaxies drawn primarily from KMOS3D (0.6 < z < 2.6) and 471 galaxies from SAMI (z < 0.113). We select galaxies that do not show evidence of active galactic nucleus activity or outflows to constrain the average conditions within H II regions. Measurements of the [S II]λ6716/[S II]λ6731 ratio in four redshift bins indicate that the local ne in the line-emitting material decreases from 187 ${}_{-132}^{+140}$ cm-3 at z ∼ 2.2 to 32 ${}_{-9}^{+4}$ cm-3 at z ∼ 0, consistent with previous results. We use the Hα luminosity to estimate the rms ne averaged over the volumes of star-forming disks at each redshift. The local and volume-averaged ne evolve at similar rates, hinting that the volume filling factor of the line-emitting gas may be approximately constant across 0 ≲ z ≲ 2.6. The KMOS3D and SAMI galaxies follow a roughly monotonic trend between ne and star formation rate, but the KMOS3D galaxies have systematically higher ne than the SAMI galaxies at a fixed offset from the star-forming main sequence, suggesting a link between the ne evolution and the evolving main sequence normalization. We quantitatively test potential drivers of the density evolution and find that ne(rms) $\simeq {n}_{{{\rm{H}}}_{2}}$ , suggesting that the elevated ne in high-z H II regions could plausibly be the direct result of higher densities in the parent molecular clouds. There is also tentative evidence that ne could be influenced by the balance between stellar feedback, which drives the expansion of H II regions, and the ambient pressure, which resists their expansion. Title: The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z ∼ 1 Authors: Belli, Sirio; Contursi, Alessandra; Genzel, Reinhard; Tacconi, Linda J.; Förster-Schreiber, Natascha M.; Lutz, Dieter; Combes, Françoise; Neri, Roberto; García-Burillo, Santiago; Schuster, Karl F.; Herrera-Camus, Rodrigo; Tadaki, Ken-ichi; Davies, Rebecca L.; Davies, Richard I.; Johnson, Benjamin D.; Lee, Minju M.; Leja, Joel; Nelson, Erica J.; Price, Sedona H.; Shangguan, Jinyi; Shimizu, T. Taro; Tacchella, Sandro; Übler, Hannah Bibcode: 2021ApJ...909L..11B Altcode: 2021arXiv210207881B We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have quiescent optical/near-infrared spectral energy distribution and relatively bright emission at 24 μm, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions Mgas/M* of 13%-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z ∼ 0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [O II] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching. Title: Mapping solar magnetic fields from the photosphere to the base of the corona Authors: Ishikawa, Ryohko; Bueno, Javier Trujillo; del Pino Alemán, Tanausú; Okamoto, Takenori J.; McKenzie, David E.; Auchère, Frédéric; Kano, Ryouhei; Song, Donguk; Yoshida, Masaki; Rachmeler, Laurel A.; Kobayashi, Ken; Hara, Hirohisa; Kubo, Masahito; Narukage, Noriyuki; Sakao, Taro; Shimizu, Toshifumi; Suematsu, Yoshinori; Bethge, Christian; De Pontieu, Bart; Dalda, Alberto Sainz; Vigil, Genevieve D.; Winebarger, Amy; Ballester, Ernest Alsina; Belluzzi, Luca; Štěpán, Jiří; Ramos, Andrés Asensio; Carlsson, Mats; Leenaarts, Jorrit Bibcode: 2021SciA....7.8406I Altcode: 2021arXiv210301583I Routine ultraviolet imaging of the Sun's upper atmosphere shows the spectacular manifestation of solar activity; yet we remain blind to its main driver, the magnetic field. Here we report unprecedented spectropolarimetric observations of an active region plage and its surrounding enhanced network, showing circular polarization in ultraviolet (Mg II $h$ & $k$ and Mn I) and visible (Fe I) lines. We infer the longitudinal magnetic field from the photosphere to the very upper chromosphere. At the top of the plage chromosphere the field strengths reach more than 300 gauss, strongly correlated with the Mg II $k$ line core intensity and the electron pressure. This unique mapping shows how the magnetic field couples the different atmospheric layers and reveals the magnetic origin of the heating in the plage chromosphere. Title: Ionized outflows in local luminous AGN: Density and outflow rate Authors: Davies, R.; Baron, D.; Shimizu, T.; Netzer, H. Bibcode: 2021IAUS..359..226D Altcode: We use the LLAMA survey to study the density and outflow rate of ionized gas in a complete volume limited sample of local (<40 Mpc) luminous (43.0 < log LAGN(erg/s) < 44.5) AGN selected by very hard 14-195 keV X-rays. The detailed data available for this survey enable us to measure the density of the outflowing ionized gas in the central 300 pc of these AGN using three different and independent methods (the standard [SII] doublet ratio; a method comparing [OII] and [SII] ratios that include auroral and transauroral lines; and a recently proposed method based on the ionization parameter). For each method there is, as expected, a modest spread of densities among the AGN in the sample. But remarkably, the median densities for each method differ hugely, by an order of magnitude from below 400 cm-3 to almost 5000 cm-3. We discuss how the derived densities can be reconciled, and what the impact is on the implied outflow rate. Title: Detection of faint stars near Sagittarius A* with GRAVITY Authors: GRAVITY Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J. P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Dallilar, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Drescher, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Garcia, P.; Gao, F.; Gendron, E.; Genzel, R.; Gillessen, S.; Habibi, M.; Haubois, X.; Heißel, G.; Henning, T.; Hippler, S.; Horrobin, M.; Jiménez-Rosales, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kervella, P.; Lacour, S.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Nowak, M.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rabien, S.; Rodríguez-Coira, G.; Shangguan, J.; Shimizu, T.; Scheithauer, S.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J.; Yazici, S.; Zins, G. Bibcode: 2021A&A...645A.127G Altcode: 2020arXiv201103058G The spin of the supermassive black hole that resides at the Galactic Center can, in principle, be measured by accurate measurements of the orbits of stars that are much closer to Sgr A* than S2, the orbit of which recently provided the measurement of the gravitational redshift and the Schwarzschild precession. The GRAVITY near-infrared interferometric instrument combining the four 8m telescopes of the VLT provides a spatial resolution of 2-4 mas, breaking the confusion barrier for adaptive-optics-assisted imaging with a single 8-10m telescope. We used GRAVITY to observe Sgr A* over a period of six months in 2019 and employed interferometric reconstruction methods developed in radio astronomy to search for faint objects near Sgr A*. This revealed a slowly moving star of magnitude 18.9 in the K-band within 30 mas of Sgr A*. The position and proper motion of the star are consistent with the previously known star S62, which is at a substantially greater physical distance, but in projection passes close to Sgr A*. Observations in August and September 2019 detected S29 easily, with K-magnitude of 16.6, at approximately 130 mas from Sgr A*. The planned upgrades of GRAVITY, and further improvements in the calibration, offer greater chances of finding stars fainter than K-magnitude of 19. Title: The ExoGRAVITY project: using single mode interferometry to characterize exoplanets Authors: Lacour, S.; Wang, J. J.; Nowak, M.; Pueyo, L.; Eisenhauer, F.; Lagrange, A. -M.; Mollière, P.; Abuter, R.; Amorin, A.; Asensio-Torres, R.; Bauböck, M.; Benisty, M.; Berger, J. P.; Beust, H.; Blunt, S.; Boccaletti, A.; Bohn, A.; Bonnefoy, M.; Bonnet, H.; Brandner, W.; Cantalloube, F.; Caselli, P.; Charnay, B.; Chauvin, G.; Choquet, E.; Christiaens, V.; Clénet, Y.; Cridland, A.; de Zeeuw, P. T.; Dembet, R.; Dexter, J.; Drescher, A.; Duvert, G.; Gao, F.; Garcia, P.; Garcia Lopez, R.; Gardner, T.; Gendron, E.; Genzel, R.; Gillessen, S.; Girard, J. H.; Haubois, X.; Heißel, G.; Henning, T.; Hinkley, S.; Hippler, S.; Horrobin, M.; Houllé, M.; Hubert, Z.; Jiménez-Rosales, A.; Jocou, L.; Kammerer, J.; Keppler, M.; Kervella, P.; Kreidberg, L.; Lapeyrère, V.; Le Bouquin, J. -B.; Léna, P.; Lutz, D.; Maire, A. -L.; Mérand, A.; Monnier, J. D.; Mouillet, D.; Muller, A.; Nasedkin, E.; Ott, T.; Otten, G. P. P. L.; Paladini, C.; Paumard, T.; Perraut, K.; Perrin, G.; Pfuhl, O.; Rameau, J.; Rodet, L.; Rodriguez-Coira, G.; Rousset, G.; Shangguan, J.; Shimizu, T.; Stadler, J.; Straub, O.; Straubmeier, C.; Sturm, E.; Stolker, T.; van Dishoeck, E. F.; Vigan, A.; Vincent, F.; von Fellenberg, S. D.; Ward-Duong, K.; Widmann, F.; Wieprecht, E.; Wiezorrek, E.; Woillez, J. Bibcode: 2020SPIE11446E..0OL Altcode: 2021arXiv210107098L Combining adaptive optics and interferometric observations results in a considerable contrast gain compared to single-telescope, extreme AO systems. Taking advantage of this, the ExoGRAVITY project is a survey of known young giant exoplanets located in the range of 0.1" to 2" from their stars. The observations provide astrometric data of unprecedented accuracy, being crucial for refining the orbital parameters of planets and illuminating their dynamical histories. Furthermore, GRAVITY will measure non-Keplerian perturbations due to planet-planet interactions in multi-planet systems and measure dynamical masses. Over time, repetitive observations of the exoplanets at medium resolution (R = 500) will provide a catalogue of K-band spectra of unprecedented quality, for a number of exoplanets. The K-band has the unique properties that it contains many molecular signatures (CO, H2O, CH4, CO2). This allows constraining precisely surface gravity, metallicity, and temperature, if used in conjunction with self-consistent models like Exo-REM. Further, we will use the parameter-retrieval algorithm petitRADTRANS to constrain the C/O ratio of the planets. Ultimately, we plan to produce the first C/O survey of exoplanets, kick-starting the difficult process of linking planetary formation with measured atomic abundances. Title: SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: Scan mirror mechanism Authors: Oba, Takayoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Kubo, Masahito; Uraguchi, Fumihiro; Tsuzuki, Toshihiro; Tamura, Tomonori; Shinoda, Kazuya; Kodeki, Kazuhide; Fukushima, Kazuhiko; Gandorfer, Achim; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11445E..4FO Altcode: The SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) is a balloon-borne long-slit spectrograph for SUNRISE III to precisely measure magnetic fields in the solar atmosphere. The scan mirror mechanism (SMM) is installed in the optical path to the entrance slit of the SCIP to move solar images focused on the slit for 2-dimensional mapping. The SMM is required to have (1) the tilt stability better than 0.035″ (3σ) on the sky angle for the diffraction-limited spatial resolution of 0.2″, (2) step response shorter than 32 msec for rapid scanning observations, and (3) good linearity (i.e. step uniformity) over the entire field-of-view (60″x60″). To achieve these performances, we have developed a flight-model mechanism and its electronics, in which the mirror tilt is controlled by electromagnetic actuators with a closed-loop feedback logic with tilt angles from gap-based capacitance sensors. Several optical measurements on the optical bench verified that the mechanism meets the requirements. In particular, the tilt stability achives better than 0.012″ (3σ). Thermal cycling and thermal vacuum tests have been completed to demonstrate the performance in the vacuum and the operational temperature range expected in the balloon flight. We found a small temperature dependence in the step uniformity and this dependence will be corrected to have 2-demensional maps with the sub-arcsec spatial accuracy in the data post-processing. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: optical design and performance Authors: Tsuzuki, Toshihiro; Katsukawa, Yukio; Uraguchi, Fumihiro; Hara, Hirohisa; Kubo, Masahito; Nodomi, Yoshifumi; Suematsu, Yoshinori; Kawabata, Yusuke; Shimizu, Toshifumi; Gandorfer, Achim; Feller, Alex; Grauf, Bianca; Solanki, Sami; Carlos del Toro Iniesta, Jose Bibcode: 2020SPIE11447E..AJT Altcode: The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is a near-IR spectro-polarimeter instrument newly designed for Sunrise III, which is a balloon-borne solar observatory equipped with a 1 m optical telescope. To acquire high-quality 3D magnetic and velocity fields, SCIP selects the two wavelength bands centered at 850 nm and 770 nm, which contain many spectrum lines that are highly sensitive to magnetic fields permeating the photosphere and chromosphere. To achieve high spatial and spectral resolution (0.21 arcsec and 2 × 105), SCIP optics adopt a quasi-Littrow configuration based on an echelle grating and two high-order aspheric mirrors. Using different diffraction orders of the echelle grating, dichroic beam splitter, and polarizing beam-splitters, SCIP can obtain s- and p-polarization signals in the two wavelength bands simultaneously within a relatively small space. We established the wavefront error budget based on tolerance analysis, surface figure errors, alignment errors, and environmental changes. In addition, we performed stray light analysis, and designed light traps and baffles needed to suppress unwanted reflections and diffraction by the grating. In this paper, we present the details of this optical system and its performance. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: polarization modulation unit Authors: Kubo, Masahito; Shimizu, Toshifumi; Katsukawa, Yukio; Kawabata, Yusuke; Anan, Tetsu; Ichimoto, Kiyoshi; Shinoda, Kazuya; Tamura, Tomonori; Nodomi, Yoshifumi; Nakayama, Satoshi; Yamada, Takuya; Tajima, Takao; Nakata, Shimpei; Nakajima, Yoshihito; Okutani, Kousei; Feller, Alex; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11447E..A3K Altcode: Polarization measurements of the solar chromospheric lines at high precision are key to present and future solar telescopes for understanding magnetic field structures in the chromosphere. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for Sunrise III is a spectropolarimeter with a polarimetric precision of 0.03 % (1 σ). The key to high-precision polarization measurements using SCIP is a polarization modulation unit that rotates a waveplate continuously at a constant speed. The rotating mechanism is a DC brushless motor originally developed for a future space mission, and its control logic was originally developed for the sounding rocket experiment CLASP. Because of our requirement on a speed of rotation (0.512 s/rotation) that was 10 times faster than that of CLASP, we optimized the control logic for the required faster rotation. Fast polarization modulation is essential for investigating the fine-scale magnetic field structures related to the dynamical chromospheric phenomena. We have verified that the rotation performance can achieve the polarization precision of 0.03 % (1 σ) required by SCIP and such a significant rotation performance is maintained under thermal vacuum conditions by simulating the environment of the Sunrise III balloon flight. The waveplate was designed as a pair of two birefringent plates made of quartz and sapphire to achieve a constant retardation in a wide wavelength range. We have confirmed that the retardation is almost constant in the 770 nm and 850nm wavelength bands of SCIP under the operational temperature conditions. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: opto-mechanical analysis and design Authors: Uraguchi, Fumihiro; Tsuzuki, Toshihiro; Katsukawa, Yukio; Hara, Hirohisa; Iwamura, Satoru; Kubo, Masahito; Nodomi, Yoshifumi; Suematsu, Yoshinori; Kawabata, Yusuke; Shimizu, Toshifumi; Gandorfer, Achim; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11447E..ABU Altcode: The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is a near-IR spectro-polarimeter instrument newly designed for Sunrise III, a balloon-borne solar observatory with a 1-m diameter telescope. In order to achieve the strict requirements the SCIP wavefront error, it is necessary to quantify the errors due to environmen- tal effects such as gravity and temperature variation under the observation conditions. We therefore conducted an integrated opto-mechanical analysis incorporating mechanical and thermal disturbances into a finite element model of the entire SCIP structure to acquire the nodal displacements of each optical element, then fed them back to the optical analysis software in the form of rigid body motion and surface deformation fitted by polynomials. This method allowed us to determine the error factors having a significant influence on optical performance. For example, no significant wavefront degradation was associated with the structural mountings because the optical element mounts were well designed based on quasi-kinematic constraints. In contrast, we found that the main factor affecting wavefront degradation was the rigid body motions of the optical elements, which must be mini- mized within the allowable level. Based on these results, we constructed the optical bench using a sandwich panel as the optical bench consisting of an aluminum-honeycomb core and carbon fiber reinforced plastic skins with a high stiffness and low coefficient of thermal expansion. We then confirmed that the new opto-mechanical model achieved the wavefront error requirement. In this paper, we report the details of this integrated opto-mechanical analysis, including the wavefront error budgeting and the design of the opto-mechanics. Title: Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures Authors: Smith, Krista Lynne; Koss, Michael; Mushotzky, Richard; Wong, O. Ivy; Shimizu, T. Taro; Ricci, Claudio; Ricci, Federica Bibcode: 2020ApJ...904...83S Altcode: 2020arXiv201013806S We conducted 22 GHz 1″ Jansky Very Large Array imaging of 100 radio-quiet X-ray-selected active galactic nuclei (AGN) from the Swift-Burst Array Telescope (Swift-BAT) survey. We find AGN-driven kiloparsec-scale radio structures inconsistent with pure star formation in 11 AGN. The host galaxies of these AGN lie significantly below the star-forming main sequence, indicating suppressed star formation. While these radio structures tend to be physically small compared to the host galaxy, the global star formation rate of the host is affected. We evaluate the energetics of the radio structures interpreted first as immature radio jets, and then as consequences of an AGN-driven radiative outflow, and compare them to two criteria for successful feedback: the ability to remove the CO-derived molecular gas mass from the galaxy gravitational potential and the kinetic energy transfer to molecular clouds leading to vcloud > σ*. In most cases, the jet interpretation is insufficient to provide the energy necessary to cause the star formation suppression. Conversely, the wind interpretation provides ample energy in all but one case. We conclude that it is more likely that the observed suppression of star formation in the global host galaxy is due to interstellar medium interactions of a radiative outflow, rather than a small-scale radio jet. Title: Determining Subparsec Supermassive Black Hole Binary Orbits with Infrared Interferometry Authors: Dexter, Jason; Lutz, Dieter; Shimizu, T. Taro; Shangguan, Jinyi; Davies, Richard I.; de Zeeuw, P. Tim; Sturm, Eckhard; Eisenhauer, Frank; Förster-Schreiber, Natascha M.; Gao, Feng; Genzel, Reinhard; Gillessen, Stefan; Pfuhl, Oliver; Tacconi, Linda J.; Widmann, Felix Bibcode: 2020ApJ...905...33D Altcode: 2020arXiv201009735D Radial-velocity monitoring has revealed the presence of moving broad emission lines in some quasars, potentially indicating the presence of a subparsec binary system. Phase-referenced, near-infrared interferometric observations could map out the binary orbit by measuring the photocenter difference between a broad emission line and the hot dust continuum. We show that astrometric data over several years may be able to detect proper motions and accelerations, confirming the presence of a binary and constraining system parameters. The brightness, redshifts, and astrometric sizes of current candidates are well matched to the capabilities of the upgraded Very Large Telescope Interferometer/GRAVITY+ instrument, and we identify a first sample of 10 possible candidates. The astrometric signature depends on the morphology and evolution of hot dust emission in supermassive black hole binary systems. Measurements of the photocenter offset may reveal binary motion whether the hot dust emission region is fixed to the inner edge of the circumbinary disk, or moves in response to the changing irradiation pattern from an accreting secondary black hole. Title: The Solar-C (EUVST) mission: the latest status Authors: Shimizu, Toshifumi; Imada, Shinsuke; Kawate, Tomoko; Suematsu, Yoshinori; Hara, Hirohisa; Tsuzuki, Toshihiro; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Ryoko; Watanabe, Tetsuya; Toriumi, Shin; Ichimoto, Kiyoshi; Nagata, Shin'ichi; Hasegawa, Takahiro; Yokoyama, Takaaki; Watanabe, Kyoko; Tsuno, Katsuhiko; Korendyke, Clarence M.; Warren, Harry; De Pontieu, Bart; Boerner, Paul; Solanki, Sami K.; Teriaca, Luca; Schuehle, Udo; Matthews, Sarah; Long, David; Thomas, William; Hancock, Barry; Reid, Hamish; Fludra, Andrzej; Auchère, Frederic; Andretta, Vincenzo; Naletto, Giampiero; Poletto, Luca; Harra, Louise Bibcode: 2020SPIE11444E..0NS Altcode: Solar-C (EUVST) is the next Japanese solar physics mission to be developed with significant contributions from US and European countries. The mission carries an EUV imaging spectrometer with slit-jaw imaging system called EUVST (EUV High-Throughput Spectroscopic Telescope) as the mission payload, to take a fundamental step towards answering how the plasma universe is created and evolves and how the Sun influences the Earth and other planets in our solar system. In April 2020, ISAS (Institute of Space and Astronautical Science) of JAXA (Japan Aerospace Exploration Agency) has made the final down-selection for this mission as the 4th in the series of competitively chosen M-class mission to be launched with an Epsilon launch vehicle in mid 2020s. NASA (National Aeronautics and Space Administration) has selected this mission concept for Phase A concept study in September 2019 and is in the process leading to final selection. For European countries, the team has (or is in the process of confirming) confirmed endorsement for hardware contributions to the EUVST from the national agencies. A recent update to the mission instrumentation is to add a UV spectral irradiance monitor capability for EUVST calibration and scientific purpose. This presentation provides the latest status of the mission with an overall description of the mission concept emphasizing on key roles of the mission in heliophysics research from mid 2020s. Title: Sunrise Chromospheric Infrared SpectroPolarimeter (SCIP) for sunrise III: system design and capability Authors: Katsukawa, Y.; del Toro Iniesta, J. C.; Solanki, S. K.; Kubo, M.; Hara, H.; Shimizu, T.; Oba, T.; Kawabata, Y.; Tsuzuki, T.; Uraguchi, F.; Nodomi, Y.; Shinoda, K.; Tamura, T.; Suematsu, Y.; Ishikawa, R.; Kano, R.; Matsumoto, T.; Ichimoto, K.; Nagata, S.; Quintero Noda, C.; Anan, T.; Orozco Suárez, D.; Balaguer Jiménez, M.; López Jiménez, A. C.; Cobos Carrascosa, J. P.; Feller, A.; Riethmueller, T.; Gandorfer, A.; Lagg, A. Bibcode: 2020SPIE11447E..0YK Altcode: The Sunrise balloon-borne solar observatory carries a 1 m aperture optical telescope and provides us a unique platform to conduct continuous seeing-free observations at UV-visible-IR wavelengths from an altitude of higher than 35 km. For the next flight planned for 2022, the post-focus instrumentation is upgraded with new spectro- polarimeters for the near UV (SUSI) and the near-IR (SCIP), whereas the imaging spectro-polarimeter Tunable Magnetograph (TuMag) is capable of observing multiple spectral lines within the visible wavelength. A new spectro-polarimeter called the Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is under development for observing near-IR wavelength ranges of around 770 nm and 850 nm. These wavelength ranges contain many spectral lines sensitive to solar magnetic fields and SCIP will be able to obtain magnetic and velocity structures in the solar atmosphere with a sufficient height resolution by combining spectro-polarimetric data of these lines. Polarimetric measurements are conducted using a rotating waveplate as a modulator and polarizing beam splitters in front of the cameras. The spatial and spectral resolutions are 0.2" and 2 105, respectively, and a polarimetric sensitivity of 0.03 % (1σ) is achieved within a 10 s integration time. To detect minute polarization signals with good precision, we carefully designed the opto-mechanical system, polarization optics and modulation, and onboard data processing. Title: Current Status of the Solar-C_EUVST Mission Authors: Imada, S.; Shimizu, T.; Kawate, T.; Toriumi, S.; Katsukawa, Y.; Kubo, M.; Hara, H.; Suematsu, Y.; Ichimoto, K.; Watanabe, T.; Watanabe, K.; Yokoyama, T.; Warren, H.; Long, D.; Harra, L. K.; Teriaca, L. Bibcode: 2020AGUFMSH056..05I Altcode: Solar-C_EUVST (EUV High-Throughput Spectroscopic Telescope) is designed to comprehensively understand the energy and mass transfer from the solar surface to the solar corona and interplanetary space, and to investigate the elementary processes that take place universally in cosmic plasmas. As a fundamental step towards answering how the plasma universe is created and evolves, and how the Sun influences the Earth and other planets in our solar system, the proposed mission is designed to comprehensively understand how mass and energy are transferred throughout the solar atmosphere. Understanding the solar atmosphere, which connects to the heliosphere via radiation, the solar wind and coronal mass ejections, and energetic particles is pivotal for establishing the conditions for life and habitability in the solar system.

The two primary science objectives for Solar-C_EUVST are : I) Understand how fundamental processes lead to the formation of the solar atmosphere and the solar wind, II) Understand how the solar atmosphere becomes unstable, releasing the energy that drives solar flares and eruptions. Solar-C_EUVST will, A) seamlessly observe all the temperature regimes of the solar atmosphere from the chromosphere to the corona at the same time, B) resolve elemental structures of the solar atmosphere with high spatial resolution and cadence to track their evolution, and C) obtain spectroscopic information on the dynamics of elementary processes taking place in the solar atmosphere.

In this talk, we will first discuss the science target of the Solar-C_EUVST, and then discuss the current status of the Solar-C_EUVST mission. Title: Thermal design of the Solar-C (EUVST) telescope Authors: Suematsu, Yoshinori; Shimizu, Toshifumi; Hara, Hirohisa; Kawate, Tomoko; Katsukawa, Yukio; Ichimoto, Kiyoshi; Imada, Shinsuke; Nagae, Kazuhiro; Yamazaki, Atsumu; Hattori, Tomoya Bibcode: 2020SPIE11444E..3KS Altcode: The EUV High-Throughput Spectroscopic Telescope (EUVST) of Solar-C mission consists of only two imaging optical components; a 28-cm clear aperture off-axis parabolic primary mirror and a two-split ellipsoidal grating without a blocking filter for visible light before the primary mirror to achieve unprecedented high spatial and temporal resolution in EUV-UV imaging spectroscopic observations. For this reason, about 60 W of sunlight is absorbed by the multilayer coating on the mirror. We report a thermal design of telescope in which the temperature of the primary mirror bonding part and underlying tip-tilt and slit-scanning mechanisms is well lower than a glass transition temperature of adhesive (about 60°C) and thermal deformation of the primary mirror is small, although it is non-negligibly small. Title: A sensitivity analysis of the updated optical design for EUVST on the Solar-C mission Authors: Kawate, Tomoko; Tsuzuki, Toshihiro; Shimizu, Toshifumi; Imada, Shinsuke; Katsukawa, Yukio; Hara, Hirohisa; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Hattori, Tomoya; Narasaki, Shota; Warren, Harry P.; Teriaca, Luca; Korendyke, Clarence M.; Brown, Charles M.; Auchere, Frederic Bibcode: 2020SPIE11444E..3JK Altcode: The EUV high-throughput spectroscopic telescope (EUVST) onboard the Solar-C mission has the high spatial (0.4'') resolution over a wide wavelength range in the vacuum ultraviolet. To achieve high spatial resolution under a design constraint given by the JAXA Epsilon launch vehicle, we further update the optical design to secure margins needed to realize 0.4'' spatial resolution over a field of view of 100''×100''. To estimate the error budgets of spatial and spectral resolutions due to installation and fabrication errors, we perform a sensitivity analysis for the position and orientation of each optical element and for the grating parameters by ray tracing with the Zemax software. We obtain point spread functions (PSF) for rays from 9 fields and at 9 wavelengths on each detector by changing each parameter slightly. A full width at half maximum (FWHM) of the PSF is derived at each field and wavelength position as a function of the perturbation of each optical parameter. Assuming a mount system of each optical element and an error of each optical parameter, we estimate spatial and spectral resolutions by taking installation and fabrication errors into account. The results of the sensitivity analysis suggest that budgets of the total of optical design and the assembly errors account for 15% and 5.8% of our budgets of the spatial resolution in the long wavelength and short wavelength bands, respectively. On the other hand, the grating fabrication errors give a large degradation of spatial and spectral resolutions, and investigations of compensators are needed to relax the fabrication tolerance of the grating surface parameters. Title: The spatially resolved broad line region of IRAS 09149-6206 Authors: GRAVITY Collaboration; Amorim, A.; Bauböck, M.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P. T.; Dexter, J.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Gao, F.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Hönig, S.; Kishimoto, M.; Lacour, S.; Lutz, D.; Millour, F.; Netzer, H.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. O.; Pfuhl, O.; Prieto, M. A.; Rouan, D.; Shangguan, J.; Shimizu, T.; Schartmann, M.; Stadler, J.; Sternberg, A.; Straub, O.; Straubmeier, C.; Sturm, E.; Tacconi, L. J.; Tristram, K. R. W.; Vermot, P.; von Fellenberg, S.; Waisberg, I.; Widmann, F.; Woillez, J. Bibcode: 2020A&A...643A.154G Altcode: 2020arXiv200908463G We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Brγ emission line in the nucleus of the active galaxy IRAS 09149-6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120 μas (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 μm continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Brγ line. We infer the radius of the BLR to be ∼65 μas (0.075 pc), which is consistent with the radius-luminosity relation of nearby active galactic nuclei derived based on the time lag of the Hβ line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 108 M, which is a little below, but consistent with, the standard MBH* relation. Title: Ionized outflows in local luminous AGN: what are the real densities and outflow rates? Authors: Davies, R.; Baron, D.; Shimizu, T.; Netzer, H.; Burtscher, L.; de Zeeuw, P. T.; Genzel, R.; Hicks, E. K. S.; Koss, M.; Lin, M. -Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shangguan, J.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S. Bibcode: 2020MNRAS.498.4150D Altcode: 2020arXiv200306153D; 2020MNRAS.tmp.2061D We report on the determination of electron densities, and their impact on the outflow masses and rates, measured in the central few hundred parsecs of 11 local luminous active galaxies. We show that the peak of the integrated line emission in the active galactic nuclei (AGN) is significantly offset from the systemic velocity as traced by the stellar absorption features, indicating that the profiles are dominated by outflow. In contrast, matched inactive galaxies are characterized by a systemic peak and weaker outflow wing. We present three independent estimates of the electron density in these AGN, discussing the merits of the different methods. The electron density derived from the [S II] doublet is significantly lower than that found with a method developed in the last decade using auroral and transauroral lines, as well as a recently introduced method based on the ionization parameter. The reason is that, for gas photoionized by an AGN, much of the [S II] emission arises in an extended partially ionized zone where the implicit assumption that the electron density traces the hydrogen density is invalid. We propose ways to deal with this situation and we derive the associated outflow rates for ionized gas, which are in the range 0.001-0.5 M yr-1 for our AGN sample. We compare these outflow rates to the relation between $\dot{M}_{\rm out}$ and LAGN in the literature, and argue that it may need to be modified and rescaled towards lower mass outflow rates. Title: Rotation Curves in z ∼ 1-2 Star-forming Disks: Evidence for Cored Dark Matter Distributions Authors: Genzel, R.; Price, S. H.; Übler, H.; Förster Schreiber, N. M.; Shimizu, T. T.; Tacconi, L. J.; Bender, R.; Burkert, A.; Contursi, A.; Coogan, R.; Davies, R. L.; Davies, R. I.; Dekel, A.; Herrera-Camus, R.; Lee, M. -J.; Lutz, D.; Naab, T.; Neri, R.; Nestor, A.; Renzini, A.; Saglia, R.; Schuster, K.; Sternberg, A.; Wisnioski, E.; Wuyts, S. Bibcode: 2020ApJ...902...98G Altcode: 2020arXiv200603046G We report high-quality, Hα or CO rotation curves (RCs) to several Re for 41 large, massive, star-forming disk galaxies (SFGs) across the peak of cosmic galaxy evolution (z ∼ 0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFGs have reflection-symmetric RCs plausibly described by equilibrium dynamics. We fit the major axis position-velocity cuts using beam-convolved forward modeling generated in three dimensions, with models that include a bulge and turbulent disk component embedded in a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from abundance-matching scaling relations. Two-thirds or more of the z ≥ 1.2 SFGs are baryon dominated within a few Re of typically 5.5 kpc and have DM fractions less than maximal disks (median $\langle {f}_{\mathrm{DM}}({R}_{e})\rangle =0.12$ ). At lower redshift (z < 1.2), that fraction is less than one-third. DM fractions correlate inversely with the baryonic angular momentum parameter, baryonic surface density, and bulge mass. Inferred low DM fractions cannot apply to the entire disk and halo but more plausibly reflect a flattened, or cored, inner DM density distribution. The typical central "DM deficit" in these cores relative to Navarro-Frenk-White (NFW) distributions is ∼30% of the bulge mass. The observations are consistent with rapid radial transport of baryons in the first-generation massive gas-rich halos forming globally gravitationally unstable disks and leading to efficient build-up of massive bulges and central black holes. A combination of heating due to dynamical friction and AGN feedback may drive DM out of the initial cusps. Title: On the Formation of Lyman β and the O I 1027 and 1028 Å Spectral Lines Authors: Hasegawa, Takahiro; Noda, Carlos Quintero; Shimizu, Toshifumi; Carlsson, Mats Bibcode: 2020ApJ...900...34H Altcode: 2020arXiv200812556H We study the potential of Lyman β and the O I 1027 and 1028 Å spectral lines to help in understanding the properties of the chromosphere and transition region (TR). The oxygen transitions are located in the wing of Lyman β, which is a candidate spectral line for the solar missions Solar Orbiter/Spectral Imaging of the Coronal Environment and Solar-C (EUVST). We examine the general spectroscopic properties of the three transitions in the quiet Sun by synthesizing them assuming nonlocal thermal equilibrium and taking into account partial redistribution effects. We estimate the heights where the spectral lines are sensitive to the physical parameters, computing the response functions to temperature and velocity using a 1D semiempirical atmospheric model. We also synthesize the intensity spectrum using the 3D enhanced network simulation computed with the BIFROST code. The results indicate that Lyman β is sensitive to the temperature from the middle chromosphere to the TR, while it is mainly sensitive to the line-of-sight (LOS) velocity at the lower atmospheric layers, around 2000 km above the optical surface. The O I lines form lower in the middle chromosphere, being sensitive to the LOS velocities at heights lower than those covered by Lyman β. The spatial distribution of the intensity signals computed with the BIFROST atmosphere, as well as the inferred velocities from the line core Doppler shift, confirms the previous results. Therefore, these results indicate that the spectral window at 1025 Å contains several spectral lines that complement each other to seamlessly trace the thermal structure and gas dynamics from the middle chromosphere to the lower TR. Title: Chromospheric Magnetic Field: A Comparison of He I 10830 Å Observations with Nonlinear Force-free Field Extrapolation Authors: Kawabata, Yusuke; Asensio Ramos, Andrés; Inoue, Satoshi; Shimizu, Toshifumi Bibcode: 2020ApJ...898...32K Altcode: 2020arXiv200600179K The nonlinear force-free field (NLFFF) modeling has been extensively used to infer the three-dimensional magnetic field in the solar corona. One of the assumptions in the NLFFF extrapolation is that the plasma beta is low, but this condition is considered to be incorrect in the photosphere. We examine direct measurements of the chromospheric magnetic field in two active regions through spectropolarimetric observations at He I 10830 Å, which are compared with the potential fields and NLFFFs extrapolated from the photosphere. The comparisons allow quantitative estimation of the uncertainty in the NLFFF extrapolation from the photosphere. Our analysis shows that observed chromospheric magnetic field may have larger nonpotentiality compared to the photospheric magnetic field. Moreover, the large nonpotentiality in the chromospheric height may not be reproduced by the NLFFF extrapolation from the photospheric magnetic field. The magnitude of the underestimation of the nonpotentiality at chromospheric heights may reach 30°-40° in shear signed angle in some locations. This deviation may be caused by the non-force-freeness in the photosphere. Our study suggests the importance of the inclusion of measured chromospheric magnetic fields in the NLFFF modeling for the improvement of the coronal extrapolation. Title: The BAT AGN Spectroscopic Survey. XVIII. Searching for Supermassive Black Hole Binaries in X-Rays Authors: Liu, Tingting; Koss, Michael; Blecha, Laura; Ricci, Claudio; Trakhtenbrot, Benny; Mushotzky, Richard; Harrison, Fiona; Ichikawa, Kohei; Kakkad, Darshan; Oh, Kyuseok; Powell, Meredith; Privon, George C.; Schawinski, Kevin; Shimizu, T. Taro; Smith, Krista Lynne; Stern, Daniel; Treister, Ezequiel; Urry, C. Megan Bibcode: 2020ApJ...896..122L Altcode: 2019arXiv191202837L Theory predicts that a supermassive black hole binary (SMBHB) could be observed as a luminous active galactic nucleus (AGN) that periodically varies on the order of its orbital timescale. In X-rays, periodic variations could be caused by mechanisms including relativistic Doppler boosting and shocks. Here we present the first systematic search for periodic AGNs using 941 hard X-ray light curves (14-195 keV) from the first 105 months of the Swift Burst Alert Telescope (BAT) survey (2004-2013). We do not find evidence for periodic AGNs in Swift-BAT, including the previously reported SMBHB candidate MCG+11-11-032. We find that the null detection is consistent with the combination of the upper-limit binary population in AGNs in our adopted model, their expected periodic variability amplitudes, and the BAT survey characteristics. We have also investigated the detectability of SMBHBs against normal AGN X-ray variability in the context of the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) survey. Under our assumptions of a binary population and the periodic signals they produce, which have long periods of hundreds of days, up to 13% true periodic binaries can be robustly distinguished from normal variable AGNs with the ideal uniform sampling. However, we demonstrate that realistic eROSITA sampling is likely to be insensitive to long-period binaries because longer observing gaps reduce their detectability. In contrast, large observing gaps do not diminish the prospect of detecting binaries of short, few-day periods, as 19% can be successfully recovered, the vast majority of which can be identified by the first half of the survey. Title: Extrapolation of Three-dimensional Magnetic Field Structure in Flare-productive Active Regions with Different Initial Conditions Authors: Kawabata, Y.; Inoue, S.; Shimizu, T. Bibcode: 2020ApJ...895..105K Altcode: 2020arXiv200500177K Nonlinear force-free field (NLFFF) modeling has been extensively used as a tool to infer three-dimensional (3D) magnetic field structure. In this study, the dependency of the NLFFF calculation with respect to the initial guess of the 3D magnetic field is investigated. While major parts of the previous studies used the potential field as the initial guess in NLFFF modeling, we adopt linear force-free fields with different constant force-free alpha as the initial guesses. This method enables us to investigate the uniqueness of the magnetic field obtained by the NLFFF extrapolation with respect to the initial guess. The dependence of the initial conditions on NLFFF extrapolation is smaller in the strong magnetic field region. Therefore, the magnetic field at lower heights (<10 Mm) tends to be less affected by the initial conditions (correlation coefficient C > 0.9 with different initial conditions); although, the Lorentz force is concentrated at lower heights. Title: A Solar Magnetic-fan Flaring Arch Heated by Nonthermal Particles and Hot Plasma from an X-Ray Jet Eruption Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi, Anand D.; Brooks, David H.; Imada, Shinsuke; Prasad, Avijeet; Dang, Phillip; Shimizu, Toshifumi; Savage, Sabrina L.; Moore, Ronald; Panesar, Navdeep K.; Reep, Jeffrey W. Bibcode: 2020ApJ...895...42L Altcode: 2020arXiv200509875L We have investigated an M1.3 limb flare, which develops as a magnetic loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we found that the temperature increases with height to a value of over 107 K at the loop top during the flare. The measured Doppler velocity (redshifts of 100-500 km s-1) and the nonthermal velocity (≥100 km s-1) from Fe XXIV also increase with loop height. The electron density increases from 0.3 × 109 cm-3 early in the flare rise to 1.3 × 109 cm-3 after the flare peak. The 3D structure of the loop derived with Solar TErrestrial RElations Observatory/EUV Imager indicates that the strong redshift in the loop-top region is due to upflowing plasma originating from the jet. Both hard X-ray and soft X-ray emission from the Reuven Ramaty High Energy Solar Spectroscopic Imager were only seen as footpoint brightenings during the impulsive phase of the flare, then, soft X-ray emission moved to the loop top in the decay phase. Based on the temperature and density measurements and theoretical cooling models, the temperature evolution of the flare arch is consistent with impulsive heating during the jet eruption followed by conductive cooling via evaporation and minor prolonged heating in the top of the fan loop. Investigating the magnetic field topology and squashing factor map from Solar Dynamics Observatory/HMI, we conclude that the observed magnetic-fan flaring arch is mostly heated from low atmospheric reconnection accompanying the jet ejection, instead of from reconnection above the arch as expected in the standard flare model. Title: From Nuclear to Circumgalactic: Zooming in on AGN-driven Outflows at z ∼ 2.2 with SINFONI Authors: Davies, Rebecca L.; Förster Schreiber, N. M.; Lutz, D.; Genzel, R.; Belli, S.; Shimizu, T. T.; Contursi, A.; Davies, R. I.; Herrera-Camus, R.; Lee, M. M.; Naab, T.; Price, S. H.; Renzini, A.; Schruba, A.; Sternberg, A.; Tacconi, L. J.; Übler, H.; Wisnioski, E.; Wuyts, S. Bibcode: 2020ApJ...894...28D Altcode: 2020arXiv200402891D We use deep adaptive optics assisted integral field spectroscopy from SINFONI on the VLT to study the spatially resolved properties of ionized gas outflows driven by active galactic nuclei (AGNs) in three galaxies at z ∼ 2.2—K20-ID5, COS4-11337, and J0901 + 1814. These systems probe AGN feedback from nuclear to circumgalactic scales and provide unique insights into the different mechanisms by which AGN-driven outflows interact with their host galaxies. K20-ID5 and COS4-11337 are compact star-forming galaxies with powerful ∼1500 km s-1 AGN-driven outflows that dominate their nuclear Hα emission. The outflows do not appear to have any impact on the instantaneous star formation activity of the host galaxies, but they carry a significant amount of kinetic energy that could heat the halo gas and potentially lead to a reduction in the rate of cold gas accretion onto the galaxies. The outflow from COS4-11337 is propagating directly toward its companion galaxy COS4-11363, at a projected separation of 5.4 kpc. COS4-11363 shows signs of shock excitation and recent truncation of star formation activity, which could plausibly have been induced by the outflow from COS4-11337. J0901 + 1814 is gravitationally lensed, giving us a unique view of a compact (R = 470 ± 70 pc), relatively low-velocity (∼650 km s-1) AGN-driven outflow. J0901 + 1814 has a similar AGN luminosity to COS4-11337, suggesting that the difference in outflow properties is not related to the current AGN luminosity and may instead reflect a difference in the evolutionary stage of the outflow and/or the coupling efficiency between the AGN ionizing radiation field and the gas in the nuclear regions. Title: AGN feedback in a galaxy merger: multi-phase, galaxy-scale outflows with a fast molecular gas blob ∼6 kpc away from IRAS F08572+3915 Authors: Herrera-Camus, R.; Janssen, A.; Sturm, E.; Lutz, D.; Veilleux, S.; Davies, R.; Shimizu, T.; González-Alfonso, E.; Rupke, D. S. N.; Tacconi, L.; Genzel, R.; Cicone, C.; Maiolino, R.; Contursi, A.; Graciá-Carpio, J. Bibcode: 2020A&A...635A..47H Altcode: 2019arXiv191106326H To understand the role that active galactic nuclei (AGN) feedback plays in galaxy evolution, we need in-depth studies of the multi-phase structure and energetics of galaxy-wide outflows. In this work, we present new, deep (∼50 h) NOEMA CO(1-0) line observations of the molecular gas in the powerful outflow driven by the AGN in the ultra-luminous infrared galaxy IRAS F08572+3915. We spatially resolve the outflow, finding that its most likely configuration is a wide-angle bicone aligned with the kinematic major axis of the rotation disk. The molecular gas in the wind reaches velocities up to approximately ±1200 km s-1 and transports nearly 20% of the molecular gas mass in the system. We detect a second outflow component located ∼6 kpc northwest from the galaxy moving away at ∼900 km s-1, which could be the result of a previous episode of AGN activity. The total mass and energetics of the outflow, which includes contributions from the ionized, neutral, and warm and cold molecular gas phases, is strongly dominated by the cold molecular gas. In fact, the molecular mass outflow rate is higher than the star formation rate, even if we only consider the gas in the outflow that is fast enough to escape the galaxy, which accounts for ∼40% of the total mass of the outflow. This results in an outflow depletion time for the molecular gas in the central ∼1.5 kpc region of only ∼3 Myr, a factor of ∼2 shorter than the depletion time by star formation activity.

A copy of the reduced datacube is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/635/A47 Title: The resolved size and structure of hot dust in the immediate vicinity of AGN Authors: GRAVITY Collaboration; Dexter, J.; Shangguan, J.; Hönig, S.; Kishimoto, M.; Lutz, D.; Netzer, H.; Davies, R.; Sturm, E.; Pfuhl, O.; Amorim, A.; Bauböck, M.; Brandner, W.; Clénet, Y.; de Zeeuw, P. T.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Gao, F.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Jiménez-Rosales, A.; Lacour, S.; Millour, F.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. O.; Prieto, M. A.; Rouan, D.; Schartmann, M.; Shimizu, T.; Sternberg, A.; Straub, O.; Straubmeier, C.; Tacconi, L. J.; Tristram, K.; Vermot, P.; Waisberg, I.; Widmann, F.; Woillez, J. Bibcode: 2020A&A...635A..92G Altcode: 2019arXiv191000593G; 2020A&A...635A..92. We use VLTI/GRAVITY near-infrared interferometry measurements of eight bright type 1 AGN to study the size and structure of hot dust that is heated by the central engine. We partially resolve each source, and report Gaussian full width at half-maximum sizes in the range 0.3-0.8 mas. In all but one object, we find no evidence for significant elongation or asymmetry (closure phases ≲1°). The narrow range of measured angular sizes is expected given the similar optical flux of our targets, and implies an increasing effective physical radius with bolometric luminosity, as found from previous reverberation and interferometry measurements. The measured sizes for Seyfert galaxies are systematically larger than for the two quasars in our sample when measured relative to the previously reported R ∼ L1/2 relationship, which is explained by emission at the sublimation radius. This could be evidence of an evolving near-infrared emission region structure as a function of central luminosity. Title: The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS Authors: Lamperti, Isabella; Saintonge, Amélie; Koss, Michael; Viti, Serena; Wilson, Christine D.; He, Hao; Shimizu, T. Taro; Greve, Thomas R.; Mushotzky, Richard; Treister, Ezequiel; Kramer, Carsten; Sanders, David; Schawinski, Kevin; Tacconi, Linda J. Bibcode: 2020ApJ...889..103L Altcode: 2019arXiv191201026L We study the ${r}_{31}={L}_{\mathrm{CO}(3\mbox{--}2)}^{{\prime} }/{L}_{\mathrm{CO}(1\mbox{--}0)}^{{\prime} }$ luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Local Universe Galaxy Survey. We find a trend for r31 to increase with star formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for the variation of r31, while the interstellar radiation field and cosmic-ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (<r31> = 0.52 ± 0.04 for SFGs and <r31> = 0.53 ± 0.06 for AGN hosts). According to the results of the UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 104 cm-3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R = 0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R = 0.78), but the increase in correlation is not statistically significant (p-value = 0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift and to compare it with studies of low-redshift galaxies, as is common practice. Title: LLAMA: The MBH relation of the most luminous local AGNs Authors: Caglar, Turgay; Burtscher, Leonard; Brandl, Bernhard; Brinchmann, Jarle; Davies, Richard I.; Hicks, Erin K. S.; Koss, Michael; Lin, Ming-Yi; Maciejewski, Witold; Müller-Sánchez, Francisco; Riffel, Rogemar A.; Riffel, Rogério; Rosario, David J.; Schartmann, Marc; Schnorr-Müller, Allan; Shimizu, T. Taro; Storchi-Bergmann, Thaisa; Veilleux, Sylvain; Orban de Xivry, Gilles; Bennert, Vardha N. Bibcode: 2020A&A...634A.114C Altcode: 2019arXiv191207734C Context. The MBH relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation.
Aims: In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the MBH relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio.
Methods: Supermassive black hole masses (MBH) were derived from the broad-line-based relations for Hα, Hβ, and Paβ emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion (σ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps.
Results: The Hα-based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log MBH ≤ 7.75 M and the σ⋆CaT estimates range between 73 ≤ σ⋆CaT ≤ 227 km s-1. From the so-constructed MBH - σ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample.
Conclusions: We find that our sample of local luminous AGNs is consistent with the MBH relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. Title: An image of the dust sublimation region in the nucleus of NGC 1068 Authors: GRAVITY Collaboration; Pfuhl, O.; Davies, R.; Dexter, J.; Netzer, H.; Hönig, S.; Lutz, D.; Schartmann, M.; Sturm, E.; Amorim, A.; Brandner, W.; Clénet, Y.; de Zeeuw, P. T.; Eckart, A.; Eisenhauer, F.; Förster Schreiber, N. M.; Gao, F.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Kishimoto, M.; Lacour, S.; Millour, F.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. O.; Prieto, M. A.; Rouan, D.; Shangguan, J.; Shimizu, T.; Sternberg, A.; Straub, O.; Straubmeier, C.; Tacconi, L. J.; Tristram, K. R. W.; Vermot, P.; Waisberg, I.; Widmann, F.; Woillez, J. Bibcode: 2020A&A...634A...1G Altcode: 2019arXiv191201361G; 2020A&A...634A...1. We present near-infrared interferometric data on the Seyfert 2 galaxy NGC 1068, obtained with the GRAVITY instrument on the European Southern Observatory Very Large Telescope Interferometer. The extensive baseline coverage from 5 to 60 Mλ allowed us to reconstruct a continuum image of the nucleus with an unrivaled 0.2 pc resolution in the K-band. We find a thin ring-like structure of emission with a radius r = 0.24 ± 0.03 pc, inclination i = 70 ± 5°, position angle PA = -50 ± 4°, and h/r < 0.14, which we associate with the dust sublimation region. The observed morphology is inconsistent with the expected signatures of a geometrically and optically thick torus. Instead, the infrared emission shows a striking resemblance to the 22 GHz maser disc, which suggests they share a common region of origin. The near-infrared spectral energy distribution indicates a bolometric luminosity of (0.4-4.7) × 1045 erg s-1, behind a large AK ≈ 5.5 (AV ≈ 90) screen of extinction that also appears to contribute significantly to obscuring the broad line region.

The reconstructed image and interferometric beam are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/634/A1 Title: Locating Hot Plasma in Small Flares using Spectroscopic Overlappogram Data from the Hinode EUV Imaging Spectrometer Authors: Harra, Louise; Matthews, Sarah; Long, David; Hasegawa, Takahiro; Lee, Kyoung-Sun; Reeves, Katharine K.; Shimizu, Toshifumi; Hara, Hirohisa; Woods, Magnus Bibcode: 2020SoPh..295...34H Altcode: 2020arXiv200302908H One of the key processes associated with the "standard" flare model is chromospheric evaporation, a process during which plasma heated to high temperatures by energy deposition at the flare footpoints is driven upwards into the corona. Despite several decades of study, a number of open questions remain, including the relationship between plasma produced during this process and observations of earlier "superhot" plasma. The Extreme ultraviolet Imaging Spectrometer (EIS) onboard Hinode has a wide slot, which is often used as a flare trigger in the He II emission-line band. Once the intensity passes a threshold level, the study will switch to one focussed on the flaring region. However, when the intensity is not high enough to reach the flare trigger threshold, these datasets are then available during the entire flare period and provide high-cadence spectroscopic observations over a large field of view. We make use of data from two such studies of a C4.7 flare and a C1.6 flare to probe the relationship between hot Fe XXIV plasma and plasmas observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the X-ray Telescope (XRT) to track where the emission comes from and when it begins. The flare trigger slot data used in our analysis has one-minute cadence. Although the spatial and spectral information are merged in the wide-slot data, it is still possible to extract when the hot plasma appears, through the appearance of the Fe Xxiv spectral image. It is also possible to derive spectrally pure Fe XXIV light curves from the EIS data, and compare them with those derived from hard X-rays, enabling a full exploration of the evolution of hot emission. The Fe XXIV emission peaks just after the peak in the hard X-ray lightcurve; consistent with an origin in the evaporation of heated plasma following the transfer of energy to the lower atmosphere. A peak was also found for the C4.7 flare in the RHESSI peak temperature, which occurred before the hard X-rays peaked. This suggests that the first peak in hot-plasma emission is likely to be directly related to the energy-release process. Title: BAT AGN Spectroscopic Survey - XIX. Type 1 versus type 2 AGN dichotomy from the point of view of ionized outflows Authors: Rojas, A. F.; Sani, E.; Gavignaud, I.; Ricci, C.; Lamperti, I.; Koss, M.; Trakhtenbrot, B.; Schawinski, K.; Oh, K.; Bauer, F. E.; Bischetti, M.; Boissay-Malaquin, R.; Bongiorno, A.; Harrison, F.; Kakkad, D.; Masetti, N.; Ricci, F.; Shimizu, T.; Stalevski, M.; Stern, D.; Vietri, G. Bibcode: 2020MNRAS.491.5867R Altcode: 2019MNRAS.tmp.3119R; 2019arXiv191112395R We present a detailed study of ionized outflows in a large sample of ∼650 hard X-ray-detected active galactic neuclei (AGNs). Using optical spectroscopy from the BAT AGN Spectroscopic Survey (BASS), we are able to reveal the faint wings of the [O III] emission lines associated with outflows covering, for the first time, an unexplored range of low AGN bolometric luminosity at low redshift (z ∼0.05). We test if and how the incidence and velocity of ionized outflow is related to AGN physical parameters: black hole mass (M_{BH}), gas column density (NH), Eddington ratio (λ _{Edd}), [O III], X-ray, and bolometric luminosities. We find a higher occurrence of ionized outflows in type 1.9 (55 per cent) and type 1 AGNs (46 per cent) with respect to type 2 AGNs (24 per cent). While outflows in type 2 AGNs are evenly balanced between blue and red velocity offsets with respect to the [O III] narrow component, they are almost exclusively blueshifted in type 1 and type 1.9 AGNs. We observe a significant dependence between the outflow occurrence and accretion rate, which becomes relevant at high Eddington ratios [log(λ _{Edd}) ≳ -1.7]. We interpret such behaviour in the framework of covering factor-Eddington ratio dependence. We do not find strong trends of the outflow maximum velocity with AGN physical parameters, as an increase with bolometric luminosity can be only identified when including samples of AGNs at high luminosity and high redshift taken from literature. Title: Average Radial Structures of Gas Convection in the Solar Granulation Authors: Oba, T.; Iida, Y.; Shimizu, T. Bibcode: 2020ApJ...890..141O Altcode: 2020arXiv200103575O Gas convection is observed in the solar photosphere as granulation, I.e., having highly time-dependent cellular patterns, consisting of numerous bright cells called granules and dark surrounding channels called intergranular lanes. Many efforts have been made to characterize the granulation, which may be used as an energy source for various types of dynamical phenomena. Although the horizontal gas flow dynamics in intergranular lanes may play a vital role, they are poorly understood. This is because the Doppler signals can be obtained only at the solar limb, where the signals are severely degraded by a foreshortening effect. To reduce such a degradation, we use Hinode's spectroscopic data, which are free from a seeing-induced image degradation, and improve the image quality by correcting for stray light in the instruments. The data set continuously covers from the solar disk to the limb, providing a multidirectional line-of-sight (LOS) diagnosis against the granulation. The obtained LOS flow-field variation across the disk indicates a horizontal flow speed of 1.8-2.4 km s-1. We also derive the spatial distribution of the horizontal flow speed, which is 1.6 km s-1 in granules and 1.8 km s-1 in intergranular lanes, and where the maximum speed is inside intergranular lanes. This result newly suggests the following sequence of horizontal flow: a hot rising gas parcel is strongly accelerated from the granular center, even beyond the transition from the granules to the intergranular lanes, resulting in the fastest speed inside the intergranular lanes, and the gas may also experience decelerations in the intergranular lane. Title: Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving Authors: Lutz, D.; Sturm, E.; Janssen, A.; Veilleux, S.; Aalto, S.; Cicone, C.; Contursi, A.; Davies, R. I.; Feruglio, C.; Fischer, J.; Fluetsch, A.; Garcia-Burillo, S.; Genzel, R.; González-Alfonso, E.; Graciá-Carpio, J.; Herrera-Camus, R.; Maiolino, R.; Schruba, A.; Shimizu, T.; Sternberg, A.; Tacconi, L. J.; Weiß, A. Bibcode: 2020A&A...633A.134L Altcode: 2019arXiv191105608L We report new detections and limits from a NOEMA and ALMA CO(1-0) search for molecular outflows in 13 local galaxies with high far-infrared surface brightness, and combine these with local universe CO outflow results from the literature. The CO line ratios and spatial outflow structure of our targets provide some constraints on the conversion steps from observables to physical quantities such as molecular mass outflow rates. Where available, ratios between outflow emission in higher J CO transitions and in CO(1-0) are typically consistent with excitation Ri1 ≲ 1. However, for IRAS 13120-5453, R31 = 2.10 ± 0.29 indicates optically thin CO in the outflow. Like much of the outflow literature, we use αCO(1 - 0) = 0.8, and we present arguments for using C = 1 in deriving molecular mass outflow rates Ṁout = CMoutvout/Rout. We compare the two main methods for molecular outflow detection: CO millimeter interferometry and Herschel OH-based spectroscopic outflow searches. For 26 sources studied with both methods, we find an 80% agreement in detecting vout ≳ 150 km s-1 outflows, and non-matches can be plausibly ascribed to outflow geometry and signal-to-noise ratio. For a published sample of 12 bright ultraluminous infrared galaxies with detailed OH-based outflow modeling, CO outflows are detected in all but one. Outflow masses, velocities, and sizes for these 11 sources agree well between the two methods, and modest remaining differences may relate to the different but overlapping regions sampled by CO emission and OH absorption. Outflow properties correlate better with active galactic nucleus (AGN) luminosity and with bolometric luminosity than with far-infrared surface brightness. The most massive outflows are found for systems with current AGN activity, but significant outflows in nonAGN systems must relate to star formation or to AGN activity in the recent past. We report scaling relations for the increase of outflow mass, rate, momentum rate, and kinetic power with bolometric luminosity. Short flow times of ∼106 yr and some sources with resolved multiple outflow episodes support a role of intermittent driving, likely by AGNs. Title: Molecular gas inflows and outflows in ultraluminous infrared galaxies at z ∼ 0.2 and one QSO at z = 6.1 Authors: Herrera-Camus, R.; Sturm, E.; Graciá-Carpio, J.; Veilleux, S.; Shimizu, T.; Lutz, D.; Stone, M.; González-Alfonso, E.; Davies, R.; Fischer, J.; Genzel, R.; Maiolino, R.; Sternberg, A.; Tacconi, L.; Verma, A. Bibcode: 2020A&A...633L...4H Altcode: 2019arXiv191205548H
Aims: Our aim is to search for and characterize inflows and outflows of molecular gas in four ultraluminous infrared galaxies (ULIRGs; LIR > 1012L) at z ∼ 0.2-0.3 and one distant quasi-stellar object (QSO) at z = 6.13.
Methods: We used Herschel/PACS and ALMA Band 7 observations of the hydroxyl molecule (OH) line at rest-frame wavelength 119 μm, which in absorption can provide unambiguous evidence of inflows or outflows of molecular gas in nuclear regions of galaxies. Our study contributes to doubling the number of OH 119 μm observations of luminous systems at z ∼ 0.2-0.3, and pushes the search for molecular outflows based on the OH 119 μm transition to z ∼ 6.
Results: We detect OH 119 μm high-velocity absorption wings in three of the four ULIRGs. In two cases, IRAS F20036-1547 and IRAS F13352+6402, the blueshifted absorption profiles indicate the presence of powerful and fast (∼200-500 km s-1) molecular gas outflows. Consistent with an inside-out quenching scenario, these outflows are depleting the central reservoir of star-forming molecular gas at a rate similar to that of intense star formation activity. For the starburst-dominated system IRAS 10091+4704, we detect an inverted P Cygni profile that is unique among ULIRGs and indicates the presence of a fast (∼400 km s-1) inflow of molecular gas at a rate of ∼100 M yr-1 towards the central region. Finally, we tentatively detect (∼3σ) the OH 119 μm doublet in absorption in the z = 6.13 QSO ULAS J131911+095051. The OH 119 μm feature is blueshifted with a median velocity that suggests the presence of a molecular outflow, although characterized by a modest molecular mass loss rate of ∼200 M yr-1. This value is comparable to the small mass outflow rates found in the stacking of the [C II] spectra of other z ∼ 6 QSOs and suggests that ejective feedback in this phase of the evolution of ULAS J131911+095051 has subsided.

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Title: VizieR Online Data Catalog: BAT AGN spectroscopic survey. XI. IR photometry (Ichikawa+, 2019) Authors: Ichikawa, K.; Ricci, C.; Ueda, Y.; Bauer, F. E.; Kawamuro, T.; Koss, M. J.; Oh, K.; Rosario, D. J.; Shimizu, T. T.; Stalevski, M.; Fuller, L.; Packham, C.; Trakhtenbrot, B. Bibcode: 2020yCat..18700031I Altcode: Our initial sample is based on the sample of Ichikawa+ (2017, J/ApJ/835/74), which contains the 606 non-blazar AGNs from the Swift/BAT 70 month catalog (Baumgartner+ 2013, J/ApJS/207/19) at galactic latitudes (|b|>10°) for which secure spectroscopic redshifts are available. In this study, we use the column density (NH) and the absorption-corrected 14-150keV luminosity (L14-150) tabulated in Ricci+ (2017, J/ApJS/233/17).

(1 data file). Title: VizieR Online Data Catalog: IRAS F08572+3915 CO(1-0) datacube (Herrera-Camus+, 2020) Authors: Herrera-Camus, R.; Janssen, A.; Sturm, E.; Lutz, D.; Veilleux, S.; Davies, R.; Shimizu, T.; Gonzalez-Alfonso, E.; Rupke, D. S. N.; Tacconi, L.; Genzel, R.; Cicone, C.; Maiolino, R.; Contursi, A.; Gracia-Carpio, J. Bibcode: 2020yCat..36350047H Altcode: In total, there have been three IRAM NOEMA (formerly Plateau de Bure Interferometer) observing programs that target the CO(1-0) outflow in IRAS F08572+3915 (May-Oct 2011, Feb-March 2013 and March 2015-Feb 2016).

(2 data files). Title: Tending the Fire: A molecular gas study of hard X-ray selected AGN from the BASS survey. Authors: Koss, M.; BASS Survey Team; Treister, E.; Cicone, C.; Shimizu, T.; Saintonge, A.; Privon, G.; Sanders, D.; Schawinski, K.; Lamperti, I.; Mushotzky, R. Bibcode: 2020AAS...23532503K Altcode: Over the last 30 years the importance of host galaxy molecular gas for growing black holes has been intensely debated. We have observed a a volume-limited sample of 220 nearby AGN (0.01 < z < 0.05) using the CO 2-1 line with the JCMT and APEX telescopes. The AGN are selected from the Swift-BAT all sky hard X-ray survey. We compare these AGN host galaxies to inactive galaxies selected with the IRAM 30m COLD GASS survey to understand trends with host morphology and stellar mass. We also study how molecular gas fraction is related to various AGN properties (Eddington ratio, black hole mass, bolometric luminosity, column density) from the BASS survey. Overall we find that AGN reside in galaxies with higher overall gas fractions than inactive galaxies of matched morphology and stellar mass, contain rare gas rich ellipticals, and the highest Eddington ratio AGN have higher gas fractions. Title: VizieR Online Data Catalog: NGC 1068 GRAVITY reconstructed image (GRAVITY+, 2020) Authors: GRAVITY Collaboration; Pfuhl, O.; Davies, R.; Dexter, J.; Netzer, H.; Hoenig, S.; Lutz, D.; Schartmann, M.; Sturm, E.; Amorim, A.; Brandner, W.; Clenet, Y.; de Zeeuw, P. T.; Eckart, A.; Eisenhauer, F.; Foerster Schreiber, N. M.; Gao, F.; Garcia, P. J. V.; Genzel, R.; Gillessen, S.; Gratadour, D.; Kishimoto, M.; Lacour, S.; Millour, F.; Ott, T.; Paumard, T.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. O.; Prieto, M. A.; Rouan, D.; Shangguan, J.; Shimizu, T.; Sternberg, A.; Straub, O.; Straubmeier, C.; Tacconi, L. J.; Tristram, K. R. W.; Vermot, P.; Waisberg, I.; Widmann, F.; Woillez, J. Bibcode: 2020yCat..36340001G Altcode: We present new 0.2pc resolution observations from the GRAVITY interferometer on the VLT, which spatially resolve the hot dust continuum in the central parsec of NGC 1068.

(2 data files). Title: GRAVITY and the Galactic Centre Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...26G Altcode: On a clear night, our home galaxy, the Milky Way, is visible as a starry ribbon across the sky. Its core is located in the constellation of Sagittarius, approximately where the bright glow is interrupted by the darkest dust filaments. There, hidden, lies a massive black hole. To peer through the obscuring clouds and see the stars and gas near the black hole we use GRAVITY. The main GRAVITY results are the detection of gra- vitational redshift, the most precise mass- distance measurement, the test of the equivalence principle, and the detection of orbital motion near the black hole. Title: An Image of the Dust Sublimation Region in the Nucleus of NGC 1068 Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...24G Altcode: The superb resolution of the Very Large Telescope Interferometer (VLTI) and the unrivalled sensitivity of GRAVITY have allowed us to reconstruct the first detailed image of the dust sublimation region in an active galaxy. In the nearby archetypal Seyfert 2 galaxy NGC 1068, the 2 µm continuum emission traces a highly inclined thin ring-like structure with a radius of 0.24 pc. The observed morphology challenges the picture of a geometrically and optically thick torus. Title: Spatially Resolved Accretion-Ejection in Compact Binaries with GRAVITY Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...29G Altcode: The GRAVITY instrument at the Very Large Telescope Interferometer has led to the first spatially resolved observations of X-ray binaries at scales comparable to the binary orbit, providing unprecedented spatial information on their accretion-ejection mechanisms. In particular, observations of the hypercritical accretor SS433 have revealed a variety of spatial structures at the heart of this exotic microquasar, including bipolar outflows, super-Keplerian equatorial outflows and extended baryonic jets photoionised by collimated ultraviolet radiation. Title: The KMOS3D Survey: Data Release and Final Survey Paper Authors: Wisnioski, E.; Förster Schreiber, N. M.; Fossati, M.; Mendel, J. T.; Wilman, D.; Genzel, R.; Bender, R.; Wuyts, S.; Davies, R. L.; Übler, H.; Bandara, K.; Beifiori, A.; Belli, S.; Brammer, G.; Chan, J.; Davies, R. I.; Fabricius, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Price, S.; Rosario, D.; Saglia, R.; Seitz, S.; Shimizu, T.; Tacconi, L. J.; Tadaki, K.; van Dokkum, P. G.; Wuyts, E. Bibcode: 2019ApJ...886..124W Altcode: 2019arXiv190911096W We present the completed KMOS3D survey, an integral field spectroscopic survey of 739 {log}({M}\star /{M})> 9 galaxies at 0.6 < z < 2.7 using the K-band Multi Object Spectrograph (KMOS) at the Very Large Telescope. The KMOS3D survey provides a population-wide census of kinematics, star formation, outflows, and nebular gas conditions both on and off the star-forming galaxy main sequence through the spatially resolved and integrated properties of Hα, [N II], and [S II] emission lines. We detect Hα emission for 91% of galaxies on the main sequence of star formation and 79% overall. The depth of the survey has allowed us to detect galaxies with star formation rates below 1 M yr-1, as well as to resolve 81% of detected galaxies with ≥3 resolution elements along the kinematic major axis. The detection fraction of Hα is a strong function of both color and offset from the main sequence, with the detected and nondetected samples exhibiting different spectral energy distribution shapes. Comparison of Hα and UV+IR star formation rates reveal that dust attenuation corrections may be underestimated by 0.5 dex at the highest masses ({log}({M}\star /{M})> 10.5). We confirm our first year results of a high rotation-dominated fraction (monotonic velocity gradient and v rot/{σ }0> \sqrt{3.36}) of 77% for the full KMOS3D sample. The rotation-dominated fraction is a function of both stellar mass and redshift, with the strongest evolution measured over the redshift range of the survey for galaxies with {log}({M}\star /{M})< 10.5. With this paper, we include a final data release of all 739 observed objects (http://www.mpe.mpg.de/ir/KMOS3D).

Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, 098.A-0045, 099.A-0013, 0100.A-0039, and 0101.A-0022). Title: Hunting Exoplanets with Single-Mode Optical Interferometry Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...47G Altcode: The GRAVITY instrument was primarily conceived for imaging and astrometry of the Galactic centre. However, its sensitivity and astrometric capabilities have also enabled interferometry to reach a new domain of astrophysics: exoplanetology. In March 2019, the GRAVITY collaboration published the first spectrum and astrometry of an exoplanet obtained by optical interferometry. In this article, we show how this observation is paving the way to even more exciting discoveries — finding new planets, and characterising their atmospheres. Title: Spatially Resolving the Inner Gaseous Disc of the Herbig Star 51 Oph through its CO Ro-vibration Emission Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...40G Altcode: Near-infrared interferometry gives us the opportunity to spatially resolve the circumstellar environment of young stars at sub-astronomical-unit (au) scales, which a standalone telescope could not reach. In particular, the sensitivity of GRAVITY on the VLTI allows us to spatially resolve the CO overtone emission at 2.3 microns. In this article, we present a new method of using the model of the CO spectrum to reconstruct the differential phase signal and extract the geometry and size of the emitting region. Title: Spatially Resolving the Quasar Broad Emission Line Region Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...20A Altcode: The angular resolution of the Very Large Telescope Interferometer (VLTI) and the excellent sensitivity of GRAVITY have led to the first detection of spatially resolved kinematics of high velocity atomic gas near an accreting super- massive black hole, revealing rotation on sub-parsec scales in the quasar 3C 273 at a distance of 550 Mpc. The observations can be explained as the result of circular orbits in a thick disc configuration around a 300 million solar mass black hole. Within an ongoing Large Programme, this capability will be used to study the kinematics of atomic gas and its relation to hot dust in a sample of quasars and Seyfert galaxies. We will measure a new radius-luminosity relation from spatially resolved data and test the current methods used to measure black hole mass in large surveys. Title: Multiple Star Systems in the Orion Nebula Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...36G Altcode: GRAVITY observations reveal that most massive stars in the Orion Trapezium cluster live in multiple systems. Our deep, milliarcsecond-resolution interferometry fills the gap at 1-100 astronomical units (au), which is not accessible to traditional imaging and spectroscopy, but is crucial to uncovering the mystery of high-mass star formation.The new observations find a significantly higher companion fraction than earlier studies of mostly OB associations. The observed distribution of mass ratios declines steeply with mass and follows a Salpeter power-law initial mass function. The observations therefore exclude stellar mergers as the dominant formation mechanism for massive stars in Orion. Title: Images at the Highest Angular Resolution with GRAVITY: The Case of η Carinae Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...31G Altcode: The main goal of an interferometer is to probe the physics of astronomical objects at the highest possible angular resolution. The most intuitive way of doing this is by reconstructing images from the interferometric data. GRAVITY at the Very Large Telescope Interferometer (VLTI) has proven to be a fantastic instrument in this endeavour. In this article, we describe the reconstruction of the wind-wind collision cavity of the massive binary η Car with GRAVITY across two spectral lines: HeI and Brγ. Title: The multiphase gas structure and kinematics in the circumnuclear region of NGC 5728 Authors: Shimizu, T. Taro; Davies, R. I.; Lutz, D.; Burtscher, L.; Lin, M.; Baron, D.; Davies, R. L.; Genzel, R.; Hicks, E. K. S.; Koss, M.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Price, S. H.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S. Bibcode: 2019MNRAS.490.5860S Altcode: 2019MNRAS.tmp.2449S; 2019arXiv190703801S We report on our combined analysis of HST, VLT/MUSE, VLT/SINFONI, and ALMA observations of the local Seyfert 2 galaxy, NGC 5728 to investigate in detail the feeding and feedback of the active galactic nucleus (AGN). The data sets simultaneously probe the morphology, excitation, and kinematics of the stars, ionized gas, and molecular gas over a large range of spatial scales (10 pc to 10 kpc). NGC 5728 contains a large stellar bar that is driving gas along prominent dust lanes to the inner 1 kpc where the gas settles into a circumnuclear ring. The ring is strongly star forming and contains a substantial population of young stars as indicated by the lowered stellar velocity dispersion and gas excitation consistent with H II regions. We model the kinematics of the ring using the velocity field of the CO (2-1) emission and stars and find it is consistent with a rotating disc. The outer regions of the disc, where the dust lanes meet the ring, show signatures of inflow at a rate of 1 M yr-1. Inside the ring, we observe three molecular gas components corresponding to the circular rotation of the outer ring, a warped disc, and the nuclear stellar bar. The AGN is driving an ionized gas outflow that reaches a radius of 250 pc with a mass outflow rate of 0.08 M yr-1 consistent with its luminosity and scaling relations from previous studies. While we observe distinct holes in CO emission which could be signs of molecular gas removal, we find that largely the AGN is not disrupting the structure of the circumnuclear region. Title: Probing the Discs of Herbig Ae/Be Stars at Terrestrial Orbits Authors: GRAVITY Collaboration; Abuter, R.; Accardo, M.; Adler, T.; Amorim, A.; Anugu, N.; Ávila, G.; Bauböck, M.; Benisty, M.; Berger, J. -P.; Bestenlehner, J. M.; Beust, H.; Blind, N.; Bonnefoy, M.; Bonnet, H.; Bourget, P.; Bouvier, J.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cantalloube, F.; Caratti O Garatti, A.; Caselli, P.; Cassaing, F.; Chapron, F.; Charnay, B.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; Davies, R.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; de Wit, W. -J.; Dexter, J.; de Zeeuw, T.; Dougados, C.; Dubus, G.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Eupen, F.; Fédou, P.; Ferreira, M. C.; Finger, G.; Förster Schreiber, N. M.; Gao, F.; García Dabó, C. E.; Garcia Lopez, R.; Garcia, P. J. V.; Gendron, É.; Genzel, R.; Gerhard, O.; Gil, J. P.; Gillessen, S.; Gonté, F.; Gordo, P.; Gratadour, D.; Greenbaum, A.; Grellmann, R.; Grözinger, U.; Guajardo, P.; Guieu, S.; Habibi, M.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haußmann, F.; Henning, T.; Hippler, S.; Hönig, S. F.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jimenez Rosales, A.; Jochum, L.; Jocou, L.; Kammerer, J.; Karl, M.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Kishimoto, M.; Klarmann, L.; Klein, R.; Köhler, R.; Kok, Y.; Kolb, J.; Koutoulaki, M.; Kulas, M.; Labadie, L.; Lacour, S.; Lagrange, A. -M.; Lapeyrère, V.; Laun, W.; Lazareff, B.; Le Bouquin, J. -B.; Léna, P.; Lenzen, R.; Lévêque, S.; Lin, C. -C.; Lippa, M.; Lutz, D.; Magnard, Y.; Maire, A. -L.; Mehrgan, L.; Mérand, A.; Millour, F.; Mollière, P.; Moulin, T.; Müller, A.; Müller, E.; Müller, F.; Netzer, H.; Neumann, U.; Nowak, M.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Peterson, B. M.; Petrucci, P. -O.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Pineda, J. E.; Plewa, P. M.; Popovic, D.; Pott, J. -U.; Prieto, A.; Pueyo, L.; Rabien, S.; Ramírez, A.; Ramos, J. R.; Rau, C.; Ray, T.; Riquelme, M.; Rodríguez-Coira, G.; Rohloff, R. -R.; Rouan, D.; Rousset, G.; Sanchez-Bermudez, J.; Schartmann, M.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Segura-Cox, D.; Shangguan, J.; Shimizu, T. T.; Spyromilio, J.; Sternberg, A.; Stock, M. R.; Straub, O.; Straubmeier, C.; Sturm, E.; Suárez Valles, M.; Tacconi, L. J.; Thi, W. -F.; Tristram, K. R. W.; Valenzuela, J. J.; van Boekel, R.; van Dishoeck, E. F.; Vermot, P.; Vincent, F.; von Fellenberg, S.; Waisberg, I.; Wang, J. J.; Wank, I.; Weber, J.; Weigelt, G.; Widmann, F.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yang, P.; Yazici, S.; Ziegler, D.; Zins, G. Bibcode: 2019Msngr.178...38G Altcode: More than 4000 exoplanets are known to date in systems that differ greatly from our Solar System. In particular, inner exoplanets tend to follow orbits around their parent star that are much more compact than that of Earth. These systems are also extremely diverse, covering a range of intrinsic properties. Studying the main physi- cal processes at play in the innermost regions of the protoplanetary discs is crucial to understanding how these planets form and migrate so close to their host. With GRAVITY, we focused on the study of near-infrared emission of a sample of young intermediate- mass stars, the Herbig Ae/Be stars. Title: VizieR Online Data Catalog: AGN global star-forming properties (Shimizu+, 2017) Authors: Shimizu, T. T.; Mushotzky, R. F.; Melendez, M.; Koss, M. J.; Barger, A. J.; Cowie, L. L. Bibcode: 2019yCat..74663161S Altcode: Using our high-quality Herschel photometry from Melendez et al. (2014. Cat. J/ApJ/794/152) and Shimizu et al. (2016, Cat. J/ApJ/794/152) combined with archival WISE 12 and 22um photometry, we have constructed and modelled the SEDs for over 300 AGN. Our sample is unique given its nearly unbiased selection based on ultrahard X-ray detection, as well as its local nature that eliminates possible biases and source confusion.

(1 data file). Title: Achievements of Hinode in the first eleven years Authors: Hinode Review Team; Al-Janabi, Khalid; Antolin, Patrick; Baker, Deborah; Bellot Rubio, Luis R.; Bradley, Louisa; Brooks, David H.; Centeno, Rebecca; Culhane, J. Leonard; Del Zanna, Giulio; Doschek, George A.; Fletcher, Lyndsay; Hara, Hirohisa; Harra, Louise K.; Hillier, Andrew S.; Imada, Shinsuke; Klimchuk, James A.; Mariska, John T.; Pereira, Tiago M. D.; Reeves, Katharine K.; Sakao, Taro; Sakurai, Takashi; Shimizu, Toshifumi; Shimojo, Masumi; Shiota, Daikou; Solanki, Sami K.; Sterling, Alphonse C.; Su, Yingna; Suematsu, Yoshinori; Tarbell, Theodore D.; Tiwari, Sanjiv K.; Toriumi, Shin; Ugarte-Urra, Ignacio; Warren, Harry P.; Watanabe, Tetsuya; Young, Peter R. Bibcode: 2019PASJ...71R...1H Altcode: Hinode is Japan's third solar mission following Hinotori (1981-1982) and Yohkoh (1991-2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode. Title: Development of Solar-C_EUVST structural design Authors: Suematsu, Yoshinori; Shimizu, Toshifumi; Hara, Hirohisa; Katsukawa, Yukio; Kawate, Tomoko; Ichimoto, Kiyoshi; Imada, Shinsuke Bibcode: 2019SPIE11118E..1OS Altcode: The Solar-C_EUVST is a mission designed to provide high-quality solar spectroscopic data covering a wide temperature range of the chromosphere to flaring corona. To fulfill a high throughput requirement, the instrument consists of only two optical components; a 28-cm primary mirror and a segmented toroidal grating which have high reflective coatings in EUV-UV range. We present a mission payload structural design which accommodates long focal length optical components and a launcher condition/launch environment (JAXA Epsilon). We also present a mechanical design of primary mirror assembly which enables slit-scan observations, an image stabilizing tip-tilt control, and a focus adjustment on orbit, together with an optomechanical design of the primary mirror and its supporting system which gives optically tolerant wavefront error against a large temperature increase due to an absorption of visible and IR lights. Title: Concept study of Solar-C_EUVST optical design Authors: Kawate, Tomoko; Shimizu, Toshifumi; Imada, Shinsuke; Tsuzuki, Toshihiro; Katsukawa, Yukio; Hara, Hirohisa; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Warren, Harry; Teriaca, Luca; Korendyke, Clarence M.; Brown, Charles Bibcode: 2019SPIE11118E..1NK Altcode: The main characteristics of Solar-C_EUVST are the high temporal and high spatial resolutions over a wide temperature coverage. In order to realize the instrument for meeting these scientific requirements under size constraints given by the JAXA Epsilon vehicle, we examined four-dimensional optical parameter space of possible solutions of geometrical optical parameters such as mirror diameter, focal length, grating magnification, and so on. As a result, we have identified the solution space that meets the EUVST science objectives and rocket envelope requirements. A single solution was selected and used to define the initial optical parameters for the concept study of the baseline architecture for defining the mission concept. For this solution, we optimized the grating and geometrical parameters by ray tracing of the Zemax software. Consequently, we found an optics system that fulfills the requirement for a 0.4" angular resolution over a field of view of 100" (including margins) covering spectral ranges of 170-215, 463-542, 557-637, 690-850, 925-1085, and 1115-1275 A. This design achieves an effective area 10 times larger than the Extreme-ultraviolet Imaging Spectrometer onboard the Hinode satellite, and will provide seamless observations of 4.2-7.2 log(K) plasmas for the first time. Tolerance analyses were performed based on the optical design, and the moving range and step resolution of focus mechanisms were identified. In the presentation, we describe the derivation of the solution space, optimization of the optical parameters, and show the results of ray tracing and tolerance analyses. Title: The Solar-C_EUVST mission Authors: Shimizu, Toshifumi; Imada, Shinsuke; Kawate, Tomoko; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Hara, Hirohisa; Katsukawa, Yukio; Kubo, Masahito; Toriumi, Shin; Watanabe, Tetsuya; Yokoyama, Takaaki; Korendyke, Clarence M.; Warren, Harry P.; Tarbell, Ted; De Pontieu, Bart; Teriaca, Luca; Schühle, Udo H.; Solanki, Sami; Harra, Louise K.; Matthews, Sarah; Fludra, A.; Auchère, F.; Andretta, V.; Naletto, G.; Zhukov, A. Bibcode: 2019SPIE11118E..07S Altcode: Solar-C EUVST (EUV High-Throughput Spectroscopic Telescope) is a solar physics mission concept that was selected as a candidate for JAXA competitive M-class missions in July 2018. The onboard science instrument, EUVST, is an EUV spectrometer with slit-jaw imaging system that will simultaneously observe the solar atmosphere from the photosphere/chromosphere up to the corona with seamless temperature coverage, high spatial resolution, and high throughput for the first time. The mission is designed to provide a conclusive answer to the most fundamental questions in solar physics: how fundamental processes lead to the formation of the solar atmosphere and the solar wind, and how the solar atmosphere becomes unstable, releasing the energy that drives solar flares and eruptions. The entire instrument structure and the primary mirror assembly with scanning and tip-tilt fine pointing capability for the EUVST are being developed in Japan, with spectrograph and slit-jaw imaging hardware and science contributions from US and European countries. The mission will be launched and installed in a sun-synchronous polar orbit by a JAXA Epsilon vehicle in 2025. ISAS/JAXA coordinates the conceptual study activities during the current mission definition phase in collaboration with NAOJ and other universities. The team is currently working towards the JAXA final down-selection expected at the end of 2019, with strong support from US and European colleagues. The paper provides an overall description of the mission concept, key technologies, and the latest status. Title: Design of all-reflective space-borne 1-m aperture solar optical telescope Authors: Suematsu, Y.; Hara, H.; Katsukawa, Y.; Kano, R.; Shimizu, T.; Ichimoto, K. Bibcode: 2019SPIE11180E..0RS Altcode: A 1-m aperture optical telescope is planned for a future Japanese solar mission. The telescope is designed to provide high spatial resolution data of solar lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capabilities covering a wide wavelength region from UV to near IR where many useful spectral lines and continua exist for physical diagnosis of the solar magnetized atmosphere. We designed an allreflective telescope to fulfill the scientific and engineering requirements. From a thermal view point, a Gregorian telescope is the most suitable. To avoid chromatic aberration, a tri-aspheric-mirror collimator coupling to the Gregorian was designed to give a diffraction-limited performance over the FOV by allowing a field curvature. The field curvature can be compensated by an off-axis Ritchey Chretien reimaging optics at an entrance of focal plane instrument, which has an opposite sign in the field curvature to the Gregorian. We also briefly studied structural design of all-reflective 1-m aperture solar optical telescope for the space solar mission. Title: UFSS (ultra fine sun sensor): CCD sun sensor with sub-arc second accuracy for the next solar observing satellite SOLAR-C Authors: Tsuno, K.; Wada, S.; Ogawa, T.; Shimizu, T.; Hasegawa, T.; Kubo, M.; Murao, H.; Mizumoto, S.; Fujishima, S.; Toyonaga, K. Bibcode: 2019SPIE11180E..4OT Altcode: The Ultra Fine Sun Sensor (UFSS) on board the HINODE solar observing satellite is one of the most successful sun sensors. It is the linear CCD sun sensor with a special detection method using multiple slits, called the periodic reticle. The angular resolution of 0.14 arcsec in the noise equivalent angle (NEA) and 1 arcsec stability were achieved by the sensor head, of 1.2 kg weight. The concept of the detection method and processing algorithm of the Sun's direction is described. The system is modeled and the dynamic response of the system is characterized by the first-order lag system. By utilizing this characteristic, a resolution improvement three times higher can be expected by adjusting the parameters with a small modification to the HINODE UFSS processing algorithm. The design for a new UFSS for the next generation solar observation satellite, SOLAR-C, shall include these modifications. The thermomechanical design is also reviewed to improve stability and a design policy is obtained. Title: Chromospheric polarimetry through multiline observations of the 850 nm spectral region III: Chromospheric jets driven by twisted magnetic fields Authors: Quintero Noda, C.; Iijima, H.; Katsukawa, Y.; Shimizu, T.; Carlsson, M.; de la Cruz Rodríguez, J.; Ruiz Cobo, B.; Orozco Suárez, D.; Oba, T.; Anan, T.; Kubo, M.; Kawabata, Y.; Ichimoto, K.; Suematsu, Y. Bibcode: 2019MNRAS.486.4203Q Altcode: 2019MNRAS.tmp.1081N; 2019arXiv190409151Q We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric inversions of noisy synthetic data. We start comparing the benefits of inverting the entire spectrum at 850 nm versus only the Ca II 8542 Å spectral line. We found a better match of the input atmosphere for the former case, mainly at lower heights. However, the results at higher layers were not accurate. After several tests, we determined that we need to weight more the chromospheric lines than the photospheric ones in the computation of the goodness of the fit. The new inversion configuration allows us to obtain better fits and consequently more accurate physical parameters. Therefore, to extract the most from multiline inversions, a proper set of weights needs to be estimated. Besides that, we conclude again that the lines at 850 nm, or a similar arrangement with Ca II 8542 Å plus Zeeman-sensitive photospheric lines, pose the best-observing configuration for examining the thermal and magnetic properties of the lower solar atmosphere. Title: The Evolution and Origin of Ionized Gas Velocity Dispersion from z ∼ 2.6 to z ∼ 0.6 with KMOS3D Authors: Übler, H.; Genzel, R.; Wisnioski, E.; Förster Schreiber, N. M.; Shimizu, T. T.; Price, S. H.; Tacconi, L. J.; Belli, S.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Davies, R. L.; Beifiori, A.; Bender, R.; Brammer, G. B.; Burkert, A.; Chan, J.; Davies, R. I.; Fabricius, M.; Galametz, A.; Herrera-Camus, R.; Lang, P.; Lutz, D.; Momcheva, I. G.; Naab, T.; Nelson, E. J.; Saglia, R. P.; Tadaki, K.; van Dokkum, P. G.; Wuyts, S. Bibcode: 2019ApJ...880...48U Altcode: 2019arXiv190602737U We present the 0.6 < z < 2.6 evolution of the ionized gas velocity dispersion in 175 star-forming disk galaxies based on data from the full KMOS3D integral field spectroscopic survey. In a forward-modeling Bayesian framework including instrumental effects and beam-smearing, we fit simultaneously the observed galaxy velocity and velocity dispersion along the kinematic major axis to derive the intrinsic velocity dispersion σ 0. We find a reduction of the average intrinsic velocity dispersion of disk galaxies as a function of cosmic time, from σ 0 ∼ 45 km s-1 at z ∼ 2.3 to σ 0 ∼ 30 km s-1 at z ∼ 0.9. There is substantial intrinsic scatter ({σ }0,{int}}≈ 10 {km} {{{s}}}-1) around the best-fit σ 0-z relation beyond what can be accounted for from the typical measurement uncertainties (δσ 0 ≈ 12 km s-1), independent of other identifiable galaxy parameters. This potentially suggests a dynamic mechanism such as minor mergers or variation in accretion being responsible for the scatter. Putting our data into the broader literature context, we find that ionized and atomic+molecular velocity dispersions evolve similarly with redshift, with the ionized gas dispersion being ∼10-15 km s-1 higher on average. We investigate the physical driver of the on average elevated velocity dispersions at higher redshift and find that our galaxies are at most marginally Toomre-stable, suggesting that their turbulent velocities are powered by gravitational instabilities, while stellar feedback as a driver alone is insufficient. This picture is supported through comparison with a state-of-the-art analytical model of galaxy evolution.

Based on observations collected at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile, under ESO program IDs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, 098.A-0045, 099.A-0013, 0100.A-0039, and 0101.A-0022. Title: Structure and dynamics of the hot flaring loop-top source observed by Hinode, SDO, RHESSI, and STEREO Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi, Anand D.; Imada, Shinsuke; Brooks, David H.; Dang, Phillip; Shimizu, Toshifumi; Savage, Sabrina Bibcode: 2019AAS...23421605L Altcode: We have investigated an M1.3 flare on 2014 January 13 around 21:48 UT observed at the west limb using the Hinode, SDO, RHESSI, and STEREO. Especially, the Hinode/EIS scanned the flaring loop covering the loop-top region over the limb, which is a good target to investigate the dynamics of the flaring loop with their height. Using the multi-wavelength observations from the Hinode/EIS and SDO/AIA, we found a very hot emission above the loop-top observed in Fe XXIV and 131Å channel. Measuring the intensity, Doppler velocity and line width for the flaring loop, we found that hot emission observed at the cusp-like shape of the loop-top region which shows strong redshift about 500 km s-1 in Doppler velocity and strong enhancement of the non-thermal velocity (line width enhancement) larger than 100 km s-1. Combining with the STEREO observation, we have examined the 3D structure with loop tilt angle and have investigated the velocity distribution of the loop-top region. With the loop tilt angle, we could identify the strong redshift at the loop-top region may indicate an up-flow along the loop-top region. From RHESSI hard X-ray (HXR), and soft X-ray (SXR) emission, we found that the footpoint brightening region at the beginning of the flare has a both HXR (25-50 keV) and SXR (12-25 keV) emission in which imply that the region has non-thermal emission or accelerated particles. Then, within 10 minutes the soft X-ray (SXR) emission observed near the cusp shape region at loop top. The temporal variation of the HXR and SXR emissions and the Doppler velocity variation of the hot plasma component at the loop-top imply that the strong flow in a hot component near loop-top could be the evaporation flows which detected at the corona along the tilted loop. Moreover, The temporal evolution of the temperature observed by SDO/AIA and Hinode/EIS also shows the cooling process of the flare plasma which is consistent with the impulsively heated flare model. Title: Comparison of Scattering Polarization Signals Observed by CLASP: Possible Indication of the Hanle Effect Authors: Ishikawa, R.; Trujillo Bueno, J.; Uitenbroek, H.; Kubo, M.; Tsuneta, S.; Goto, M.; Kano, R.; Narukage, N.; Bando, T.; Katsukawa, Y.; Ishikawa, S.; Giono, G.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Štěpán, J.; Belluzzi, L.; Asensio Ramos, A.; Manso Sainz, R.; De Pomtieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R. Bibcode: 2019ASPC..526..305I Altcode: The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP; Kano et al. 2012; Kobayashi et al. 2012; Kubo et al. 2014) observed, for the first time, the linear polarization produced by scattering processes in the hydrogen Lyman-α (121.57 nm) and Si III (120.56 nm) lines of the solar disk radiation. The complexity of the observed scattering polarization (i.e., conspicuous spatial variations in Q/I and U/I at spatial scales of 10″-20″ and the absence of center-to- limb variation at the Lyman-α center; see Kano et al. 2017) motivated us to search for possible hints of the operation of the Hanle effect by comparing: (a) the Lyman-α line center signal, for which the critical field strength (BH) for the onset of the Hanle effect is 53 G, (b) the Lyman-α wing, which is insensitive to the Hanle effect, and (c) the Si III line, whose BH = 290 G. We focus on four regions with different total unsigned photospheric magnetic fluxes (estimated from SDO/HMI observations), and compare the corresponding U/I spatial variations in the Lyman-α wing, Lyman-α center, and Si III line. The U/I signal in the Lyman-α wing shows an antisymmetric spatial distribution, which is caused by the presence of a bright structure in all the selected regions, regardless of the total unsigned photospheric magnetic flux. In an internetwork region, the Lyman-α center shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si III line, the spatial variation of U/I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. We argue that a plausible explanation of this differential behavior is the operation of the Hanle effect.

This work, presented in an oral contribution at this Workshop, has been published on The Astrophysical Journal (Ishikawa et al. 2017). Title: The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.6-2.7 Authors: Förster Schreiber, N. M.; Übler, H.; Davies, R. L.; Genzel, R.; Wisnioski, E.; Belli, S.; Shimizu, T.; Lutz, D.; Fossati, M.; Herrera-Camus, R.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Brammer, G. B.; Burkert, A.; Carollo, C. M.; Davies, R. I.; Eisenhauer, F.; Fabricius, M.; Lilly, S. J.; Momcheva, I.; Naab, T.; Nelson, E. J.; Price, S. H.; Renzini, A.; Saglia, R.; Sternberg, A.; van Dokkum, P.; Wuyts, S. Bibcode: 2019ApJ...875...21F Altcode: 2018arXiv180704738F We present a census of ionized gas outflows in 599 normal galaxies at redshift 0.6 < z < 2.7, mostly based on integral field spectroscopy of Hα, [N II], and [S II] line emission. The sample fairly homogeneously covers the main sequence of star-forming galaxies with masses 9.0 < log(M */M ) < 11.7, and probes into the regimes of quiescent galaxies and starburst outliers. About one-third exhibits the high-velocity component indicative of outflows, roughly equally split into winds driven by star formation (SF) and active galactic nuclei (AGNs). The incidence of SF-driven winds correlates mainly with SF properties. These outflows have typical velocities of ∼450 km s-1, local electron densities of n e ∼ 380 cm-3, modest mass loading factors of ∼0.1-0.2 at all galaxy masses, and energetics compatible with momentum driving by young stellar populations. The SF-driven winds may escape from log(M */M ) ≲ 10.3 galaxies, but substantial mass, momentum, and energy in hotter and colder outflow phases seem required to account for low galaxy formation efficiencies in the low-mass regime. Faster AGN-driven outflows (∼1000-2000 km s-1) are commonly detected above log(M */M ) ∼ 10.7, in up to ∼75% of log(M */M ) ≳ 11.2 galaxies. The incidence, strength, and velocity of AGN-driven winds strongly correlates with stellar mass and central concentration. Their outflowing ionized gas appears denser (n e ∼ 1000 cm-3), and possibly compressed and shock-excited. These winds have comparable mass loading factors as the SF-driven winds but carry ∼10 (∼50) times more momentum (energy). The results confirm our previous findings of high-duty-cycle, energy-driven outflows powered by AGN above the Schechter mass, which may contribute to SF quenching.

Based on observations obtained at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO program IDs 073.B-9018, 074.A-9011, 075.A-0466, 076.A-0527, 077.A-0527, 078.A-0600, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.A-0672, 081.B-0568, 082.A-0396, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 090.A-0516, 091.A-0126, 092.A-0082, 092.A-0091, 093.A-0079, 093.A-0110, 093.A-0233, 094.A-0217, 094.A-0568, 095.A-0047, 096.A-0025, 097.A-0028, 098.A-0045, 099.A-0013, 0100.A-0039). Also based on observations taken at the Large Binocular Telescope on Mt. Graham in Arizona. Title: Kiloparsec Scale Properties of Star Formation Driven Outflows at z ∼ 2.3 in the SINS/zC-SINF AO Survey Authors: Davies, R. L.; Förster Schreiber, N. M.; Übler, H.; Genzel, R.; Lutz, D.; Renzini, A.; Tacchella, S.; Tacconi, L. J.; Belli, S.; Burkert, A.; Carollo, C. M.; Davies, R. I.; Herrera-Camus, R.; Lilly, S. J.; Mancini, C.; Naab, T.; Nelson, E. J.; Price, S. H.; Shimizu, T. T.; Sternberg, A.; Wisnioski, E.; Wuyts, S. Bibcode: 2019ApJ...873..122D Altcode: 2018arXiv180810700D We investigate the relationship between star formation activity and outflow properties on kiloparsec scales in a sample of 28 star-forming galaxies at z ∼ 2-2.6, using adaptive optics assisted integral field observations from SINFONI on the Very Large Telescope. The narrow and broad components of the Hα emission are used to simultaneously determine the local star formation rate surface density ({{{Σ }}}SFR}), and the outflow velocity {v}out} and mass outflow rate {\dot{M}}out}, respectively. We find clear evidence for faster outflows with larger mass loading factors at higher {{{Σ }}}SFR}. The outflow velocities scale as {v}out} ∝ {{{Σ }}}SFR} 0.34±0.10, which suggests that the outflows may be driven by a combination of mechanical energy released by supernova explosions and stellar winds, as well as radiation pressure acting on dust grains. The majority of the outflowing material does not have sufficient velocity to escape from the galaxy halos, but will likely be re-accreted and contribute to the chemical enrichment of the galaxies. In the highest {{{Σ }}}SFR} regions the outflow component contains an average of ∼45% of the Hα flux, while in the lower {{{Σ }}}SFR} regions only ∼10% of the Hα flux is associated with outflows. The mass loading factor, η = {\dot{M}}out}/SFR, is positively correlated with {{{Σ }}}SFR} but is relatively low even at the highest {{{Σ }}}SFR}: η ≲ 0.5 × (380 cm-3/n e ). This may be in tension with the η ≳ 1 required by cosmological simulations, unless a significant fraction of the outflowing mass is in other gas phases and has sufficient velocity to escape the galaxy halos.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO Programme IDs 075.A-0466, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.A-0672, 081.B-0568, 183.A-0781, 087.A-0081, and 088.A-0209. Title: BAT AGN Spectroscopic Survey. XI. The Covering Factor of Dust and Gas in Swift/BAT Active Galactic Nuclei Authors: Ichikawa, Kohei; Ricci, Claudio; Ueda, Yoshihiro; Bauer, Franz E.; Kawamuro, Taiki; Koss, Michael J.; Oh, Kyuseok; Rosario, David J.; Shimizu, T. Taro; Stalevski, Marko; Fuller, Lindsay; Packham, Christopher; Trakhtenbrot, Benny Bibcode: 2019ApJ...870...31I Altcode: 2018arXiv181102568I We quantify the luminosity contribution of active galactic nuclei (AGNs) to the 12 μm, mid-infrared (MIR; 5-38 μm), and total IR (5-1000 μm) emission in the local AGNs detected in the all-sky 70 month Swift/Burst Alert Telescope (BAT) ultrahard X-ray survey. We decompose the IR spectral energy distributions (SEDs) of 587 objects into the AGN and starburst components using templates for an AGN torus and a star-forming galaxy. This enables us to recover the emission from the AGN torus including the low-luminosity end, down to {log}({L}14-150/{erg} {{{s}}}-1)≃ 41, which typically has significant host galaxy contamination. The sample demonstrates that the luminosity contribution of the AGN to the 12 μm, the MIR, and the total IR bands is an increasing function of the 14-150 keV luminosity. We also find that for the most extreme cases, the IR pure-AGN emission from the torus can extend up to 90 μm. The total IR AGN luminosity obtained through the IR SED decomposition enables us to estimate the fraction of the sky obscured by dust, i.e., the dust covering factor. We demonstrate that the median dust covering factor is always smaller than the median X-ray obscuration fraction above an AGN bolometric luminosity of {log}({L}bol}({AGN)}/{erg} {{{s}}}-1)≃ 42.5. Considering that the X-ray obscuration fraction is equivalent to the covering factor coming from both the dust and gas, this indicates that an additional neutral gas component, along with the dusty torus, is responsible for the absorption of X-ray emission. Title: Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at z ≈ 2 Authors: Herrera-Camus, R.; Tacconi, L.; Genzel, R.; Förster Schreiber, N.; Lutz, D.; Bolatto, A.; Wuyts, S.; Renzini, A.; Lilly, S.; Belli, S.; Übler, H.; Shimizu, T.; Davies, R.; Sturm, E.; Combes, F.; Freundlich, J.; García-Burillo, S.; Cox, P.; Burkert, A.; Naab, T.; Colina, L.; Saintonge, A.; Cooper, M.; Feruglio, C.; Weiss, A. Bibcode: 2019ApJ...871...37H Altcode: 2018arXiv180707074H Nuclear outflows driven by accreting massive black holes are one of the main feedback mechanisms invoked at high-z to reproduce the distinct separation between star-forming disk galaxies and quiescent spheroidal systems. Yet our knowledge of feedback at high-z remains limited by the lack of observations of the multiple gas phases in galaxy outflows. In this work, we use new deep, high spatial resolution ALMA CO(3-2) and archival Very Large Telescope/SINFONI Hα observations to study the molecular and ionized components of the active galactic nucleus (AGN)-driven outflow in zC400528, a massive main-sequence galaxy at z = 2.3 in the process of quenching. We detect a powerful molecular outflow that shows a positive velocity gradient before a turnover and extends for at least ∼10 kpc from the nuclear region, about three times the projected size of the ionized wind. The molecular gas in the outflow does not reach velocities high enough to escape the galaxy and is therefore expected to be reaccreted. Keeping in mind the various assumptions involved in the analysis, we find that the mass and energetics of the outflow are dominated by the molecular phase. The AGN-driven outflow in zC400528 is powerful enough to deplete the molecular gas reservoir on a timescale comparable to that needed to exhaust it by star formation. This suggests that the nuclear outflow is one of the main quenching engines at work in the observed suppression of the central star formation activity in zC400528. Title: Study of the polarization produced by the Zeeman effect in the solar Mg I b lines Authors: Quintero Noda, C.; Uitenbroek, H.; Carlsson, M.; Orozco Suárez, D.; Katsukawa, Y.; Shimizu, T.; Ruiz Cobo, B.; Kubo, M.; Oba, T.; Kawabata, Y.; Hasegawa, T.; Ichimoto, K.; Anan, T.; Suematsu, Y. Bibcode: 2018MNRAS.481.5675Q Altcode: 2018arXiv181001067Q; 2018MNRAS.tmp.2566Q The next generation of solar observatories aim to understand the magnetism of the solar chromosphere. Therefore, it is crucial to understand the polarimetric signatures of chromospheric spectral lines. For this purpose, we here examine the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6, 5172.7, and 5167.3 Å, respectively. We start by describing a simplified atomic model of only six levels and three line transitions for computing the atomic populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b line transitions assuming non-local thermodynamic conditions and considering only the Zeeman effect using the field-free approximation. We test this simplified atom against more complex ones finding that, although there are differences in the computed profiles, they are small compared with the advantages provided by the simple atom in terms of speed and robustness. After comparing the three Mg I lines, we conclude that the most capable one is the b2 line as b1 forms at similar heights and always shows weaker polarization signals, while b4 is severely blended with photospheric lines. We also compare Mg I b2 with the K I D1 and Ca II 8542 Å lines finding that the former is sensitive to the atmospheric parameters at heights that are in between those covered by the latter two lines. This makes Mg I b2 an excellent candidate for future multiline observations that aim to seamlessly infer the thermal and magnetic properties of different features in the lower solar atmosphere. Title: Statistical Relation between Solar Flares and Coronal Mass Ejections with Respect to Sigmoidal Structures in Active Regions Authors: Kawabata, Yusuke; Iida, Yusuke; Doi, Takafumi; Akiyama, Sachiko; Yashiro, Seiji; Shimizu, Toshifumi Bibcode: 2018ApJ...869...99K Altcode: 2018arXiv181010808K Statistical dependences among features of coronal mass ejections (CMEs), solar flares, and sigmoidal structures in soft-X-ray images were investigated. We applied analysis methods to all the features in the same way in order to investigate the reproducibility of the correlations among them, which may be found from previous statistical studies. Samples of 211 M-class and X-class flares, observed between 2006 and 2015 by the Hinode/X-ray telescope, Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph, and Geostationary Operational Environmental Satellite, were examined statistically. Five kinds of analysis were performed: occurrence rate analysis, linear-correlation analysis, association analysis, the Kolmogorov-Smirnov test, and the Anderson-Darling test. These give three main results. First, the sigmoidal structure and long-duration events (LDEs) have a stronger dependence on CME occurrence than large X-ray-class events in on-disk events. Second, for the limb events, a significant dependence exists between LDEs and CME occurrence, and between X-ray-class events and CME occurrence. Third, 32.4% of on-disk flare events have sigmoidal structure and are not accompanied by CMEs. However, the occurrence probability of CMEs without sigmoidal structure is very small, 8.8%, in on-disk events. While the first and second results are consistent with previous studies, we provide for the first time a difference between the on-disk and limb events. The third result, that non-sigmoidal regions produce fewer eruptive events, is also different from previous results. We suggest that sigmoidal structures in soft X-ray images will be a helpful feature for CME prediction in on-disk flare events. Title: Flare-related Recurring Active Region Jets: Evidence for Very Hot Plasma Authors: Mulay, Sargam M.; Matthews, Sarah; Hasegawa, Takahiro; Del Zanna, Giulio; Mason, Helen; Shimizu, Toshifumi Bibcode: 2018SoPh..293..160M Altcode: We present a study of two active region jets (AR jets) that are associated with two C-class X-ray flares. The recurrent, homologous jets originated from the northern periphery of a sunspot. We confirm flare-like temperatures at the footpoints of these jets using spectroscopic observations of Fe XXIII (263.76 Å) and Fe XXIV (255.11 Å) emission lines. The emission measure loci method was used to obtain an isothermal temperature, and the results show a decrease (17.7 to 13.6 MK) in the temperature during the decay phase of the C 3.0 flare. The electron number densities at the footpoints were found to range from 1.7 ×1010 to 2.0 ×1011cm−3 using the Fe XIV line pair ratio. Nonthermal velocities were found to range from 34 - 100 km/s for Fe XXIV and 51 - 89 km/s for Fe XXIII. The plane-of-sky velocities were calculated to be 462 ±21 and 228 ±23 km/s for the two jets using the Atmospheric Imaging Assembly (AIA) 171 Å channel. The AIA light curves of the jet footpoint regions confirmed the temporal and spatial correlation between the two X-ray flares and the jet footpoint emission. The Gamma-ray Burst Monitor (GBM) also confirmed superhot plasma of 27 (25) MK with a nonthermal energy of 2.38 ×1026 (2.87 ×1027) ergs−1 in the jet footpoint region during the rise (peak) phase of one of the flares. The temperatures of the jet footpoint regions obtained from EIS agree very well (within an uncertainty of 20%) with temperatures obtained from the Geostationary Environmental Operational Satellite (GOES) flux ratios. These results provide clear evidence for very hot plasma (>10 MK) at the footpoints of the flare-related jets, and they confirm the heating and cooling of the plasma during the flares. Title: Witnessing the Early Growth and Life Cycle of Galaxies with KMOS3D Authors: Förster Schreiber, N. M.; Wilman, D.; Wisnioski, E. S.; Fossati, M.; Mendel, J. T.; Bender, R.; Genzel, R.; Beifiori, A.; Belli, S.; Brammer, G.; Burkert, A.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Galametz, A.; Herrera-Camus, R.; Lang, P.; Lutz, D.; Momcheva, I.; Naab, T.; Nelson, E. J.; Price, S. H.; Renzini, A.; Saglia, R.; Seitz, S.; Shimizu, T.; Sternberg, A.; Tacconi, L. J.; Tadaki, K. -i.; Übler, H.; van Dokkum, P. G.; Wuyts, S. Bibcode: 2018Msngr.174...28S Altcode: Near-infrared integral field unit (IFU) spectrographs are powerful tools for investigating galaxy evolution. We report on our recently completed multi- year KMOS3D survey of Hα, [N II] and [SII] line emission of galaxies at redshift z 0.7-2.7 with the K-band Multi-Object Spectrograph (KMOS) at the Very Large Telescope (VLT). With deep observations of 745 targets spanning over two orders of magnitude in galaxy mass, five billion years of cosmic time, and all levels of star formation, KMOS3D provides an unparalleled population-wide census of spatially-resolved kinematics, star formation, outflows and nebular gas conditions. The dataset sheds new light on the physical mechanisms driving the early growth and lifecycle of galaxies, and provides a rich legacy for the astronomical community. Title: The LiteBIRD Satellite Mission: Sub-Kelvin Instrument Authors: Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M. Bibcode: 2018JLTP..193.1048S Altcode: 2018JLTP..tmp..124S; 2018arXiv180106987S Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission. Title: First high-resolution look at the quiet Sun with ALMA at 3mm Authors: Nindos, A.; Alissandrakis, C. E.; Bastian, T. S.; Patsourakos, S.; De Pontieu, B.; Warren, H.; Ayres, T.; Hudson, H. S.; Shimizu, T.; Vial, J. -C.; Wedemeyer, S.; Yurchyshyn, V. Bibcode: 2018A&A...619L...6N Altcode: 2018arXiv181005223N We present an overview of high-resolution quiet Sun observations, from disk center to the limb, obtained with the Atacama Large millimeter and sub-millimeter Array (ALMA) at 3 mm. Seven quiet-Sun regions were observed at a resolution of up to 2.5″ by 4.5″. We produced both average and snapshot images by self-calibrating the ALMA visibilities and combining the interferometric images with full-disk solar images. The images show well the chromospheric network, which, based on the unique segregation method we used, is brighter than the average over the fields of view of the observed regions by ∼305 K while the intranetwork is less bright by ∼280 K, with a slight decrease of the network/intranetwork contrast toward the limb. At 3 mm the network is very similar to the 1600 Å images, with somewhat larger size. We detect, for the first time, spicular structures, rising up to 15″ above the limb with a width down to the image resolution and brightness temperature of ∼1800 K above the local background. No trace of spicules, either in emission or absorption, is found on the disk. Our results highlight the potential of ALMA for the study of the quiet chromosphere. Title: CLASP Constraints on the Magnetization and Geometrical Complexity of the Chromosphere-Corona Transition Region Authors: Trujillo Bueno, J.; Štěpán, J.; Belluzzi, L.; Asensio Ramos, A.; Manso Sainz, R.; del Pino Alemán, T.; Casini, R.; Ishikawa, R.; Kano, R.; Winebarger, A.; Auchère, F.; Narukage, N.; Kobayashi, K.; Bando, T.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Giono, G.; Hara, H.; Suematsu, Y.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Cirtain, J.; Champey, P.; De Pontieu, B.; Carlsson, M. Bibcode: 2018ApJ...866L..15T Altcode: 2018arXiv180908865T The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital rocket experiment that on 2015 September 3 measured the linear polarization produced by scattering processes in the hydrogen Lyα line of the solar disk radiation. The line-center photons of this spectral line radiation mostly stem from the chromosphere-corona transition region (TR). These unprecedented spectropolarimetric observations revealed an interesting surprise, namely that there is practically no center-to-limb variation (CLV) in the Q/I line-center signals. Using an analytical model, we first show that the geometric complexity of the corrugated surface that delineates the TR has a crucial impact on the CLV of the Q/I and U/I line-center signals. Second, we introduce a statistical description of the solar atmosphere based on a 3D model derived from a state-of-the-art radiation magnetohydrodynamic simulation. Each realization of the statistical ensemble is a 3D model characterized by a given degree of magnetization and corrugation of the TR, and for each such realization we solve the full 3D radiative transfer problem taking into account the impact of the CLASP instrument degradation on the calculated polarization signals. Finally, we apply the statistical inference method presented in a previous paper to show that the TR of the 3D model that produces the best agreement with the CLASP observations has a relatively weak magnetic field and a relatively high degree of corrugation. We emphasize that a suitable way to validate or refute numerical models of the upper solar chromosphere is by confronting calculations and observations of the scattering polarization in ultraviolet lines sensitive to the Hanle effect. Title: BAT AGN Spectroscopic Survey - XII. The relation between coronal properties of active galactic nuclei and the Eddington ratio Authors: Ricci, C.; Ho, L. C.; Fabian, A. C.; Trakhtenbrot, B.; Koss, M. J.; Ueda, Y.; Lohfink, A.; Shimizu, T.; Bauer, F. E.; Mushotzky, R.; Schawinski, K.; Paltani, S.; Lamperti, I.; Treister, E.; Oh, K. Bibcode: 2018MNRAS.480.1819R Altcode: 2018MNRAS.tmp.1793R; 2018arXiv180904076R The bulk of the X-ray emission in active galactic nuclei (AGNs) is produced very close to the accreting supermassive black hole (SMBH), in a corona of hot electrons which up scatters optical and ultraviolet photons from the accretion flow. The cut-off energy (EC) of the primary X-ray continuum emission carries important information on the physical characteristics of the X-ray emitting plasma, but little is currently known about its potential relation with the properties of accreting SMBHs. Using the largest broad-band (0.3-150 keV) X-ray spectroscopic study available to date, we investigate how the corona is related to the AGN luminosity, black hole mass and Eddington ratio (λEdd). Assuming a slab corona the median values of the temperature and optical depth of the Comptonizing plasma are kTe = 105 ± 18 keV and τ = 0.25 ± 0.06, respectively. When we properly account for the large number of EC lower limits, we find a statistically significant dependence of the cut-off energy on the Eddington ratio. In particular, objects with λEdd > 0.1 have a significantly lower median cut-off energy (EC = 160 ± 41 keV) than those with λEdd ≤ 0.1 (EC = 370 ± 51 keV). This is consistent with the idea that radiatively compact coronae are also cooler, because they tend to avoid the region in the temperature-compactness parameter space where runaway pair production would dominate. We show that this behaviour could also straightforwardly explain the suggested positive correlation between the photon index (Γ) and the Eddington ratio, being able to reproduce the observed slope of the Γ-λEdd trend. Title: A Statistical Inference Method for Interpreting the CLASP Observations Authors: Štěpán, J.; Trujillo Bueno, J.; Belluzzi, L.; Asensio Ramos, A.; Manso Sainz, R.; del Pino Alemán, T.; Casini, R.; Kano, R.; Winebarger, A.; Auchère, F.; Ishikawa, R.; Narukage, N.; Kobayashi, K.; Bando, T.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Giono, G.; Hara, H.; Suematsu, Y.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Cirtain, J.; Champey, P.; De Pontieu, B.; Carlsson, M. Bibcode: 2018ApJ...865...48S Altcode: 2018arXiv180802725S On 2015 September 3, the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) successfully measured the linear polarization produced by scattering processes in the hydrogen Lyα line of the solar disk radiation, revealing conspicuous spatial variations in the Q/I and U/I signals. Via the Hanle effect, the line-center Q/I and U/I amplitudes encode information on the magnetic field of the chromosphere-corona transition region, but they are also sensitive to the three-dimensional structure of this corrugated interface region. With the help of a simple line-formation model, here we propose a statistical inference method for interpreting the Lyα line-center polarization observed by CLASP. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for the SUNRISE balloon-borne solar observatory Authors: Suematsu, Yoshinori; Katsukawa, Yukio; Hara, Hirohisa; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Kubo, Masahito; Barthol, Peter; Riethmueller, Tino; Gandorfer, Achim; Feller, Alex; Orozco Suárez, David; Del Toro Iniesta, Jose Carlos; Kano, Ryouhei; Ishikawa, Shin-nosuke; Ishikawa, Ryohko; Tsuzuki, Toshihiro; Uraguchi, Fumihiro; Quintero Noda, Carlos; Tamura, Tomonori; Oba, Takayoshi; Kawabata, Yusuke; Nagata, Shinichi; Anan, Tetsu; Cobos Carrascosa, Juan Pedro; Lopez Jimenez, Antonio Carlos; Balaguer Jimenez, Maria; Solanki, Sami Bibcode: 2018cosp...42E3285S Altcode: The SUNRISE balloon-borne solar observatory carries a 1 m aperture optical telescope, and allows us to perform seeing-free continuous observations at visible-IR wavelengths from an altitude higher than 35 km. In the past two flights, in 2009 and 2013, observations mainly focused on fine structures of photospheric magnetic fields. For the third flight planned for 2021, we are developing a new instrument for conducting spectro-polarimetry of spectral lines formed over a larger height range in the solar atmosphere from the photosphere to the chromosphere. Targets of the spectro-polarimetric observation are (1) to determine 3D magnetic structure from the photosphere to the chromosphere, (2) to trace MHD waves from the photosphere to the chromosphere, and (3) to reveal the mechanism driving chromospheric jets, by measuring height- and time-dependent velocities and magnetic fields. To achieve these goals, a spectro-polarimeter called SCIP (Sunrise Chromospheric Infrared spectroPolarimeter) is designed to observe near-infrared spectrum lines sensitive to solar magnetic fields. The spatial and spectral resolutions are 0.2 arcsec and 200,000, respectively, while 0.03% polarimetric sensitivity is achieved within a 10 sec integration time. The optical system employs an Echelle grating and off-axis aspheric mirrors to observe the two wavelength ranges centered at 850 nm and 770 nm simultaneously by two cameras. Polarimetric measurements are performed using a rotating waveplate and polarization beam-splitters in front of the cameras. For detecting minute polarization signals with good precision, we carefully assess the temperature dependence of polarization optics, and make the opto-structural design that minimizes the thermal deformation of the spectrograph optics. Another key technique is to attain good (better than 30 msec) synchronization among the rotating phase of the waveplate, read-out timing of cameras, and step timing of a slit-scanning mirror. On-board accumulation and data processing are also critical because we cannot store all the raw data read-out from the cameras. We demonstrate that we can reduce the data down to almost 10% with loss-less image compression and without sacrificing polarimetric information in the data. The SCIP instrument is developed by internal collaboration among Japanese institutes including Japan Aerospace Exploration Agency (JAXA), the Spanish Sunrise consortium, and the German Max Planck Institute for Solar System Research (MPS) with a leadership of the National Astronomical Observatory of Japan (NAOJ). Title: Current State of UV Spectro-Polarimetry and its Future Direction Authors: Ishikawa, Ryohko; Sakao, Taro; Katsukawa, Yukio; Hara, Hirohisa; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Kubo, Masahito; Auchere, Frederic; De Pontieu, Bart; Winebarger, Amy; Kobayashi, . Ken; Kano, Ryouhei; Narukage, Noriyuki; Trujillo Bueno, Javier; Song, Dong-uk; Manso Sainz, Rafael; Asensio Ramos, Andres; Leenaarts, Jorritt; Carlsson, Mats; Bando, Takamasa; Ishikawa, Shin-nosuke; Tsuneta, Saku; Belluzzi, Luca; Suematsu, Yoshinori; Giono, Gabriel; Yoshida, Masaki; Goto, Motoshi; Del Pino Aleman, Tanausu; Stepan, Jiri; Okamoto, Joten; Tsuzuki, Toshihiro; Uraguchi, Fumihiro; Champey, Patrick; Alsina Ballester, Ernest; Casini, Roberto; McKenzie, David; Rachmeler, Laurel; Bethge, Christian Bibcode: 2018cosp...42E1564I Altcode: To obtain quantitative information on the magnetic field in low beta regions (i.e., upper chromosphere and above) has been increasingly important to understand the energetic phenomena of the outer solar atmosphere such as flare, coronal heating, and the solar wind acceleration. In the UV range, there are abundant spectral lines that originate in the upper chromosphere and transition region. However, the Zeeman effect in these spectral lines does not give rise to easily measurable polarization signals because of the weak magnetic field strength and the larger Doppler broadening compared with the Zeeman effect. Instead, the Hanle effect in UV lines is expected to be a suitable diagnostic tool of the magnetic field in the upper atmospheric layers. To investigate the validity of UV spectro-polarimetry and the Hanle effect, the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), which is a NASA sounding- rocket experiment, was launched at White Sands in US on September 3, 2015. During its 5 minutes ballistic flight, it successfully performed spectro-polarimetric observations of the hydrogen Lyman-alpha line (121.57 nm) with an unprecedentedly high polarization sensitivity of 0.1% in this wavelength range. CLASP observed the linear polarization produced by scattering process in VUV lines for the first time and detected the polarization signals which indicate the operation of the Hanle effect. Following the success of CLASP, we are confident that UV spectro-polarimetry is the way to proceed, and we are planning the second flight of CLASP (CLASP2: Chromospheric LAyer SpectroPolarimeter 2). For this second flight we will carry out spectro-polarimetry in the Mg II h and k lines around 280 nm, with minimum modifications of the CLASP1 instrument. The linear polarization in the Mg II k line is induced by scattering processes and the Hanle effect, being sensitive to magnetic field strengths of 5 to 50 G. In addition, the circular polarizations in the Mg II h and k lines induced by the Zeeman effect can be measurable in at least plage and active regions. The combination of the Hanle and Zeeman effects could help us to more reliably infer the magnetic fields of the upper solar chromosphere. CLASP2 was selected for flight and is being developed for launch in the spring of 2019.Based on these sounding rocket experiments (CLASP1 and 2), we aim at establishing the strategy and refining the instrument concept for future space missions to explore the enigmatic atmospheric layers via UV spectro-polarimetry. Title: Recommendations from the NGSPM-SOT report and mission opportunities in Japan Authors: Shimizu, Toshifumi Bibcode: 2018tess.conf41001S Altcode: A study report on the future of solar physics for the decade of 2020 was published by the Next Generation Solar Physics Mission (NGSPM)'s Science Objectives Team (SOT), an advisory team consisting of 14 scientists, chartered by NASA, JAXA, and ESA. The report lists scientific objectives in all the research areas related to solar physics and provides priorities for next generation solar physics missions to be realized in the mid 2020s. The report is based on extensive reviews of the broad interests of the heliophysics research community, following a public call for white papers in the fall of 2016 which resulted in 34 submissions covering a wide variety of topics. Three top-level science objectives are identified: I) Formation mechanisms of the hot and dynamic outer solar atmosphere, II) Mechanisms of large-scale solar eruptions and foundations for predictions, and III) Mechanisms driving the solar cycle and irradiance variation. There are two broad avenues, both with distinct merits, for future research: physical mechanisms on elemental scales, versus global processes affecting/involving large fractions of the solar interior and/or atmosphere. With the resources available for a NGSPM in the next decade, the team chose to focus its recommendations on the study of fundamental physical processes at high spatial and temporal resolution through all temperature regimes of the solar atmosphere. For this study, the SOT identified a minimum set of , i.e., three kinds of instruments with which NGSPM can address the greatest number of sub-objectives and maximize the science return of the mission. The team recommends that these instruments be realized with a single platform. If the single-platform approach is not possible, a combination of two or three spacecraft is recommended. In response to the NGSPM report, the Japanese solar physics community has been making efforts to realize a part of such instruments in the mid 2020s and submitted the Solar-C_EUVST mission proposal to ISAS/JAXA in reply to 2017 Announcement of Opportunity for competitive M-class mission launched by an Epsilon rocket. This mission carries an EUV high-throughput spectroscopic telescope (EUVST) and aims to mainly cover topics I) and II). This talk will briefly discuss recommendations in the NGSPM-SOT report and Japanese efforts to the recommendations. Title: BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns Authors: Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda Bibcode: 2018ApJ...856..154S Altcode: 2017arXiv171009117S We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1-1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction. Title: Solar polarimetry in the K I D2 line : A novel possibility for a stratospheric balloon Authors: Quintero Noda, C.; Villanueva, G. L.; Katsukawa, Y.; Solanki, S. K.; Orozco Suárez, D.; Ruiz Cobo, B.; Shimizu, T.; Oba, T.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y. Bibcode: 2018A&A...610A..79Q Altcode: 2018arXiv180101655Q Of the two solar lines, K I D1 and D2, almost all attention so far has been devoted to the D1 line, as D2 is severely affected by an O2 atmospheric band. This, however, makes the latter appealing for balloon and space observations from above (most of) the Earth's atmosphere. We estimate the residual effect of the O2 band on the K I D2 line at altitudes typical for stratospheric balloons. Our aim is to study the feasibility of observing the 770 nm window. Specifically, this paper serves as a preparation for the third flight of the Sunrise balloon-borne observatory. The results indicate that the absorption by O2 is still present, albeit much weaker, at the expected balloon altitude. We applied the obtained O2 transmittance to K I D2 synthetic polarimetric spectra and found that in the absence of line-of-sight motions, the residual O2 has a negligible effect on the K I D2 line. On the other hand, for Doppler-shifted K I D2 data, the residual O2 might alter the shape of the Stokes profiles. However, the residual O2 absorption is sufficiently weak at stratospheric levels that it can be divided out if appropriate measurements are made, something that is impossible at ground level. Therefore, for the first time with Sunrise III, we will be able to perform polarimetric observations of the K I D2 line and, consequently, we will have improved access to the thermodynamics and magnetic properties of the upper photosphere from observations of the K I lines. Title: LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies Authors: Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S. Bibcode: 2018MNRAS.473.4582L Altcode: 2017arXiv171004098L In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies. Title: Ionized and Molecular Gas Kinematics in a z = 1.4 Star-forming Galaxy Authors: Übler, H.; Genzel, R.; Tacconi, L. J.; Förster Schreiber, N. M.; Neri, R.; Contursi, A.; Belli, S.; Nelson, E. J.; Lang, P.; Shimizu, T. T.; Davies, R.; Herrera-Camus, R.; Lutz, D.; Plewa, P. M.; Price, S. H.; Schuster, K.; Sternberg, A.; Tadaki, K.; Wisnioski, E.; Wuyts, S. Bibcode: 2018ApJ...854L..24U Altcode: 2018arXiv180202135U We present deep observations of a z = 1.4 massive, star-forming galaxy (SFG) in molecular and ionized gas at comparable spatial resolution (CO 3-2, NOrthern Extended Millimeter Array (NOEMA); Hα, Large Binocular Telescope (LBT)). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and Hα to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of {f}DM}(≤slant {R}e)={0.18}-0.04+0.06. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive z ∼ 1-3 SFGs recently found based on ionized gas kinematics alone.

Based on observations carried out with the IRAM Interferometer NOEMA. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Based on observations carried out with the LBT. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. Title: LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies Authors: Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M. -Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S. Bibcode: 2018MNRAS.473.5658R Altcode: 2017arXiv171004224R Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs. Title: Local Swift-BAT active galactic nuclei prefer circumnuclear star formation Authors: Lutz, D.; Shimizu, T.; Davies, R. I.; Herrera-Camus, R.; Sturm, E.; Tacconi, L. J.; Veilleux, S. Bibcode: 2018A&A...609A...9L Altcode: 2017arXiv170900857L; 2017A&A...609A...9L We use Herschel data to analyze the size of the far-infrared 70 μm emission for z < 0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5 <log (LFIR [L]) < 10.5, we find large scatter of half light radii Re,70 for both populations, but a typical Re,70≲ 1 kpc for the BAT hosts that is only half that of comparison galaxies of same far-infrared luminosity. The result mostly reflects a more compact distribution of star formation (and hence gas) in the AGN hosts, but compact AGN heated dust may contribute in some extremely AGN dominated systems. Our findings are in support of an AGN-host coevolution where accretion onto the central black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favor feeding of the black hole. No size difference between AGN host and comparison galaxies is observed at higher far-infrared luminosities log(LFIR [L]) > 10.5 (star formation rates ≳6 M yr-1), possibly because these are typically reached in more compact regions.

Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A9 Title: A Brief History of Hinode: Toward the Success in Orbit Authors: Shimizu, Toshifumi Bibcode: 2018ASSL..449....3S Altcode: No abstract at ADS Title: First Ten Years of Hinode Solar On-Orbit Observatory Authors: Shimizu, Toshifumi; Imada, Shinsuke; Kubo, Masahito Bibcode: 2018ASSL..449.....S Altcode: No abstract at ADS Title: Pointing stability of Hinode and requirements for the next Solar mission Solar-C Authors: Katsukawa, Y.; Masada, Y.; Shimizu, T.; Sakai, S.; Ichimoto, K. Bibcode: 2017SPIE10565E..28K Altcode: It is essential to achieve fine pointing stability in a space mission aiming for high resolutional observations. In a future Japanese solar mission SOLAR-C, which is a successor of the HINODE (SOLAR-B) mission, we set targets of angular resolution better than 0.1 arcsec in the visible light and better than 0.2 - 0.5 arcsec in EUV and X-rays. These resolutions are twice to five times better than those of corresponding instruments onboard HINODE. To identify critical items to achieve the requirements of the pointing stability in SOLAR-C, we assessed in-flight performance of the pointing stability of HINODE that achieved the highest pointing stability in Japanese space missions. We realized that one of the critical items that have to be improved in SOLAR-C is performance of the attitude stability near the upper limit of the frequency range of the attitude control system. The stability of 0.1 arcsec (3σ) is required in the EUV and X-ray telescopes of SOLAR-C while the HINODE performance is slightly worse than the requirement. The visible light telescope of HINODE is equipped with an image stabilization system inside the telescope, which achieved the stability of 0.03 arcsec (3σ) by suppressing the attitude jitter in the frequency range lower than 10 Hz. For further improvement, it is expected to suppress disturbances induced by resonance between the telescope structures and disturbances of momentum wheels and mechanical gyros in the frequency range higher than 100 Hz. Title: Instrument design and on-orbit performance of the solar optical telescope aboard hinode (Solar-B) Authors: Suematsu, Yoshinori; Ichimoto, Kiyoshi; Katsukawa, Yukio; Tsuneta, Saku; Shimizu, Toshifumi Bibcode: 2017SPIE10566E..2ZS Altcode: The Solar Optical Telescope (SOT) aboard Solar-B satellite (Hinode) is designed to perform high-precision photometric and polarimetric observations of the solar lower atmosphere in visible light spectra (388-668 nm) with a spatial resolution of 0.2 to 0.3 arcsec. The SOT consists of two components; the optical telescope assembly (OTA) consisting of a 50-cm aperture Gregorian telescope with a collimating lens unit and an active tip-tilt mirror for an image-stabilization and an accompanying focal plane package (FPP) housing two filtergraphs and a spectro-polarimeter. Since its first-light observation on 25 Oct. 2006, the image-stabilization system has been working with performance better than 0.01 arcsec rms and the SOT has been continuously providing unprecedented solar data of high spatial resolution. Since the opto-mechanical and -thermal performance of the OTA is crucial to attain unprecedented high-quality solar observations, we here describe in detail the instrument design and on-orbit diffraction-limit performance of the OTA, the largest state-of-the-art solar telescope yet flown in space. Title: Instrument design of 1.5-m aperture solar optical telescope for the Solar-C Mission Authors: Suematsu, Yoshinori; Katsukawa, Yukio; Shimizu, Toshifumi; Ichimoto, Kiyoshi Bibcode: 2017SPIE10564E..0TS Altcode: A 1.5 m aperture optical telescope is planned for the next Japanese solar mission SOLAR-C as one of major three observing instruments. The optical telescope is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectropolarimetric capability covering a wide wavelength region from 280 nm to 1100 nm. The opto-mechanical and -thermal performance of the telescope is crucial to attain high-quality solar observations and we present a study of optical and structural design of the large aperture space solar telescope, together with conceptual design of its accompanying focal plane instruments: wide-band and narrow-band filtergraphs and a spectro-polarimeter for high spatial and temporal observations in the solar photospheric and chromospheric lines useful for sounding physical condition of dynamical phenomena. Title: Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario Authors: Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y. Bibcode: 2017MNRAS.472..727Q Altcode: 2017arXiv170801333Q In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere. Title: Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission Authors: Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N. Bibcode: 2017SPIE10565E..0RS Altcode: The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one order of magnitude more photons than SOT, relatively shorter telescope length of 2.8 m to accommodate a launcher's nosecone size for possible dual-satellite-launch configuration, and much wider observing wavelength from UV (down to 250 nm) through near IR (up to 1100 nm). The large aperture is essentially important to attain scientific goals of the plan-B, especially for accurate diagnostics of the dynamic solar chromosphere as revealed by Hinode, although this make it difficult to design the telescope because of ten times more solar heat load introduced into the telescope. The SUVIT consists of two optically separable components; the telescope assembly (TA) and an accompanying focal plane package equipped with filtergraphs and spectrographs. Opto-mechanical and -thermal performance of the TA is crucial to attain high-quality solar observations and here we present a status of feasible study in its optical and thermal designing for diffraction-limited performance at visible wavelength in a reasonably wide field of view. Title: The Small-scale Structure of Photospheric Convection Retrieved by a Deconvolution Technique Applied to Hinode/SP Data Authors: Oba, T.; Riethmüller, T. L.; Solanki, S. K.; Iida, Y.; Quintero Noda, C.; Shimizu, T. Bibcode: 2017ApJ...849....7O Altcode: 2017arXiv170906933O Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km s-1 and +3.0 km s-1 at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance. Title: VizieR Online Data Catalog: Local Swift-BAT AGN observed with Herschel (Lutz+, 2018) Authors: Lutz, D.; Shimizu, T.; Davies, R. I.; Herrera Camus, R.; Sturm, E.; Tacconi, L. J.; Veilleux, S. Bibcode: 2017yCat..36090009L Altcode: Table A.1 lists the basic properties of the BAT AGN and reference samples, and the derived far-infrared sizes. For guidance, part of the table and related notes are also included in an appendix to the paper.

(1 data file). Title: Solar polarimetry through the K I lines at 770 nm Authors: Quintero Noda, C.; Uitenbroek, H.; Katsukawa, Y.; Shimizu, T.; Oba, T.; Carlsson, M.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y. Bibcode: 2017MNRAS.470.1453Q Altcode: 2017arXiv170510002Q We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km, and that they are sensitive to the line-of-sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line-of-sight velocity and the magnetic field. Title: Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration Authors: Kawabata, Y.; Inoue, S.; Shimizu, T. Bibcode: 2017ApJ...842..106K Altcode: 2017arXiv170502560K Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance. Title: Indication of the Hanle Effect by Comparing the Scattering Polarization Observed by CLASP in the Lyα and Si III 120.65 nm Lines Authors: Ishikawa, R.; Trujillo Bueno, J.; Uitenbroek, H.; Kubo, M.; Tsuneta, S.; Goto, M.; Kano, R.; Narukage, N.; Bando, T.; Katsukawa, Y.; Ishikawa, S.; Giono, G.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Štěpán, J.; Belluzzi, L.; Asensio Ramos, A.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R. Bibcode: 2017ApJ...841...31I Altcode: The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Lyα line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si III line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Lyα and Si III lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U/I spatial variations vary between the Lyα wing, the Lyα core, and the Si III line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory/Helioseismic and Magnetic Imager observations. In an internetwork region, the Lyα core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si III line, the spatial variation of U/I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Lyα and Si III, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region. Title: The role of host galaxy for the environmental dependence of active nuclei in local galaxies Authors: Davies, Richard I.; Hicks, E. K. S.; Erwin, P.; Burtscher, L.; Contursi, A.; Genzel, R.; Janssen, A.; Koss, M.; Lin, M. -Y.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S. Bibcode: 2017MNRAS.466.4917D Altcode: 2017MNRAS.tmp...69D; 2016arXiv161009890D We discuss the environment of local hard X-ray selected active galaxies, with reference to two independent group catalogues. We find that the fraction of these AGN in S0 host galaxies decreases strongly as a function of galaxy group size (halo mass) - which contrasts with the increasing fraction of galaxies of S0 type in denser environments. However, there is no evidence for an environmental dependence of AGN in spiral galaxies. Because most AGN are found in spiral galaxies, this dilutes the signature of environmental dependence for the population as a whole. We argue that the differing results for AGN in disc-dominated and bulge-dominated galaxies are related to the source of the gas fuelling the AGN, and so may also impact the luminosity function, duty cycle and obscuration. We find that there is a significant difference in the luminosity function for AGN in spiral and S0 galaxies, and tentative evidence for some difference in the fraction of obscured AGN. Title: Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part II: In-Flight Calibration Authors: Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Cirtain, J.; Champey, P.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M. Bibcode: 2017SoPh..292...57G Altcode: The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-α line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration. Title: Herschel far-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe - III. Global star-forming properties and the lack of a connection to nuclear activity Authors: Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael J.; Barger, Amy J.; Cowie, Lennox L. Bibcode: 2017MNRAS.466.3161S Altcode: 2016arXiv161203941S We combine the Herschel Space Observatory PACS (Photoconductor Array Camera and Spectrometer) and SPIRE (Spectral and Photometric Imaging Receiver) photometry with archival WISE (Wide-field Infrared Survey Explorer) photometry to construct the spectral energy distributions (SEDs) for over 300 local (z < 0.05), ultrahard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) 58-month catalogue. Using a simple analytical model that combines an exponentially cutoff power law with a single temperature modified blackbody, we decompose the SEDs into a host galaxy and AGN component. We calculate dust masses, dust temperatures, and star formation rates (SFRs) for our entire sample and compare them to a stellar mass-matched sample of local non-AGN galaxies. We find AGN host galaxies have systematically higher dust masses, dust temperatures, and SFRs due to the higher prevalence of late-type galaxies to host an AGN, in agreement with previous studies of the Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into 8-1000 μm AGN luminosities, as well as determine the best mid-to-far IR colours for identifying AGN-dominated galaxies in the IR regime. We find that for nearly 30 per cent of our sample, the 70 μm emission contains a significant contribution from the AGN (>0.5), especially at higher luminosities (L14 - 195 keV > 1042.5 erg s-1). Finally, we measure the local SFR-AGN luminosity relationship, finding a slope of 0.18, large scatter (0.37 dex), and no evidence for an upturn at high AGN luminosity. We conclude with a discussion on the implications of our results within the context of galaxy evolution with and without AGN feedback. Title: Discovery of Scattering Polarization in the Hydrogen Lyα Line of the Solar Disk Radiation Authors: Kano, R.; Trujillo Bueno, J.; Winebarger, A.; Auchère, F.; Narukage, N.; Ishikawa, R.; Kobayashi, K.; Bando, T.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Giono, G.; Hara, H.; Suematsu, Y.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.; Štěpán, J.; Asensio Ramos, A.; Manso Sainz, R.; Champey, P.; Cirtain, J.; De Pontieu, B.; Casini, R.; Carlsson, M. Bibcode: 2017ApJ...839L..10K Altcode: 2017arXiv170403228K There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Lyα line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Lyα line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q/I and U/I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ∼10 arcsec. These observations help constrain theoretical models of the chromosphere-corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere. Title: Chromospheric polarimetry through multiline observations of the 850-nm spectral region Authors: Quintero Noda, C.; Shimizu, T.; Katsukawa, Y.; de la Cruz Rodríguez, J.; Carlsson, M.; Anan, T.; Oba, T.; Ichimoto, K.; Suematsu, Y. Bibcode: 2017MNRAS.464.4534Q Altcode: 2016arXiv161006651Q Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. focused on the infrared Ca II 8542 Å line and we concluded that it is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth trying to improve the results produced by this line observing additional spectral lines. In that regard, we examined the neighbourhood solar spectrum looking for spectral lines which could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines which greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line which also belongs to the Ca II infrared triplet, I.e. the Ca II 8498 Å line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 Å line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry. Title: Height-dependent Velocity Structure of Photospheric Convection in Granules and Intergranular Lanes with Hinode/SOT Authors: Oba, T.; Iida, Y.; Shimizu, T. Bibcode: 2017ApJ...836...40O Altcode: 2016arXiv161206175O The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s-1 as the material rises in granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s-1 as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward. Title: UV/EUV High-Throughput Spectroscopic Telescope: A Next Generation Solar Physics Mission white paper Authors: Imada, S.; Shimizu, T.; Kawate, T.; Hara, H.; Watanabe, T. Bibcode: 2017arXiv170104972I Altcode: The origin of the activity in the solar corona is a long-standing problem in solar physics. Recent satellite observations, such as Hinode, Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), show the detail characteristics of the solar atmosphere and try to reveal the energy transfer from the photosphere to the corona through the magnetic fields and its energy conversion by various processes. However, quantitative estimation of energy transfer along the magnetic field is not enough. There are mainly two reason why it is difficult to observe the energy transfer from photosphere to corona; 1) spatial resolution gap between photosphere (a few 0.1 arcsec) and corona (a few arcsec), 2) lack in temperature coverage. Furthermore, there is not enough observational knowledge of the physical parameters in the energy dissipation region. There are mainly three reason why it is difficult to observe in the vicinity of the energy dissipation region; 1) small spatial scale, 2) short time scale, 3) low emission. It is generally believed that the energy dissipation occurs in the very small scale and its duration is very short (10 second). Further, the density in the dissipation region might be very low. Therefore, the high spatial and temporal resolution UV/EUV spectroscopic observation with wide temperature coverage is crucial to estimate the energy transport from photosphere to corona quantitatively and diagnose the plasma dynamics in the vicinity of the energy dissipation region. Main Science Target for the telescope is quantitative estimation for the energy transfer from the photosphere to the corona, and clarification of the plasma dynamics in the vicinity of the energy dissipation region, where is the key region for coronal heating, solar wind acceleration, and/or solar flare, by the high spatial and temporal resolution UV/EUV spectroscopy. Title: Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) Authors: Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M. Bibcode: 2016ApJ...832..141K Altcode: High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves. Title: Hinode and IRIS Observations of the Magnetohydrodynamic Waves Propagating from the Photosphere to the Chromosphere in a Sunspot Authors: Kanoh, Ryuichi; Shimizu, Toshifumi; Imada, Shinsuke Bibcode: 2016ApJ...831...24K Altcode: 2016arXiv160803910K Magnetohydrodynamic (MHD) waves have been considered as energy sources for heating the solar chromosphere and the corona. Although MHD waves have been observed in the solar atmosphere, there are a lack of quantitative estimates on the energy transfer and dissipation in the atmosphere. We performed simultaneous Hinode and Interface Region Imaging Spectrograph observations of a sunspot umbra to derive the upward energy fluxes at two different atmospheric layers (photosphere and lower transition region) and estimate the energy dissipation. The observations revealed some properties of the observed periodic oscillations in physical quantities, such as their phase relations, temporal behaviors, and power spectra, making a conclusion that standing slow-mode waves are dominant at the photosphere with their high-frequency leakage, which is observed as upward waves at the chromosphere and the lower transition region. Our estimates of upward energy fluxes are 2.0× {10}7 erg cm-2 s-1 at the photospheric level and 8.3× {10}4 erg cm-2 s-1 at the lower transition region level. The difference between the energy fluxes is larger than the energy required to maintain the chromosphere in the sunspot umbrae, suggesting that the observed waves can make a crucial contribution to the heating of the chromosphere in the sunspot umbrae. In contrast, the upward energy flux derived at the lower transition region level is smaller than the energy flux required for heating the corona, implying that we may need another heating mechanism. We should, however, note a possibility that the energy dissipated at the chromosphere might be overestimated because of the opacity effect. Title: VizieR Online Data Catalog: PACS observations of Herschel-BAT sample (Melendez+, 2014) Authors: Melendez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L. Bibcode: 2016yCat..17940152M Altcode: The sample presented in this work was selected from the low-redshift (z<0.05) 58 month Swift/BAT survey with a median redshift of z~0.025 (http://swift.gsfc.nasa.gov/results/bs58mon/). The 58 month Swift/BAT is an almost uniform hard X-ray all-sky survey and reaches a flux level of 1.1x10-11 erg/s/cm2 over 50% of the sky and 1.48x10-11erg/s/cm2 over 90% of the sky (Baumgartner et al. 2013, Cat. J/ApJS/207/19). Source identifications are based primarily on the X-ray imaging data and a correlation with optical images and catalogs. In some cases, the identifications are based on positional coincidences with previously known AGNs. The main advantage of the BAT AGN sample is that the selection process is completely independent of optical, IR, or radio properties of the host galaxy. Our final sample of galaxies includes 149 Seyfert 1 galaxies (1/1.2/1.5), 157 Seyfert 2 galaxies (1.8/1.9/2.0), 6 LINERs, and 1 unclassified Seyfert galaxy, ESO 464-G016.

(1 data file). Title: VizieR Online Data Catalog: SPIRE observations of Herschel-BAT sample (Shimizu+, 2016) Authors: Shimizu, T. T.; Melendez, M.; Mushotzky, R. F.; Koss, M. J.; Barger, A. J.; Cowie, L. L. Bibcode: 2016yCat..74563335S Altcode: We selected our sample of 313 AGN from the 58 month Swift/BAT Catalogue (https://swift.gsfc.nasa.gov/results/bs58mon) (Baumgartner et al., 2012, in prep.), imposing a redshift cutoff of z<0.05. All different types of AGN were chosen only excluding Blazars/BL Lac objects which most likely introduce complicated beaming effects. To determine their AGN type, for 252 sources we used the classifications from the BAT AGN Spectroscopic Survey (Koss et al., in preparation) which compiled and analysed optical spectra for the Swift/BAT 70 month catalogue (Berney et al., 2015MNRAS.454.3622B).

(2 data files). Title: Analysis of a spatially deconvolved solar pore Authors: Quintero Noda, C.; Shimizu, T.; Ruiz Cobo, B.; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K. Bibcode: 2016MNRAS.460.1476Q Altcode: 2016arXiv160501796Q; 2016MNRAS.tmp..847Q Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the line-of-sight velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before. Title: LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection Authors: Ishino, H.; Akiba, Y.; Arnold, K.; Barron, D.; Borrill, J.; Chendra, R.; Chinone, Y.; Cho, S.; Cukierman, A.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Elleflot, T.; Errard, J.; Fujino, T.; Fuke, H.; Funaki, T.; Goeckner-Wald, N.; Halverson, N.; Harvey, P.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Hidehira, N.; Hill, C.; Hilton, G.; Holzapfel, W.; Hori, Y.; Hubmayr, J.; Ichiki, K.; Imada, H.; Inatani, J.; Inoue, M.; Inoue, Y.; Irie, F.; Irwin, K.; Ishitsuka, H.; Jeong, O.; Kanai, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kawasaki, T.; Keating, B.; Kernasovskiy, S.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, N.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. -L.; Kuromiya, S.; Kusaka, A.; Lee, A.; Li, D.; Linder, E.; Maki, M.; Matsuhara, H.; Matsumura, T.; Matsuoka, S.; Matsuura, S.; Mima, S.; Minami, Y.; Mitsuda, K.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Ogburn, W.; Oguri, S.; Ohta, I.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Pisano, G.; Rebeiz, G.; Richards, P.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Segawa, Y.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Seljak, U.; Sherwin, B.; Shimizu, T.; Shinozaki, K.; Shu, S.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Suzuki, T.; Suzuki, A.; Tajima, O.; Takada, S.; Takakura, S.; Takano, K.; Takatori, S.; Takei, Y.; Tanabe, D.; Tomaru, T.; Tomita, N.; Turin, P.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Wada, T.; Watanabe, H.; Westbrook, B.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, T.; Yoshida, M.; Yotsumoto, K. Bibcode: 2016SPIE.9904E..0XI Altcode: LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♢, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 <= l <= 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of 3.2 μK·arcmin. including the ongoing studies. Title: Development of a near-infrared detector and a fiber-optic integral field unit for a space solar observatory SOLAR-C Authors: Katsukawa, Yukio; Kamata, Yukiko; Anan, Tetsu; Hara, Hirohisa; Suematsu, Yoshinori; Bando, Takamasa; Ichimoto, Kiyoshi; Shimizu, Toshifumi Bibcode: 2016SPIE.9904E..5IK Altcode: We are developing a high sensitivity and fast readout near-infrared (NIR) detector and an integral field unit (IFU) for making spectro-polarimetric observations of rapidly varying chromospheric spectrum lines, such as He I 1083 nm and Ca II 854 nm, in the next space-based solar mission SOLAR-C. We made tests of a 1.7 μm cutoff H2RG detector with the SIDECAR ASIC for the application in SOLAR-C. It's important to verify its perfor- mance in the temperature condition around -100 °C, which is hotter than the typical temperature environment used for a NIR detector. We built a system for testing the detector between -70 °C and -140 °C. We verified linearity, read-out noise, and dark current in both the slow and fast readout modes. We found the detector has to be cooled down lower than -100 °C because of significant increase of the number of hot pixels in the hotter environment. The compact and polarization maintenance IFU was designed using fiber-optic ribbons consisting of rectangular cores which exhibit good polarization maintenance. A Silicone adhesive DC-SE9187L was used to hold the fragile fiber-optic ribbons in a metal housing. Polarization maintenance property was confirmed though polarization calibration as well as temperature control are required to suppress polarization crosstalk and to achieve the polarization accuracy in SOLAR-C. Title: In-flight performance of the polarization modulator in the CLASP rocket experiment Authors: Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao Bibcode: 2016SPIE.9905E..2UI Altcode: We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non- uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved. Title: Analysis of spatially deconvolved polar faculae Authors: Quintero Noda, C.; Suematsu, Y.; Ruiz Cobo, B.; Shimizu, T.; Asensio Ramos, A. Bibcode: 2016MNRAS.460..956Q Altcode: 2016MNRAS.tmp..838Q; 2016arXiv160500330Q Polar faculae are bright features that can be detected in solar limb observations and they are related to magnetic field concentrations. Although there are a large number of works studying them, some questions about their nature as their magnetic properties at different heights are still open. Thus, we aim to improve the understanding of solar polar faculae. In that sense, we infer the vertical stratification of the temperature, gas pressure, line-of-sight velocity and magnetic field vector of polar faculae regions. We performed inversions of the Stokes profiles observed with Hinode/Spectropolarimeter after removing the stray light contamination produced by the spatial point spread function of the telescope. Moreover, after solving the azimuth ambiguity, we transform the magnetic field vector to local solar coordinates. The obtained results reveal that the polar faculae are constituted by hot plasma with low line-of-sight velocities and single polarity magnetic fields in the kilogauss range that are nearly perpendicular to the solar surface. We also found that the spatial location of these magnetic fields is slightly shifted respect to the continuum observations towards the disc centre. We believe that this is due to the hot wall effect that allows detecting photons that come from deeper layers located closer to the solar limb. Title: Spectropolarimetric capabilities of Ca II 8542 Å line Authors: Quintero Noda, C.; Shimizu, T.; de la Cruz Rodríguez, J.; Katsukawa, Y.; Ichimoto, K.; Anan, T.; Suematsu, Y. Bibcode: 2016MNRAS.459.3363Q Altcode: 2016MNRAS.tmp..667Q; 2016arXiv160404957Q The next generation of space- and ground-based solar missions aim to study the magnetic properties of the solar chromosphere using the infrared Ca II lines and the He I 10830 Å line. The former seem to be the best candidates to study the stratification of magnetic fields in the solar chromosphere and their relation to the other thermodynamical properties underlying the chromospheric plasma. The purpose of this work is to provide a detailed analysis of the diagnostic capabilities of the Ca II 8542 Å line, anticipating forthcoming observational facilities. We study the sensitivity of the Ca II 8542 Å line to perturbations applied to the physical parameters of reference semi-empirical 1D model atmospheres using response functions and we make use of 3D magnetohydrodynamics simulations to examine the expected polarization signals for moderate magnetic field strengths. Our results indicate that the Ca II 8542 Å line is mostly sensitive to the layers enclosed in the range log τ = [0, -5.5], under the physical conditions that are present in our model atmospheres. In addition, the simulated magnetic flux tube generates strong longitudinal signals in its centre and moderate transversal signals, due to the vertical expansion of magnetic field lines, in its edge. Thus, observing the Ca II 8542 Å line we will be able to infer the 3D geometry of moderate magnetic field regions. Title: Spectro-polarimetric observation in UV with CLASP to probe the chromosphere and transition region Authors: Kano, Ryouhei; Ishikawa, Ryohko; Winebarger, Amy R.; Auchère, Frédéric; Trujillo Bueno, Javier; Narukage, Noriyuki; Kobayashi, Ken; Bando, Takamasa; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-Nosuke; Giono, Gabriel; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Tsuneta, Saku; Ichimoto, Kiyoshi; Goto, Motoshi; Cirtain, Jonathan W.; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca; Carlsson, Mats Bibcode: 2016SPD....4710107K Altcode: The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a NASA sounding-rocket experiment that was performed in White Sands in the US on September 3, 2015. During its 5-minute ballistic flight, CLASP successfully made the first spectro-polarimetric observation in the Lyman-alpha line (121.57 nm) originating in the chromosphere and transition region. Since the Lyman-alpha polarization is sensitive to magnetic field of 10-100 G by the Hanle effect, we aim to infer the magnetic field information in such upper solar atmosphere with this experiment.The obtained CLASP data showed that the Lyman-alpha scattering polarization is about a few percent in the wings and the order of 0.1% in the core near the solar limb, as it had been theoretically predicted, and that both polarization signals have a conspicuous spatio-temporal variability. CLASP also observed another upper-chromospheric line, Si III (120.65 nm), whose critical field strength for the Hanle effect is 290 G, and showed a measurable scattering polarization of a few % in this line. The polarization properties of the Si III line could facilitate the interpretation of the scattering polarization observed in the Lyman-alpha line.In this presentation, we would like to show how the upper chromosphere and transition region are seen in the polarization of these UV lines and discuss the possible source of these complicated polarization signals. Title: Development of the Universal Tunable Filter and High-resolution Imaging Observation with the Fuxian Solar Observatory Authors: Hagino, M.; Ichimoto, K.; Ueno, S.; Kimura, G.; Otsuji, K.; Kitai, R.; Zhong, L.; Xu, Z.; Shinoda, K.; Hara, H.; Suematsu, Y.; Shimizu, T. Bibcode: 2016ASPC..504..103H Altcode: We have developed a new narrow-band universal tunable filter to perform imaging spectroscopy of the solar chromosphere. The development stage of the filter has been almost finished and we shifted to the scientific observation phase by using large grand-based telescopes. Using the filter, a series of high-resolution images were obtained with the 1m vacuum solar telescope at the Fuxian Solar Observatory. We succeeded in observing several flares and fine structures of the chromospheric layer. Title: Analysis of horizontal flows in the solar granulation Authors: Quintero Noda, C.; Shimizu, T.; Suematsu, Y. Bibcode: 2016MNRAS.457.1703Q Altcode: 2016arXiv160103814Q Solar limb observations sometimes reveal the presence of a satellite lobe in the blue wing of the Stokes I profile from pixels belonging to granules. The presence of this satellite lobe has been associated in the past to strong line-of-sight gradients and, as the line-of-sight component is almost parallel to the solar surface, to horizontal granular flows. We aim to increase the knowledge about these horizontal flows studying a spectropolarimetric observation of the north solar pole. We will make use of two state of the art techniques, the spatial deconvolution procedure that increases the quality of the data removing the stray light contamination, and spectropolarimetric inversions that will provide the vertical stratification of the atmospheric physical parameters where the observed spectral lines form. We inverted the Stokes profiles using a two component configuration, obtaining that one component is strongly blueshifted and displays a temperature enhancement at upper photospheric layers while the second component has low redshifted velocities and it is cool at upper layers. In addition, we examined a large number of cases located at different heliocentric angles, finding smaller velocities as we move from the centre to the edge of the granule. Moreover, the height location of the enhancement on the temperature stratification of the blueshifted component also evolves with the spatial location on the granule being positioned on lower heights as we move to the periphery of the granular structure. Title: Herschel far-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe - II. SPIRE observations Authors: Shimizu, T. Taro; Meléndez, Marcio; Mushotzky, Richard F.; Koss, Michael J.; Barger, Amy J.; Cowie, Lennox L. Bibcode: 2016MNRAS.456.3335S Altcode: 2015arXiv151202733S We present far-infrared (FIR) and submillimetre photometry from the Herschel Space Observatory's Spectral and Photometric Imaging Receiver (SPIRE) for 313 nearby (z < 0.05) active galactic nuclei (AGN). We selected AGN from the 58 month Swift Burst Alert Telescope (BAT) catalogue, the result of an all-sky survey in the 14-195 keV energy band, allowing for a reduction in AGN selection effects due to obscuration and host galaxy contamination. We find 46 per cent (143/313) of our sample is detected at all three wavebands and combined with our Photoconductor Array Camera and Spectrometer (PACS) observations represents the most complete FIR spectral energy distributions of local, moderate-luminosity AGN. We find no correlation among the 250, 350, and 500 μm luminosities with 14-195 keV luminosity, indicating the bulk of the FIR emission is not related to the AGN. However, Seyfert 1s do show a very weak correlation with X-ray luminosity compared to Seyfert 2s and we discuss possible explanations. We compare the SPIRE colours (F250/F350 and F350/F500) to a sample of normal star-forming galaxies, finding the two samples are statistically similar, especially after matching in stellar mass. But a colour-colour plot reveals a fraction of the Herschel-BAT AGN are displaced from the normal star-forming galaxies due to excess 500 μm emission (E500). Our analysis shows E500 is strongly correlated with the 14-195 keV luminosity and 3.4/4.6 μm flux ratio, evidence the excess is related to the AGN. We speculate these sources are experiencing millimetre excess emission originating in the corona of the accretion disc. Title: Hinode magnetic-field observations of solar flares for exploring the energy storage and trigger mechanisms Authors: Shimizu, Toshifumi; Inoue, Satoshi; Kawabata, Yusuke Bibcode: 2016IAUS..320..175S Altcode: The spectro-polarimeter in the Hinode Solar Optical Telescope (SOT) is one of the powerful instruments for the most accurate measurements of vector magnetic fields on the solar surface. The magnetic field configuration and possible candidates for flare trigger are briefly discussed with some SOT observations of solar flare events, which include X5.4/X1.3 flares on 7 March 2012, X1.2 flare on 7 January 2014 and two M-class flares on 2 February 2014. Especially, using an unique set of the Hinode and SDO data for the X5.4/X1.3 flares on 7 March 2012, we briefly reviewed remarkable properties observed in the spatial distribution of the photospheric magnetic flux, chromospheric flare ribbons, and the 3D coronal magnetic field structure inferred by non-linear force-free field modeling with the Hinode photospheric magnetic field data. Title: Development of a Precise Polarization Modulator for UV Spectropolarimetry Authors: Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T. Bibcode: 2015SoPh..290.3081I Altcode: 2015arXiv150905716I; 2015SoPh..tmp..120I We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U ), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were <0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP. Title: 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere Authors: Shimizu, T. Bibcode: 2015PhPl...22j1207S Altcode: 2015arXiv150805481S The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments. Title: Moonraker and Tetris: Japanese Microrovers for Lunar Cave Exploration Authors: Yoshida, K.; Britton, N.; Walker, J.; Shimizu, T.; Tanaka, T.; Hakamada, T. Bibcode: 2015LPICo1883.9036Y Altcode: A Japanese team HAKUTO is developing a robotic system for exploration of Lunar lava tubes. Motivated by Google Lunar XPRIZE that requires 500 m travel on any surface of Moon, but the team plans to go down into a skylight in Lacus Mortis. Title: Decreased specific star formation rates in AGN host galaxies Authors: Shimizu, T. Taro; Mushotzky, Richard F.; Meléndez, Marcio; Koss, Michael; Rosario, David J. Bibcode: 2015MNRAS.452.1841S Altcode: 2015arXiv150607039S We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself. Title: CLASP: A UV Spectropolarimeter on a Sounding Rocket for Probing theChromosphere-Corona Transition Regio Authors: Ishikawa, Ryohko; Kano, Ryouhei; Winebarger, Amy; Auchere, Frederic; Trujillo Bueno, Javier; Bando, Takamasa; Narukage, Noriyuki; Kobayashi, Ken; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Giono, Gabriel; Tsuneta, Saku; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca Bibcode: 2015IAUGA..2254536I Altcode: The wish to understand the energetic phenomena of the outer solar atmosphere makes it increasingly important to achieve quantitative information on the magnetic field in the chromosphere-corona transition region. To this end, we need to measure and model the linear polarization produced by scattering processes and the Hanle effect in strong UV resonance lines, such as the hydrogen Lyman-alpha line. A team consisting of Japan, USA, Spain, France, and Norway has been developing a sounding rocket experiment called the Chromospheric Lyman-alpha Spectro-Polarimeter (CLASP). The aim is to detect the scattering polarization produced by anisotropic radiation pumping in the hydrogen Lyman-alpha line (121.6 nm), and via the Hanle effect to try to constrain the magnetic field vector in the upper chromosphere and transition region. In this talk, we will present an overview of our CLASP mission, its scientific objectives, ground tests made, and the latest information on the launch planned for the Summer of 2015. Title: Hinode magnetic-field observations of solar flares for exploring the energy storage and trigger mechanisms Authors: Shimizu, Toshifumi; Inoue, Satoshi; Kawabata, Yusuke Bibcode: 2015IAUGA..2252467S Altcode: Solar flares abruptly release the free energy stored as a non-potential magnetic field in the corona and may be accompanied by eruptions of the coronal plasma. Magnetic reconnection is considered as a physical process in which the magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration, but the location of magnetic reconnection is difficult to identify directly because of low emission measure at the reconnection region. We are still lack of observational knowledge on the 3D magnetic configuration and physical conditions for leading to flare trigger. Accurate measurements of vector magnetic fields at the solar photosphere, provided by the Solar Optical Telescope onboard Hinode, help us in exploring how the free energy is stored in the solar atmosphere and how the release of the energy is triggered. This presentation will review the magnetic field configuration and possible candidates for flare trigger primarily based on Hinode observations of some large flare events, which may include X5.4/X1.3 flares on 7 March 2012, X1.2 flare on 7 January 2014 and two M-class flares on 2 February 2014. The 7 March 2012 events were observed in an active region with delta-type sunspots, showing a strong shear in the entire magnetic system. For the sheared magnetic structure, the inclusion of a small-scale trigger field was identified near the polarity inversion line with excitation of a high-speed material flow in the horizontally oriented magnetic field formed nearly in parallel to the polarity inversion line. The observations suggest that gas dynamics at the solar surface play a vital role of leading to the onset of flares. The 7 January 2014 event is an exceptional event which most scientists would not be able to predict its occurrence. The flare unexpectedly happened apart from the sheared magnetic field region. The M-class flares on 2 February 2014 were observed in the magnetic field configuration, in which four magnetic domains were distributed on the solar surface and a null point might be formed in the coronal magnetic field originating from the four magnetic domains. Title: Hinode SOT Plate Scale Reinvestigated by G-Band Images on the 2012 Transit of Venus Authors: Kanao, M.; Shimizu, T.; Imamura, T.; Nakamura, M. Bibcode: 2015SoPh..290.1491K Altcode: 2015SoPh..tmp...40K The Hinode Solar Optical Telescope (SOT) successfully observed the transit of Venus with an unprecedented high spatial resolution on 5 - 6 June 2012, providing images of the aureole refracted by the atmosphere of Venus and the dark Venus disk against the bright solar surface. The transit of Venus provided a unique opportunity for calibrating the plate scale of SOT images. With the examination of the radius of the dark Venus disk, we determined the plate scale of G-band 430.5 nm images with high accuracy: 0.05369±0.00005 arcsec pixel−1. The radius was defined at the intensity level of the 0.5 transmittance and compared with the angular radius of Venus including the thickness of the atmosphere determined with the measurements of SPICAV onboard Venus Express. Thanks to the high spatial resolution, SOT images show that the dark Venus can be well represented by an ellipse. We observed 7.6 km difference in altitude between the equator and the polar regions. Title: High-speed photospheric material flow observed at the polarity inversion line of a δ-type sunspot producing an X5.4 flare on 2012 March 7 Authors: Shimizu, Toshifumi; Lites, Bruce W.; Bamba, Yumi Bibcode: 2014PASJ...66S..14S Altcode: 2014arXiv1406.1617S; 2014PASJ..tmp..101S Solar flares abruptly release the free energy stored as a non-potential magnetic field in the corona and may be accompanied by eruptions of the coronal plasma. Formation of a non-potential magnetic field and the mechanisms for triggering the onset of flares are still poorly understood. In particular, photospheric dynamics observed near those polarity inversion lines that are sites of major flare production have not been well observed with high spatial resolution spectro-polarimetry. This paper reports on a remarkable high-speed material flow observed along the polarity inversion line located between flare ribbons at the main energy release side of an X5.4 flare on 2012 March 7. Observations were carried out by the spectro-polarimeter of the Solar Optical Telescope on board Hinode. The high-speed material flow was observed in the horizontally oriented magnetic field formed nearly parallel to the polarity inversion line. This flow persisted from at least six hours before the onset of the flare, and continued for at least several hours after the onset of the flare. Observations suggest that the observed material flow represents neither the emergence nor convergence of the magnetic flux. Rather, it may be considered to be material flow working both to increase the magnetic shear along the polarity inversion line and to develop magnetic structures favorable for the onset of the eruptive flare. Title: A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Authors: Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M. Bibcode: 2014ASPC..489..307K Altcode: A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015. Title: Herschel Far-infrared Photometry of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. PACS Observations Authors: Meléndez, M.; Mushotzky, R. F.; Shimizu, T. T.; Barger, A. J.; Cowie, L. L. Bibcode: 2014ApJ...794..152M Altcode: 2014arXiv1408.5889M Far-Infrared (FIR) photometry from the Photodetector Array Camera and Spectrometer on the Herschel Space Observatory is presented for 313 nearby, hard X-ray selected galaxies from the 58 month Swift Burst Alert Telescope (BAT) Active Galactic Nuclei catalog. The present data do not distinguish between the FIR luminosity distributions at 70 and 160 μm for Seyfert 1 and Seyfert 2 galaxies. This result suggests that if the FIR emission is from the nuclear obscuring material surrounding the accretion disk, then it emits isotropically, independent of orientation. Alternatively, a significant fraction of the 70 and 160 μm luminosity could be from star formation, independent of active galactic nucleus (AGN) type. Using a non-parametric test for partial correlation with censored data, we find a statistically significant correlation between the AGN intrinsic power (in the 14-195 keV band) and the FIR emission at 70 and 160 μm for Seyfert 1 galaxies. We find no correlation between the 14-195 keV and FIR luminosities in Seyfert 2 galaxies. The observed correlations suggest two possible scenarios: (1) if we assume that the FIR luminosity is a good tracer of star formation, then there is a connection between star formation and the AGN at sub-kiloparsec scales, or (2) dust heated by the AGN has a statistically significant contribution to the FIR emission. Using a Spearman rank-order analysis, the 14-195 keV luminosities for the Seyfert 1 and 2 galaxies are weakly statistically correlated with the F 70/F 160 ratios.

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Title: Large aperture solar optical telescope and instruments for the SOLAR-C mission Authors: Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K. Bibcode: 2014SPIE.9143E..1PS Altcode: A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements. Title: Development of a universal tunable filter for future solar observations Authors: Hagino, M.; Ichimoto, K.; Kimura, G.; Nakatani, Y.; Kawate, T.; Shinoda, K.; Suematsu, Y.; Hara, H.; Shimizu, T. Bibcode: 2014SPIE.9151E..5VH Altcode: We have developed a new narrowband tunable filter to perform imaging spectroscopy of the solar chromosphere. Using Liquid Crystal Variable Retarders (LCVRs) as the tuning elements for wavelength, wide-band polarizers and super achromatic half-wave plates, it is possible to make high speed tuning (about 0.1Sec), to exclude mechanical drives (and oil tank), and to cover a wide wavelength range (510-100nm). This filter builds up with seven stages each consisting of a pair of calcites, LCVR, half-wave plates and linear polarizer. The full width at half maximum (FWHM) of the filter transmission is about 0.025nm at 656.3nm.We demonstrate that the concept of the universal tunable filter using the LCVR's as tuning elements is highly promising for future application to space mission and ground based observations. Title: New developments in rotating and linear motion mechanisms used in contamination sensitive space telescopes Authors: Shimizu, Toshifumi; Watanabe, Kyoko; Nakayama, Satoshi; Tajima, Takao; Obara, Shingo; Imada, Shinsuke; Nishizuka, Naoto; Ishikawa, Shin-nosuke; Hara, Hirohisa Bibcode: 2014SPIE.9151E..38S Altcode: We have been developing a rotating mechanism and a linear motion mechanism for their usage in contamination sensitive space telescopes. They both are needed for ~1.4 meter optical telescope and its focal plane instrument onboard SOLAR-C, the next-generation spaceborne solar observatory following Hinode. Highly reliable long life performance, low outgassing properties, and low level of micro-vibration are required along with their scientific performance. With the proto-type mechanisms, the long life performance and outgassing properties of the mechanisms have been evaluated in vacuum chambers. The level of micro-vibration excited during the operations of the rotating mechanism was measured by operating it on the Kestler table. This paper provides the overall descriptions of our mechanism developments. Title: Do Most Active Galactic Nuclei Live in High Star Formation Nuclear Cusps? Authors: Mushotzky, Richard F.; Shimizu, T. Taro; Meléndez, Marcio; Koss, Michael Bibcode: 2014ApJ...781L..34M Altcode: 2013arXiv1312.7766M We present early results of the Herschel PACS (70 and 160 μm) and SPIRE (250, 350, and 500 μm) survey of 313 low redshift (z < 0.05), ultra-hard X-ray (14-195 keV) selected active galactic nuclei (AGNs) from the 58 month Swift/Burst Alert Telescope catalog. Selection of AGNs from ultra-hard X-rays avoids bias from obscuration, providing a complete sample of AGNs to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that >35% and >20% of the sources are "point-like" at 70 and 160 μm respectively and many more have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFRs) of 0.1-100 M yr-1 using the 70 and 160 μm flux densities as SFR indicators are consistent with those inferred from Spitzer Ne II fluxes, but we find that 11.25 μm polycyclic aromatic hydrocarbon data give ~3× lower SFR. Using GALFIT to measure the size of the far-infrared emitting regions, we determined the SFR surface density (M yr-1 kpc-2) for our sample, finding that a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M yr-1 kpc-2).

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Title: White-Light Emission and related Chromospheric Response in an X1.8-class Flare on 2012 October 23 Authors: Watanabe, Kyoko; Shimizu, Toshifumi; Imada, Shinsuke Bibcode: 2014cosp...40E3604W Altcode: In association with strong solar flares, we sometimes observe enhancements of visible continuum radiation, which is known as a ”white-light flare”. Because many observed events show a close correlation between the time profiles and locations of white-light emission, and the hard X-rays and/or radio emission, there is some consensus that the origin of white-light emission is non-thermal electrons. Generally, white-light emission is emitted from near the photosphere, however, non-thermal electrons are almost thermalized by the time they reach the lower chromosphere - and cannot reach the photosphere. So, still there is a problem concerning how the energy of non-thermal electrons propagates to the photosphere, and produces white-light emission. On October 23, 2012, white-light emission was observed by Hinode/SOT in association with the X1.8 class flare. Although the main phenomena of this solar flare occurred in a very compact region and the two Ca II H ribbons are separated by less than only 5 arcseconds, the white-light kernels are clearly observed along the Ca II H ribbons. Moreover, hard X-ray, and gamma-ray emission is present up to about 1 MeV, observed by the RHESSI satellite, and most of this emission is associated with the white-light kernels. The Hinode/EIS was also scanning over this flaring active region before the flare, and the flare occurred during the scan. Over the white-light kernel, strong red shifts were observed in FeXII etc. before the flare. In this paper, we will report the observed white-light emission, and chromospheric response obtained by the EUV observations. We also discuss the relationship between the downflows over the white-light kernel and the strength of the white-light emission, and try to show a possible prediction of how white-light emission can be produced by the transportation of non-thermal electrons. Title: Sunspot Bright Points Authors: Choudhary, Debi Prasad; Shimizu, Toshifumi Bibcode: 2013SoPh..288..171C Altcode: 2010arXiv1001.2354P We used the flux-calibrated images from the Broad-band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around sunspots. The selected bright points are smaller in diameter than 150 km with contrasts exceeding about 3 % in the ratio of sunspot images obtained with the G-band (430.5 nm) and Ca II H (396.85 nm) filters. The bright points are classified as umbral dot, peripheral umbral dot, penumbral grains, and G-band bright point depending on their location. The bright points are preferentially located around the penumbral boundary and in the fast decaying parts of the umbra. The color temperature of the bright points is in the range of 4600 K to 6600 K with cooler ones located in the central part of the umbra. The temperature increases as a function of distance from the center outward. The G-band, CN-band (388.35 nm), and Ca II H fluxes of the bright points as a function of their blue-band (450.55 nm) brightness increase continuously in a nonlinear fashion unlike their red (668.4 nm) and green (555.05 nm) counterparts. This is consistent with a model in which the localized heating of the flux tube depletes the molecular concentration, resulting in the reduced opacity that leads to the exposition of deeper and hotter layers. The light curve of the bright points shows that the enhanced brightness at these locations lasts for about 15 to 60 min with the least contrast for the points outside the sunspot. The umbral dots near the penumbral boundary are associated with elongated filamentary structures. The spectropolarimeter observations show that the filling factor decreases as the G-band brightness increases. We discuss the results using the model in which the G-band bright points are produced in the cluster of flux tubes that a sunspot consists of. Title: Multi-wavelength Observations of the Spatio-temporal Evolution of Solar Flares with AIA/SDO. II. Hydrodynamic Scaling Laws and Thermal Energies Authors: Aschwanden, Markus J.; Shimizu, Toshifumi Bibcode: 2013ApJ...776..132A Altcode: 2013arXiv1308.5198A In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM p , peak temperature Tp , electron density np , and thermal energy E th, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM p ) = 47.0-50.5, Tp = 5.0-17.8 MK, np = 4 × 109-9 × 1011 cm-3, and thermal energies of E th = 1.6 × 1028-1.1 × 1032 erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T_p^2 \propto n_p L and HvpropT 7/2 L -2 during the peak time tp of the flare density np , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)vpropH -1.8, which is consistent with the magnetic flux distribution N(Φ)vpropΦ-1.85 observed by Parnell et al. and the heating flux scaling law FH vpropHLvpropB/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms. Title: Emission Height and Temperature Distribution of White-light Emission Observed by Hinode/SOT from the 2012 January 27 X-class Solar Flare Authors: Watanabe, Kyoko; Shimizu, Toshifumi; Masuda, Satoshi; Ichimoto, Kiyoshi; Ohno, Masanori Bibcode: 2013ApJ...776..123W Altcode: 2013arXiv1308.5059W White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere. Title: Evidence for Hot Fast Flow above a Solar Flare Arcade Authors: Imada, S.; Aoki, K.; Hara, H.; Watanabe, T.; Harra, L. K.; Shimizu, T. Bibcode: 2013ApJ...776L..11I Altcode: 2013arXiv1309.3401I Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (~30MK) fast (>500 km s-1) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop. Title: Chromospheric Lyman Alpha SpectroPolarimeter: CLASP Authors: Kobayashi, Ken; Kano, R.; Trujillo Bueno, J.; Winebarger, A. R.; Cirtain, J. W.; Bando, T.; De Pontieu, B.; Ishikawa, R.; Katsukawa, Y.; Kubo, M.; Narukage, N.; Sakao, T.; Tsuneta, S.; Auchère, F.; Asensio Ramos, A.; Belluzzi, L.; Carlsson, M.; Casini, R.; Hara, H.; Ichimoto, K.; Manso Sainz, R.; Shimizu, T.; Stepan, J.; Suematsu, Y.; Holloway, T. Bibcode: 2013SPD....44..142K Altcode: The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectropolarimeter optimized for measuring the linear polarization of the Lyman-alpha line (121.6 nm). The Lyman-alpha line is predicted to show linear polarization caused by atomic scattering in the chromosphere and modified by the magnetic field through the Hanle effect. The Hanle effect is sensitive to weaker magnetic fields than Zeeman effect, and is not canceled by opposing fields, making it sensitive to tangled or unresolved magnetic field structures. These factors make the Hanle effect a valuable tool for probing the magnetic field in the chromosphere above the quiet sun. To meet this goal, CLASP is designed to measure linear polarization with 0.1% polarization sensitivity at 0.01 nm spectral resolution and 10" spatial resolution. CLASP is scheduled to be launched in 2015. Title: The First Hard X-Ray Power Spectral Density Functions of Active Galactic Nucleus Authors: Shimizu, T. Taro; Mushotzky, Richard F. Bibcode: 2013ApJ...770...60S Altcode: 2013arXiv1304.7002S We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of ~ - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes. Title: Hinode observations of flares and active region emergence Authors: Shimizu, Toshifumi Bibcode: 2013JPhCS.440a2002S Altcode: After observing the quiet Sun during a long and deep minimum, Hinode's observing priority is now the active Sun, i.e., flares and active regions. Because of its small field-of-view instruments and telemetry restrictions, capturing major flares with good observing coverage needs challenging efforts on operation plannings for Hinode and we have been using the latest available AIA and HMI full-Sun images for targeting. Also, capturing the initial phase of large-scale emerging flux activities is not easy for Hinode without having the forecast of flux emergence before they are visible on the surface. Nevertheless, Hinode has some good examples of observations of such events. In this paper, we briefly discuss two specific observations; X-class flares in March 2012 and a large-scale flux emergence in December 2009. The Stokes polarimetry data for the flares presented in this paper reveals significant gas flows along the neutral line of the sheared magnetic distributions and the change of magnetic field inclination at the areas where penumbral development and disappearance was observed with the occurrence of the flares. The flux emergence and the sunspot formation presented were well monitored by the Hinode three telescopes from the beginning through the end of the emergence, Of particular interest is the finding of a precursory signature in the chromosphere preceding the appearance of sunspot penumbra. Title: The Northern Galactic Cap AGN from the 58-month BAT Catalogue: A Comprehensive X-ray Spectral Study Authors: Vasudevan, Ranjan; Brandt, W. N.; Mushotzky, R.; Winter, L. M.; Baumgartner, W. H.; Shimizu, T.; Nousek, J. A.; Schneider, D. P.; Gandhi, P. Bibcode: 2013HEAD...1310906V Altcode: The all-sky hard X-ray Swift/BAT survey has provided the most complete census of local AGN activity to date, unbiased to all but the most heavy absorption levels. Continual monitoring in the 14--195 keV band has allowed the assembly of hard X-ray detected AGN catalogues after 9, 22, 36, 58 and 70 months of operation, increasing the sample size by probing to fainter fluxes. The seminal study of Winter et al. (2009) presented a comprehensive X-ray analysis of the AGN in the 9-month catalogue, providing their absorption and luminosity distributions, characterising the spectral shape for each source in the catalogue, and allowing the determination of sample-wide properties for an unbiased AGN sample. We present a timely revision of this exercise for the latest publicly available 58-month BAT catalogue (flux limit 4 x 10^-12 erg/s/cm^2 in the 14-195 keV band), focusing on the Northern Galactic Cap (b>50 degrees). This sky area has excellent potential for further dedicated study due to a wide range of multi-wavelength data that are already available, and we propose it as a low-redshift analogue to the ‘deep field’ observations of AGN at higher redshifts. We consistently fit all the 100 objects in this sky region with a suite of models to determine the best fitting column densities, luminosities and spectral features (Iron lines, soft excesses and warm absorber edges). Comparison with previous works on the 9-month and 36-month catalogues now allows a better understanding of whether the deepening exposure of the BAT catalogue uncovers progressively different AGN properties. We find that ~60% of the sample is absorbed above logNH=22, 9% is Compton thick, and Compton reflection is significant for the sample overall (average reflection amplitude <R> = 2.7). The sample is complete down to fluxes 4 times fainter than the 9-month catalogue in the 2--10 keV band. We emphasise the utility of this Northern Galactic Cap sample for a wide variety of future studies on AGN, and outline one such current project on the stacked emission from this sample and the connections with X-ray background synthesis models. Title: The Hinode Spectro-Polarimeter Authors: Lites, B. W.; Akin, D. L.; Card, G.; Cruz, T.; Duncan, D. W.; Edwards, C. G.; Elmore, D. F.; Hoffmann, C.; Katsukawa, Y.; Katz, N.; Kubo, M.; Ichimoto, K.; Shimizu, T.; Shine, R. A.; Streander, K. V.; Suematsu, A.; Tarbell, T. D.; Title, A. M.; Tsuneta, S. Bibcode: 2013SoPh..283..579L Altcode: The joint Japan/US/UK Hinode mission includes the first large-aperture visible-light solar telescope flown in space. One component of the Focal Plane Package of that telescope is a precision spectro-polarimeter designed to measure full Stokes spectra with the intent of using those spectra to infer the magnetic-field vector at high precision in the solar photosphere. This article describes the characteristics of the flight hardware of the HinodeSpectro-Polarimeter, and summarizes its in-flight performance. Title: Properties of a Decaying Sunspot Authors: Balthasar, H.; Beck, C.; Gömöry, P.; Muglach, K.; Puschmann, K. G.; Shimizu, T.; Verma, M. Bibcode: 2013CEAB...37..435B Altcode: 2013arXiv1301.1562B A small decaying sunspot was observed with the Vacuum Tower Telescope (VTT) on Tenerife and the Japanese Hinode satellite. We obtained full Stokes scans in several wavelengths covering different heights in the solar atmosphere. Imaging time series from Hinode and the Solar Dynamics Observatory (SDO) complete our data sets. The spot is surrounded by a moat flow, which persists also on that side of the spot where the penumbra already had disappeared. Close to the spot, we find a chromospheric location with downflows of more than 10 km s^{-1} without photospheric counterpart. The height dependence of the vertical component of the magnetic field strength is determined in two different ways that yielded different results in previous investigations. Such a difference still exists in our present data, but it is not as pronounced as in the past. Title: Next space solar observatory SOLAR-C: mission instruments and science objectives Authors: Katsukawa, Y.; Watanabe, T.; Hara, H.; Ichimoto, K.; Kubo, M.; Kusano, K.; Sakao, T.; Shimizu, T.; Suematsu, Y.; Tsuneta, S. Bibcode: 2012IAUSS...6E.207K Altcode: SOLAR-C, the fourth space solar mission in Japan, is under study with a launch target of fiscal year 2018. A key concept of the mission is to view the photosphere, chromosphere, and corona as one system coupled by magnetic fields along with resolving the size scale of fundamental physical processes connecting these atmospheric layers. It is especially important to study magnetic structure in the chromosphere as an interface layer between the photosphere and the corona. The SOLAR-C satellite is equipped with three telescopes, the Solar UV-Visible-IR Telescope (SUVIT), the EUV/FUV High Throughput Spectroscopic Telescope (EUVS/LEMUR), and the X-ray Imaging Telescope (XIT). Observations with SUVIT of photospheric and chromospheric magnetic fields make it possible to infer three dimensional magnetic structure extending from the photosphere to the chromosphere and corona.This helps to identify magnetic structures causing magnetic reconnection, and clarify how waves are propagated, reflected, and dissipated. Phenomena indicative of or byproducts of magnetic reconnection, such as flows and shocks, are to be captured by SUVIT and by spectroscopic observations using EUVS/LEMUR, while XIT observes rapid changes in temperature distribution of plasma heated by shock waves. Title: Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission Authors: Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N. Bibcode: 2012ASPC..463..439S Altcode: We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments. Title: Hinode observations of the Venus corona during the 2012 transit of Venus Authors: Kanao, M.; Yamazaki, A.; Imada, S.; Shimizu, T.; Sakao, T.; Kasaba, Y.; Sakanoi, T.; Kagitani, M.; Nakamura, M. Bibcode: 2012AGUFM.P11D1851K Altcode: The Hinode satellite successfully observed the transit of Venus on 5th June 2012 with the highest spatial resolution. This presentation will focus on UV and soft X-ray data acquired with the EUV Imaging Spectrometer (EIS) and the X-ray Telescope (XRT) onboard Hinode. We expected the EUV and X-ray emissions from the charge exchange reaction by the solar wind impacting on the neutral particles in Venus upper atmosphere. The neutral particles escape through the photoreaction, the solar wind pick-up process, and so on, in connection with the solar wind and the solar radiation. However, there are few precedent observations of the escaping hydrogen and oxygen, ranging from a few eV to a few keV because of difficulty in the groundbased observations. The atmosphere loss can be estimated based on the two-dimensional image of the neutral particle density. Our estimation was made for 18.4nm (OVI), 19.3nm (OV) and 25.6nm (HII), which intensity and line profiles can be recorded with EIS, and 1.72-2.18nm (OVII), 1.60-1.90nm(OVIII), 2.85-3.37nm (CVI), 3.50-4.03 nm (CV), which are located in XRT's broadband range. Multi wavelength observation could clarify the collision velocities between the solar wind and Venus neutral particles. Before the transit of Venus, for science planning purpose, we estimated the EUV and X-ray emission intensities by using typical solar wind parameters (the proton density 10/cc and the solar wind velocity 400 km/sec) with a Venus atmosphere model. The photon production rate of the X-ray emission is estimated to be 1.1 x 10^25 photons/s, and that of the OVI emission line (18.4nm) is 6.9 x 10^23 photons/s. These values are much lower than the emissions from the solar corona, but unexpected signals may be observed dureing the transit. In this presentation, we will present the calculation results on intensity distribution of the Venus corona and some X-ray and EUV data acquired during the transit. Also we briefly compare the observed intensities in dark Venus feature with the calculation results and discuss the signification of the difference. Title: Science and Instrument Design of 1.5-m Aperture Solar Optical Telescope for the SOLAR-C Mission Authors: Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.; Shimizu, T. Bibcode: 2012IAUSS...6E.208S Altcode: We present science cases and a design of one of major instruments for SOLAR-C mission; 1.5-m-class aperture solar ultra-violet visible and near IR observing Telescope (SUVIT). The SOLAR-C mission aims at fully understanding dynamism and magnetic nature of the solar atmosphere by observing small-scale plasma processes and structures. The SUVIT is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm (Mg II h&k) to 1100 nm (He I 1083 nm), using focal plane instruments: wide-band and narrow-band filtergraphs and a spectrograph for high-precision spectro-polarimetry in the solar photospheric and chromospheric lines. We will discuss about instrument design to realize the science cases. Title: Emission Height and Temperature Distribution of White-Light Emission from the 2011 January 27 Flare Observed by Hinode/SOT Authors: Watanabe, K.; Shimizu, T.; Masuda, S.; Ichimoto, K. Bibcode: 2012AGUFMSH52B..03W Altcode: White light flares are flares that show an emission enhancement in the visible continuum. White-light emissions are well correlated with hard X-ray and radio emissions in time profile and emission location. This seems to imply that the origin of white-light emission is accelerated particles, in particular non-thermal elections. However, this is hard to understand in terms of the expected respective emission heights. Theoretically, white-light emissions are generated near the photosphere, but non-thermal electrons of energy ~50-100 keV should deposit their energy in the lower chromosphere, more than 500 km above the photosphere. Thus there should be ~500 km difference in the white-light and X-ray emission heights, which seems at odds with the observations. We investigate this question with observations of a near-limb X1.7 flare of 27 January 2012, using three continuum bands (red, green, and blue) of the Hinode Solar Optical Telescope (SOT). The near-limb location allowed us to determine the heights of the emissions. We found the white-light emissions to be located low down, apparently at the photosphere, with the Ca II H emission originating from higher up. We also calculated the temperature distribution from the three white-light continuum bands, and found the lower layer to have higher temperature. These findings suggest that high energy particles penetrate to near the photosphere, heating the ambient atmosphere from very low (near photospheric) layers. Title: Three-dimensional instability of two-dimensional fast magnetic reconnection in comparison with Petschek and Sweet-Parker models Authors: Shimizu, T.; Kondoh, K. Bibcode: 2012AGUFMSM13B2372S Altcode: Petschek and Sweet-Parker models are known as the controversial two-dimensional MHD models discussed in the magnetic reconnection problem of space plasma physics for more than 40 years. Recently, we numerically found that two-dimensional Petschek reconnection process is unstable for a three-dimensional resistive perturbation, resulting in intermittent and random three-dimensional fast magnetic reconnection. In this presentation, we discuss that such three-dimensional instability is not caused (i.e. stable) in the Sweet Parker reconnection process, where the magnetic diffusion region is not localized in the jet direction. In real space plasmas, many observations suggest that three-dimensionally localized fast magnetic reconnection is ubiquitously caused in approximately one-dimensional current sheet, such as a geomagneto-tail. Our study shows that Petschek reconnection model plays a crucial role there, rather than Sweet Parker model. Title: LEMUR: Large European module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission Authors: Teriaca, Luca; Andretta, Vincenzo; Auchère, Frédéric; Brown, Charles M.; Buchlin, Eric; Cauzzi, Gianna; Culhane, J. Len; Curdt, Werner; Davila, Joseph M.; Del Zanna, Giulio; Doschek, George A.; Fineschi, Silvano; Fludra, Andrzej; Gallagher, Peter T.; Green, Lucie; Harra, Louise K.; Imada, Shinsuke; Innes, Davina; Kliem, Bernhard; Korendyke, Clarence; Mariska, John T.; Martínez-Pillet, Valentin; Parenti, Susanna; Patsourakos, Spiros; Peter, Hardi; Poletto, Luca; Rutten, Robert J.; Schühle, Udo; Siemer, Martin; Shimizu, Toshifumi; Socas-Navarro, Hector; Solanki, Sami K.; Spadaro, Daniele; Trujillo-Bueno, Javier; Tsuneta, Saku; Dominguez, Santiago Vargas; Vial, Jean-Claude; Walsh, Robert; Warren, Harry P.; Wiegelmann, Thomas; Winter, Berend; Young, Peter Bibcode: 2012ExA....34..273T Altcode: 2011ExA...tmp..135T; 2011arXiv1109.4301T The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 Å and 1270 Å. The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s - 1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission. Title: Design of large aperture solar optical telescope for the SOLAR-C mission Authors: Suematsu, Y.; Katsukawa, Y.; Hara, H.; Shimizu, T.; Ichimoto, K. Bibcode: 2012SPIE.8442E..25S Altcode: A large aperture optical telescope is planned for the next Japanese solar mission SOLAR-C as one of major three observing instruments. The optical telescope is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm to 1100 nm. The opto-mechanical and -thermal performance of the telescope is crucial to attain high-quality solar observations and we present a study of optical and structural design of the large aperture space solar telescope, together with conceptual design of its accompanying focal plane instruments: wide-band and narrow-band filtergraphs and a spectro-polarimeter for high spatial and temporal observations in the solar photospheric and chromospheric lines useful for sounding physical condition of dynamical phenomena. Title: Chromospheric Lyman-alpha spectro-polarimeter (CLASP) Authors: Kano, Ryouhei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Tsuneta, Saku; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Hara, Hirohisa; Shimizu, Toshifumi; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Sakao, Taro; Goto, Motoshi; Kato, Yoshiaki; Imada, Shinsuke; Kobayashi, Ken; Holloway, Todd; Winebarger, Amy; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Trujillo Bueno, Javier; Štepán, Jiří; Manso Sainz, Rafael; Belluzzi, Luca; Asensio Ramos, Andres; Auchère, Frédéric; Carlsson, Mats Bibcode: 2012SPIE.8443E..4FK Altcode: One of the biggest challenges in heliophysics is to decipher the magnetic structure of the solar chromosphere. The importance of measuring the chromospheric magnetic field is due to both the key role the chromosphere plays in energizing and structuring the outer solar atmosphere and the inability of extrapolation of photospheric fields to adequately describe this key boundary region. Over the last few years, significant progress has been made in the spectral line formation of UV lines as well as the MHD modeling of the solar atmosphere. It is found that the Hanle effect in the Lyman-alpha line (121.567 nm) is a most promising diagnostic tool for weaker magnetic fields in the chromosphere and transition region. Based on this groundbreaking research, we propose the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) to NASA as a sounding rocket experiment, for making the first measurement of the linear polarization produced by scattering processes and the Hanle effect in the Lyman-alpha line (121.567 nm), and making the first exploration of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP instrument consists of a Cassegrain telescope, a rotating 1/2-wave plate, a dual-beam spectrograph assembly with a grating working as a beam splitter, and an identical pair of reflective polarization analyzers each equipped with a CCD camera. We propose to launch CLASP in December 2014. Title: A Laboratory Experiment of Magnetic Reconnection: Outflows, Heating, and Waves in Chromospheric Jets Authors: Nishizuka, N.; Hayashi, Y.; Tanabe, H.; Kuwahata, A.; Kaminou, Y.; Ono, Y.; Inomoto, M.; Shimizu, T. Bibcode: 2012ApJ...756..152N Altcode: 2014arXiv1412.7903N Hinode observations have revealed intermittent recurrent plasma ejections/jets in the chromosphere. These are interpreted as a result of non-perfectly anti-parallel magnetic reconnection, i.e., component reconnection, between a twisted magnetic flux tube and the pre-existing coronal/chromospheric magnetic field, though the fundamental physics of component reconnection is not revealed. In this paper, we experimentally reproduced the magnetic configuration and investigated the dynamics of plasma ejections, heating, and wave generation triggered by component reconnection in the chromosphere. We set plasma parameters as in the chromosphere (density 1014 cm-3, temperature 5-10 eV, i.e., (5-10) × 104 K, and reconnection magnetic field 200 G) using argon plasma. Our experiment shows bi-directional outflows with the speed of 5 km s-1 at maximum, ion heating in the downstream area over 30 eV, and magnetic fluctuations mainly at 5-10 μs period. We succeeded in qualitatively reproducing chromospheric jets, but quantitatively, we still have some differences between observations and experiments such as in jet velocity, total energy, and wave frequency. Some of them can be explained by the scale gap between solar and laboratory plasma, while the others are probably due to the difference in microscopy and macroscopy, collisionality, and the degree of ionization, which have not been achieved in our experiment. Title: The SOLAR-C Mission: Plan B Payload Concept Authors: Shimizu, T.; Sakao, T.; Katsukawa, Y.; Group, J. S. W. Bibcode: 2012ASPC..454..449S Altcode: The telescope concepts for the SOLAR-C Plan B mission as of the time of the Hinode-3 meeting were briefly presented for having comments from the international solar physics community. The telescope candidates are 1) near IR-visible-UV telescope with 1.5m aperture and enhanced spectro-polarimetric capability, 2) UV/EUV high throughput spectrometer, and 3) next generation X-ray telescope. Title: Magnetic Properties and Behaviors of a Sunspot Light Bridge in Terms of Magnetic Reconnection Authors: Shimizu, T. Bibcode: 2012ASPC..454..177S Altcode: The sunspot light bridge formed in the south-east of the well-developed sunspot in active region 10953 is one of interesting regions to understand magnetic environment responsible for exciting long-lasting occurrence of magnetic reconnection events. Temporal evolution of magnetic and velocity field properties over 4 days was studied and briefly discussed in this presentation, leading to a conclusion that the amount of twist may be one of key parameters for the occurrence of magnetic reconnection at the low atmosphere and the resulting dynamical behaviors. Title: A New Method of Determining the Pattern Speed of the LMC Authors: Shimizu, T.; Yoshii, Y. Bibcode: 2012ASPC..458..341S Altcode: We focus on the idea proposed by de Vaucouleurs that constellation III would be regarded as the Lagrange point in a rotating non-axisymmetric bar potential. Based on this idea, we identify the center of constellation III with the Lagrange point L4 and have determined the pattern speed of the LMC as 21 ± 3km/s/kpc. Using this pattern speed, we estimate the velocity with which the constellation III captures matter around, and we find that the estimated value of velocity is consistent with the observation. In this presentation, using the LMC we describe our method of determining a pattern speed and present the dynamics around each of the Lagrange points in detail. Title: Precursor of Sunspot Penumbral Formation Discovered with Hinode SOT Observation Authors: Shimizu, T.; Ichimoto, K.; Suematsu, Y. Bibcode: 2012ASPC..456...43S Altcode: We newly found a precursory signature of sunspot penumbral formation in Ca II H images. The precursor is a dark annular zone (width 3"-5") around the umbra (pore), which was formed soon after the pore formation and existed until the penumbral formation. The penumbra was developed as if to fill the annular zone. Pre-existing ambient magnetic field islands were moved to be distributed at the outer edge of the annular zone and did not come into the zone. The observations indicate that the annular zone is different from sunspot moat flow region and that the zone is visible only in chromospheric Ca II H images, not in photospheric G-band images. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, much before the formation of the penumbra at the photospheric level. We can predict the region and size of the penumbra, by looking at the appearance of dark zone around pores. Title: The Fifth Hinode Science Meeting Authors: Golub, L.; De Moortel, I.; Shimizu, T. Bibcode: 2012ASPC..456.....G Altcode: No abstract at ADS Title: Precursor of Sunspot Penumbral Formation Discovered with Hinode Solar Optical Telescope Observations Authors: Shimizu, Toshifumi; Ichimoto, Kiyoshi; Suematsu, Yoshinori Bibcode: 2012ApJ...747L..18S Altcode: 2012arXiv1202.1025S We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appearing in NOAA Active Region 11039. We found an annular zone (width 3''-5'') surrounding the umbra (pore) in Ca II H images before the penumbra formed around the umbra. The penumbra developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were distributed at the outer edge of the annular zone and did not come into the zone. There are no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from the sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, long before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae. Title: Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay Authors: Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C. Bibcode: 2012A&A...538A.109V Altcode: 2011arXiv1112.1589V Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description.
Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence.
Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region.
Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal granulation remained at their location, which was characterized by more uniform horizontal proper motions, low divergence values, and smaller photospheric Doppler velocities. This region, thus, differs significantly from granulation and other areas covered by G-band bright points. We conclude that this peculiar flow pattern is a signature of sunspot decay and the dispersal of magnetic flux. Title: Dynamical Behaviors of the Solar Chromosphere Observed with Hinode Dynamics in Sunspot Light Bridges and Magnetic Reconnection Processes Authors: Shimizu, Toshifumi; Imada, Shinsuke Bibcode: 2012ASSP...33...23S Altcode: 2012msdp.book...23S The Hinode's Solar Optical Telescope has revealed that the solar chromosphere is full of dynamical nature and much more dynamic than our thought. Observations of chromospheric dynamics in sunspot light bridges provides a new insight on the magnetic field topology for causing magnetic reconnection in the solar atmosphere and the process to supply and maintain the twisted flux in light bridges. Title: One-dimensional Modeling for Temperature-dependent Upflow in the Dimming Region Observed by Hinode/EUV Imaging Spectrometer Authors: Imada, S.; Hara, H.; Watanabe, T.; Murakami, I.; Harra, L. K.; Shimizu, T.; Zweibel, E. G. Bibcode: 2011ApJ...743...57I Altcode: 2011arXiv1108.5031I We previously found a temperature-dependent upflow in the dimming region following a coronal mass ejection observed by the Hinode EUV Imaging Spectrometer (EIS). In this paper, we reanalyzed the observations along with previous work on this event and provided boundary conditions for modeling. We found that the intensity in the dimming region dramatically drops within 30 minutes from the flare onset, and the dimming region reaches the equilibrium stage after ~1 hr. The temperature-dependent upflows were observed during the equilibrium stage by EIS. The cross-sectional area of the flux tube in the dimming region does not appear to expand significantly. From the observational constraints, we reconstructed the temperature-dependent upflow by using a new method that considers the mass and momentum conservation law and demonstrated the height variation of plasma conditions in the dimming region. We found that a super-radial expansion of the cross-sectional area is required to satisfy the mass conservation and momentum equations. There is a steep temperature and velocity gradient of around 7 Mm from the solar surface. This result may suggest that the strong heating occurred above 7 Mm from the solar surface in the dimming region. We also showed that the ionization equilibrium assumption in the dimming region is violated, especially in the higher temperature range. Title: The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)j Authors: Kobayashi, K.; Tsuneta, S.; Trujillo Bueno, J.; Bando, T.; Belluzzi, L.; Casini, R.; Carlsson, M.; Cirtain, J. W.; De Pontieu, B.; Hara, H.; Ichimoto, K.; Ishikawa, R.; Kano, R.; Katsukawa, Y.; Kim, T.; Kubo, M.; Manso Sainz, R.; Narukage, N.; Asensio Ramos, A.; Robinson, B.; Sakao, T.; Shimizu, T.; Stepan, J.; Suematsu, Y.; Watanabe, H.; West, E.; Winebarger, A. R. Bibcode: 2011AGUFM.P14C..05K Altcode: We present an overview of the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) program. CLASP is a proposed sounding rocket experiment currently under development as collaboration between Japan, USA and Spain. The aim is to achieve the first measurement of magnetic field in the upper chromosphere and transition region of the Sun through the detection and measurement of Hanle effect polarization of the Lyman alpha line. The Hanle effect (i.e. the magnetic field induced modification of the linear polarization due to scattering processes in spectral lines) is believed to be a powerful tool for measuring the magnetic field in the upper chromosphere, as it is more sensitive to weaker magnetic fields than the Zeeman effect, and also sensitive to magnetic fields tangled at spatial scales too small to be resolved. The Lyman-alpha (121.567 nm) line has been chosen because it is a chromospheric/transition-region line, and because the Hanle effect polarization of the Lyman-alpha line is predicted to be sensitive to 10-250 Gauss, encompassing the range of interest. Hanle effect is predicted to be observable as linear polarization or depolarization, depending on the geometry, with a fractional polarization amplitude varying between 0.1% and 1% depending on the strength and orientation of the magnetic field. This quantification of the chromospheric magnetic field requires a highly sensitive polarization measurement. The CLASP instrument consists of a large aperture (287 mm) Cassegrain telescope mated to a polarizing beamsplitter and a matched pair of grating spectrographs. The polarizing beamsplitter consists of a continuously rotating waveplate and a linear beamsplitter, allowing simultaneous measurement of orthogonal polarizations and in-flight self-calibration. Development of the instrument is underway, and prototypes of all optical components have been tested using a synchrotron beamline. The experiment is proposed for flight in 2014. Title: Three-dimensional shock formation in the spontaneous fast reconnection evolution Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2011AGUFMSM23B2040K Altcode: Shock structure associated with magnetic reconnection is studied using three-dimensional magneto-hydro-dynamics simulations on the basis of the spontaneous fast reconnection model. In the two-dimensional reconnection, the angle between the slow shock pair (thickness of the plasma sheet) is smaller (thinner) in the region with higher reconnection rate. On the other hand, in the three-dimensional reconnection, the reconnection rate in the diffusion region is not uniform in the direction of sheet current, and the angle between the shock pair at the center of the diffusion region should be smallest. However, the profile of the angle in the direction of sheet current is not satisfied with this relationship. It is shown that this structure is caused by the inflow from the direction of the positive and negative sheet current and the inflow of the magnetic flux accompanied with it. Title: Magnetic Reconnection in Non-equilibrium Ionization Plasma Authors: Imada, S.; Murakami, I.; Watanabe, T.; Hara, H.; Shimizu, T. Bibcode: 2011ApJ...742...70I Altcode: 2011arXiv1108.5026I We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 1010 cm-3 (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization. Title: Three dimensional MHD spontaneous fast reconnection for the shear field effect and oblique neutral line formation Authors: Shimizu, T.; Kondoh, K.; Ugai, M. Bibcode: 2011AGUFMSM51B2088S Altcode: Three-dimensional MHD instability for the spontaneous fast magnetic reconnection was studied under the shear field condition and the formation of oblique neutral line, in order to apply to space plasma observations in THEMIS and Cluster. In our previous studies under the current-driven anomalous resistivity, it was shown that one-dimensional current sheet (the Harris sheet) is unstable for three-dimensional resistive perturbation, resulting in three-dimensionally localized, intermittent and random fast reconnection process. In space plasmas, one-dimensional current sheet will be ubiquitous and is believed to be a source region of explosive plasma phenomena, such as solar flares and geomagnetic substorms. However, it was unclear how the 3D fast reconnection is localized in such 1D current sheet. According to our studies, the 3D fast reconnection can be triggered by any weak 3D effect, such as waves and plasma flows stagnating in the current sheet, and then is nonlinearly developed. Finally, the fast reconnection process becomes unsteady, intermittent and random. In recent, it was reported that the intermittent and snake-like plasma downflow jets often observed in solar flares, e.g. TRACE EUV data, can be well explained by our three-dimensional fast reconnection model. Then, we are now trying to apply our model to the geomagnetic substorms observed in THEMIS, Cluster and GEOTAIL. In comparison with solar flare observations, the observation data obtained in geomagnetic substorms is more fine, and hence, we can explore the details of how the 3D fast reconnection is caused. In this presentation, we report how our 3D fast reconnection model is modified by the shear field effect and oblique formation of active neutral lines, collaborating with observation data and MHD numerical study. Title: Extinction law in ultraluminous infrared galaxies at z∼ 1 Authors: Shimizu, T.; Kawara, K.; Sameshima, H.; Ienaka, N.; Nozawa, T.; Kozasa, T. Bibcode: 2011MNRAS.418..625S Altcode: 2011arXiv1107.5381S; 2011MNRAS.tmp.1436S We analyse the multiwavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z∼ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) galaxies. Five extinction curves, namely the Milky Way (MW), the pseudo-MW which is MW-like without the 2175 Å feature, the Calzetti and two supernova (SN) dust curves are applied to the data by combining with various dust distributions, namely the uniform dust screen, the clumpy dust screen, the internal dust geometry, and the composite geometry with a combination of dust screen and internal dust. Employing a minimum χ2 method, we find that the foreground dust screen geometry, especially combined with the 8-40 M SN extinction curve, provides a good approximation to the real dust geometry, whereas internal dust is only significant in two galaxies. The SN extinction curves, which are flatter than the others, reproduce the data of eight (67 per cent) galaxies better. Dust masses are estimated to be in excess of ∼108 M. The inferred ages of the galaxies are small, eight of which range from 10 to 650 Myr. The SN-origin dust is the most plausible to account for the vast amount of dust masses and the flat slope of the observed extinction law. The inferred dust mass per SN ranges from 0.01 to 0.4 M per SN. Title: Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C Authors: Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide Bibcode: 2011SPIE.8148E..0EK Altcode: 2011SPIE.8148E..13K It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy. Title: LEMUR (Large European Module for solar Ultraviolet Research): a VUV imaging spectrograph for the JAXA Solar-C Mission Authors: Korendyke, Clarence M.; Teriaca, Luca; Doschek, George A.; Harra, Louise K.; Schühle, Udo H.; Shimizu, Toshifumi Bibcode: 2011SPIE.8148E..0IK Altcode: 2011SPIE.8148E..17K LEMUR is a VUV imaging spectrograph with 0.28" resolution. Incident solar radiation is imaged onto the spectrograph slit by a single mirror telescope consisting of a 30-cm steerable f/12 off-axis paraboloid mirror. The spectrograph slit is imaged and dispersed by a highly corrected grating that focuses the solar spectrum over the detectors. The mirror is coated with a suitable multilayer with B4C top-coating providing a reflectance peak around 18.5 nm besides the usual B4C range above 500Å. The grating is formed by two halves, one optimized for performances around 185Å and the other above 500Å. Three intensified CCD cameras will record spectra above 50 nm while a large format CCD array with an aluminum filter will be used around 185Å. Title: Overview of Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) Authors: Narukage, Noriyuki; Tsuneta, Saku; Bando, Takamasa; Kano, Ryouhei; Kubo, Masahito; Ishikawa, Ryoko; Hara, Hirohisa; Suematsu, Yoshinori; Katsukawa, Yukio; Watanabe, Hiroko; Ichimoto, Kiyoshi; Sakao, Taro; Shimizu, Toshifumi; Kobayashi, Ken; Robinson, Brian; Kim, Tony; Winebarger, Amy; West, Edward; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Trujillo Bueno, Javier; Stepan, Jiri; Manso Sainz, Rafael; Belluzzi, Luca; Asensio Ramos, Andres; Carlsson, Mats Bibcode: 2011SPIE.8148E..0HN Altcode: 2011SPIE.8148E..16N The solar chromosphere is an important boundary, through which all of the plasma, magnetic fields and energy in the corona and solar wind are supplied. Since the Zeeman splitting is typically smaller than the Doppler line broadening in the chromosphere and transition region, it is not effective to explore weak magnetic fields. However, this is not the case for the Hanle effect, when we have an instrument with high polarization sensitivity (~ 0.1%). "Chromospheric Lyman- Alpha SpectroPolarimeter (CLASP)" is the sounding rocket experiment to detect linear polarization produced by the Hanle effect in Lyman-alpha line (121.567 nm) and to make the first direct measurement of magnetic fields in the upper chromosphere and lower transition region. To achieve the high sensitivity of ~ 0.1% within a rocket flight (5 minutes) in Lyman-alpha line, which is easily absorbed by materials, we design the optical system mainly with reflections. The CLASP consists of a classical Cassegrain telescope, a polarimeter and a spectrometer. The polarimeter consists of a rotating 1/2-wave plate and two reflecting polarization analyzers. One of the analyzer also works as a polarization beam splitter to give us two orthogonal linear polarizations simultaneously. The CLASP is planned to be launched in 2014 summer. Title: The SOLAR-C mission: current status Authors: Shimizu, Toshifumi; Tsuneta, Saku; Hara, Hirohisa; Ichimoto, Kiyoshi; Kusano, Kanya; Sakao, Taro; Sekii, Takashi; Suematsu, Yoshinori; Watanabe, Tetsuya Bibcode: 2011SPIE.8148E..0BS Altcode: 2011SPIE.8148E..10S Two mission concepts (plan A: out-of-ecliptic mission and plan B: high resolution spectroscopic mission) have been studied for the next Japanese-led solar mission Solar-C, which will follow the scientific success of the Hinode mission. The both mission concepts are concluded as equally important and attractive for the promotion of space solar physics. In the meantime we also had to make efforts for prioritizing the two options, in order to proceed to next stage of requesting the launch of Solar-C mission at the earliest opportunity. This paper briefly describes the two mission concepts and the current status on our efforts for prioritizing the two options. More details are also described for the plan B option as the first-priority Solar-C mission. The latest report from the Solar-C mission concept studies was documented as "Interim Report on the Solar-C Mission Concept." Title: Short telescope design of 1.5-m aperture solar UV visible and IR telescope aboard Solar-C Authors: Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N. Bibcode: 2011SPIE.8148E..0DS Altcode: 2011SPIE.8148E..12S We present an optical and thermal design of one of major instrumental payload planned for SOLAR-C mission/Plan-B (high resolution spectroscopic option): the telescope assembly of Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). To accommodate a launcher's nosecone size, a wide observing wavelength coverage from UV (down to 280 nm) through near IR (up to 1100 nm), and an 0.1 arcsec resolution in the field of 200 arcsec diameter, a short telescope design was made for a 1.5 m aperture solar Gregorian telescope with the compact design of three-mirror collimator unit. Title: VizieR Online Data Catalog: Synthetic supernova extinction curves (Kawara+, 2011) Authors: Kawara, K.; Hirashita, H.; Nozawa, T.; Kozasa, T.; Oyabu, S.; Matsuoka, Y.; Shimizu, T.; Sameshima, H.; Ienaka, N. Bibcode: 2011yCat..74121070K Altcode: Synthetic spectra of stellar populations reddened by dust are modelled to reproduce the data of SST J1604+4304. This is a young IR galaxy at z= 1.135 with the characteristic of ULIRGs.

(1 data file). Title: Modeling and verification of the diffraction-limited visible light telescope aboard the solar observing satellite HINODE Authors: Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T. Bibcode: 2011SPIE.8336E..0FK Altcode: 2011SPIE.8336E..14K HINODE, Japanese for "sunrise", is a spacecraft dedicated for observations of the Sun, and was launched in 2006 to study the Sun's magnetic fields and how their explosive energies propagate through the different atmospheric layers. The spacecraft carries the Solar Optical Telescope (SOT), which has a 50 cm diameter clear aperture and provides a continuous series of diffraction-limited visible light images from space. The telescope was developed through international collaboration between Japan and US. In order to achieve the diffraction-limited performance, thermal and structural modeling of the telescope was extensively used in its development phase to predict how the optical performance changes dependent on the thermal condition in orbit. Not only the modeling, we devoted many efforts to verify the optical performance in ground tests before the launch. The verification in the ground tests helped us to find many issues, such as temperature dependent focus shifts, which were not identified only through the thermal-structural modeling. Another critical issue was micro-vibrations induced by internal disturbances of mechanical gyroscopes and momentum wheels for attitude control of the spacecraft. Because the structural modeling was not accurate enough to predict how much the image quality was degraded by the micro-vibrations, we measured their transmission in a spacecraft-level test. Title: Long-term Evolution of Magnetic and Dynamical Properties in A Sunspot Light Bridge Authors: Shimizu, Toshifumi Bibcode: 2011ApJ...738...83S Altcode: Sunspot light bridges (LBs)—long bright lanes appearing in umbra—sometimes show dynamical behaviors such as plasma ejections, brightenings, and fast gas flows in the photosphere and lower chromosphere, but we have not understood what causes these dynamics. The Hinode Solar Optical Telescope successfully captured the entire period of the evolution of an LB formed at the southeast of the well-developed sunspot in NOAA Active Region 10953, allowing us to track how magnetic and dynamical properties change with time for 3.5 days. The LB produced chromospheric upward ejections intermittently and recurrently on 2007 April 30, and fewer upward ejections were observed on May 1. We found that G-band intensity features morphologically changed from cellar or patchy on April 30 to filamentary on May 1, although there were small changes in the magnetic flux density and inclination. This suggests that the chromospheric activity is related to the change of morphology in the photosphere. Fast gas flows and a pair of strong enhanced vertical electrical currents were also observed in the photosphere after the filamentary structures were dominant. The end of a large Hα filament (or prominence) was extended very close to the LB on May 1, suggesting that the filamentary structures formed along the LB may be magnetically connected to the large Hα filament and the gas flows may originate far from the LB region, although other mechanisms cannot be ruled out. Title: Magnetic field evolution of active regions and sunspots in connection with chromospheric and coronal activities Authors: Shimizu, Toshifumi Bibcode: 2011IAUS..273..157S Altcode: Ca II H imaging observations by the Hinode Solar Optical Telescope (SOT) have revealed that the chromosphere is extremely dynamic and that ejections and jets are well observed in moat region around sunspots. X-ray and EUV observations show frequent occurrence of microflaring activities around sunspots; small emerging flux or moving magnetic features approaching opposite pre-existing magnetic flux can be identified on the footpoints for half of microflares studied, while no encounters of opposite polarities are observed at footpoints for the others even with SOT high spatial magnetorams (Kano et al. 2010). Another observations tell the involvement of twisted magnetic fields in the microflares accompanied by no polarity encounters at the footpoints. Some type of sunspot light bridges shows recurrent occurrence of chromospheric ejections, and photospheric vector magnetic field data suggests that twsited magnetic flux tubes lying along light bridge play vital roles in producing such ejections (Shimizu et al. 2009). This presentation reviewed observational findings from these studies. We will need to understand the 3D configuration of magnetic fields for better understanding of activity triggers in the solar atmosphere. Title: What determines the penumbral size and Evershed flow speed? Authors: Deng, Na; Shimizu, Toshifumi; Choudhary, Debi Prasad; Wang, Haimin Bibcode: 2011IAUS..273..216D Altcode: 2011arXiv1102.3164D Using Hinode SP and G-band observations, we examined the relationship between magnetic field structure and penumbral length as well as Evershed flow speed. The latter two are positively correlated with magnetic inclination angle or horizontal field strength within 1.5 kilogauss, which is in agreement with recent magnetoconvective simulations of Evershed effect. This work thus provides direct observational evidence supporting the magnetoconvection nature of penumbral structure and Evershed flow in the presence of strong and inclined magnetic field. Title: Bright Points In And Around Sunspots Authors: Prasad Choudhary, Debi; Deng, N.; Shimizu, T. Bibcode: 2011SPD....42.1714P Altcode: 2011BAAS..43S.1714P We used the flux calibrated images through the Broad Band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of sunspot bright points. The isolated bright points were selected and classified as umbral dot, peripheral umbral dot, penumbral grains and G-band bright point depending on their location. Most of the bright points are smaller than about 150 km, and not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying parts of umbra. The color temperature of the bright points, derived using the continuum irradiance, are in the range of 4600 K to 6600 K with cooler ones located in the umbra. The temperature increases as a function of distance from the center to outside. The G-band, CN-band and CaII H flux of the bright points as a function of their blue band brightness increase continuously in a nonlinear fashion unlike their red and green counterpart. The scatter in CaII H irradiance is higher compared to the G-band and CN-band irradiance. The light curve of the bright points show that the enhanced brightness at these locations last for about 15 to 60 minutes. The umbral dots near the penumbral boundary are associated with elongated filamentary structures. The G-band brightness closely follows their magnetic filling factor. Generally, the umbral dots have higher magnetic field and larger Doppler velocity compared to their counterpart outside the spot. These results are consistent with the model in which the upward intruding plasma through the nonmagnetic columns between the fluxtubes of sunspot produce the bright points and heat the matter inside of adjacent tubes. The heated plasma flows in the direction of reduced gas pressure. Similar localized heating of penumbra leads to the origin of penumbral grains. Title: Observations of On-Disk Type I and II Spicules Authors: Deng, Na; Denker, C.; Verma, M.; Shimizu, T.; Liu, C.; Wang, H. Bibcode: 2011SPD....42.1737D Altcode: 2011BAAS..43S.1737D A coordinated observing campaign was carried out during 2010 November 16-30 using German Vacuum Tower Telescope (VTT) and Hinode to investigate properties of small-scale spicules on the solar disk. The high-spectral resolution Echelle spectrograph at the VTT on Tenerife acquired spectra of the chromospheric halpha (656.28 nm) and photospheric Fe I (656.92 nm) lines in a region centered on a small pore. Hinode mission provides high-cadence vector magnetograms, G-band and Ca II H images, EIS and XRT observations of the same region. We present statistical properties of spicules (type I and II), such as spectral characteristics, velocities, spatial distribution and temporal evolution, paying particular attention to type II spicules or chromospheric jets. We investigate the photospheric magnetic structure, flow field and their evolution attempting to find the origin of chromospheric jets. The vertical extent of identified chromospheric jets in the transition region and corona will be studied using EIS and XRT observations in conjunction with SDO observations. Title: Supernova dust for the extinction law in a young infrared galaxy at z∼ 1 Authors: Kawara, K.; Hirashita, H.; Nozawa, T.; Kozasa, T.; Oyabu, S.; Matsuoka, Y.; Shimizu, T.; Sameshima, H.; Ienaka, N. Bibcode: 2011MNRAS.412.1070K Altcode: 2010MNRAS.tmp.1877K; 2010arXiv1011.0511K We apply the supernova (SN) extinction curves to reproduce the observed properties of SST J1604+4304 which is a young infrared (IR) galaxy at z∼ 1. The SN extinction curves used in this work were obtained from models of unmixed ejecta of Type II supernovae for the Salpeter initial mass function with a mass range from 8 to 30 M or 8 to 40 M. The effect of dust distributions on the attenuation of starlight is investigated by performing the χ2 fitting method against various dust distributions. These are the commonly used uniform dust screen, the clumpy dust screen and the internal dust geometry. We add to these geometries three scattering properties, namely, no scattering, isotropic scattering and forward-only scattering. Judging from the χ2 values, we find that the uniform screen models with any scattering property provide good approximations to the real dust geometry. Internal dust is inefficient to attenuate starlight and thus cannot be the dominant source of the extinction. We show that the SN extinction curves reproduce the data of SST J1604+4304 comparable to or better than the Calzetti extinction curve. The Milky Way extinction curve is not in satisfactory agreement with the data unless several dusty clumps are in the line of sight. This trend may be explained by the abundance of SN-origin dust in these galaxies; SN dust is the most abundant in the young IR galaxy at z∼ 1, abundant in local starbursts and less abundant in the Galaxy. If dust in SST J1604+4304 is dominated by SN dust, the dust production rate is ∼0.1 M per SN. Title: Magnetic Reconnection in the Solar Atmopshere Observed by Hinode Authors: Imada, Shinsuke; Isobe, Hiroaki; Shimizu, Toshifumi Bibcode: 2011sswh.book...63I Altcode: No abstract at ADS Title: Three-dimensional MHD instability of spontaneous fast magnetic reconnection in geomagnetotail Authors: Shimizu, T.; Ogino, T.; Kondoh, K. Bibcode: 2010AGUFMSM51C1827S Altcode: In recent multi-satellite observations such as THEMIS, various plasma dynamics related to the fast magnetic reconnection in geomagnetotail is actively studied. However, the three-dimensional structure of the fast magnetic reconnection itself is still unclear. According to our previous MHD studies, it has been revealed that two-dimensional spontaneous fast magnetic reconnection which can be quasi-steady state is unstable in three-dimensional perturbation, resulting in intermittent and unsteady three-dimensional fast magnetic reconnection even in one-dimensional current sheet. Those studies were successfully applied for solar flare observations such as TRACE EUV image data and, now, is tried to be applied for the geomagnetotail dynamics. In geomagnetotail, since the current sheet has a three-dimensional structure and may be disturbed by various geomagnetosphere’s three-dimensional plasma convections, the three-dimensional instability of fast magnetic reconnection process may be largely modified from the ideal and simple geometry models. In this study, using global three-dimensional MHD simulation including various interactions between solar winds and geomagnetosphere, it is visually shown that how the three-dimensional spontaneous fast magnetic reconnection is caused in geomagnetotail. Title: Ionization non-equilibrium plasma during magnetic reconnection in solar corona Authors: Imada, S.; Murakami, I.; Watanabe, T.; Hara, H.; Shimizu, T. Bibcode: 2010AGUFMSH31A1788I Altcode: Hinode can provide us both of the stored magnetic field energy in corona before magnetic reconnection and the most part of energy post reconnection stage. On the other hand, there is not enough observational knowledge of the physical parameters in the reconnection region. The inflow into the reconnection region, the temperature of the plasma in the reconnection region, and the temperatures and densities of the plasma jets predicted by reconnection, have not been quantitatively measured in sufficient. EIS on Hinode may provide some answers if solar cycle 24 ever produces a solar maximum. But it is important to answer why the most observation cannot detect the predicted flow or temperature in the reconnection region. One of the reasons why we cannot observe inside the magnetic reconnection region is due to its darkness. Generally we can see the bright cusp-like structure during solar flare, although the reconnection region is faint/blind. One may think that the temperature in the reconnection region is enough higher than that of cusp-like flare loops. Thus the wavelength of emission from reconnection region is different from flare loops. However, this is not entirely true. Magnetic reconnection causes rapid heating. Thus ionization cannot reach to the equilibrium stage. We have calculated the ionization process in the down stream of Petschek type magnetic reconnection. From our result, we can clearly see that plasma cannot reach the ionization equilibrium in the down stream of slow-mode shock. The typical emissions from magnetic reconnection region are FeIXX or FeXX, although the plasma temperature is equal to 40MK. The typical temperature and density of post flare loops are 10 MK and 10^11 /cc, and the dominant emissions from post flare loops are from FeIXX to FeXXIII. Thus the wavelength of emission from reconnection region is not so much different from post flare loops. We will discuss how the emissions from reconnection region looks like by using several ionization calculations of magnetic reconnection. Title: Experimental Simulation of Magnetic Reconnection in the Sunspot Light Bridge Authors: Hayashi, Yoshinori; Tanabe, Hiroshi; Inomoto, Michiaki; Ono, Yasushi; Shimizu, Toshifumi; Imada, Shinsuke; Nishizuka, Naoto Bibcode: 2010APS..DPPCP9122H Altcode: Intermittent and recurrent chromospheric plasma ejections were discovered in the sunspot light bridge (LB) by the Solar Optical Telescope of the Hinode satellite (Shimizu et al. 2009, ApJ, 696, L66). Strong current was observed under the jet, suggesting existence of twisted flux tube in the vertical background field. The magnetic reconnection between the flux tube and the vertical field is considered to cause the plasma ejection. It is left unsolved why the intermittent reconnection continuing more than one day. Note that the magnetic configuration of LB is similar to the spheromak plasma maintained by vertical field in the laboratory. We formed spheromak in the TS-4 device and drove magnetic reconnection with center solenoid coil. We measured 2D magnetic profile of the reconnecting field lines between the spheromak and the solenoid coil by the magnetic probe array and local temperature, density and plasma flow at the reconnection point by the Langmuir probes and ion Doppler spectroscopy. We will discuss about the LB reconnection by comparing the laboratory experiment with the satellite observation. Title: Hinode Observation of Photospheric Magnetic Activities Triggering X-ray Microflares Around a Well-developed Sunspot Authors: Kano, R.; Shimizu, T.; Tarbell, T. D. Bibcode: 2010ApJ...720.1136K Altcode: Microflares, which are small energetic events in the solar corona, are an example of dynamical phenomena suitable for understanding energy release processes in the solar corona. We identified 55 microflares around a well-developed sunspot surrounded by a moat with high-cadence X-ray images from the Hinode X-ray Telescope, and searched for their photospheric counterparts in line-of-sight magnetograms taken with the Hinode Solar Optical Telescope. We found opposite magnetic polarities encountering each other around the footpoints of 28 microflares, while we could not find such encounters around the footpoints of the other 27 microflares. Emerging magnetic fluxes in the moat were the dominant origin causing the encounters of opposite polarities (21 of 28 events). Unipolar moving magnetic features (MMFs) with negative polarities the same as the sunspot definitely caused the encounters of opposite polarities for five microflares. The decrease of magnetic flux, i.e., magnetic flux cancellation, was confirmed at the encountering site in typical examples of microflares. Microflares were not isotropically distributed around the spot; the microflares with emerging magnetic fluxes (EMFs) were observed in the direction where magnetic islands with the same polarity as the spot were located at the outer boundary of the moat, while the microflares with negative MMFs were observed in the direction where magnetic islands with polarity opposite to the spot were located at the outer boundary of the moat. We also found that EMFs in the moat had a unique orientation in which those with the same polarity as the spot is closer to the spot than the other one that had the opposite polarity to the spot. These observational results lead to two magnetic configurations including magnetic reconnection for triggering energy release at least in half of the microflares around the spot, and suggest that the global magnetic structures around the spot strongly affect what kinds of polarity encounters are formed in the sunspot moat. Title: Quiescent Prominence Dynamics Observed with the Hinode Solar Optical Telescope. I. Turbulent Upflow Plumes Authors: Berger, Thomas E.; Slater, Gregory; Hurlburt, Neal; Shine, Richard; Tarbell, Theodore; Title, Alan; Lites, Bruce W.; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Magara, Tetsuya; Suematsu, Yoshinori; Shimizu, Toshifumi Bibcode: 2010ApJ...716.1288B Altcode: Hinode/Solar Optical Telescope (SOT) observations reveal two new dynamic modes in quiescent solar prominences: large-scale (20-50 Mm) "arches" or "bubbles" that "inflate" from below into prominences, and smaller-scale (2-6 Mm) dark turbulent upflows. These novel dynamics are related in that they are always dark in visible-light spectral bands, they rise through the bright prominence emission with approximately constant speeds, and the small-scale upflows are sometimes observed to emanate from the top of the larger bubbles. Here we present detailed kinematic measurements of the small-scale turbulent upflows seen in several prominences in the SOT database. The dark upflows typically initiate vertically from 5 to 10 Mm wide dark cavities between the bottom of the prominence and the top of the chromospheric spicule layer. Small perturbations on the order of 1 Mm or less in size grow on the upper boundaries of cavities to generate plumes up to 4-6 Mm across at their largest widths. All plumes develop highly turbulent profiles, including occasional Kelvin-Helmholtz vortex "roll-up" of the leading edge. The flows typically rise 10-15 Mm before decelerating to equilibrium. We measure the flowfield characteristics with a manual tracing method and with the Nonlinear Affine Velocity Estimator (NAVE) "optical flow" code to derive velocity, acceleration, lifetime, and height data for several representative plumes. Maximum initial speeds are in the range of 20-30 km s-1, which is supersonic for a ~10,000 K plasma. The plumes decelerate in the final few Mm of their trajectories resulting in mean ascent speeds of 13-17 km s-1. Typical lifetimes range from 300 to 1000 s (~5-15 minutes). The area growth rate of the plumes (observed as two-dimensional objects in the plane of the sky) is initially linear and ranges from 20,000 to 30,000 km2 s-1 reaching maximum projected areas from 2 to 15 Mm2. Maximum contrast of the dark flows relative to the bright prominence plasma in SOT images is negative and ranges from -10% for smaller flows to -50% for larger flows. Passive scalar "cork movies" derived from NAVE measurements show that prominence plasma is entrained by the upflows, helping to counter the ubiquitous downflow streams in the prominence. Plume formation shows no clear temporal periodicity. However, it is common to find "active cavities" beneath prominences that can spawn many upflows in succession before going dormant. The mean flow recurrence time in these active locations is roughly 300-500 s (5-8 minutes). Locations remain active on timescales of tens of minutes up to several hours. Using a column density ratio measurement and reasonable assumptions on plume and prominence geometries, we estimate that the mass density in the dark cavities is at most 20% of the visible prominence density, implying that a single large plume could supply up to 1% of the mass of a typical quiescent prominence. We hypothesize that the plumes are generated from a Rayleigh-Taylor instability taking place on the boundary between the buoyant cavities and the overlying prominence. Characteristics, such as plume size and frequency, may be modulated by the strength and direction of the cavity magnetic field relative to the prominence magnetic field. We conclude that buoyant plumes are a source of quiescent prominence mass as well as a mechanism by which prominence plasma is advected upward, countering constant gravitational drainage. Title: The Relationship Among Magnetic Field Configuration, Penumbral Size, and Evershed Flow Speed Authors: Deng, Na; Shimizu, T.; Choudhary, D. Bibcode: 2010AAS...21640308D Altcode: 2010BAAS...41..879D Recent observations (e.g., Wang et al. 2004; Deng et al. 2005) have shown that there is a sudden penumbral decay associated with major flares during which the overall magnetic field inclination in penumbra changes due to magnetic reconnection. We propose that the size (i.e., length) of sunspot penumbra is related to the localized magnetic field configuration. In order to test this hypothesis, we study 11 sunspots close to disk center with different sizes, which were observed by Hinode/SOT at the late phase of solar cycle 23. We notice that even for typical alpha sunspots near the disc center, the penumbral length is different in different sectors in the same spot. Since the Evershed flow is coupled with penumbra, we also study the properties of Evershed flow, such as its speed, at different location of a sunspot. The SP data is used to study the magnetic field parameters (e.g., strength, inclination) in different penumbral sectors that show distinct penumbral length. The Evershed flow is measured both by Doppler shift from SP observation and by Local Correlation Tracking based on time series of BFI data. We aim to find the relationship among magnetic field topology, penumbral size, and Evershed flow speed. Title: Velocity and Magnetic Structure of Sunspot Umbral Dots Authors: Prasad Choudhary, Debi; MacDonald, G. A.; Deng, N.; Shimizu, T. Bibcode: 2010AAS...21640111P Altcode: 2010BAAS...41..858P The Doppler velocity measurements of umbral dots obtained with Spectropolarimeter (SP) on board Hinode Solar Optical Telescope is used to study the sunspot structure. The SP observations, each more than an hour long, were carried out at 2-minute cadence with 25 slit positions at penumbral boundary of a sunspot on 2-3 February 2007. These observations record the formation and decay of at least four umbral dots. The Doppler velocity observed in and around the umbral dots using Stokes profiles show unidirectional velocities of about 700 to 1200 meters per second. The Stokes-V profiles at these locations show asymmetry of about 1 to 5 % compared to the surroundings. We discuss the formation mechanisms of umbral dots and their implication for sunspot structure using these observations.

This work is supported by NASA grant NNX08AQ32G and NSF grant ATM 05-48260. Title: G-band and Hard X-ray Emissions of the 2006 December 14 Flare Observed by Hinode/SOT and Rhessi Authors: Watanabe, Kyoko; Krucker, Säm; Hudson, Hugh; Shimizu, Toshifumi; Masuda, Satoshi; Ichimoto, Kiyoshi Bibcode: 2010ApJ...715..651W Altcode: 2010arXiv1004.4259W We report on G-band emission observed by the Solar Optical Telescope on board the Hinode satellite in association with the X1.5-class flare on 2006 December 14. The G-band enhancements originate from the footpoints of flaring coronal magnetic loops, coinciding with nonthermal hard X-ray bremsstrahlung sources observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager. At the available 2 minute cadence, the G-band and hard X-ray intensities are furthermore well correlated in time. Assuming that the G-band enhancements are continuum emission from a blackbody, we derived the total radiative losses of the white-light flare (white-light power). If the G-band enhancements additionally have a contribution from lines, the derived values are overestimates. We compare the white-light power with the power in hard X-ray producing electrons using the thick-target assumption. Independent of the cutoff energy of the accelerated electron spectrum, the white-light power and the power of accelerated electrons are roughly proportional. Using the observed upper limit of ~30 keV for the cutoff energy, the hard X-ray producing electrons provide at least a factor of 2 more power than needed to produce the white-light emission. For electrons above 40 keV, the powers roughly match for all four of the time intervals available during the impulsive phase. Hence, the flare-accelerated electrons contain enough energy to produce the white-light flare emissions. The observed correlation in time, space, and power strongly suggests that electron acceleration and white-light production in solar flares are closely related. However, the results also call attention to the inconsistency in apparent source heights of the hard X-ray (chromosphere) and white-light (upper photosphere) sources. Title: Tomographic All-sky Imaging Above 200 keV With BATSE Authors: Wheaton, William A.; Case, G. L.; Cherry, M. L.; Ling, J. C.; Lo, M. W.; Roland, J. M.; Shimizu, T. Bibcode: 2010HEAD...11.3501W Altcode: 2010BAAS...42..714W We describe a tomographic method of mapping the gamma-ray sky above 200 keV with earth-occultation data from BATSE, the Burst And Transient Source Experiment on the Compton Gamma-Ray Observatory (CGRO). The method combines good sensitivity with 0.5° angular resolution over the whole sky. Our previous occultation analysis of the BATSE data indicates the presence of a significant number of unmodeled cosmic sources. The Earth's horizon cuts the sky in a cycle that repeats with the 51 day precession of the CGRO orbit plane, which is reflected in periodic effects due to the uncatalogued sources. Such cycles are then a natural data unit for all-sky mapping by a tomographic method using the Radon transform. Because the airmass profile of the horizon is nearly independent of energy, we obtain 0.5° angular resolution over the entire low-energy gamma-ray region. To improve sensitivity, we subtract a phenomenological model for the non-cosmic gamma-ray background from the raw count data before performing the imaging analysis, which uses a simple planar approximation to the inverse Radon transform on a tiling of the sky.

We present images in four broad energy bands (23-98 keV, 98-230 keV, 230-595 keV and 595-1800 keV) centered on selected sources to illustrate the power of this approach. Our preliminary results tentatively show several sources in the 230-595 keV and 595-1800 keV bands, which will be presented. We easily image the Crab in the 595-1800 keV band in a single precession cycle. With 64 cycles in the 9 year CGRO data set, we expect a flux-complete survey of the entire sky, with multiple independent sky maps achieving a combined sensitivity typically less than 125 mCrab near 1 MeV. This work has been supported by grants from NASA, JPL, and LSU. Title: The SOLAR-C mission: study status update Authors: Shimizu, Toshifumi Bibcode: 2010cosp...38.1950S Altcode: 2010cosp.meet.1950S The SOLAR-C working group (WG) in ISAS/JAXA with Solar-C project office in NAOJ has been studying the next solar mission, the so-called Solar-C, as the post-Hinode mission. Two concepts have been studied: The Plan A mission will perform out-of-the-ecliptic magnetic and helioseismic observations of the polar and the quatorial regions to investigate properties of the polar region, meridional flow and magnetic structure inside the Sun down to the bottom of the convection zone. This kind of exploration may give better understanding of the mechanism responsible for creating the solar magnetic cycle. The Plan B mission will perform high spatial resolution, high throughput, high cadence spectroscopic and polarimetric and UV observations, from the photosphere to the corona, to investigate the magnetism of the Sun and its role in heating and dynamism of the solar atmospheres. Deeper investigations of magnetic reconnec-tion in the solar plasma is one of key observations for understanding dynamism and heating of the solar plasma, and it is our desire that the following observations are realized with the com-bination of the instrument candidates. 1) Precise spectroscopic and polarimetric observations for understanding dynamic nature of magnetic fields, especially in the upper atmospheres (chro-mosphere and, the corona if possible). 2) High time resolution, high throughput spectroscopic observations for understanding nature of dynamics. 3) Seamless observations over the entire atmosphere, i.e., from photosphere to corona, for understanding the entire pictures of heating and dynamics. 4) High spatial resolution observations for resolving elementary structures and physical process responsible for various MHD behaviors in the solar atmosphere. Three model payloads have been studied: 1.5m near IR-visible-UV telescope, high throughput UV/EUV spectrograph, and X-ray telescope with photon counting mode. Studies are in good progress in 2009, with studies by sub-working groups, which are organized with participation of many scientists from US and countries in Europe. The WG plans to propose a single mission plan to ISAS/JAXA at the time of the next call for proposal of the next JAXA science mission. We will report our latest mission concept and study status in the presentation. Title: Magnetohydrodynamics Study of Three-Dimensional Fast Magnetic Reconnection for Intermittent Snake-Like Downflows in Solar Flares Authors: Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K. Bibcode: 2009ApJ...707..420S Altcode: Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study. Title: Hinode Observation of the Vector Magnetic Fields in a Sunspot Light Bridge Accompanied by Chromospheric Plasma Ejections Authors: Shimizu, T. Bibcode: 2009ASPC..415..148S Altcode: This article briefly discusses vector magnetic fields of of a sunspot light bridge (LB) where chromospheric plasma ejections (or it is called surges) occurred intermittently and recurrently for more than 1 day. Obliquely oriented magnetic fields with strong vertical electric current density higher than 100 mA/m2 are clearly observed along the light bridge, suggesting a twisted magnetic flux (current carrying) loop lying along the bridge. The magnetic field structure of the light bridge is modeled to explain observed recurrent ejections in terms of magnetic reconnections at the low atmosphere. Details of our findings will be described in a more complete paper (Shimizu et al. 2009). Title: Radiation Transfer Analysis on Heating Mechanism of Magnetohydrodynamic Emerging Magnetic Flux Tube Authors: Kato, Y.; Magara, T.; Shimizu, T. Bibcode: 2009ASPC..415..272K Altcode: In spite of the large number of magnetohydrodynamic (MHD) simulations of emerging flux tubes in the solar atmosphere, radiation properties of the phenomenon remain poorly understood. This is because heating at the footpoints of the emerging magnetic field lines is significant and the effects associated with heat conduction and evaporation have largely been neglected. In this study, we have performed three-dimensional (3-D) multi-wavelength radiation transfer calculations on a MHD model of an emerging flux tube in order to examine the MHD model and also to identify a possible heating mechanism for explaining the properties of observed X-ray coronal loops. It is found that the current dissipation model is difficult for reproducing the structure of X-ray loops observed by Hinode XRT and Yohkoh SXT. This suggests that alternative models of the heating process should be incorporated into our MHD models. We left unresolved issues of the heating process as future work. Title: Initial Results of New Tomographic Imaging of the Gamma-Ray Sky with BATSE Authors: Case, G. L.; Cherry, M. L.; Ling, J. C.; Lo, M.; Shimizu, T.; Wheaton, Wm. A. Bibcode: 2009arXiv0912.3815C Altcode: We describe an improved method of mapping the gamma-ray sky by applying the Linear Radon Transform to data from BATSE on NASA's CGRO. Based on a method similar to that used in medical imaging, we use the relatively sharp (~0.25 deg) limb of the Earth to collimate BATSE's eight Large Area Detectors (LADs). Coupling this to the ~51-day precession cycle of the CGRO orbit, we can complete a full survey of the sky, localizing point sources to < 1 deg accuracy. This technique also uses a physical model for removing many sources of gamma-ray background, which allows us to image strong gamma-ray sources such as the Crab up to ~2 MeV with only a single precession cycle. We present the concept of the Radon Transform technique as applied to the BATSE data for imaging the gamma-ray sky and show sample images in three broad energy bands (23-98 keV, 98-230 keV, and 230-595 keV) centered on the positions of selected sources from the catalog of 130 known sources used in our Enhanced BATSE Occultation Package (EBOP) analysis system. Any new sources discovered during the sky survey will be added to the input catalog for EBOP allowing daily light curves and spectra to be generated. We also discuss the adaptation of tomographic imaging to the Fermi GBM occultation project. Title: Magnetic Flux Budget in a Decaying Active Region Authors: Kubo, M.; Lites, B. W.; Shimizu, T.; Ichimoto, K. Bibcode: 2009ASPC..415..359K Altcode: We investigate the sunspot decay process in terms of the magnetic flux budget of a decaying sunspot. This article is based on results in Kubo et al. 2008. Please see this paper for further details. Title: The self-organization of neutral lines in three-dimensional and random fast magnetic reconnection Authors: Shimizu, T. Bibcode: 2009AGUFMSH23A1532S Altcode: Three-dimensional, multiple, spontaneous, and intermittent fast magnetic reconnection was studied in numerical MHD simulations as a three-dimensional instability of the typical two-dimensional spontaneous fast magnetic reconnection model. In this model, the current-driven anomalous resistivity is assumed and the fast reconnection process is initiated by a three-dimensional resistive perturbation in the one-dimensional current sheet. The resulting fast reconnection process is strongly localized in the sheet current direction, intermittently enhanced, and simultaneously occurs in some places of the current sheet. As a result, magnetic loops, i.e. plasmoids, are repeatedly and randomly ejected. This numerical result is very similar to the intermittent downflows often observed in EUV imager of solar flares. In this paper, in the viewpoint of three-dimensional instability of the reconnection process, the three-dimensional structures and dynamics of neutral lines which can be caused in the one-dimensional current sheet are reported through the numerical and analytical MHD studies. Title: Evolution of fine magnetic structures in sunspot light bridges as observed with Hinode/SOT Authors: Shimizu, T. Bibcode: 2009AGUFMSH53B..08S Altcode: Sunspot light bridges are one of the fundamental magnetic structures in sunspots, possibly related to fragmentation of magnetic flux in sunspots. One of the interesting and important observational aspects that some light bridges show chromospheric activities along the structure, such as long-lasting plasma ejections or surge activities (Roy 1973, Asai et al. 2001, Bharti et al. 2007, Shimizu et al. 2009) and brightness enhancements (Berger and Berdyugina 2003). Moreover, X-ray transient brightenings of coronal loops (microflares) may have one loop footpoint near along sunspot light bridges. What are magnetic structures and activities for causing activities in the chromosphere and corona? Precise vector magnetic field measurements with high spatial resolution can give observational hints to this question. This presentation will discuss high-resolution vector magnetic field measurements of sunspot light bridges, some of which showed remarkable chromospheric activities. One good example is a sunspot light bridge observed at the south-east side of the leading sunspot in NOAA Active Region 10953. Long-lasting plasma ejections were intermittently and recurrently observed in the chromosphere for more than 1 days, starting from 20UT on April 29, 2007 and observed through April 30. The light bridge showed several number of brightenings in the chromosphere on May 1. During these three days, SOT successfully captured long-term evolution of fine magnetic structures in the light bridge with Stokes Polarimeter. The magnetic field data suggests that magnetic flux tubes were trapped below a cusp-shaped magnetic structure along the light bridge. The flux tubes were highly twisted on April 30 and less twisted on May 1. Chromospheric ejections and heating, and their different behaviors between on April 30 and May 1 may be explained with evolution of fine magnetic structures along the light bridge. Many observational features can be well explained in terms of magnetic reconnections between the trapped flux tubes and pre-existing vertically oriented umbral fields. Title: Hinode Mission Status Authors: Shimizu, T. Bibcode: 2009ASPC..415....1S Altcode: The Hinode mission status was briefly explained in this presentation. The Hinode spacecraft has been operated for two years after the launch on 23 September 2006 (JST). All the three telescopes are continuing to observe the Sun with the expected excellent performance. The Sun has been quiet for most of the latest one year and Hinode's observations were mainly focused on the quiet Sun studies. Spacecraft functions are good except for an anomaly in X-band telemetry downlink. The X-band downlink anomaly gives a restriction to the volume of science data but we have almost established scientific operations baseline since the transition to S-band backup high-speed downlink. Title: Magnetic Flux Budget of a Decaying Sunspot Authors: Kubo, Masahito; Lites, Bruce W.; Shimizu, Toshifumi; Ichimoto, Kiyoshi Bibcode: 2009shin.confE...9K Altcode: Numerous small magnetic elements called moving magnetic features (MMFs) are generally observed in the moat region that surrounds a sunspot. We attempt to address a basic question how much magnetic flux is carried away from a sunspot by MMFs and is subsequently removed from the photosphere. This is essential for understanding decay of sunspots and distribution of magnetic flux on the Sun. We estimate the magnetic flux budget in a decaying sunspot and its surrounding moat region by using a time series of the spatial distribution of vector magnetic fields in the photosphere. Spectropolarimetric measurements with the Solar Optical Telescope aboard the Hinode satellite allow us, for the first time, to know an accurate flux change without any effects of atmospheric seeing. The amount of magnetic flux that decreases in the sunspot and (inner) moat region is very similar to magnetic flux transported to the outer boundary of the moat region. The flux loss rates of magnetic elements with positive and negative polarities balance each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as MMFs, and then the transported flux is removed from the photosphere by apparent collisions of opposite-polarity magnetic elements (called Title: Magnetic field strength of active region filaments Authors: Kuckein, C.; Centeno, R.; Martínez Pillet, V.; Casini, R.; Manso Sainz, R.; Shimizu, T. Bibcode: 2009A&A...501.1113K Altcode: 2009arXiv0904.4876K Aims: We study the vector magnetic field of a filament observed over a compact active region neutral line.
Methods: Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10 830 Å spectral region provide full Stokes vectors that were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions, and PCA-based atomic polarization inversions.
Results: The inferred magnetic field strengths in the filament are around 600-700 G by all these three methods. Longitudinal fields are found in the range of 100-200 G whereas the transverse components become dominant, with fields as high as 500-600 G. We find strong transverse fields near the neutral line also at photospheric levels.
Conclusions: Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in active region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the helium 10 830 Å lines observed in this active region filament are dominated by the Zeeman effect. Title: A New View of Fine Scale Dynamics and Magnetism of Sunspots Revealed by Hinode/SOT Authors: Ichimoto, K.; Suematsu, Y.; Katsukawa, Y.; Tsuneta, S.; Shimojo, M.; Shimizu, T.; Shine, R. A.; Tarbell, T. D.; Berger, T.; Title, A. M.; Lites, B. W.; Kubo, M.; Yokoyama, T.; Nagata, S. Bibcode: 2009ASPC..405..167I Altcode: The Solar Optical Telescope on-board Hinode is providing a new view of the fine scale dynamics in sunspots with its high spatial resolution and unprecedented image stability. We present three features related to the Evershed flow each of which raises a new puzzle in sunspot dynamics; i.e., twisting appearance of penumbral filaments, the source and sink of individual Evershed flow channels, and the net circular polarization in penumbrae with its spatial relation to the Evershed flow channels. Title: Has Hinode Revealed the Missing Turbulent Flux of the Quiet Sun? Authors: Lites, B. W.; Kubo, M.; Socas-Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A. M.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2009ASPC..405..173L Altcode: The Hinode Spectro-Polarimeter has revealed the presence of surprisingly strong horizontal magnetic fields nearly everywhere in the quiet solar atmosphere. These horizontal fields, along with measures of the vertical fields, may be the signature of the ``hidden turbulent flux'' of the quiet Sun. The measured horizontal fields average at least to 55 Gauss: nearly 5 times that of the measured longitudinal apparent flux density. The nature of these fields are reviewed, and discussed in the light of recent magneto-convection numerical simulations of the quiet Sun. Title: Hinode Observation of the Magnetic Fields in a Sunspot Light Bridge Accompanied by Long-Lasting Chromospheric Plasma Ejections Authors: Shimizu, Toshifumi; Katsukawa, Yukio; Kubo, Masahito; Lites, Bruce W.; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Tsuneta, Saku; Nagata, Shin'ichi; Shine, Richard A.; Tarbell, Theodore D. Bibcode: 2009ApJ...696L..66S Altcode: We present high-resolution magnetic field measurements of a sunspot light bridge (LB) that produced chromospheric plasma ejections intermittently and recurrently for more than 1 day. The observations were carried out with the Hinode Solar Optical Telescope on 2007 April 29 and 30. The spectro-polarimeter reveals obliquely oriented magnetic fields with vertical electric current density higher than 100 mA m-2 along the LB. The observations suggest that current-carrying highly twisted magnetic flux tubes are trapped below a cusp-shaped magnetic structure along the LB. The presence of trapped current-carrying flux tubes is essential for causing long-lasting chromospheric plasma ejections at the interface with pre-existing vertically oriented umbral fields. A bidirectional jet was clearly detected, suggesting magnetic reconnections occurring at very low altitudes, slightly above the height where the vector magnetic fields are measured. Moreover, we found another strong vertical electric current on the interface between the current-carrying flux tube and pre-existing umbral field, which might be a direct detection of the currents flowing in the current sheet formed at the magnetic reconnection sites. Title: Three-dimensional non-linear instability of spontaneous fast magnetic reconnection Authors: Shimizu, T.; Kondoh, K.; Ugai, M. Bibcode: 2009EP&S...61..569S Altcode: 2009EP&S...61L.569S Three-dimensional instability of spontaneous fast magnetic reconnection is studied using MHD (magnetohydro- dynamic) simulation. Previous two-dimensional MHD studies have demonstrated that, if a current-driven anomalous resistivity is assumed, two-dimensional fast magnetic reconnection occurs and two-dimensional largescale magnetic loops, i.e., plasmoids, are ejected from the reconnection region. In most two-dimensional MHD studies, the structure of the current sheet is initially one-dimensinal. On the other hand, in recent space plasma observations, fully three-dimensional magnetic loops frequently appear even in the almost one-dimensional current sheet. This suggests that the classical two-dimensional fast magnetic reconnection may be unstable to any three-dimensional perturbation, resulting in three-dimensional fast magnetic reconnection. In this paper, we show that a three-dimensional resistive perturbation destabilizes two-dimensional fast magnetic reconnection and results in three-dimensional fast magnetic reconnection. The resulting three-dimensional fast reconnection repeatedly ejects three-dimensional magnetic loops downstream. The obtained numerical results are similar to the pulsating downflows observed in solar flares. According to the Fourier analysis of the ejected magnetic loops, the time evolution of this three-dimensional instability is fully non-linear. Title: Magnetic Flux Budget of a Decaying Sunspot Authors: Kubo, Masahito; Lites, B. W.; Shimizu, T.; Ichimoto, K. Bibcode: 2009SPD....40.0905K Altcode: We estimate how much magnetic flux is lost in a decaying sunspot and how much magnetic flux is carried away from the sunspot through its surrounding moat region. A time series of spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode allows us, for the first time, to investigate an accurate flux change without any effects of atmospheric seeing. The amount of magnetic flux that decreases in the sunspot and moat region is almost equal to that of magnetic flux transported to the outer boundary of the moat region. The flux loss rates of magnetic elements with positive and negative polarities are balanced each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as moving magnetic features, and then removed from the photosphere by flux cancellation around the moat boundary. Title: BATSE Soft Gamma Rays Tomographic Sky Imaging with Radon Transforms Authors: Ling, J. C.; Case, G. L., II; Lo, M.; Shimizu, T.; Reddick, R.; Wheaton, W. A.; Cherry, M. Bibcode: 2009AAS...21440712L Altcode: We present preliminary results of tomographic imaging of the 20 keV to 1800 keV gamma-ray sky using Radon Transforms and data from the BATSE experiment on the Compton Gamma Ray Observatory. The method uses Earth occultation, with the 0.2 degree angular response characteristic of the atmospheric limb, together with the all-sky coverage of the BATSE instrument to produce 2-dimensional maps of the sky from the count data from the eight BATSE detectors. We have initially used the Linear Radon Transform (LRT), though this limits us to imaging small ( 4x4o) regions of the sky where the earth limb can be approximated as a straight line. As the orbit of the spacecraft precesses over a 51-day period, the earth limb sweeps across the sky at different orientations, though never sampling the full 180o range of angles. The large and complex variation of the background counting rate common to all high-energy instruments in low-earth orbit is subtracted from the raw data prior to the imaging steps using our earlier work in modeling the background variability (Ling et al. 2000).

Summing the 16 BATSE LAD energy channels into four broad bands (23-98 keV, 98-230 keV, 230-595 keV, and 595-1798 keV), we are able to detect and position the Crab Nebula and the nearby transient GRO J0422+32 using only a single 51 day precession cycle, with source location accuracy of the order of 1o in each band. We confirm earlier work by Zhang et al (1993) for applying the LRT technique to the BATSE data, extend their work to cover more source regions, and produce images at higher energies. We also discuss the extension of our method to Generalized Radon Transforms, e.g. the Spherical Cap Radon Transform, which would allow us to image larger regions of the sky. Title: Precision Co-alignment Of Hinode SOT And XRT Images Authors: Slater, Gregory L.; Shimizu, T. Bibcode: 2009SPD....40.1521S Altcode: In order to fully exploit the high spatial resolution of the SOT and XRT telescopes of the Hinode solar observatory, routine sub-arcsecond alignment between images from the two instruments is important. Algorithms have been developed to precisely align SOT and XRT image series to within 1 arcsec. The effectiveness of the algorithms is currently being tested on data taken throughout the Hinode mission. The results of these tests will be presented, as well as the status of efforts to generate absolute pointing coordinates for SOT and XRT images. Title: Modeling of substorms and flares by the fast reconnection mechanism Authors: Ugai, M.; Kondoh, K.; Shimizu, T. Bibcode: 2009EP&S...61..561U Altcode: 2009EP&S...61L.561U The 3D spontaneous fast reconnection model is applied to well-known signatures of geomagnetic substorms and solar flares. First, it is applied to the traveling compression regions (TCRs) associated with plasmoids propagating down the tail plasma sheet, known as a definite signature of geomagnetic substorms, and the in-situ satellite observations can be precisely explained, both qualitatively and quantitatively. Then, it is demonstrated that the magnetospheric current wedge drastically evolves through field-aligned currents to link the tail current to the auroral electrojet. It is also found that the well-known morphological features of two-ribbon flares can be explained by the fast reconnection model. In particular, the joule heating, associated with the flare current wedge, is shown to be important for the two-ribbon heating. Therefore, it is suggested that both solar flares and geomagnetic substorms result from the same physical mechanism, i.e., the fast reconnection mechanism. Title: Prominence Formation Associated with an Emerging Helical Flux Rope Authors: Okamoto, Takenori J.; Tsuneta, Saku; Lites, Bruce W.; Kubo, Masahito; Yokoyama, Takaaki; Berger, Thomas E.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Nagata, Shin'ichi; Shibata, Kazunari; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2009ApJ...697..913O Altcode: 2009arXiv0904.0007O The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence. Title: HINODE: New Space-borne Observatory for Investigating the Sun Authors: Shimizu, Toshifumi Bibcode: 2009TrSpT...7..Tm1S Altcode: This paper gives an overview of the Hinode satellite, which was launched in September 2006 and is now observing the Sun with high spatial resolution and high performance never achieved so far. The primary aims of Hinode are to investigate magnetic activity of the Sun including its generation, energy transfer and release of the magnetic energy by simultaneously observing the solar surface (photosphere) and the corona. Some results from the Hinode observations are presented with emphasis on the supreme performance of the spacecraft and its onboard telescopes. Title: Erratum: "Magnetic Flux Loss and Flux Transport in a Decaying Active Region" (ApJ, 686, 1447 [2008]) Authors: Kubo, M.; Lites, B. W.; Shimizu, T.; Ichimoto, K. Bibcode: 2008ApJ...689.1456K Altcode: No abstract at ADS Title: The Magnetic Landscape of the Sun's Polar Region Authors: Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Matsuzaki, K.; Nagata, S.; Orozco Suárez, D.; Shimizu, T.; Shimojo, M.; Shine, R. A.; Suematsu, Y.; Suzuki, T. K.; Tarbell, T. D.; Title, A. M. Bibcode: 2008ApJ...688.1374T Altcode: 2008arXiv0807.4631T We present observations of the magnetic landscape of the polar region of the Sun that are unprecedented in terms of spatial resolution, field of view, and polarimetric precision. They were carried out with the Solar Optical Telescope aboard Hinode. Using a Milne-Eddington inversion, we find many vertically oriented magnetic flux tubes with field strengths as strong as 1 kG scattered in latitude between 70° and 90°. They all have the same polarity, consistent with the global polarity of the polar region. The field vectors are observed to diverge from the centers of the flux elements, consistent with a view of magnetic fields that are expanding and fanning out with height. The polar region is also found to have ubiquitous horizontal fields. The polar regions are the source of the fast solar wind, which is channeled along unipolar coronal magnetic fields whose photospheric source is evidently rooted in the strong-field, vertical patches of flux. We conjecture that vertical flux tubes with large expansion around the photospheric-coronal boundary serve as efficient chimneys for Alfvén waves that accelerate the solar wind. Title: Three-dimensional instability of spontaneous fast magnetic reconnection Authors: Shimizu, T.; Kondo, K.; Ugai, M. Bibcode: 2008AGUFMSM21B..06S Altcode: MHD numerical study for spontaneous fast magnetic reconnection is presented. As well-known in two- dimensional numerical MHD studies, if a current-driven anomalous resistivity is assumed, one-dimensional current sheet is destabilized by a resistive perturbation, resulting in two-dimensional fast magnetic reconnection. In this paper, it is shown that such a two-dimensional fast magnetic reconnection process can be moreover destabilized by a three-dimensional resistive perturbation, resulting in three-dimensional fast magnetic reconnection which is strongly localized in sheet current direction. The three-dimensional fast magnetic reconnection process intermittently and randomly ejects three-dimensional plasmoids downstream. This numerical study is applicable for magnetic reconnection problems in geo-magnetotail and solar flares, in which three-dimensional plasmoids are intermittently ejected from one-dimensional current sheet. It fact, this numerical result is very similar to the intermittent downflow observed in solar flares by TRACE"fs EUV instrument. Title: The SOLAR-C mission Authors: Shimizu, T. Bibcode: 2008AGUFMSH52A..07S Altcode: Solar-physics community in Japan has so far developed 3 solar missions, i.e., Hinotori, Yohkoh, and Hinode, over past 25 years. Japan has started the conceptual studies for realizing the forth mission (SOLAR-C) in the coming decade. Two mission concepts are now under study. Plan A is to perform magnetic, helioseismic, and X-ray observations of the solar polar regions from out of the ecliptic to investigate properties of the polar region, magnetic and flow structures inside the Sun down to the bottom of the convection zone. Plan B is to perform high throughput, high cadence spectroscopic/polarimetric and EUV/X-ray observations with high spatial resolution, focusing on chromosphere and transition region as interface layer from the photosphere to corona, to investigate magnetism of the Sun and its roles in heating and dynamics of solar atmosphere. JAXA SOLAR-C working group, organized in ISAS of JAXA with participation of japanese researchers, refines both plans, compare science, technology, and other constraints, and will prioritize the two plans. We recognize that success of Hinode and Yohkoh is due to strong international collaborations. The working group hopes strong international support for realizing the SOLAR-C mission and invites US and European participation to the SOLAR-C program, following our remarkable history of collaboration. International SOLAR-C science definition meeting will be held this November at ISAS with participants from US and European countries. This presentation will report on the mission concept and current study status, including discussions in the international Solar-C science definition meeting. Title: White Light Flare Observations from the Solar Optical Telescope onboard Hinode Authors: Watanabe, K.; Shimizu, T. Bibcode: 2008AGUFMSH41B1620W Altcode: In association with solar flares, we sometimes observe emission of white light continuum, which is referred to as a "gwhite light flare"h. White light flares are very infrequent, and the processes causing them are still unclear. Since close correlations of white light and hard X-ray emission were reported in many events (e.g. Hudson et al., 2006), the mechanism seems to involve emission of white light by nonthermal electron beams. The Solar Optical Telescope (SOT) is capable making observations in white light. We used SOT G-band observations to search for white-light flare counterparts to flares of GOES X-ray class C and higher. Among 155 solar flares over the first two years of the Hinode mission, we found eight white-light flare events. The white-light events tended to occur in larger events, however two occurred in C-class flares. The white light emission was located inside the flare ribbon emission, where the ribbons were observed in SOT Ca II H images. The amount of white-light emission is correlated with the emission in GOES soft X-rays and RHESSI hard X-rays. The location of the white light emission is located at almost the same place as the hard X-ray emission. However, just a weak correlation was seen between white light emission and magnetic field strength observed by the SOT Spectro Polarimeter. We consider these observations in terms of hard X-ray production and particle acceleration scenarios. Title: Magnetic Flux Loss and Flux Transport in a Decaying Active Region Authors: Kubo, M.; Lites, B. W.; Shimizu, T.; Ichimoto, K. Bibcode: 2008ApJ...686.1447K Altcode: 2008arXiv0807.4340K We estimate the temporal change of magnetic flux normal to the solar surface in a decaying active region by using a time series of the spatial distribution of vector magnetic fields in the photosphere. The vector magnetic fields are derived from full spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode. We compare a magnetic flux loss rate to a flux transport rate in a decaying sunspot and its surrounding moat region. The amount of magnetic flux that decreases in the sunspot and moat region is very similar to magnetic flux transported to the outer boundary of the moat region. The flux loss rates [(dF/dt)loss] of magnetic elements with positive and negative polarities balance each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as moving magnetic features, and then removed from the photosphere by flux cancellation around the outer boundary of the moat region. Title: Magnetic Fields of the Quiet Sun: A New Quantitative Perspective From Hinode Authors: Lites, B. W.; Kubo, M.; Socas-Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2008ASPC..397...17L Altcode: This article summarizes results of studies presented in two papers already published: Lites et al. (2007a); Lites et al. (2007b). Please see these for further details. Title: On-orbit Performance of the Solar Optical Telescope aboard Hinode Authors: Ichimoto, K.; Katsukawa, Y.; Tarbell, T.; Shine, R. A.; Hoffmann, C.; Berger, T.; Cruz, T.; Suematsu, Y.; Tsuneta, S.; Shimizu, T.; Lites, B. W. Bibcode: 2008ASPC..397....5I Altcode: 2008arXiv0804.3248I On-orbit performance of the Solar Optical Telescope (SOT) aboard Hinode is described with some attention to its unpredicted aspects. In general, SOT reveals an excellent performance and has been providing outstanding data. Some unexpected features exist, however, in behaviours of the focus position, throughput and structural stability. Most of them are recovered by the daily operation i.e., frequent focus adjustment, careful heater setting and corrections in data analysis. The tunable filter contains air bubbles which degrade the data quality significantly. Schemes for tuning the filter without disturbing the bubbles have been developed and tested, and some useful procedures to obtain Dopplergrams and magnetograms are now available. October and March, when the orbit of satellite becomes nearly perpendicular to the direction towards the Sun, provide a favourable condition for continuous runs of the narrow-band filter imager. Title: High Resolution Observations of Spicules with Hinode/SOT Authors: Suematsu, Y.; Ichimoto, K.; Katsukawa, Y.; Shimizu, T.; Okamoto, T.; Tsuneta, S.; Tarbell, T.; Shine, R. A. Bibcode: 2008ASPC..397...27S Altcode: High time cadence unprecedented images at the limb with Ca II H line filtergraph from the Solar Optical Telescope (SOT) aboard Hinode have revealed that a spicule consists of highly dynamic multi-threads (typically twin) as thin as a few tenths of an arcsecond, and shows prominent lateral movement or oscillation with rotation on its axis during its life. This multi-thread structure and lateral motion indicate that the spicules can be driven by magnetic reconnection at unresolved spatial scales at their footpoints. Title: Evolution of Magnetic Fields at the Boundary of the Penumbra Authors: Kubo, M.; Ichimoto, K.; Shimizu, T.; Lites, B. W.; Tsuneta, S.; Suematsu, Y.; Katsukawa, Y.; Nagata, S.; Tarbell, T.; Shine, R. A.; Title, A. M. Bibcode: 2008ASPC..397...79K Altcode: The formation of moving magnetic features (MMFs) separating from the penumbra were successfully observed with the Solar Optical Telescope (SOT) aboard the Hinode satellite. We find that bright features in the outer penumbra are located at the penumbral spines, which have magnetic fields more vertical than the surroundings, or located at the MMFs separating from the spines. This suggests that convection in the outer penumbra is related to the disintegration of the sunspot. Title: Erratum: The Analysis of Penumbral Fine Structure Using an Advanced Inversion Technique Authors: Jurcák, Jan; Bellot Rubio, Luis; Ichimoto, Kiyoshi; Katsukawa, Yukio; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M.; Tsuneta, Saku Bibcode: 2008PASJ...60..933J Altcode: In the article [PASJ 59, S601-S606 (2007)], the word ''CSIC'' was omitted from the affiliation of Dr. Luis Bellot Rubio. The correct affiliation is : 2Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, 18080 Granada, Spain Title: Vertical Temperature Structures of the Solar Corona Derived with the Hinode X-Ray Telescope Authors: Kano, Ryouhei; Sakao, Taro; Narukage, Noriyuki; Tsuneta, Saku; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward; Lundquist, Loraine; Golub, Leon; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro Bibcode: 2008PASJ...60..827K Altcode: We obtained temperature structures in faint coronal features above and near the solar limb with the X-Ray Telescope aboard the Hinode satellite by accurately correcting the scattered X-rays from surrounding bright regions with occulted images during the solar eclipses. Our analysis yields a polar coronal hole temperature of about 1.0MK and an emission measure in the range of 1025.5-1026.0cm-5. In addition, our methods allow us to measure the temperature and emission measure of two distinct quiet-Sun structures: radial (plume-like) structures near the boundary of the coronal-hole and diffuse quiet Sun regions at mid-latitudes. The radial structures appear to have increasing temperature with height during the first 100Mm, and constant temperatures above 100Mm. For the diffuse quiet-Sun region the temperatures are the highest just above the limb, and appear to decrease with height. These differences may be due to different magnetic configurations. Title: Frequent Occurrence of High-Speed Local Mass Downflows on the Solar Surface Authors: Shimizu, Toshifumi Bibcode: 2008AstHe.101..414S Altcode: New spectro-polarimetric measurements have been carried out with the Solar Optical Telescope onboard the Hinode satellite, revealing the frequent appearance of polarization signals indicating high-speed, probably supersonic, downflows that are associated with at least three different configurations of magnetic fields in the solar photosphere. The excitation of supersonic mass flows are one of the key observational features of the dynamical evolution occurring in magnetic-field fine structures on the solar surface. Furthermore, understanding the origins of observed supersonic flows may help to understand complicated interactions between plasma flows and magnetic fields in the astrophysical plasma. Title: Disintegration of Magnetic Flux in Decaying Sunspots as Observed with the Hinode SOT Authors: Kubo, M.; Lites, B. W.; Ichimoto, K.; Shimizu, T.; Suematsu, Y.; Katsukawa, Y.; Tarbell, T. D.; Shine, R. A.; Title, A. M.; Nagata, S.; Tsuneta, S. Bibcode: 2008ApJ...681.1677K Altcode: 2008arXiv0806.0415K Continuous observations of sunspot penumbrae with the Solar Optical Telescope aboard Hinode clearly show that the outer boundary of the penumbra fluctuates around its averaged position. The penumbral outer boundary moves inward when granules appear in the outer penumbra. We discover that such granules appear one after another while moving magnetic features (MMFs) are separating from the penumbral "spines" (penumbral features that have fields that are stronger and more vertical than those of their surroundings). These granules that appear in the outer penumbra often merge with bright features inside the penumbra that move with the spines as they elongate toward the moat region. This suggests that convective motions around the penumbral outer boundary are related to the disintegration of magnetic flux in the sunspot. We also find that dark penumbral filaments frequently elongate into the moat region in the vicinity of MMFs that detach from penumbral spines. Such elongating dark penumbral filaments correspond to nearly horizontal fields extending from the penumbra. Pairs of MMFs with positive and negative polarities are sometimes observed along the elongating dark penumbral filaments. This strongly supports the notion that such elongating dark penumbral filaments have magnetic fields with a "sea serpent"-like structure. Evershed flows, which are associated with the penumbral horizontal fields, may be related to the detachment of the MMFs from the penumbral spines, as well as to the formation of the MMFs along the dark penumbral filaments that elongate into the moat region. Title: Polarization Calibration of the Solar Optical Telescope onboard Hinode Authors: Ichimoto, K.; Lites, B.; Elmore, D.; Suematsu, Y.; Tsuneta, S.; Katsukawa, Y.; Shimizu, T.; Shine, R.; Tarbell, T.; Title, A.; Kiyohara, J.; Shinoda, K.; Card, G.; Lecinski, A.; Streander, K.; Nakagiri, M.; Miyashita, M.; Noguchi, M.; Hoffmann, C.; Cruz, T. Bibcode: 2008SoPh..249..233I Altcode: 2008SoPh..tmp...69I The Solar Optical Telescope (SOT) onboard Hinode aims to obtain vector magnetic fields on the Sun through precise spectropolarimetry of solar spectral lines with a spatial resolution of 0.2 - 0.3 arcsec. A photometric accuracy of 10−3 is achieved and, after the polarization calibration, any artificial polarization from crosstalk among Stokes parameters is required to be suppressed below the level of the statistical noise over the SOT's field of view. This goal was achieved by the highly optimized design of the SOT as a polarimeter, extensive analyses and testing of optical elements, and an end-to-end calibration test of the entire system. In this paper we review both the approach adopted to realize the high-precision polarimeter of the SOT and its final polarization characteristics. Title: Image Stabilization System for Hinode (Solar-B) Solar Optical Telescope Authors: Shimizu, T.; Nagata, S.; Tsuneta, S.; Tarbell, T.; Edwards, C.; Shine, R.; Hoffmann, C.; Thomas, E.; Sour, S.; Rehse, R.; Ito, O.; Kashiwagi, Y.; Tabata, M.; Kodeki, K.; Nagase, M.; Matsuzaki, K.; Kobayashi, K.; Ichimoto, K.; Suematsu, Y. Bibcode: 2008SoPh..249..221S Altcode: The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field dynamics in the solar lower atmosphere with 0.2 - 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions. To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec, 3σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is less than 0.03 arcsec (3σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 - 0.3 arcsec resolution. Title: The Solar Optical Telescope for the Hinode Mission: An Overview Authors: Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Otsubo, M.; Shimizu, T.; Suematsu, Y.; Nakagiri, M.; Noguchi, M.; Tarbell, T.; Title, A.; Shine, R.; Rosenberg, W.; Hoffmann, C.; Jurcevich, B.; Kushner, G.; Levay, M.; Lites, B.; Elmore, D.; Matsushita, T.; Kawaguchi, N.; Saito, H.; Mikami, I.; Hill, L. D.; Owens, J. K. Bibcode: 2008SoPh..249..167T Altcode: 2008SoPh..tmp...74T; 2007arXiv0711.1715T The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50-cm diffraction-limited Gregorian telescope, and the FPP includes the narrowband filtergraph (NFI) and the broadband filtergraph (BFI), plus the Stokes Spectro-Polarimeter (SP). The SOT provides unprecedented high-resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function and is equipped with an image-stabilization system with performance better than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS)), the SOT is poised to address many fundamental questions about solar magnetohydrodynamics. This paper provides an overview; the details of the instrument are presented in a series of companion papers. Title: Frequent Occurrence of High-Speed Local Mass Downflows on the Solar Surface Authors: Shimizu, T.; Lites, B. W.; Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Tsuneta, S.; Nagata, S.; Kubo, M.; Shine, R. A.; Tarbell, T. D. Bibcode: 2008ApJ...680.1467S Altcode: 2008arXiv0804.1167S We report on new spectropolarimetric measurements with simultaneous filter imaging observation, revealing the frequent appearance of polarization signals indicating high-speed, probably supersonic, downflows that are associated with at least three different configurations of magnetic fields in the solar photosphere. The observations were carried out with the Solar Optical Telescope on board the Hinode satellite. High-speed downflows are excited when a moving magnetic feature is newly formed near the penumbral boundary of sunspots. Also, a new type of downflows is identified at the edge of sunspot umbra that lack accompanying penumbral structures. These may be triggered by the interaction of magnetic fields swept by convection with well-concentrated magnetic flux. Another class of high-speed downflows are observed in quiet Sun and sunspot moat regions. These are closely related to the formation of small concentrated magnetic flux patches. High-speed downflows of all types are transient time-dependent mass motions. These findings suggest that the excitation of supersonic mass flows are one of the key observational features of the dynamical evolution occurring in magnetic-field fine structures on the solar surface. Title: Cooperative Observation of Ellerman Bombs between the Solar Optical Telescope aboard Hinode and Hida/Domeless Solar Telescope Authors: Matsumoto, Takuma; Kitai, Reizaburo; Shibata, Kazunari; Nagata, Shin'ichi; Otsuji, Kenichi; Nakamura, Tahei; Watanabe, Hiroko; Tsuneta, Saku; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Tarbell, Theodore D.; Lites, Bruce W.; Shine, Richard A.; Title, Alan M. Bibcode: 2008PASJ...60..577M Altcode: High-resolution CaIIH broad-band filter images of NOAA10933 on 2007 January 5 were obtained by the Solar Optical Telescope aboard the Hinode satellite. Many small-scale (∼1") bright points were observed outside the sunspot and inside the emerging flux region. We identified some of these bright points with Ellerman bombs (EBs) by using Hα images taken by the Domeless Solar Telescope at Hida observatory. The sub-arcsec structures of two EBs seen in CaIIH were studied in detail. Our observation showed the following two aspects: (1) The CaIIH bright points identified with EBs were associated with the bipolar magnetic field structures, as reported by previous studies. (2)The structure of the CaIIH bright points turned out to consist of the following two parts: a central elongated bright core (0.7" × 0.5") located along the magnetic neutral line and a diffuse halo (1.2"×1.8"). Title: The Solar Optical Telescope of Solar-B ( Hinode): The Optical Telescope Assembly Authors: Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T.; Otsubo, M.; Katsukawa, Y.; Nakagiri, M.; Noguchi, M.; Tamura, T.; Kato, Y.; Hara, H.; Kubo, M.; Mikami, I.; Saito, H.; Matsushita, T.; Kawaguchi, N.; Nakaoji, T.; Nagae, K.; Shimada, S.; Takeyama, N.; Yamamuro, T. Bibcode: 2008SoPh..249..197S Altcode: 2008SoPh..tmp...26S The Solar Optical Telescope (SOT) aboard the Solar-B satellite (Hinode) is designed to perform high-precision photometric and polarimetric observations of the Sun in visible light spectra (388 - 668 nm) with a spatial resolution of 0.2 - 0.3 arcsec. The SOT consists of two optically separable components: the Optical Telescope Assembly (OTA), consisting of a 50-cm aperture Gregorian with a collimating lens unit and an active tip-tilt mirror, and an accompanying Focal Plane Package (FPP), housing two filtergraphs and a spectro-polarimeter. The optomechanical and optothermal performance of the OTA is crucial to attain unprecedented high-quality solar observations. We describe in detail the instrument design and expected stable diffraction-limited on-orbit performance of the OTA, the largest state-of-the-art solar telescope yet flown in space. Title: The Analysis of Hinode/XRT Observations Authors: Deluca, E. E.; Weber, M.; Savcheva, A.; Saar, S.; Testa, P.; Cirtain, J. W.; Sakao, T.; Noriyuki, N.; Kano, R.; Shimizu, T. Bibcode: 2008AGUSMSP51B..02D Altcode: This poster will present the current state of Hinode/XRT analysis software. We will give an overview of the XRT Analysis Guide. We will include a detailed discussion of the following topics:

Co-alignment with SOT and EIS Spot removal for dynamics studies Filter calibration for thermal studies Dark calibrations

Sample data sets will be discussed and links to the data products will be provided. Title: Emergence of a helical flux rope and prominence formation Authors: Okamoto, T. J.; Tsuneta, S.; Lites, B. W.; Kubo, M.; Yokoyama, T.; Berger, T. E.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Shibata, K.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M. Bibcode: 2008AGUSMSP43B..06O Altcode: We report a discovery about emergence of a helical flux rope. The episode may be related to the formation and evolution of an active region prominence. Statistical studies by previous authors indicate that numerous prominences have the inverse-polarity configuration suggesting the helical magnetic configurations. There are two theoretical models about formation of such a coronal helical magnetic field in association with prominences: flux rope model and sheared-arcade model. We have so far no clear observational evidence to support either model. In order to find a clue about the formation of the prominence, we had continuous observations of NOAA AR 10953 with the SOT during 2007 April 28 to May 9. A prominence was located over the polarity inversion line in the south-east of the main sunspot. These observations provided us with a time series of vector magnetic fields on the photosphere under the prominence. We found four new features: (1) The abutting opposite-polarity regions on the two sides along the polarity inversion line first grew laterally in size and then narrowed. (2) These abutting regions contained vertically-weak, but horizontally-strong magnetic fields. (3) The orientations of the horizontal magnetic fields along the polarity inversion line on the photosphere gradually changed with time from a normal- polarity configuration to an inverse-polarity one. (4) The horizontal-magnetic field region was blueshifted. These indicate that helical flux rope emerges from below the photosphere into the corona along the polarity inversion line under the prominence. We suggest that this supply of a helical magnetic flux possibly into the corona is related to formation and maintenance of active-region prominences. Title: Photospheric Signature of Penumbral Microjets Authors: Katsukawa, Y.; Jurcak, J.; Ichimoto, K.; Suemtasu, Y.; Tsuneta, S.; Shimizu, T.; Berger, T. E.; Shine, R. A.; Tarbell, T. D.; Lites, B. W. Bibcode: 2008AGUSMSP53A..03K Altcode: HINODE Solar Optical Telescope (SOT) discovered ubiquitous occurrence of fine-scale jetlike activities in penumbral chromospheres, which are referred to as penumbral microjets. The microjets' small width of 400 km and short duration of less than 1 min make them difficult to identify in existing ground-based observations. The apparent rise velocity is faster than 50km/s and is roughly comparable to the Alfven speed in the sunspot chromosphere. These properties of penumbral microjets suggest that magnetic reconnection in uncombed magnetic field configuration is the most possible cause of penumbral microjets. In order to understand magnetic configuration associated with penumbral microjets and prove the chromospheric magnetic reconnection hypothesis, we investigated relationship between penumbral microjets seen in CaIIH images and photospheric magnetic fields measured by the HINODE spectro-polarimeter. We found the inclination angles of penumbral microjets measured in CaII H images are roughly consistent with inclination angles of relatively vertical magnetic field component in uncombed magnetic field configuration. In addition, strong and transient downflows are observed in the photosphere near the boundary of a horizontal flux tube associated with a penumbral microjet. The size of the downflow region is about 300km, which is close to the width of penumbral microjets seen in CaII H images. The downflow velocity of several km/s might be a result of an outflow of chromospheric magnetic reconnection and suffer deceleration due to the higher density in the photosphere. Title: Disintegration of Magnetic Flux in Decaying Sunspots as Observed with the Hinode/SOT Authors: Kubo, M.; Lites, B. W.; Ichimoto, K.; Shimizu, T.; Suematsu, Y.; Katsukawa, Y.; Tarbell, T. D.; Shine, R. A.; Title, A. M.; Nagata, S.; Tsuneta, S. Bibcode: 2008AGUSMSP31B..01K Altcode: Continuous observations of sunspot penumbrae with the Solar Optical Telescope aboard Hinode clearly show that the outer boundary of the penumbra fluctuates around its averaged position. The penumbral outer boundary moves inward when granules appear in the outer penumbra. We discover that such granules appear one after another while moving magnetic features (MMFs) are separating from the penumbral "spines" (penumbral features having fields that are stronger and more vertical than their surroundings). These granules that appear in the outer penumbra often merge with bright features inside the penumbra that move with spines as they elongate toward the moat region. This suggests that convective motions around the penumbral outer boundary are related to disintegration of magnetic flux in the sunspot. We also find that dark penumbral filaments frequently elongate into the moat region in the vicinity of MMFs that detach from penumbral spines. Such elongating dark penumbral filaments correspond to nearly horizontal fields extending from the penumbra. Pairs of MMFs with positive and negative polarities are sometimes observed along the elongating dark penumbral filaments. This strongly supports the notion that such elongating dark penumbral filaments have magnetic fields with a "sea serpent"-like structure. Evershed flows, which are associated with the penumbral horizontal fields, may be related to detachment of the MMFs from the penumbral spines, as well as to the formation of the MMFs along the dark penumbral filaments that elongate into the moat region. Title: Formation of Solar Magnetic Flux Tubes with Kilogauss Field Strength Induced by Convective Instability Authors: Nagata, Shin'ichi; Tsuneta, Saku; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Katsukawa, Yukio; Shimizu, Toshifumi; Yokoyama, Takaaki; Tarbell, Theodore D.; Lites, Bruce W.; Shine, Richard A.; Berger, Thomas E.; Title, Alan M.; Bellot Rubio, Luis R.; Orozco Suárez, David Bibcode: 2008ApJ...677L.145N Altcode: Convective instability has been a mechanism used to explain the formation of solar photospheric flux tubes with kG field strength. However, the turbulence of the Earth's atmosphere has prevented ground-based observers from examining the hypothesis with precise polarimetric measurement on the subarcsecond scale flux tubes. Here we discuss observational evidence of this scenario based on observations with the Solar Optical Telescope (SOT) aboard Hinode. The cooling of an equipartition field strength flux tube precedes a transient downflow reaching 6 km s-1 and the intensification of the field strength to 2 kG. These observations agree very well with the theoretical predictions. Title: Transient horizontal magnetic fields in solar plage regions Authors: Ishikawa, R.; Tsuneta, S.; Ichimoto, K.; Isobe, H.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M. Bibcode: 2008A&A...481L..25I Altcode: 2008arXiv0802.1769I Aims:We report the discovery of isolated, small-scale emerging magnetic fields in a plage region with the Solar Optical Telescope aboard Hinode.
Methods: Spectro-polarimetric observations were carried out with a cadence of 34 s for the plage region located near disc center. The vector magnetic fields are inferred by Milne-Eddington inversion.
Results: The observations reveal widespread occurrence of transient, spatially isolated horizontal magnetic fields. The lateral extent of the horizontal magnetic fields is comparable to the size of photospheric granules. These horizontal magnetic fields seem to be tossed about by upflows and downflows of the granular convection. We also report an event that appears to be driven by the magnetic buoyancy instability. We refer to buoyancy-driven emergence as type 1 and convection-driven emergence as type 2. Although both events have magnetic field strengths of about 600 G, the filling factor of type 1 is a factor of two larger than that of type 2.
Conclusions: Our finding suggests that the granular convection in the plage regions is characterized by a high rate of occurrence of granular-sized transient horizontal fields. Title: Net circular polarization of sunspots in high spatial resolution Authors: Ichimoto, K.; Tsuneta, S.; Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Lites, B. W.; Kubo, M.; Tarbell, T. D.; Shine, R. A.; Title, A. M.; Nagata, S. Bibcode: 2008A&A...481L...9I Altcode: Context: Net circular polarization (NCP) of spectral lines in sunspots has been most successfully explained by the presense of discontinuities in the magnetic field inclination and flow velocity along the line-of-sight in the geometry of the embedded flux tube model of penumbrae (Δγ-effect).
Aims: The fine scale structure of NCP in a sunspot is examined with special attention paid to spatial relations of the Evershed flow to confirm the validity of the present interpretation of the NCP of sunspots.
Methods: High resolution spectro-polarimetric data of a positive-polarity sunspot obtained by the Solar Optical Telescope aboard Hinode are analysed.
Results: A positive NCP is associated with the Evershed flow channels in both limb-side and disk center-side penumbrae and with upflows in the penumbra at disk center. The negative NCP in the disk center-side penumbra is generated in inter-Evershed flow channels.
Conclusions: The first result is apparently inconsistent with the current explanation of NCP with the Δγ-effect but rather suggests a positive correlation between the magnetic field strength and the flow velocity as the cause of the NCP. The second result serves as strong evidence for the presence of gas flows in inter-Evershed flow channels. Title: Hinode SOT Observations of Solar Quiescent Prominence Dynamics Authors: Berger, Thomas E.; Shine, Richard A.; Slater, Gregory L.; Tarbell, Theodore D.; Title, Alan M.; Okamoto, Takenori J.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Suematsu, Yoshinori; Tsuneta, Saku; Lites, Bruce W.; Shimizu, Toshifumi Bibcode: 2008ApJ...676L..89B Altcode: We report findings from multihour 0.2'' resolution movies of solar quiescent prominences (QPs) observed with the Solar Optical Telescope (SOT) on the Hinode satellite. The observations verify previous findings of filamentary downflows and vortices in QPs. SOT observations also verify large-scale transverse oscillations in QPs, with periods of 20-40 minutes and amplitudes of 2-5 Mm. The upward propagation speed of several waves is found to be ~10 km s-1, comparable to the sound speed of a 10,000 K plasma, implying that the waves are magnetoacoustic in origin. Most significantly, Hinode SOT observations reveal that dark, episodic upflows are common in QPs. The upflows are 170-700 km in width, exhibit turbulent flow, and rise with approximately constant speeds of ~20 km s-1 from the base of the prominence to heights of ~10-20 Mm. The upflows are visible in both the Ca II H-line and Hα bandpasses of SOT. The new flows are seen in about half of the QPs observed by SOT to date. The dark upflows resemble buoyant starting plumes in both their velocity profile and flow structure. We discuss thermal and magnetic mechanisms as possible causes of the plumes. Title: Emergence of a Helical Flux Rope under an Active Region Prominence Authors: Okamoto, Takenori J.; Tsuneta, Saku; Lites, Bruce W.; Kubo, Masahito; Yokoyama, Takaaki; Berger, Thomas E.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Nagata, Shin'ichi; Shibata, Kazunari; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2008ApJ...673L.215O Altcode: 2008arXiv0801.1956O Continuous observations were obtained of NOAA AR 10953 with the Solar Optical Telescope (SOT) on board the Hinode satellite from 2007 April 28 to May 9. A prominence was located over the polarity inversion line (PIL) to the southeast of the main sunspot. These observations provided us with a time series of vector magnetic fields on the photosphere under the prominence. We found four features: (1) The abutting opposite-polarity regions on the two sides along the PIL first grew laterally in size and then narrowed. (2) These abutting regions contained vertically weak but horizontally strong magnetic fields. (3) The orientations of the horizontal magnetic fields along the PIL on the photosphere gradually changed with time from a normal-polarity configuration to an inverse-polarity one. (4) The horizontal magnetic field region was blueshifted. These indicate that helical flux rope was emerging from below the photosphere into the corona along the PIL under the preexisting prominence. We suggest that this supply of a helical magnetic flux to the corona is associated with evolution and maintenance of active region prominences. Title: The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter Authors: Lites, B. W.; Kubo, M.; Socas-Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2008ApJ...672.1237L Altcode: Observations of very quiet Sun using the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard the Hinode spacecraft reveal that the quiet internetwork regions are pervaded by horizontal magnetic flux. The spatial average horizontal apparent flux density derived from wavelength-integrated measures of Zeeman-induced linear polarization is BTapp = 55 Mx cm -2, as compared to the corresponding average vertical apparent flux density of | BLapp| = 11 Mx cm -2. Distributions of apparent flux density are presented. Magnetic fields are organized on mesogranular scales, with both horizontal and vertical fields showing "voids" of reduced flux density of a few granules spatial extent. The vertical fields are concentrated in the intergranular lanes, whereas the stronger horizontal fields are somewhat separated spatially from the vertical fields and occur most commonly at the edges of the bright granules. High-S/N observations from disk center to the limb help to constrain possible causes of the apparent imbalance between | BLapp| and BTapp, with unresolved structures of linear dimension on the surface smaller by at least a factor of 2 relative to the SOT/SP angular resolution being one likely cause of this discrepancy. Other scenarios for explaining this imbalance are discussed. The horizontal fields are likely the source of the "seething" fields of the quiet Sun discovered by Harvey et al. The horizontal fields may also contribute to the "hidden" turbulent flux suggested by studies involving Hanle effect depolarization of scattered radiation. Title: Hinode Observations of Flux Emergence in Quiet and Active Regions Authors: Lites, B. W.; Centeno, R.; Kubo, M.; Socas-Navarro, H. Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2008ASPC..383...71L Altcode: We review briefly the observational understanding of emergence of flux in both the quiet Sun and active regions in the light of first results from the joint Japan/US/UK Hinode mission. That spacecraft is now providing us with our first continuous, high resolution measurements of the photospheric vector magnetic field, along with high resolution observations of the thermal and dynamic properties of the chromosphere and corona. This review is intended to present a few very early results and to highlight the potential for discovery offered by this extraordinary new mission. The discovery of ubiquitous horizontal magnetic flux in the quiet internetwork regions is presented. Title: Mangetic field properties at the footpoints of solar microflares (active-region transient brightenings) Authors: Shimizu, T.; Kano, R.; Katsukawa, Y.; Kubo, M.; Deluca, E.; Ichimoto, K.; Lites, B.; Nagata, S.; Sakao, T.; Shine, R.; Suematsu, Y.; Tarbell, T.; Title, A.; Tsuneta, S. Bibcode: 2007AGUFMSH52C..06S Altcode: Solar active regions produce numerous numbers of small-scale explosive energy releases, i.e., microflares, which are captured by imaging observations in soft X-rays as transient brightenings of small-scale coronal loops. Thanks to advanced performance of X-Ray Telescope (XRT) onboard the Hinode satellite, we can investigate finer structure of the brightening X-ray sources in more details than we did with Yohkoh data. One of important questions on microflares is what causes microflares. The simultaneous visible-light observations by the Solar Optical Telescope (SOT) allow us to explore magnetic activities and magnetic field configuration at the photospheric footpoints of brightening loops, giving key observations to investigate the question. For our investigations of corona-photosphere magnetic coupling, we have established co-alignment between SOT and XRT with accuracy better than 1 arcsec (Shimizu et al. 2007, PASJ in press). It turns out that Ca II H observations are very useful to identify the exact positions of footpoints of X-ray transient brightening loops. Small "Kernels" are sometimes observed in Ca II H and they may be signature of highly accelerated non-thermal particles impinging on chromosphere. As already shown in Shimizu et al.(2002), frequent transient brightenings are observed at the locations where emerging activities are on going. However, another type of brightening triggering mechanism should exist to explain some observed multiple-loop brightenings. In the multiple-loop brightenings, multiple loops are magnetically in parallel with each other and no apparent magnetic activities, such as emerging and canceling, are observed at and near the footpoints. This paper will present SOT observations of some microflares observed with XRT. Title: Small-Scale Jetlike Features in Penumbral Chromospheres Authors: Katsukawa, Y.; Berger, T. E.; Ichimoto, K.; Lites, B. W.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M.; Tsuneta, S. Bibcode: 2007Sci...318.1594K Altcode: We observed fine-scale jetlike features, referred to as penumbral microjets, in chromospheres of sunspot penumbrae. The microjets were identified in image sequences of a sunspot taken through a Ca II H-line filter on the Solar Optical Telescope on board the Japanese solar physics satellite Hinode. The microjets’ small width of 400 kilometers and short duration of less than 1 minute make them difficult to identify in existing observations. The microjets are possibly caused by magnetic reconnection in the complex magnetic configuration in penumbrae and have the potential to heat the corona above a sunspot. Title: Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind Authors: De Pontieu, B.; McIntosh, S. W.; Carlsson, M.; Hansteen, V. H.; Tarbell, T. D.; Schrijver, C. J.; Title, A. M.; Shine, R. A.; Tsuneta, S.; Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2007Sci...318.1574D Altcode: Alfvén waves have been invoked as a possible mechanism for the heating of the Sun's outer atmosphere, or corona, to millions of degrees and for the acceleration of the solar wind to hundreds of kilometers per second. However, Alfvén waves of sufficient strength have not been unambiguously observed in the solar atmosphere. We used images of high temporal and spatial resolution obtained with the Solar Optical Telescope onboard the Japanese Hinode satellite to reveal that the chromosphere, the region sandwiched between the solar surface and the corona, is permeated by Alfvén waves with strong amplitudes on the order of 10 to 25 kilometers per second and periods of 100 to 500 seconds. Estimates of the energy flux carried by these waves and comparisons with advanced radiative magnetohydrodynamic simulations indicate that such Alfvén waves are energetic enough to accelerate the solar wind and possibly to heat the quiet corona. Title: Chromospheric Anemone Jets as Evidence of Ubiquitous Reconnection Authors: Shibata, Kazunari; Nakamura, Tahei; Matsumoto, Takuma; Otsuji, Kenichi; Okamoto, Takenori J.; Nishizuka, Naoto; Kawate, Tomoko; Watanabe, Hiroko; Nagata, Shin'ichi; UeNo, Satoru; Kitai, Reizaburo; Nozawa, Satoshi; Tsuneta, Saku; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Tarbell, Theodore D.; Berger, Thomas E.; Lites, Bruce W.; Shine, Richard A.; Title, Alan M. Bibcode: 2007Sci...318.1591S Altcode: 2008arXiv0810.3974S The heating of the solar chromosphere and corona is a long-standing puzzle in solar physics. Hinode observations show the ubiquitous presence of chromospheric anemone jets outside sunspots in active regions. They are typically 3 to 7 arc seconds = 2000 to 5000 kilometers long and 0.2 to 0.4 arc second = 150 to 300 kilometers wide, and their velocity is 10 to 20 kilometers per second. These small jets have an inverted Y-shape, similar to the shape of x-ray anemone jets in the corona. These features imply that magnetic reconnection similar to that in the corona is occurring at a much smaller spatial scale throughout the chromosphere and suggest that the heating of the solar chromosphere and corona may be related to small-scale ubiquitous reconnection. Title: Twisting Motions of Sunspot Penumbral Filaments Authors: Ichimoto, K.; Suematsu, Y.; Tsuneta, S.; Katsukawa, Y.; Shimizu, T.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Lites, B. W.; Kubo, M.; Nagata, S. Bibcode: 2007Sci...318.1597I Altcode: The penumbra of a sunspot is composed of numerous thin, radially extended, bright and dark filaments carrying outward gas flows (the Evershed flow). Using high-resolution images obtained by the Solar Optical Telescope aboard the solar physics satellite Hinode, we discovered a number of penumbral bright filaments revealing twisting motions about their axes. These twisting motions are observed only in penumbrae located in the direction perpendicular to the symmetry line connecting the sunspot center and the solar disk center, and the direction of the twist (that is, lateral motions of intensity fluctuation across filaments) is always from limb side to disk-center side. Thus, the twisting feature is not an actual twist or turn of filaments but a manifestation of dynamics of penumbral filaments with three-dimensional radiative transfer effects. Title: Magnetic Field Properties of Flux Cancellation Sites Authors: Kubo, M.; Shimizu, T. Bibcode: 2007ApJ...671..990K Altcode: It has been frequently observed in longitudinal magnetograms that magnetic elements disappear when a magnetic polarity element approaches and collides with another polarity element. We examine 12 collision events observed with the Advanced Stokes Polarimeter. We find formation of new magnetic connection between the colliding opposite polarity elements both in the photosphere and in the corona. In some cases, the opposite polarity elements to be collided appear at different times and at widely separated positions. Magnetic fields horizontal to the solar surface are spontaneously formed on the polarity inversion line (PIL) between such colliding elements, and transient bright X-ray loops connecting the opposite polarity elements appear. We suggest that formation of the coronal loops and the photospheric horizontal fields are due to magnetic reconnection between the colliding field lines, possibly at multiple locations with different heights. We also find that a global change in the direction of the photospheric horizontal fields between the colliding elements occurs in association with formation and disappearance of Hα dark filaments. Initial horizontal fields perpendicular to the PIL become parallel to the PIL, when dark filaments are observed along the PIL. They return to being perpendicular to the PIL at around the time of the disappearance of the dark filament.

This work was completed while the author was affiliated with the National Astronomical Observatory of Japan and University of Tokyo. Title: Continuous Plasma Outflows from the Edge of a Solar Active Region as a Possible Source of Solar Wind Authors: Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; DeLuca, Edward E.; Lundquist, Loraine L.; Tsuneta, Saku; Harra, Louise K.; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A.; Golub, Leon; Korreck, Kelly E.; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro Bibcode: 2007Sci...318.1585S Altcode: The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to ~1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun. Title: Hinode SOT observations of plume upflows and cascading downflows in quiescent solar prominences Authors: Berger, T.; Shine, R.; Slater, G.; Tarbell, T.; Title, A.; Lites, B.; Tsuneta, S.; Okamoto, T. J.; Ichimoto, K.; Katsukawa, Y.; Sekii, T.; Suematsu, Y.; Shimizu, T. Bibcode: 2007AGUFMSH53A1065B Altcode: We present several Hinode SOT filtergram movies of quiescent solar prominences that show newly discovered "plume-like" upflows and cascading "waterfall-like" downflows that persist for the entire multi-hour duration of the observations. The flow speeds are on the order of 10 km/sec with typical widths of 400-700 km. Preliminary calculations show that if the upflows are buoyancy driven, the associated thermal perturbation is on the order of 10,000 K, sufficient to explain the dark appearance of the upflows in the interference filter passbands. In addition we observe rotational vortices and body oscillations within the prominences. These new observations challenge current magnetostatic models of solar prominences by showing that prominence plasmas are in constant motion, often in directions perpendicular to the magnetic field lines proposed by the models. TRACE, Hinode/EIS, and Hinode/XRT observations are used to investigate the differential topology of the flows across temperature regimes. Title: Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence Authors: Okamoto, T. J.; Tsuneta, S.; Berger, T. E.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shibata, K.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M. Bibcode: 2007Sci...318.1577O Altcode: 2008arXiv0801.1958O Solar prominences are cool 104 kelvin plasma clouds supported in the surrounding 106 kelvin coronal plasma by as-yet-undetermined mechanisms. Observations from Hinode show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest that these represent Alfvén waves propagating on coronal magnetic field lines and that these may play a role in heating the corona. Title: Quiet-Sun Internetwork Magnetic Fields from the Inversion of Hinode Measurements Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Tsuneta, S.; Lites, B. W.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M. Bibcode: 2007ApJ...670L..61O Altcode: 2007arXiv0710.1405O We analyze Fe I 630 nm observations of the quiet Sun at disk center taken with the spectropolarimeter of the Solar Optical Telescope aboard the Hinode satellite. A significant fraction of the scanned area, including granules, turns out to be covered by magnetic fields. We derive field strength and inclination probability density functions from a Milne-Eddington inversion of the observed Stokes profiles. They show that the internetwork consists of very inclined, hG fields. As expected, network areas exhibit a predominance of kG field concentrations. The high spatial resolution of Hinode's spectropolarimetric measurements brings to an agreement the results obtained from the analysis of visible and near-infrared lines. Title: Center-to-Limb Variation of Stokes V Asymmetries in Solar Pores Observed with the Hinode Spectro-Polarimeter Authors: Morinaga, Shuji; Nagata, Shin'ichi; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Shimizu, Toshifumi; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Lites, Bruce; Kubo, Masahito; Sakurai, Takashi Bibcode: 2007PASJ...59S.613M Altcode: Here we present spectro-polarimetric measurements of several pores and the surrounding regions taken with the Solar Optical Telescope aboard Hinode at various viewing angles. We analyzed the Stokes V area asymmetry, and confirmed that it is depressed at the center of the pores, while it shows large positive values (a blue lobe larger than a red lobe) in the surrounding area; this is consistent with a previous report. In addition to this ring of positive asymmetry, we found regions of alternating positive and negative area asymmetries when weak V regions were observed near the solar limb. The positive asymmetry occurs on the disk-center side and the negative asymmetry on the limb side of the magnetic concentrations. These center-to-limb variations of the Stokes V area asymmetry can be interpreted as being a systematic inflow of plasma into the magnetic concentrations from their surroundings. Title: Initial Results on Line-of-Sight Field Calibrations of SP/NFI Data Taken by SOT/Hinode Authors: Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk; Ichimoto, Kiyoshi; Sakurai, Takashi; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Shimizu, Toshifumi; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Lites, Bruce; Kubo, Masahito; Nagata, Shin'ichi; Yokoyama, Takaaki Bibcode: 2007PASJ...59S.619C Altcode: We present initial results on the line-of-sight field calibration of the two kinds of Stokes I and V data taken by the Solar Optical Telescope on the satellite Hinode: spectral profiles of Stokes I and V parameters recorded on the Spectro-polarimeter (SP), and monochromatic images of the same parameters recorded on the Narrow-band Filter Imager (NFI). By applying the center-of-gravity method to the SP data of AR10930 taken on 2006 December 11, we determined the line-of-sight field at every location in the active region. As a result, we found that the line-of-sight field strength ranges up to 2kG in plages, even without taking into account the filling factor, and up to 3.5kG or higher values inside the umbra of the major sunspot. We calibrated the NFI data in reference to the field determined from the SP data. In regions outside the sunspots and the penumbral regions, we adopted a linear relation, B|| = βV / I, between the circular polarization, V / I, and the line-of-sight field strength, B||, and obtained β = 23.5kG in regions outside the sunspots, and β = 12.0kG in penumbral regions. In umbral regions of sunspots, a first-order polynomial was adopted to model the reversal of the polarization signal over the field strength. Title: Response of the Solar Atmosphere to Magnetic Flux Emergence from Hinode Observations Authors: Li, Hui; Sakurai, Takashi; Ichimito, Kiyoshi; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Shimizu, Toshifumi; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Lites, Bruce; Kubo, Masahito; Nagata, Shin'ichi; Kotoku, Jun; Shibasaki, Kiyoto; Saar, Steven H.; Bobra, Monica Bibcode: 2007PASJ...59S.643L Altcode: No abstract at ADS Title: Initial Helioseismic Observations by Hinode/SOT Authors: Sekii, Takashi; Kosovichev, Alexander G.; Zhao, Junwei; Tsuneta, Saku; Shibahashi, Hiromoto; Berger, Thomas E.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2007PASJ...59S.637S Altcode: 2007arXiv0709.1806S Results from initial helioseismic observations by the Solar Optical Telescope on-board Hinode are reported. It has been demonstrated that intensity oscillation data from the Broadband Filter Imager can be used for various helioseismic analyses. The k - ω power spectra, as well as the corresponding time-distance cross-correlation function, which promise high-resolution time-distance analysis below the 6-Mm travelling distance, were obtained for G-band and CaII-H data. Subsurface supergranular patterns were observed from our first time-distance analysis. The results show that the solar oscillation spectrum is extended to much higher frequencies and wavenumbers, and the time-distance diagram is extended to much shorter travel distances and times than were observed before, thus revealing great potential for high-resolution helioseismic observations from Hinode. Title: Magnetic Feature and Morphological Study of X-Ray Bright Points with Hinode Authors: Kotoku, Jun'ichi; Kano, Ryouhei; Tsuneta, Saku; Katsukawa, Yukio; Shimizu, Toshifumi; Sakao, Taro; Shibazaki, Kiyoto; Deluca, Edward E.; Korreck, Kelly E.; Golub, Leon; Bobra, Monica Bibcode: 2007PASJ...59S.735K Altcode: We observed X-ray bright points (XBPs) in a quiet region of the Sun with the X-Ray Telescope (XRT) aboard the Hinode satellite on 2006 December 19. XRT's high-resolution X-ray images revealed many XBPs with complicated structure and evolving dramatically with time. Almost all of the dynamic eruptions in the quiet region were composed of XBPs, and they had either loop or multiloop shapes, as is observed in larger flares. Brightening XBPs had strong magnetic fields with opposite polarities near their footpoints. While we have found a possible example of associated magnetic cancellation, other XBPs brighten and fade without any associated movement of the photospheric magnetic field. Title: Hinode Observations of Horizontal Quiet Sun Magnetic Flux and the ``Hidden Turbulent Magnetic Flux'' Authors: Lites, Bruce; Socas-Navarro, Hector; Kubo, Masahito; Berger, Thomas; Frank, Zoe; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Ichimoto, Kiyoshi; Katsukawa, Yukio; Tsuneta, Saku; Suematsu, Yoshinori; Shimizu, Toshifumi Bibcode: 2007PASJ...59S.571L Altcode: We present observations of magnetic fields of the very quiet Sun near disk center using the Spectro-Polarimeter of the Solar Optical Telescope aboard the Hinode satellite. These observations reveal for the first time the ubiquitous presence of horizontal magnetic fields in the internetwork regions. The horizontal fields are spatially distinct from the vertical fields, demonstrating that they are not arising mainly from buffeting of vertical flux tubes by the granular convection. The horizontal component has an average ``apparent flux density'' of 55Mxcm-2 (assuming the horizontal field structures are spatially resolved), in contrast to the average apparent vertical flux density of 11Mxcm-2. The vertical fields reside mainly in the intergranular lanes, whereas the horizontal fields occur mainly over the bright granules, with a preference to be near the outside edge of the bright granules. The large apparent imbalance of vertical and horizontal flux densities is discussed, and several scenarios are presented to explain this imbalance. Title: Strategy for the Inversion of Hinode Spectropolarimetric Measurements in the Quiet Sun Authors: Orozco Suárez, David; Bellot Rubio, Luis R.; Del Toro Iniesta, Jose Carlos; Tsuneta, Saku; Lites, Bruce; Ichimoto, Kiyoshi; Katsukawa, Yukio; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2007PASJ...59S.837O Altcode: 2007arXiv0709.2033O In this paper we propose an inversion strategy for the analysis of spectropolarimetric measurements taken by Hinode in the quiet Sun. The Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode records the Stokes spectra of the FeI line pair at 630.2nm with unprecendented angular resolution, high spectral resolution, and high sensitivity. We discuss the need to consider a local stray-light contamination to account for the effects of telescope diffraction. The strategy is applied to observations of a wide quiet Sun area at disk center. Using these data we examine the influence of noise and initial guess models in the inversion results. Our analysis yields the distributions of magnetic field strengths and stray-light factors. They show that quiet Sun internetwork regions consist mainly of hG fields with stray-light contamination of about 0.8. Title: Hinode Calibration for Precise Image Co-Alignment between SOT and XRT (2006 November-2007 April) Authors: Shimizu, Toshifumi; Katsukawa, Yukio; Matsuzaki, Keiichi; Ichimoto, Kiyoshi; Kano, Ryohei; Deluca, Edward E.; Lundquist, Loraine L.; Weber, Mark; Tarbell, Theodore D.; Shine, Richard A.; Sôma, Mitsuru; Tsuneta, Saku; Sakao, Taro; Minesugi, Kenji Bibcode: 2007PASJ...59S.845S Altcode: 2007arXiv0709.4098S To understand the physical mechanisms for activity and heating in the solar atmosphere, the magnetic coupling from the photosphere to the corona is an important piece of information from the Hinode observations, and therefore precise positional alignment is required among the data acquired by different telescopes. The Hinode spacecraft and its onboard telescopes were developed to allow us to investigate magnetic coupling with co-alignment accuracy better than 1". Using the Mercury transit observed on 2006 November 8 and co-alignment measurements regularly performed on a weekly basis, we have determined the information necessary for precise image co-alignment, and have confirmed that co-alignment better than 1" can be realized between Solar Optical Telescope (SOT) and X-Ray Telescope (XRT) with our baseline co-alignment method. This paper presents results from the calibration for precise co-alignment of CCD images from SOT and XRT. Title: Hinode Observations of a Vector Magnetic Field Change Associated with a Flare on 2006 December 13 Authors: Kubo, Masahito; Yokoyama, Takaaki; Katsukawa, Yukio; Lites, Bruce; Tsuneta, Saku; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Nagata, Shin'ichi; Tarbell, Theodore D.; Shine, Richard A.; Title, Alan M.; Elmore David Bibcode: 2007PASJ...59S.779K Altcode: 2007arXiv0709.2397K Continuous observations of the flare productive active region 10930 were successfully carried out with the Solar Optical Telescope aboard the Hinode spacecraft during 2006 December 6 to 19. We focused on the evolution of photospheric magnetic fields in this active region, and the magnetic field properties at the site of the X3.4 class flare, using a time series of vector field maps with high spatial resolution. The X3.4 class flare occurred on 2006 December 13 at the apparent collision site between the large, opposite polarity umbrae. Elongated magnetic structures with alternatingly positive and negative polarities resulting from flux emergence appeared one day before the flare in the collision site penumbra. Subsequently, the polarity inversion line at the collision site became very complicated. The number of bright loops in CaII H increased during the formation of these elongated magnetic structures. Flare ribbons and bright loops evolved along the polarity inversion line and one footpoint of the bright loop was located in a region having a large departure of the field azimuth angle with respect to its surroundings. SOT observations with high spatial resolution and high polarization precision revealed temporal change in the fine structure of magnetic fields at the flare site: some parts of the complicated polarity inversion line then disappeared, and in those regions the azimuth angle of the photospheric magnetic field changed by about 90°, becoming more spatially uniform within the collision site. Title: The Analysis of Penumbral Fine Structure Using an Advanced Inversion Technique Authors: Jurcák, Jan; Bellot Rubio, Luis; Ichimoto, Kiyoshi; Katsukawa, Yukio; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M.; Tsuneta, Saku Bibcode: 2007PASJ...59S.601J Altcode: 2007arXiv0707.1560J We present a method to study the penumbral fine structure using data obtained by the spectropolarimeter on board Hinode. For the first time, the penumbral filaments can be considered as being resolved in spectropolarimetric measurements. This enables us to use inversion codes with only one-component model atmospheres, and thus to assign the obtained stratifications of the plasma parameters directly to the penumbral fine structure. This approach was applied to the limb-side part of the penumbra in the active region NOAA10923. Preliminary results show a clear dependence of the plasma parameters on the continuum intensity in the inner penumbra, i.e., a weaker and horizontal magnetic field along with an increased line-of-sight velocity are found in the low layers of the bright filaments. The results in the mid penumbra are ambiguous, and future analyses are necessary to unveil the magnetic field structure and other plasma parameters there. Title: Fine-Scale Structures of the Evershed Effect Observed by the Solar Optical Telescope aboard Hinode Authors: Ichimoto, Kiyoshi; Shine, Richard A.; Lites, Bruce; Kubo, Masahito; Shimizu, Toshifumi; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Tarbell, Theodore D.; Title, Alan M.; Nagata, Shin'ichi; Yokoyama, Takaaki; Shimojo, Masumi Bibcode: 2007PASJ...59S.593I Altcode: The small-scale structure of the Evershed effect is being studied using data obtained by the Spectropolarimeter and the Broadband Filter Imager of the Solar Optical Telescope aboard Hinode. We find that the Evershed flow starts at the leading edge of inwardly migrating bright penumbral grains, and turns to nearly a horizontal flow preferentially in the dark lanes of the penumbra. A number of small elongated regions that have an upward motion of ∼ 1kms-1 are found in the deep photosphere distributed over the penumbra. They are cospatial with bright grains and have relatively horizontal magnetic fields. A number of patches having a strong downward motion associated with the opposite magnetic polarity from the sunspot are also found in the mid and outer penumbra. They could be identified as foot points of the Evershed flow channels, though the identification of individual pairs is not straightforward. Our results provide strong support for some recent findings from ground-based high-resolution observations, and are in general agreement with the well-known picture of the uncombed structure of the penumbra, in which the penumbrae consist of rising flux tubes carrying nearly horizontal Evershed flows embedded in more vertical background magnetic fields. Title: Flare Ribbons Observed with G-band and FeI 6302Å, Filters of the Solar Optical Telescope on Board Hinode Authors: Isobe, Hiroaki; Kubo, Masahito; Minoshima, Takashi; Ichimoto, Kiyoshi; Katsukawa, Yukio; Tarbell, Theodore D.; Tsuneta, Saku; Berger, Thomas E.; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Title, Alan M. Bibcode: 2007PASJ...59S.807I Altcode: 2007arXiv0711.3946I The Solar Optical Telescope (SOT) on board the Hinode satellite observed an X3.4 class flare on 2006 December 13. A typical two-ribbon structure was observed, not only in the chromospheric CaII H line, but also in the G-band and FeI 6302Å line. The high-resolution, seeing-free images achieved by SOT revealed, for the first time, sub-arcsec fine structures of the ``white light'' flare. The G-band flare ribbons on sunspot umbrae showed a sharp leading edge, followed by a diffuse inside, as well as a previously known core-halo structure. The underlying structures, such as umbral dots, penumbral filaments, and granules, were visible in the flare ribbons. Assuming that the sharp leading edge was directly heated by a particle beam and the diffuse parts were heated by radiative back-warming, we estimated the depth of the diffuse flare emission using an intensity profile of the flare ribbon. We found that the depth of the diffuse emission was about 100km or less from the height of the source of radiative back-warming. The flare ribbons were also visible in the Stokes-V images of FeI 6302Å, as a transient polarity reversal. This is probably related to a ``magnetic transient'' reported in the literature. The intensity increase in Stokes-I images indicates that the FeI 6302Å line was significantly deformed by the flare, which may cause such a magnetic transient. Title: Small-Scale Magnetic-Flux Emergence Observed with Hinode Solar Optical Telescope Authors: Otsuji, Kenichi; Shibata, Kazunari; Kitai, Reizaburo; Ueno, Satoru; Nagata, Shin'ichi; Matsumoto, Takuma; Nakamura, Tahei; Watanabe, Hiroko; Tsuneta, Saku; Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Tarbell, Theodore D.; Lites, Bruce; Shine, Richard A.; Title Alan M. Bibcode: 2007PASJ...59S.649O Altcode: 2007arXiv0709.3207O We observed small-scale magnetic-flux emergence in a sunspot moat region by the Solar Optical Telescope (SOT) aboard the Hinode satellite. We analyzed filtergram images observed at wavelengths of Fe 6302Å, G band, and CaII H. In Stokes I images of Fe 6302Å, emerging magnetic flux was recognized as dark lanes. In the G band, they showed to be their shapes almost the same as in Stokes I images. These magnetic fluxes appeared as dark filaments in CaII H images. Stokes V images of Fe 6302Å showed pairs of opposite polarities at footpoints of each filament. These magnetic concentrations were identified to correspond to bright points in G band/CaII H images. From an analysis of time-sliced diagrams, we derived the following properties of emerging flux, which are consistent with those of previous studies: (1) Two footpoints separate each other at a speed of 4.2kms-1 during the initial phase of evolution, and decrease to about 1kms-1 10minutes later. (2) CaII H filaments appear almost simultaneously with the formation of dark lanes in Stokes I in an observational cadence of 2minutes. (3) The lifetime of the dark lanes in the Stokes I and G band is 8minutes, while that of Ca filament is 12minutes. An interesting phenomena was observed, that an emerging flux tube expanded laterally in the photosphere with a speed of 3.8kms-1. A discussion on the horizontal expansion of the flux tube is given with refernce to previous simulation studies. Title: Observations of Sunspot Oscillations in G Band and CaII H Line with Solar Optical Telescope on Hinode Authors: Nagashima, Kaori; Sekii, Takashi; Kosovichev, Alexander G.; Shibahashi, Hiromoto; Tsuneta, Saku; Ichimoto, Kiyoshi; Katsukawa, Yukio; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2007PASJ...59S.631N Altcode: 2007arXiv0709.0569N Exploiting high-resolution observations made by the Solar Optical Telescope on board Hinode, we investigate the spatial distribution of the power spectral density of the oscillatory signal in and around the active region NOAA 10935. The G-band data show that in the umbra the oscillatory power is suppressed in all frequency ranges. On the other hand, in CaII H intensity maps oscillations in the umbra, so-called umbral flashes, are clearly seen with the power peaking around 5.5mHz. The CaII H power distribution shows the enhanced elements with the spatial scale of the umbral flashes over most of the umbra, but there is a region with suppressed power at the center of the umbra. The origin and property of this node-like feature remain unexplained. Title: Hinode SP Vector Magnetogram of AR10930 and Its Cross-Comparison with MDI Authors: Moon, Yong-Jae; Kim, Yeon-Han; Park, Young-Deuk; Ichimoto, Kiyoshi; Sakurai, Takashi; Chae, Jongchul; Cho, Kyung Suk; Bong, Suchan; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Shimojo, Masumi; Shimizu, Toshifumi; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Lites, Bruce; Kubo, Masahito; Nagata, Shin'ichi; Yokoyama, Takaaki Bibcode: 2007PASJ...59S.625M Altcode: We present one Hinode Spectropolarimeter (SP) magnetogram of AR 10930 that produced several major flares. The inversion from Stokes profiles to magnetic field vectors was made using the standard Milne-Eddington code. We successfully applied the Uniform Shear Method for resolving the 180° ambiguity to the magnetogram. The inversion gave very strong magnetic field strengths (near 4500 gauss) for a small portion of area in the umbra. Considering that the observed V-profile of 6301.5Å was well-fitted as well as a direct estimation of the Zeeman splitting results in 4300-4600 gauss, we think that the field strengths should not be far from the actual value. A cross-comparison of the Hinode SP and SOHO MDI high resolution flux densities shows that the MDI flux density could be significantly underestimated by about a factor of two. In addition, it has a serious negative correlation (the so-called Zeeman saturation effect) with the Hinode SP flux density for umbral regions. Finally, we could successfully obtain a recalibrated MDI magnetogram that has been corrected for the Zeeman saturation effect using not only a pair of MDI intensity and magnetogram data simultaneously observed, but also the relationship from the cross-comparison between the Hinode SP and MDI flux densities. Title: Formation Process of a Light Bridge Revealed with the Hinode Solar Optical Telescope Authors: Katsukawa, Yukio; Yokoyama, Takaaki; Berger, Thomas E.; Ichimoto, Kiyoshi; Kubo, Masahito; Lites, Bruce; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M.; Tsuneta, Saku Bibcode: 2007PASJ...59S.577K Altcode: 2007arXiv0709.2527K The Solar Optical Telescope (SOT) on-board Hinode successfully and continuously observed the formation process of a light bridge in a matured sunspot of the NOAA active region 10923 for several days with high spatial resolution. During its formation, many umbral dots were observed to be emerging from the leading edges of penumbral filaments, and rapidly intruding into the umbra. The precursor of the light bridge formation was also identified as a relatively slow inward motion of the umbral dots, which emerged not near the penumbra, but inside the umbra. The spectro-polarimeter on SOT provided physical conditions in the photosphere around the umbral dots and the light bridges. We found that the light bridges and the umbral dots had significantly weaker magnetic fields associated with upflows relative to the core of the umbra, which implies that there was hot gas with weak field strength penetrating from the subphotosphere to near the visible surface inside those structures. There needs to be a mechanism to drive the inward motion of the hot gas along the light bridges. We suggest that the emergence and the inward motion are triggered by a buoyant penumbral flux tube as well as subphotospheric flow crossing the sunspot. Title: Umbral Fine Structures in Sunspots Observed with Hinode Solar Optical Telescope Authors: Kitai, Reizaburo; Watanabe, Hiroko; Nakamura, Tahei; Otsuji, Ken-ichi; Matsumoto, Takuma; UeNo, Satoru; Nagata, Shin'ichi; Shibata, Kazunari; Muller, Richard; Ichimoto, Kiyoshi; Tsuneta, Saku; Suematsu, Yoshinori; Katsukawa, Yukio; Shimizu, Toshifumi; Tarbell, Theodore D.; Shine, Richard A.; Title, Alan M.; Lites, Bruce Bibcode: 2007PASJ...59S.585K Altcode: 2007arXiv0711.3266K A high resolution imaging observation of a sunspot umbra was made with the Hinode Solar Optical Telescope. Filtergrams at wavelengths of the blue and green continua were taken during three consecutive days. The umbra consisted of a dark core region, several diffuse components, and numerous umbral dots. We derived basic properties of umbral dots (UDs), especially their temperatures, lifetimes, proper motions, spatial distribution, and morphological evolution. The brightness of UDs is confirmed to depend on the brightness of their surrounding background. Several UDs show fission and fusion. Thanks to the stable condition of the space observation, we could for the first time follow the temporal behavior of these events. The derived properties of the internal structure of the umbra are discussed from the viewpoint of magnetoconvection in a strong magnetic field. Title: On Connecting the Dynamics of the Chromosphere and Transition Region with Hinode SOT and EIS Authors: Hansteen, Viggo H.; de Pontieu, Bart; Carlsson, Mats; McIntosh, Scott; Watanabe, Tetsuya; Warren, Harry P.; Harra, Louise K.; Hara, Hirohisa; Tarbell, Theodore D.; Shine, Dick; Title, Alan M.; Schrijver, Carolus J.; Tsuneta, Saku; Katsukawa, Yukio; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Shimizu, Toshifumi Bibcode: 2007PASJ...59S.699H Altcode: 2007arXiv0711.0487H We use coordinated Hinode SOT/EIS observations that include high-resolution magnetograms, chromospheric, and transition region (TR) imaging, and TR/coronal spectra in a first test to study how the dynamics of the TR are driven by the highly dynamic photospheric magnetic fields and the ubiquitous chromospheric waves. Initial analysis shows that these connections are quite subtle and require a combination of techniques including magnetic field extrapolations, frequency-filtered time-series, and comparisons with synthetic chromospheric and TR images from advanced 3D numerical simulations. As a first result, we find signatures of magnetic flux emergence as well as 3 and 5mHz wave power above regions of enhanced photospheric magnetic field in both chromospheric, transition region, and coronal emission. Title: Can High Frequency Acoustic Waves Heat the Quiet Sun Chromosphere? Authors: Carlsson, Mats; Hansteen, Viggo H.; de Pontieu, Bart; McIntosh, Scott; Tarbell, Theodore D.; Shine, Dick; Tsuneta, Saku; Katsukawa, Yukio; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Shimizu, Toshifumi; Nagata, Shin'ichi Bibcode: 2007PASJ...59S.663C Altcode: 2007arXiv0709.3462C We use Hinode/SOT Ca II H-line and blue continuum broadband observations to study the presence and power of high frequency acoustic waves at high spatial resolution. We find that there is no dominant power at small spatial scales; the integrated power using the full resolution of Hinode (0.05'' pixels, 0.16'' resolution) is larger than the power in the data degraded to 0.5'' pixels (TRACE pixel size) by only a factor of 1.2. At 20 mHz the ratio is 1.6. Combining this result with the estimates of the acoustic flux based on TRACE data of Fossum & Carlsson (2006), we conclude that the total energy flux in acoustic waves of frequency 5-40 mHz entering the internetwork chromosphere of the quiet Sun is less than 800 W m$^{-2}$, inadequate to balance the radiative losses in a static chromosphere by a factor of five. Title: Formation of Moving Magnetic Features and Penumbral Magnetic Fields with Hinode/SOT Authors: Kubo, Masahito; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Tsuneta, Saku; Suematsu, Yoshinori; Katsukawa, Yukio; Nagata, Shin'ichi; Tarbell, Theodore D.; Shine, Richard A.; Title, Alan M.; Frank, Zoe A.; Lites, Bruce; Elmore, David Bibcode: 2007PASJ...59S.607K Altcode: 2007arXiv0709.1853K Vector magnetic fields of moving magnetic features (MMFs) were well observed with the Solar Optical Telescope (SOT) aboard the Hinode satellite. We focused on the evolution of three MMFs with the SOT in this study. We found that an MMF having relatively vertical fields with the same polarity as the sunspot was detached from the penumbra around the granules appearing in the outer penumbra. This suggests that granular motions in the outer penumbra are responsible for disintegration of the sunspot. Two MMFs with polarity opposite to the sunspot are located around the outer edge of horizontal fields extending from the penumbra. This is evidence that the MMFs with polarity opposite to the sunspot are the prolongation of penumbral horizontal fields. Redshifts larger than the sonic velocity in the photosphere are detected for some of the MMFs with polarity opposite to the sunspot. Title: A Tale of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere Authors: de Pontieu, Bart; McIntosh, Scott; Hansteen, Viggo H.; Carlsson, Mats; Schrijver, Carolus J.; Tarbell, Theodore D.; Title, Alan M.; Shine, Richard A.; Suematsu, Yoshinori; Tsuneta, Saku; Katsukawa, Yukio; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Nagata, Shin'ichi Bibcode: 2007PASJ...59S.655D Altcode: 2007arXiv0710.2934D We use high-resolution observations of the Sun in CaIIH (3968Å) from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties. ``Type-I'' spicules are driven by shock waves that form when global oscillations and convective flows leak into the upper atmosphere along magnetic field lines on 3--7minute timescales. ``Type-II'' spicules are much more dynamic: they form rapidly (in ∼ 10s), are very thin (≤ 200 km wide), have lifetimes of 10-150s (at any one height), and seem to be rapidly heated to (at least) transition region temperatures, sending material through the chromosphere at speeds of order 50--150kms-1. The properties of Type II spicules suggest a formation process that is a consequence of magnetic reconnection, typically in the vicinity of magnetic flux concentrations in plage and network. Both types of spicules are observed to carry Alfvén waves with significant amplitudes of order 20kms-1. Title: Magnetic Correspondence between Moving Magnetic Features and Penumbral Magnetic Fields Authors: Kubo, M.; Shimizu, T. Bibcode: 2007ASPC..369..145K Altcode: We investigate vector magnetic fields of moving magnetic features (MMFs) around a mature sunspot with the Advanced Stokes Polarimeter and SOHO/MDI. In addition to the classical isolated MMFs identified by visually inspecting the time sequence of MDI magnetograms, we focus on any diffuse moving magnetic features that are not recognized as classical MMFs. This feature is called non-isolated MMFs. The non-isolated MMFs occupy most of the moat region surrounding the sunspot, and have nearly horizontal magnetic fields with both polarities. We find that the isolated MMFs located on the lines extrapolated from the horizontal component of the penumbral uncombed structure have magnetic fields similar to the non-isolated MMFs. This suggests that such MMFs are part of horizontal fields extended from the penumbra. The isolated MMFs located on the lines extrapolated from the vertical component of the uncombed structure have vertical fields with polarity same as the sunspot. Our observation shows that such MMFs are detached from the vertical component of the penumbra. Their flux transport rate is estimated to be 1-3 times larger than a flux loss rate of the sunspot. The isolated vertical MMFs alone can be responsible for decaying the sunspot. Title: Estimate on SOT Light Level in Flight with Throughput Measurements in SOT Sun Tests Authors: Shimizu, T.; Kubo, M.; Tarbell, T. D.; Berger, T. E.; Suematsu, Y.; Ichimoto, K.; Katsukawa, Y.; Miyashita, M.; Noguchi, M.; Nakagiri, M.; Tsuneta, S.; Elmore, D. F.; Lites, B. W. Bibcode: 2007ASPC..369...51S Altcode: The SOT (Solar Optical Telescope, e.g., Shimizu 2004) optical system consists of 50cm-aperture optical telescope (OTA) and focal plane instrument (FPP). The solar light into the telescope penetrates through many optical elements located in OTA and FPP before illuminating CCDs. Natural solar light was fed to the integrated SOT in sun tests for verifying various optical aspects including the confirmation of photon throughput. CCD exposures provide the number of photons accumulated in an exposure duration with a clean-room test condition. To estimate the absolute intensity of the solar light at the telescope entrance in the clean-room test condition, we developed a pinhole-PSD sensor for simultaneous monitoring the solar light outside the clean room and measured the transmission of light through two flat mirrors of the heliostat and clean-room entrance window glass as a function of wavelength. The PSD sensor was pre-calibrated with continuous monitoring the solar light in a day long under a clear constant sky condition, determining the earth atmospheric attenuation and the PSD output for the solar light on orbit. These throughput measurements have provided an estimate on photon throughput for the SOT flight model. The results confirm suitable number of photons without saturation for proper CCD exposures in flight. Title: Supersonic Downflows in the Photosphere Discovered in Sunspot Moat Regions Authors: Shimizu, T.; Martinez-Pillet, V.; Collados, M.; Ruiz-Cobo, B.; Centeno, R.; Beck, C.; Katsukawa, Y. Bibcode: 2007ASPC..369..113S Altcode: This paper reports on our new findings from the International Time Program observations at the Canaries islands, Spain, in July 2005. We have found small-scale photospheric events with extremely red-shifted Stokes V signals in sunspot moat regions. A preliminary estimate of the physical conditions for an observed Stokes V profile indicates the presence of a downward motion with a supersonic speed in the order of 10 km/s. With the currently evaluated observational information, we interprete the supersonic flows as downward motion from magnetic reconnection occurring at the upper chromosphere or lower photosphere. With coordinated observations of the Solar-B onboard telescopes, Stokes measurements by the SOT spectro-polarimeter would give new information for further understanding the nature of these events with strongly red-shifted Stokes V, and for discussing the physical conditions involving in possible magnetic reconnections in the lower solar atmosphere. Title: Performance Characteristics of the Solar-B Spectro-Polarimeter Authors: Lites, B. W.; Elmore, D. F.; Streander, K. V.; Hoffmann, C. M.; Tarbell, T. D.; Title, A. M.; Shine, R. A.; Ichimoto, K.; Tsuneta, S.; Shimizu, T.; Suematsu, Y. Bibcode: 2007ASPC..369...55L Altcode: The Focal Plane Package (FPP) of the Solar Optical Telescope (SOT) includes the first precision Spectro-Polarimeter (SP) for solar space observations. The FPP/SP will provide high precision measures of the vector magnetic field in the solar photosphere. Here we present some as-built performance specifications for the entire system of telescope + polarimeter. The FPP-SP system represents significant gains in several aspects over existing spectro-polarimetric systems; notably, angular resolution, polarimetric accuracy, spectral purity, and most importantly, temporal continuity of stable, high angular resolution. In this short summary of the poster, a few of the performance characteristics of the SP are presented. Title: Calibration of the SOT Polarization Authors: Ichimoto, K.; Suematsu, Y.; Shimizu, T.; Katsukawa, Y.; Noguchi, M.; Nakagiri, M.; Miyashita, M.; Tsuneta, S.; Tarbell, T. D.; Shine, R. A.; Hoffmann, C. M.; Cruz, T.; Lites, B. W.; Elmore, D. F. Bibcode: 2007ASPC..369...39I Altcode: Calibration of SOT polarization property was performed using natural sunlight and well calibrated sheet polarizer (linear and circular) placed on the entrance of the telescope. The polarimeter response matrices were determined for the spectropolarimeter (SP) and the narrowband filter imager (NFI), and it is shown that they are well behave as predicted and constant over the field of view. The crosstalk between I,Q,U,V will be suppressed to the negligible level at the photometric accuracy of 10^{-3} after the calibration with the obtained matrices. The sensitivity of SOT on linear and circular polarizations at each wavelength observed by NFI are also obtained. Title: Examinations of the Relative Alignment of the Instruments on SOT Authors: Okamoto, T. J.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Suematsu, Y.; Tsuneta, S.; Tarbell, T. D. Bibcode: 2007ASPC..369...47O Altcode: We report the results of the examination about the relative alignment among the instruments on SOT. We employ a test data set obtained in the natural sun-light test in May 2005, which has had a grid pattern over the entire FOV. SOT has the filtergraph (FG) and the spectro-polarimeter (SP). The FG consists of six broadband filter imagers (BFI) and six narrowband filter imagers (NFI). We examined the displacements among the images taken with different filters to an accuracy of better than 0.1 pixel corresponding to 0.02''. It is important to know relative displacements and plate scales of these instruments for accurate alignment of observational data. We note that the values measured in our work are relative and it is needed to decide the absolute values with another way. Title: Vector Spectropolarimetry of Dark-cored Penumbral Filaments with Hinode Authors: Bellot Rubio, L. R.; Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M.; del Toro Iniesta, J. C. Bibcode: 2007ApJ...668L..91B Altcode: 2007arXiv0708.2791B We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3". Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km s-1. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows. Title: Emergence of Small-Scale Magnetic Loops in the Quiet-Sun Internetwork Authors: Centeno, R.; Socas-Navarro, H.; Lites, B.; Kubo, M.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Tsuneta, S.; Katsukawa, Y.; Suematsu, Y.; Shimizu, T.; Nagata, S. Bibcode: 2007ApJ...666L.137C Altcode: 2007arXiv0708.0844C We study the emergence of magnetic flux at very small spatial scales (less than 2") in the quiet-Sun internetwork. To this aim, a time series of spectropolarimetric maps was taken at disk center using the instrument SP/SOT on board Hinode. The LTE inversion of the full Stokes vector measured in the Fe I 6301 and 6302 Å lines allows us to retrieve the magnetic flux and topology in the region of study. In the example presented here, the magnetic flux emerges within a granular structure. The horizontal magnetic field appears prior to any significant amount of vertical field. As time goes on, the traces of the horizontal field disappear, while the vertical dipoles drift-carried by the plasma motions-toward the surrounding intergranular lanes. These events take place within typical granulation timescales. Title: The Hinode (Solar-B) Mission: An Overview Authors: Kosugi, T.; Matsuzaki, K.; Sakao, T.; Shimizu, T.; Sone, Y.; Tachikawa, S.; Hashimoto, T.; Minesugi, K.; Ohnishi, A.; Yamada, T.; Tsuneta, S.; Hara, H.; Ichimoto, K.; Suematsu, Y.; Shimojo, M.; Watanabe, T.; Shimada, S.; Davis, J. M.; Hill, L. D.; Owens, J. K.; Title, A. M.; Culhane, J. L.; Harra, L. K.; Doschek, G. A.; Golub, L. Bibcode: 2007SoPh..243....3K Altcode: The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy gets transferred from the photosphere to the upper atmosphere and results in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-Ray Telescope (XRT). This paper provides an overview of the mission, detailing the satellite, the scientific payload, and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data. Title: Chromospheric Micro-jets Discovered Above Sunspot Penumbrae Authors: Katsukawa, Yukio; Tsuneta, S.; Suematsu, Y.; Ichimoto, K.; Shimizu, T.; Kubo, M.; Nagata, S.; Berger, T.; Tarbell, T.; Shine, R.; Title, A. Bibcode: 2007AAS...210.9413K Altcode: 2007BAAS...39..219K The Solar Optical Telescope (SOT) aboard HINODE allows us to observe dynamical activities in the solar photosphere and the chromosphere with high and stable image quality of 0.2 arcseconds. This superior performance of SOT provides new findings of fine-scale transient activities occurring in the chromosphere. In this paper, we report discovery of fine-scale jet-like phenomena ubiquitously observed above sunspot penumbrae. The jets are identified in image sequences of a sunspot taken through a Ca II H line filter at 3968A. The Ca II H line is sensitive to about 10^4 K plasma in the chromosphere.

Their length is typically between 3000 and 10000km, and their width is smaller than 500km. It is notable that their lifetime is shorter than 1 minute. Those small spatial and temporal scale possibly makes it difficult to identify the phenomena in existing ground-based observations. The jets are easily identified when a sunspot is located far from the disk center, and motion of the bright features suggests that mass is erupted from lower chromosphere to upper atmosphere. Velocities of the motion are estimated to be 50 to 100 km/s from their lateral motion of intensity patterns. The velocities are much faster than sound speeds in the chromosphere. A possible cause of such high-speed jets is magnetic reconnection at the lower chromosphere resulted from fluted magnetic configuration in penumbrae which is suggested by vector magnetic field measurements in the photosphere. Title: Hinode Data Calibration For Precise Image Co-alignment: XRT vs. SOT Authors: Shimizu, Toshifumi; DeLuca, E. E.; Lundquist, L.; Sakao, T.; Kubo, M.; Narukage, N.; Kano, R.; Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Tsuneta, S.; Tarbell, T.; Shine, D.; Hinode Team Bibcode: 2007AAS...210.9417S Altcode: 2007BAAS...39Q.220S From late October in 2006, Hinode solar optical telescope (SOT) has started to produce series of 0.2-0.3 arcsec visible-light images, revealing dynamical behaviors of solar magnetic fields on the solar surface. Simultaneously, Hinode X-ray telescope (XRT) has been providing 1 arcsec resolution X-ray images of the solar corona, giving the location of heating and dynamics occuring in the corona. Precise image co-alignment of SOT data on XRT data with sub-arcsec accuracy is required to provide new information regarding connecting the corona to the photosphere. This presentation will give an introduction of Hinode between-telescopes' image co-alignment to SPD participants. For active region observations with sunspots, sunspots can be used as fiducial to co-align the data from the two telescopes each other. Satellite jitter in order of 1 arcsec or less is included in the series of XRT data, whereas image stabilization system (correlation tracker) removes the satellite jitter from the series of SOT images. Telescope pointings show orbital variation in order of a few arcsec, which can be well predicted from Hinode orbit information. Modeling co-alignment is under study and it is the only precise method for quiet Sun and limb observations. Title: Magnetic Patches in Internetwork Quiet Sun Authors: De Wijn, Alfred; Lites, B.; Berger, T.; Shine, R.; Title, A.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Shimizu, T.; Hinode Team Bibcode: 2007AAS...210.9412D Altcode: 2007BAAS...39Q.219D We study strong flux elements in the quiet sun in the context of the nature of quiet-sun magnetism, its coupling to chromospheric, transition-region and coronal fields, and the nature of a local turbulent dynamo. Strong, kilogauss flux elements show up intermittently as small bright points in G-band and Ca II H images. Although bright points have been extensively studied in the magnetic network, internetwork magnetism has only come under scrutiny in recent years. A full spectrum of field strengths seems to be ubiquitously present in the internetwork at small spatial scales, with the stronger elements residing in intergranular lanes. De Wijn et al. (2005) found that bright points in quiet sun internetwork areas appear recurrently with varying intensity and horizontal motion within long-lived patches that outline cell patterns on mesogranular scales. They estimate that the "magnetic patches" have a mean lifetime of nine hours, much longer than granular timescales. We use multi-hour sequences of G-band and Ca II H images as well as magnetograms recorded by the Hinode satellite to follow up on their results. The larger field of view, the longer sequences, the addition of magnetograms, and the absence of atmospheric seeing allows us to better constrain the patch lifetime, to provide much improved statistics on IBP lifetime, to compare IBPs to network bright points, and to study field polarity of IBPs in patches and between nearby patches.

Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, build and operation of the mission. Title: Hinode/SOT Observations Of Apparent "Thermal Plume" Motions In A Solar Prominence Authors: Berger, Thomas; Tarbell, T.; Slater, G.; Tsuneta, S.; Suematsu, Y.; Ichimoto, K.; Katsukawa, Y.; Shimizu, T.; Kubo, M.; Nagata, S. Bibcode: 2007AAS...210.9433B Altcode: 2007BAAS...39..222B We present 396.8 nm Ca II H-line observations of a large hedgerow, or "sheet", prominence seen on the solar western limb on 30-November-2006. The 16 second cadence observations show dark channels rising vertically at speeds of approximately 10 km/sec to heights of about 15 Mm above the limb. Many of the motions end in vortical overturning near the top of the sheet . Bright downflows of similar speed are also seen within the sheet, often in association with a dark channel that has risen to the top of the sheet. The dark channels are suggestive of hot material rising in thermal plumes within the prominence sheet. Similarly, the bright material motions appear to be density enhanced regions of turbulent downflow. Current models of sheet prominences do not include the observed dynamics. In these models, the prominence plasma is in a low-beta state and is constrained to move only along magnetic field lines. However the motions observed here are extremely complex, implying either that the magnetic field lines are undergoing turbulent motion, thus tangling and reconnecting constantly, or that the plasma is not constrained by the field and is in a high-beta convective state. We measure the motion of several representative "plumes" and downflows, estimate the density and temperature of the prominence plasma, and suggest several avenues for further investigation.

This work was supported by NASA under the Hinode/SOT contract NNM07AA01C. Title: High Resolution Observation of Spicules in Ca II H with Hinode/SOT Authors: Suematsu, Yoshinori; Katsukawa, Y.; Ichimoto, K.; Tsuneta, S.; Okamoto, T.; Nagata, S.; Shimizu, T.; Tarbell, T.; Shine, R.; Title, A. Bibcode: 2007AAS...210.9411S Altcode: 2007BAAS...39..219S High cadence observation with a Ca II H broadband filtergraph (passband of 0.25 nm) of the Solar Optical Telescope (SOT) aboard HINODE has revealed dynamical nature of solar limb spicules. Thanks to a diffraction-limited and low-scattered light property of the instrument, we can track the detailed evolution of individual spicules for the first time with a spatial resolution of 0.2 arcsec. The spicules in Ca II H are typically several arcsec tall and have multi-thread structure; each threads are a few tenth of arcsec wide. It should be stressed that most spicules do not show a simple up-and-down motion along a rigid path line. They start with bright structure emanating from Ca II H bright region, get widen and diffused with time and ascent, showing expansion with lateral or even helical motion in tall events. Small and short lived spicules tend to fade out after ascent. We will present new findings of spicule dynamics in different magnetic environments and discuss about long standing controversy of its motion and evolution. Title: Hinode/SOT Observation of Fine Structure of the Evershed Flow Authors: Ichimoto, Kiyoshi; Suematsu, Y.; Tsuneta, S.; Katsukawa, Y.; Shimojo, M.; Kubo, M.; Shimizu, T.; Shine, R.; Tarbell, T.; Title, A.; Lites, B.; Elmore, D.; Yokoyama, T.; Nagaka, S. Bibcode: 2007AAS...210.9408I Altcode: 2007BAAS...39..218I Small scale structure of the Evershed effect was studied using the Spectropolarimeter (SP) and Broadband Filter Imager (BFI) of SOT aboard Hinode. SP maps and high cadence continuum images of BFI coverting entire sunspots are used to investigate the spatial distribution of the flow field, brightness and magnetic fields. It is revealed that the Evershed flow starts at the front edge of inwardly migrating penumbral grains with an upward velocity component and turns to nearly holizontal flow preferentially in dark lanes (or dark core of filaments) of the penumbra. Our results are in general agreement with the well known uncombed penumbral concept in which the Evershed flow takes place in nearly holizontal field channels. We discovered a number of tiny elongated regions in deep photosphere in which there is an obvious upward motion of 1-1.5km/s distributing over the penumbra.

They could be identified as the 'foot points' of the individual Evershed flow channels. Cross-correlation among the flow speed, intensity, magnetic field strength and inclination, and distribution of string down flows in and around the penumbra will also be discussed. Title: Continuous Upflow of Plasmas at the Edge of an Active Region as Revealed by the X-ray Telescope (XRT) aboard Hinode Authors: Sakao, Taro; Kano, R.; Narukage, N.; Kotoku, J.; Bando, T.; DeLuca, E. E.; Lundquist, L. L.; Golub, L.; Kubo, M.; Katsukawa, Y.; Tsuneta, S.; Hara, H.; Matsuzaki, K.; Shimojo, M.; Shibasaki, K.; Shimizu, T.; Nakatani, I. Bibcode: 2007AAS...210.7205S Altcode: 2007BAAS...39Q.179S We present X-ray imaging observations with Hinode X-Ray Telescope (XRT) of an active region NOAA AR 10942 made in the period of 20-22 February 2007. A prominent feature that drew our particular attention is that there revealed continuous upflow of soft-X-ray-emitting plasmas along apparently-open field lines towards the outer corona emanating from the edge of the active region.

The field lines are originated from an ensamble of small spots of following polarity, and are located at a border between the active region and an adjacent equatorial coronal hole(s) located to the east. The upflow was observed to be continuous throughout the three days of observation intervals with projected velocity of 140 km/s, accompanied with undulating motion of the field lines.

We assert that these upflowing plasmas would be a possible source of slow solar wind material, which supports a foresighted notion which grew out of interplanetary scintillation observations that slow solar wind most likely has its origin in the vicinity of active regions with large flux expansion (Kojima et al. 1999).

A preliminaty analysis indicates that the temperature of the upflowing material near the base of the field lines is 1.3 MK with number density of 2 × 109 /cm3. Assuming that all the material is to escape to the interplanetary space, this leads to a mass loss rate of 2 × 1011 g/s which amounts to a good fraction of the total mass loss rate for solar wind. It is noteworthy that, even apart from this unique upflow, we see continuous (up)flows of plasmas anywhere around (surrounding) the active region.

Details of the upflow will be presented and their possible implication to slow solar wind discussed. Title: Magnetic Flux Emergence In The Quiet Sun Photosphere Authors: Centeno, Rebecca; Lites, B.; Socas-Navarro, H.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Tsuneta, S.; Katsukawa, Y.; Suematsu, Y.; Kubo, M.; Shimizu, T. Bibcode: 2007AAS...210.9406C Altcode: 2007BAAS...39..218C We study the emergence of magnetic flux at very small spacial scales (less than 1 arcsec) in the quiet Sun internetwork. To this aim, several time series of spectropolarimetric maps were taken at disk center using the instrument SP/SOT on board Hinode. The LTE inversion of the full Stokes vector measured in the Fe I 6301 and 6302 lines will allow us to retrieve the magnetic flux and topology in the region of study. We find that the magnetic flux emerges typically within the granular structures. In many cases, the horizontal magnetic field appears prior to any significant amount of vertical field. As time goes on, the traces of the horizontal field dissapear while the the vertical dipoles drift -carried by the plasma motions- towards the surrounding intergranular lanes. Sometimes they stay trapped there for a while but they eventually either disappear by disgregation/cancelation or agregate to other magnetic field concentrations giving rise to larger flux elements. The time scale of these events is of the order of 10-20 minutes. Title: Formation of Moving Magnetic Features and Penumbral Magnetic Fields Authors: Kubo, Masahito; Ichimoto, K.; Shimizu, T.; Tsuneta, S.; Suematsu, Y.; Katsukawa, Y.; Nagata, S.; Lites, B. W.; Frank, Z.; Tarbell, T. D.; Shine, R. A.; Title, A. M. Bibcode: 2007AAS...210.9410K Altcode: 2007BAAS...39..218K We investigate the formation process of Moving Magnetic Features (MMFs) observed with Hinode/SOT. Moving magnetic features are small magnetic elements moving outward in the moat region surrounding mature sunspots. We derive vector magnetic fields of MMFs around simple sunspots near the disk center. Most of MMFs with polarity opposite to the sunspot have large redshift around the penumbral outer boundary. We find that some of them have Doppler velocities of about 10 km/s and such large Doppler motion is observed only in the Stokes V profile. The Stokes Q and U profiles in the same pixel do not have any significant Doppler motions. Horizontal magnetic fields of the penumbra frequently extend to the moat region and the MMFs having horizontal fields with polarity same as the sunspot are formed. The MMFs with polarity opposite to the sunspot appear around the outer edge of the extending penumbral fields. We also find penumbral spines, which have more vertical magnetic fields than the surroundings, branch off at their outer edge and MMFs having relatively vertical fields with polarity same as the sunspot are detached from the outer edge of the branch. The branch of penumbral spine is formed when granular cells in the moat region go into the penumbra. Title: Ubiquitous Horizontal Magnetic Fields in the Quiet Solar Photosphere as Revealed by HINODE Meaurements Authors: Lites, Bruce W.; Socas Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Kubo, M.; Shimizu, T.; Nagata, S.; Hinode Team Bibcode: 2007AAS...210.6303L Altcode: 2007BAAS...39..171L Measurements with the HINODE Spectro-Polarimeter (SP) of the quiet Sun allow characterization of the weak, mixed-polarity magnetic flux at the highest angular resolution to date (0.3"), and with good polarimetric sensitivity(0.025% relative to the continuum). The image stabilization of the HINODE spacecraft allows long integrations with degradation of the image quality only by the evolution of the solar granulation. From the Stokes V profile measurements we find an average solar "Apparent Flux Density" of 14 Mx cm-2, with significant Stokes V signals at every position on the disk at all times. However, there are patches of meso-granular size (5-15") where the flux is very weak. At this high sensitivity, transverse fields produce measurable Stokes Q,U linear polarization signals over a majority of the area, with apparent transverse flux densities in the internetwork significantly larger than the corresponding longitudinal flux densities. When viewed at the center of the solar disk, the Stokes V signals (longitudinal fields) show a preference for occurrence in the intergranular lanes, and the Q,U signals occur preferably over the granule interiors, but neither association is exclusive.

Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, build and operation of the mission. Title: Attempt to detect Aflven waves with Solar Optical Telescope aboard Hinode Authors: Tsuneta, Saku; Suematsu, Y.; Ichimoto, K.; Katsukawa, Y.; Shimizu, T.; Nagata, S.; Orozco Suárez, D.; Lites, B.; Shine, D.; Tarbell, T.; Title, A. Bibcode: 2007AAS...210.9428T Altcode: 2007BAAS...39..222T Flux tube on the sun may carry linear and torsional Alfven waves generated by photospheric motion. Photospheric motion of 2 km/s would provide magnetic fluctuation of 40G for 1KG tube and for the Alfven speed of 50km/s. This may be close to the detection limit of the Stokes Q and U signals for flux tubes located in the sun center. However, for flux tubes located near the limb, the fluctuation would be seen in the Stokes V signal, and can be detectable.

We also may be able to confirm the 90 degree phase shift between magnetic fluctuation and velocity fluctuation, which is easier to observe for flux tubes near the limb. Detection of waves would be important in terms of coronal heating and solar wind acceleration. An attempt to detect waves along flux tubes will be reported. Title: Discovery Of Cool Cloud-like Structures In The Corona With Hinode Solar Optical Telescope Authors: Okamoto, Takenori; Tsuneta, S.; Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Shimizu, T.; Nagata, S.; Shibata, K.; Tarbell, T.; Shine, R.; Berger, T.; Lites, B.; Myers, D. Bibcode: 2007AAS...210.9426O Altcode: 2007BAAS...39..221O A solar observation satellite Hinode (Japanese for sun rise) was launched in September 2006.Hinode carried 3 advanced solar telescopes, visible light telescope, EUV imaging spectrometer, and X-ray telescope to simultaneously observe the photosphere, chromosphere, transition region, and corona. In the performance verification phase of the Hinode spacecraft with its telescopes, we observed an active region AR10921 near the west limb of the solar disk on November 9 2006. At this point, we planned to observe spicules on the limb with a broadband filter dedicated to Ca II H line (3968A). Ca II-H emission line (3968A) comes from plasma with temperature of approx. 10(4) K, which is much lower than the coronal temperature of 10(6-7) K. In addition to spectacular spicules, we find a large cloud-like structure located 10,000-20,000 km above the limb. The cloud has a very complex fine structure with dominant horizontal thread-like structure. Some features are moving horizontally and also have clear vertical oscillatory motions. The periods and amplitudes of these oscillations are 130-250 seconds and 200-850 km, respectively. The vertical oscillatory motion sometimes has a coherence length as long as 16,000 km. We conclude that from various observational features this vertical oscillation is a signature of Alfven waves propagating along the horizontal magnetic fields. We will discuss their origin and implications. Title: Hinode/SOT Observations of Sunspot Penumbral Dynamics and Evolution Authors: Shine, Richard A.; Hagenaar, M.; Tarbell, T.; Title, A.; Lites, B.; Ichimoto, K.; Tsuneta, S.; Katsakawa, Y.; Suematsu, Y.; Nagata, S.; Kubo, M.; Shimizu, T. Bibcode: 2007AAS...210.9407S Altcode: 2007BAAS...39..218S The Solar Optical Telescope (SOT) on the Hinode satellite (launched October 2006) has obtained long and nearly continuous time series of several large sunspots including those in NOAA AR's 10923, 10925, and 10930. Here we use high resolution movies taken primarily with the broad band Ca II (396.8nm) and G band (430.5nm) channels and magnetograms taken with the 630.2nm narrow band channel to study the details and short term evolution of penumbral fine structures as well as the long term evolution of the sunspots. We compute flow maps and use space/time slices to track motions of Evershed clouds, penumbral grains, and visualize oscillations. The data contain examples of penumbral formation and disintegration including "orphan" penumbra (i.e., penumbra without an obvious umbra). There is also an interesting instance of "colliding" penumbra in AR 10930 as two sunspots of opposite polarity converged. The zone of apparent shear was associated with several flares.

This work was supported by NASA contract NNM07AA01C Title: Optical Performance of the Solar Optical Telescope aboard HINODE Authors: Suematsu, Yoshinori; Ichimoto, K.; Katsukawa, Y.; Otsubo, M.; Tsuneta, S.; Nakagiri, M.; Noguchi, M.; Tamura, T.; Kato, Y.; Hara, H.; Miyashita, M.; Shimizu, T.; Kubo, M.; Sakamoto, Y. Bibcode: 2007AAS...210.9402S Altcode: 2007BAAS...39Q.217S The Solar Optical Telescope (SOT) carried by HINODE was designed to perform a high-precision polarimetric observation of the Sun in visible light spectra with a spatial resolution of 0.2 - 0.3 arcseconds. The SOT is a sophistcated instrument and consists of two separate optical parts; the Optical Telescope Assembly (OTA) which is 50 cm aperture Gregorian telescope feeding the light into following observing instruments which is called the focal plane package (FPP) made of two filtergraphs and a spectro-polarimeter. The performance of the OTA is important because a spatial resolution and its temporal stability is mainly determined by this component. To keep the OTA in moderate temperature and optical thermal deformation small, it equipped newly designed components such as a heat dump and a secondary field stop aluminum mirror with high reflectivity silver coating and a temperature low-sensitive apochromatic collimataing lens unit with a UV/IR cut coating on the first surface. In addition, the SOT has an active image stabilization system consisting of correlation tracker, tip-tilt mirror and its controller against satellite pointing jitter. It was confirmed that this system freezes residual motion to the 0.01 arcsecond level on orbit. The image of sub-arcsecond G-band (430.5 nm) bright points clearly indicates that the SOT achieves the diffraction-limit on orbit; this is also confirmed using a phase diversity method. In this paper, we describe details of the design and on-orbit performance of the OTA. Title: Magnetic Landscape Of Solar Polar Region With Solar Optical Telescope Aboard Hinode Authors: Tsuneta, Saku; Suematsu, Y.; Ichimoto, K.; Shimizu, T.; Katsukawa, Y.; Nagata, S.; Orozco Suárez, D.; Lites, B.; Shine, D.; Tarbell, T.; Title, A. Bibcode: 2007AAS...210.9405T Altcode: 2007BAAS...39..218T Solar polar region is the final destination for remnant magnetic fields due to meridional flow and granular diffusion, and is very important for the global solar dynamo. Hinode satellite carried out high-resolution spectro-polarimetric observations for the Northern pole on 2006 November 22 as a part of its performance verification program. We find ubiquitous isolated (positive and negative) patches in the Stokes V map (i.e. fields horizontal to local surface) all over the Arctic circle. The Q (vertical to local surface) map indicates scattered vertical flux tubes, which have bipolar feature in the U and V maps. This suggests canopy-like structure of the strong isolated flux tubes. This will be compared with equatorial landscape with similar distance from the sun center. Strong flux tube and weaker ubiquitous horizontal fields as represented by Stokes V would have implication to the current understanding of the global and local dynamo. Title: Vector Magnetic Fields of Moving Magnetic Features and Flux Removal from a Sunspot Authors: Kubo, M.; Shimizu, T.; Tsuneta, S. Bibcode: 2007ApJ...659..812K Altcode: Moving magnetic features (MMFs) are small photospheric magnetic elements moving outward in the zone (moat region) surrounding mature sunspots. Vector magnetic fields and horizontal motion of the classical MMFs (called isolated MMFs hereafter) are investigated using coordinated ASP and MDI observations. Their magnetic and velocity properties are compared to nearby magnetic features, including moat fields surrounding the isolated MMFs and penumbral uncombed structure. The moat fields are defined as nonisolated MMFs because they also move outward from sunspots. The nonisolated MMFs have nearly horizontal magnetic fields of both polarities. We find that the isolated MMFs located on the lines extrapolated from the horizontal component of the uncombed structure have magnetic fields similar to the nonisolated MMFs. This suggests that the MMFs with nearly horizontal fields are intersections of horizontal fields extended from the penumbra with the photospheric surface. We find clear evidence that the isolated MMFs located on the lines extrapolated from the vertical component of the uncombed structure have vertical field lines with polarity same as the sunspot. This correspondence shows that such MMFs are detached from the spine (vertical) component of the penumbra. We estimate that the magnetic flux carried by the vertical MMFs is about 1-3 times larger than the flux loss of the sunspot. We suggest that the isolated vertical MMFs alone can transport sufficient magnetic flux and are responsible for the disappearance and disintegration of the sunspot. Title: Magnetic Field Diagnostic Capability of Solar-B/SOT: Filtergraph Instrument Authors: Ichimoto, K.; Suematsu, Y.; Shimizu, T.; Katsukawa, Y.; Tsuneta, S.; Tarbell, T. D.; Shine, R. A.; Hoffmann, C. M.; Title, A. M.; Lites, B. W.; Elmore, D. F.; Streander, K. V. Bibcode: 2006ASPC..358..189I Altcode: The Narrowband Filter Instrument (NFI) of the Solar Optical Telescope onboard Solar-B provides 2D magnetograms/Dopplergrams with a tunable Lyot filter (width ∼ 0.1 Å) in 6 selected wavelength bands, and spatial sampling of 0.08 arcsec/px. The Zeeman-effect sensitivity of NFI and the detection limits of weak magnetic fields are evaluated for 2 photospheric and 3 chromospheric lines. Magnetic-field retrievability from the NFI observables is studied using synthetic Stokes profiles of Fe I 5250 Å. We find that, with optimized wavelength sampling at 4 positions, the inferred magnetic field is sufficiently accurate under the hypothesis of constant magnetic field and velocity along the LOS. Title: Adiabatic expansion acceleration process in spontaneous fast magnetic reconnection Authors: Shimizu, T.; Kondoh, K.; Ugai, M. Bibcode: 2006AdSpR..37.1283S Altcode: MHD study for the adiabatic expansion acceleration process associated with the spontaneous fast magnetic reconnection is reported. When the fast reconnection process steadily generates a plasmoid in the downstream, the adiabatic expansion acceleration region appears between the reconnection jet and plasmoid. It is pointed out that the appearance of the acceleration region is required to steadily keep the reconnection process. The reconnection jet and plasmoid is generally high beta but the plasma pressure in the acceleration region is extremely low, when the reconnection jet is supersonic. This feature may become a signature to detect where the Petschek reconnection is steadily caused in the current sheet of the geomagnetotail. Title: Three dimensional computer simulation of magnetic loop associated with magnetic reconnection Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2006AdSpR..37.1301K Altcode: The dynamics of large-scale magnetic loop in three dimensions is studied by MHD simulations. The spontaneous fast reconnection model is used in this study. Once a current-driven anomalous resistivity is ignited in a local region in a current sheet, the fast reconnection mechanism spontaneously evolves. As a result, large magnetic loop is developed, and very localized high pressure region appears outside of the magnetic loop. Near the region between magnetic loop and the high pressure region, very large vortex flow appears, and then, the high pressure region more and more localized due to this vortex. On the other hand, we suggest that the spatial size of initial disturbance to the direction of current is very important to evolve of three dimensional fast reconnection processes. Title: Three Dimensional Analysis of Shock Structure around Magnetic Loop Associated with Spontaneous Fast Magnetic Reconnection Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2005ESASP.596E..72K Altcode: 2005ccmf.confE..72K No abstract at ADS Title: MHD Shock Wave Structure in Supersonic Magnetic Reconnection Authors: Shimizu, T.; Kondo, K.; Ugai, M. Bibcode: 2005ESASP.596E..25S Altcode: 2005ccmf.confE..25S No abstract at ADS Title: A long-time chopper for direct measurement of 4He(12C,16O)γ reaction cross section Authors: Oba, H.; Sagara, K.; Shimizu, T.; Oshiro, M.; Maeda, T.; Ikeda, N. Bibcode: 2005NuPhA.758..407O Altcode: Direct measurement of the 4He(12C,16O)γ reaction cross section by detecting 16O recoils is in progress at Kyushu University tandem laboratory (KUTL). A long-time chopper (LTC) has been developed to reject backgrounds from 16O recoils which have time (energy) spread. In the measurement of 4He(12C,16O)γ cross section at Ecm = 2.4 MeV, LTC was found to reduce the backgrounds by about three orders of magnitude. Title: Contamination evaluation and thermal vacuum bakeout for SOLAR-B visible-light and X-ray telescope Authors: Tamura, Tomonori; Hara, Hirohisa; Tsuneta, Saku; Ichimoto, Kiyoshi; Kumagai, Kazuyoshi; Nakagiri, Masao; Shimizu, Toshifumi; Sakao, Taro; Kano, Ryouhei Bibcode: 2005RNAOJ...8...21T Altcode: In the development of space telescopes, we are concerned about molecular outgassing materials from telescope components. In particular, for solar telescopes in space, the deposition of the outgassing materials may lead to the increase of solar absorptance at a mirror surface and it causes the thermal distortion due to the resultant temperature increase. The mirror reflectivity at vacuum ultraviolet wavelengths is very sensitive to molecular contamination. We have extensively evaluated reflectance at 121.6nm (Lyman-alpha) of the contamination witness mirrors exposed to the telescope testing environments in the SOLAR-B visible-light telescope program. Thermal vacuum bakeout of flight components is very effective process to reduce the outgassing rate. We have severe contamination control program during the assembly and testing of the SOLAR-B telescope up to launch of the satellite. Title: Completion of Solar-B/Optical Telescope flight model Authors: Suematsu, Yoshinori; Ichimoto, Kiyosi; Shimizu, Toshifumi; Otsubo, Masashi; Nakagiri, Masao; Noguchi, Motokazu; Tamura, Tomonori; Katsukawa, Yukio; Kato, Yoshihiro; Hara, Hirohisa; Miyashita, Masakuni; Tsuneta, Saku; Kubo, Masahito; Sakamoto, Yasushi Bibcode: 2005ARAOJ...7...52S Altcode: No abstract at ADS Title: Supersonic and Subsonic Expansion Acceleration Mechanisms in Fast Magnetic Reconnection Authors: Shimizu, T.; Ugai, M. Bibcode: 2005fmpp.conf..139S Altcode: No abstract at ADS Title: Solar-B/Optical Telescope flight model is coming up Authors: Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Otsubo, Masashi; Nakagiri, Masao; Noguchi, Motokazu; Tamura, Tomonori; Kato, Yoshihiro; Hara, Hirohisa; Miyashita, Masakuni; Tsuneta, Saku; Katsukawa, Yukio; Kubo, Masahito; Sakamoto, Yasushi Bibcode: 2005naoj.book....4S Altcode: No abstract at ADS Title: Computer Simulations on the Spontaneous Fast Reconnection Evolution in Three Dimensions Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2005fmpp.conf..135K Altcode: No abstract at ADS Title: The first build-up of the Solar-B flight models Authors: Hara, Hirohisa; Ichimoto, Kiyoshi; Otsubo, Masashi; Katsukawa, Yukio; Kato, Yoshihiro; Kano, Ryohei; Kumagai, Kazuyoshi; Shibasaki, Kiyoto; Shimizu, Toshifumi; Shimojo, Masumi; Suematsu, Yoshinori; Tamura, Tomonori; Tsuneta, Saku; Noguchi, Motokazu; Nakagiri, Masao; Miyashita, Masakuni; Watanabe, Tesuya; Kosuchi, Takeo; Sakao, Taro; Matsuzaki, Keiichi; Kitakoshi, Yasunori; Kubo, Masahito; Sakamoto, Yasushi Bibcode: 2005ARAOJ...7...46H Altcode: No abstract at ADS Title: Vector Magnetic Field of Moving Magnetic Features around a Well-Developed Sunspot Authors: Kubo, M.; Shimizu, T. Bibcode: 2004ASPC..325..143K Altcode: No abstract at ADS Title: SolarB Solar Optical Telescope (SOT) Authors: Shimizu, T. Bibcode: 2004ASPC..325....3S Altcode: The SolarB Solar Optical Telescope (SOT) will be the largest telescope with highest performance ever to observe the Sun at visible wavelengths from space. The telescope itself (Optical Telescope Assembly, OTA) along with its focal plane package (FPP), is optimized for measurement of the vector magnetic field and associated dynamics in the solar photosphere and chromosphere. FPP observations are controlled using commands from the sequence tables in Mission Data Processor (MDP). This paper describes scientific capabilities of the instrument. Title: Test particle simulation of MHD shock structure in fast magnetic reconnection Authors: Shimizu, T. Bibcode: 2004AGUFMSM53B0411S Altcode: Test fluid particles are traced on the time-developed MHD simulation field data, in order to study MHD shock waves formed in fast magnetic reconnection. In general, when fast magnetic reconnection is steadily caused in the uniform current sheet, high speed plasma jet is generated by a pair of slow shocks and a plasmoid is formed in the downstream. According to our MHD simulations, when the plasmoid continue to propagate in the current sheet, the slow shock may be separated into two regions, i.e. reconnection jet region and plasmoid region. The reconnection jet is generated by the former slow shock. While, the propagation of the plasmoid is driven by the latter slow shock around the plasmoid. In addition, if the reconnection jet is supersonic, the slow shock in the jet region partially collapses, and then, intermediate waves and expansion waves appear in the jet region. The details of these MHD wave structures which are new features for the fast magnetic reconnection on the basis of MHD theory are reported by using test particle simulation technique. Title: Image stabilization system on SOLAR-B Solar Optical Telescope Authors: Shimizu, Toshifumi; Nagata, Shin'ichi; Edwards, Chris; Tarbell, Theodore; Kashiwagi, Yasuhiro; Kodeki, Kazuhide; Ito, Osamu; Miyagawa, Hiroyuki; Nagase, Masayuki; Inoue, Syunsaku; Kaneko, Kazumasa; Sakamoto, Yasushi; Ichimoto, Kiyoshi; Tsuneta, Saku; Miki, Shiro; Endo, Makoto; Tabata, Masaki; Nakaoji, Toshitaka; Matsuzaki, Keiichi; Kobayashi, Ken; Otsubo, Masashi; Suematsu, Yoshinori; Kumagai, Kazuyoshi; Noguchi, Motokazu; Tamura, Tomonori; Nakagiri, Masao Bibcode: 2004SPIE.5487.1199S Altcode: Extremely stable pointing of the telescope is required for images on the CCD cameras to accurately measure the nature of magnetic field on the sun. An image stabilization system is installed to the Solar Optical Telescope onboard SOLAR-B, which stabilizes images on the focal plane CCD detectors in the frequency range lower than about 20Hz. The system consists of a correlation tracker and a piezo-based tip-tilt mirror with servo control electronics. The correlation tracker is a high speed CCD camera with a correlation algorithm on the flight computer, producing a pointing error from series of solar granule images. Servo control electronics drives three piezo actuators in the tip-tilt mirror. A unique function in the servo control electronics can put sine wave form signals in the servo loop, allowing us to diagnose the transfer function of the servo loop even on orbit. The image stabilization system has been jointly developed by collaboration of National Astronomical Observatory of Japan/Mitsubishi Electronic Corp. and Lockheed Martin Advanced Technology Center Solar and Astrophysics Laboratory. Flight model was fabricated in summer 2003, and we measured the system performance of the flight model on a laboratory environment in September 2003, confirming that the servo stability within 0-20 Hz bandwidth is 0.001-0.002 arcsec rms level on the sun. Title: The Solar Optical Telescope onboard the Solar-B Authors: Ichimoto, Kiyoshi; Tsuneta, Saku; Suematsu, Yoshinori; Shimizu, Toshifumi; Otsubo, Masashi; Kato, Yoshihiro; Noguchi, Motokazu; Nakagiri, Masao; Tamura, Tomonori; Katsukawa, Yukio; Kubo, Masahito; Sakamoto, Yasushi; Hara, Hirohisa; Minesugi, Kenji; Ohnishi, Akira; Saito, Hideo; Kawaguchi, Noboru; Matsushita, Tadashi; Nakaoji, Toshitaka; Nagae, Kazuhiro; Sakamoto, Joji; Hasuyama, Yoshihiro; Mikami, Izumi; Miyawaki, Keizo; Sakurai, Yasushi; Kaido, Nobuaki; Horiuchi, Toshihida; Shimada, Sadanori; Inoue, Toshio; Mitsutake, Masaaki; Yoshida, Norimasa; Takahara, Osamu; Takeyama, Norihide; Suzuki, Masaharu; Abe, Shunichi Bibcode: 2004SPIE.5487.1142I Altcode: The solar optical telescope onboard the Solar-B is aimed to perform a high precision polarization measurements of the solar spectral lines in visible wavelengths to obtain, for the first time, continuous sets of high spatial resolution (~0.2arcsec) and high accuracy vector-magnetic-field map of the sun for studying the mechanisms driving the fascinating activity phenomena occurring in the solar atmosphere. The optical telescope assembly (OTA) is a diffraction limited, aplanatic Gregorian telescope with an aperture of Φ500mm. With a collimating lens unit and an active folding mirror, the OTA provides a pointing-stabilized parallel beam to the focal plane package (FPP) with a field of view of about 360x200arcsec. In this paper we identify the key technical issues of OTA for achieving the mission goal and describe the basic concepts in its optical, mechanical and thermal designs. The strategy to verify the in-orbit performance of the telescope is also discussed. Title: Design and Performance of Tip-Tilt Mirror System for Solar Telescope Authors: Kodeki, Kazuhide; Fukushima, Kazuhiko; Hara, Hirohisa; Inoue, Masao; Kano, Ryouhei; Kashiwase, Toshio; Nagata, Shin'ichi; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi Bibcode: 2004JSpRo..41..868K Altcode: No abstract at ADS Title: The dynamics of plasmoid in asymmetric spontaneous fast reconnection Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2004AdSpR..33..794K Altcode: The spontaneous fast reconnection evolution is studied in asymmetric magnetic field configuration. In particular, it is investigated how shear flow influences in magnetosheath region to the propagation of plasmoid results from magnetic reconnection using two-dimensional magnetohydrodynamic simulations. According to the fast reconnection development, the resulting large-scale plasmoids swell and propagate. Once the plasmoid fully develops, the propagation speed becomes almost constant in both the symmetric and asymmetric magnetic field configuration. An asymmetric plasmoid swells predominantly in the region of a weaker magnetic field and propagates along the field lines. The associated shock structure standing at the plasma boundary is the ordinary slow shock irrespective of the intensity of shear flow. However, velocity of plasmoid is proportional to shear flow velocity. Title: Multi-wavelength observations of microflares and emerging flux with YOHKOH/SXT Authors: Shimizu, Toshifumi Bibcode: 2004IAUS..223..345S Altcode: 2005IAUS..223..345S Soft X-ray observations by Yohkoh SXT have revealed that transient brightenings of small coronal loops frequently occur in active regions. Their estimated energy is 10^{24} sim 10^{28} ergs and non-thermal behaviors may be observed in the large member of the brightenings. They are considered as soft X-ray signatures of microflares observed in hard X-rays. Lower coronal temperature plasma (1-2MK) produced by Yohkoh transient brightenings is simultaneously observed in EUV wavelengths by TRACE and SoHO EIT/CDS. Moreover, EUV observations have shown a lot of tinier transient brightenings without accompanying SXT transient brightenings. Coordinated observations with photospheric observations show that the location of Yohkoh transient brightenings is well localized in active regions, i.e., in emerging flux regions, around well-developed sunspots, and in the coronal bundles connecting the leading plage to the following plage regions. In some Yohkoh events, small-scale emergence of magnetic flux is well associated with their occurrence, suggesting that emerging flux plays a key role in triggering transient energy release in the corona. This paper reviews multi-wavelength observations coordinated with Yohkoh SXT observations for investigating the nature of SXT transient brightenings (SXR microflares) and their associated emerging flux. Finally, Solar-B space observatory is briefly introduced as a next powerful tool for multi-wavelength investigations. Title: Core-Collapse Supernovae Induced by Anisotropic Neutrino Radiation Authors: Motizuki, Y.; Madokoro, H.; Shimizu, T. Bibcode: 2004EAS....11..163M Altcode: 2004astro.ph..6303M We demonstrate the important role of anisotropic neutrino radiation on the mechanism of core-collapse supernova explosions. Through a newparameter study with a fixed radiation field of neutrinos, we show thatprolate explosions caused by globally anisotropic neutrino radiationrepresent the most effective mechanism of increasing the explosionenergy when the total neutrino luminosity is given. This is suggestive ofthe fact that the expanding materials of SN 1987A have a prolategeometry. Title: Comparison of supersonic and subsonic expansion accelerations associated with fast magnetic reconnection Authors: Shimizu, T.; Ugai, M. Bibcode: 2004AdSpR..33..789S Altcode: Supersonic and subsonic expansion acceleration mechanisms associated with spontaneous fast magnetic reconnection process are compared by two-dimensional magnetohydrodynamic (MHD) simulations and test fluid (non-charged) particle simulations. When the Petschek reconnection process is steadily established, the reconnection jet generated by a pair of slow shocks becomes either supersonic (Case 1) or subsonic (Case 2), depending on the upstream plasma condition. For Case 1, the jet generated by the slow shocks can be further accelerated by the adiabatic supersonic expansion process. Finally, the jet encounters a fast shock in front of the plasmoid. For Case 2, the jet generated by slow shocks can be further accelerated by the adiabatic subsonic expansion process. The acceleration of Case 1 is stronger than that of Case 2. In Case 2, a fast shock is not formed. In both cases, it is important that the propagation of the plasmoid is driven by slow shocks formed around the plasmoid itself, rather than the reconnection jet. Title: Plasmoid Formation and Heating in Supersonic and Subsonic Reconnections Authors: Shimizu, T.; Ugai, M. Bibcode: 2004cosp...35..567S Altcode: 2004cosp.meet..567S The supersonic and subsonic magnetic reconnections in the closed boundary system were studied in MHD simulations. Theoretically, when the upstream magnetic field region is high beta (i.e. larger than 0.5), the reconnection jet is subsonic. Nevertheless, the jet can be temporally supersonic, i.e. superfast, in the stationary frame, when the jet region is sufficiently long. As a result, a fast shock is formed in front of the plasmoid. This is caused by the plasmoid (plasma loop) propagation. The fast shock is much weaker than that of supersonic magnetic reconnection. The differences between the supersonic and subsonic reconnections are discussed in the view of plasma acceleration and heating. Title: The evoluton of vector magnetic fields in an emerging flux region Authors: Kubo, Masahito; Shimizu, Toshifumi; Tsuneta, Saku; Lites, B. W. Bibcode: 2004naoj.book...41K Altcode: No abstract at ADS Title: Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight Authors: Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T. Bibcode: 2004cosp...35.1119M Altcode: 2004cosp.meet.1119M It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change. Title: The Evolution of Vector Magnetic Fields in an Emerging Flux Region Authors: Kubo, M.; Shimizu, T.; Lites, B. W. Bibcode: 2003ApJ...595..465K Altcode: Collaborative observations of NOAA Active Region 9231 were carried out during 9 days in 2000 November using the Advanced Stokes Polarimeter (ASP), Yohkoh/SXT, TRACE, and SOHO/MDI, in order to record the evolution of the photospheric magnetic field and its related coronal response. During this period an emerging flux region (EFR) appeared in the photosphere near the well-developed leading sunspot of this region, and subsequently bright bundles of coronal loops formed between the main concentrations of opposite magnetic polarity. The structure of the photospheric field comprising the EFR is classified into three regions: (1) the main bipolar magnetic flux of the EFR; (2) two small, rapidly emerging bipoles within the EFR; and (3) the remainder of the EFR excluding the other two regions. Two small, rapidly emerging bipoles are observed within a few hours of their first appearance at the photosphere. Examination of the vector magnetic field, its filling factor, and Doppler motion within the EFR shows that the young emerging magnetic field is nearly horizontal, the intrinsic field strength is weaker than that of the surrounding magnetic field (~500 G), and the weak field has a high filling factor (>80%) and upward motion (<1 km s-1). At both ends of the horizontal field structure we find that the magnetic field strength increases to about 1500 G and the filling factor drops to about 40% as the magnetic field becomes vertical in orientation during its first 12 hr. This field strength is typical of the field within the main bipolar magnetic flux, but the filling factor increases to 80% during the following 2 days. The process for organizing magnetic field configuration including convective collapse and flux concentration provides one possible explanation of the evolution of the field strength and the filling factor in the EFR. In addition, aymmetric surface distributions of magnetic field inclination were observed in the horizontal magnetic field area in the EFR. These asymmetric distributions were also observed in the small, young, emerging bipoles. This may mean that the magnetic field of the EFR is affected by the preexisting magnetic environment surrounding the EFR and that the emerging magnetic loops are deformed before or at the time they reach the photospheric level. Title: Spatial and Temporal Properties of Hot and Cool Coronal Loops Authors: Nagata, Shin'ichi; Hara, Hirohisa; Kano, Ryouhei; Kobayashi, Ken; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi; Gurman, Joseph B. Bibcode: 2003ApJ...590.1095N Altcode: A suite of images from the XUV Doppler Telescope (XDT), the Yohkoh Soft X-ray Telescope (SXT), and the Extreme-Ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) allow us to see the whole (T>1 MK) temperature evolution of coronal loops. The detailed morphological comparison of an active region shows that hot loops seen in SXT (T>3 MK) and cool loops seen in the the EIT 195 Å band (T~1.5 MK) are located in almost alternating manner. The anticoincidence of the hot and the cool loops is conserved for a duration much longer than the estimated cooling timescale. However, both hot and cool loops have counterparts in the intermediate-temperature images. The cross-correlation coefficients are higher for neighboring temperature pairs and lower for pairs with larger temperature differences. These results suggest that loops are not isothermal but rather have a differential emission measure distribution of modest but finite width that peaks at different temperatures for different loops. Title: Development of the Solar-B spacecraft Authors: Tsuneta, Saku; Ichimoto, Kiyoshi; Suematsu, Yoshinori; Shimizu, Toshifumi; Hara, Hirohisa; Kano, Ryohei; Nagata, Shin'ichi; Tamura, Tomonori; Nakagiri, Masao; Noguchi, Motokazu; Kato, Yoshihiro; Watanabe, Tetsuya; Hanaoka, Yoichiro; Sawa, Masaki; Otsubo, Masashi; Kosugi, Takeo; Yamada, Takahiro; Sakao, Taro; Matsuzaki, Keiichi; Minesugi, Kenji; Onishi, Akira; Katsukawa, Yukio; Kobayashi, Ken; Kubo, Masahito Bibcode: 2003naoj.book....3T Altcode: No abstract at ADS Title: Development of Solar-B solar optical telescope Authors: Suematsu, Yoshinori; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Nagata, Shin'ichi; Tamura, Tomonori; Tsuneta, Saku; Noguchi, Motokazu; Kato, Yoshihiro; Nakagiri, Masao; Otsubo, Masashi; Hanaoka, Yoichiro; Katsukawa, Yukio; Kobayashi, Ken; Kubo, Masahito Bibcode: 2003naoj.book....5S Altcode: No abstract at ADS Title: Development of image stabilization system for solar optical telescope onboard Solar-B satellite Authors: Nagata, Shinichi; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Tsuneta, Saku; Matsuzaki, Keiichi; Kobayashi, Ken Bibcode: 2003naoj.book....8N Altcode: No abstract at ADS Title: Converging Flows in the Penumbra of a δ Sunspot Authors: Lites, B. W.; Socas-Navarro, H.; Skumanich, A.; Shimizu, T. Bibcode: 2002ApJ...575.1131L Altcode: Doppler velocities in the penumbra of a δ-configuration sunspot observed near the limb indicate flows that converge upon the line separating locally positive and negative polarity magnetic field (the polarity inversion line). These flows persist for many hours. Observations of this region with the Advanced Stokes Polarimeter (ASP) reveal a convex vector field geometry with magnetic lines of force arching upward from positive polarity, then downward to negative polarity. The straightforward interpretation of the combined Doppler velocity and vector field information leads to an untenable physical situation: were flows directed from both footpoints toward the tops of arched magnetic lines of force, mass would rapidly load the tops of the arches. However, there is no observational evidence of the dynamics that such a loading would require. To better understand this apparent contradiction, we perform two-component analyses of the observed Stokes spectral profiles in the vicinity of the polarity inversion line, in order to extract information about unresolved structure of the magnetic field and its associated flows. Fits to the observed profiles, obtained by use of two different inversion techniques, suggest strongly that, as in penumbrae of simple sunspots, the field geometry in the convergence zone is ``fluted.'' However, unlike in simple sunspots, which have only an outward-directed Evershed flow in the more horizontal of the field components, at each spatial point our analysis reveals flows in the two components that are oppositely directed. We interpret these observations as indicative of an interleaved system of field lines in the vicinity of the polarity reversal, whereby the convergent streams are able to slip past one another and return downward into the solar interior. Title: Photospheric Magnetic Activities Responsible for Soft X-Ray Pointlike Microflares. I. Identifications of Associated Photospheric/Chromospheric Activities Authors: Shimizu, T.; Shine, R. A.; Title, A. M.; Tarbell, T. D.; Frank, Z. Bibcode: 2002ApJ...574.1074S Altcode: By combining Yohkoh soft X-ray images with high-resolution magnetograms simultaneously obtained at La Palma, we studied photospheric magnetic signatures responsible for soft X-ray microflares (active-region transient brightenings). In order to have a reliable correspondence between the photosphere and the corona, we studied 16 pointlike transient brightenings with X-ray source size less than 10" occurring during periods when the seeing was excellent at La Palma, although a lot of transient brightenings were in forms of multiple- or single-loop structures. In half of the studied events, small-scale emergences of magnetic flux loops are found in the vicinity of the transient brightenings. Six events of that half show that a small-scale flux emergence accompanies the X-ray brightening 5-30 minutes prior to its onset. In the other half of the studied events, no apparent evolutionary change of magnetic flux elements is found associated with the transient brightenings. Many of these events are found in rather strong magnetic fields, such as sunspots and pores, implying that small-scale changes of magnetic flux are obscured or suppressed by strong magnetic fields. The horizontal plasma flows derived from local cross-correlation tracking of granules in continuum images are suppressed at the feet of some X-ray transient brightenings. Title: Superfast expansion acceleration mechanism in the spontaneous fast magnetic reconnection Authors: Shimizu, T.; Ugai, M. Bibcode: 2002AdSpR..29.1081S Altcode: Thermodynamic supersonic (superfast) plasma expansion acceleration generated in the spontaneous fast magnetic reconnection process is studied in 2-dimensional magnetohydrodynamic (MHD) simulations. In contrast to the Petschek reconnection model, the reconnection outflow jet is found to exceed steadily the Alfven velocity measured in the upstream magnetic field region. In our MHD simulation for the symmetric anti-parallel magnetic field model, the final velocity of the plasma jet is observed to reach 1.4 times of the Alfven velocity, which is maintained until the jet encounters a fast shock generated in front of the magnetic loop (plasmoid). Also in asymmetric magnetic field models, in which the current sheet is put between two straight magnetic field regions with different intensities, the supersonic plasma acceleration mechanism is detected. Especially, in the asymmetric model in which uniform plasma density is initially assumed, the supersonic acceleration region tends to shift to the side of the higher intensity magnetic field region. In addition, the plasma jet region consists of two jet layers which have different Mach numbers and almost the same jet velocity. It means that the reconnection jet almost have reached a steady state. Hence, the generation of the superfast jet can be predicted by the Rankine Hugoniot relation for the slow shock. Once the superfast jet and magnetic loop are generated, the thermodynamic supersonic expansion acceleration can occur due to the change of the pressure balance around the magnetic loop. Title: MHD wave structures in the plasmoid associated with the fast magnetic reconnection Authors: Shimizu, T.; Ugai, M. Bibcode: 2002cosp...34E1147S Altcode: 2002cosp.meetE1147S Numerical MHD study of fast magnetic reconnection is shown in the view of MHD waves generated in the reconnection jet and associated plasmoid. In this reconnection model, the reconnection jet generated by slow shocks is further accelerated by the thermodynamic expansion acceleration mechanism. Depending on the beta value and plasma density in the upstream magnetic regions, either supersonic or subsonic expansion accelerations is caused with different MHD wave structures. Finally, when the resulting jet encounters a plasmoid, the slow shock intensity is changed and survives around the plasmoid. It is remarkable that the slow shock around the plasmoid is dominant to determine the plasmoid propagation speed, rather than the reconnection jet. Title: Solar-B Authors: Shimizu, T.; Solar-B Team Bibcode: 2002AdSpR..29.2009S Altcode: Following the successful Yohkoh satellite which is continuously operating since August 1991, the solar physics community in Japan is now preparing for a Japan's next solar physics mission, Solar-B, whose primary objective is to study the connection of the dynamics and heating in the solar corona with the magnetic field at the solar surface. Solar-B will carry a medium-sized optical telescope with capability of measuring vector magnetic fields at the solar surface, together with two X-ray/EUV imaging telescopes capable of measuring the dynamics and physical conditions of hot plasma in the solar corona. These telescopes are prepared under the international collaborations with U.S.A. (NASA) and U.K. (PPARC). ISAS schedules to launch Solar-B as its 22nd science satellite in summer 2005. The Solar-B program is now in the proto-model manifacture/test phase and the baseline design of the satellite as well as the three telescopes is defined. Title: Connection between Photospheric Magnetic Fields and Coronal Structure/Dynamics [Invited] Authors: Shimizu, T. Bibcode: 2002mwoc.conf...29S Altcode: Continuous observations of the solar X-ray corona with Yohkoh Soft X-ray Telescope (SXT) have been revealing that dynamical phenomena, such as coronal jets and microflares (transient loop brightenings) are common in the corona, especially in the active-region corona. Moreover, the heating of the corona is about two order of magnitude more significant in the active regions than in the quiet regions. Since observations of magnetic fields at the photosphere show that magnetic fields are much more concentrated into active regions, it has been widely believed that magnetic fields would be responsible for the heating of the corona as well as dynamics in the corona. A lot of complicated magnetic activities are observed at the photosphere; newly emerging magnetic fields, marging to the same-polarity magnetic fields, cancelling magnetic fields with the opposite-polarity magnetic fields, developing the shear in magnetic field structure, and so on. How are these magnetic activities associated with the dynamics and heating well observed in the coronaNULL A lot of investigations have been made by comparing Yohkoh observations with observations of photospheric magnetic fields. This paper reviews some of investigations made in the last decade. Solar-B is now under development for the launch scheduled in 2005. Its primary objective is to study the connection of the dynamics and heating observed in the solar corona with the magnetic field at the solar surface. For great advances in understanding the magnetic connection between the photosphere and the corona with Solar-B, it is significant important to review the recent knowledges obtained in the Yohkoh era. Title: The dynamics of plasmoid in symmetric and asymmetric spontaneous fast reconnection Authors: Kondoh, K.; Ugai, M.; Shimizu, T. Bibcode: 2002cosp...34E2129K Altcode: 2002cosp.meetE2129K The spontaneous fast reconnection evolution is studied in symmetric and asymmetric magnetic field configuration. In particularly, it is investigated what determines the propagation speed of plasmoid using 2 dimensional MHD simulations. According to the fast reconnection development, the resulting large- scale plasmoids swell and propagate. Once the plasmoid fully develops, the propagation speed becomes almost constant in symmetric and asymmetric magnetic field configuration. In asymmetric magnetic field configuration, an asymmetric plasmoid swells predominantly in the region of a weaker magnetic field and propagates along the field lines. It is remarkable that the slow shocks around the plasmoid determine the propagation speed in the both of symmetric and asymmetric magnetic field configuration. Title: The MHD study of the shock waves in the fast magnetic reconnection with the thermodynamic supersonic expansion acceleration process Authors: Shimizu, T.; Ugai, M. Bibcode: 2001AGUFMSM11B0814S Altcode: The structure of the slow and intermediate shock waves in the fast magnetic reconnection process is studied in MHD simulations and analytic research. Unlike the Petschek reconnection model, in this fast reconnection process a thermodynamic supersonic expansion acceleration mechanism works to accelerate the reconnection jet generated by slow shocks, and hence, the resulting jet can exceed the Alfven velocity measured in the upstream field region. The MHD simulation shows that the thermodynamic acceleration process destroys a pair of the slow shock associated with the Petschek reconnection model, and eventually generates a pair of intermediate shocks. But, according to more exact researches, just after the formation of the intermediate shock, the structure of the intermediate shock may start to be gradually deformed into the usual intermediate wave, slow shock and slow expansion waves, because the intermediate shock has not the steepening effect which is usually required for shock wave. We comprehensively discuss the fast reconnection process and the plasmoid (magnetic loop) formed by the reconnection process in the view of the MHD wave analysis. Title: Converging Flows in the Penumbra of a δ-Sunspot Authors: Lites, B. W.; Socas-Navarro, H.; Skumanich, A.; Shimizu, T. Bibcode: 2001ASPC..248..143L Altcode: 2001mfah.conf..143L No abstract at ADS Title: Thermo-dynamic plasma expansion acceleration in asymmetric spontaneous fast magnetic reconnection - conditions required for the onset Authors: Shimizu, T.; Ugai, M. Bibcode: 2001sps..proc..347S Altcode: One of the onset conditions for the thermodynamic supersonic (superfast) plasma expansion acceleration generated in the spontaneous fast magnetic reconnection process is studied by 2-dimensional magnetohydrodynamic (MHD) simulations and the Rankine Hugoniot analysis. In this reconnection model, the reconnection outflow jet can steadily exceed the Alfven velocity measured in the upstream magnetic field region. Note that this high speed jet cannot be explained by the Petsheck reconnection model. According to our previous studies (Shimizu and Ugai, 2000), the plasma jet is generated by a combination of the slow shock acceleration and adiabatic supersoinc expansion acceleration. The former acceleration is the same as that of the Petsheck model and the jet can become superfast, i,e, supersonic. The latter is caused by the adiabatic expansion of the supersonic plasma jet. The expansion process is caused by the swelling of the plasmoid (magnetic loop) associated with the reconnection process. In this paper, in addition to the symmetric reconnection field case, asymmetric cases, in general, will also be studied. It is shown that the condition required to generate the supersonic jet by slow shocks is determined by the plasma density and beta value in the upstream field region. Once the supersonic jet is generated, the adiabatic supersonic expansion acceleration is caused just upstream side of the swelling plasmoid. 1 MHD simulation Figure 1 is obtained in an asymmetric magnetic field case starting from an initial asymmetric anti-parallel magnetic field in which no plasma flow and uniform plasma density are initially set. Figure 1a shows the magnetic field lines Title: NSA Characteristics of the Semi-Anechoic Chamber Composed of Absorbers with Different Absorbing Characteristics Authors: Hamaura, R.; Shimizu, T.; Takiguchi, Y.; Tokuda, M. Bibcode: 2001aprs.conf..301H Altcode: No abstract at ADS Title: On the Detection of Solar Coronal High-Velocity Fields Using the XUV Doppler Telescope Authors: Kobayashi, Ken; Hara, Hirohisa; Kano, Ryohei; Nagata, Shin'ichi; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi; Harrison, Richard Bibcode: 2000PASJ...52.1165K Altcode: The XUV Doppler Telescope (XDT) is a sounding rocket experiment designed to detect flows in the solar corona using filter ratios. The XDT, successfully launched on 1998 January 31, is a normal incidence telescope composed of narrow-bandpass multilayer mirrors and capable of obtaining images 2 Å\ above and 2 Å\ below the Fe XIV 211 Å\ (T = 1.7 MK) emission line. It has the potential to make a velocity map of the entire solar disk with just a few minutes of observation. The image ratio maps show features that translate to Doppler shifts of 200 km s-1 or more, including several `redshift' features located near footpoints of coronal loops. However, no corresponding velocity features were seen by the Solar and Heliospheric Observatory (SOHO) Coronal Diagnostic Spectrometer (CDS) in the Mg IX 368 Å (T = 1 MK) line, suggesting that the features are not caused by Doppler shift. Instead, the features seem to be related to contamination of lower temperature (T < 1 MK) emission lines and the nearby density-sensitive Fe XIII lines. We conclude that while no flows were positively identified by the XDT, this observing technique is capable of detecting flows of 1000 km s^{-1} independently, and 200 km s^{-1}$ when combined with simultaneous plasma diagnostic observation. Title: Thermo-Dynamic Plasma Acceleration Mechanism in the Spontaneous Fast Magnetic Reconnection Model Authors: Shimizu, T.; Ugai, M. Bibcode: 2000ASPC..206..183S Altcode: 2000hesp.conf..183S No abstract at ADS Title: Initial Results from the XUV Doppler Telescope Authors: Kano, R.; Hara, H.; Kobayashi, K.; Kumagai, K.; Nagata, S.; Sakao, T.; Shimizu, T.; Tsuneta, S.; Yoshida, T. Bibcode: 2000AdSpR..25.1739K Altcode: We developed a unique telescope to obtain simultaneous XUV images and the velocity maps by measuring the line-of-sight Doppler shifts of the Fe XIV 211A&ring line (T = 1.8 MK): the Solar XUV Doppler Telescope (hereafter XDT). The telescope was launched by the Institute of Space and Astronautical Science with the 22nd S520 rocket on January 31, 1998, and took 14 XUV whole sun images during 5 minutes. Simultaneous observations of XDT with Yohkoh (SXT), SOHO (EIT, CDS, LASCO and MDI) were successfully carried out. The images taken with EIT, XDT and SXT are able to cover the wide temperature ranging from 1 to 10 MK, and clearly show the multi-temperature nature of the solar corona. Indeed, we notice that both the cool (1-2 MK) loops observed with EIT and XDT, and the hot (>3 MK) loops observed with SXT exist in the same active regions but in a spatially exclusive way. The XDT red-blue ratio between longer- and shorter-wavelength bands of Fe XIV 211A&ring line indicates a possible down-flow of 1.8 MK plasma near the footpoints of multiple cool loops Title: Weak Transient Activities in the Corona Authors: Shimizu, T. Bibcode: 1999spro.proc..123S Altcode: Weak transient activities of small-scale coronal loops have been reported from Yohkoh and SoHO observations: Active-region transient brightenings (ARTBs), XBP flares, network flares, coronal flashes, and EUV transient brightenings. They are called with different terminology, but no significant differences can be found except for the sizes of energy and the locations where they are observed on the Sun. No differences except for the sizes of energy can be also found between ARTBs and standard flares; The frequency distribution of ARTBs as a function of energy is well represented by a single power-law with a slope similar to that of standard flares, and relatively strong ARTBs are populated by non-thermal electrons. With these observations, although more observations are still required, we currently conclude that weak transient activities of small-scale coronal loops observed not only in active regions but also in quiet regions are just small flares (microflares or nanoflares in terminology), which are located in lower energy extension of standard flares. No reliable evidences suggesting that microflares or nanoflares entirely explain the heating of the corona have been found. However, weak temporal variations seen in quasi-steady long loops are found to be well correlated with the heating level, suggesting that they may be an X-ray signature of the heating process responsible for the heating of the corona. Title: Solar-B (The Next Japanese Solar Mission) Authors: Shimizu, T.; Solar-B Working Group Bibcode: 1999spro.proc..459S Altcode: Our view of the solar corona has been revolutionized by Yohkoh. Yohkoh has shown that the hot corona is extremely dynamic, with magnetic reconnection, rapid heating, and mass ejection being common phenomena. The next vital step is to understand magnetic origins of coronal dynamics and heating. Solar-B, Japan's next solar physics mission, is designed to study the connection of the dynamics and heating observed in the corona with the magnetic field at the solar surface. Solar-B will carry a medium-sized optical telescope capable of measuring vector magnetic fields on the solar surface, together with two X-ray/EUV imaging instruments for the solar corona. The Solar-B program is now in the conceptual design study phase. ISAS, in collaboration with NASA (U.S.A.) and PPARC (U.K.), plans to launch Solar-B as its 22nd science satellite in summer 2004. Title: Narrow-Bandpass Multilayer Mirrors for an Extreme-Ultraviolet Doppler Telescope Authors: Hara, Hirohisa; Nagata, Shin'ichi; Kano, Ryouhei; Kumagai, Kazuyoshi; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi; Ishiyama, Wakana; Oshino, Tetsuya; Murakami, Katsuhiko Bibcode: 1999ApOpt..38.6617H Altcode: No abstract at ADS Title: The XUV Doppler Telescope (XDT) Authors: Sakao, T.; Tsuneta, S.; Hara, H.; Shimizu, T.; Kano, R.; Kumagai, K.; Yoshida, T.; Nagata, S.; Kobayashi, K. Bibcode: 1999SoPh..187..303S Altcode: We present an overview and instrumental details of the solar XUV Doppler Telescope (XDT) launched in January 1998 with the S520CN-22 sounding rocket of the Institute of Space and Astronautical Science. The XDT observes nearly single-temperature solar corona at 1.8 MK with angular resolution of ≈ 5'' pixel size, together with the ability to detect the coronal velocity field with a full-Sun field of view. By use of normal incidence optics whose primary and secondary mirrors are coated with multilayer materials in two sectors, the XDT takes images of the Sun in a set of shorter and longer wavelength bands around the Fe xiv 211.3 Å emission line. Summation of a pair of images in the two bands provides an image of the 1.8 MK-corona while the difference between the two provides velocity images of the Fe xiv-emitting plasma. A brief description on the observation sequence together with the flight result is also given. Title: Development and flight performance of tip-tilt mirror system for a sounding rocket observation of the Sun. Authors: Shimizu, T.; Yoshida, T.; Tsuneta, S.; Sakao, T.; Kano, R.; Hara, H.; Nagata, S.; Kodeki, K.; Inoue, M.; Fukushima, K.; Kashiwase, T. Bibcode: 1999RNAOJ...4...43S Altcode: 1999RNOAJ...4...43S A tip-tilt mirror (TTM) system was developed for the XUV Doppler telescope (XDT) on board an ISAS sounding rocket. The spatial resolution of the telescope is about 5″ whereas the pointing stability is only ±0.3° with the rocket pointing control system. To achieve better than 5″stability on the focal plane of the telescope, the TTM system controls the tilt of the secondary mirror with fixed-coil magnetic actuators. The control signal to stabilize focal-plane images is supplied by the position-sensitive detector (PSD) of a pin-hole telescope equipped inside XDT. Closed-loop controls are made with the on-board software on the DSP processor. The sounding rocket was successfully launched on 31 January 1998 from the Kagoshima Space Center of ISAS. TTM worked perfectly during the flight, and achieved better than 5″stability on the focal plane during CCD exposures. Title: a Relativistic Description of Gentry's New Redshift Interpretation Authors: Shimizu, T.; Watanabe, K. Bibcode: 1999MPLA...14..779S Altcode: 1999astro.ph..2278S We obtain a new expression of the Friedmann-Robertson-Walker metric, which is an analogue of a static chart of the de Sitter space-time. The reduced metric contains two functions, M(T, R) and Ψ(T, R), which are interpreted as, respectively, the mass function and the gravitational potential. We find that, near the coordinate origin, the reduced metric can be approximated in a static form and that the approximated metric function, Ψ(R) satisfies the Poisson equation. Moreover, when the model parameters of the Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric coincides with exact solutions of the Einstein equation with the perfect fluid matter. We then solve the radial geodesics on the approximated space-time to obtain the distance-redshift relation of geodesic sources observed by the comoving observer at the origin. We find that the redshift is expressed in terms of a peculiar velocity of the source and the metric function, Ψ(R), evaluated at the source position, and one may think that this is a new interpretation of Gentry's new redshift interpretation. Title: Why is the corona hot? Micro- and nano-flares and the solar corona. Authors: Shimizu, T. Bibcode: 1998AstHe..91..399S Altcode: The solar corona is the upper atmosphere which consists of faint, hot (>2 million K degree) plasma. Why is the corona so hot? This is one of fundamental questions in astrophysics. Micro- and nano-flares have been recently considered as a mechanism for energy dissipation in the corona. The soft X-ray telescope on board the Yohkoh satellite enables one for the first time to investigate micro- and nano-flares. This article introduces some observational results of micro- and nano-flares, and discusses their implications for heating of the corona. Title: Development of the tip-tilt mirror system for the solar XUV telescope Authors: Kodeki, Kazuhide; Fukushima, Kazuhiko; Kashiwase, Toshio; Inoue, Masao; Shimizu, Toshifumi; Yoshida, Tsuyoshi; Sakao, Taro; Hara, Hirohisa; Nagata, Shin'ichi; Kano, Ryouhei; Tsuneta, Saku Bibcode: 1998SPIE.3356..922K Altcode: This paper describes the design and prelaunch performance of the tip-tilt mirror (TTM) system developed for the XUV Cassegrain telescope aboard the ISAS sounding rocket experiment. The spatial resolution of the telescope is about 5 arcsec, whereas the rocket pointing is only controlled to be within +/- 0.5 degree around the target without stability control. The TTM is utilized to stabilize the XUV image on the focal planes by tilting the secondary mirror with two-axes fixed-coil type actuators. The two position- sensitive detectors in the telescope optics and in the TTM mechanical structure from the normal and local closed-loop modes. The TTM has four grain modes with automatic transition among the modes. The low gain mode is used in the initial acquisition, and in case the TTM loses the tracking. The high gain mode is used in the normal tracking mode. This arrangement provides us with the wide initial acquisition angle with single TTM system as well as the high pointing accuracy once the tracking is established. The TTM has a launch-lock mechanism against the launch vibration of 16G. The closed-loop control with command and telemetry interface is done by the flight software against the launch vibration of 16G. The closed-loop control with command and telemetry interface is done by the flight software on the DSP processor. The use of the fast processor brings in the significant reduction in the weight and size of the control- electronics, more flexible control system, and shorter design and testing period. Title: XUV Doppler Telescope Aboard Sounding Rocket Authors: Yoshida, T.; Kano, R.; Nagata, S.; Hara, H.; Sakao, T.; Shimizu, T.; Tsuneta, S. Bibcode: 1998ASSL..229..383Y Altcode: 1998opaf.conf..383Y No abstract at ADS Title: Scientific Objectives of the Solar-B Mission Authors: Shimizu, T. Bibcode: 1998ESASP.417..169S Altcode: 1998cesh.conf..169S No abstract at ADS Title: Test Particle Simulations of Proton Accelerations in Spontaneous Fast Magnetic Reconnection Authors: Shimizu, T.; Ugai, M. Bibcode: 1998ASSL..238..723S Altcode: 1998subs.conf..723S No abstract at ADS Title: Deep Survey of Solar Nano-Flares with YOHKOH Authors: Shimizu, T.; Tsuneta, S. Bibcode: 1998ASSL..229...27S Altcode: 1998opaf.conf...27S No abstract at ADS Title: Deep Survey of Solar Nanoflares with Yohkoh Authors: Shimizu, Toshifumi; Tsuneta, Saku Bibcode: 1997ApJ...486.1045S Altcode: Short timescale variability fainter than transient brightenings (microflares) is found in the solar position-dependent light curves observed with the Yohkoh Soft X-Ray Telescope. The time variability is found almost everywhere in active regions and X-ray bright points, while no significant variability is found in quiet regions. An intensity correlation is found between the magnitudes of the time variability and the intensities of the persistent corona. The time variability is apparently related to the heating mechanism of the persistent active-region corona. The intensity correlation can be explained with the idea that the persistent corona is made of extremely numerous nanoflares, larger ones of which are observed as the time variability. The alternative explanation is that a common parameter controls both the persistent corona and the time variability. Title: XUV Doppler telescope with multilayer optics Authors: Hara, Hirohisa; Kano, Ryouhei; Nagata, Shin'ichi; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi; Kosugi, Takeo Bibcode: 1997SPIE.3113..420H Altcode: We present an overview of a sounding-rocket experiment, which is scheduled to be launched by the Institute of Space and Astronautical Science (ISAS) in January 1998, the rising phase of the 11-year activity cycle of the sun. The purpose of this experiment is (1) to obtain whole-sun images taken in an XUV emission line, Fe XIV 211 angstrom, using the normal incidence multilayer optics with a high spectral resolution of (lambda) /(Delta) (lambda) approximately equals 40, and (2) to carry out the velocity-field measurement with detection limit as high as 100 km/s. Title: Development of multilayer mirrors for the XUV Doppler telescope Authors: Nagata, Shin'ichi; Hara, Hirohisa; Sakao, Taro; Shimizu, Toshifumi; Tsuneta, Saku; Yoshida, Tsuyoshi; Ishiyama, Wakana; Murakami, Katsuhiko; Oshino, Tetsuya Bibcode: 1997SPIE.3113..193N Altcode: We present the development status of the normal incidence XUV multilayer mirrors for XUV Doppler telescope, which observes coronal velocity fields of the whole sun. The telescope has two narrow band-pass multilayer mirrors tuned to slightly longer and shorter wavelengths around the Fe XIV line at 211.3 Angstrom. From the intensity difference of the images taken with these two bands, we can obtain Dopplergram of 1.8 MK plasma of the whole sun. It is required that the multilayer has high wavelength-resolution ((lambda) /(Delta) (lambda) approximately 30 per mirror), anti-reflection coating for intense He II 304 angstrom emission line and high d-spacing uniformity of approximately 1%. Title: Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T. Bibcode: 1997ApJ...482..519F Altcode: By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (>~20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45°), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45°). From this sample, we find that (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G, (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km), (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines, (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them, (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them, and (6) the brightness of a persistently bright coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions (1) requires the presence of a polarity inversion in the magnetic field near at least one of the loop footpoints, (2) is greatly aided by the presence of strong shear in the core magnetic field along that neutral line, and (3) is controlled by some variable process that acts in this magnetic environment. We infer that this variable process is low-lying reconnection accompanying flux cancellation. Title: Nonthermal Radio Emission from Solar Soft X-Ray Transient Brightenings Authors: Gary, Dale E.; Hartl, Michael D.; Shimizu, Toshifumi Bibcode: 1997ApJ...477..958G Altcode: We compare microwave total power spectral data from the Owens Valley Radio Observatory Solar Array with soft X-ray transient brightenings observed with the Yohkoh soft X-ray telescope. We find that the transient brightenings are clearly detected in microwaves in 12 of 34 events (35%), possibly detected in another 17 of 34 events (50%), and only five of 34 events (15%) had no apparent microwave counterpart. Comparing the radio and soft X-ray characteristics, we find that (1) the soft X-ray peak is delayed relative to the microwave peak in 16 of 20 events, (2) the microwave flux is correlated with the flux seen in soft X-rays, (3) when radio fluence is used instead of radio flux (24 events) the correlation increases substantially, (4) the microwave spectra in the range 1-18 GHz vary greatly from event to event, (5) the microwave spectra often peak in the range 5-10 GHz (13 of 16 events), and (6) the microwave spectra of some events show narrowband spectra with a steep low-frequency slope.

We conclude that the emission from at least some events is the result of a nonthermal population of electrons, and that transient brightenings as a whole can therefore be identified as microflares, the low-energy extension of the general flare energy distribution. Soft X-ray transient brightenings, and therefore microflares, cannot heat the corona. Title: Gauge Dependence of Post-Newtonian Approximation in General Relativity Authors: Shimizu, T. Bibcode: 1997gwd..conf..327S Altcode: No abstract at ADS Title: Japanese sounding rocket experiment with the solar XUV Doppler telescope Authors: Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo Bibcode: 1996SPIE.2804..153S Altcode: We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described. Title: Microflaring in Sheared Core Magnetic Fields and Episodic Heating in Large Coronal Loops Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.; Rabin, D. M.; Shimizu, T. Bibcode: 1996AAS...188.7018P Altcode: 1996BAAS...28..941P We have previously reported that large, outstandingly-bright coronal loops within an active region or stemming from an active region have one end rooted around a magnetic island of included polarity that is itself a site of locally enhanced coronal heating (X-ray bright point) [Porter et al 1996, in Proceedings of the Yohkoh Solar/Stellar IAU Symposium, ed. Y. Uchida, T. Kosugi, H.S. Hudson (Kluwer: Dordrecht), in press]. This suggests that exceptional magnetic structure in and around the magnetic island fosters magnetic activity, such as microflaring, that results in the enhanced coronal heating in both the compact core field around the island and in the body of large loops that extend from this site. We have also reported that enhanced coronal heating in active regions goes hand-in-hand with strong magnetic shear in the core magnetic fields along polarity neutral lines (Falconer et al 1995, BAAS, 27(2), 976). Here, by combining MSFC vector magnetograms with an NSO full-disk magnetogram and Yohkoh SXT coronal images, we examine the incidence of sheared core fields, enhanced coronal heating, and microflaring in two active regions having several good examples of enhanced extended coronal loops. It appears that the localized microflaring activity in sheared core fields is basically similar whether the core field is on the neutral line around an island of included polarity or on the main neutral line of an entire bipolar active region. This suggests that the enhanced coronal heating in an extended loop stemming from near a polarity inversion line requires a special field configuration at its foot to plug it into the activity at the neutral line, rather than a different kind of activity in the core field on the neutral line. We also examine whether the waxing and waning of the coronal brightness of extended loops shows any correlation with the vigor or frequency of microflaring at the feet. This research was supported by the Solar Physics Branch of NASA's Office of Space Science. Title: Evidence that Strong Coronal Heating Results from Photospheric Magnetic Flux Cancellation Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Gary, G. A.; Shimizu, T. Bibcode: 1996AAS...188.8604M Altcode: 1996BAAS...28..963M Soft X-ray images of the Sun's corona, such as those from the Yohkoh SXT, show that the sites of strongest persistent (non-flare) coronal heating are located within the strong (>100 gauss) magnetic fields in sunspot regions and are limited to only certain places within these stong-field domains, covering only a fraction of the total area. We have examined the structure of the magnetic field at these sites in 5 active regions by superposing Yohkoh SXT coronal X-ray images on MSFC vector magnetograms. We find: (1) nearly all of the enhanced (outstandingly bright) coronal features that persist for tens of minutes are rooted near polarity neutral lines in the photospheric magnetic flux; (2) in most cases the core magnetic field closely straddling the neutral line at the root of the strong heating is strongly sheared; (3) the enhanced coronal X-ray brightness in the low-lying core fields shows spatial substructure that fluctuates on time scales of minutes, in the manner of microflaring; and (4) large parts of extensive enhanced coronal features often last for no more than a few hours. From these results, it appears that most enhanced coronal heating in active regions is a consequence of some process that (1) acts only in the presence of a photospheric polarity neutral line, (2) is episodic on times of about an hour, (3) usually gives stronger coronal heating in the presence of stronger magnetic shear, but is not required to act by the presence of magnetic shear, and (4) is often accompanied by microflaring in the core field. We point out that magnetic flux cancellation (driven by photospheric flows at the neutral line) is a process that plausibly meets all these requirements. The flux cancellation might directly drive microflaring, or trigger microflaring in the sheared core field, or both. The microflaring might directly produce the enhanced coronal heating in the core fields as well as generate MHD waves that propagate up into the enhanced extended coronal loops to provide the strong coronal heating in these. Title: Nonthermal Microwave Emission from Soft X-ray Transient Brightenings. Authors: Gary, D. E.; Hartl, M.; Shimizu, T. Bibcode: 1996AAS...188.2609G Altcode: 1996BAAS...28..858G Soft X-ray transient brightenings (TBs) are small enhancements, generally associated with active region loops, that last for 5-10 min. Shimizu et al. (1994) has shown that the rate of energy release in TBs has the same form as that for flares, and if they are interpreted as tiny flares they would extend the flare energy release rate to lower energy by two orders of magnitude. However, in initial investigation of radio counterparts of TBs near 15 GHz (Gopalswamy et al 1995; White et al. 1995) showed no conclusive evidence for nonthermal electrons, which brings into question whether TBs are flare-like energy releases. The presence of nonthermal electrons is most easily seen at somewhat lower radio frequencies, which led us to search for such emission in radio data from the OVRO Solar Array in the range 1-18 GHz. Using soft X-ray observations from Yohkoh, we identified 34 transient brightenings in solar active region AR7172 observed from 20-29 May 1992. A comparison with radio data from OVRO yielded the following new results: 1) enhanced radio emission can be positively associated with TBs in 12 events (35%), with another 17 (50%) showing a possible association; 2) a number of the positive associations show radio peaks that occur near the onset of the soft X-ray enhancement, with a Neupert-Effect-like relationship (mean delay of the soft X-ray peak relative to the microwave peak is 2.5 min); 3) the radio power spectra of those events intense enough to give good spectra indicate the presence of a nonthermal electron population; 4) the correlation between peak radio flux and peak soft X-ray flux is weak. For the 7 events with the clearest Neupert-Effect relationship, there is a much higher correlation between integrated radio flux and peak soft X-ray flux. Together these results suggest that TBs are the analog of solar flares extended below the subflare energy range. We may now state that the low-energy extension of flare events is not sufficient to heat the corona, but the study of TBs can shed light on flare processes that may be masked in larger flares. Title: Small-Scale Horizontal Magnetic Fields in the Solar Photosphere Authors: Lites, B. W.; Leka, K. D.; Skumanich, A.; Martinez Pillet, V.; Shimizu, T. Bibcode: 1996ApJ...460.1019L Altcode: We present recent observations of quiet regions near the center of the solar disk using the Advanced Stokes Polarimeter. These observations reveal a component of the solar magnetic field heretofore unobserved: isolated, small-scale (typically 1"-2" or smaller), predominantly horizontal magnetic flux structures in the solar photosphere. These features occur in isolation of the well-known, nearly vertical flux concentrations usually seen in the photospheric "network." Hence we ascribe this horizontal flux to the photospheric "internetwork." They reveal themselves by the distinct signature of the Stokes Q and U polarization profiles, which are symmetric about the line center. The polarization signals are weak, with peak amplitudes typically ∼0.1%-0.2% of the continuum intensity in the resolved spectral profiles, but they are well above the noise level of these observations (≍0.05%). Such magnetic fields are weak (significantly less than 1000 G) and largely horizontal owing to the absence, or near absence, of accompanying Stokes V polarization when observed at the center of the solar disk. These horizontal field elements are often associated with blueshifted Stokes line profiles, and they often occur between regions of opposite polarity (but weak) Stokes V profiles. The horizontal elements are short-lived, typically lasting ∼5 minutes. Our observations suggest that we are viewing the emergence of small, concentrated loops of flux, carried upward either by granular convection or magnetic buoyancy. Even though these entities show weak field strengths, they also seem to be fairly common, implying that they could carry the order of 1024 Mx of magnetic flux to the surface on a daily basis. However, further observational study is needed to identify the specific nature of this phenomenon. Title: Signatures of Global Mode Alfven Resonance Heating in Coronal Loops Authors: Ofman, L.; Davila, J. M.; Shimizu, T. Bibcode: 1996ApJ...459L..39O Altcode: The Yohkoh Soft X-Ray Telescope (SXT) observations of active region coronal loops transient brightening is analyzed, and the scaling of the thermal energy release with loop lengths is found to be Eth ~ L1.60+/-0.09. The numerically determined scaling of the global mode heating rate for the resonant absorption of Alfven waves, H ~ L, is found to agree with the heating rate deduced from the observed thermal energy scaling, provided that the magnetic field scales as B ~ L-0.70+/-0.05 and the waves are driven with a omega -1 spectrum. Previous analytical and numerical studies have shown that the heating due to resonant absorption of Alfven waves is most efficient at the global mode frequency. In agreement with these studies, we suggest that coronal loop transient X-ray brightenings occur when a given length coronal loop is perturbed at its global mode frequency by random footpoint motions, which results in more efficient heating of the loop. Title: Gravitational collapse of rotating stellar cores and supernovae Authors: Sato, K.; Shimizu, T. M.; Yamada, S. Bibcode: 1996NuPhA.606..118S Altcode: As is well known, massive stars, which would be the progenitor of type II supernovae, are rapid rotators. It is obviously necessary to investigate the effects of rotation on gravitational collapse of stellar cores and supernova explosions. We review (i) rotational core collapse, (ii) jet-like explosion induced by rotation and asymmetric neutrino emission from proto-neutron-stars, and (iii) explosive nucleosynthesis when an asymmetric jet-like explosion occurs, based on our recent work. Title: YOHKOH Observations Related to Coronal Heating (Invited) Authors: Shimizu, T. Bibcode: 1996ASPC..111...59S Altcode: 1997ASPC..111...59S Yohkoh observations of microflares (transient brightenings) and nanoflares are presented. The frequency distribution of transient brightenings is found to be a power law with an index of 1.5 - 1.6 in the energy range greater than 1027erg. Short time-scale variability fainter than transient brightenings is found in the soft X-ray position-dependent light curves. Time variability is found almost everywhere in active regions and X-ray bright points, while no significant variability is found in the quiet Sun. Title: Heating of Active Region Corona by Transient Brightenings (Microflares) Authors: Shimizu, T.; Tsuneta, T.; Title, A.; Tarbell, T.; Shine, R.; Frank, Z. Bibcode: 1996mpsa.conf...37S Altcode: 1996IAUCo.153...37S No abstract at ADS Title: Computer Simulations on the Spontaneous Fast Reconnection Mechanism Authors: Ugai, M.; Shimizu, T.; Obayashi, T. Bibcode: 1996mpsa.conf..583U Altcode: 1996IAUCo.153..583U No abstract at ADS Title: Magnetic Roots of Enhanced High Coronal Loops Authors: Porter, J. C.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.; Rabin, D. M.; Shimizu, T. Bibcode: 1996mpsa.conf..429P Altcode: 1996IAUCo.153..429P No abstract at ADS Title: The Radio Properties of Solar Active Region Soft X-Ray Transient Brightenings Authors: White, S. M.; Kundu, M. R.; Shimizu, T.; Shibasaki, K.; Enome, S. Bibcode: 1995ApJ...450..435W Altcode: We present the results of a search for radio emission from active-region transient brightenings identified in Yohkoh soft X-ray telescope observations of active region AR 7260. We present detailed observations of four events in which 17 GHz radio emission is clearly detected in observations by the Nobeyama radioheliograph. The time profiles of the 17 GHz data are very similar to those of the soft X-ray fluxes, and the 17 GHz flux is very close to that expected from plasma with the temperature and emission measure derived for the soft X-ray emitting material from filter ratios. No impulsive nonthermal radio emission was detected from any of the four events, although each was at least GOES class B 1 in soft X-rays. Weak hard X-rays may have been detected by GRO/BATSE from the strongest of the events, but not from two others. These negative results leave open the possibility that there is a difference between active region transient brightenings and solar flares, in that the former do not convert a significant amount of the released energy into accelerated electrons. However, confirmation of this hypothesis will require a larger sample of events. Title: Coordinated Observation of the Solar Corona Using the Norikura Coronagraph and the YOHKOH Soft X-Ray Telescope Authors: Ichimoto, K.; Hara, H.; Takeda, A.; Kumagai, K.; Sakurai, T.; Shimizu, T.; Hudson, H. S. Bibcode: 1995ApJ...445..978I Altcode: Spectroscopic observations of coronal emission lines were carried out at the Norikura Solar Observatory in cooperation with the soft X-ray telescope on board the Yohkoh satellite to study the plasma distributions at different temperatures. Intensity and velocity distributions in Fe XIV wavelength 5303 (green), Fe X wavelength 6374 (red), and Ca XV wavelength 5694 (yellow) lines are compared with the soft X-ray images. It is found that the soft X-ray images closely resemble those of the yellow line that represents a rather high temperature component of the corona. On the other hand the low-temperature component seen in the green and the red lines shows quite a different distribution from that of the high-temperature component; the low-temperature component consists of many thin loops or streaks, while the high-temperature component is more diffuse. We find that the active elements of the cool component, i.e., complex loop systems, rapid changes of small structures, and localized large plasma motions, all tend to be cospatial with the hot component. Title: YOHKOH SXT/HXT Observations of a Two-Loop Interaction Solar Flare on 1992 December 9 Authors: Inda-Koide, Mika; Sakai, Jun-Ichi; Koide, Shinji; Kosugi, Takeo; Sakao, Taro; Shimizu, Toshifumi Bibcode: 1995PASJ...47..323I Altcode: Observations with the Soft X-ray and Hard X-ray Telescopes aboard Yohkoh of a simple solar flare on 1992 December 9 are discussed. The soft X-ray morphology suggests evidence of a loop-loop interaction mechanism: the images reveal two parallel magnetic loops prior to the flare, and their merging just before onset of the hard X-ray burst. This flare therefore provides a chance to examine the two-loop interaction model for solar flares. It is found (1) that the observed soft X-ray behavior of the two loops in the preflare phase well matches to the two-loop interaction model between strong and weak current loops and (2) that the observed time scale of the two-loop coalescence is almost equal to that estimated from explosive-reconnection theory. In the impulsive phase, it is found (3) that the loop-top portion near to the interaction region first brightens in the 14--23 keV hard X-rays and (4) that the 23--33 keV hard X-ray emission around the peak time originates dominantly from two compact sources at the two ends of the merging loops. These hard X-ray observations are explained by high-energy electrons that are produced in the two current loop interaction. Title: Energetics and Occurrence Rate of Active-Region Transient Brightenings and Implications for the Heating of the Active-Region Corona Authors: Shimizu, Toshifumi Bibcode: 1995PASJ...47..251S Altcode: Frequent transient brightenings have been discovered in solar active regions using the Yohkoh Soft X-ray Telescope. We examine the possibility that these transient brightenings have much contribution to heating of the active-region corona. Imaging observations provide the following physical conditions: temperature, 4--8 MK; emission measure, 10(44.5) --10(47.5) cm(-3) ; electron density, 2 times 10(9) --2 times 10(10) cm(-3) ; gas pressure, 5--20 dyne cm(-2) ; loop length, 5 times 10(3) --4 times 10(4) km; loop width, 2 times 10(3) --7 times 10(3) km; and duration, 2--7 min. The energy involved in the observed transient brightenings is estimated to range from 10(25) to 10(29) erg. The frequency distribution as a function of the energy can be represented by a single power-law with an index of 1.5--1.6 in the energy range greater than 10(27) erg, although the distribution deviates from a power-law in the energy range less than 10(27) erg due to the instrument dead time and/or obscuration by bright coronal features. The single power-law of the frequency distribution thus appears to extend from the solar flare range down to an energy of 10(27) erg. The total energy supplied by transient brightenings and flares, assuming that the power-law continues to lower energy, is estimated to be at most a factor of 5 smaller than the heating rate required for the active-region corona. We need weaker events with an occurrence rate much higher than the extrapolated power-law to explain the heating of the active-region corona with transient brightenings. Title: Temperature Structure of Active Regions Deduced from the Helium-Like Sulphur Lines Authors: Watanabe, Tetsuya; Haka, Hirohisa; Shimizu, Toshifumi; Hiei, Eijiro; Bentley, Robert D.; Lang, James; Phillips, Kenneth J. H.; David Pike, C.; Fludra, Andrzej; Bromage, Barbara J. I.; Mariska, John T. Bibcode: 1995SoPh..157..169W Altcode: Solar active-region temperatures have been determined from the full-Sun spectra of helium-like sulphur (SXV) observed by the Bragg Crystal Spectrometer on board theYohkoh satellite. The average temperature deduced from SXV is demonstrated to vary with the solar activity level: A temperature of 2.5 × 106 K is derived from the spectra taken during low solar activity, similar to the general corona, while 4 × 106 K is obtained during a higher activity phase. For the latter, the high-temperature tail of the differential emission measure of active regions is found most likely due to the superposition of numerous flare-like events (micro/nano-flares). Title: Transient Brightenings in Active Regions Observed by the Yohkoh Soft X-Ray Telescope Authors: Shimizu, T. Bibcode: 1995SPD....26..712S Altcode: 1995BAAS...27..968S No abstract at ADS Title: Magnetic Shear and Enhanced Coronal Heating in Active Regions Authors: Falconer, D.; Moore, R. L.; Porter, J.; Shimizu, T.; Shearer, K. Bibcode: 1995SPD....26..913F Altcode: 1995BAAS...27..976F No abstract at ADS Title: Explosion mechanism of collapse-driven supernovae Authors: Sato, K.; Shimizu, T.; Yamada, S. Bibcode: 1995NuPhA.588..345S Altcode: No abstract at ADS