Author name code: tiwari ADS astronomy entries on 2022-09-14 author:"Tiwari, Sanjiv Kumar" AND (aff:"Lockheed" OR aff:"Udaipur") ------------------------------------------------------------------------ Title: Parallel Plasma Loops and the Energization of the Solar Corona Authors: Peter, Hardi; Chitta, Lakshmi Pradeep; Chen, Feng; Pontin, David I.; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.; Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.; Testa, Paola; Tiwari, Sanjiv K.; Walsh, Robert W.; Warren, Harry P. Bibcode: 2022ApJ...933..153P Altcode: 2022arXiv220515919P The outer atmosphere of the Sun is composed of plasma heated to temperatures well in excess of the visible surface. We investigate short cool and warm (<1 MK) loops seen in the core of an active region to address the role of field-line braiding in energizing these structures. We report observations from the High-resolution Coronal imager (Hi-C) that have been acquired in a coordinated campaign with the Interface Region Imaging Spectrograph (IRIS). In the core of the active region, the 172 Å band of Hi-C and the 1400 Å channel of IRIS show plasma loops at different temperatures that run in parallel. There is a small but detectable spatial offset of less than 1″ between the loops seen in the two bands. Most importantly, we do not see observational signatures that these loops might be twisted around each other. Considering the scenario of magnetic braiding, our observations of parallel loops imply that the stresses put into the magnetic field have to relax while the braiding is applied: the magnetic field never reaches a highly braided state on these length scales comparable to the separation of the loops. This supports recent numerical 3D models of loop braiding in which the effective dissipation is sufficiently large that it keeps the magnetic field from getting highly twisted within a loop. Title: Bipolar Ephemeral Active Regions, Magnetic Flux Cancellation, and Solar Magnetic Explosions Authors: Moore, Ronald L.; Panesar, Navdeep K.; Sterling, Alphonse C.; Tiwari, Sanjiv K. Bibcode: 2022ApJ...933...12M Altcode: 2022arXiv220313287M We examine the cradle-to-grave magnetic evolution of 10 bipolar ephemeral active regions (BEARs) in solar coronal holes, especially aspects of the magnetic evolution leading to each of 43 obvious microflare events. The data are from the Solar Dynamics Observatory: 211 Å coronal EUV images and line-of-sight photospheric magnetograms. We find evidence that (1) each microflare event is a magnetic explosion that results in a miniature flare arcade astride the polarity inversion line (PIL) of the explosive lobe of the BEAR's anemone magnetic field; (2) relative to the BEAR's emerged flux-rope Ω loop, the anemone's explosive lobe can be an inside lobe, an outside lobe, or an inside-and-outside lobe; (3) 5 events are confined explosions, 20 events are mostly confined explosions, and 18 events are blowout explosions, which are miniatures of the magnetic explosions that make coronal mass ejections (CMEs); (4) contrary to the expectation of Moore et al., none of the 18 blowout events explode from inside the BEAR's Ω loop during the Ω loop's emergence; and (5) before and during each of the 43 microflare events, there is magnetic flux cancellation at the PIL of the anemone's explosive lobe. From finding evident flux cancellation at the underlying PIL before and during all 43 microflare events-together with BEARs evidently being miniatures of all larger solar bipolar active regions-we expect that in essentially the same way, flux cancellation in sunspot active regions prepares and triggers the magnetic explosions for many major flares and CMEs. Title: SolO/EUI Observations of Ubiquitous Fine-scale Bright Dots in an Emerging Flux Region: Comparison with a Bifrost MHD Simulation Authors: Tiwari, Sanjiv K.; Hansteen, Viggo H.; De Pontieu, Bart; Panesar, Navdeep K.; Berghmans, David Bibcode: 2022ApJ...929..103T Altcode: 2022arXiv220306161T We report on the presence of numerous tiny bright dots in and around an emerging flux region (an X-ray/coronal bright point) observed with SolO's EUI/HRIEUV in 174 Å. These dots are roundish and have a diameter of 675 ± 300 km, a lifetime of 50 ± 35 s, and an intensity enhancement of 30% ± 10% above their immediate surroundings. About half of the dots remain isolated during their evolution and move randomly and slowly (<10 km s-1). The other half show extensions, appearing as a small loop or surge/jet, with intensity propagations below 30 km s-1. Many of the bigger and brighter HRIEUV dots are discernible in the SDO/AIA 171 Å channel, have significant emissivity in the temperature range of 1-2 MK, and are often located at polarity inversion lines observed in SDO/HMI LOS magnetograms. Although not as pervasive as in observations, a Bifrost MHD simulation of an emerging flux region does show dots in synthetic Fe IX/X images. These dots in the simulation show distinct Doppler signatures-blueshifts and redshifts coexist, or a redshift of the order of 10 km s-1 is followed by a blueshift of similar or higher magnitude. The synthetic images of O V/VI and Si IV lines, which represent transition region radiation, also show the dots that are observed in Fe IX/X images, often expanded in size, or extended as a loop, and always with stronger Doppler velocities (up to 100 km s-1) than that in Fe IX/X lines. Our observation and simulation results, together with the field geometry of dots in the simulation, suggest that most dots in emerging flux regions form in the lower solar atmosphere (at ≍ 1 Mm) by magnetic reconnection between emerging and preexisting/emerged magnetic field. Some dots might be manifestations of magnetoacoustic shocks through the line formation region of Fe IX/X emission. Title: Birth and Evolution of a Jet-Base-Topology Solar Magnetic Field with Four Consecutive Major Flare Explosions Authors: Doran, Ilana; Panesar, Navdeep K.; Tiwari, Sanjiv; Moore, Ron; Bobra, Monica; Sterling, Alphonse Bibcode: 2021AGUFMSH35B2039D Altcode: During 2011 September 6-8, NOAA solar active region (AR) 11283 produced four consecutive major coronal mass ejections (CMEs) each with a co-produced major flare (GOES class M5.3, X2.1, X1.8, and M6.7). We examined the ARs magnetic field evolution leading to and following each of these major solar magnetic explosions. We follow flux emergence, flux cancellation and magnetic shear buildup leading to each explosion, and look for sudden flux changes and shear changes wrought by each explosion. We use AIA 193 A images and line-of-sight HMI vector magnetograms from Solar Dynamics Observatory (SDO), and SunPy, SHARPkeys, and IDL Solarsoft to prepare and analyze these data. The observed evolution of the vector field informs how magnetic field emergence and cancellation lead to and trigger the magnetic explosions, and thus informs how major CMEs and their flares are produced. We find that (1) all four flares are triggered by flux cancellation, (2) the third and fourth explosions (X1.8 and M6.7) begin with a filament eruption from the cancellation neutral line, (3) in the first and second explosions a filament erupts in the core of a secondary explosion that lags the main explosion and is probably triggered by Hudson-effect field implosion under the adjacent main exploding field, and (4) the transverse field suddenly strengthens along each main explosions underlying neutral line during the explosion, also likely due to Hudson-effect field implosion. Our observations are consistent with flux cancellation at the explosions underlying neutral line being essential in the buildup and triggering of each of the four explosions in the same way as in smaller-scale magnetic explosions that drive coronal jets. Title: Characterizing Steady and Bursty Coronal Heating of a Solar Active Region Authors: Wilkerson, Lucy; Tiwari, Sanjiv; Panesar, Navdeep K.; Moore, Ronald Bibcode: 2021AGUFMSH15E2060W Altcode: One of the biggest problems in solar physics today is our inability to explain why the solar corona is so hot. In this project, we aimed to quantify transient and background coronal heating for a given active region in order to better understand coronal heating. We used SDO/AIA data of the active region NOAA 12712 observed on May 29, 2018 over a period of 24 hours with a 3-minute cadence. We calculated FeXVIII emission (hot component of AIA 94 Å channel) by removing warm components using AIA 171 and 193 Å channels. From the maximum, minimum, and mean brightness values of each pixel over the full 24 hour period, we made maximum, minimum, and mean brightness maps. We repeated this process in moving time windows of 16 hours, 8 hours, 5 hours, 3 hours, 1 hour, and 30 minutes. We used the total luminosity for each of these maps over time to make lightcurves that show the evolution of maximum, minimum, and mean brightness over time for each running window. Finally, we took the ratio of the total maximum and total minimum luminosity to total mean luminosity, and plotted these ratios over time. The average maximum to mean ratio was 8.40±0.00, 6.36±0.46, 5.29±0.34, 4.73±0.24, 4.19±0.19, 3.21±0.17, and 2.64±0.15 and the average minimum to mean ratio was 0.053±0.00, 0.08±0.00, 0.12±0.01, 0.14±0.02, 0.17±0.02, 0.26±0.02, and 0.33±0.03 for 24h, 16h, 8h, 5h, 3h, 1h, and 30m windows, respectively. As expected, the ratio of background to mean luminosity increased as the time window decreased, and the ratio of transient to mean luminosity decreased as the time window decreased. As such, the ratio of background to mean luminosity is a new and effective technique to quantify the background intensity of the active region. Our 24h window result suggests that at most 5% of the luminosity of the AR at a given time comes from the steady background heating. This upper limit increases to 33% of the luminosity of the AR for the 30 min running window. Title: The Magnetic Origin of Solar Campfires Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Berghmans, David; Cheung, Mark C. M.; Müller, Daniel; Auchere, Frederic; Zhukov, Andrei Bibcode: 2021ApJ...921L..20P Altcode: 2021arXiv211006846P Solar campfires are fine-scale heating events, recently observed by Extreme Ultraviolet Imager (EUI) on board Solar Orbiter. Here we use EUI 174 Å images, together with EUV images from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and line-of-sight magnetograms from SDO/Helioseismic and Magnetic Imager (HMI) to investigate the magnetic origin of 52 randomly selected campfires in the quiet solar corona. We find that (i) the campfires are rooted at the edges of photospheric magnetic network lanes; (ii) most of the campfires reside above the neutral line between majority-polarity magnetic flux patch and a merging minority-polarity flux patch, with a flux cancelation rate of ~1018 Mx hr-1; (iii) some of the campfires occur repeatedly from the same neutral line; (iv) in the large majority of instances, campfires are preceded by a cool-plasma structure, analogous to minifilaments in coronal jets; and (v) although many campfires have "complex" structure, most campfires resemble small-scale jets, dots, or loops. Thus, "campfire" is a general term that includes different types of small-scale solar dynamic features. They contain sufficient magnetic energy (~1026-1027 erg) to heat the solar atmosphere locally to 0.5-2.5 MK. Their lifetimes range from about 1 minute to over 1 hr, with most of the campfires having a lifetime of <10 minutes. The average lengths and widths of the campfires are 5400 ± 2500 km and 1600 ± 640 km, respectively. Our observations suggest that (a) the presence of magnetic flux ropes may be ubiquitous in the solar atmosphere and not limited to coronal jets and larger-scale eruptions that make CMEs, and (b) magnetic flux cancelation is the fundamental process for the formation and triggering of most campfires. Title: Ti I lines at 2.2 μm as probes of the cooler regions of sunspots Authors: Smitha, H. N.; Castellanos Durán, J. S.; Solanki, S. K.; Tiwari, S. K. Bibcode: 2021A&A...653A..91S Altcode: 2021arXiv210701247S Context. The sunspot umbra harbours the coolest plasma on the solar surface due to the presence of strong magnetic fields. The atomic lines that are routinely used to observe the photosphere have weak signals in the umbra and are often swamped by molecular lines. This makes it harder to infer the properties of the umbra, especially in the darkest regions.
Aims: The lines of the Ti I multiplet at 2.2 μm are formed mainly at temperatures ≤4500 K and are not known to be affected by molecular blends in sunspots. Since the first systematic observations in the 1990s, these lines have been seldom observed due to the instrumental challenges involved at these longer wavelengths. We revisit these lines and investigate their formation in different solar features.
Methods: We synthesized the Ti I multiplet using a snapshot from 3D magnetohydrodynamic (MHD) simulations of a sunspot and explored the properties of two of its lines in comparison with two commonly used iron lines, at 6302.5 Å and 1.5648 μm.
Results: We find that the Ti I lines have stronger signals than the Fe I lines in both intensity and polarization in the sunspot umbra and in penumbral spines. They have little to no signal in the penumbral filaments and the quiet Sun, at μ = 1. Their strong and well-split profiles in the dark umbra are less affected by stray light. Consequently, inside the sunspot, it is easier to invert these lines and to infer the atmospheric properties as compared to the iron lines.
Conclusions: The Cryo-NIRSP instrument at the DKIST will provide the first-ever high-resolution observations in this wavelength range. In this preparatory study, we demonstrate the unique temperature and magnetic sensitivities of the Ti multiplet by probing the Sun's coolest regions, which are not favourable for the formation of other commonly used spectral lines. We thus expect such observations to advance our understanding of sunspot properties. Title: On Making Magnetic-flux-rope Omega Loops For Solar Bipolar Magnetic Regions Of All Sizes By Convection Cells Authors: Moore, R.; Tiwari, S.; Panesar, N.; Sterling, A. Bibcode: 2021AAS...23831318M Altcode: This poster gives an overview of Moore, R. L., Tiwari, S. K., Panesar, N. K., & Sterling, A. C. 2020, ApJ Letters, 902:L35. We propose that the magnetic-flux-rope omega loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the omega-loop's size from initially horizontal magnetic field ingested through the cell's bottom. This idea is based on (1) observed characteristics of BMRs of all spans (~1000 to ~200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-sized convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR omega loops is ~103 G, (2) plausibly explain why the span and flux of the biggest observed BMRs are ~200,000 km and ~1022 Mx, (3) suggest how giant cells might also make "failed BMR" omega loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR omega loops of their size, (4) suggest why sunspots observed in a sunspot cycle's declining phase tend to violate the hemispheric helicity rule, and (5) support a previously proposed amended Babcock scenario (Moore, R. L., Cirtain, J. W., & Sterling, A. C. 2016, arXiv:1606.05371) for the sunspot cycle's dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR omega loop avoids having ~105 G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations. Title: Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST) Authors: Rast, Mark P.; Bello González, Nazaret; Bellot Rubio, Luis; Cao, Wenda; Cauzzi, Gianna; Deluca, Edward; de Pontieu, Bart; Fletcher, Lyndsay; Gibson, Sarah E.; Judge, Philip G.; Katsukawa, Yukio; Kazachenko, Maria D.; Khomenko, Elena; Landi, Enrico; Martínez Pillet, Valentín; Petrie, Gordon J. D.; Qiu, Jiong; Rachmeler, Laurel A.; Rempel, Matthias; Schmidt, Wolfgang; Scullion, Eamon; Sun, Xudong; Welsch, Brian T.; Andretta, Vincenzo; Antolin, Patrick; Ayres, Thomas R.; Balasubramaniam, K. S.; Ballai, Istvan; Berger, Thomas E.; Bradshaw, Stephen J.; Campbell, Ryan J.; Carlsson, Mats; Casini, Roberto; Centeno, Rebecca; Cranmer, Steven R.; Criscuoli, Serena; Deforest, Craig; Deng, Yuanyong; Erdélyi, Robertus; Fedun, Viktor; Fischer, Catherine E.; González Manrique, Sergio J.; Hahn, Michael; Harra, Louise; Henriques, Vasco M. J.; Hurlburt, Neal E.; Jaeggli, Sarah; Jafarzadeh, Shahin; Jain, Rekha; Jefferies, Stuart M.; Keys, Peter H.; Kowalski, Adam F.; Kuckein, Christoph; Kuhn, Jeffrey R.; Kuridze, David; Liu, Jiajia; Liu, Wei; Longcope, Dana; Mathioudakis, Mihalis; McAteer, R. T. James; McIntosh, Scott W.; McKenzie, David E.; Miralles, Mari Paz; Morton, Richard J.; Muglach, Karin; Nelson, Chris J.; Panesar, Navdeep K.; Parenti, Susanna; Parnell, Clare E.; Poduval, Bala; Reardon, Kevin P.; Reep, Jeffrey W.; Schad, Thomas A.; Schmit, Donald; Sharma, Rahul; Socas-Navarro, Hector; Srivastava, Abhishek K.; Sterling, Alphonse C.; Suematsu, Yoshinori; Tarr, Lucas A.; Tiwari, Sanjiv; Tritschler, Alexandra; Verth, Gary; Vourlidas, Angelos; Wang, Haimin; Wang, Yi-Ming; NSO and DKIST Project; DKIST Instrument Scientists; DKIST Science Working Group; DKIST Critical Science Plan Community Bibcode: 2021SoPh..296...70R Altcode: 2020arXiv200808203R The National Science Foundation's Daniel K. Inouye Solar Telescope (DKIST) will revolutionize our ability to measure, understand, and model the basic physical processes that control the structure and dynamics of the Sun and its atmosphere. The first-light DKIST images, released publicly on 29 January 2020, only hint at the extraordinary capabilities that will accompany full commissioning of the five facility instruments. With this Critical Science Plan (CSP) we attempt to anticipate some of what those capabilities will enable, providing a snapshot of some of the scientific pursuits that the DKIST hopes to engage as start-of-operations nears. The work builds on the combined contributions of the DKIST Science Working Group (SWG) and CSP Community members, who generously shared their experiences, plans, knowledge, and dreams. Discussion is primarily focused on those issues to which DKIST will uniquely contribute. Title: Are the Brightest Coronal Loops Always Rooted in Mixed-polarity Magnetic Flux? Authors: Tiwari, Sanjiv K.; Evans, Caroline L.; Panesar, Navdeep K.; Prasad, Avijeet; Moore, Ronald L. Bibcode: 2021ApJ...908..151T Altcode: 2021arXiv210210146T A recent study demonstrated that freedom of convection and strength of magnetic field in the photospheric feet of active-region (AR) coronal loops, together, can engender or quench heating in them. Other studies stress that magnetic flux cancellation at the loop-feet potentially drives heating in loops. We follow 24 hr movies of a bipolar AR, using extreme ultraviolet images from the Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) and line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI)/SDO, to examine magnetic polarities at the feet of 23 of the brightest coronal loops. We derived Fe XVIII emission (hot-94) images (using the Warren et al. method) to select the hottest/brightest loops, and confirm their footpoint locations via non-force-free field extrapolations. From 6″ × 6″ boxes centered at each loop foot in LOS magnetograms we find that ∼40% of the loops have both feet in unipolar flux, and ∼60% of the loops have at least one foot in mixed-polarity flux. The loops with both feet unipolar are ∼15% shorter lived on average than the loops having mixed-polarity foot-point flux, but their peak-intensity averages are equal. The presence of mixed-polarity magnetic flux in at least one foot in the majority of the loops suggests that flux cancellation at the footpoints may drive most of the heating. But the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in ∼40% of the loops suggests that flux cancellation may not be necessary to drive heating in coronal loops—magnetoconvection and field strength at both loop feet possibly drive much of the heating, even in the cases where a loop foot presents mixed-polarity magnetic flux. Title: Effects of Cowling Resistivity in the Weakly-Ionized Chromosphere Authors: Yalim, M. S.; Prasad, A.; Pogorelov, N. V.; Zank, G. P.; Hu, Q.; Tiwari, S. K. Bibcode: 2020AGUFMSH0010015Y Altcode: The physics of the solar chromosphere is complex from both theoretical and modeling perspectives. The plasma temperature from the photosphere to corona increases from ~5,000 K to ~1 million K over a distance of only ~10,000 km from the chromosphere and the transition region. Certain regions of the solar atmosphere have sufficiently low temperature and ionization rates to be considered as weakly-ionized. In particular, this is true at the lower chromosphere. As a result, the Cowling resistivity is orders of magnitude greater than the Coulomb resistivity. Ohm's law therefore includes anisotropic dissipation. To evaluate the Cowling resistivity, we need to know the external magnetic field strength and to estimate the neutral fraction as a function of the bulk plasma density and temperature. In this study, we determine the magnetic field topology using the non-force-free field (NFFF) extrapolation technique based on SDO/HMI SHARP vector magnetogram data, and the stratified density and temperature profiles from the Maltby-M umbral core model for sunspots. We investigate the variation and effects of Cowling resistivity on heating and magnetic reconnection in the chromosphere as the flare-producing active region (AR) 11166 evolves. In particular, we analyze a C2.0 flare emerging from AR11166 and find a normalized reconnection rate of 0.051.

We will also explore the possibility of using IRIS data in our analysis, in particular spectral data calculated from the IRIS2 inversion scheme to recover the thermodynamics of the chromosphere and high photosphere, and slit-jaw images (SJIs) to capture and analyze solar flares. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of a solar active region: Hi-C 2.1, IRIS and SDO observations Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu, B.; Winebarger, A. R. Bibcode: 2020AGUFMSH0010007T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution (~250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 Å, of a solar active region (AR NOAA 12712) near solar disk center. Three morphologically-different types (I: dot-like, II: loop-like, & III: surge/jet-like) of fine-scale sudden brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter, and shorter in span (70 s). Because Dot-like brightenings are not as clearly discernible in AIA 171 Å as in Hi-C 172 Å, they were not reported before. We complement the 5-minute-duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying flux cancellation at the microflare's polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA and IRIS peak nearly simultaneously for many of these events and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition-region origin. Title: Network Jets as the Driver of Counter-streaming Flows in a Solar Filament Authors: Panesar, N. K.; Tiwari, S. K.; Moore, R. L.; Sterling, A. C. Bibcode: 2020AGUFMSH0240004P Altcode: We investigate the driving mechanism of counter-streaming flows in a solar filament, using EUV images from SDO/AIA, line of sight magnetograms from SDO/HMI, IRIS SJ images, and H-alpha data from GONG. We find that: (i) persistent counter-streaming flows along adjacent threads of a small (100" long) solar filament is present; (ii) both ends of the solar filament are rooted at the edges of magnetic network flux lanes; (iii) recurrent small-scale jets (also known as network jets) occur at both ends of the filament; (iv) some of the network jets occur at the sites of flux cancelation between the majority-polarity flux and merging minority-polarity flux patches; (v) these multiple network jets clearly drive the counter-streaming flows along the adjacent threads of the solar filament for ~2 hours with an average speed of 70 km s-1; (vi) some the network jets show base brightenings, analogous to the base brightenings of coronal jets; and (vii) the filament appears wider (4") in EUV images than in H-alpha images (2.5"), consistent with previous studies. Thus, our observations show that counter-streaming flows in the filament are driven by network jets and possibly these driving network jet eruptions are prepared and triggered by flux cancelation. Title: On Making Magnetic-flux-rope Ω Loops for Solar Bipolar Magnetic Regions of All Sizes by Convection Cells Authors: Moore, Ronald L.; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Sterling, Alphonse C. Bibcode: 2020ApJ...902L..35M Altcode: 2020arXiv200913694M We propose that the flux-rope Ω loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the Ω-loop's size from initially horizontal magnetic field ingested through the cell's bottom. This idea is based on (1) observed characteristics of BMRs of all spans (∼1000 to ∼200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-sized convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR Ω loops is ∼103 G, (2) plausibly explain why the span and flux of the biggest observed BMRs are ∼200,000 km and ∼1022 Mx, (3) suggest how giant cells might also make "failed-BMR" Ω loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR Ω loops of their size, (4) suggest why sunspots observed in a sunspot cycle's declining phase tend to violate the hemispheric helicity rule, and (5) support a previously proposed amended Babcock scenario for the sunspot cycle's dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR Ω loop avoids having ∼105 G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations. Title: Network Jets as the Driver of Counter-streaming Flows in a Solar Filament/Filament Channel Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2020ApJ...897L...2P Altcode: 2020arXiv200604249P Counter-streaming flows in a small (100″ long) solar filament/filament channel are directly observed in high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) extreme-ultraviolet (EUV) images of a region of enhanced magnetic network. We combine images from SDO/AIA, SDO/Helioseismic and Magnetic Imager (HMI), and the Interface Region Imaging Spectrograph (IRIS) to investigate the driving mechanism of these flows. We find that: (I) counter-streaming flows are present along adjacent filament/filament channel threads for ∼2 hr, (II) both ends of the filament/filament channel are rooted at the edges of magnetic network flux lanes along which there are impinging fine-scale opposite-polarity flux patches, (III) recurrent small-scale jets (known as network jets) occur at the edges of the magnetic network flux lanes at the ends of the filament/filament channel, (IV) the recurrent network jet eruptions clearly drive the counter-streaming flows along threads of the filament/filament channel, (V) some of the network jets appear to stem from sites of flux cancelation, between network flux and merging opposite-polarity flux, and (VI) some show brightening at their bases, analogous to the base brightening in coronal jets. The average speed of the counter-streaming flows along the filament/filament channel threads is 70 km s-1. The average widths of the AIA filament/filament channel and the Hα filament are 4″ and 2"5, respectively, consistent with the earlier findings that filaments in EUV images are wider than in Hα images. Thus, our observations show that the continually repeated counter-streaming flows come from network jets, and these driving network jet eruptions are possibly prepared and triggered by magnetic flux cancelation. Title: Observation and Modeling of High-temperature Solar Active Region Emission during the High-resolution Coronal Imager Flight of 2018 May 29 Authors: Warren, Harry P.; Reep, Jeffrey W.; Crump, Nicholas A.; Ugarte-Urra, Ignacio; Brooks, David H.; Winebarger, Amy R.; Savage, Sabrina; De Pontieu, Bart; Peter, Hardi; Cirtain, Jonathan W.; Golub, Leon; Kobayashi, Ken; McKenzie, David; Morton, Richard; Rachmeler, Laurel; Testa, Paola; Tiwari, Sanjiv; Walsh, Robert Bibcode: 2020ApJ...896...51W Altcode: Excellent coordinated observations of NOAA active region 12712 were obtained during the flight of the High-resolution Coronal Imager (Hi-C) sounding rocket on 2018 May 29. This region displayed a typical active region core structure with relatively short, high-temperature loops crossing the polarity inversion line and bright "moss" located at the footpoints of these loops. The differential emission measure (DEM) in the active region core is very sharply peaked at about 4 MK. Further, there is little evidence for impulsive heating events in the moss, even at the high spatial resolution and cadence of Hi-C. This suggests that active region core heating is occurring at a high frequency and keeping the loops close to equilibrium. To create a time-dependent simulation of the active region core, we combine nonlinear force-free extrapolations of the measured magnetic field with a heating rate that is dependent on the field strength and loop length and has a Poisson waiting time distribution. We use the approximate solutions to the hydrodynamic loop equations to simulate the full ensemble of active region core loops for a range of heating parameters. In all cases, we find that high-frequency heating provides the best match to the observed DEM. For selected field lines, we solve the full hydrodynamic loop equations, including radiative transfer in the chromosphere, to simulate transition region and chromospheric emission. We find that for heating scenarios consistent with the DEM, classical signatures of energy release, such as transition region brightenings and chromospheric evaporation, are weak, suggesting that they would be difficult to detect. Title: The Drivers of Active Region Outflows into the Slow Solar Wind Authors: Brooks, David H.; Winebarger, Amy R.; Savage, Sabrina; Warren, Harry P.; De Pontieu, Bart; Peter, Hardi; Cirtain, Jonathan W.; Golub, Leon; Kobayashi, Ken; McIntosh, Scott W.; McKenzie, David; Morton, Richard; Rachmeler, Laurel; Testa, Paola; Tiwari, Sanjiv; Walsh, Robert Bibcode: 2020ApJ...894..144B Altcode: 2020arXiv200407461B Plasma outflows from the edges of active regions have been suggested as a possible source of the slow solar wind. Spectroscopic measurements show that these outflows have an enhanced elemental composition, which is a distinct signature of the slow wind. Current spectroscopic observations, however, do not have sufficient spatial resolution to distinguish what structures are being measured or determine the driver of the outflows. The High-resolution Coronal Imager (Hi-C) flew on a sounding rocket in 2018 May and observed areas of active region outflow at the highest spatial resolution ever achieved (250 km). Here we use the Hi-C data to disentangle the outflow composition signatures observed with the Hinode satellite during the flight. We show that there are two components to the outflow emission: a substantial contribution from expanded plasma that appears to have been expelled from closed loops in the active region core and a second contribution from dynamic activity in active region plage, with a composition signature that reflects solar photospheric abundances. The two competing drivers of the outflows may explain the variable composition of the slow solar wind. Title: Velocity Response of the Observed Explosive Events in the Lower Solar Atmosphere. I. Formation of the Flowing Cool-loop System Authors: Srivastava, A. K.; Rao, Yamini K.; Konkol, P.; Murawski, K.; Mathioudakis, M.; Tiwari, Sanjiv K.; Scullion, E.; Doyle, J. G.; Dwivedi, B. N. Bibcode: 2020ApJ...894..155S Altcode: 2020arXiv200402775S We observe plasma flows in cool loops using the Slit-Jaw Imager on board the Interface Region Imaging Spectrometer (IRIS). Huang et al. observed unusually broadened Si IV 1403 Šline profiles at the footpoints of such loops that were attributed to signatures of explosive events (EEs). We have chosen one such unidirectional flowing cool-loop system observed by IRIS where one of the footpoints is associated with significantly broadened Si IV line profiles. The line-profile broadening indirectly indicates the occurrence of numerous EEs below the transition region (TR), while it directly infers a large velocity enhancement/perturbation, further causing the plasma flows in the observed loop system. The observed features are implemented in a model atmosphere in which a low-lying bipolar magnetic field system is perturbed in the chromosphere by a velocity pulse with a maximum amplitude of 200 km s-1. The data-driven 2D numerical simulation shows that the plasma motions evolve in a similar manner as observed by IRIS in the form of flowing plasma filling the skeleton of a cool-loop system. We compare the spatio-temporal evolution of the cool-loop system in the framework of our model with the observations, and conclude that their formation is mostly associated with the velocity response of the transient energy release above their footpoints in the chromosphere/TR. Our observations and modeling results suggest that the velocity responses most likely associated to the EEs could be one of the main candidates for the dynamics and energetics of the flowing cool-loop systems in the lower solar atmosphere. Title: Is the High-Resolution Coronal Imager Resolving Coronal Strands? Results from AR 12712 Authors: Williams, Thomas; Walsh, Robert W.; Winebarger, Amy R.; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; Golub, Leon; Kobayashi, Ken; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Rachmeler, Laurel A.; Savage, Sabrina L.; Testa, Paola; Tiwari, Sanjiv K.; Warren, Harry P.; Watkinson, Benjamin J. Bibcode: 2020ApJ...892..134W Altcode: 2020arXiv200111254W Following the success of the first mission, the High-Resolution Coronal Imager (Hi-C) was launched for a third time (Hi-C 2.1) on 2018 May 29 from the White Sands Missile Range, NM, USA. On this occasion, 329 s of 17.2 nm data of target active region AR 12712 were captured with a cadence of ≈4 s, and a plate scale of 0.129 arcsec pixel-1. Using data captured by Hi-C 2.1 and co-aligned observations from SDO/AIA 17.1 nm, we investigate the widths of 49 coronal strands. We search for evidence of substructure within the strands that is not detected by AIA, and further consider whether these strands are fully resolved by Hi-C 2.1. With the aid of multi-scale Gaussian normalization, strands from a region of low emission that can only be visualized against the contrast of the darker, underlying moss are studied. A comparison is made between these low-emission strands and those from regions of higher emission within the target active region. It is found that Hi-C 2.1 can resolve individual strands as small as ≈202 km, though the more typical strand widths seen are ≈513 km. For coronal strands within the region of low emission, the most likely width is significantly narrower than the high-emission strands at ≈388 km. This places the low-emission coronal strands beneath the resolving capabilities of SDO/AIA, highlighting the need for a permanent solar observatory with the resolving power of Hi-C. Title: Propagation of waves above a plage as observed by IRIS and SDO Authors: Kayshap, P.; Srivastava, A. K.; Tiwari, S. K.; Jelínek, P.; Mathioudakis, M. Bibcode: 2020A&A...634A..63K Altcode: 2019arXiv191011557K Context. Magnetohydrodynamic waves are proposed as the mechanism that transport sufficient energy from the photosphere to heat the transition region (TR) and corona. However, various aspects of these waves, such as their nature, propagation characteristics, and role in the atmospheric heating process, remain poorly understood and require further investigation.
Aims: We aim to investigate wave propagation within an active-region plage using IRIS and AIA observations. The main motivation is to understand the relationship between photospheric and TR oscillations. We identify the locations in the plage region where magnetic flux tubes are essentially vertical, and further we discuss the propagation and nature of these waves.
Methods: We used photospheric observations from AIA (i.e., AIA 1700 Å) as well as TR imaging observations (IRIS SJI Si IV 1400.0 Å). We investigated the propagation of the waves into the TR from the photosphere using wavelet analysis (e.g., cross power, coherence, and phase difference) with the inclusion of a customized noise model.
Results: A fast Fourier transform algorithm shows the distribution of wave power at photospheric and TR heights. Waves with periods between 2.0 and 9.0 min appear to be correlated between the photosphere and TR. We exploited a customized noise model to estimate the 95% confidence levels for the IRIS observations. On the basis of the sound speed in the TR and estimated propagation speed, these waves are best interpreted as slow magneto acoustic waves (SMAWs). It is found that almost all locations show correlation and propagation of waves over a broad range of periods from the photosphere to the TR. Our observations suggest that the SMAWs spatial occurrence frequency is stronly correlated between the photosphere and transition region within plage areas. Title: A CME-Producing Solar Eruption from the Interior of a Twisted Emerging Bipole Authors: Moore, R. L.; Adams, M.; Panesar, N. K.; Falconer, D. A.; Tiwari, S. K. Bibcode: 2019AGUFMSH43D3355M Altcode: In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic Imager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots with penumbrae by 3:00 UT on March 4, which NOAA numbered 12514. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. The emerging bipole shows obvious overall left-handed shear and/or twist in its magnetic field and corresponding clockwise rotation of the two poles of the bipole about each other as the bipole emerges. The eruption comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convection-driven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen and Martens (1989, ApJ, 343, 971) and Moore and Roumeliotis (1992, in Eruptive Solar Flares, ed. Z. Svestka, B.V. Jackson, and M.E. Machado [Berlin:Springer], 69). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al., 2019, ApJ, 871:67). Title: Are the brightest coronal loops always rooted in mixed-polarity magnetic flux? Authors: Evans, C.; Tiwari, S. K.; Panesar, N. K.; Prasad, A.; Moore, R. L. Bibcode: 2019AGUFMSH41F3324E Altcode: Magnetic energy dissipated in coronal loops heats the Sun's corona to millions of Kelvin. Some recent investigations indicate that in addition to the required magnetoconvection and field strength, heating in the brightest coronal loops are driven by flux cancellation at the loop-feet. To find coronal loop footpoints , we selected extreme ultraviolet (EUV) data from the Atmospheric Imaging Assembly (AIA) and line- of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI), both on-board the Solar Dynamics Observatory (SDO). We located the footpoints of 28 brightest coronal loops of the bipolar active region NOAA 12712 on 28 May 2018 in hot 94 images (calculated using the Warren et al. method) and confirm the location of these footpoints via non-force free field extrapolations. We examine the photospheric magnetic field in 6" boxes centered at each footpoint and find that ~20% of loops have both feet in unipolar magnetic flux, ~10% loops have both feet in mixed-polarity flux, and ~70% of loops have one foot in unipolar and one in mixed-polarity flux. The presence of mixed-polarity magnetic flux in at least one foot of majority of the brightest coronal loops suggests that flux cancellation at the footpoints may drive heating in them. However, the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in a significant number of the brightest coronal loops suggests that flux cancellation may not be necessary to drive heating in the loops - the combination of magnetoconvection and the magnetic field strength at the footpoints could be responsible for much of the coronal loop heating even in cases where a footpoint presents mixed-polarity magnetic flux. Title: Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Winebarger, Amy R.; Tiwari, Sanjiv K.; Savage, Sabrina L.; Golub, Leon E.; Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Testa, Paola; Walsh, Robert W.; Warren, Harry P. Bibcode: 2019ApJ...887L...8P Altcode: 2019arXiv191102331P We present high-resolution, high-cadence observations of six, fine-scale, on-disk jet-like events observed by the High-resolution Coronal Imager 2.1 (Hi-C 2.1) during its sounding-rocket flight. We combine the Hi-C 2.1 images with images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS), and investigate each event’s magnetic setting with co-aligned line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). We find that (i) all six events are jetlet-like (having apparent properties of jetlets), (ii) all six are rooted at edges of magnetic network lanes, (iii) four of the jetlet-like events stem from sites of flux cancelation between majority-polarity network flux and merging minority-polarity flux, and (iv) four of the jetlet-like events show brightenings at their bases reminiscent of the base brightenings in coronal jets. The average spire length of the six jetlet-like events (9000 ± 3000 km) is three times shorter than that for IRIS jetlets (27,000 ± 8000 km). While not ruling out other generation mechanisms, the observations suggest that at least four of these events may be miniature versions of both larger-scale coronal jets that are driven by minifilament eruptions and still-larger-scale solar eruptions that are driven by filament eruptions. Therefore, we propose that our Hi-C events are driven by the eruption of a tiny sheared-field flux rope, and that the flux rope field is built and triggered to erupt by flux cancelation. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of the solar active region observed by Hi-C 2.1, IRIS and SDO Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu, B.; Winebarger, A. R. Bibcode: 2019AGUFMSH31C3323T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution Title: CME-Forecasting Performance of MAG4 with its HMI Vector Magnetogram Database Authors: Schragal, N. T.; Falconer, D. A.; Tiwari, S. K.; Moore, R. L. Bibcode: 2019AGUFMSH33C3354S Altcode: Coronal mass ejections (CMEs), solar flares, and solar proton events (SPEs) pose a threat to space-based infrastructure and astronauts. Many years of developmental work on predicting these events from active region (AR) magnetograms from MDI and HMI have led to MAG4 (MAGnetogram FOREcasting), a large-database forecasting technique for near-real-time forecasting of the next-day major flare, CME, and SPE productivity of an AR. MAG4 uses a free-magnetic-energy proxy computed for the AR from an HMI magnetogram and the AR's previous-day major-flare productivity in conjunction with a pair of forecasting curves derived from MAG4's large database of AR magnetograms to forecast these events. Previous work on improving the major-flare forecasting performance of MAG4 by deriving the forecasting curves from HMI vector magnetograms instead of from MDI line-of-sight magnetograms has laid the groundwork for improving the CME and SPE forecasting of MAG4. The present work is a first step in similarly improving MAG4's CME forecasting performance. We use MAG4's HMI AR vector magnetograms and a list of AR-produced CME events during August 2010 - March 2014. As done previously for major flares, we carry out 3000 random divisions of the observed set of ARs into a control half-set and an experimental half-set to determine the forecasting performance of each of 48 different parameters computed from the AR magnetograms. Each control set gives the pair of CME forecasting curves for each parameter. Then these curves are used to forecast the next-day event rate from each AR magnetogram in the experimental set. We measure forecasting performance by the Heidke Skill score which ranges from -∞ to 1, where a score of 0 is for performance that is no better than random chance, negative scores are for performance worse than random chance, and 1 is for perfect performance. Preliminary results indicate that the best-performing AR magnetogram parameters for predicting CMEs are not the same as the ones for major flares. Title: Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO Authors: Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; De Pontieu, Bart; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.; Rachmeler, Laurel A.; Kobayashi, Ken; Testa, Paola; Warren, Harry P.; Brooks, David H.; Cirtain, Jonathan W.; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Walsh, Robert W. Bibcode: 2019ApJ...887...56T Altcode: 2019arXiv191101424T The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial and temporal resolution (∼250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 Å of AR 12712 on 2018 May 29, during 18:56:21-19:01:56 UT. Three morphologically different types (I: dot-like; II: loop-like; III: surge/jet-like) of fine-scale sudden-brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is (not reported before) resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter and shorter in span (70 s). We complement the 5 minute duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying likely flux cancellation at the microflare’s polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA, and IRIS peak nearly simultaneously for many of these events, and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition region origin. Title: The High-Resolution Coronal Imager, Flight 2.1 Authors: Rachmeler, Laurel A.; Winebarger, Amy R.; Savage, Sabrina L.; Golub, Leon; Kobayashi, Ken; Vigil, Genevieve D.; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Testa, Paola; Tiwari, Sanjiv K.; Walsh, Robert W.; Warren, Harry P.; Alexander, Caroline; Ansell, Darren; Beabout, Brent L.; Beabout, Dyana L.; Bethge, Christian W.; Champey, Patrick R.; Cheimets, Peter N.; Cooper, Mark A.; Creel, Helen K.; Gates, Richard; Gomez, Carlos; Guillory, Anthony; Haight, Harlan; Hogue, William D.; Holloway, Todd; Hyde, David W.; Kenyon, Richard; Marshall, Joseph N.; McCracken, Jeff E.; McCracken, Kenneth; Mitchell, Karen O.; Ordway, Mark; Owen, Tim; Ranganathan, Jagan; Robertson, Bryan A.; Payne, M. Janie; Podgorski, William; Pryor, Jonathan; Samra, Jenna; Sloan, Mark D.; Soohoo, Howard A.; Steele, D. Brandon; Thompson, Furman V.; Thornton, Gary S.; Watkinson, Benjamin; Windt, David Bibcode: 2019SoPh..294..174R Altcode: 2019arXiv190905942R The third flight of the High-Resolution Coronal Imager (Hi-C 2.1) occurred on May 29, 2018; the Sounding Rocket was launched from White Sands Missile Range in New Mexico. The instrument has been modified from its original configuration (Hi-C 1) to observe the solar corona in a passband that peaks near 172 Å, and uses a new, custom-built low-noise camera. The instrument targeted Active Region 12712, and captured 78 images at a cadence of 4.4 s (18:56:22 - 19:01:57 UT; 5 min and 35 s observing time). The image spatial resolution varies due to quasi-periodic motion blur from the rocket; sharp images contain resolved features of at least 0.47 arcsec. There are coordinated observations from multiple ground- and space-based telescopes providing an unprecedented opportunity to observe the mass and energy coupling between the chromosphere and the corona. Details of the instrument and the data set are presented in this paper. Title: Achievements of Hinode in the first eleven years Authors: Hinode Review Team; Al-Janabi, Khalid; Antolin, Patrick; Baker, Deborah; Bellot Rubio, Luis R.; Bradley, Louisa; Brooks, David H.; Centeno, Rebecca; Culhane, J. Leonard; Del Zanna, Giulio; Doschek, George A.; Fletcher, Lyndsay; Hara, Hirohisa; Harra, Louise K.; Hillier, Andrew S.; Imada, Shinsuke; Klimchuk, James A.; Mariska, John T.; Pereira, Tiago M. D.; Reeves, Katharine K.; Sakao, Taro; Sakurai, Takashi; Shimizu, Toshifumi; Shimojo, Masumi; Shiota, Daikou; Solanki, Sami K.; Sterling, Alphonse C.; Su, Yingna; Suematsu, Yoshinori; Tarbell, Theodore D.; Tiwari, Sanjiv K.; Toriumi, Shin; Ugarte-Urra, Ignacio; Warren, Harry P.; Watanabe, Tetsuya; Young, Peter R. Bibcode: 2019PASJ...71R...1H Altcode: Hinode is Japan's third solar mission following Hinotori (1981-1982) and Yohkoh (1991-2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode. Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal Loops: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Moore, Ronald L.; Tiwari, Sanjiv; Thalmann, Julia; Panesar, Navdeep; Winebarger, Amy Bibcode: 2019AAS...23410603M Altcode: How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. The corona is shaped by the magnetic field that fills it and the heating of the corona generally increases with increasing strength of the field. For each of two bipolar solar active regions having one or more sunspots in each of the two main opposite-polarity domains of magnetic flux, from comparison of a nonlinear force-free model of the active region's three-dimensional coronal magnetic field to observed extreme-ultraviolet coronal loops, we find that (1) umbra-to-umbra loops, despite being rooted in the strongest magnetic flux at both ends, are invisible, and (2) the brightest loops have one foot in a sunspot umbra or penumbra and the other foot in another sunspot's penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvetion drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the body of the loop.

This work was supported by funding from the Heliophysics Division of NASA's Science Mission Directorate, from NASA's Postdoctoral Program, and from the Austrian Science Fund. The results have been published in The Astrophysical Journal Letters (Tiwari, S. K., Thalmann, J. K., Panesar, N. K., Moore, R. L., & Winebarger, A. R. 2017, ApJ Letters, 843:L20). Title: Improving Forecasting of Drivers of Severe Space Weather with the New MAG4 HMI Vector Magnetogram Database Authors: Falconer, David; Tiwari, Sanjiv; Moore, Ronald; Fisher, Megan Bibcode: 2019AAS...23431705F Altcode: Major solar flares and Coronal Mass Ejections (CMEs) are drivers of severe space weather. The strongest ones come from active regions (ARs). They are powered by explosive release of magnetic energy. MAG4 (Magnetogram Forecast) is a large-database near-real-time tool that measures an AR's free-energy proxy from the AR's deprojected HMI vector magnetograms. MAG4 converts the free-energy proxy to the AR's predicted event rate (and event probability) using a forecasting curve. MAG4 forecasts the event rate and probability for each AR on the disk, as well as for the full disk. The forecasting curves presently used by MAG4 are derived from a large sample of SOHO/MDI AR magnetograms. This requires the HMI vector magnetograms to be degraded in spatial resolution to approximate what MDI would have measured, in order to use the MDI forecasting curves. We report on the improved performance of MAG4 that results from using forecasting curves based on MAG4's new database of HMI vector magnetograms instead of using the present forecasting curves that are based on MDI line-of-sight magnetograms. MAG4's forecasting skill score significantly improves for major flares (M1 or greater). We present MAG4's improvement in forecasting SPEs (Solar Particle Events) and X-class flares as well. The improvement in forecasting CMEs will be evaluated in the future. These new forecasting curves are being implemented in the near-real-time operational MAG4, though forecasts from the old curves will still be given. This work is funded by NSF's Solar Terrestrial Program, and NASA/SRAG. Title: Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.; Sterling, Alphonse C. Bibcode: 2018ApJ...869..147T Altcode: 2018arXiv181109554T A recent study using Hinode (Solar Optical Telescope/Filtergraph [SOT/FG]) data of a sunspot revealed some unusually large penumbral jets that often repeatedly occurred at the same locations in the penumbra, namely, at the tail of a penumbral filament or where the tails of multiple penumbral filaments converged. These locations had obvious photospheric mixed-polarity magnetic flux in Na I 5896 Stokes-V images obtained with SOT/FG. Several other recent investigations have found that extreme-ultraviolet (EUV)/X-ray coronal jets in quiet-Sun regions (QRs), in coronal holes (CHs), and near active regions (ARs) have obvious mixed-polarity fluxes at their base, and that magnetic flux cancellation prepares and triggers a minifilament flux-rope eruption that drives the jet. Typical QR, CH, and AR coronal jets are up to 100 times bigger than large penumbral jets, and in EUV/X-ray images they show a clear twisting motion in their spires. Here, using Interface Region Imaging Spectrograph (IRIS) Mg II k λ2796 SJ images and spectra in the penumbrae of two sunspots, we characterize large penumbral jets. We find redshift and blueshift next to each other across several large penumbral jets, and we interpret these as untwisting of the magnetic field in the jet spire. Using Hinode/SOT (FG and SP) data, we also find mixed-polarity magnetic flux at the base of these jets. Because large penumbral jets have a mixed-polarity field at their base and have a twisting motion in their spires, they might be driven the same way as QR, CH, and AR coronal jets. Title: IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Tiwari, Sanjiv K.; De Pontieu, Bart; Norton, Aimee A. Bibcode: 2018ApJ...868L..27P Altcode: 2018arXiv181104314P Recent observations show that the buildup and triggering of minifilament eruptions that drive coronal jets result from magnetic flux cancelation at the neutral line between merging majority- and minority-polarity magnetic flux patches. We investigate the magnetic setting of 10 on-disk small-scale UV/EUV jets (jetlets, smaller than coronal X-ray jets but larger than chromospheric spicules) in a coronal hole by using IRIS UV images and SDO/AIA EUV images and line-of-sight magnetograms from SDO/HMI. We observe recurring jetlets at the edges of magnetic network flux lanes in the coronal hole. From magnetograms coaligned with the IRIS and AIA images, we find, clearly visible in nine cases, that the jetlets stem from sites of flux cancelation proceeding at an average rate of ∼1.5 × 1018 Mx hr-1, and show brightenings at their bases reminiscent of the base brightenings in larger-scale coronal jets. We find that jetlets happen at many locations along the edges of network lanes (not limited to the base of plumes) with average lifetimes of 3 minutes and speeds of 70 km s-1. The average jetlet-base width (4000 km) is three to four times smaller than for coronal jets (∼18,000 km). Based on these observations of 10 obvious jetlets, and our previous observations of larger-scale coronal jets in quiet regions and coronal holes, we infer that flux cancelation is an essential process in the buildup and triggering of jetlets. Our observations suggest that network jetlet eruptions might be small-scale analogs of both larger-scale coronal jets and the still-larger-scale eruptions producing CMEs. Title: Combining sparsity DEM inversions with event tracking for AIA data Authors: Bethge, Christian; Winebarger, Amy; Tiwari, Sanjiv Bibcode: 2018csc..confE.108B Altcode: We apply a modified event tracking code (ASGARD - Automated Selection and Grouping of events in AIA Regional Data) to the results from sparsity DEM inversions (Cheung et al, 2015) using AIA EUV data. Outputs are grouped regions (x/y/t) in multiple defined temperature bins that can then be correlated in space and time to track the thermal evolution of coronal structures. We show examples and an overview of the methodology. Title: Critical Magnetic Field Strengths for Solar Coronal Plumes in Quiet Regions and Coronal Holes? Authors: Avallone, Ellis A.; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy Bibcode: 2018ApJ...861..111A Altcode: 2018arXiv180511188A Coronal plumes are bright magnetic funnels found in quiet regions (QRs) and coronal holes (CHs). They extend high into the solar corona and last from hours to days. The heating processes of plumes involve dynamics of the magnetic field at their base, but the processes themselves remain mysterious. Recent observations suggest that plume heating is a consequence of magnetic flux cancellation and/or convergence at the plume base. These studies suggest that the base flux in plumes is of mixed polarity, either obvious or hidden in Solar Dynamics Observatory (SDO)/HMI data, but do not quantify it. To investigate the magnetic origins of plume heating, we select 10 unipolar network flux concentrations, four in CHs, four in QRs, and two that do not form a plume, and track plume luminosity in SDO/AIA 171 Å images along with the base flux in SDO/HMI magnetograms, over each flux concentration’s lifetime. We find that plume heating is triggered when convergence of the base flux surpasses a field strength of ∼200-600 G. The luminosity of both QR and CH plumes respond similarly to the field in the plume base, suggesting that the two have a common formation mechanism. Our examples of non-plume-forming flux concentrations, reaching field strengths of 200 G for a similar number of pixels as for a couple of our plumes, suggest that a critical field might be necessary to form a plume but is not sufficient for it, thus advocating for other mechanisms, e.g., flux cancellation due to hidden opposite-polarity field, at play. Title: MAG4's New Database of HMI Active-Region Vector Magnetograms: Sample Size and Initial Results for Major-Flare Forecasting Authors: Falconer, David Allen; Tiwari, Sanjiv K.; Moore, Ron L. Bibcode: 2018tess.conf41406F Altcode: We have developed a large-database method of forecasting an active region's (AR's) chance of producing a major flare (GOES M- or X-class) and its chance of producing a major CME (speed > 800 km/s) in the coming few days from a free-energy proxy - a proxy of the AR's free magnetic energy - measured from a magnetogram of the AR. We have named this forecasting tool MAG4 (for Magnetogram Forecast). In its present near-real-time operation mode, MAG4 forecasts each on-disk AR's rates of production of major flares and major CMEs in the coming few days, based on the observed major-flare and major-CME histories of 1,300 ARs observed within 30 degrees of disk center in MDI line-of-sight magnetograms. From the passages of these ARs across the 30-degree central disk, the presently-used MAG4 MDI database has the value of a free-energy proxy measured from 40,000 MDI magnetograms of these 1,300 ARs. We are now compiling a similar database of the about the same size for MAG4, but for HMI vector magnetograms that are of ARs observed within 45 degrees of disk center and that have been deprojected to disk center. This new MAG4 HMI database now has a wide variety of AR parameters measured from each of 40,000 deprojected HMI vector magnetograms of 900 ARs within 45 degrees of disk center (15 magnetograms of each AR per day during its passage across the 45-degree central disk). We present the MAG4 major-flare forecasting curves obtained from this new database for a few alternative free-energy proxies measured from either the vertical-field component or the horizontal-field component of the deprojected AR vector magnetograms. (The magnetogram's horizontal-field component more directly reflects the AR's free magnetic energy than does the magnetogram's vertical-field component.) By using our statistical method of measuring, via a skill score, whether the forecasting performance of one AR magnetogram parameter is significantly better than that of another, we show which free-energy proxy is the best major-flare predictor that we have found so far. Title: Observations of Large Penumbral Jets from IRIS and Hinode Authors: Tiwari, Sanjiv K.; Moore, Ronald Lee; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep Kaur; Winebarger, Amy R.; Sterling, Alphonse C. Bibcode: 2018tess.conf40807T Altcode: Recent observations from Hinode (SOT/FG) revealed the presence of large penumbral jets (widths ≥ 500 km, larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a penumbral filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. Title: Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence Authors: Zank, G. P.; Adhikari, L.; Hunana, P.; Tiwari, S. K.; Moore, R.; Shiota, D.; Bruno, R.; Telloni, D. Bibcode: 2018ApJ...854...32Z Altcode: A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity “magnetic carpet,” together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from 1\hspace{0.5em}{{t}}{{o}} 15 {R} (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond ∼ 6 {R}, the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ∼ 3 {R}; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures ∼ 2× {10}6 K within 2 {R}, consistent with observations that suggest that the fast solar wind is accelerated most efficiently between ∼ 2\hspace{0.5em}{{a}}{{n}}{{d}} 4 {R}. Title: Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes in Quiet Regions and Coronal Holes? Authors: Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L. Bibcode: 2017AGUFMSH43A2797A Altcode: Coronal plumes are sporadic fountain-like structures that are bright in coronal emission. Each is a magnetic funnel rooted in a strong patch of dominant-polarity photospheric magnetic flux surrounded by a predominantly-unipolar magnetic network, either in a quiet region or a coronal hole. The heating processes that make plumes bright evidently involve the magnetic field in the base of the plume, but remain mysterious. Raouafi et al. (2014) inferred from observations that plume heating is a consequence of magnetic reconnection in the base, whereas Wang et al. (2016) showed that plume heating turns on/off from convection-driven convergence/divergence of the base flux. While both papers suggest that the base magnetic flux in their plumes is of mixed polarity, these papers provide no measurements of the abundance and strength of the evolving base flux or consider whether a critical magnetic field strength is required for a plume to become noticeably bright. To address plume production and evolution, we track the plume luminosity and the abundance and strength of the base magnetic flux over the lifetimes of six coronal plumes, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171 Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms. Three of these plumes are in coronal holes, three are in quiet regions, and each plume exhibits a unipolar base flux. We track the base magnetic flux over each plume's lifetime to affirm that its convergence and divergence respectively coincide with the appearance and disappearance of the plume in 171 Å images. We tentatively find that plume formation requires enough convergence of the base flux to surpass a field strength of ∼300-500 Gauss, and that quiet Sun and coronal-hole plumes both exhibit the same behavior in the response of their luminosity in 171 Å to the strength of the magnetic field in the base. Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal Loops: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Tiwari, S. K.; Thalmann, J. K.; Panesar, N. K.; Moore, R. L.; Winebarger, A. R. Bibcode: 2017AGUFMSH43A2789T Altcode: Coronal heating generally increases with increasing magnetic field strength: the EUV/X-ray corona in active regions is 10-100 times more luminous and 2-4 times hotter than that in quiet regions and coronal holes, which are heated to only about 1.5 MK, and have fields that are 10-100 times weaker than that in active regions. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot's penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Our results from EUV observations and nonlinear force-free modeling of coronal magnetic field imply that, for any coronal loop on the Sun or on any other convective star, as long as the field can be braided by convection in at least one loop foot, the stronger the field in the loop, the stronger the coronal heating. Title: Evidence from IRIS that Sunspot Large Penumbral Jets Spin Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy; Sterling, Alphonse C. Bibcode: 2017SPD....4810506T Altcode: Recent observations from {\it Hinode} (SOT/FG) revealed the presence of large penumbral jets (widths $\ge$500 km, larger than normal penumbral microjets, which have widths $<$ 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 \AA, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. The few large penumbral jets for which we have IRIS spectra show evidence of spin. If these have mixed-polarity at their base, then they might be driven the same way as coronal jets and CMEs. Title: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. Bibcode: 2017ApJ...843L..20T Altcode: 2017arXiv170608035T How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body. Title: The importance of high-resolution observations of the solar corona Authors: Winebarger, A. R.; Cirtain, J. W.; Golub, L.; Walsh, R. W.; De Pontieu, B.; Savage, S. L.; Rachmeler, L.; Kobayashi, K.; Testa, P.; Brooks, D.; Warren, H.; Mcintosh, S. W.; Peter, H.; Morton, R. J.; Alexander, C. E.; Tiwari, S. K. Bibcode: 2016AGUFMSH31B2577W Altcode: The spatial and temporal resolutions of the available coronal observatories are inadequate to resolve the signatures of coronal heating. High-resolution and high-cadence observations available with the Interface Region Imaging Spectrograph (IRIS) and the High-resolution Coronal Imager (Hi-C) instrument hint that 0.3 arcsec resolution images and < 10 s cadence provide the necessary resolution to detect heating events. Hi-C was launched from White Sands Missile Range on July 11, 2012 (before the launch with IRIS) and obtained images of a solar active region in the 19.3 nm passband. In this presentation, I will discuss the potential of combining a flight in Hi-C with a 17.1 nm passband, in conjunction with IRIS. This combination will provide, for the first time, a definitive method of tracing the energy flow between the chromosphere and corona and vice versa. Title: Supplement: “Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory, Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration Bibcode: 2016ApJS..225....8A Altcode: 2016arXiv160407864A This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands. Title: Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.; di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot, Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration Bibcode: 2016ApJ...826L..13A Altcode: 2016arXiv160208492A A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. Title: Solar Science with the Atacama Large Millimeter/Submillimeter Array—A New View of Our Sun Authors: Wedemeyer, S.; Bastian, T.; Brajša, R.; Hudson, H.; Fleishman, G.; Loukitcheva, M.; Fleck, B.; Kontar, E. P.; De Pontieu, B.; Yagoubov, P.; Tiwari, S. K.; Soler, R.; Black, J. H.; Antolin, P.; Scullion, E.; Gunár, S.; Labrosse, N.; Ludwig, H. -G.; Benz, A. O.; White, S. M.; Hauschildt, P.; Doyle, J. G.; Nakariakov, V. M.; Ayres, T.; Heinzel, P.; Karlicky, M.; Van Doorsselaere, T.; Gary, D.; Alissandrakis, C. E.; Nindos, A.; Solanki, S. K.; Rouppe van der Voort, L.; Shimojo, M.; Kato, Y.; Zaqarashvili, T.; Perez, E.; Selhorst, C. L.; Barta, M. Bibcode: 2016SSRv..200....1W Altcode: 2015SSRv..tmp..118W; 2015arXiv150406887W The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere—a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases. Title: SSALMON - The Solar Simulations for the Atacama Large Millimeter Observatory Network Authors: Wedemeyer, S.; Bastian, T.; Brajša, R.; Barta, M.; Hudson, H.; Fleishman, G.; Loukitcheva, M.; Fleck, B.; Kontar, E.; De Pontieu, B.; Tiwari, S.; Kato, Y.; Soler, R.; Yagoubov, P.; Black, J. H.; Antolin, P.; Gunár, S.; Labrosse, N.; Benz, A. O.; Nindos, A.; Steffen, M.; Scullion, E.; Doyle, J. G.; Zaqarashvili, T.; Hanslmeier, A.; Nakariakov, V. M.; Heinzel, P.; Ayres, T.; Karlicky, M. Bibcode: 2015AdSpR..56.2679W Altcode: 2015arXiv150205601W The Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated in 2014 in connection with two ALMA development studies. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new tool, which can also observe the Sun at high spatial, temporal, and spectral resolution. The international SSALMONetwork aims at co-ordinating the further development of solar observing modes for ALMA and at promoting scientific opportunities for solar physics with particular focus on numerical simulations, which can provide important constraints for the observing modes and can aid the interpretation of future observations. The radiation detected by ALMA originates mostly in the solar chromosphere - a complex and dynamic layer between the photosphere and corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere. Potential targets include active regions, prominences, quiet Sun regions, flares. Here, we give a brief overview over the network and potential science cases for future solar observations with ALMA. Title: Near-Sun speed of CMEs and the magnetic nonpotentiality of their source active regions Authors: Tiwari, Sanjiv K.; Falconer, David A.; Moore, Ronald L.; Venkatakrishnan, P.; Winebarger, Amy R.; Khazanov, Igor G. Bibcode: 2015GeoRL..42.5702T Altcode: 2015arXiv150801532T We show that the speed of the fastest coronal mass ejections (CMEs) that an active region (AR) can produce can be predicted from a vector magnetogram of the AR. This is shown by logarithmic plots of CME speed (from the SOHO Large Angle and Spectrometric Coronagraph CME catalog) versus each of ten AR-integrated magnetic parameters (AR magnetic flux, three different AR magnetic-twist parameters, and six AR free-magnetic-energy proxies) measured from the vertical and horizontal field components of vector magnetograms (from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager) of the source ARs of 189 CMEs. These plots show the following: (1) the speed of the fastest CMEs that an AR can produce increases with each of these whole-AR magnetic parameters and (2) that one of the AR magnetic-twist parameters and the corresponding free-magnetic-energy proxy each determine the CME-speed upper limit line somewhat better than any of the other eight whole-AR magnetic parameters. Title: Speed of CMEs and the magnetic non-potentiality of their source active regions Authors: Tiwari, S. K.; Falconer, D. A.; Moore, R. L.; Venkatakrishnan, P. Bibcode: 2014AGUFMSH21C4134T Altcode: Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs is expected to determine the speed and size of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the correlation between the initial speed of CMEs and the non-potentiality of source ARs, we associated over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained mainly with HMI/SDO, also with Hinode (SOT/SP) when available within an hour of a CME occurence, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, computed magnetic free energy, twist, shear angle, signed shear angle etc. We have also included several other parameters e.g. total unsigned flux, net current, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area mostly produce fast CMEs but they can also produce slower ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs, however, there are a few exceptions. The total unsigned flux correlate with the non-potentiality parameters and area of ARs but some ARs with large unsigned flux are also found to be least non-potential. A more detailed analysis is underway. SKT is supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. RLM is supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate. Support for MAG4 development comes from NASA's Game Changing Development Program, and Johnson Space Center's Space Radiation Analysis Group (SRAG). Title: Impulsive Energy Release and Non-thermal Emission in a Confined M4.0 Flare Triggered by Rapidly Evolving Magnetic Structures Authors: Kushwaha, Upendra; Joshi, Bhuwan; Cho, Kyung-Suk; Veronig, Astrid; Tiwari, Sanjiv Kumar; Mathew, S. K. Bibcode: 2014ApJ...791...23K Altcode: 2014arXiv1407.8115K We present observations of a confined M4.0 flare from NOAA 11302 on 2011 September 26. Observations at high temporal, spatial, and spectral resolution from the Solar Dynamics Observatory, Reuven Ramaty High Energy Solar Spectroscopic Imager, and Nobeyama Radioheliograph observations enabled us to explore the possible triggering and energy release processes of this flare despite its very impulsive behavior and compact morphology. The flare light curves exhibit an abrupt rise of non-thermal emission with co-temporal hard X-ray (HXR) and microwave (MW) bursts that peaked instantly without any precursor emission. This stage was associated with HXR emission up to 200 keV that followed a power law with photon spectral index (γ) ~ 3. Another non-thermal peak, observed 32 s later, was more pronounced in the MW flux than the HXR profiles. Dual peaked structures in the MW and HXR light curves suggest a two-step magnetic reconnection process. Extreme ultraviolet (EUV) images exhibit a sequential evolution of the inner and outer core regions of magnetic loop systems while the overlying loop configuration remained unaltered. Combined observations in HXR, (E)UV, and Hα provide support for flare models involving the interaction of coronal loops. The magnetograms obtained by the Helioseismic and Magnetic Imager reveal emergence of magnetic flux that began ~five hr before the flare. However, the more crucial changes in the photospheric magnetic flux occurred about one minute prior to the flare onset with opposite polarity magnetic transients appearing at the early flare location within the inner core region. The spectral, temporal, and spatial properties of magnetic transients suggest that the sudden changes in the small-scale magnetic field have likely triggered the flare by destabilizing the highly sheared pre-flare magnetic configuration. Title: Erratum: ''On the Force-free Nature of Photospheric Sunspot Magnetic Fields as Observed from Hinode (SOT/SP)'' (2012, ApJ, 744, 65) Authors: Tiwari, Sanjiv Kumar Bibcode: 2012ApJ...759..148T Altcode: No abstract at ADS Title: On the Force-free Nature of Photospheric Sunspot Magnetic Fields as Observed from Hinode (SOT/SP) Authors: Tiwari, Sanjiv Kumar Bibcode: 2012ApJ...744...65T Altcode: 2011arXiv1109.3156T A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that, in either case, photospheric sunspot magnetic fields are closer to satisfying the nonlinear force-free field approximation. Title: On the Flare-induced Seismicity in the Active Region NOAA 10930 and Related Enhancement of Global Waves in the Sun Authors: Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; García, R. A. Bibcode: 2011ApJ...743...29K Altcode: 2011arXiv1110.6309K A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the "magnetic jerk" in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <ν < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <ν < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post-flare enhancements in the high-frequency global velocity oscillations in the Sun, as evident from the wavelet power spectrum and the corresponding scale-average variance. The present observations of the flare-induced seismic signals in the active region in context of the driving force are different as compared to previous reports on such cases. We also find indications of a connection between flare-induced localized seismic signals and the excitation of global high-frequency oscillations in the Sun. Title: Pre-flare Activity and Magnetic Reconnection during the Evolutionary Stages of Energy Release in a Solar Eruptive Flare Authors: Joshi, Bhuwan; Veronig, Astrid M.; Lee, Jeongwoo; Bong, Su-Chan; Tiwari, Sanjiv Kumar; Cho, Kyung-Suk Bibcode: 2011ApJ...743..195J Altcode: 2011arXiv1109.3415J In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare that occurred in active region NOAA 10486 on 2003 November 1. The excellent set of high-resolution observations made by RHESSI and the TRACE provides clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by an X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament, which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. The RHESSI observations reveal that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, an intense hard X-ray (HXR) looptop source was observed without significant footpoint emission. More intriguingly, for a brief period, the looptop source exhibited strong HXR emission with energies up to ~50-100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the pre-flare and the main flare. We also conclude that pre-flare activities, occurring in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament, leading to a solar eruptive flare and associated large-scale phenomena. Title: Evolution of Currents of Opposite Signs in the Flare-productive Solar Active Region NOAA 10930 Authors: Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar; Bhattacharyya, R. Bibcode: 2011ApJ...740...19R Altcode: 2011arXiv1108.5818R Analysis of a time series of high spatial resolution vector magnetograms of the active region NOAA 10930 available from the Solar Optical Telescope SpectroPolarimeter on board Hinode revealed that there is a mixture of upward and downward currents in the two footpoints of an emerging flux rope. The flux emergence rate is almost the same in both the polarities. We observe that along with an increase in magnetic flux, the net current in each polarity increases initially for about three days after which it decreases. This net current is characterized by having exactly opposite signs in each polarity while its magnitude remains almost the same most of the time. The decrease of the net current in both the polarities is due to the increase of current having a sign opposite to that of the net current. The dominant current, with the same sign as the net current, is seen to increase first and then decreases during the major X-class flares. Evolution of non-dominant current appears to be a necessary condition for flare initiation. The above observations can be plausibly explained in terms of the superposition of two different force-free states resulting in a non-zero Lorentz force in the corona. This Lorentz force then pushes the coronal plasma and might facilitate the magnetic reconnection required for flares. Also, the evolution of the net current is found to follow the evolution of magnetic shear at the polarity inversion line. Title: Helicity of the solar magnetic field Authors: Tiwari, Sanjiv Kumar Bibcode: 2011IAUS..273...21T Altcode: 2010arXiv1009.5163T Helicity measures complexity in the field. Magnetic helicity is given by a volume integral over the scalar product of magnetic field B and its vector potential A. A direct computation of magnetic helicity in the solar atmosphere is not possible due to unavailability of the observations at different heights and also due to non-uniqueness of A. The force-free parameter α has been used as a proxy of magnetic helicity for a long time. We have clarified the physical meaning of α and its relationship with the magnetic helicity. We have studied the effect of polarimetric noise on estimation of various magnetic parameters. Fine structures of sunspots in terms of vertical current (Jz) and α have been examined. We have introduced the concept of signed shear angle (SSA) for sunspots and established its importance for non force-free fields. We find that there is no net current in sunspots even in presence of a significant twist, showing consistency with their fibril-bundle nature. The finding of existence of a lower limit of SASSA for a given class of X-ray flare will be very useful for space weather forecasting. A good correlation is found between the sign of helicity in the sunspots and the chirality of the associated chromospheric and coronal features. We find that a large number of sunspots observed in the declining phase of solar cycle 23 do not follow the hemispheric helicity rule whereas most of the sunspots observed in the beginning of new solar cycle 24 do follow. This indicates a long term behaviour of the hemispheric helicity patterns in the Sun. The above sums up my PhD thesis. Title: Are the photospheric sunspots magnetically force-free in nature? Authors: Tiwari, Sanjiv Kumar Bibcode: 2011IAUS..273..333T Altcode: 2010arXiv1009.5164T In a force-free magnetic field, there is no interaction of field and the plasma in the surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of many magnetic parameters like magnetic energy, gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), including any kind of extrapolations heavily hinge on the force-free approximation of the photospheric magnetic fields. The force-free magnetic behaviour of the photospheric sunspot fields has been examined by Metcalf et al. (1995) and Moon et al. (2002) ending with inconsistent results. Metcalf et al. (1995) concluded that the photospheric magnetic fields are far from the force-free nature whereas Moon et al. (2002) found the that the photospheric magnetic fields are not so far from the force-free nature as conventionally regarded. The accurate photospheric vector field measurements with high resolution are needed to examine the force-free nature of sunspots. We use high resolution vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard Hinode to inspect the force-free behaviour of the photospheric sunspot magnetic fields. Both the necessary and sufficient conditions for force-freeness are examined by checking global as well as as local nature of sunspot magnetic fields. We find that the sunspot magnetic fields are very close to the force-free approximation, although they are not completely force-free on the photosphere. Title: Evolution of Magnetic Field Twist and Tilt in Active Region NOAA 10930 Authors: Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar Bibcode: 2011aogs...27..153R Altcode: 2010arXiv1012.0120R Magnetic twist of the active region has been measured over a decade using photospheric vector field data, chromospheric Hα data, and coronal loop data. The twist and tilt of the active regions have been measured at the photospheric level with the vector magnetic field measurements. The active region NOAA 10930 is a highly twisted emerging region. The same active region produced several flares and has been extensively observed by Hinode. In this paper, we will show the evolution of twist and tilt in this active region leading up to the two X-class flares. We find that the twist initially increases with time for a few days with a simultaneous decrease in the tilt until before the X3.4 class flare on December 13, 2006. The total twist acquired by the active region is larger than one complete winding before the X3.4 class flare and it decreases in later part of observations. The injected helicity into the corona is negative and it is in excess of 1043 Mx2 before the flares. Title: Analysis of peculiar penumbral flows observed in the active region NOAA 10930 during a major solar flare Authors: Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; García, R. A. Bibcode: 2011JPhCS.271a2020K Altcode: It is believed that the high energetic particles and tremendous amount of energy released during the flares can induce velocity oscillations in the Sun. Using the Dopplergrams obtained by Global Oscillation Network Group (GONG) telescope, we analyze the velocity flows in the active region NOAA 10930 during a major flare (of class X3.4) that occurred on 13 December 2006. We observe peculiar evolution of velocity flows in some localized portions of the penumbra of this active region during the flare. Application of Wavelet transform to these velocity flows reveals that there is major enhancement of velocity oscillations in the high-frequency regime (5-8 mHz), while there is feeble enhancement in the p mode oscillations (2-5 mHz) in the aforementioned location. It has been recently shown that flares can induce high-frequency global oscillations in the Sun. Therefore, it appears that during the flare process there might be a common origin for the excitation of local and global high-frequency oscillations in the Sun. Title: Magnetic Non-potentiality of Solar Active Regions and Peak X-ray Flux of the Associated Flares Authors: Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay Bibcode: 2010ApJ...721..622T Altcode: 2010arXiv1007.4876T Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied. Title: On the Estimate of Magnetic Non-potentiality of Sunspots Derived Using Hinode SOT/SP Observations: Effect of Polarimetric Noise Authors: Gosain, Sanjay; Tiwari, Sanjiv Kumar; Venkatakrishnan, P. Bibcode: 2010ApJ...720.1281G Altcode: 2010arXiv1007.2505G The accuracy of Milne-Eddington (ME) inversions, used to retrieve the magnetic field vector, depends upon the signal-to-noise ratio (S/N) of the spectro-polarimetric observations. The S/N in real observations varies from pixel to pixel; therefore the accuracy of the field vector also varies over the map. The aim of this work is to study the effect of polarimetric noise on the inference of the magnetic field vector and the magnetic non-potentiality of a real sunspot. To this end, we use the Hinode SOT/SP vector magnetogram of a real sunspot NOAA 10933 as an input to generate synthetic Stokes profiles under ME model assumptions. We then add normally distributed polarimetric noise of the level 0.5% of continuum intensity to these synthetic profiles and invert them again using the ME code. This process is repeated 100 times with different realizations of noise. It is found that within most of the sunspot areas (>90% area) the spread in the (1) field strength is less than 8 G, (2) field inclination is less than 1°, and (3) field azimuth is less than 5°. Further, we determine the uncertainty in the magnetic non-potentiality of a sunspot as determined by the force-free parameter α g and spatially averaged signed shear angle (SASSA). It is found that for the sunspot studied here these parameters are α g = -3.5 ± 0.37(×10-9 m-1) and SASSA = -1.68 ± 0fdg014. This suggests that the SASSA is a less dispersed non-potentiality parameter as compared to α g . Further, we examine the effect of increasing noise levels, viz. 0.01%, 0.1%, 0.5%, and 1% of continuum intensity, and find that SASSA is less vulnerable to noise as compared to the α g parameter. Title: Magnetic tension of sunspot fine structures Authors: Venkatakrishnan, P.; Tiwari, Sanjiv Kumar Bibcode: 2010A&A...516L...5V Altcode: 2010arXiv1005.3899V Context. The equilibrium structure of sunspots depends critically on its magnetic topology and is dominated by magnetic forces. Tension force is one component of the Lorentz force, which balances the gradient of magnetic pressure in force-free configurations.
Aims: We employ the tension term of the Lorentz force to clarify the structure of sunspot features like penumbral filaments, umbral light bridges, and outer penumbral fine structures.
Methods: We computed the vertical component of the tension term of Lorentz force over two active regions, NOAA AR 10933 and NOAA AR 10930 observed on 5 January 2007 and 12 December 2006, respectively. The former is a simple active region while the latter is a complex one with highly sheared polarity inversion line (PIL). We obtained the vector magnetograms from Hinode(SOT/SP).
Results: We find an inhomogeneous distribution of tension with both positive and negative signs in various features of the sunspots. The existence of positive tension at locations of lower field strength and higher inclination is compatible with the uncombed model of the penumbral structure. Positive tension is also seen in umbral light bridges, which could be indication of uncombed structure of the light bridge. Likewise, the upwardly directed tension associated with bipolar regions in the penumbra could be a direct confirmation of the sea serpent model of penumbral structures. Upwardly directed tension at the PIL of AR 10930 seems to be related to flux emergence. The magnitude of the tension force is greater than the force of gravity in some places, implying a nearly force-free configuration for these sunspot features.
Conclusions: From our study, magnetic tension emerges as a useful diagnostic of the local equilibrium of the sunspot fine structures.

Figures A.1-A.3 are only available in electronic form at http://www.aanda.org Title: Helicity at Photospheric and Chromospheric Heights Authors: Tiwari, S. K.; Venkatakrishnan, P.; Sankarasubramanian, K. Bibcode: 2010ASSP...19..443T Altcode: 2009arXiv0904.4353T; 2010mcia.conf..443T In the solar atmosphere, the twist parameter α has the same sign as magnetic helicity. It has been observed using photospheric vector magnetograms that negative/positive helicity is dominant in the northern/southern hemisphere of the Sun. Chromospheric features show dextral/sinistral dominance in the northern/ southern hemisphere and sigmoids observed in X-rays also have a dominant sense of reverse-S/forward-S in the northern/southern hemisphere. It is of interest whether individual features have one-to-one correspondence in terms of helicity at different atmospheric heights. We use UBF Hα images from the Dunn Solar Telescope (DST) and other Hα data from Udaipur Solar Observatory and Big Bear Solar Observatory. Near-simultaneous vector magnetograms from the DST are used to establish one-to-one correspondence of helicity at photospheric and chromospheric heights. We plan to extend this investigation with more data including coronal intensities. Title: Helicity of the Solar Magnetic Field Authors: Tiwari, Sanjiv Kumar Bibcode: 2009PhDT.........8T Altcode: Magnetic helicity is a physical quantity that measures the degree of linkages and twistedness in the field lines. It is given by a volume integral over the scalar product of magnetic field B and its vector potential A. Direct computation of magnetic helicity in the solar atmosphere is not possible due to two reasons. First, we do not have the observations at different heights in the solar atmosphere to compute the volume integral. Second, the vector potential A is non-unique owing to gauge variance. Many researchers incorrectly inferred twist, a component of magnetic helicity, from the force-free parameter α. We clarified the physical meaning of α and its relation with the magnetic helicity. Also, a direct method is proposed for the computation of global α values of sunspots. An analytical bipole was generated to study the effect of polarimetric noise on the estimation of various magnetic parameters. We find that the effect of polarimetric noise, present in the recent vector magnetograms e.g., from Hinode (Solar Optical Telescope/Spectro- Polarimeter (SOT/SP)), on the magnetic parameters like α and magnetic energy, is negligible. We examined the fine structures of local current and α in the sunspots. Local α patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local α in the umbra is typically of the order of the global α of the sunspot. We find that the local α and current are distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local α in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and α in the penumbra cancel each other giving almost no contribution for their global values for whole sunspot. We have introduced the concept of signed shear angle (SSA) for sunspots and establish its importance for non force-free fields. The spatially averaged SSA (SASSA) gives the actual twist present in a sunspot irrespective of the force-free nature and the shape of the sunspot. We find that the sign of global α is well correlated with the SASSA of the sunspots but the magnitudes are not. We find that there is no net current in the sunspots, although there is significant twist present in the photospheric magnetic field of the sunspots. The existence of a global twist for a sunspot even in the absence of a net current is consistent with the fibril-bundle structure of the sunspot magnetic fields. We also discovered the curly interlocking combed structure in the azimuthal component of sunspot magnetic field. We studied the SASSA of sunspots to predict the flare activity of the associated active regions. We studied the evolution of vector magnetic fields using a large number of vector magnetograms of both, an eruptive and a non-eruptive sunspot. We arrive at a critical threshold value of the SASSA for each class of X-ray flare associated with these two sunspots. Thus, the SASSA holds promise to be very useful in predicting the probability of the occurrence of solar flares. A good correlation is found between the sign of helicity in the sunspots at the photosphere and the chirality of the associated chromospheric and coronal features. This study will be very useful as a constraint while modeling the Chromospheric and coronal features. We find that a large number of sunspots observed in the declining phase of the solar cycle 23 follow the reverse hemispheric helicity rule. Most of the sunspots observed in the beginning of new solar cycle 24 follow the conventional hemispheric helicity rule. This indicates a long term behaviour of the helicity patterns in the solar atmosphere. However, this needs to be confirmed with the data sets spanning large number of years. Title: HINODE Observations of Coherent Lateral Motion of Penumbral Filaments During an X-Class Flare Authors: Gosain, S.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar Bibcode: 2009ApJ...706L.240G Altcode: 2009arXiv0910.5336G The X-3.4 class flare of 2006 December 13 was observed with a high cadence of 2 minutes at 0.2 arcsec resolution by HINODE/SOT FG instrument. The flare ribbons could be seen in G-band images also. A careful analysis of these observations after proper registration of images shows flare-related changes in penumbral filaments of the associated sunspot for the first time. The observations of sunspot deformation, decay of penumbral area, and changes in magnetic flux during large flares have been reported earlier in the literature. In this Letter, we report lateral motion of the penumbral filaments in a sheared region of the δ-sunspot during the X-class flare. Such shifts have not been seen earlier. The lateral motion occurs in two phases: (1) motion before the flare ribbons move across the penumbral filaments and (2) motion afterward. The former motion is directed away from expanding flare ribbons and lasts for about 4 minutes. The latter motion is directed in the opposite direction and lasts for more than 40 minutes. Further, we locate a patch in adjacent opposite polarity spot moving in opposite direction to the penumbral filaments. Together these patches represent conjugate footpoints on either side of the polarity inversion line, moving toward each other. This converging motion could be interpreted as shrinkage of field lines. Title: Evolution of Fine Structures in an Eruptive Active Region: Hinode (SOT/SP) Observations Authors: Tiwari, S. K.; Venkatakrishnan, P. Bibcode: 2009AGUFMSH51A1268T Altcode: We study the evolution of an active region NOAA 10930 by using a large number of high resolution vector magnetograms obtained from Hinode (SOT/SP). A X3.4 class solar flare was observed from the active region NOAA 10930 (S06W35), which started at 02:14 UT on 13th December 2006. We have used HINODE (SOT/SP) data for 12, 13 and 14 December 2006 for studying spatial and temporal changes in pre and post eruption cases. The evolution of twist (computed from signed shear angle (SSA)) in the vector magnetograms is studied. It is known that the magnetic tension is reduced in highly sheared magnetic field regions e.g., polarity inversion lines. We study the evolution of magnetic tension near the polarity inversion line to check if the loss of magnetic tension was the possible cause of its eruption. We also study the evolution of AR NOAA 10961 as a non-erupting case. The difference between the evolution of fine structures in erupting and non-erupting active regions is the main motivation of this study. Title: On the Absence of Photospheric Net Currents in Vector Magnetograms of Sunspots Obtained from Hinode (Solar Optical Telescope/Spectro-Polarimeter) Authors: Venkatakrishnan, P.; Tiwari, Sanjiv Kumar Bibcode: 2009ApJ...706L.114V Altcode: 2009arXiv0910.3751V Various theoretical and observational results have been reported regarding the presence/absence of net electric currents in the sunspots. The limited spatial resolution of the earlier observations perhaps obscured the conclusions. We have analyzed 12 sunspots observed from Hinode (Solar Optical Telescope/Spectro-polarimeter) to clarify the issue. The azimuthal and radial components of magnetic fields and currents have been derived. The azimuthal component of the magnetic field of sunspots is found to vary in sign with azimuth. The radial component of the field also varies in magnitude with azimuth. While the latter pattern is a confirmation of the interlocking combed structure of penumbral filaments, the former pattern shows that the penumbra is made up of a "curly interlocking combed" magnetic field. The azimuthally averaged azimuthal component is seen to decline much faster than 1/piv in the penumbra, after an initial increase in the umbra, for all the spots studied. This confirms the confinement of magnetic fields and absence of a net current for sunspots as postulated by Parker. The existence of a global twist for a sunspot even in the absence of a net current is consistent with a fibril-bundle structure of the sunspot magnetic fields. Title: Global Twist of Sunspot Magnetic Fields Obtained from High-Resolution Vector Magnetograms Authors: Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Sankarasubramanian, K. Bibcode: 2009ApJ...702L.133T Altcode: 2009arXiv0907.5064T The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global α (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local α patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local α in the umbra is typically of the order of the global α of the sunspot. (4) We find that the local α is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local α in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and α in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of α of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule. Title: Effect of Polarimetric Noise on the Estimation of Twist and Magnetic Energy of Force-Free Fields Authors: Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant Bibcode: 2009ApJ...700..199T Altcode: 2009arXiv0904.4594T The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10-3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition. Title: Software for interactively visualizing solar vector magnetograms of udaipur solar observatory Authors: Gosain, Sanjay; Tiwari, Sanjiv; Joshi, Jayant; Venkatakrishnan, P. Bibcode: 2008JApA...29..107G Altcode: No abstract at ADS Title: Evolution of Magnetic Helicity in NOAA 10923 Over Three Consecutive Solar Rotations Authors: Tiwari, Sanjiv Kumar; Joshi, Jayant; Gosain, Sanjay; Venkatakrishnan, P. Bibcode: 2008ASSP...12..329T Altcode: 2009arXiv0904.4024T; 2008tdad.conf..329T We have studied the evolution of magnetic helicity and chirality in an active region over three consecutive solar rotations. The region where it first appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA 10930, 10935 and 10941. We compare the chirality of these regions at photospheric, chromospheric and coronal heights. The observations used for photospheric and chromospheric heights are taken from Solar Vector Magnetograph (SVM) and H-α imaging telescope of Udaipur Solar Observatory (USO), respectively. We discuss the chirality of the sunspots and associated H-α filaments in these regions. We find that the twistedness of superpenumbral filaments is maintained in the photospheric transverse field vectors also. We also compare the chirality at photospheric and chromospheric heights with the chirality of the associated coronal loops, as observed from the HINODE X-Ray Telescope.