explanation      blue bibcodes open ADS page with paths to full text
Author name code: caffau
ADS astronomy entries on 2022-09-14
author:"Caffau, Elisabetta" 

---------------------------------------------------------
Title: Chemical Evolution of R-process Elements in Stars
    (CERES). I. Stellar parameters and chemical abundances from Na to Zr
Authors: Lombardo, Linda; Bonifacio, Piercarlo; François, Patrick;
   Hansen, Camilla J.; Caffau, Elisabetta; Hanke, Michael; Skúladóttir,
   Ása; Arcones, Almudena; Eichler, Marius; Reichert, Moritz; Psaltis,
   Athanasios; Koch Hansen, Andreas J.; Sbordone, Luca
2022A&A...665A..10L    Altcode: 2022arXiv220613836L
  <BR /> Aims: The Chemical Evolution of R-process Elements in Stars
  (CERES) project aims to provide a homogeneous analysis of a sample
  of metal-poor stars ([Fe/H] &lt; -1.5). We present the stellar
  parameters and the chemical abundances of elements up to Zr for a
  sample of 52 giant stars. <BR /> Methods: We relied on a sample of
  high signal-to-noise UVES spectra. We determined stellar parameters
  from Gaia photometry and parallaxes. Chemical abundances were derived
  using spectrum synthesis and model atmospheres. <BR /> Results:
  We determined chemical abundances of 26 species of 18 elements:
  Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y,
  and Zr. For several stars, we were able to measure both neutral
  and ionised species, including Si, Sc, Mn, and Zr. We have roughly
  doubled the number of measurements of Cu for stars at [Fe/H] ≤
  −2.5. The homogeneity of the sample made it possible to highlight
  the presence of two Zn-rich stars ([Zn/Fe] ∼ +0.7), one r-rich
  and the other r-poor. We report the existence of two branches in the
  [Zn/Fe] versus [Ni/Fe] plane and suggest that the high [Zn/Fe] branch
  is the result of hypernova nucleosynthesis. We discovered two stars
  with peculiar light neutron-capture abundance patterns: CES1237+1922
  (also known as BS 16085-0050), which is ∼1 dex underabundant in
  Sr, Y, and Zr with respect to the other stars in the sample, and
  CES2250-4057 (also known as HE 2247-4113), which shows a ∼1 dex
  overabundance of Sr with respect to Y and Zr. <BR /> Conclusions: The
  high quality of our dataset allowed us to measure hardly detectable
  ions. This can provide guidance in the development of line formation
  computations that take deviations from local thermodynamic equilibrium
  and hydrodynamical effects into account. <P />Chemical abundances
  (Table 3) are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/665/A10">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/665/A10</A>
  <P />Based on observations collected at the European Southern
  Observatory under ESO programme 0104.D-0059 and on data obtained from
  the ESO Science Archive Facility.

---------------------------------------------------------
Title: The Gaia-ESO Public Spectroscopic Survey: Motivation,
    implementation, GIRAFFE data processing, analysis, and final data
    products
Authors: Gilmore, G.; Randich, S.; Worley, C. C.; Hourihane, A.;
   Gonneau, A.; Sacco, G. G.; Lewis, J. R.; Magrini, L.; Francois, P.;
   Jeffries, R. D.; Koposov, S. E.; Bragaglia, A.; Alfaro, E. J.; Allende
   Prieto, C.; Blomme, R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.;
   Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Bensby, T.;
   Flaccomio, E.; Irwin, M. J.; Franciosini, E.; Morbidelli, L.; Damiani,
   F.; Bonito, R.; Friel, E. D.; Vink, J. S.; Prisinzano, L.; Abbas,
   U.; Hatzidimitriou, D.; Held, E. V.; Jordi, C.; Paunzen, E.; Spagna,
   A.; Jackson, R. J.; Maiz Apellaniz, J.; Asplund, M.; Bonifacio, P.;
   Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.;
   Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Bergemann,
   M.; Casey, A. R.; de Laverny, P.; Frasca, A.; Hill, V.; Lind, K.;
   Sbordone, L.; Sousa, S. G.; Adibekyan, V.; Caffau, E.; Daflon, S.;
   Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J. I.; Guiglion,
   G.; Herrero, A.; Lobel, A.; Merle, T.; Mikolaitis, S.; Montes, D.;
   Morel, T.; Ruchti, G.; Soubiran, C.; Tabernero, H. M.; Tautvaisiene,
   G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.;
   Viscasillas Vazquez, C.; Bayo, A.; Biazzo, K.; Carraro, G.; Edvardsson,
   B.; Heiter, U.; Jofre, P.; Marconi, G.; Martayan, C.; Masseron, T.;
   Monaco, L.; Walton, N. A.; Zaggia, S.; Aguirre Borsen-Koch, V.; Alves,
   J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Bellazzini, M.;
   Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.;
   Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V.; Dantas,
   M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.;
   Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.;
   Fu, X.; Geisler, D.; Gerhard, O.; Gonzalez Solares, E. A.; Grebel,
   E. K.; Gutierrez Albarran, M. L.; Jimenez-Esteban, F.; Jonsson, H.;
   Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Ludwig,
   H. -G.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina,
   S.; Miglio, A.; Minchev, I.; Moitinho, A.; Montalban, J.; Monteiro,
   M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy,
   D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.;
   Pickering, J. C.; Quirrenbach, A.; Re Fiorentin, P.; Read, J. I.;
   Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spina,
   L.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi,
   M.; Tsantaki, M.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec,
   J.; Zucker, D. B.
2022arXiv220805432G    Altcode:
  The Gaia-ESO Public Spectroscopic Survey is an ambitious project
  designed to obtain astrophysical parameters and elemental abundances
  for 100,000 stars, including large representative samples of the
  stellar populations in the Galaxy, and a well-defined sample of 60
  (plus 20 archive) open clusters. We provide internally consistent
  results calibrated on benchmark stars and star clusters, extending
  across a very wide range of abundances and ages. This provides a
  legacy data set of intrinsic value, and equally a large wide-ranging
  dataset that is of value for homogenisation of other and future
  stellar surveys and Gaia's astrophysical parameters. This article
  provides an overview of the survey methodology, the scientific aims,
  and the implementation, including a description of the data processing
  for the GIRAFFE spectra. A companion paper (arXiv:2206.02901)
  introduces the survey results. Gaia-ESO aspires to quantify both
  random and systematic contributions to measurement uncertainties. Thus
  all available spectroscopic analysis techniques are utilised, each
  spectrum being analysed by up to several different analysis pipelines,
  with considerable effort being made to homogenise and calibrate the
  resulting parameters. We describe here the sequence of activities up to
  delivery of processed data products to the ESO Science Archive Facility
  for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000
  stars using 340 allocated VLT nights between December 2011 and January
  2018 from GIRAFFE and UVES. The full consistently reduced final data set
  of spectra was released through the ESO Science Archive Facility in late
  2020, with the full astrophysical parameters sets following in 2022.

---------------------------------------------------------
Title: The Pristine survey - XVIII. C-19: tidal debris of a dark
    matter-dominated globular cluster?
Authors: Errani, Raphaël; Navarro, Julio F.; Ibata, Rodrigo;
   Martin, Nicolas; Yuan, Zhen; Aguado, David S.; Bonifacio, Piercarlo;
   Caffau, Elisabetta; González Hernández, Jonay I.; Malhan, Khyati;
   Sánchez-Janssen, Rubén; Sestito, Federico; Starkenburg, Else;
   Thomas, Guillaume F.; Venn, Kim A.
2022MNRAS.514.3532E    Altcode: 2022arXiv220302513E; 2022MNRAS.tmp.1475E
  The recently discovered C-19 stellar stream is a collection of
  kinematically associated metal-poor stars in the halo of the Milky Way
  lacking an obvious progenitor. The stream spans across an arc of ~15°
  in the sky, and orbit-fitting suggests an apocentric distance of ${\sim}
  20\, \mathrm{kpc}$ and a pericentre of ${\sim} 10\, \mathrm{kpc}$. The
  narrow metallicity dispersion of stars with available spectra, together
  with light element abundance variations, suggests a globular cluster
  (GC) origin. The observed metallicity ([Fe/H] ≍ -3.4), however,
  is much lower than that of any known GC. In addition, the width
  and velocity dispersion of the stream are similar to those expected
  from disrupting dwarf galaxies, and substantially larger than the
  tidal debris of GCs able to disrupt on C-19's orbit. We propose
  here an unconventional model where the C-19 progenitor is a dark
  matter-dominated stellar system with GC-like abundance patterns. We
  use N-body simulations to show that the tidal disruption of a ~100
  pc King-model stellar component embedded in a ~20 km s<SUP>-1</SUP>
  cuspy cold dark matter halo yields debris consistent with C-19's
  observed width and velocity dispersion. The stellar component of the
  progenitor is fully disrupted, and is spread over two distinct streams,
  one corresponding to C-19 and another possibly hiding behind the
  Galactic plane. If such companion stream were found, it would suggest
  that dark matter-dominated dwarfs may also develop GC-like enrichment
  patterns, a finding that would inform our theoretical understanding of
  the formation of multiple populations in GCs and dwarf galaxies alike.

---------------------------------------------------------
Title: The Pristine survey - XVII. The C-19 stream is dynamically
    hot and more extended than previously thought
Authors: Yuan, Zhen; Martin, Nicolas F.; Ibata, Rodrigo A.; Caffau,
   Elisabetta; Bonifacio, Piercarlo; Mashonkina, Lyudmila I.; Errani,
   Raphaël; Doliva-Dolinsky, Amandine; Starkenburg, Else; Venn, Kim A.;
   Arentsen, Anke; Aguado, David S.; Bellazzini, Michele; Famaey, Benoit;
   Fouesneau, Morgan; González Hernández, Jonay I.; Jablonka, Pascale;
   Lardo, Carmela; Malhan, Khyati; Navarro, Julio F.; Sánchez Janssen,
   Rubén; Sestito, Federico; Thomas, Guillaume F.; Viswanathan, Akshara;
   Vitali, Sara
2022MNRAS.514.1664Y    Altcode: 2022arXiv220302512Y; 2022MNRAS.tmp.1369Y
  The C-19 stream is the most metal-poor stellar system ever discovered,
  with a mean metallicity [Fe/H] = -3.38 ± 0.06. Its low metallicity
  dispersion (σ<SUB>[Fe/H]</SUB> &lt; 0.18 at the 95 per cent
  confidence level) and variations in sodium abundances strongly suggest
  a globular cluster origin. In this work, we use Very Large Telescope
  (VLT)/UV-Visual Echelle Spectrograph (UVES) spectra of seven C-19
  stars to derive more precise velocity measurements for member stars,
  and to identify two new members with radial velocities and metallicities
  consistent with the stream's properties. One of these new member stars
  is located 30° away from the previously identified body of C-19,
  implying that the stream is significantly more extended than previously
  known and that more members likely await discovery. In the main part
  of C-19, we measure a radial velocity dispersion σ<SUB>v</SUB> =
  6.2$^{+2.0}_{-1.4}{\rm \, km\, s^{-1}}$ from nine members, and a stream
  width of 0.56° ± 0.08°, equivalent to ~158 pc at a heliocentric
  distance of 18 kpc. These confirm that C-19 is comparatively hotter,
  dynamically, than other known globular cluster streams and shares
  the properties of faint dwarf galaxy streams. On the other hand, the
  variations in the Na abundances of the three newly observed bright
  member stars, the variations in Mg and Al for two of them, and the
  normal Ba abundance of the one star where it can be measured provide
  further evidence for a globular cluster origin. The tension between the
  dynamical and chemical properties of C-19 suggests that its progenitor
  experienced a complex birth environment or disruption history.

---------------------------------------------------------
Title: VizieR Online Data Catalog: CERES I. Abundances for 52 star
    (Lombardo+, 2022)
Authors: Lombardo, L.; Bonifacio, P.; Francois, P.; Hansen, C. J.;
   Caffau, E.; Hanke, M.; Skuladottir, A.; Arcones, A.; Eichler, M.;
   Reichert, M.; Psaltis, A.; Koch Hansen, A. J.; Sbordone, L.
2022yCat..36650010L    Altcode:
  The target stars were observed with the Ultraviolet and Visual Echelle
  Spectrograph (UVES) of the Very Large Telescope (VLT) at the European
  Southern Observatory (ESO) during two runs (November 2019 and March
  2020) with differing exposures to reach a S/N of 50 to 120 per pixel
  at 390nm for most stars. <P />Our own observations were complemented
  with archival data of comparable quality. All the archival data used
  were acquired prior to 2019. <P />We present a homogeneous set of
  stellar parameters and a chemical abundance analysis of elements
  from Na to Zr for a sample of 52 Galactic halo giant stars with
  -3:58&lt;=[Fe/H]&lt;=-1.79. <P />(2 data files).

---------------------------------------------------------
Title: Gaia Data Release 3: Summary of the content and survey
    properties
Authors: Gaia Collaboration; Vallenari, A.; Brown, A. G. A.; Prusti,
   T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.;
   Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren,
   L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones,
   C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi,
   M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.;
   De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio,
   L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.;
   Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet,
   F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.; Thévenin, F.;
   Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme,
   R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry,
   B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson,
   M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro,
   A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.;
   García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly,
   N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin,
   S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan,
   S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.;
   Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino,
   E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini,
   L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.;
   Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.;
   Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero,
   F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson,
   R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.;
   Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato,
   D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.;
   Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.;
   Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere,
   A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.;
   Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida,
   V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper,
   W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de
   Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.;
   de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado,
   A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo,
   P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson,
   B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.;
   Fernique, P.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.;
   Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.;
   García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach,
   E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría,
   I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.;
   Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.;
   Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.;
   Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.;
   Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz,
   Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.;
   Kervella, P.; Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.;
   Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.;
   Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.;
   Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi,
   I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.;
   Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.;
   Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant,
   J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina,
   D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin;
   Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari,
   D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina,
   S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.;
   Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.;
   Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.;
   Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.;
   Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.;
   Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.;
   Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.;
   Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone,
   L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.;
   Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards,
   P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.;
   Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.;
   Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres,
   D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés,
   A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.;
   Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.;
   Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.;
   Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.;
   Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.;
   Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele,
   I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej,
   J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira,
   R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe,
   G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.;
   Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato,
   A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.;
   Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker,
   S.; Zwitter, T.
2022arXiv220800211G    Altcode:
  We present the third data release of the European Space Agency's Gaia
  mission, GDR3. The GDR3 catalogue is the outcome of the processing
  of raw data collected with the Gaia instruments during the first
  34 months of the mission by the Gaia Data Processing and Analysis
  Consortium. The GDR3 catalogue contains the same source list, celestial
  positions, proper motions, parallaxes, and broad band photometry in
  the G, G$_{BP}$, and G$_{RP}$ pass-bands already present in the Early
  Third Data Release. GDR3 introduces an impressive wealth of new data
  products. More than 33 million objects in the ranges $G_{rvs} &lt; 14$
  and $3100 &lt;T_{eff} &lt;14500 $, have new determinations of their
  mean radial velocities based on data collected by Gaia. We provide
  G$_{rvs}$ magnitudes for most sources with radial velocities, and a
  line broadening parameter is listed for a subset of these. Mean Gaia
  spectra are made available to the community. The GDR3 catalogue includes
  about 1 million mean spectra from the radial velocity spectrometer,
  and about 220 million low-resolution blue and red prism photometer
  BPRP mean spectra. The results of the analysis of epoch photometry are
  provided for some 10 million sources across 24 variability types. GDR3
  includes astrophysical parameters and source class probabilities for
  about 470 million and 1500 million sources, respectively, including
  stars, galaxies, and quasars. Orbital elements and trend parameters are
  provided for some $800\,000$ astrometric, spectroscopic and eclipsing
  binaries. More than $150\,000$ Solar System objects, including new
  discoveries, with preliminary orbital solutions and individual epoch
  observations are part of this release. Reflectance spectra derived
  from the epoch BPRP spectral data are published for about 60\,000
  asteroids. Finally, an additional data set is provided, namely the
  Gaia Andromeda Photometric Survey (abridged)

---------------------------------------------------------
Title: Gaia Data Release 3: Properties of the line broadening
    parameter derived with the Radial Velocity Spectrometer (RVS)
Authors: Frémat, Y.; Royer, F.; Marchal, O.; Blomme, R.; Sartoretti,
   P.; Guerrier, A.; Panuzzo, P.; Katz, D.; Seabroke, G. M.; Thévenin,
   F.; Cropper, M.; Benson, K.; Damerdji, Y.; Haigron, R.; Lobel, A.;
   Smith, M.; Baker, S. G.; Chemin, L.; David, M.; Dolding, C.; Gosset,
   E.; Janßen, K.; Jasniewicz, G.; Plum, G.; Samaras, N.; Snaith,
   O.; Soubiran, C.; Vanel, O.; Zorec, J.; Zwitter, T.; Brouillet, N.;
   Caffau, E.; Crifo, F.; Fabre, C.; Fragkoudi, F.; Huckle, H. E.; Lasne,
   Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Jean-Antoine Piccolo, A.;
   Viala, Y.
2022arXiv220610986F    Altcode:
  The third release of the Gaia catalogue contains the radial velocities
  for 33,812,183 stars having effective temperatures ranging from
  3100 K to 14,500 K. The measurements are based on the comparison
  of the observed RVS spectrum (wavelength coverage: 846--870 nm,
  median resolving power: 11,500) to synthetic data broadened
  to the adequate Along-Scan Line Spread Function. The additional
  line-broadening, fitted as it would only be due to axial rotation,
  is also produced by the pipeline and is available in the catalogue
  (field name gaia_source:vbroad). To describe the properties of the
  line-broadening information extracted from the RVS and published in
  the catalogue, as well as to analyse the limitations imposed by the
  adopted method, wavelength range, and instrument. We use simulations
  to express the link existing between the line broadening measurement
  provided in Gaia Data Release 3 and Vsin(i). We then compare the
  observed values to the measurements published by various catalogues
  and surveys (GALAH, APOGEE, LAMOST, ...). While we recommend being
  cautious in the interpretation of the vbroad measurement, we also
  find a reasonable global agreement between the Gaia Data Release 3
  line broadening values and those found in the other catalogues. We
  discuss and establish the validity domain of the published vbroad
  values. The estimate tends to be overestimated at the lower vsini
  end, and at $T_\mathrm{eff}&gt;7500\,\mathrm{K}$ its quality and
  significance degrade rapidly when $G_\mathrm{RVS}&gt;10$. Despite
  all the known and reported limitations, the Gaia Data Release 3
  line broadening catalogue contains the measurements obtained for
  3,524,677 stars with $T_\mathrm{eff}$\ ranging from 3500 to 14,500 K,
  and $G_\mathrm{RVS}&lt;12$. It gathers the largest stellar sample ever
  considered for the purpose, and allows a first mapping of the \Gaia\
  line broadening parameter across the HR diagram.

---------------------------------------------------------
Title: The Gaia-ESO Public Spectroscopic Survey: Implementation,
    data products, open cluster survey, science, and legacy
Authors: Randich, S.; Gilmore, G.; Magrini, L.; Sacco, G. G.; Jackson,
   R. J.; Jeffries, R. D.; Worley, C. C.; Hourihane, A.; Gonneau, A.;
   Viscasillas Vàzquez, C.; Franciosini, E.; Lewis, J. R.; Alfaro, E. J.;
   Allende Prieto, C.; Blomme, T. Bensby R.; Bragaglia, A.; Flaccomio, E.;
   François, P.; Irwin, M. J.; Koposov, S. E.; Korn, A. J.; Lanzafame,
   A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.;
   Zwitter, T.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.;
   Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I.; Prusti,
   T.; Rix, H. -W.; Vallenari, A.; Bayo, A.; Bergemann, M.; Biazzo, K.;
   Carraro, G.; Casey, A. R.; Damiani, F.; Frasca, A.; Heiter, U.; Hill,
   V.; Jofré, P.; de Laverny, P.; Lind, K.; Marconi, G.; Martayan, C.;
   Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone,
   L.; Sousa, S. G.; Zaggia, S.; Adibekyan, V.; Bonito, R.; Caffau,
   E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; González Hernández,
   J. I.; Guiglion, G.; Herrero, A.; Lobel, A.; Maíz Apellániz,
   J.; Merle, T.; Mikolaitis, S.; Montes, D.; Morel, T.; Soubiran,
   C.; Spina, L.; Tabernero, H. M.; Tautvaišienė, G.; Traven, G.;
   Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Wright, N. J.;
   Abbas, U.; Aguirre Børsen-Koch, V.; Alves, J.; Balaguer-Núnez,
   L.; Barklem, P. S.; Barrado, D.; Berlanas, S. R.; Binks, A. S.;
   Bressan, A.; Capuzzo--Dolcetta, R.; Casagrande, L.; Casamiquela, L.;
   Collins, R. S.; D'Orazi, V.; Dantas, M. L. L.; Debattista, V. P.;
   Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.;
   Famaey, B.; Franchini, M.; Frémat, Y.; Friel, E. D.; Fu, X.; Geisler,
   D.; Gerhard, O.; González Solares, E. A.; Grebel, E. K.; Gutiérrez
   Albarrán, M. L.; Hatzidimitriou, D.; Held, E. V.; Jiménez-Esteban,
   F.; Jönsson, H.; Jordi, C.; Khachaturyants, T.; Kordopatis, G.; Kos,
   J.; Lagarde, N.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.;
   Messina, S.; Miglio, A.; Minchev, I.; Moitinho, A.; Montalban, J.;
   Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.;
   Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palouus, J.;
   Paunzen, E.; Pickering, J. C.; Quirrenbach, A.; Re Fiorentin, P.; Read,
   J. I.; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.;
   Spagna, A.; Steinmetz, M.; Stonkuté, E.; Sutorius, E.; Thévenin,
   F.; Tosi, M.; Tsantaki, M.; Vink, J. S.; Wright, N.; Wyse, R. F. G.;
   Zoccali, M.; Zorec, J.; Zucker, D. B.; Walton, N. A.
2022arXiv220602901R    Altcode:
  In the last 15 years different ground-based spectroscopic surveys
  have been started (and completed) with the general aim of delivering
  stellar parameters and elemental abundances for large samples of
  Galactic stars, complementing Gaia astrometry. Among those surveys,
  the Gaia-ESO Public Spectroscopic Survey (GES), the only one performed
  on a 8m class telescope, was designed to target 100,000 stars using
  FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering
  all the Milky Way populations, with a special focus on open star
  clusters. This article provides an overview of the survey implementation
  (observations, data quality, analysis and its success, data products,
  and releases), of the open cluster survey, of the science results and
  potential, and of the survey legacy. A companion article (Gilmore et
  al.) reviews the overall survey motivation, strategy, Giraffe pipeline
  data reduction, organisation, and workflow. The GES has determined
  homogeneous good-quality radial velocities and stellar parameters for a
  large fraction of its more than 110,000 unique target stars. Elemental
  abundances were derived for up to 31 elements for targets observed with
  UVES. Lithium abundances are delivered for about 1/3 of the sample. The
  analysis and homogenisation strategies have proven to be successful;
  several science topics have been addressed by the Gaia-ESO consortium
  and the community, with many highlight results achieved. The final
  catalogue has been released through the ESO archive at the end of
  May 2022, including the complete set of advanced data products. In
  addition to these results, the Gaia-ESO Survey will leave a very
  important legacy, for several aspects and for many years to come.

---------------------------------------------------------
Title: Gaia Data Release 3: G_RVS photometry from the RVS spectra
Authors: Sartoretti, P.; Marchal, O.; Babusiaux, C.; Jordi, C.;
   Guerrier, A.; Panuzzo, P.; Katz, D.; Seabroke, G. M.; Thévenin, F.;
   Cropper, M.; Benson, K.; Blomme, R.; Haigron, R.; Smith, M.; Baker,
   S.; Chemin, L.; David, M.; Dolding, C.; Frémat, Y.; Janssen, K.;
   Jasniewicz, G.; Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran,
   C.; Vanel, O.; Zwitter, T.; Brouillet, N.; Caffau, E.; Crifo, F.;
   Fabre, C.; Frakgoudi, F.; Jean-Antoine Piccolo, A.; Huckle, H. E.;
   Lasne, Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Royer, F.; Viala,
   Y.; Zorec, J.
2022arXiv220605725S    Altcode:
  Gaia Data Release 3 (DR3) contains the first release of magnitudes
  estimated from the integration of Radial Velocity Spectrometer
  (RVS) spectra for a sample of about 32.2 million stars brighter than
  G_RVS~14 mag (or G~15 mag). In this paper, we describe the data used
  and the approach adopted to derive and validate the G_RVS magnitudes
  published in DR3. We also provide estimates of the G_RVS passband
  and associated G_RVS zero-point. We derived G_RVS photometry from
  the integration of RVS spectra over the wavelength range from 846
  to 870 nm. We processed these spectra following a procedure similar
  to that used for DR2, but incorporating several improvements that
  allow a better estimation of G_RVS. These improvements pertain to the
  stray-light background estimation, the line spread function calibration,
  and the detection of spectra contaminated by nearby relatively bright
  sources. We calibrated the G_RVS zero-point every 30 hours based on the
  reference magnitudes of constant stars from the Hipparcos catalogue,
  and used them to transform the integrated flux of the cleaned and
  calibrated spectra into epoch magnitudes. The G_RVS magnitude of a
  star published in DR3 is the median of the epoch magnitudes for that
  star. We estimated the G_RVS passband by comparing the RVS spectra
  of 108 bright stars with their flux-calibrated spectra from external
  spectrophotometric libraries. The G_RVS magnitude provides information
  that is complementary to that obtained from the G, G_BP, and G_RP
  magnitudes, which is useful for constraining stellar metallicity and
  interstellar extinction. The median precision of G_RVS measurements
  ranges from about 0.006 mag for the brighter stars (i.e. with 3.5
  &lt; G_RVS &lt; 6.5 mag) to 0.125 mag at the faint end. The derived
  G_RVS passband shows that the effective transmittance of the RVS is
  approximately 1.23 times better than the pre-launch estimate.

---------------------------------------------------------
Title: Gaia Data Release 3: Mapping the asymmetric disc of the
    Milky Way
Authors: Gaia Collaboration; Drimmel, R.; Romero-Gomez, M.; Chemin,
   L.; Ramos, P.; Poggio, E.; Ripepi, V.; Andrae, R.; Blomme, R.;
   Cantat-Gaudin, T.; Castro-Ginard, A.; Clementini, G.; Figueras,
   F.; Fouesneau, M.; Fremat, Y.; Jardine, K.; Khanna, S.; Lobel, A.;
   Marshall, D. J.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.;
   Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren,
   L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones,
   C. A. L.; Bastian, U.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van
   Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.;
   Fabricius, C.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.;
   Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.;
   Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann,
   M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Burgess,
   P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.;
   Cheek, N.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos,
   M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández,
   J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron,
   R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández,
   J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat
   de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.;
   Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.;
   Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.;
   Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.;
   Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.;
   Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado,
   J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.;
   Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.;
   Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog,
   Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé,
   S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.;
   Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.;
   Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.;
   Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.;
   Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich,
   A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci,
   T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani,
   M.; Chaoul, L.; Charlot, P.; Chiaramida, V.; Chiavassa, A.; Chornay,
   N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell,
   S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.;
   Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.;
   De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso,
   E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy,
   C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.;
   Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.;
   Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.;
   Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez,
   A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel,
   A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez,
   J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik,
   M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.;
   Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.;
   Sarmiento, M. H.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs,
   D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jean-Antoine Piccolo,
   A.; Jiménez-Arranz, Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe,
   F.; Karbevska, L.; Kervella, P.; Kontizas, M.; Kordopatis, G.; Korn,
   A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.;
   Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.;
   Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi,
   I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.;
   Livanou, E.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo,
   A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi,
   M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni,
   S.; Marocco, F.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.;
   Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh,
   T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints,
   A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió,
   M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.;
   Morel, T.; Morris, D.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval,
   L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.;
   Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi,
   A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon,
   B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Prša,
   A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.;
   Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards,
   P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.;
   Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser,
   L.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski,
   G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero,
   E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.;
   Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.;
   Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert,
   A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.;
   Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.;
   Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller,
   H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.;
   Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira, R.; Tolomei,
   L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi,
   M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.;
   van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.;
   Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.;
   Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.
2022arXiv220606207G    Altcode:
  With the most recent Gaia data release the number of sources with
  complete 6D phase space information (position and velocity) has
  increased to well over 33 million stars, while stellar astrophysical
  parameters are provided for more than 470 million sources, in addition
  to the identification of over 11 million variable stars. Using the
  astrophysical parameters and variability classifications provided
  in Gaia DR3, we select various stellar populations to explore and
  identify non-axisymmetric features in the disc of the Milky Way in
  both configuration and velocity space. Using more about 580 thousand
  sources identified as hot OB stars, together with 988 known open
  clusters younger than 100 million years, we map the spiral structure
  associated with star formation 4-5 kpc from the Sun. We select over 2800
  Classical Cepheids younger than 200 million years, which show spiral
  features extending as far as 10 kpc from the Sun in the outer disc. We
  also identify more than 8.7 million sources on the red giant branch
  (RGB), of which 5.7 million have line-of-sight velocities, allowing
  the velocity field of the Milky Way to be mapped as far as 8 kpc from
  the Sun, including the inner disc. The spiral structure revealed by
  the young populations is consistent with recent results using Gaia
  EDR3 astrometry and source lists based on near infrared photometry,
  showing the Local (Orion) arm to be at least 8 kpc long, and an outer
  arm consistent with what is seen in HI surveys, which seems to be a
  continuation of the Perseus arm into the third quadrant. Meanwhile,
  the subset of RGB stars with velocities clearly reveals the large scale
  kinematic signature of the bar in the inner disc, as well as evidence
  of streaming motions in the outer disc that might be associated with
  spiral arms or bar resonances. (abridged)

---------------------------------------------------------
Title: Gaia Data Release 3: The extragalactic content
Authors: Gaia Collaboration; Bailer-Jones, C. A. L.; Teyssier, D.;
   Delchambre, L.; Ducourant, C.; Garabato, D.; Hatzidimitriou, D.;
   Klioner, S. A.; Rimoldini, L.; Bellas-Velidis, I.; Carballo, R.;
   Carnerero, M. I.; Diener, C.; Fouesneau, M.; Galluccio, L.; Gavras,
   P.; Krone-Martins, A.; Raiteri, C. M.; Teixeira, R.; Brown, A. G. A.;
   Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux,
   C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Guerra,
   R.; Hutton, A.; Jordi, C.; Lammers, U. L.; Lindegren, L.; Luri, X.;
   Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.;
   Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.; Drimmel, R.;
   Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.;
   Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat,
   Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.;
   Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.;
   Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.;
   Portell, J.; Altmann, M.; Andrae, R.; Audard, M.; Benson, K.; Berthier,
   J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas,
   H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji,
   Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Dell'Oro, A.;
   Esquej, P.; Fernández-Hernández, J.; Fraile, E.; García-Lario, P.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.;
   Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Lanzafame, A. C.;
   Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen,
   K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé,
   C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.;
   Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.;
   Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj,
   M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.;
   Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker,
   S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.;
   Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana,
   J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma,
   S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.;
   Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco,
   J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul,
   L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay,
   N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell,
   S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.;
   Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March,
   R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.;
   del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.;
   Dharmawardena, T. E.; Diakite, S.; Distefano, E.; Dolding, C.; Enke,
   H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique,
   P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai,
   M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.;
   Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez,
   J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik,
   M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.;
   Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.;
   Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.;
   Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz,
   Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.;
   Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál,
   Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo,
   A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi,
   M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.;
   Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.;
   Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti,
   A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar,
   N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari,
   G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.;
   Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.;
   Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic,
   C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio,
   P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa
   Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau,
   F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.;
   Racero, E.; Ragaini, S.; Rainer, M.; Ramos, P.; Ramos-Lerate, M.; Re
   Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.;
   Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin,
   C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.;
   Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.;
   Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.;
   Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso,
   M.; Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.;
   Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert,
   A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.;
   Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.;
   Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller,
   H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.;
   Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Tolomei, L.; Tonello,
   N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis,
   A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen,
   E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.;
   Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.
2022arXiv220605681G    Altcode:
  The Gaia Galactic survey mission is designed and optimized to obtain
  astrometry, photometry, and spectroscopy of nearly two billion stars in
  our Galaxy. Yet as an all-sky multi-epoch survey, Gaia also observes
  several million extragalactic objects down to a magnitude of G~21
  mag. Due to the nature of the Gaia onboard selection algorithms,
  these are mostly point-source-like objects. Using data provided by
  the satellite, we have identified quasar and galaxy candidates via
  supervised machine learning methods, and estimate their redshifts using
  the low resolution BP/RP spectra. We further characterise the surface
  brightness profiles of host galaxies of quasars and of galaxies from
  pre-defined input lists. Here we give an overview of the processing
  of extragalactic objects, describe the data products in Gaia DR3,
  and analyse their properties. Two integrated tables contain the main
  results for a high completeness, but low purity (50-70%), set of
  6.6 million candidate quasars and 4.8 million candidate galaxies. We
  provide queries that select purer sub-samples of these containing 1.9
  million probable quasars and 2.9 million probable galaxies (both 95%
  purity). We also use high quality BP/RP spectra of 43 thousand high
  probability quasars over the redshift range 0.05-4.36 to construct a
  composite quasar spectrum spanning restframe wavelengths from 72-100 nm.

---------------------------------------------------------
Title: Gaia Data Release 3: Reflectance spectra of Solar System
    small bodies
Authors: Gaia Collaboration; Galluccio, L.; Delbo, M.; De Angeli, F.;
   Pauwels, T.; Tanga, P.; Mignard, F.; Cellino, A.; Brown, A. G. A.;
   Muinonen, K.; Penttila, A.; Jordan, S.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.;
   Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren,
   L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.;
   Soubiran, C.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.;
   Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.;
   Bakker, J.; Cacciari, C.; Castaneda, J.; Fabricius, C.; Fouesneau,
   M.; Frémat, Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo,
   P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.;
   Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.;
   Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.;
   Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro,
   P.; Nunez Campos, M.; Delchambre, L.; Dell Oro, A.; Esquej, P.;
   Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario,
   P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.;
   Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.;
   Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Krone-Martins, A.;
   Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho,
   A.; Osborne, P.; Pancino, E.; Recio-Blanco, A.; Reylé, C.; Riello,
   M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.;
   Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj,
   M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.;
   Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker,
   S. G.; Balaguer-Núnez, L.; Balbinot, E.; Balog, Z.; Barache, C.;
   Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana,
   J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma,
   S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.;
   Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida,
   V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper,
   W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.;
   De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres,
   A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.;
   Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano,
   E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.;
   Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.;
   García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach,
   E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomel, R.; Gomez, A.; González-Núnez, J.; González-Santamaría,
   I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.;
   Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser,
   M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo,
   S. L.; Hadczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine,
   K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.;
   Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna,
   S.; Kordopatis, G.; Korn, A. J.; Kospál, A; Kostrzewa-Rutkowska,
   Z.; Kruszynska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza,
   A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.;
   Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.;
   Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca,
   A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.;
   Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.;
   Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.;
   Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh,
   T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints,
   A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.;
   Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel,
   T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.;
   Noval, L.; Ocana, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani,
   C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.;
   Panahi, A.; Payne-Wardenaar, S.; Penalosa Esteller, X.; Petit, J. -M.;
   Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.;
   Poggio, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.;
   Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo,
   S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.;
   Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues,
   H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz
   Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núnez, A.; Sagristà
   Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez,
   V.; Sanna, N.; Santovena, R.; Sarasso, M.; Schultheis, M.; Sciacca,
   E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf,
   S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak,
   E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro,
   F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.;
   Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges,
   M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor,
   M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.;
   Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla,
   A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel,
   O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.;
   Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec,
   J.; Zucker, S.; Zwitter, T.
2022arXiv220612174G    Altcode:
  The Gaia mission of the European Space Agency (ESA) has been routinely
  observing Solar System objects (SSOs) since the beginning of its
  operations in August 2014. The Gaia data release three (DR3) includes,
  for the first time, the mean reflectance spectra of a selected sample of
  60 518 SSOs, primarily asteroids, observed between August 5, 2014, and
  May 28, 2017. Each reflectance spectrum was derived from measurements
  obtained by means of the Blue and Red photometers (BP/RP), which were
  binned in 16 discrete wavelength bands. We describe the processing
  of the Gaia spectral data of SSOs, explaining both the criteria used
  to select the subset of asteroid spectra published in Gaia DR3,
  and the different steps of our internal validation procedures. In
  order to further assess the quality of Gaia SSO reflectance spectra,
  we carried out external validation against SSO reflectance spectra
  obtained from ground-based and space-borne telescopes and available
  in the literature. For each selected SSO, an epoch reflectance was
  computed by dividing the calibrated spectrum observed by the BP/RP
  at each transit on the focal plane by the mean spectrum of a solar
  analogue. The latter was obtained by averaging the Gaia spectral
  measurements of a selected sample of stars known to have very similar
  spectra to that of the Sun. Finally, a mean of the epoch reflectance
  spectra was calculated in 16 spectral bands for each SSO. The agreement
  between Gaia mean reflectance spectra and those available in the
  literature is good for bright SSOs, regardless of their taxonomic
  spectral class. We identify an increase in the spectral slope of S-type
  SSOs with increasing phase angle. Moreover, we show that the spectral
  slope increases and the depth of the 1 um absorption band decreases
  for increasing ages of S-type asteroid families.

---------------------------------------------------------
Title: Gaia Data Release 3: A Golden Sample of Astrophysical
    Parameters
Authors: Gaia Collaboration; Creevey, O. L.; Sarro, L. M.; Lobel, A.;
   Pancino, E.; Andrae, R.; Smart, R. L.; Clementini, G.; Heiter, U.;
   Korn, A. J.; Fouesneau, M.; Frémat, Y.; De Angeli, F.; Vallenari, A.;
   Harrison, D. L.; Thévenin, F.; Reylé, C.; Sordo, R.; Garofalo, A.;
   Brown, A. G. A.; Eyer, L.; Prusti, T.; de Bruijne, J. H. J.; Arenou,
   F.; Babusiaux, C.; Biermann, M.; Ducourant, C.; Evans, D. W.; Guerra,
   R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren,
   L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones,
   C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi,
   M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.;
   Fabricius, C.; Galluccio, L.; Guerrier, A.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.;
   Riclet, F.; Roux, W.; Seabroke, G. M.; Gracia-Abril, G.; Portell, J.;
   Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso,
   G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.;
   Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.;
   Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.;
   Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs,
   J. -L.; Hambly, N. C.; Hernández, J.; Hestroffer, D.; Hodgkin,
   S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan,
   S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.;
   Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pauwels, T.;
   Recio-Blanco, A.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki,
   J.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen,
   M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado,
   J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.;
   Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.;
   Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog,
   Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé,
   S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.;
   Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela,
   L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.;
   Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto,
   G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.;
   Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.;
   David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.;
   de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo,
   M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.;
   Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.;
   Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique,
   P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.;
   Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Gavel,
   A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez,
   J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.;
   Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.;
   Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi,
   A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.;
   Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine
   Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.;
   Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Kóspál,
   Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau,
   S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos,
   J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco,
   F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton,
   G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh,
   T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints,
   A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.;
   Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel,
   T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.;
   Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani,
   C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.;
   Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.;
   Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.;
   Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer,
   M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin,
   P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva,
   A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.;
   Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.;
   Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.;
   Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero,
   E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.;
   Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.;
   Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert,
   A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Snaith, O. N.;
   Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina,
   L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.;
   Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris,
   F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra,
   F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.;
   Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.;
   van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.;
   Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.
2022arXiv220605870G    Altcode:
  Gaia Data Release 3 (DR3) provides a wealth of new data products for the
  astronomical community to exploit, including astrophysical parameters
  for a half billion stars. In this work we demonstrate the high
  quality of these data products and illustrate their use in different
  astrophysical contexts. We query the astrophysical parameter tables
  along with other tables in Gaia DR3 to derive the samples of the stars
  of interest. We validate our results by using the Gaia catalogue itself
  and by comparison with external data. We have produced six homogeneous
  samples of stars with high quality astrophysical parameters across
  the HR diagram for the community to exploit. We first focus on three
  samples that span a large parameter space: young massive disk stars
  (~3M), FGKM spectral type stars (~3M), and UCDs (~20K). We provide
  these sources along with additional information (either a flag or
  complementary parameters) as tables that are made available in the
  Gaia archive. We furthermore identify 15740 bone fide carbon stars,
  5863 solar-analogues, and provide the first homogeneous set of stellar
  parameters of the Spectro Photometric Standard Stars. We use a subset
  of the OBA sample to illustrate its usefulness to analyse the Milky
  Way rotation curve. We then use the properties of the FGKM stars to
  analyse known exoplanet systems. We also analyse the ages of some
  unseen UCD-companions to the FGKM stars. We additionally predict the
  colours of the Sun in various passbands (Gaia, 2MASS, WISE) using the
  solar-analogue sample.

---------------------------------------------------------
Title: Gaia Data Release 3: Hot-star radial velocities
Authors: Blomme, R.; Fremat, Y.; Sartoretti, P.; Guerrier, A.; Panuzzo,
   P.; Katz, D.; Seabroke, G. M.; Thevenin, F.; Cropper, M.; Benson, K.;
   Damerdji, Y.; Haigron, R.; Marchal, O.; Smith, M.; Baker, S.; Chemin,
   L.; David, M.; Dolding, C.; Gosset, E.; Janssen, K.; Jasniewicz, G.;
   Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel,
   O.; Zwitter, T.; Brouillet, N.; Caffau, E.; Crifo, F.; Fabre, C.;
   Frakgoudi, F.; Huckle, H. E.; Jean-Antoine Piccolo, A.; Lasne, Y.;
   Leclerc, N.; Mastrobuono-Battisti, A.; Royer, F.; Viala, Y.; Zorec, J.
2022arXiv220605486B    Altcode:
  The second Gaia data release, DR2, contained radial velocities of stars
  with effective temperatures up to Teff = 6900 K. The third data release,
  Gaia DR3, extends this up to Teff = 14,500 K. We derive the radial
  velocities for hot stars (i.e. in the Teff = 6900 - 14,500 K range)
  from data obtained with the Radial Velocity Spectrometer (RVS) on board
  Gaia. The radial velocities were determined by the standard technique
  of measuring the Doppler shift of a template spectrum that was compared
  to the observed spectrum. The RVS wavelength range is very limited. The
  proximity to and systematic blueward offset of the calcium infrared
  triplet to the hydrogen Paschen lines in hot stars can result in a
  systematic offset in radial velocity. For the hot stars, we developed
  a specific code to improve the selection of the template spectrum,
  thereby avoiding this systematic offset. With the improved code, and
  with the correction we propose to the DR3 archive radial velocities,
  we obtain values that agree with reference values to within 3 km/s (in
  median). Because of the required S/N for applying the improved code,
  the hot star radial velocities in DR3 are mostly limited to stars with
  a magnitude in the RVS wavelength band &lt;= 12 mag.

---------------------------------------------------------
Title: Gaia Data Release 3 Properties and validation of the radial
    velocities
Authors: Katz, D.; Sartoretti, P.; Guerrier, A.; Panuzzo, P.; Seabroke,
   G. M.; Thévenin, F.; Cropper, M.; Benson, K.; Blomme, R.; Haigron,
   R.; Marchal, O.; Smith, M.; Baker, S.; Chemin, L.; Damerdji, Y.; David,
   M.; Dolding, C.; Frémat, Y.; Gosset, E.; Janßen, K.; Jasniewicz, G.;
   Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel,
   O.; Zwitter, T.; Antoja, T.; Arenou, F.; Babusiaux, C.; Brouillet,
   N.; Caffau, E.; Di Matteo, P.; Fabre, C.; Fabricius, C.; Frakgoudi,
   F.; Haywood, M.; Huckle, H. E.; Hottier, C.; Lasne, Y.; Leclerc, N.;
   Mastrobuono-Battisti, A.; Royer, F.; Teyssier, D.; Zorec, J.; Crifo,
   F.; Jean-Antoine Piccolo, A.; Turon, C.; Viala, Y.
2022arXiv220605902K    Altcode:
  Gaia Data Release 3 (Gaia DR3) contains the second release of the
  combined radial velocities. It is based on the spectra collected during
  the first 34 months of the nominal mission. The longer time baseline
  and the improvements of the pipeline made it possible to push the
  processing limit, from Grvs = 12 in Gaia DR2, to Grvs = 14 mag. In this
  article, we describe the new functionalities implemented for Gaia DR3,
  the quality filters applied during processing and post-processing and
  the properties and performance of the published velocities. For Gaia
  DR3, several functionalities were upgraded or added. (Abridged) Gaia
  DR3 contains the combined radial velocities of 33 812 183 stars. With
  respect to Gaia DR2, the interval of temperature has been expanded
  from Teff \in [3600, 6750] K to Teff \in [3100, 14500] K for the
  bright stars ( Grvs \leq 12 mag) and [3100, 6750] K for the fainter
  stars. The radial velocities sample a significant part of the Milky
  Way: they reach a few kilo-parsecs beyond the Galactic centre in the
  disc and up to about 10-15 kpc vertically into the inner halo. The
  median formal precision of the velocities is of 1.3 km/s at Grvs =
  12 and 6.4 km/s at Grvs = 14 mag. The velocity zero point exhibits a
  small systematic trend with magnitude starting around Grvs = 11 mag
  and reaching about 400 m/s at Grvs = 14 mag. A correction formula
  is provided, which can be applied to the published data. The Gaia
  DR3 velocity scale is in satisfactory agreement with APOGEE, GALAH,
  GES and RAVE, with systematic differences that mostly do not exceed
  a few hundreds m/s. The properties of the radial velocities are also
  illustrated with specific objects: open clusters, globular clusters as
  well as the Large Magellanic Cloud (LMC). For example, the precision
  of the data allows to map the line-of-sight rotational velocities of
  the globular cluster 47 Tuc and of the LMC.

---------------------------------------------------------
Title: Gaia Data Release 3: Pulsations in main sequence OBAF-type
    stars
Authors: Gaia Collaboration; De Ridder, J.; Ripepi, V.; Aerts, C.;
   Palaversa, L.; Eyer, L.; Holl, B.; Audard, M.; Rimoldini, L.; Brown,
   A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.;
   Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans,
   D. W.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers,
   U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix,
   D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton,
   N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.;
   Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.;
   Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat,
   Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo,
   R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo,
   P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.;
   Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess,
   P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.;
   Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro,
   P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.;
   Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hilger, T.; Hodgkin, S. T.;
   Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.;
   Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho,
   A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco,
   A.; Reylé, C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.;
   Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.;
   Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aguado, J. J.; Ajaj,
   M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.;
   Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines,
   D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.;
   Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé,
   S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.;
   Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela,
   L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.;
   Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto,
   G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.;
   Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.;
   David, P.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.;
   de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado,
   A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite,
   S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.;
   Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.;
   Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez,
   A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel,
   A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez,
   J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik,
   M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.;
   Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.;
   Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland,
   G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo,
   A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska,
   L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál,
   Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo,
   A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi,
   M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.;
   Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.;
   Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.;
   Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.;
   Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió,
   M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli,
   R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.;
   Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde,
   J. O.; Pagani, C.; Pagano, I.; Palicio, P. A.; Pallas-Quintela, L.;
   Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.;
   Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.;
   Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.;
   Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo,
   S.; Richards, P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.;
   Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.;
   Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres,
   D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés,
   A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.;
   Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.;
   Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.;
   Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.;
   Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.;
   Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele,
   I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.;
   Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira,
   R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe,
   G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.;
   Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato,
   A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.;
   Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker,
   S.; Zwitter, T.
2022arXiv220606075G    Altcode:
  The third Gaia data release provides photometric time series covering
  34 months for about 10 million stars. For many of those stars, a
  characterisation in Fourier space and their variability classification
  are also provided. This paper focuses on intermediate- to high-mass
  (IHM) main sequence pulsators M &gt;= 1.3 Msun) of spectral types O,
  B, A, or F, known as beta Cep, slowly pulsating B (SPB), delta Sct,
  and gamma Dor stars. These stars are often multi-periodic and display
  low amplitudes, making them challenging targets to analyse with sparse
  time series. All datasets used in this analysis are part of the Gaia DR3
  data release. The photometric time series were used to perform a Fourier
  analysis, while the global astrophysical parameters necessary for
  the empirical instability strips were taken from the Gaia DR3 gspphot
  tables, and the vsini data were taken from the Gaia DR3 esphs tables. We
  show that for nearby OBAF-type pulsators, the Gaia DR3 data are
  precise and accurate enough to pinpoint them in the Hertzsprung-Russell
  diagram. We find empirical instability strips covering broader regions
  than theoretically predicted. In particular, our study reveals the
  presence of fast rotating gravity-mode pulsators outside the strips,
  as well as the co-existence of rotationally modulated variables inside
  the strips as reported before in the literature. We derive an extensive
  period-luminosity relation for delta Sct stars and provide evidence that
  the relation features different regimes depending on the oscillation
  period. Finally, we demonstrate how stellar rotation attenuates the
  amplitude of the dominant oscillation mode of delta Sct stars.

---------------------------------------------------------
Title: Gaia Data Release 3: Stellar multiplicity, a teaser for the
    hidden treasure
Authors: Gaia Collaboration; Arenou, F.; Babusiaux, C.; Barstow,
   M. A.; Faigler, S.; Jorissen, A.; Kervella, P.; Mazeh, T.; Mowlavi,
   N.; Panuzzo, P.; Sahlmann, J.; Shahaf, S.; Sozzetti, A.; Bauchet, N.;
   Damerdji, Y.; Gavras, P.; Giacobbe, P.; Gosset, E.; Halbwachs, J. -L.;
   Holl, B.; Lattanzi, M. G.; Leclerc, N.; Morel, T.; Pourbaix, D.; Re
   Fiorentin, P.; Sadowski, G.; Ségransan, D.; Siopis, C.; Teyssier, D.;
   Zwitter, T.; Planquart, L.; Brown, A. G. A.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Biermann, M.; Creevey, O. L.; Ducourant, C.;
   Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner,
   S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem,
   C.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton,
   N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.;
   Katz, D.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.;
   De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio,
   L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Nicolas,
   C.; Nienartowicz, K.; Pailler, F.; Riclet, F.; Roux, W.; Seabroke,
   G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.;
   Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso,
   G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini,
   G.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre,
   L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile,
   E.; Garabato, D.; García-Lario, P.; Haigron, R.; Hambly, N. C.;
   Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.;
   Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins,
   A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.;
   Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.;
   Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers,
   T.; Rybizki, J.; Sarro, L. M.; Smith, M.; Utrilla, E.; van Leeuwen,
   M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado,
   J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.;
   Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.;
   Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog,
   Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolomé, S.; Bassilana,
   J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.;
   Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere,
   A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.;
   Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida,
   V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper,
   W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.;
   De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres,
   A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle,
   J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener,
   C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.;
   Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.;
   García-Torres, M.; Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer,
   R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.;
   González-Núñez, J.; González-Santamaría, I.; González-Vidal,
   J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.;
   Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.;
   Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.;
   Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine
   Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.;
   Karbevska, L.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál,
   Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.;
   Lebzelter, T.; Leccia, S.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca,
   A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.;
   Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.;
   Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.;
   Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; McMillan,
   P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.;
   Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.;
   Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morris, D.; Muraveva,
   T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden,
   A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa,
   L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar,
   S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.;
   Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos,
   P.; Ramos-Lerate, M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.;
   Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin,
   A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.;
   Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki,
   K. A.; Sáez Núñez, A.; Sagristà Sellés, A.; Salguero, E.; Samaras,
   N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.;
   Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.; Semeux,
   D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak,
   E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro,
   F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.;
   Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges,
   M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor,
   M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.;
   Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla,
   A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel,
   O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler,
   M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.;
   Zorec, J.; Zucker, S.
2022arXiv220605595G    Altcode:
  The Gaia DR3 Catalogue contains for the first time about eight
  hundred thousand solutions with either orbital elements or trend
  parameters for astrometric, spectroscopic and eclipsing binaries, and
  combinations of them. This paper aims to illustrate the huge potential
  of this large non-single star catalogue. Using the orbital solutions
  together with models of the binaries, a catalogue of tens of thousands
  of stellar masses, or lower limits, partly together with consistent
  flux ratios, has been built. Properties concerning the completeness
  of the binary catalogues are discussed, statistical features of the
  orbital elements are explained and a comparison with other catalogues
  is performed. Illustrative applications are proposed for binaries
  across the H-R diagram. The binarity is studied in the RGB/AGB and a
  search for genuine SB1 among long-period variables is performed. The
  discovery of new EL CVn systems illustrates the potential of combining
  variability and binarity catalogues. Potential compact object companions
  are presented, mainly white dwarf companions or double degenerates,
  but one candidate neutron star is also presented. Towards the bottom of
  the main sequence, the orbits of previously-suspected binary ultracool
  dwarfs are determined and new candidate binaries are discovered. The
  long awaited contribution of Gaia to the analysis of the substellar
  regime shows the brown dwarf desert around solar-type stars using true,
  rather than minimum, masses, and provides new important constraints on
  the occurrence rates of substellar companions to M dwarfs. Several
  dozen new exoplanets are proposed, including two with validated
  orbital solutions and one super-Jupiter orbiting a white dwarf, all
  being candidates requiring confirmation. Beside binarity, higher order
  multiple systems are also found.

---------------------------------------------------------
Title: Gaia Data Release 3: Chemical cartography of the Milky Way
Authors: Gaia Collaboration; Recio-Blanco, A.; Kordopatis, G.; de
   Laverny, P.; Palicio, P. A.; Spagna, A.; Spina, L.; Katz, D.; Re
   Fiorentin, P.; Poggio, E.; McMillan, P. J.; Vallenari, A.; Lattanzi,
   M. G.; Seabroke, G. M.; Casamiquela, L.; Bragaglia, A.; Antoja,
   T.; Bailer-Jones, C. A. L.; Andrae, R.; Fouesneau, M.; Cropper, M.;
   Cantat-Gaudin, T.; Heiter, U.; Bijaoui, A.; Brown, A. G. A.; Prusti,
   T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.;
   Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren,
   L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.;
   Drimmel, R.; Jansen, F.; van Leeuwen, F.; Bakker, J.; Cacciari, C.;
   Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat, Y.; Galluccio,
   L.; Guerrier, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas,
   C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.;
   Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.;
   Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas,
   H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji,
   Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre,
   L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.;
   Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs,
   J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer,
   D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.;
   Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal,
   O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino,
   E.; Pauwels, T.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers,
   T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti,
   A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu
   Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.;
   Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.;
   Anglada Varela, E.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.;
   Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow,
   M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.;
   Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.;
   Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini,
   D.; Bouquillon, S.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci, T.;
   Carnerero, M. I.; Carrasco, J. M.; Castellani, M.; Castro-Ginard,
   A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa,
   A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez,
   T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.;
   Dapergolas, A.; David, P.; De Luise, F.; De March, R.; De Ridder,
   J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.;
   Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena,
   T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding,
   C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.;
   Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.;
   García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach,
   E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría,
   I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.;
   Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser,
   M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo,
   S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine,
   K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz,
   Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella,
   P.; Khanna, S.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska,
   Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza,
   A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.;
   Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca,
   A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.;
   Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.;
   Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.;
   Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh,
   T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.;
   Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.;
   Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.;
   Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña,
   F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.;
   Palaversa, L.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.;
   Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.;
   Pineau, F. -X.; Plachy, E.; Plum, G.; Prša, A.; Pulone, L.; Racero,
   E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate,
   M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva,
   A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.;
   Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.;
   Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.;
   Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero,
   E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.;
   Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.;
   Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert,
   A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.;
   Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.;
   Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.;
   Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris,
   F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra,
   F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.;
   Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.;
   van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.;
   Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.
2022arXiv220605534G    Altcode:
  Gaia DR3 opens a new era of all-sky spectral analysis of stellar
  populations thanks to the nearly 5.6 million stars observed by the RVS
  and parametrised by the GSP-spec module. The all-sky Gaia chemical
  cartography allows a powerful and precise chemo-dynamical view of
  the Milky Way with unprecedented spatial coverage and statistical
  robustness. First, it reveals the strong vertical symmetry of the
  Galaxy and the flared structure of the disc. Second, the observed
  kinematic disturbances of the disc -- seen as phase space correlations
  -- and kinematic or orbital substructures are associated with chemical
  patterns that favour stars with enhanced metallicities and lower
  [alpha/Fe] abundance ratios compared to the median values in the radial
  distributions. This is detected both for young objects that trace the
  spiral arms and older populations. Several alpha, iron-peak elements
  and at least one heavy element trace the thin and thick disc properties
  in the solar cylinder. Third, young disc stars show a recent chemical
  impoverishment in several elements. Fourth, the largest chemo-dynamical
  sample of open clusters analysed so far shows a steepening of the
  radial metallicity gradient with age, which is also observed in the
  young field population. Finally, the Gaia chemical data have the
  required coverage and precision to unveil galaxy accretion debris
  and heated disc stars on halo orbits through their [alpha/Fe] ratio,
  and to allow the study of the chemo-dynamical properties of globular
  clusters. Gaia DR3 chemo-dynamical diagnostics open new horizons before
  the era of ground-based wide-field spectroscopic surveys. They unveil
  a complex Milky Way that is the outcome of an eventful evolution,
  shaping it to the present day (abridged).

---------------------------------------------------------
Title: The Complexity of the Cetus Stream Unveiled from the Fusion
    of STREAMFINDER and StarGO
Authors: Yuan, Zhen; Malhan, Khyati; Sestito, Federico; Ibata, Rodrigo
   A.; Martin, Nicolas F.; Chang, Jiang; Li, Ting S.; Caffau, Elisabetta;
   Bonifacio, Piercarlo; Bellazzini, Michele; Huang, Yang; Voggel, Karina;
   Longeard, Nicolas; Arentsen, Anke; Doliva-Dolinsky, Amandine; Navarro,
   Julio; Famaey, Benoit; Starkenburg, Else; Aguado, David S.
2022ApJ...930..103Y    Altcode: 2021arXiv211205775Y
  We combine the power of two stream-searching tools, STREAMFINDER and
  StarGO applied to the Gaia EDR3 data, to detect stellar debris belonging
  to the Cetus stream system that forms a complex, nearly polar structure
  around the Milky Way. In this work, we find the southern extensions
  of the northern Cetus stream as the Palca stream and a new southern
  stream, which overlap on the sky but have different distances. These
  two stream wraps extend over more than ~100° on the sky (-60° &lt;
  δ &lt; +40°). The current N-body model of the system reproduces both
  as two wraps in the trailing arm. We also show that the Cetus system
  is confidently associated with the Triangulum/Pisces, Willka Yaku,
  and the recently discovered C-20 streams. The association with the
  ATLAS-Aliqa Uma stream is much weaker. All of these stellar debris are
  very metal-poor, comparable to the average metallicity of the southern
  Cetus stream with [Fe/H] = -2.17 ± 0.20. The estimated stellar mass
  of the Cetus progenitor is at least 10<SUP>5.6</SUP> M <SUB>⊙</SUB>,
  compatible with Ursa Minor or Draco dwarf galaxies. The associated
  globular cluster with similar stellar mass, NGC 5824 very possibly
  was accreted in the same group infall. The multi-wrap Cetus stream
  is a perfect example of a dwarf galaxy that has undergone several
  periods of stripping, leaving behind debris at multiple locations
  in the halo. The full characterization of such systems is crucial to
  unravel the history of the assembly of the Milky Way, and importantly,
  to provide nearby fossils to study ancient low-mass dwarf galaxies.

---------------------------------------------------------
Title: Sulfur abundances in the Galactic bulge and disk
Authors: Lucertini, Francesca; Monaco, Lorenzo; Caffau, Elisabetta;
   Bonifacio, Piercarlo; Mucciareli, Alessio
2022joks.confE...2L    Altcode:
  Context. The measurement of α-element abundances provides a
  powerful tool for placing constraints on the chemical evolution and
  star formation history of galaxies. The majority of studies on the
  α-element sulfur (S) are focused on local stars, making S behavior in
  other environments an astronomical topic that is yet to be explored
  in detail. <P />Aims. The investigation of S in the Galactic bulge
  was recently considered for the first time. This work aims to improve
  our knowledge on S behavior in this component of the Milky Way. <P
  />Methods. We present the S abundances of 74 dwarf and sub-giant
  stars in the Galactic bulge, along with 21 and 30 F and G thick- and
  thin-disk stars, respectively. We performed a local thermodynamic
  equilibrium analysis and applied corrections for non-LTE on high
  resolution and high signal-to-noise UVES spectra. S abundances were
  derived from multiplets 1, 6, and 8 in the metallicity range of -2 &lt;
  [Fe/H] &lt; 0.6, by spectrosynthesis or line equivalent widths. <P
  />Results. We confirm that the behavior of S resembles that of an
  α-element within the Galactic bulge. In the [S/Fe] versus [Fe/H]
  diagram, S presents a plateau at low metallicity, followed by a
  decreasing of [S/Fe] with the increasing of [Fe/H], before reaching
  [S/Fe] ∼ 0 at a super-solar metallicity. We found that the Galactic
  bulge is S-rich with respect to both the thick- and thin-disks at -1
  &lt; [Fe/H] &lt; 0.3, supporting a scenario of more rapid formation
  and chemical evolution in the Galactic bulge than in the disk.

---------------------------------------------------------
Title: Gaia Early Data Release 3: The celestial reference frame
    (Gaia-CRF3)
Authors: Gaia Collaboration; Klioner, S. A.; Lindegren, L.; Mignard,
   F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.;
   Bombrun, A.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Hobbs,
   D.; Lammers, U. L.; McMillan, P. J.; Steidelmüller, H.; Teyssier, D.;
   Raiteri, C. M.; Bartolomé, S.; Bernet, M.; Castañeda, J.; Clotet,
   M.; Davidson, M.; Fabricius, C.; Garralda Torres, N.; González-Vidal,
   J. J.; Portell, J.; Rowell, N.; Torra, F.; Torra, J.; Brown, A. G. A.;
   Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux,
   C.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.;
   Hutton, A.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones,
   C. A. L.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van
   Leeuwen, F.; Bakker, J.; Cacciari, C.; De Angeli, F.; Fouesneau, M.;
   Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler,
   F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.;
   Thévenin, F.; Gracia-Abril, G.; Altmann, M.; Andrae, R.; Audard, M.;
   Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess,
   P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.;
   Cheek, N.; Clementini, G.; Damerdji, Y.; de Teodoro, P.; Nuñez Campos,
   M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández,
   J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron,
   R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hestroffer,
   D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle,
   G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.;
   Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne,
   P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello,
   M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.;
   Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.;
   Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson,
   R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.;
   Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato,
   D.; Barros, M.; Barstow, M. A.; Bassilana, J. -L.; Bauchet, N.;
   Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.;
   Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela,
   L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.;
   Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto,
   G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.;
   Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.;
   David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.;
   de Souza, R.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado,
   A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.;
   Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.;
   Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez,
   A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel,
   A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría,
   I.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.;
   Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.;
   Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Holland,
   G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo,
   A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska,
   L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál,
   Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo,
   A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi,
   M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.;
   Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.;
   Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.;
   Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina,
   D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo,
   P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris,
   D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.;
   Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.;
   Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.;
   Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä,
   A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum,
   G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.;
   Rainer, M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.;
   Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.;
   Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues,
   H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Royer, F.; Ruz Mieres, D.;
   Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.;
   Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna,
   N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol,
   M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui,
   H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak,
   I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami,
   D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele,
   I. A.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.;
   Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei,
   L.; Tonello, N.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.;
   Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.;
   van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.;
   Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T.
2022arXiv220412574G    Altcode:
  Gaia-CRF3 is the celestial reference frame for positions and proper
  motions in the third release of data from the Gaia mission, Gaia DR3
  (and for the early third release, Gaia EDR3, which contains identical
  astrometric results). The reference frame is defined by the positions
  and proper motions at epoch 2016.0 for a specific set of extragalactic
  sources in the (E)DR3 catalogue. We describe the construction of
  Gaia-CRF3, and its properties in terms of the distributions in
  magnitude, colour, and astrometric quality. Compact extragalactic
  sources in Gaia DR3 were identified by positional cross-matching with
  17 external catalogues of quasars (QSO) and active galactic nuclei
  (AGN), followed by astrometric filtering designed to remove stellar
  contaminants. Selecting a clean sample was favoured over including a
  higher number of extragalactic sources. For the final sample, the random
  and systematic errors in the proper motions are analysed, as well as the
  radio-optical offsets in position for sources in the third realisation
  of the International Celestial Reference Frame (ICRF3). The Gaia-CRF3
  comprises about 1.6 million QSO-like sources, of which 1.2 million have
  five-parameter astrometric solutions in Gaia DR3 and 0.4 million have
  six-parameter solutions. The sources span the magnitude range G = 13
  to 21 with a peak density at 20.6 mag, at which the typical positional
  uncertainty is about 1 mas. The proper motions show systematic errors
  on the level of 12 ${\mu}$as yr${}^{-1}$ on angular scales greater than
  15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X
  frequency bands, the median offset from the radio positions is about
  0.5 mas, but exceeds 4 mas in either coordinate for 127 sources. We
  outline the future of the Gaia-CRF in the next Gaia data releases.

---------------------------------------------------------
Title: Detailed investigation of two high-speed evolved Galactic stars
Authors: Matas Pinto, Aroa del Mar; Caffau, Elisabetta; François,
   Patrick; Spite, Monique; Bonifacio, Piercarlo; Wanajo, Shinya; Aoki,
   Wako; Monaco, Lorenzo; Suda, Takuma; Spite, François; Sbordone,
   Luca; Lombardo, Linda; Mucciarelli, Alessio
2022AN....34310032M    Altcode:
  The study of metal poor stars provides clarification and knowledge about
  the primordial Universe. Specially, halo stars provide explanations of
  the nature of the first generations of stars and the nucleosynthesis
  in the metal-poor regime. We present a detailed chemical analysis and
  determination of the kinematic and orbital properties of two stars
  characterized by high speed with respect to the Sun. We analyzed two
  high-resolution Subaru spectra employing the MyGIsFOS code, which allows
  to derive the detailed chemical abundances for 28 elements (C, N, O, Na,
  Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba,
  La, Ce, Pr, Nd, Sm, and Eu), and abundance from two ionization states
  in the case of four elements (Ti, Cr, Fe, and Zr). TYC 622-742-1 and
  TYC 1193-1918-1 are metal-poor stars ([Fe/H] of −2.37 and −1.60),
  they are similar in the chemical pattern with respect to Fe, they are α
  enhanced and show a slight excess in Eu abundance. Both giant stars are
  poor in C and rich in N, as expected for evolved stars, and this fact
  is supported by the low <SUP>12</SUP>C/<SUP>13</SUP>C isotopic ratio
  in TYC 1193-1918-1. Nevertheless, the C abundance of TYC 622-742-1 is
  particularly low. TYC 622-742-1 and TYC 1193-1918-1 have a similar
  chemical composition to the other Galactic halo stars of comparable
  metallicity. According to their kinematics, both stars belong to the
  Galactic halo, but they are not a part of the Gaia-Sausage-Enceladus
  structure.

---------------------------------------------------------
Title: Sulfur abundances in the Galactic bulge and disk
Authors: Lucertini, F.; Monaco, L.; Caffau, E.; Bonifacio, P.;
   Mucciarelli, A.
2022A&A...657A..29L    Altcode: 2021arXiv210906216L
  Context. The measurement of α-element abundances provides a
  powerful tool for placing constraints on the chemical evolution and
  star formation history of galaxies. The majority of studies on the
  α-element sulfur (S) are focused on local stars, making S behavior in
  other environments an astronomical topic that is yet to be explored
  in detail. <BR /> Aims: The investigation of S in the Galactic bulge
  was recently considered for the first time. This work aims to improve
  our knowledge on S behavior in this component of the Milky Way. <BR />
  Methods: We present the S abundances of 74 dwarf and sub-giant stars in
  the Galactic bulge, along with 21 and 30 F and G thick- and thin-disk
  stars, respectively. We performed a local thermodynamic equilibrium
  analysis and applied corrections for non-LTE on high resolution and
  high signal-to-noise UVES spectra. S abundances were derived from
  multiplets 1, 6, and 8 in the metallicity range of − 2 &lt; [Fe/H]
  &lt; 0.6, by spectrosynthesis or line equivalent widths. <BR /> Results:
  We confirm that the behavior of S resembles that of an α-element
  within the Galactic bulge. In the [S/Fe] versus [Fe/H] diagram,
  S presents a plateau at low metallicity, followed by a decreasing
  of [S/Fe] with the increasing of [Fe/H], before reaching [S/Fe] ~
  0 at a super-solar metallicity. We found that the Galactic bulge is
  S-rich with respect to both the thick- and thin-disks at − 1 &lt;
  [Fe/H] &lt; 0.3, supporting a scenario of more rapid formation and
  chemical evolution in the Galactic bulge than in the disk. <P />This
  paper is based on data collected with the Very Large Telescope (VLT)
  at the European Southern Observatory (ESO) on Paranal, Chile (ESO
  Program ID 065.L-0507, 071.B-0529, 076.B-0055, 076.B-0133, 077.B-0507,
  079.D-0567, 082.B-0453, 083.B-0265, 084.B-0837, 084.D-0965, 085.B-0399,
  086.B-0757, 087.B-0600, 087.D-0724, 088.B-0349, 089.B-0047, 090.B-0204,
  091.B-0289, 092.B-0626, 093.B-0700, 094.B-0282, 165.L-0263, 167.D-0173,
  266.D-5655; and data from the UVES Paranal Observatory Project (ESO
  DDT Program ID 266.D-5655).

---------------------------------------------------------
Title: A stellar stream remnant of a globular cluster below the
    metallicity floor
Authors: Martin, Nicolas F.; Venn, Kim A.; Aguado, David S.;
   Starkenburg, Else; González Hernández, Jonay I.; Ibata, Rodrigo A.;
   Bonifacio, Piercarlo; Caffau, Elisabetta; Sestito, Federico; Arentsen,
   Anke; Allende Prieto, Carlos; Carlberg, Raymond G.; Fabbro, Sébastien;
   Fouesneau, Morgan; Hill, Vanessa; Jablonka, Pascale; Kordopatis,
   Georges; Lardo, Carmela; Malhan, Khyati; Mashonkina, Lyudmila I.;
   McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén;
   Thomas, Guillaume F.; Yuan, Zhen; Mucciarelli, Alessio
2022Natur.601...45M    Altcode: 2022arXiv220101309M
  Stellar ejecta gradually enrich the gas out of which subsequent stars
  form, making the least chemically enriched stellar systems direct
  fossils of structures formed in the early Universe<SUP>1</SUP>. Although
  a few hundred stars with metal content below 1,000th of the
  solar iron content are known in the Galaxy<SUP>2-4</SUP>, none of
  them inhabit globular clusters, some of the oldest known stellar
  structures. These show metal content of at least approximately 0.2%
  of the solar metallicity ([Fe /H ]≳−2.7 )?. This metallicity
  floor appears universal<SUP>5,6</SUP>, and it has been proposed that
  protogalaxies that merged into the galaxies we observe today were
  simply not massive enough to form clusters that survived to the present
  day<SUP>7</SUP>. Here we report observations of a stellar stream, C-19,
  whose metallicity is less than 0.05% of the solar metallicity ([F e /
  H ]=−3.38 ±0.06 (s t a t i s t i c a l )±0.20 (s y s t e m a t i
  c ))?. The low metallicity dispersion and the chemical abundances of
  the C-19 stars show that this stream is the tidal remnant of the most
  metal-poor globular cluster ever discovered, and is significantly below
  the purported metallicity floor: clusters with significantly lower
  metallicities than observed today existed in the past and contributed
  their stars to the Milky Way halo.

---------------------------------------------------------
Title: The Pristine survey - XIV. Chemical analysis of two
    ultra-metal-poor stars
Authors: Lardo, C.; Mashonkina, L.; Jablonka, P.; Bonifacio, P.;
   Caffau, E.; Aguado, D. S.; González Hernández, J. I.; Sestito,
   F.; Kielty, C. L.; Venn, K. A.; Hill, V.; Starkenburg, E.; Martin,
   N. F.; Sitnova, T.; Arentsen, A.; Carlberg, R. G.; Navarro, J. F.;
   Kordopatis, G.
2021MNRAS.508.3068L    Altcode: 2021arXiv210914477L; 2021MNRAS.tmp.2603L
  Elemental abundances of the most metal-poor stars reflect the
  conditions in the early Galaxy and the properties of the first
  stars. We present a spectroscopic follow-up of two ultra-metal-poor
  stars ([Fe/H] &lt; -4.0) identified by the survey Pristine: Pristine
  221.8781+9.7844 and Pristine 237.8588+12.5660 (hereafter Pr 221 and Pr
  237, respectively). Combining data with earlier observations, we find a
  radial velocity of -149.25 ± 0.27 and -3.18 ± 0.19 km s<SUP>-1</SUP>
  for Pr 221 and Pr 237, respectively, with no evidence of variability
  between 2018 and 2020. From a one-dimensional (1D) local thermodynamic
  equilibrium (LTE) analysis, we measure [Fe/H]<SUB>LTE</SUB> = -4.79
  ± 0.14 for Pr 221 and -4.22 ± 0.12 for Pr 237, in good agreement
  with previous studies. Abundances of Li, Na, Mg, Al, Si, Ca, Ti,
  Fe, and Sr were derived based on the non-LTE (NLTE) line formation
  calculations. When NLTE effects are included, we measure slightly
  higher metallicities: [Fe/H]<SUB>NLTE</SUB> = -4.40 ± 0.13 and -3.93
  ± 0.12, for Pr 221 and Pr 237, respectively. Analysis of the G band
  yields [C/Fe]<SUB>1D-LTE</SUB> ≤ +2.3 and [C/Fe]<SUB>1D-LTE</SUB>
  ≤ +2.0 for Pr 221 and Pr 237. Both stars belong to the low-carbon
  band. Upper limits on nitrogen abundances are also derived. Abundances
  for other elements exhibit good agreement with those of stars with
  similar parameters. Finally, to get insight into the properties of
  their progenitors, we compare NLTE abundances to theoretical yields
  of zero-metallicity supernovae (SNe). This suggests that the SNe
  progenitors had masses ranging from 10.6 to 14.4 M<SUB>⊙</SUB>
  and low-energy explosions with (0.3-1.2) × 10<SUP>51</SUP> erg.

---------------------------------------------------------
Title: Young giants of intermediate mass. Evidence of rotation
    and mixing
Authors: Lombardo, Linda; François, Patrick; Bonifacio, Piercarlo;
   Caffau, Elisabetta; del Mar Matas Pinto, Aroa; Charbonnel, Corinne;
   Meynet, Georges; Monaco, Lorenzo; Cescutti, Gabriele; Mucciarelli,
   Alessio
2021A&A...656A.155L    Altcode: 2021arXiv211005229L
  Context. In the search of a sample of metal-poor bright giants
  using Strömgren photometry, we serendipitously found a sample
  of 26 young (ages younger than 1 Gyr) metal-rich giants, some of
  which have high rotational velocities. <BR /> Aims: We determined
  the chemical composition and rotational velocities of these stars
  in order to compare them with predictions from stellar evolution
  models. These stars where of spectral type A to B when on the main
  sequence, and we therefore wished to compare their abundance pattern
  to that of main-sequence A and B stars. <BR /> Methods: Stellar
  masses were derived by comparison of the position of the stars in the
  colour-magnitude diagram with theoretical evolutionary tracks. These
  masses, together with Gaia photometry and parallaxes, were used to
  derive the stellar parameters. We used spectrum synthesis and model
  atmospheres to determine chemical abundances for 16 elements (C, N, O,
  Mg, Al, Ca, Fe, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, and Eu) and rotational
  velocities. <BR /> Results: The age-metallicity degeneracy can affect
  photometric metallicity calibrations. We identify 15 stars as likely
  binary stars. All stars are in prograde motion around the Galactic
  centre and belong to the thin-disc population. All but one of the sample
  stars present low [C/Fe] and high [N/Fe] ratios together with constant
  [(C+N+O)/Fe], suggesting that they have undergone CNO processing
  and first dredge-up. The observed rotational velocities are in line
  with theoretical predictions of the evolution of rotating stars. <P
  />Based on observations obtained at Observatoire de Haute Provence,
  Canada-France-Hawaii Telescope and Telescopio Nazionale Galileo.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Updated radial velocities from
    Gaia DR2 (Seabroke+, 2021)
Authors: Seabroke, G. M.; Fabricius, C.; Teyssier, D.; Sartoretti, P.;
   Katz, D.; Cropper, M.; Antoja, T.; Benson, K.; Smith, M.; Dolding,
   C.; Gosset, E.; Panuzzo, P.; Thevenin, F.; Allende Prieto, C.;
   Blomme, R.; Guerrier, A.; Huckle, H.; Jean-Antoine, A.; Haigron, R.;
   Marchal, O.; Baker, S.; Damerdji, Y.; David, M.; Fremat, Y.; Janssen,
   K.; Jasniewicz, G.; Lobel, A.; Samaras, N.; Plum, G.; Soubiran, C.;
   Vanel, O.; Zwitter, T.; Ajaj, M.; Caffau, E.; Chemin, L.; Royer, F.;
   Brouillet, N.; Crifo, F.; Guy, L. P.; Hambly, N. C.; Leclerc, N.;
   Mastrobuono-Battisti, A.; Viala, Y.
2021yCat..36530160S    Altcode:
  EDR3 status of high-velocity stars in the negative and positive tail
  of DR2's radial velocity distribution. <P />(2 data files).

---------------------------------------------------------
Title: The metal-poor end of the Spite plateau. II. Chemical and
    dynamical investigation
Authors: Matas Pinto, A. M.; Spite, M.; Caffau, E.; Bonifacio, P.;
   Sbordone, L.; Sivarani, T.; Steffen, M.; Spite, F.; François, P.;
   Di Matteo, P.
2021A&A...654A.170M    Altcode: 2021arXiv211000243M
  Context. The study of old, metal-poor stars deepens our knowledge on
  the early stages of the universe. In particular, the study of these
  stars gives us a valuable insight into the masses of the first massive
  stars and their emission of ionising photons. <BR /> Aims: We present
  a detailed chemical analysis and determination of the kinematic and
  orbital properties of a sample of 11 dwarf stars. These are metal-poor
  stars, and a few of them present a low lithium content. We inspected
  whether the other elements also present anomalies. <BR /> Methods:
  We analysed the high-resolution UVES spectra of a few metal-poor stars
  using the Turbospectrum code to synthesise spectral lines profiles. This
  allowed us to derive a detailed chemical analysis of Fe, C, Li, Na,
  Mg, Al, Si, CaI, CaII, ScII, TiII, Cr, Mn, Co, Ni, Sr, and Ba. <BR />
  Results: We find excellent coherence with the reference metal-poor First
  Stars sample. The lithium-poor stars do not present any anomaly of the
  abundance of the elements other than lithium. Among the Li-poor stars,
  we show that CS 22882-027 is very probably a blue-straggler. The star
  CS 30302-145, which has a Li abundance compatible with the plateau,
  has a very low Si abundance and a high Mn abundance. In many aspects,
  it is similar to the α-poor star HE 1424-0241, but it is less
  extreme. It could have been formed in a satellite galaxy and later
  been accreted by our Galaxy. This hypothesis is also supported by
  its kinematics. <P />The table with equivalent widths discussed in
  this paper is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A170">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A170</A>
  <P />Based on observations collected at the European Organisation for
  Astronomical Research in the Southern Hemisphere (Programmes 076.A-0463
  PI(Lopez), 077.D-0299 PI(Bonifacio)), 086.D-0871(A) (PI Meléndez).

---------------------------------------------------------
Title: Gaia Early Data Release 3. Updated radial velocities from
    Gaia DR2
Authors: Seabroke, G. M.; Fabricius, C.; Teyssier, D.; Sartoretti, P.;
   Katz, D.; Cropper, M.; Antoja, T.; Benson, K.; Smith, M.; Dolding,
   C.; Gosset, E.; Panuzzo, P.; Thévenin, F.; Allende Prieto, C.;
   Blomme, R.; Guerrier, A.; Huckle, H.; Jean-Antoine, A.; Haigron, R.;
   Marchal, O.; Baker, S.; Damerdji, Y.; David, M.; Frémat, Y.; Janßen,
   K.; Jasniewicz, G.; Lobel, A.; Samaras, N.; Plum, G.; Soubiran, C.;
   Vanel, O.; Zwitter, T.; Ajaj, M.; Caffau, E.; Chemin, L.; Royer, F.;
   Brouillet, N.; Crifo, F.; Guy, L. P.; Hambly, N. C.; Leclerc, N.;
   Mastrobuono-Battisti, A.; Viala, Y.
2021A&A...653A.160S    Altcode: 2021arXiv210802796S
  Context. Gaia's Early Third Data Release (EDR3) does not contain new
  radial velocities because these will be published in Gaia's full third
  data release (DR3), expected in the first half of 2022. To maximise
  the usefulness of EDR3, Gaia's second data release (DR2) sources
  (with radial velocities) are matched to EDR3 sources to allow their
  DR2 radial velocities to also be included in EDR3. This presents
  two considerations: (i) a list of 70 365 sources with potentially
  contaminated DR2 radial velocities has been published; and (ii) EDR3
  is based on a new astrometric solution and a new source list, which
  means sources in DR2 may not be in EDR3. <BR /> Aims: The two aims of
  this work are: (i) investigate the list in order to improve the DR2
  radial velocities being included in EDR3 and to avoid false-positive
  hypervelocity candidates; and (ii) match the DR2 sources (with radial
  velocities) to EDR3 sources. <BR /> Methods: Thetwo methods of this
  work are: (i) unpublished, preliminary DR3 radial velocities of sources
  on the list, and high-velocity stars not on the list, are compared
  with their DR2 radial velocities to identify and remove contaminated
  DR2 radial velocities from EDR3; and (ii) proper motions and epoch
  position propagation is used to attempt to match all sources with radial
  velocities in DR2 to EDR3 sources. The comparison of DR2 and DR3 radial
  velocities is used to resolve match ambiguities. <BR /> Results: EDR3
  contains 7 209 831 sources with a DR2 radial velocity, which is 99.8%
  of sources with a radial velocity in DR2 (7 224 631). 14 800 radial
  velocities from DR2 are not propagated to any EDR3 sources because
  (i) 3871 from the list are found to either not have a DR3 radial
  velocity or it differs significantly from its DR2 value, and five
  high-velocity stars not on the list are confirmed to have contaminated
  radial velocities, in one case because of contamination from the
  non-overlapping Radial Velocity Spectrometer windows of a nearby, bright
  star; and (ii) 10 924 DR2 sources could not be satisfactorily matched to
  any EDR3 sources, so their DR2 radial velocities are also missing from
  EDR3. <BR /> Conclusions: The reliability of radial velocities in EDR3
  has improved compared to DR2 because the update removes a small fraction
  of erroneous radial velocities (0.05% of DR2 radial velocities and 5.5%
  of the list). Lessons learnt from EDR3 (e.g. bright star contamination)
  will improve the radial velocities in future Gaia data releases. The
  main reason for radial velocities from DR2 not propagating to EDR3
  is not related to DR2 radial velocity quality. It is because the DR2
  astrometry is based on one component of close binary pairs, while
  EDR3 astrometry is based on the other component, which prevents these
  sources from being unambiguously matched.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances of metal-poor stars
    (Matas Pinto+, 2021)
Authors: Matas Pinto, A. M.; Spite, M.; Caffau, E.; Bonifacio, P.;
   Sbordone, L.; Sivarani, T.; Steffen, M.; Spite, F.; Francois, P.;
   Di Matteo, P.
2021yCat..36540170M    Altcode:
  The observations of the stars we studied are described in detail in
  Paper I (Sbordone et al., 2010A&amp;A...522A..26S, Cat. J/A+A/522/A26)
  (see their Table 1). <P />Briefly, observations were performed with
  the high-resolution spectrograph UVES at the ESO-VLT. The spectra have
  a resolving power R=~40000 and were centred at 390nm (spectral range:
  330-451nm) and 580nm (spectral range: 479-680nm). For two stars (BS
  17572-100 and HE 1413-1954) that were previously studied in the frame
  of the HERES program (Christlieb et al., 2004A&amp;A...428.1027C;
  Barklem et al., 2005A&amp;A...439..129B, Cat. J/A+A/439/129) from
  UVES spectra centred at 437nm (spectral range: 376-497nm), the blue
  spectra were centred at 346 nm (spectral range: 320-386nm). The S/N of
  the spectra at 400nm is only about half of the S/N measured at 670nm
  (see Table 1 in Paper I) and thus generally does not exceed 50. For
  two stars, CS 22188-033 and HE 0148-2611, new UVES spectra from the
  ESO archives, centred at 390 and 580nm, were also used, increasing
  the S/N ratio of the mean spectrum. The data were reduced using the
  standard UVES pipeline with the same procedures as used in Bonifacio
  et al. (2007A&amp;A...462..851B). <P />Here we present the table with
  equivalent widths discussed in the paper. <P />(2 data files).

---------------------------------------------------------
Title: The Gaia RVS benchmark stars. I. Chemical inventory of the
    first sample of evolved stars and its Rb NLTE investigation
Authors: Caffau, E.; Bonifacio, P.; Korotin, S. A.; François,
   P.; Lallement, R.; Matas Pinto, A. M.; Di Matteo, P.; Steffen, M.;
   Mucciarelli, A.; Katz, D.; Haywood, M.; Chemin, L.; Sartoretti, P.;
   Sbordone, L.; Andrievsky, S. M.; Kovtyukh, V. V.; Spite, M.; Spite,
   F.; Panuzzo, P.; Royer, F.; Thévenin, F.; Ludwig, H. -G.; Marchal,
   O.; Plum, G.
2021A&A...651A..20C    Altcode:
  Context. The Radial Velocity Spectrometer (RVS) on board the Gaia
  satellite is not provided with a wavelength calibration lamp. It uses
  its observations of stars with known radial velocity to derive the
  dispersion relation. To derive an accurate radial velocity calibration,
  a precise knowledge of the line spread function (LSF) of the RVS is
  necessary. Good-quality ground-based observations in the wavelength
  range of the RVS are highly desired to determine the LSF. <BR /> Aims:
  Several radial velocity standard stars are available to the Gaia
  community. The highest possible number of calibrators will surely
  allow us to improve the accuracy of the radial velocity. Because
  the LSF may vary across the focal plane of the RVS, a large number
  of high-quality spectra for the LSF calibration may allow us to
  better sample the properties of the focal plane. <BR /> Methods:
  We selected a sample of stars to be observed with UVES at the Very
  Large Telescope, in a setting including the wavelength range of RVS,
  that are bright enough to allow obtaining high-quality spectra in a
  short time. We also selected stars that lack chemical investigation in
  order to increase the sample of bright, close by stars with a complete
  chemical inventory. <BR /> Results: We here present the chemical
  analysis of the first sample of 80 evolved stars. The quality of the
  spectra is very good, therefore we were able to derive abundances for
  20 elements. The metallicity range spanned by the sample is about 1
  dex, from slightly metal-poor to solar metallicity. We derived the
  Rb abundance for all stars and investigated departures from local
  thermodynamical equilibrium (NLTE) in the formation of its lines. <BR />
  Conclusions: The sample of spectra is of good quality, which is useful
  for a Gaia radial velocity calibration. The Rb NLTE effects in this
  stellar parameters range are small but sometimes non-negligible,
  especially for spectra of this good quality. <P />Tables B.3
  and C.1 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A20">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A20</A>
  <P />Based on observations made with UVES at VLT 104.D.0325.

---------------------------------------------------------
Title: TOPoS. VI. The metal-weak tail of the metallicity distribution
    functions of the Milky Way and the Gaia-Sausage-Enceladus structure
Authors: Bonifacio, P.; Monaco, L.; Salvadori, S.; Caffau, E.; Spite,
   M.; Sbordone, L.; Spite, F.; Ludwig, H. -G.; Di Matteo, P.; Haywood,
   M.; François, P.; Koch-Hansen, A. J.; Christlieb, N.; Zaggia, S.
2021A&A...651A..79B    Altcode: 2021arXiv210508360B
  Context. The goal of the Turn-Off Primordial Stars survey (TOPoS)
  project is to find and analyse turn-off (TO) stars of extremely low
  metallicity. To select the targets for spectroscopic follow-up at high
  spectral resolution, we relied on low-resolution spectra from the
  Sloan Digital Sky Survey (SDSS). <BR /> Aims: In this paper, we use
  the metallicity estimates we obtained from our analysis of the SDSS
  spectra to construct the metallicity distribution function (MDF) of the
  Milky Way, with special emphasis on its metal-weak tail. The goal is
  to provide the underlying distribution out of which the TOPoS sample
  was extracted. <BR /> Methods: We made use of SDSS photometry, Gaia
  photometry, and distance estimates derived from the Gaia parallaxes to
  derive a metallicity estimate for a large sample of over 24 million TO
  stars. This sample was used to derive the metallicity bias of the sample
  for which SDSS spectra are available. <BR /> Results: We determined that
  the spectroscopic sample is strongly biased in favour of metal-poor
  stars, as intended. A comparison with the unbiased photometric
  sample allows us to correct for the selection bias. We selected a
  sub-sample of stars with reliable parallaxes for which we combined
  the SDSS radial velocities with Gaia proper motions and parallaxes to
  compute actions and orbital parameters in the Galactic potential. This
  allowed us to characterise the stars dynamically, and in particular
  to select a sub-sample that belongs to the Gaia-Sausage-Enceladus
  (GSE) accretion event. We are thus also able to provide the MDF of
  GSE. <BR /> Conclusions: The metal-weak tail derived in our study is
  very similar to that derived in the H3 survey and in the Hamburg/ESO
  Survey. This allows us to average the three MDFs and provide an
  error bar for each metallicity bin. Inasmuch as the GSE structure is
  representative of the progenitor galaxy that collided with the Milky
  Way, that galaxy appears to be strongly deficient in metal-poor
  stars compared to the Milky Way, suggesting that the metal-weak
  tail of the latter has been largely formed by accretion of low-mass
  galaxies rather than massive galaxies, such as the GSE progenitor. <P
  />Spectroscopic and photometric metallicities derived and discussed
  in this paper as well as orbital actions computed and discussed in
  this paper are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A79">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A79</A>

---------------------------------------------------------
Title: Charting the Galactic Acceleration Field. I. A Search for
    Stellar Streams with Gaia DR2 and EDR3 with Follow-up from ESPaDOnS
    and UVES
Authors: Ibata, Rodrigo; Malhan, Khyati; Martin, Nicolas; Aubert,
   Dominique; Famaey, Benoit; Bianchini, Paolo; Monari, Giacomo;
   Siebert, Arnaud; Thomas, Guillaume F.; Bellazzini, Michele; Bonifacio,
   Piercarlo; Caffau, Elisabetta; Renaud, Florent
2021ApJ...914..123I    Altcode: 2020arXiv201205245I
  We present maps of the stellar streams detected in the Gaia Data Release
  2 (DR2) and Early Data Release 3 (EDR3) catalogs using the STREAMFINDER
  algorithm. We also report the spectroscopic follow-up of the brighter
  DR2 stream members obtained with the high-resolution CFHT/ESPaDOnS
  and VLT/UVES spectrographs as well as with the medium-resolution
  NTT/EFOSC2 spectrograph. Two new stellar streams that do not have a
  clear progenitor are detected in DR2 (named Hríd and Gunnthrá), and
  seven are detected in EDR3 (named Gaia-6 to Gaia-12). Several candidate
  streams are also identified. The software also finds very long tidal
  tails associated with the 15 globular clusters: NGC 288, NGC 1261, NGC
  1851, NGC 2298, NGC 2808, NGC 3201, M68, ωCen, NGC 5466, Palomar 5,
  M5, NGC 6101, M92, NGC 6397, and NGC 7089. These stellar streams will be
  used in subsequent contributions in this series to chart the properties
  of the Galactic acceleration field on ~100 pc to ~100 kpc scales.

---------------------------------------------------------
Title: Gaia Early Data Release 3. Summary of the contents and survey
    properties (Corrigendum)
Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.;
   Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.;
   Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.;
   Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.;
   Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.;
   Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.;
   van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli,
   F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra,
   R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler,
   F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.;
   Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.;
   Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio,
   L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer,
   D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.;
   Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca,
   A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.;
   Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.;
   Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin,
   A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.;
   Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.;
   Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.;
   Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.;
   Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.;
   Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog,
   Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé,
   S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.;
   Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma,
   S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli,
   B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.;
   Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.;
   Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto,
   G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de
   Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza,
   R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.;
   Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo,
   P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen,
   D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.;
   Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.;
   Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato,
   D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras,
   P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona,
   S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.;
   González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy,
   L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger,
   T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz,
   G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.;
   Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.;
   Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.;
   Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant,
   J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.;
   Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.;
   Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.;
   Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.;
   Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy,
   C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde,
   J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi,
   A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti,
   E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.;
   Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate,
   M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.;
   Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.;
   Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski,
   G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.;
   Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso,
   M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan,
   D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala,
   L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.;
   Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.;
   Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris,
   F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.;
   Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen,
   E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas,
   S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.;
   Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T.
2021A&A...650C...3G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: VizieR Online Data Catalog: TO stars metallicity estimate
    (Bonifacio+, 2021)
Authors: Bonifacio, P.; Monaco, L.; Salvadori, S.; Caffau, E.; Spite,
   M.; Sbordone, L.; Spite, F.; Ludwig, H. -G.; Di Matteo, P.; Haywood,
   M.; Francois, P.; Koch-Hansen, A. J.; Christlieb, N. C.; Zaggia, S.
2021yCat..36510079B    Altcode:
  We made use of SDSS photometry, Gaia photometry, and distance estimates
  derived from the Gaia parallaxes to derive a metallicity estimate for
  a large sample of over 24 million TO stars. This sample was used to
  derive the metallicity bias of the sample for which SDSS spectra are
  available. <P />(3 data files).

---------------------------------------------------------
Title: Gaia Early Data Release 3. Structure and properties of the
    Magellanic Clouds
Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini,
   G.; Delgado, H. E.; McMillan, P. J.; Romero-Gómez, M.; Balbinot,
   E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni,
   M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.;
   Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.;
   Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer,
   L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.;
   Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones,
   C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi,
   M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.;
   Ducourant, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.;
   Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo,
   P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.;
   Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann,
   M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme,
   R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino,
   A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro,
   A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.;
   Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.;
   Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou,
   D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl,
   B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins,
   A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal,
   O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.;
   Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello,
   M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.;
   van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.;
   Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez
   Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.;
   Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez,
   L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.;
   Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.;
   Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin,
   T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.;
   Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.;
   Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez,
   T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.;
   Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.;
   De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres,
   A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.;
   Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding,
   C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.;
   Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.;
   Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato,
   D.; Garcia-Gutierrez, A.; García-Torres, M.; Gavras, P.; Gerlach,
   E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik,
   M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.;
   Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.;
   Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.;
   Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.;
   Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.;
   Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion,
   J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm,
   H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.;
   Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos,
   M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.;
   Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti,
   A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.;
   Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Morbidelli,
   R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy,
   C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde,
   J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi,
   A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti,
   E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.;
   Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate,
   M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Riva, A.; Rixon,
   G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell,
   N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés,
   A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Gimenez,
   V. Sanchez; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.;
   Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.;
   Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.;
   Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto,
   F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges,
   M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor,
   M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra,
   J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.;
   Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.;
   Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec,
   J.; Zucker, S.; Zurbach, C.; Zwitter, T.
2021A&A...649A...7G    Altcode: 2020arXiv201201771G
  Context. This work is part of the Gaia Data Processing and Analysis
  Consortium papers published with the Gaia Early Data Release 3
  (EDR3). It is one of the demonstration papers aiming to highlight
  the improvements and quality of the newly published data by applying
  them to a scientific case. <BR /> Aims: We use the Gaia EDR3 data to
  study the structure and kinematics of the Magellanic Clouds. The large
  distance to the Clouds is a challenge for the Gaia astrometry. The
  Clouds lie at the very limits of the usability of the Gaia data,
  which makes the Clouds an excellent case study for evaluating the
  quality and properties of the Gaia data. <BR /> Methods: The basis
  of our work are two samples selected to provide a representation as
  clean as possible of the stars of the Large Magellanic Cloud (LMC)
  and the Small Magellanic Cloud (SMC). The selection used criteria
  based on position, parallax, and proper motions to remove foreground
  contamination from the Milky Way, and allowed the separation of the
  stars of both Clouds. From these two samples we defined a series
  of subsamples based on cuts in the colour-magnitude diagram; these
  subsamples were used to select stars in a common evolutionary phase and
  can also be used as approximate proxies of a selection by age. <BR />
  Results: We compared the Gaia Data Release 2 and Gaia EDR3 performances
  in the study of the Magellanic Clouds and show the clear improvements
  in precision and accuracy in the new release. We also show that the
  systematics still present in the data make the determination of the
  3D geometry of the LMC a difficult endeavour; this is at the very
  limit of the usefulness of the Gaia EDR3 astrometry, but it may become
  feasible with the use of additional external data. We derive radial
  and tangential velocity maps and global profiles for the LMC for the
  several subsamples we defined. To our knowledge, this is the first
  time that the two planar components of the ordered and random motions
  are derived for multiple stellar evolutionary phases in a galactic disc
  outside the Milky Way, showing the differences between younger and older
  phases. We also analyse the spatial structure and motions in the central
  region, the bar, and the disc, providing new insightsinto features and
  kinematics. Finally, we show that the Gaia EDR3 data allows clearly
  resolving the Magellanic Bridge, and we trace the density and velocity
  flow of the stars from the SMC towards the LMC not only globally,
  but also separately for young and evolved populations. This allows
  us to confirm an evolved population in the Bridge that is slightly
  shift from the younger population. Additionally, we were able to
  study the outskirts of both Magellanic Clouds, in which we detected
  some well-known features and indications of new ones. <P />Velocity
  profiles are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A7">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A7</A>

---------------------------------------------------------
Title: Gaia Early Data Release 3. The Galactic anticentre
Authors: Gaia Collaboration; Antoja, T.; McMillan, P. J.; Kordopatis,
   G.; Ramos, P.; Helmi, A.; Balbinot, E.; Cantat-Gaudin, T.; Chemin, L.;
   Figueras, F.; Jordi, C.; Khanna, S.; Romero-Gómez, M.; Seabroke,
   G. M.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans,
   D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Klioner, S. A.; Lammers,
   U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.;
   Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz,
   D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.;
   De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat,
   Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.;
   Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.;
   Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Sordo, R.; Tanga,
   P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.;
   Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.;
   Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio,
   L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer,
   D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.;
   Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca,
   A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.;
   Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.;
   Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers,
   T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.;
   Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.;
   Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves,
   J.; Anderson, R. I.; Varela, E. Anglada; Audard, M.; Baines, D.;
   Baker, S. G.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Barbato,
   D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.;
   Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.;
   Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.;
   Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.;
   Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cánovas, H.; Carballo, R.; Carlucci, T.; Carnerero, M. I.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Cioni,
   M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.;
   Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.;
   David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De
   Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso,
   E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.;
   Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.;
   Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler,
   S.; Fedorets, G.; Fernique, P.; Fienga, A.; Fouron, C.; Fragkoudi, F.;
   Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.;
   García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer,
   R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez,
   A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.;
   Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo,
   S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle,
   H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe,
   F.; Karbevska, L.; Kervella, P.; Kochoska, A.; Kontizas, M.; Korn,
   A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza,
   A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.;
   Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.;
   Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel,
   A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.;
   Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip,
   A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina,
   S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro,
   R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel,
   T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy,
   C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde,
   J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi,
   A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.;
   Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer,
   M.; Raiteri, C. M.; Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.;
   Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon,
   N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.;
   Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.;
   Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna,
   N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol,
   M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.;
   Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.;
   Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele,
   I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados,
   L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira,
   R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger,
   N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala,
   Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski,
   Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach,
   C.; Zwitter, T.
2021A&A...649A...8G    Altcode: 2021arXiv210105811G
  <BR /> Aims: We aim to demonstrate the scientific potential of the
  Gaia Early Data Release 3 (EDR3) for the study of different aspects
  of the Milky Way structure and evolution and we provide, at the
  same time, a description of several practical aspects of the data
  and examples of their usage. <BR /> Methods: We used astrometric
  positions, proper motions, parallaxes, and photometry from EDR3 to
  select different populations and components and to calculate the
  distances and velocities in the direction of the anticentre. In this
  direction, the Gaia astrometric data alone enable the calculation
  of the vertical and azimuthal velocities; also, the extinction is
  relatively low compared to other directions in the Galactic plane. We
  then explore the disturbances of the current disc, the spatial and
  kinematical distributions of early accreted versus in situ stars,
  the structures in the outer parts of the disc, and the orbits of open
  clusters Berkeley 29 and Saurer 1. <BR /> Results: With the improved
  astrometry and photometry of EDR3, we find that: (i) the dynamics of the
  Galactic disc are very complex with oscillations in the median rotation
  and vertical velocities as a function of radius, vertical asymmetries,
  and new correlations, including a bimodality with disc stars with large
  angular momentum moving vertically upwards from below the plane, and
  disc stars with slightly lower angular momentum moving preferentially
  downwards; (ii) we resolve the kinematic substructure (diagonal ridges)
  in the outer parts of the disc for the first time; (iii) the red
  sequence that has been associated with the proto-Galactic disc that
  was present at the time of the merger with Gaia-Enceladus-Sausage is
  currently radially concentrated up to around 14 kpc, while the blue
  sequence that has been associated with debris of the satellite extends
  beyond that; (iv) there are density structures in the outer disc,
  both above and below the plane, most probably related to Monoceros,
  the Anticentre Stream, and TriAnd, for which the Gaia data allow an
  exhaustive selection of candidate member stars and dynamical study;
  and (v) the open clusters Berkeley 29 and Saurer 1, despite being
  located at large distances from the Galactic centre, are on nearly
  circular disc-like orbits. <BR /> Conclusions: Even with our simple
  preliminary exploration of the Gaia EDR3, we demonstrate how, once
  again, these data from the European Space Agency are crucial for our
  understanding of the different pieces of our Galaxy and their connection
  to its global structure and history. <P />Movie is available at <A
  href="https://www.aanda.org/10.1051/0004-6361/202039714/olm">https://www.aanda.org</A>

---------------------------------------------------------
Title: Gaia Early Data Release 3. Acceleration of the Solar System
    from Gaia astrometry
Authors: Gaia Collaboration; Klioner, S. A.; Mignard, F.; Lindegren,
   L.; Bastian, U.; McMillan, P. J.; Hernández, J.; Hobbs, D.;
   Ramos-Lerate, M.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach,
   E.; Geyer, R.; Hilger, T.; Lammers, U.; Steidelmüller, H.; Stephenson,
   C. A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Babusiaux, C.; Creevey, O. L.; Evans, D. W.; Eyer, L.;
   Hutton, A.; Jansen, F.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.;
   Bailer-Jones, C. A. L.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi,
   M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.;
   Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra,
   R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler,
   F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.;
   Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.;
   Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio,
   L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hatzidimitriou, D.; Heiter, U.; Hestroffer, D.; Hodgkin,
   S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan,
   S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.;
   Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.;
   Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.;
   Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers,
   T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.;
   Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.;
   Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.;
   Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines,
   D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.;
   Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.;
   Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.;
   Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma,
   S.; Boch, T.; Bossini, D.; Bouquillon, S.; Bramante, L.; Breedt, E.;
   Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.;
   Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas,
   H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa,
   A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.;
   Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.;
   David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder,
   J.; de Souza, R.; de Teodoro, P.; del Peloso, E. F.; del Pozo, E.;
   Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite,
   S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke,
   H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.;
   Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.;
   Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.;
   García-Torres, M.; Garofalo, A.; Gavras, P.; Giacobbe, P.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.;
   González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy,
   L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hładczuk,
   N.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi
   Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.;
   Kochoska, A.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.;
   Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion,
   J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm,
   H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.;
   Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos,
   M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.;
   Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti,
   A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.;
   Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.;
   Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.;
   Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.;
   Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio,
   P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.;
   Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.;
   Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini,
   S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Re Fiorentin,
   P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon,
   N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell,
   N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.;
   Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez,
   V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca,
   E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui,
   H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano,
   E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.;
   Steele, I. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris,
   F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.;
   Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen,
   E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.;
   Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao,
   H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T.
2021A&A...649A...9G    Altcode: 2020arXiv201202036G
  Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate
  astrometry for about 1.6 million compact (QSO-like) extragalactic
  sources, 1.2 million of which have the best-quality five-parameter
  astrometric solutions. <BR /> Aims: The proper motions of QSO-like
  sources are used to reveal a systematic pattern due to the acceleration
  of the solar systembarycentre with respect to the rest frame of the
  Universe. Apart from being an important scientific result by itself,
  the acceleration measured in this way is a good quality indicator of the
  Gaia astrometric solution. <BR /> Methods: Theeffect of the acceleration
  was obtained as a part of the general expansion of the vector field of
  proper motions in vector spherical harmonics (VSH). Various versions
  of the VSH fit and various subsets of the sources were tried and
  compared to get the most consistent result and a realistic estimate of
  its uncertainty. Additional tests with the Gaia astrometric solution
  were used to get a better idea of the possible systematic errors in the
  estimate. <BR /> Results: Our best estimate of the acceleration based on
  Gaia EDR3 is (2.32 ± 0.16) × 10<SUP>−10</SUP> m s<SUP>−2</SUP> (or
  7.33 ±0.51 km s<SUP>−1</SUP> Myr−1) towards α = 269.1° ± 5.4°,
  δ = −31.6° ± 4.1°, corresponding to a proper motion amplitude
  of 5.05 ±0.35 μas yr<SUP>−1</SUP>. This is in good agreement
  with the acceleration expected from current models of the Galactic
  gravitational potential. We expect that future Gaia data releases will
  provide estimates of the acceleration with uncertainties substantially
  below 0.1 μas yr<SUP>−1</SUP>. <P />Movie is only available at <A
  href="https://www.aanda.org/10.1051/0004-6361/202039734/olm">https://www.aanda.org</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gaia RVS benchmark
    stars. I. (Caffau+, 2021)
Authors: Caffau, E.; Bonifacio, P.; Korotin, S. A.; Francois, P.;
   Lallement, R.; Matas Pinto, A. M.; Di Matteo, P.; Steffen, M.;
   Mucciarelli, A.; Katz, D.; Haywood, M.; Chemin, L.; Sartoretti, P.;
   Sbordone, L.; Andrievsky, S. M.; Kovtyukh, V. V.; Spite, M.; Spite,
   F.; Panuzzo, P.; Royer, F.; Thevenin, F.; Ludwig, H. -G.; Marchal,
   O.; Plum, G.
2021yCat..36510020C    Altcode:
  For this project on the UVES spectrograph, we selected the setting
  437+760. The choices on the setting were that (i) the 760 range
  completely covers the RVS range without any gaps, and (ii) the 437 range
  is the reddest setting that can be coupled with the 760 setting. For
  metal-rich stars (the majority of our targets), observations in
  blue settings provide very crowded spectra, and a higher S/N can be
  achieved in this selected setting than in bluer settings such as the
  390 setting. <P />We chose the highest UVES resolution (slit 0.4"
  in the blue arm and 0.3" in the red arm). For all observations, the
  DIC2 437+760 setting was used. For the stars brighter than V magnitude
  8.5, an observing block comprises ten observations of 77.5s to avoid
  detector saturation. For the stars fainter than 8.5, five exposures of
  202 s allow avoiding detector saturation. In this program, 90 stars
  have been observed, 80 of which are evolved stars and are analysed
  here. The 10 unevolved stars will be analysed with stars of similar
  stellar parameters that are observed or are scheduled to be observed
  for the following two ESO periods (P105 and P106). <P />(2 data files).

---------------------------------------------------------
Title: Gaia Early Data Release 3. Summary of the contents and survey
    properties
Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.;
   Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.;
   Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.;
   Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.;
   Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.;
   Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.;
   Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.;
   van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli,
   F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra,
   R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler,
   F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.;
   Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.;
   Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio,
   L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.;
   Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer,
   D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.;
   Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca,
   A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.;
   Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.;
   Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin,
   A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.;
   Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.;
   Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.;
   Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.;
   Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.;
   Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog,
   Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé,
   S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.;
   Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma,
   S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.;
   Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli,
   B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.;
   Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.;
   Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto,
   G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de
   Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza,
   R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.;
   Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo,
   P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen,
   D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.;
   Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.;
   Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato,
   D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras,
   P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona,
   S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.;
   González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy,
   L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger,
   T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz,
   G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.;
   Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.;
   Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.;
   Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E.; Lindstrøm, E. P.; Lister, T. A.; Livanou, E.; Lobel,
   A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.;
   Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.;
   Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.;
   Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.;
   Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.;
   Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.;
   Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy,
   C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde,
   J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi,
   A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti,
   E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.;
   Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate,
   M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.;
   Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.;
   Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski,
   G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.;
   Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso,
   M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan,
   D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala,
   L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.;
   Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller,
   H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.;
   Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.;
   Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant,
   M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.;
   Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T.
2021A&A...649A...1G    Altcode: 2020arXiv201201533G
  Context. We present the early installment of the third Gaia data
  release, Gaia EDR3, consisting of astrometry and photometry for 1.8
  billion sources brighter than magnitude 21, complemented with the
  list of radial velocities from Gaia DR2. <BR /> Aims: A summary of
  the contents of Gaia EDR3 is presented, accompanied by a discussion
  on the differences with respect to Gaia DR2 and an overview of the
  main limitations which are present in the survey. Recommendations
  are made on the responsible use of Gaia EDR3 results. <BR /> Methods:
  The raw data collected with the Gaia instruments during the first 34
  months of the mission have been processed by the Gaia Data Processing
  and Analysis Consortium and turned into this early third data release,
  which represents a major advance with respect to Gaia DR2 in terms of
  astrometric and photometric precision, accuracy, and homogeneity. <BR
  /> Results: Gaia EDR3 contains celestial positions and the apparent
  brightness in G for approximately 1.8 billion sources. For 1.5 billion
  of those sources, parallaxes, proper motions, and the (G<SUB>BP</SUB>
  − G<SUB>RP</SUB>) colour are also available. The passbands for
  G, G<SUB>BP</SUB>, and G<SUB>RP</SUB> are provided as part of the
  release. For ease of use, the 7 million radial velocities from Gaia
  DR2 are included in this release, after the removal of a small number
  of spurious values. New radial velocities will appear as part of Gaia
  DR3. Finally, Gaia EDR3 represents an updated materialisation of the
  celestial reference frame (CRF) in the optical, the Gaia-CRF3, which
  is based solely on extragalactic sources. The creation of the source
  list for Gaia EDR3 includes enhancements that make it more robust with
  respect to high proper motion stars, and the disturbing effects of
  spurious and partially resolved sources. The source list is largely the
  same as that for Gaia DR2, but it does feature new sources and there
  are some notable changes. The source list will not change for Gaia
  DR3. <BR /> Conclusions: Gaia EDR3 represents a significant advance
  over Gaia DR2, with parallax precisions increased by 30 per cent,
  proper motion precisions increased by a factor of 2, and the systematic
  errors in the astrometry suppressed by 30-40% for the parallaxes and
  by a factor ~2.5 for the proper motions. The photometry also features
  increased precision, but above all much better homogeneity across
  colour, magnitude, and celestial position. A single passband for G,
  G<SUB>BP</SUB>, and G<SUB>RP</SUB> is valid over the entire magnitude
  and colour range, with no systematics above the 1% level

---------------------------------------------------------
Title: Gaia Early Data Release 3. The Gaia Catalogue of Nearby Stars
Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki, J.;
   Reylé, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow, M. A.;
   de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.; Cooper, W. J.;
   Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann, J.; Sozzetti, A.;
   Brown, A. G. A.; Vallenari, A.; Prusti, T.; Babusiaux, C.; Biermann,
   M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.;
   Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.;
   Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.;
   Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.;
   Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.;
   van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant,
   C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier,
   A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Messineo, R.; Mowlavi,
   N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet,
   F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.;
   Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta,
   E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.;
   Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro,
   A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.;
   Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron,
   R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou, D.; Heiter,
   U.; Hernández, J.; Hestroffer, D.; Holl, B.; Janßen, K.; Jevardat
   de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.;
   Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.;
   Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.;
   Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini,
   L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla, E.; van
   Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.; Aerts,
   C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez
   Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.;
   Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez,
   L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.;
   Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.;
   Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carnerero, M. I.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin,
   L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cornez, T.; Cowell,
   S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.;
   David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De
   Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso,
   E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.;
   Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding,
   C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.;
   Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.;
   Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai,
   M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo,
   A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria,
   I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy,
   L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger,
   T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz,
   G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.;
   Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.;
   Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.;
   Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton,
   Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao,
   S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.;
   Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant,
   J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco,
   F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip,
   A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan,
   P. J.; Messina, S.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro,
   R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel,
   T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy,
   C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde,
   J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi,
   A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti,
   E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.;
   Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate,
   M.; Re Fiorentin, P.; Regibo, S.; Ripepi, V.; Riva, A.; Rixon, G.;
   Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez,
   M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà
   Sellés, A.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez,
   V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca,
   E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf,
   S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Solano, E.;
   Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele,
   I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados,
   L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira,
   R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger,
   N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.;
   Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.;
   Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.;
   Zwitter, T.
2021A&A...649A...6G    Altcode: 2020arXiv201202061G
  <BR /> Aims: We produce a clean and well-characterised catalogue of
  objects within 100 pc of the Sun from the Gaia Early Data Release 3. We
  characterise the catalogue through comparisons to the full data release,
  external catalogues, and simulations. We carry out a first analysis
  of the science that is possible with this sample to demonstrate its
  potential and best practices for its use. <BR /> Methods: Theselection
  of objects within 100 pc from the full catalogue used selected training
  sets, machine-learning procedures, astrometric quantities, and solution
  quality indicators to determine a probability that the astrometric
  solution is reliable. The training set construction exploited the
  astrometric data, quality flags, and external photometry. For all
  candidates we calculated distance posterior probability densities
  using Bayesian procedures and mock catalogues to define priors. Any
  object with reliable astrometry and a non-zero probability of being
  within 100 pc is included in the catalogue. <BR /> Results: We have
  produced a catalogue of 331 312 objects that we estimate contains at
  least 92% of stars of stellar type M9 within 100 pc of the Sun. We
  estimate that 9% of the stars in this catalogue probably lie outside
  100 pc, but when the distance probability function is used, a correct
  treatment of this contamination is possible. We produced luminosity
  functions with a high signal-to-noise ratio for the main-sequence
  stars, giants, and white dwarfs. We examined in detail the Hyades
  cluster, the white dwarf population, and wide-binary systems and
  produced candidate lists for all three samples. We detected local
  manifestations of several streams, superclusters, and halo objects,
  in which we identified 12 members of Gaia Enceladus. We present the
  first direct parallaxes of five objects in multiple systems within
  10 pc of the Sun. <BR /> Conclusions: We provide the community
  with a large, well-characterised catalogue of objects in the
  solar neighbourhood. This is a primary benchmark for measuring and
  understanding fundamental parameters and descriptive functions in
  astronomy. <P />Tables are only available at the CDS via anonymous ftp
  to <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A6">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A6</A>

---------------------------------------------------------
Title: Purveyors of fine halos. III. Chemical abundance analysis of
    a potential ωCen associate
Authors: Koch-Hansen, Andreas J.; Hansen, Camilla Juul; Lombardo,
   Linda; Bonifacio, Piercarlo; Hanke, Michael; Caffau, Elisabetta
2021A&A...645A..64K    Altcode: 2020A&A...645A..64K; 2020arXiv201112303K
  Globular clusters (GCs) are important donors to the build-up of the
  Milky Way (MW) stellar halo, having contributed at the ten percent
  level over the Galactic history. Stars that originated from the second
  generation of dissolved or dissolving clusters can be readily identified
  via distinct light-element signatures such as enhanced N and Na and
  simultaneously depleted C and O abundances. In this paper we present
  an extensive chemical abundance analysis of the halo star J110842,
  which was previously kinematically associated with the massive MW GC
  ω Centauri (ωCen), and we discuss viable scenarios from escape to
  encounter. Based on a high-resolution, high signal-to-noise spectrum
  of this star using the UVES spectrograph, we were able to measure 33
  species of 31 elements across all nucleosynthetic channels. The star's
  low metallicity of [Fe II/H] = -2.10 ± 0.02(stat.) ± 0.07(sys.) dex
  places it in the lower sixth percentile of ωCen's metallicity
  distribution. We find that all of the heavier-element abundances,
  from α- and Fe-peak elements to neutron-capture elements are closely
  compatible with ωCen's broad abundance distribution. However,
  given the major overlap of this object's abundances with the bulk
  of all of the MW components, this does not allow for a clear-cut
  distinction of the star's origin. In contrast, our measurements
  of an enhancement in CN and its position on the Na-strong locus of
  the Na-O anticorrelation render it conceivable that it originally
  formed as a second-generation GC star, lending support to a former
  association of this halo star with the massive GC ωCen. <P />Full
  Table 2 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A64">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A64</A>
  <P />Based on observations obtained at ESO Paranal Observatory,
  program 0104.D-0059.

---------------------------------------------------------
Title: Integration and early testing of WEAVE: the next-generation
    spectroscopy facility for the William Herschel Telescope
Authors: Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio,
   Piercarlo; Aguerri, J. Alfonso L.; Vallenari, Antonella; Bishop,
   Georgia; Middleton, Kevin; Benn, Chris; Dee, Kevin; Mignot, Shan;
   Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nicholas; Rey,
   Juerg; Allende Prieto, Carlos; Lhomé, Emilie; Balcells, Marc; Terrett,
   David; Brock, Matthew; Ridings, Andy; Skvarč, Jure; Verheijen, Marc;
   Steele, Iain; Stuik, Remko; Kroes, Gabby; Tromp, Neils; Kragt, Jan;
   Lesman, Dirk; Mottram, Chris; Bates, Stuart; Gribbin, Frank; Burgal,
   Jose Alonso; Herreros, José Miguel; Delgado, José Miguel; Martin,
   Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Peralta de Arriba,
   Luis; O'Mahoney, Neil; Bianco, Andrea; Moleinezhad, Alireza; ter
   Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Baruffalo,
   Andrea; Carrasco, Esperanza; Farcas, Szigfrid; Schallig, Ellen; Hughes,
   Sarah; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca;
   Iovino, Angela; Pieri, Mat; Jin, Shoko; Dominguez Palmero, Lillian;
   Fariña, Cecilia; Martín, Adrian; Worley, Clare; Murphy, David;
   Guest, Steve; Morris, Huw; Elswijk, Eddy; de Haan, Menno; Hanenburg,
   Hiddo; Salasnich, Bernardo; Mayya, Divakara; Izazaga-Pérez, Rafael;
   Gafton, Emanuel; Caffau, Elisabetta; Horville, David; Paz Chinchón,
   Francisco; Falcon-Barosso, Jesus; Gänsicke, Boris; San Juan, Jose;
   Hernandez, Nauzet
2020SPIE11447E..14D    Altcode:
  We present an update on the overall integration progress of the
  WEAVE next-generation spectroscopy facility for the William Herschel
  Telescope (WHT), now scheduled for first light in early-2021, with
  almost all components now arrived at the observatory. We also present
  a summary of the current planning behind the 5-year initial phase of
  survey operations, and some detailed end-to-end science simulations
  that have been implemented to evaluate the final on-sky performance
  after data processing. WEAVE will provide optical ground-based follow
  up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE
  is a multi-object and multi-IFU facility utilizing a new 2-degree
  prime focus field of view at the WHT, with a buffered pick-and-place
  positioner system hosting 1000 multi-object (MOS) fibres, 20 mini
  integral field units, or a single large IFU for each observation. The
  fibres are fed to a single (dual-beam) spectrograph, with total of
  16k spectral pixels, located within the WHT GHRIL enclosure on the
  telescope Nasmyth platform, supporting observations at R~5000 over
  the full 370-1000nm wavelength range in a single exposure, or a high
  resolution mode with limited coverage in each arm at R~20000.

---------------------------------------------------------
Title: Fiber links for the WEAVE instrument: the making of
Authors: Mignot, Shan; Bonifacio, Piercarlo; Fasola, Gilles; Horville,
   David; Caffau, Elisabetta; Dorent, Stéphane; Croce, Sébastien; Blanc,
   Sébastien; Melse, Basile-Thierry; Younès, Youssef; Reix, Florent;
   Gaudemard, Julien; Dalton, Gavin; Schallig, Ellen; Lewis, Ian; Stuik,
   Remko; Middleton, Kevin; Bishop, Georgia; Abrams, Don Carlos; Trager,
   Scott; Aguerri, J. Alfonso; Carrasco, Esperanza; Vallenari, Antonella;
   Laporte, Philippe; Barroso, Patrice; Noûs, Camille
2020SPIE11450E..2FM    Altcode:
  The WEAVE instrument nearing completion for the William Herschel
  Telescope is a fiber-fed spectrograph operating in three different
  modes. Two comprise deployable fibers at the prime focus for point-like
  objects and small integral field units (IFU), the third is a large
  IFU placed at the center of the field. Three distinct fiber systems
  support these modes and route the photons to the spectrograph located
  on the Nasmyth platform 33m away: the first features 960+940 fibers
  and is duplicated to allow configuring the fibers on one plate while
  observation is carried out on the other, the second has 20 hexagonal
  IFUs featuring 37 fibers each, the third is a large array of 609 fibers
  with twice the former's diameter. The large number of fibers and the
  diversity of their instantiation have made procurement of the parts
  and assembly of the custom cables a challenge. They involve project
  partners in France, the UK and the Netherlands and industrial partners
  in France, Canada, the USA and China to combine know-how and compress
  the schedule by parallelizing assembly of the cables. Besides the
  complex management that this induces, it has called for revising the
  fibers' handling to relax tolerances and for a rigorous assessment
  of the conformity of the products. This paper tells the story of the
  making of the fiber links, presents the overall organization of the
  procurement and assembly chains together with the inspection and testing
  allowing for assessing the conformance of the hardware delivered.

---------------------------------------------------------
Title: Mono-enriched stars and Galactic chemical evolution. Possible
    biases in observations and theory
Authors: Hansen, C. J.; Koch, A.; Mashonkina, L.; Magg, M.; Bergemann,
   M.; Sitnova, T.; Gallagher, A. J.; Ilyin, I.; Caffau, E.; Zhang,
   H. W.; Strassmeier, K. G.; Klessen, R. S.
2020A&A...643A..49H    Altcode: 2020arXiv200911876H
  A long sought after goal using chemical abundance patterns derived
  from metal-poor stars is to understand the chemical evolution
  of the Galaxy and to pin down the nature of the first stars (Pop
  III). Metal-poor, old, unevolved stars are excellent tracers as
  they preserve the abundance pattern of the gas from which they were
  born, and hence they are frequently targeted in chemical tagging
  studies. Here, we use a sample of 14 metal-poor stars observed with the
  high-resolution spectrograph called the Potsdam Echelle Polarimetric and
  Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT)
  to derive abundances of 32 elements (34 including upper limits). We
  present well-sampled abundance patterns for all stars obtained using
  local thermodynamic equilibrium (LTE) radiative transfer codes and
  one-dimensional (1D) hydrostatic model atmospheres. However, it is
  currently well-known that the assumptions of 1D and LTE may hide
  several issues, thereby introducing biases in our interpretation
  as to the nature of the first stars and the chemical evolution of
  the Galaxy. Hence, we use non-LTE (NLTE) and correct the abundances
  using three-dimensional model atmospheres to present a physically
  more reliable pattern. In order to infer the nature of the first
  stars, we compare unevolved, cool stars, which have been enriched
  by a single event ("mono-enriched"), with a set of yield predictions
  to pin down the mass and energy of the Pop III progenitor. To date,
  only few bona fide second generation stars that are mono-enriched
  are known. A simple χ<SUP>2</SUP>-fit may bias our inferred mass
  and energy just as much as the simple 1D LTE abundance pattern, and
  we therefore carried out our study with an improved fitting technique
  considering dilution and mixing. Our sample presents Carbon Enhanced
  Metal-Poor (CEMP) stars, some of which are promising bona fide second
  generation (mono-enriched) stars. The unevolved, dwarf BD+09_2190
  shows a mono-enriched signature which, combined with kinematical data,
  indicates that it moves in the outer halo and likely has been accreted
  onto the Milky Way early on. The Pop III progenitor was likely of
  25.5 M<SUB>⊙</SUB> and 0.6 foe (0.6 10<SUP>51</SUP> erg) in LTE
  and 19.2 M<SUB>⊙</SUB> and 1.5 foe in NLTE, respectively. Finally,
  we explore the predominant donor and formation site of the rapid
  and slow neutron-capture elements. In BD-10_3742, we find an almost
  clean r-process trace, as is represented in the star HD20, which is a
  "metal-poor Sun benchmark" for the r-process, while TYC5481-00786-1 is
  a promising CEMP-r/-s candidate that may be enriched by an asymptotic
  giant branch star of an intermediate mass and metallicity. <P />The
  line list is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A49">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A49</A>
  <P />Based on data acquired with PEPSI using the Large Binocular
  Telescope (LBT). The LBT is an international collaboration among
  institutions in the United States, Italy, and Germany.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Potential omega Cen associate EW
    (Koch-Hansen+, 2021)
Authors: Koch-Hansen; A.; Hansen; C. J.; Lombardo; L.; Bonifacio;
   P.; Hanke; M.; Caffau., E.
2020yCat..36450064K    Altcode:
  We performed a standard abundance analysis that employed a mixture
  of equivalent width (EW) measurements, carried out via Gaussian fits
  with the IRAF splot task, and spectrum synthesis. Here we employed the
  same line list as in Koch &amp; McWilliam (2014, Cat. J/A+A/565/A23,
  see Table 2) with further additions in the syntheses from Biemont et
  al. (2000MNRAS.312..116B), Den Hartog et al. (2003ApJS..148..543D),
  Den Hartog et al. (2006, Cat. J/ApJS/167/292), Lawler et al. (2007,
  Cat. J/ApJS/169/120), Lawler et al. (2008ApJS..178...71L),
  Lawler et al. (2009, Cat. J/ApJS/182/51), Sneden et al. (2009,
  Cat. J/ApJS/182/80), and Hansen et al. (2013A&amp;A...551A..57H). <P
  />(1 data file).

---------------------------------------------------------
Title: The solar gravitational redshift from HARPS-LFC Moon
    spectra⋆. A test of the general theory of relativity
Authors: González Hernández, J. I.; Rebolo, R.; Pasquini, L.;
   Lo Curto, G.; Molaro, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.;
   Esposito, M.; Suárez Mascareño, A.; Toledo-Padrón, B.; Probst,
   R. A.; Hänsch, T. W.; Holzwarth, R.; Manescau, A.; Steinmetz, T.;
   Udem, Th.; Wilken, T.
2020A&A...643A.146G    Altcode: 2020arXiv200910558G
  Context. The general theory of relativity predicts the redshift of
  spectral lines in the solar photosphere as a consequence of the
  gravitational potential of the Sun. This effect can be measured
  from a solar disk-integrated flux spectrum of the Sun's reflected
  light on Solar System bodies. <BR /> Aims: The laser frequency comb
  (LFC) calibration system attached to the HARPS spectrograph offers
  the possibility of performing an accurate measurement of the solar
  gravitational redshift (GRS) by observing the Moon or other Solar System
  bodies. Here, we analyse the line shift observed in Fe absorption lines
  from five high-quality HARPS-LFC spectra of the Moon. <BR /> Methods:
  We selected an initial sample of 326 photospheric Fe lines in the
  spectral range between 476-585 nm and measured their line positions
  and equivalent widths (EWs). Accurate line shifts were derived from
  the wavelength position of the core of the lines compared with the
  laboratory wavelengths of Fe lines. We also used a CO<SUP>5</SUP>BOLD
  3D hydrodynamical model atmosphere of the Sun to compute 3D synthetic
  line profiles of a subsample of about 200 spectral Fe lines centred
  at their laboratory wavelengths. We fit the observed relatively
  weak spectral Fe lines (with EW&lt; 180 mÅ) with the 3D synthetic
  profiles. <BR /> Results: Convective motions in the solar photosphere
  do not affect the line cores of Fe lines stronger than about ∼150
  mÅ. In our sample, only 15 Fe I lines have EWs in the range 150&lt;
  EW(mÅ) &lt; 550, providing a measurement of the solar GRS at 639 ±
  14 m s<SUP>-1</SUP>, which is consistent with the expected theoretical
  value on Earth of ∼633.1 m s<SUP>-1</SUP>. A final sample of about 97
  weak Fe lines with EW &lt; 180 mÅ allows us to derive a mean global
  line shift of 638 ± 6 m s<SUP>-1</SUP>, which is in agreement with
  the theoretical solar GRS. <BR /> Conclusions: These are the most
  accurate measurements of the solar GRS obtained thus far. Ultrastable
  spectrographs calibrated with the LFC over a larger spectral range,
  such as HARPS or ESPRESSO, together with a further improvement on the
  laboratory wavelengths, could provide a more robust measurement of the
  solar GRS and further testing of 3D hydrodynamical models. <P />Tables
  A.1 and A.2 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A146">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A146</A>
  <P />Based on observations taken with the ESO 3.6 m telescope at La
  Silla Observatory, Chile.

---------------------------------------------------------
Title: VizieR Online Data Catalog: MC structure and properties
    (Gaia Collaboration+, 2021)
Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini,
   G.; Delgado, H. E.; McMillan, P. J.; Romero-Gomez, M.; Balbinot,
   E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni,
   M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.;
   Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.;
   Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer,
   L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.;
   Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones,
   C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi,
   M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.; de Angeli, F.;
   Ducourant, C.; Fouesneau, M.; Fremat, Y.; Guerra, R.; Guerrier, A.;
   Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo,
   P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.;
   Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann,
   M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.;
   Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.;
   Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.; Garcia-Lario,
   P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset, E.; Haigron,
   R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou,
   D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Hodgkin, S. T.; Holl,
   B.; Janssen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins,
   A.; Lanzafame, A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal,
   O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.;
   Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello,
   M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.;
   van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts,
   C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.; Alvarez
   Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.;
   Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez,
   L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.;
   Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.;
   Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.;
   Buzzi, R.; Caffau, E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin,
   T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.;
   Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.;
   Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez,
   T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.;
   Dapergolas, A.; David, M.; David, P.; de Laverny, P.; de Luise, F.;
   de March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres,
   A.; Del Peloso, E. F.; Del Pozo, E.; Delgado, A.; Delisle, J. -B.;
   Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding,
   C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.;
   Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.;
   Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato,
   D.; Garcia-Gutierrez, A.; Garcia-Torres, M.; Gavras, P.; Gerlach,
   E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Gomez, A.; Gonzalez-Santamaria, I.; Gonzalez-Vidal, J. J.; Granvik,
   M.; Gutierrez-Sanchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.;
   Hidalgo, S. L.; Hilger, T.; Hladczuk, N.; Hobbs, D.; Holland, G.;
   Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.;
   Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.;
   Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.;
   Kruszynska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion,
   J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrom,
   H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.;
   Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos,
   M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.;
   Martin-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti,
   A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.;
   Molina, D.; Molinaro, R.; Molnar, L.; Montegriffo, P.; Morbidelli,
   R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy, C. P.;
   Musella, I.; Noval, L.; Ordenovic, C.; Orru, G.; Osinde, J.; Pagani,
   C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak,
   M.; Penalosa Esteller, X.; Penttilae, A.; Piersimoni, A. M.; Pineau,
   F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.;
   Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri,
   C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.;
   Regibo, S.; Reyle, C.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.;
   Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.;
   Sadowski, G.; Sagrista Selles, A.; Sahlmann, J.; Salgado, J.; Salguero,
   E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santovena, R.;
   Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.;
   Segransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala,
   L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.;
   Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmueller,
   H.; Stephenson, C. A.; Sueveges, M.; Szabados, L.; Szegedi-Elek, E.;
   Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.;
   Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant,
   M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente,
   D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.;
   Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T.
2020yCat..36490007G    Altcode:
  Tables of the radial profiles of the azimuthal and radial components
  of the ordered and random motions of stellar evolutionary phases in
  the Large Magellanic Cloud, as inferred from the 3rd Gaia Data Release
  (Early Release of 2020/12/03). <P />Each sub-sample of LMC stellar
  evolutionary phase is defined in Sect. 2.3 of the article. The file
  lmcall.dat is for a sample combining every stellar phases. <P />(9
  data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gaia Catalogue of Nearby Stars -
    GCNS (Gaia collaboration, 2021)
Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki,
   J.; Reyle, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow,
   M. A.; de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.;
   Cooper, W. J.; Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann,
   J.; Sozzetti, A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.;
   Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer,
   L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers,
   U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou,
   F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.;
   Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.;
   de Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Fremat,
   Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.;
   Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler,
   F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.;
   Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.;
   Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.;
   Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.;
   Delchambre, L.; Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.;
   Garcia-Lario, P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset,
   E.; Haigron, R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou,
   D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Holl, B.; Janssen, K.;
   Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame,
   A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese,
   P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino,
   E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.;
   Rimoldini, L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla,
   E.; van Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.;
   Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.;
   Alvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela,
   E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez,
   L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.;
   Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.;
   Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.;
   Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon,
   S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet,
   N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin, T.; Carballo, R.;
   Carlucci, T.; Carnerero, M. I.
2020yCat..36490006G    Altcode:
  We produce a clean and well characterised catalogue of nearby
  objects within 100pc of the Sun from the Gaia early third data
  release. We characterise the catalogue using the full data release,
  and comparisons to other catalogues in literature and simulations. We
  started with a sample of objects with a measured parallax of 8mas. For
  all candidates we calculate a distance probability function using
  Bayesian procedures and mock catalogues for the prediction of the
  priors. For each entry using a random forest classifier we attempt
  to remove sources with spurious astrometric solutions. <P />&gt;From
  this paper we provide the following data files: <P />table1c.dat
  (Table1<SUB>GCNS</SUB>cat): Any object with a non-zero probability
  of being within 100 pc and not indicated as a spurious astrometric
  solutions. We have also included external photometric and radial
  velocity data, the probability of reliable astrometry, probability to
  be a white dwarf, the distance 1st, 16th, 50th and 84th percentiles,
  the positions and velocities in a galactic reference frame. For
  questions please email richard.smart(at)inaf.it. <P />table1r.dat
  (Table1<SUB>GCNS</SUB>reject): All other entries from the 8mas
  sample that were rejected as having a zero probability of being
  inside 100pc or indicated as a spurious astrometric solution. This
  table has the same format and columns as GCNS_cat.dat. <P />progwd.dat
  (ProbWDlt05_ProbGFgt05): A catalogue of 45 sources with low probability
  of being a WD in this work (PWD&lt;0.5), but having larger probabilities
  in Gentile-Fusillo et al (2019MNRAS.482.4570G, cat. J/MNRAS/482/4570)
  (PGF&gt;0.5). For questions please email carrasco(at)fqa.ub.edu. <P
  />table3.dat (Table3_ResolvedStellarSystems): Resolved binary
  candidates in the GCNS catalogue as discussed in the section on
  stellar multiplicity: resolved systems. For questions please email
  ummi.abbas(at)inaf.it or alessandro.sozzetti(at)inaf.it. <P />maglim.dat
  (maglim<SUB>hpx5</SUB>percentile): The magnitude percentiles for level
  5 healpixels used in the luminosity function determinations. For
  questions please email rybizki(at)mpia.de. <P />distpdf.dat
  (distance_PDF): The full distance probability density function
  calculated in section 2 and used throughout the paper. For questions
  please email rybizki(at)mpia.de. <P />missing.dat (missing_10mas):
  A list of 1258 objects with published parallaxes greater than 10mas
  that are not or have no parallax in EDR3. For questions please email
  celine.reyle(at)obs-besancon.fr. <P />hyacomb.dat (Hyades_ComaBer):
  A list of 920+212 probable Hyades and ComaBer members in the GCNS
  sample. For questions please email daniel.michalik(at)esa.int or
  jos.de.bruijne(at)esa.int. <P />(8 data files).

---------------------------------------------------------
Title: Detailed abundances in a sample of very metal-poor stars
Authors: François, P.; Wanajo, S.; Caffau, E.; Prantzos, N.; Aoki,
   W.; Aoki, M.; Bonifacio, P.; Spite, M.; Spite, F.
2020A&A...642A..25F    Altcode: 2020arXiv200703994F
  Context. Unevolved metal-poor stars bore witness to the early
  evolution of the Galaxy, and the determination of their detailed
  chemical composition is an important tool to understand its chemical
  history. The study of their chemical composition can also be used to
  constrain the nucleosynthesis of the first generation of supernovae
  that enriched the interstellar medium. <BR /> Aims: We aim to observe a
  sample of extremely metal-poor star (EMP stars) candidates selected from
  the Sloan Digital Sky Survey data release 12 (SDSS DR12) and determine
  their chemical composition. <BR /> Methods: We obtained high-resolution
  spectra of a sample of five stars using HDS on Subaru telescope and used
  standard 1D models to compute the abundances. The stars we analysed
  have a metallicity [Fe/H] of between -3.50 and -4.25 dex. <BR />
  Results: We confirm that the five metal-poor candidates selected from
  low-resolution spectra are very metal poor. We present the discovery
  of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H]
  = -4.25 dex (SDSS J1050032.34-241009.7). We measured in this star an
  upper limit of lithium (log(Li/H) ≤ 2.0. We found that the four most
  metal-poor stars of our sample have a lower lithium abundance than
  the Spite plateau lithium value. We obtain upper limits for carbon in
  the sample of stars. None of them belong to the high carbon band. We
  measured abundances of Mg and Ca in most of the stars and found three
  new α-poor stars. <P />Based on data collected at Subaru Telescope,
  which is operated by the National Astronomical Observatory of Japan.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Linelist (Hansen+, 2020)
Authors: Hansen, C. J.; Koch, A.; Mashonkina, L.; Magg, M.; Bergemann,
   M.; Sitnova, T.; Gallagher, A. J.; Ilyin, I.; Caffau, E.; Zhang,
   H. W.; Strassmeier, K. G.; Klessen, R. S.
2020yCat..36430049H    Altcode:
  Linelist containing wavelength, element and ionisation degree (0 =
  neutral, 1 = single ionised), excitation potential [eV], oscillator
  strength (loggf), number of stars in the study in which the line
  has been detected (limits indicated by &lt;), and finally, hyperfine
  structure of oscillator strength indicated by HFS. <P />(1 data file).

---------------------------------------------------------
Title: Gaia Data Release 2. The kinematics of globular clusters and
    dwarf galaxies around the Milky Way (Corrigendum)
Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan,
   P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.;
   Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels,
   M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski,
   J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen,
   F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem,
   C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.;
   Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.;
   Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul,
   L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.;
   Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo,
   P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin,
   F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.;
   Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson,
   M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.;
   Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.;
   García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.;
   Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.;
   Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van
   Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.;
   Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson,
   R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz,
   S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch,
   T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon,
   S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.;
   Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte,
   C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny,
   P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de
   Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.;
   Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano,
   E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.;
   Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti,
   S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.;
   Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.;
   Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.;
   Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter,
   U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.;
   Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker,
   P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar,
   J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas,
   E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky,
   P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina,
   S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár,
   L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.;
   Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro,
   L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco,
   D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.;
   Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau,
   F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.;
   Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.;
   Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.;
   Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer,
   F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann,
   J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso,
   M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia,
   J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart,
   R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto,
   S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.;
   Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej,
   J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran,
   G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.;
   Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.;
   Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.;
   van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.;
   Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss,
   H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.;
   Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour,
   H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2020A&A...642C...1G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: VizieR Online Data Catalog: The solar gravitational redshift
    (Gonzalez Hernandez+, 2020)
Authors: Gonzalez Hernandez, J. I.; Rebolo, R.; Pasquini, L.; Lo Curto,
   G.; Molaro, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Esposito,
   M.; Suarez Mascarenno, A.; Toledo-Padron, B.; Probst, R. A.; Hansch,
   T. W.; Holzwarth, R.; Manescau, A.; Steinmetz, T.; Udem, T.; Wilken, T.
2020yCat..36430146G    Altcode:
  Line data and velocity shifts of the FeI and FeII lines,
  with laboratory wavelengths, λ<SUB>lab</SUB>, from Nave et
  al. (1994ApJS...94..221N, 2013ApJS..204....1N) and excitation
  potentials, oscillator strengths from the VALD database (Piskunov et
  al. 1995A&amp;AS..112..525P). <P />In Table A.1 we provide the mean line
  core shifts, v<SUB>core</SUB>obs, measured on the spectral lines from
  the observed HARPS-LFC spectra of the MOON and computed with respect to
  the original laboratory wavelengths (Nave et al. 1994ApJS...94..221N,
  2013ApJS..204....1N). <P />We also give the recalibrated wavelengths,
  lambda_nist, computed from recalibrated wavenumber measurements and
  Ritz wavelengths, lambda_ritz, computed from recalibrated energy levels,
  with their corresponding wavelengths uncertainties, extracted from the
  NIST database (Kramida et al. 2019APS..DMPN09004K). <P />In Table A.2,
  we give the line core shifts measured on the observed spectral lines,
  v<SUB>core</SUB>obs_n, estimated using the recalibrated wavelengths,
  lambda_nist, as reference laboratory wavelengths, the 3D profiles,
  v<SUB>core,3D, and the global line shifts, v</SUB>fit<SUB>3D</SUB>n,
  from fitting the observed spectral lines using 3D profiles, and
  corrected using the recalibrated wavelengths lambda_nist as reference
  laboratory wavelengths. <P />Wavelengths are given in Angstroms,
  wavelength uncertainties in miliAngstroems, excitation potentials in
  eV, equivalent widths (EW) in miliAngstroems, and velocity shifts in
  m/s. <P />(2 data files).

---------------------------------------------------------
Title: A wide angle view of the Sagittarius dwarf spheroidal
    galaxy. II. A CEMP-r/s star in the Sagittarius dwarf spheroidal galaxy
Authors: Sbordone, L.; Hansen, C. J.; Monaco, L.; Cristallo, S.;
   Bonifacio, P.; Caffau, E.; Villanova, S.; Amigo, P.
2020A&A...641A.135S    Altcode: 2020arXiv200503027S
  We report on the discovery and chemical abundance analysis of the
  first CEMP-r/s star detected in the Sagittarius dwarf spheroidal
  galaxy (Sgr dSph) by means of UVES high-resolution spectra. The
  star, found in the outskirts of Sgr dSph, along the major axis of
  the main body, is a moderately metal-poor giant (T<SUB>eff</SUB> =
  4753 K, log g = 1.75, [Fe/H] = -1.55) with [C/Fe] = 1.13, placing
  it in the so-called "high-carbon band", and strong s-process and
  r-process enrichment ([Ba/Fe] = 1.4, [Eu/Fe] = 1.01). Abundances of
  29 elements from C to Dy were obtained. The chemical pattern appears
  to be best fitted by a scenario where an r-process pollution event
  pre-enriched the material out of which the star was born as secondary
  in a binary system whose primary evolved through the AGB phase,
  providing C- and s-process enrichment. <P />Line-by-line abundance
  tables are are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/641/A135">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/641/A135</A>
  <P />Based on data collected with UVES at 8.2 m VLT-UT2 (Kueyen)
  telescope under ESO programme 083.B-0774. This paper includes data
  gathered with the 6.5 m Magellan Telescopes located at Las Campanas
  Observatory, Chile.

---------------------------------------------------------
Title: Study of the departures from LTE in the unevolved stars
    infrared spectra
Authors: Korotin, S. A.; Andrievsky, S. M.; Caffau, E.; Bonifacio,
   P.; Oliva, E.
2020MNRAS.496.2462K    Altcode: 2020MNRAS.tmp.1855K; 2020arXiv200610998K
  We present a study of departures from Local Thermodynamic Equilibrium
  (LTE) in the formation of infrared (IR) lines of Na I, Mg I, Al I,
  S I, K I, and Sr II in unevolved stars of spectral types F, G, K
  and metallicities around the solar metallicity. The purpose of this
  investigation is to identify lines of these species that can be safely
  treated with the LTE approximation in the IR spectra of these types of
  stars. We employ a set of 40 stars observed with the GIANO spectrograph
  at the 3.5 m Telescopio Nazionale Galileo and previously investigated by
  Caffau et al. We were able to identify many lines that can be treated
  in LTE for all the above-mentioned species, except for Sr II. The
  latter species can only be studied using three lines in the J band,
  but all three of them display significant departures from LTE. With
  our small-size, but high-quality sample, we can determine robustly the
  trends of the abundance ratios with metallicity, confirming the trends
  apparent from a sample that is larger by several orders of magnitude,
  but of lower quality in terms of resolution and S/N ratio.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Sgr dSph CEMP-r/s star abundance
    analysis (Sbordone+, 2020)
Authors: Sbordone, L.; Hansen, C. J.; Monaco, L.; Cristallo, S.;
   Bonifacio, P.; Caffau, E.; Villanova, S.; Amigo, P.
2020yCat..36410135S    Altcode:
  These two tables contain the results relative to the fitting of
  all the individual spectral features fitted with the MyGIsFOS and
  FitProfile automatic codes. The "alllines.dat" table contains the
  feature characteristics (e.g. ion abundance fitted through the feature,
  starting and ending wavelength...), the fitting results (e.g. the
  derived abundance) and a star and feature identifiers.The second table
  (allsynth.dat) contain the detailed observed and fitted profiles for
  each feature. Each line contains the star and feature identifiers,
  the wavelength of that specific "pixel" and the corresponding observed
  and fitted normalized fluxes. <P />(2 data files).

---------------------------------------------------------
Title: High-speed stars: Galactic hitchhikers
Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Sbordone, L.; Haywood,
   M.; Spite, M.; Di Matteo, P.; Spite, F.; Mucciarelli, A.; François,
   P.; Matas Pinto, A. M.
2020A&A...638A.122C    Altcode:
  Context. The search for stars born in the very early stages of
  the Milky Way star formation history is of paramount importance
  in the study of the early Universe since their chemistry carries
  irreplaceable information on the conditions in which early star
  formation and galaxy buildup took place. The search for these objects
  has generally taken the form of expensive surveys for faint extremely
  metal-poor stars, the most obvious but not the only candidates
  to a very early formation. <BR /> Aims: Thanks to Gaia DR2 radial
  velocities and proper motions, we identified 72 bright cool stars
  displaying heliocentric transverse velocities in excess of 500 km
  s<SUP>-1</SUP>. These objects are most likely members of extreme
  outer-halo populations, either formed in the early Milky Way build-up
  or accreted from since-destroyed self-gravitating stellar systems. <BR
  /> Methods: We analysed low-resolution FORS spectra of the 72 stars
  in the sample and derived the abundances of a few elements. Despite
  the large uncertainties on the radial velocity determination,
  we derived reliable orbital parameters for these objects. <BR />
  Results: The stars analysed are mainly slightly metal poor, with a
  few very metal-poor stars. Their chemical composition is much more
  homogeneous than expected. All the stars have very eccentric halo
  orbits, some extending well beyond the expected dimension of the Milky
  Way. <BR /> Conclusions: These stars can be the result of a disrupted
  small galaxy or they could have been globular cluster members. Age
  estimates suggest that some of them are evolved blue stragglers,
  now on the subgiant or asymptotic giant branches. <P />Chemical and
  kinematic data are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A122">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A122</A>
  <P />Based on observations made with ESO Telescopes at the La Silla
  Paranal Observatory under programme ID 104.D-0259.

---------------------------------------------------------
Title: MOONS: The New Multi-Object Spectrograph for the VLT
Authors: Cirasuolo, M.; Fairley, A.; Rees, P.; Gonzalez, O. A.;
   Taylor, W.; Maiolino, R.; Afonso, J.; Evans, C.; Flores, H.; Lilly,
   S.; Oliva, E.; Paltani, S.; Vanzi, L.; Abreu, M.; Accardo, M.; Adams,
   N.; Álvarez Méndez, D.; Amans, J. -P.; Amarantidis, S.; Atek,
   H.; Atkinson, D.; Banerji, M.; Barrett, J.; Barrientos, F.; Bauer,
   F.; Beard, S.; Béchet, C.; Belfiore, A.; Bellazzini, M.; Benoist,
   C.; Best, P.; Biazzo, K.; Black, M.; Boettger, D.; Bonifacio, P.;
   Bowler, R.; Bragaglia, A.; Brierley, S.; Brinchmann, J.; Brinkmann,
   M.; Buat, V.; Buitrago, F.; Burgarella, D.; Burningham, B.; Buscher,
   D.; Cabral, A.; Caffau, E.; Cardoso, L.; Carnall, A.; Carollo, M.;
   Castillo, R.; Castignani, G.; Catelan, M.; Cicone, C.; Cimatti, A.;
   Cioni, M. -R. L.; Clementini, G.; Cochrane, W.; Coelho, J.; Colling,
   M.; Contini, T.; Contreras, R.; Conzelmann, R.; Cresci, G.; Cropper,
   M.; Cucciati, O.; Cullen, F.; Cumani, C.; Curti, M.; Da Silva, A.;
   Daddi, E.; Dalessandro, E.; Dalessio, F.; Dauvin, L.; Davidson, G.;
   de Laverny, P.; Delplancke-Ströbele, F.; De Lucia, G.; Del Vecchio,
   C.; Dessauges-Zavadsky, M.; Di Matteo, P.; Dole, H.; Drass, H.;
   Dunlop, J.; Dünner, R.; Eales, S.; Ellis, R.; Enriques, B.; Fasola,
   G.; Ferguson, A.; Ferruzzi, D.; Fisher, M.; Flores, M.; Fontana, A.;
   Forchi, V.; Francois, P.; Franzetti, P.; Gargiulo, A.; Garilli, B.;
   Gaudemard, J.; Gieles, M.; Gilmore, G.; Ginolfi, M.; Gomes, J. M.;
   Guinouard, I.; Gutierrez, P.; Haigron, R.; Hammer, F.; Hammersley,
   P.; Haniff, C.; Harrison, C.; Haywood, M.; Hill, V.; Hubin, N.;
   Humphrey, A.; Ibata, R.; Infante, L.; Ives, D.; Ivison, R.; Iwert,
   O.; Jablonka, P.; Jakob, G.; Jarvis, M.; King, D.; Kneib, J. -P.;
   Laporte, P.; Lawrence, A.; Lee, D.; Li Causi, G.; Lorenzoni, S.;
   Lucatello, S.; Luco, Y.; Macleod, A.; Magliocchetti, M.; Magrini,
   L.; Mainieri, V.; Maire, C.; Mannucci, F.; Martin, N.; Matute, I.;
   Maurogordato, S.; McGee, S.; Mcleod, D.; McLure, R.; McMahon, R.;
   Melse, B. -T.; Messias, H.; Mucciarelli, A.; Nisini, B.; Nix, J.;
   Norberg, P.; Oesch, P.; Oliveira, A.; Origlia, L.; Padilla, N.; Palsa,
   R.; Pancino, E.; Papaderos, P.; Pappalardo, C.; Parry, I.; Pasquini,
   L.; Peacock, J.; Pedichini, F.; Pello, R.; Peng, Y.; Pentericci, L.;
   Pfuhl, O.; Piazzesi, R.; Popovic, D.; Pozzetti, L.; Puech, M.; Puzia,
   T.; Raichoor, A.; Randich, S.; Recio-Blanco, A.; Reis, S.; Reix, F.;
   Renzini, A.; Rodrigues, M.; Rojas, F.; Rojas-Arriagada, Á.; Rota,
   S.; Royer, F.; Sacco, G.; Sanchez-Janssen, R.; Sanna, N.; Santos, P.;
   Sarzi, M.; Schaerer, D.; Schiavon, R.; Schnell, R.; Schultheis, M.;
   Scodeggio, M.; Serjeant, S.; Shen, T. -C.; Simmonds, C.; Smoker, J.;
   Sobral, D.; Sordet, M.; Spérone, D.; Strachan, J.; Sun, X.; Swinbank,
   M.; Tait, G.; Tereno, I.; Tojeiro, R.; Torres, M.; Tosi, M.; Tozzi,
   A.; Tresiter, E.; Valenti, E.; Valenzuela Navarro, Á.; Vanzella, E.;
   Vergani, S.; Verhamme, A.; Vernet, J.; Vignali, C.; Vinther, J.; Von
   Dran, L.; Waring, C.; Watson, S.; Wild, V.; Willesme, B.; Woodward, B.;
   Wuyts, S.; Yang, Y.; Zamorani, G.; Zoccali, M.; Bluck, A.; Trussler, J.
2020Msngr.180...10C    Altcode: 2020arXiv200900628C
  MOONS is the new Multi-Object Optical and Near-infrared Spectrograph
  currently under construction for the Very Large Telescope (VLT) at
  ESO. This remarkable instrument combines, for the first time, the
  collecting power of an 8-m telescope, 1000 fibres with individual
  robotic positioners, and both low- and high-resolution simultaneous
  spectral coverage across the 0.64-1.8 μm wavelength range. This
  facility will provide the astronomical community with a powerful,
  world-leading instrument able to serve a wide range of Galactic,
  extragalactic and cosmological studies. Construction is now proceeding
  full steam ahead and this overview article presents some of the science
  goals and the technical description of the MOONS instrument. More
  detailed information on the MOONS surveys is provided in the other
  dedicated articles in this Messenger issue.

---------------------------------------------------------
Title: MOONS Surveys of the Milky Way and its Satellites
Authors: Gonzalez, O. A.; Mucciarelli, A.; Origlia, L.; Schultheis,
   M.; Caffau, E.; Di Matteo, P.; Randich, S.; Recio-Blanco, A.; Zoccali,
   M.; Bonifacio, P.; Dalessandro, E.; Schiavon, R. P.; Pancino, E.;
   Taylor, W.; Valenti, E.; Rojas-Arriagada, Á.; Sacco, G.; Biazzo, K.;
   Bellazzini, M.; Cioni, M. -R. L.; Clementini, G.; Contreras Ramos, R.;
   de Laverny, P.; Evans, C.; Haywood, M.; Hill, V.; Ibata, R.; Lucatello,
   S.; Magrini, L.; Martin, N.; Nisini, B.; Sanna, N.; Cirasuolo, M.;
   Maiolino, R.; Afonso, J.; Lilly, S.; Flores, H.; Oliva, E.; Paltani,
   S.; Vanzi, L.
2020Msngr.180...18G    Altcode: 2020arXiv200900635G
  The study of resolved stellar populations in the Milky Way and
  other Local Group galaxies can provide us with a fossil record of
  their chemo-dynamical and star-formation histories over timescales
  of many billions of years. In the galactic components and stellar
  systems of the Milky Way and its satellites, individual stars can
  be resolved. Therefore, they represent a unique laboratory in which
  to investigate the details of the processes behind the formation and
  evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT
  represents a unique combination of an efficient infrared multi-object
  spectrograph and a large-aperture 8-m-class telescope which will
  sample the cool stellar populations of the dense central regions of the
  Milky Way and its satellites, delivering accurate radial velocities,
  metallicities, and other chemical abundances for several millions
  of stars over its lifetime (see Cirasuolo et al., p. 10). MOONS
  will observe up to 1000 targets across a 25-arcminute field of view
  in the optical and near-infrared (0.6-1.8 µm) simultaneously. A
  high-resolution (R ~ 19700) setting in the H band has been designed
  for the accurate determination of stellar abundances such as alpha,
  light, iron-peak and neutron-capture elements.

---------------------------------------------------------
Title: Improving spectroscopic lithium abundances. Fitting functions
    for 3D non-LTE corrections in FGK stars of different metallicity
Authors: Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G.
2020A&A...638A..58M    Altcode: 2020arXiv200410803M
  Context. Accurate spectroscopic lithium abundances are essential in
  addressing a variety of open questions, such as the origin of a uniform
  lithium content in the atmospheres of metal-poor stars (Spite plateau)
  or the existence of a correlation between the properties of extrasolar
  planetary systems and the lithium abundance in the atmosphere of
  their host stars. <BR /> Aims: We have developed a tool that allows
  the user to improve the accuracy of standard lithium abundance
  determinations based on 1D model atmospheres and the assumption of
  local thermodynamic equilibrium (LTE) by applying corrections that
  account for hydrodynamic (3D) and non-LTE (NLTE) effects in FGK stars
  of different metallicity. <BR /> Methods: Based on a grid of CO5BOLD
  3D models and associated 1D hydrostatic atmospheres, we computed
  three libraries of synthetic spectra of the lithium λ 670.8 nm line
  for a wide range of lithium abundances, accounting for detailed line
  formation in 3D NLTE, 1D NLTE, and 1D LTE, respectively. The resulting
  curves-of-growth were then used to derive 3D NLTE and 1D NLTE lithium
  abundance corrections. <BR /> Results: For all metallicities, the
  largest corrections are found at the coolest effective temperature,
  T<SUB>eff</SUB> = 5000 K. They are mostly positive, up to + 0.2 dex,
  for the weakest lines (lithium abundance A(Li)<SUB>1DLTE</SUB> = 1.0),
  whereas they become more negative towards lower metallicities, where
  they can reach - 0.4 dex for the strongest lines (A(Li)<SUB>1DLTE</SUB>
  = 3.0) at [Fe/H] = - 2.0. We demonstrate that 3D and NLTE effects are
  small for metal-poor stars on the Spite plateau, leading to errors of at
  most ± 0.05 dex if ignored. We present analytical functions evaluating
  the 3D NLTE and 1D NLTE corrections as a function of T<SUB>eff</SUB>
  [5000…6500 K], log g [3.5…4.5], and LTE lithium abundance A(Li)
  [1.0…3.0] for a fixed grid of metallicities [Fe/H] [ - 3.0…0.0]. In
  addition, we also provide analytical fitting functions for directly
  converting a given lithium abundance into an equivalent width, or vice
  versa, a given equivalent width (EW) into a lithium abundance. For
  convenience, a Python script is made available that evaluates all
  fitting functions for given T<SUB>eff</SUB>, log g, [Fe/H], and A(Li)
  or EW. <BR /> Conclusions: By means of the fitting functions developed
  in this work, the results of complex 3D and NLTE calculations are
  made readily accessible and quickly applicable to large samples of
  stars across a wide range of metallicities. Improving the accuracy
  of spectroscopic lithium abundance determinations will contribute to
  a better understanding of the open questions related to the lithium
  content in metal-poor and solar-like stellar atmospheres.

---------------------------------------------------------
Title: Gaia Data Release 2. Kinematics of globular clusters and
    dwarf galaxies around the Milky Way (Corrigendum)
Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan,
   P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.;
   Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels,
   M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski,
   J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen,
   F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem,
   C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.;
   Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.;
   Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul,
   L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.;
   Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo,
   P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin,
   F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.;
   Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson,
   M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.;
   Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.;
   García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.;
   Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.;
   Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van
   Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.;
   Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson,
   R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz,
   S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch,
   T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon,
   S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.;
   Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte,
   C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny,
   P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de
   Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.;
   Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano,
   E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.;
   Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti,
   S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.;
   Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.;
   Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.;
   Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter,
   U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.;
   Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker,
   P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar,
   J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas,
   E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky,
   P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina,
   S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár,
   L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.;
   Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro,
   L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco,
   D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.;
   Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau,
   F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.;
   Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.;
   Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.;
   Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer,
   F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann,
   J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso,
   M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia,
   J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart,
   R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto,
   S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.;
   Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej,
   J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran,
   G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.;
   Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.;
   Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.;
   van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.;
   Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss,
   H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.;
   Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour,
   H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2020A&A...637C...3G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Reviving old controversies: is the early Galaxy flat or
    round?. Investigations into the early phases of the Milky Way's
    formation through stellar kinematics and chemical abundances
Authors: Di Matteo, P.; Spite, M.; Haywood, M.; Bonifacio, P.; Gómez,
   A.; Spite, F.; Caffau, E.
2020A&A...636A.115D    Altcode: 2019arXiv191013769D
  We analysed a set of very metal-poor stars, for which accurate chemical
  abundances have been obtained as part of the ESO Large Program "First
  stars" in the light of the Gaia DR2 data. The kinematics and orbital
  properties of the stars in the sample show they probably belong to the
  thick disc, partially heated to halo kinematics, and to the accreted
  Gaia Sausage-Enceladus satellite. The continuity of these properties
  with stars at both higher ([Fe/H] &gt; -2) and lower metallicities
  ([Fe/H] &lt; -4.) suggests that the Galaxy at [Fe/H] ≲ -0.5 and down
  to at least [Fe/H] ∼ -6 is dominated by these two populations. In
  particular, we show that the disc extends continuously from [Fe/H] ≤
  -4 (where stars with disc-like kinematics have recently been discovered)
  up to [Fe/H] ≥ -2, the metallicity regime of the Galactic thick
  disc. An "ultra metal-poor thick disc" does indeed exist, constituting
  the extremely metal-poor tail of the canonical Galactic thick disc,
  and extending the latter from [Fe/H] ∼ -0.5 up to the most metal-poor
  stars discovered in the Galaxy to date. These results suggest that the
  disc may be the main, and possibly the only, stellar population that
  has formed in the Galaxy at these metallicities. This would mean that
  the dissipative collapse that led to the formation of the old Galactic
  disc must have been extremely fast. We also discuss these results in the
  light of recent simulation efforts made to reproduce the first stages
  of Milky Way-type galaxies. <P />Based on observations collected at
  the European Organisation for Astronomical Research in the Southern
  Hemisphere under ESO programmes 165.N-0276(A) (P.I.: R. Cayrel).

---------------------------------------------------------
Title: The Pristine survey XI: the FORS2 sample
Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; Matas Pinto, A. M.;
   François, P.; Jablonka, P.; Lardo, C.; Martin, N. F.; Starkenburg,
   E.; Aguado, D.; González-Hernández, J. I.; Venn, K.; Mashonkina,
   L.; Sestito, F.
2020MNRAS.493.4677C    Altcode: 2020MNRAS.tmp..556C
  Extremely metal-poor (EMP) stars are old objects that mostly formed
  very early after the big bang. They are rare and, to select them, we
  have to rely on low-resolution spectroscopic or photometric surveys;
  specifically the combination of narrow- and broad-band photometry
  provides a powerful and time efficient way to select MP stars. The
  Pristine photometric survey is using the Canada-France-Hawaii Telescope
  MegaCam wide-field imager to obtain narrow-band photometry by utilizing
  a filter centred at 395.2 nm on the Ca II-H and -K lines. Gaia DR 2 is
  providing us the wide-band photometry as well as parallaxes. Follow-up
  observations of MP candidates allowed us to improve our photometric
  calibrations. In this paper of the series we analyse MP stars observed
  with FORS2 at VLT. We demonstrate the Pristine calibration adopted in
  this work to be able to provide metallicities accurate to ±0.3 dex for
  MP giant stars with good parallaxes, while it performs poorly for dwarf
  and turn-off stars, whatever the accuracy on the parallaxes. We find
  some MP and very MP stars that are not enhanced in α elements. Such
  stars have already been found in several other searches, and a higher
  resolution follow-up of our sample would be useful to put our findings
  on a firmer ground. This sample of stars analysed has a low fraction of
  carbon-enhanced MP stars, regardless of the definition adopted. This
  deficiency could indicate a small sensitivity of the Pristine filter
  to carbon abundance, issue to be addressed in the future.

---------------------------------------------------------
Title: VizieR Online Data Catalog: High-speed stars. Galactic
    hitchhikers (Caffau+, 2020)
Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Sbordone, L.; Haywood,
   M.; Spite, M.; Di Matteo, P.; Spite, F.; Mucciarelli, A.; Francois,
   P.; Matas Pinto, A. M.
2020yCat..36380122C    Altcode:
  From the Gaia DR2 catalogue, we selected stars with transverse velocity
  higher than 500km/s, in the G magnitude range 14-14.5. Further
  constraints were put on right ascension to ensure observability in
  European Southern Observatory (ESO) period 104 (0h&lt;=RA&lt;=16h
  or RA&gt;=20) and on declination (DE&lt;=-25) to privilege a south
  pointing. The latter constraint was set in order to ensure that the VLT
  could observe our targets even in the event of fairly strong northern
  wind. In this way we were able to ensure observations of stars that
  were not too far away, and as a consequence with relatively small
  uncertainties on parallaxes and proper motions, and of bright objects
  for an 8 m class telescope, allowing good quality observations even
  in bad weather conditions. <P />All 72 stars were observed during
  ESO period 104. <P />In the kinematical and chemical investigations,
  we assumed that all stars are single. <P />(3 data files).

---------------------------------------------------------
Title: The Pristine survey - IX. CFHT ESPaDOnS spectroscopic analysis
    of 115 bright metal-poor candidate stars
Authors: Venn, Kim A.; Kielty, Collin L.; Sestito, Federico;
   Starkenburg, Else; Martin, Nicolas; Aguado, David S.; Arentsen, Anke;
   Bonifacio, Piercarlo; Caffau, Elisabetta; Hill, Vanessa; Jablonka,
   Pascale; Lardo, Carmela; Mashonkina, Lyudmilla; Navarro, Julio F.;
   Sneden, Chris; Thomas, Guillaume; Youakim, Kris; González-Hernández,
   Jonay I.; Sánchez Janssen, Rubén; Carlberg, Ray; Malhan, Khyati
2020MNRAS.492.3241V    Altcode: 2019MNRAS.tmp.3190V; 2019arXiv191006340V
  A chemo-dynamical analysis of 115 metal-poor candidate stars selected
  from the narrow-band Pristine photometric survey is presented based
  on CFHT high-resolution ESPaDOnS spectroscopy. We have discovered 28
  new bright (V &lt; 15) stars with [Fe/H] &lt; -2.5 and 5 with [Fe/H]
  &lt; -3.0 for success rates of 40 (28/70) and 19 per cent (5/27),
  respectively. A detailed model atmosphere analysis is carried out
  for the 28 new metal-poor stars. Stellar parameters were determined
  from SDSS photometric colours, Gaia DR2 parallaxes, MESA/MIST stellar
  isochrones, and the initial Pristine survey metallicities, following
  a Bayesian inference method. Chemical abundances are determined for 10
  elements (Na, Mg, Ca, Sc, Ti, Cr, Fe, Ni, Y, and Ba). Most stars show
  chemical abundance patterns that are similar to the normal metal-poor
  stars in the Galactic halo; however, we also report the discoveries of
  a new r-process-rich star, a new CEMP-s candidate with [Y/Ba] &gt; 0,
  and a metal-poor star with very low [Mg/Fe]. The kinematics and orbits
  for all of the highly probable metal-poor candidates are determined
  by combining our precision radial velocities with Gaia DR2 proper
  motions. Some stars show unusual kinematics for their chemistries,
  including planar orbits, unbound orbits, and highly elliptical orbits
  that plunge deeply into the Galactic bulge (R<SUB>peri</SUB> &lt; 0.5
  kpc); also, eight stars have orbital energies and actions consistent
  with the Gaia-Enceladus accretion event. This paper contributes to our
  understanding of the complex chemo-dynamics of the metal-poor Galaxy,
  and increases the number of known bright metal-poor stars available
  for detailed nucleosynthetic studies.

---------------------------------------------------------
Title: Erratum: The Pristine survey - VI. The first three years
    of medium-resolution follow-up spectroscopy of Pristine EMP star
    candidates
Authors: Aguado, David S.; Youakim, Kris; González Hernández,
   Jonay I.; Allende Prieto, Carlos; Starkenburg, Else; Martin, Nicolas;
   Bonifacio, Piercarlo; Arentsen, Anke; Caffau, Elisabetta; Peralta
   de Arriba, Luis; Sestito, Federico; Garcia-Dias, Rafael; Fantin,
   Nicholas; Hill, Vanessa; Jablonca, Pascale; Jahandar, Farbod; Kielty,
   Collin; Longeard, Nicolas; Lucchesi, Romain; Sánchez-Janssen, Rubén;
   Osorio, Yeisson; Palicio, Pedro A.; Tolstoy, Eline; Wilson, Thomas
   G.; Côté, Patrick; Kordopatis, Georges; Lardo, Carmela; Navarro,
   Julio F.; Thomas, Guillaume F.; Venn, Kim
2020MNRAS.491.5299A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ESPRESSO highlights the binary nature of the ultra-metal-poor
    giant HE 0107-5240
Authors: Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert,
   Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; Di
   Marcantonio, P.; D'Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova,
   R.; González Hernández, J. I.; Lo Curto, G.; Lovis, C.; Martins,
   C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe,
   F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.;
   Sozzetti, A.; Suarez-Mascareño, A.; Udry, S.; Zapatero-Osorio, M. R.
2020A&A...633A.129B    Altcode:
  Context. The vast majority of the known stars of ultra low metallicity
  ([Fe/H] &lt; -4.5) are known to be enhanced in carbon, and belong to
  the "low-carbon band" (A(C) = log(C/H)+12 ≤ 7.6). It is generally,
  although not universally, accepted that this peculiar chemical
  composition reflects the chemical composition of the gas cloud out
  of which these stars were formed. The first ultra-metal-poor star
  discovered, HE 0107-5240, is also enhanced in carbon and belongs to the
  "low-carbon band". It has recently been claimed to be a long-period
  binary, based on radial velocity measurements. It has also been claimed
  that this binarity may explain its peculiar composition as being due
  to mass transfer from a former AGB companion. Theoretically, low-mass
  ratios in binary systems are much more favoured amongst Pop III stars
  than they are amongst solar-metallicity stars. Any constraint on
  the mass ratio of a system of such low metallicity would shed light
  on the star formation mechanisms in this metallicity regime. <BR />
  Aims: We acquired one high precision spectrum with ESPRESSO in order
  to check the reality of the radial velocity variations. In addition we
  analysed all the spectra of this star in the ESO archive obtained with
  UVES to have a set of homogenously measured radial velocities. <BR />
  Methods: The radial velocities were measured using cross correlation
  against a synthetic spectrum template. Due to the weakness of metallic
  lines in this star, the signal comes only from the CH molecular lines
  of the G-band. <BR /> Results: The measurement obtained in 2018 from an
  ESPRESSO spectrum demonstrates unambiguously that the radial velocity of
  HE 0107-5240 has increased from 2001 to 2018. Closer inspection of the
  measurements based on UVES spectra in the interval 2001-2006 show that
  there is a 96% probability that the radial velocity correlates with
  time, hence the radial velocity variations can already be suspected
  from the UVES spectra alone. <BR /> Conclusions: We confirm the
  earlier claims of radial velocity variations in HE 0107-5240. The
  simplest explanation of such variations is that the star is indeed
  in a binary system with a long period. The nature of the companion
  is unconstrained and we consider it is equally probable that it is
  an unevolved companion or a white dwarf. Continued monitoring of the
  radial velocities of this star is strongly encouraged. <P />Tables
  1 and 2 are also available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A129">http://cdsarc.</A><A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A129">http://u-strasbg.fr/viz-bin/cat/J/A+A/633/A129</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: ESPRESSO radial velocities of
    HE0107-5240 (Bonifacio+, 2020)
Authors: Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert,
   Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; di
   Marcantonio, P.; D'Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova,
   R.; Gonzalez Hernandez, J. I.; Lo Curto, G.; Lovis, C.; Martins,
   C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe,
   F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.;
   Sozzetti, A.; Suarez-Mascareno, A.; Udry, S.; Zapatero-Osorio, M. R.
2020yCat..36330129B    Altcode:
  A new measurement of the radial velocity of the ultra-metal-poor star
  HE 0107-5240 is derived using a high resolution spectrum obtained with
  the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic
  Observations (ESPRESSO). In the high resolution mode there are two
  fibres with a core diameter of 140um that corresponds to 1.0" on the
  sky. HE 0107-5240 was observed on September 3, 2018. The new measurement
  is put into context with measurements derived using spectra taken in
  the last 17 years and confirms the variation in radial velocity of
  this star over this period. <P />(2 data files).

---------------------------------------------------------
Title: The Pristine survey - VI. The first three years of
    medium-resolution follow-up spectroscopy of Pristine EMP star
    candidates
Authors: Aguado, David S.; Youakim, Kris; González Hernández,
   Jonay I.; Allende Prieto, Carlos; Starkenburg, Else; Martin, Nicolas;
   Bonifacio, Piercarlo; Arentsen, Anke; Caffau, Elisabetta; Peralta
   de Arriba, Luis; Sestito, Federico; Garcia-Dias, Rafael; Fantin,
   Nicholas; Hill, Vanessa; Jablonca, Pascale; Jahandar, Farbod; Kielty,
   Collin; Longeard, Nicolas; Lucchesi, Romain; Sánchez-Janssen, Rubén;
   Osorio, Yeisson; Palicio, Pedro A.; Tolstoy, Eline; Wilson, Thomas
   G.; Côté, Patrick; Kordopatis, Georges; Lardo, Carmela; Navarro,
   Julio F.; Thomas, Guillaume F.; Venn, Kim
2019MNRAS.490.2241A    Altcode: 2019MNRAS.tmp.2271A; 2019arXiv190908138A
  We present the results of a 3-yr long, medium-resolution spectroscopic
  campaign aimed at identifying very metal-poor stars from candidates
  selected with the CaHK, metallicity-sensitive Pristine survey. The
  catalogue consists of a total of 1007 stars, and includes 146
  rediscoveries of metal-poor stars already presented in previous
  surveys, 707 new very metal-poor stars with [Fe/H] &lt; -2.0, and
  95 new extremely metal-poor stars with [Fe/H] &lt; -3.0. We provide
  a spectroscopic [Fe/H] for every star in the catalogue, and [C/Fe]
  measurements for a subset of the stars (10 per cent with [Fe/H] &lt;
  -3 and 24 per cent with -3 &lt; [Fe/H] &lt; -2) for which a carbon
  determination is possible, contingent mainly on the carbon abundance,
  effective temperature and signal-to-noise ratio of the stellar
  spectra. We find an average carbon enhancement fraction ([C/Fe] ≥
  +0.7) of 41 ± 4 per cent for stars with -3 &lt; [Fe/H] &lt; -2 and
  58 ± 14 per cent for stars with [Fe/H] &lt; -3, and report updated
  success rates for the Pristine survey of 56 per cent and 23 per cent to
  recover stars with [Fe/H] &lt; -2.5 and &lt; -3, respectively. Finally,
  we discuss the current status of the survey and its preparation for
  providing targets to upcoming multi-object spectroscopic surveys such
  as William Herschel Telescope Enhanced Area Velocity Explorer.

---------------------------------------------------------
Title: A wide angle chemical survey of the Sagittarius dwarf
    Spheroidal galaxy
Authors: Sbordone, L.; Monaco, L.; Duffau, S.; Bonifacio, P.;
   Caffau, E.
2019IAUS..344...42S    Altcode:
  We present the status of an ongoing project to map the detailed
  chemical abundances of stars across the main body of the Sagittarius
  dwarf Spheroidal galaxy (Sgr dSph). The Sgr dSph is the closest known
  dwarf galaxy, and is being tidally destroyed by its interaction with
  the Milky Way (MW), leaving behind a massive stellar stream. Sgr dSph
  is a chemically outstanding object, with peculiar abundance ratios,
  clear center-outskirts abundance gradients, and spanning more than 3
  orders of magnitude in metallicity. We present here detailed abundances
  from UVES@VLT spectra for more than 50 giants across 8 fields along
  the major and minor axes of Sgr dSph, and 5 more outside the galaxy
  main body, but possibly associated to its stellar stream.

---------------------------------------------------------
Title: Probing the existence of very massive first stars
Authors: Salvadori, S.; Bonifacio, P.; Caffau, E.; Korotin, S.;
   Andreevsky, S.; Spite, M.; Skúladóttir, Á.
2019MNRAS.487.4261S    Altcode: 2019MNRAS.tmp.1406S; 2019arXiv190600994S
  We present a novel approach aimed at identifying the key
  chemical elements to search for the (missing) descendants of
  very massive first stars exploding as pair instability supernovae
  (PISN). Our simple and general method consists in a parametric study
  accounting for the unknowns related to early cosmic star formation
  and metal-enrichment. Our approach allow us to define the most likely
  [Fe/H] and abundance ratios of long-lived stars born in interstellar
  media polluted by the nucleosynthetic products of PISN at a {&gt; } 90{{
  per cent}}, 70{{ per cent}}, and 50{{ per cent}} level. In agreement
  with previous works, we show that the descendants of very massive first
  stars can be most likely found at [Fe/H] ≈ -2. Further, we demonstrate
  that to search for an underabundance of [(N, Cu, Zn)/Fe] &lt; 0 is
  the key to identify these rare descendants. The `killing elements'
  N, Zn, and Cu are not produced by PISN, so that their sub-Solar
  abundance with respect to iron persists in environments polluted by
  further generations of normal core-collapse supernovae up to a 50{{
  per cent}} level. We show that the star BD+80° 245, which has [Fe/H] =
  -2.2, [N/Fe] = -0.79, [Cu/Fe] = -0.75, and [Zn/Fe] = -0.12 can be the
  smoking gun of the chemical imprint from very massive first stars. To
  this end we acquired new spectra for BD+80° 245 and re-analysed those
  available from the literature accounting for non-local thermodynamic
  equilibrium corrections for Cu. We discuss how to find more of these
  missing descendants in ongoing and future surveys to tightly constrain
  the mass distribution of the first stars.

---------------------------------------------------------
Title: The CEMP star SDSS J0222-0313: the first evidence of proton
    ingestion in very low-metallicity AGB stars?
Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Korotin, S.;
   Andrievsky, S.; Cristallo, S.; Spite, M.; Spite, F.; Sbordone, L.;
   François, P.; Cescutti, G.; Salvadori, S.
2019A&A...628A..46C    Altcode:
  Context. Carbon-enhanced metal-poor (CEMP) stars are common objects
  in the metal-poor regime. The lower the metallicity we look at, the
  larger the fraction of CEMP stars with respect to metal-poor stars
  with no enhancement in carbon. The chemical pattern of CEMP stars is
  diversified, strongly suggesting a different origin of the C enhancement
  in the different types of CEMP stars. <BR /> Aims: We selected a CEMP
  star, SDSS J0222-0313, with a known high carbon abundance and, from
  a low-resolution analysis, a strong enhancement in neutron-capture
  elements of the first peak (Sr and Y) and of the second peak (Ba). The
  peculiarity of this object is a greater overabundance (with respect to
  iron) of the first s-process peak than the second s-process peak. <BR
  /> Methods: We analysed a high-resolution spectrum obtained with the
  Mike spectrograph at the Clay Magellan 6.5 m telescope in order to
  derive the detailed chemical composition of this star. <BR /> Results:
  We confirmed the chemical pattern we expected; we derived abundances for
  a total of 18 elements and significant upper limits. <BR /> Conclusions:
  We conclude that this star is a carbon-enhanced metal-poor star enriched
  in elements produced by s-process (CEMP-s), whose enhancement in heavy
  elements is due to mass transfer from the more evolved companion in
  its asymptotic giant branch (AGB) phase. The abundances imply that
  the evolved companion had a low main sequence mass and it suggests
  that it experienced a proton ingestion episode at the beginning of
  its AGB phase. <P />Based on observations collected with Mike at the
  Magellan-II (Clay) telescope at the Las Campanas Observatory under
  programme CN2018B-5.

---------------------------------------------------------
Title: The <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio in the
    metal-poor binary CS22876-032
Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.;
   Ludwig, H. -G.; Steffen, M.; Monaco, L.; Cayrel, R.
2019A&A...628A.111G    Altcode: 2019arXiv190705109G
  <BR /> Aims: We present high-resolution and high-quality UVES
  spectroscopic data of the metal-poor double-lined spectroscopic binary
  CS 22876-032 ([Fe/H] approximately -3.7 dex). Our goal is to derive
  the <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio by analysing the
  Li I λ 670.8 nm doublet. <BR /> Methods: We co-added all 28 useful
  spectra normalised and corrected for radial velocity to the rest frame
  of the primary star. We fitted the Li profile with a grid of the 3D
  non-local thermodynamic equilibrium (NLTE) synthetic spectra to take
  into account the line profile asymmetries induced by stellar convection,
  and performed Monte Carlo simulations to evaluate the uncertainty of
  the fit of the Li line profile. <BR /> Results: We checked that the
  veiling factor does not affect the derived isotopic ratio, <SUP>6</SUP>
  Li/<SUP>7</SUP>Li, and only modifies the Li abundance, A(Li), by
  about 0.15 dex. The best fit of the Li profile of the primary star
  provides A(Li) = 2.17 ± 0.01 dex and <SUP>6</SUP> Li/<SUP>7</SUP>Li =
  8<SUB>-5</SUB><SUP>+2</SUP>% at 68% confidence level. In addition, we
  improved the Li abundance of the secondary star at A(Li) = 1.55 ± 0.04
  dex, which is about 0.6 dex lower than that of the primary star. <BR
  /> Conclusions: The analysis of the Li profile of the primary star is
  consistent with no detection of <SUP>6</SUP> Li and provides an upper
  limit to the isotopic ratio of <SUP>6</SUP> Li/<SUP>7</SUP>Li &lt;
  10% at this very low metallicity, about 0.5 dex lower in metallicity
  than previous attempts for detection of <SUP>6</SUP> Li in extremely
  metal poor stars. These results do not solve or worsen the cosmological
  <SUP>7</SUP> Li problem, nor do they support the need for non-standard
  <SUP>6</SUP>Li production in the early Universe. <P />The two averaged
  spectra are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A111">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A111</A>Based
  on observations made with the Very Large Telescope (VLT) at ESO Paranal
  Observatory, Chile, Programme 080.D-0333.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Li in BPS CS22876-032 spectrum
    (Gonzalez Hernandez+, 2019)
Authors: Gonzalez Hernandez, J. I.; Bonifacio, P.; Caffau, E.; Ludwig,
   H. -G.; Steffen, M.; Monaco, L.; Cayrel, R.
2019yCat..36280111G    Altcode:
  Average co-added, rebinned spectra in the region around the LiI 670.8nm
  resonance line of the two stellar components of the metal-poor binary
  CS 22876-032 A and CS 22876-032 B. For each star, wavelength, normalised
  flux and flux error are given. <P />(2 data files).

---------------------------------------------------------
Title: The Pristine survey - V. A bright star sample observed
    with SOPHIE
Authors: Bonifacio, P.; Caffau, E.; Sestito, F.; Lardo, C.; Martin,
   N. F.; Starkenburg, E.; Sbordone, L.; François, P.; Jablonka,
   P.; Henden, A. A.; Salvadori, S.; González Hernández, J. I.;
   Aguado, D. S.; Hill, V.; Venn, K.; Navarro, J. F.; Arentsen, A.;
   Sanchez-Janssen, R.; Carlberg, R.
2019MNRAS.487.3797B    Altcode: 2019MNRAS.tmp.1324B
  With the aim of probing the properties of the bright end of the
  Pristine survey and its effectiveness in selecting metal-poor stars,
  we selected a sample of bright candidate metal-poor stars combining
  Pristine CaHK photometry with APASS gi photometry, before the Gaia
  second data release became available. These stars were observed with
  the SOPHIE spectrograph at the 1.93 m telescope of Observatoire de
  Haute Provence and we used photometry and parallaxes from Gaia DR2
  to derive their atmospheric parameters. Chemical abundances were
  determined from the spectra for 40 stars of the sample. Eight stars
  were confirmed to be very metal-poor ([Fe/H] &lt; -2.0), as expected
  from the photometric estimate. No star was found with [Fe/H] &lt;
  -3.0, although for nine stars the photometric estimate was below this
  value. Three multiple systems are identified from their multipeaked
  cross-correlation functions. Two metal-poor stars with [Fe/H] ≈
  -1.0 have an age estimate of about 4 Gyr. Accretion from a satellite
  galaxy is a possible explanation for these `young metal-poor stars',
  but they could also be field blue stragglers. Galactic orbits for our
  sample of stars allowed us to divide them into three classes that we
  label `Halo', `Thick', and `Thin' and tentatively identify as halo,
  thick disc, and thin disc. We present a new method for deriving
  photometric metallicities, effective temperatures, and surface
  gravities by combining Gaia parallaxes, photometry, and Pristine CaHK
  photometry. Comparison with spectroscopic metallicities shows a very
  good agreement and suggests that we can further improve the efficiency
  of Pristine CaHK in selecting metal-poor stars.

---------------------------------------------------------
Title: Analysis of surface effect on solar-like oscillation
    frequencies using 3D hydrodynamical models
Authors: Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau,
   E.; Mosser, B.
2019EAS....82..253S    Altcode:
  We evaluate the frequency difference between standard stellar
  models and models patched with 3D hydrodynamical models across the
  T<SUB>eff</SUB>-g plane. It allows us to constrain frequency corrections
  for surface effect. The coefficients in the correction functionals are
  thus provided as functions of effective temperature and surface gravity.

---------------------------------------------------------
Title: Extremely metal-poor stars: the need for UV spectra
Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Spite, Monique
2019BAAS...51c.546B    Altcode: 2019arXiv190305666B; 2019astro2020T.546B
  Extremely metal-poor stars are the fossil record of the gas in the
  pristine Universe. They offer us the opportunity to understand the mass
  distribution and nucleosynthetic properties of the First generation
  of stars. UV spectra provide access to information not available in
  other spectral ranges.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Pristine survey II. Bright stars
    abundances (Caffau+, 2017)
Authors: Caffau, E.; Bonifacio, P.; Starkenburg, E.; Martin, N.;
   Youakim, K.; Henden, A. A.; Gonzalez Hernandez, J. I.; Aguado, D. S.;
   Allende Prieto, C.; Venn, K.; Jablonka, P.
2019yCat.113380686C    Altcode:
  Atmospheric parameters and radial velocities for 27 stars and detailed
  abundances for 23 stars. <P />(2 data files).

---------------------------------------------------------
Title: The Detailed Science Case for the Maunakea Spectroscopic
    Explorer, 2019 edition
Authors: The MSE Science Team; Babusiaux, Carine; Bergemann, Maria;
   Burgasser, Adam; Ellison, Sara; Haggard, Daryl; Huber, Daniel;
   Kaplinghat, Manoj; Li, Ting; Marshall, Jennifer; Martell, Sarah;
   McConnachie, Alan; Percival, Will; Robotham, Aaron; Shen, Yue;
   Thirupathi, Sivarani; Tran, Kim-Vy; Yeche, Christophe; Yong, David;
   Adibekyan, Vardan; Silva Aguirre, Victor; Angelou, George; Asplund,
   Martin; Balogh, Michael; Banerjee, Projjwal; Bannister, Michele;
   Barría, Daniela; Battaglia, Giuseppina; Bayo, Amelia; Bechtol,
   Keith; Beck, Paul G.; Beers, Timothy C.; Bellinger, Earl P.; Berg,
   Trystyn; Bestenlehner, Joachim M.; Bilicki, Maciej; Bitsch, Bertram;
   Bland-Hawthorn, Joss; Bolton, Adam S.; Boselli, Alessandro; Bovy,
   Jo; Bragaglia, Angela; Buzasi, Derek; Caffau, Elisabetta; Cami, Jan;
   Carleton, Timothy; Casagrande, Luca; Cassisi, Santi; Catelan, Márcio;
   Chang, Chihway; Cortese, Luca; Damjanov, Ivana; Davies, Luke J. M.;
   de Grijs, Richard; de Rosa, Gisella; Deason, Alis; di Matteo, Paola;
   Drlica-Wagner, Alex; Erkal, Denis; Escorza, Ana; Ferrarese, Laura;
   Fleming, Scott W.; Font-Ribera, Andreu; Freeman, Ken; Gänsicke,
   Boris T.; Gabdeev, Maksim; Gallagher, Sarah; Gandolfi, Davide; García,
   Rafael A.; Gaulme, Patrick; Geha, Marla; Gennaro, Mario; Gieles, Mark;
   Gilbert, Karoline; Gordon, Yjan; Goswami, Aruna; Greco, Johnny P.;
   Grillmair, Carl; Guiglion, Guillaume; Hénault-Brunet, Vincent;
   Hall, Patrick; Handler, Gerald; Hansen, Terese; Hathi, Nimish;
   Hatzidimitriou, Despina; Haywood, Misha; Hernández Santisteban,
   Juan V.; Hillenbrand, Lynne; Hopkins, Andrew M.; Howlett, Cullan;
   Hudson, Michael J.; Ibata, Rodrigo; Ilić, Dragana; Jablonka,
   Pascale; Ji, Alexander; Jiang, Linhua; Juneau, Stephanie; Karakas,
   Amanda; Karinkuzhi, Drisya; Kim, Stacy Y.; Kong, Xu; Konstantopoulos,
   Iraklis; Krogager, Jens-Kristian; Lagos, Claudia; Lallement, Rosine;
   Laporte, Chervin; Lebreton, Yveline; Lee, Khee-Gan; Lewis, Geraint F.;
   Lianou, Sophia; Liu, Xin; Lodieu, Nicolas; Loveday, Jon; Mészáros,
   Szabolcs; Makler, Martin; Mao, Yao-Yuan; Marchesini, Danilo; Martin,
   Nicolas; Mateo, Mario; Melis, Carl; Merle, Thibault; Miglio, Andrea;
   Gohar Mohammad, Faizan; Molaverdikhani, Karan; Monier, Richard;
   Morel, Thierry; Mosser, Benoit; Nataf, David; Necib, Lina; Neilson,
   Hilding R.; Newman, Jeffrey A.; Nierenberg, A. M.; Nord, Brian;
   Noterdaeme, Pasquier; O'Dea, Chris; Oshagh, Mahmoudreza; Pace, Andrew
   B.; Palanque-Delabrouille, Nathalie; Pandey, Gajendra; Parker, Laura
   C.; Pawlowski, Marcel S.; Peter, Annika H. G.; Petitjean, Patrick;
   Petric, Andreea; Placco, Vinicius; Popović, Luka Č.; Price-Whelan,
   Adrian M.; Prsa, Andrej; Ravindranath, Swara; Rich, R. Michael; Ruan,
   John; Rybizki, Jan; Sakari, Charli; Sanderson, Robyn E.; Schiavon,
   Ricardo; Schimd, Carlo; Serenelli, Aldo; Siebert, Arnaud; Siudek,
   Malgorzata; Smiljanic, Rodolfo; Smith, Daniel; Sobeck, Jennifer;
   Starkenburg, Else; Stello, Dennis; Szabó, Gyula M.; Szabo, Robert;
   Taylor, Matthew A.; Thanjavur, Karun; Thomas, Guillaume; Tollerud,
   Erik; Toonen, Silvia; Tremblay, Pier-Emmanuel; Tresse, Laurence;
   Tsantaki, Maria; Valentini, Marica; Van Eck, Sophie; Variu, Andrei;
   Venn, Kim; Villaver, Eva; Walker, Matthew G.; Wang, Yiping; Wang,
   Yuting; Wilson, Michael J.; Wright, Nicolas; Xu, Siyi; Yildiz,
   Mutlu; Zhang, Huawei; Zwintz, Konstanze; Anguiano, Borja; Bedell,
   Megan; Chaplin, William; Collet, Remo; Cuillandre, Jean-Charles;
   Duc, Pierre-Alain; Flagey, Nicolas; Hermes, JJ; Hill, Alexis;
   Kamath, Devika; Laychak, Mary Beth; Małek, Katarzyna; Marley, Mark;
   Sheinis, Andy; Simons, Doug; Sousa, Sérgio G.; Szeto, Kei; Ting,
   Yuan-Sen; Vegetti, Simona; Wells, Lisa; Babas, Ferdinand; Bauman,
   Steve; Bosselli, Alessandro; Côté, Pat; Colless, Matthew; Comparat,
   Johan; Courtois, Helene; Crampton, David; Croom, Scott; Davies, Luke;
   de Grijs, Richard; Denny, Kelly; Devost, Daniel; di Matteo, Paola;
   Driver, Simon; Fernandez-Lorenzo, Mirian; Guhathakurta, Raja; Han,
   Zhanwen; Higgs, Clare; Hill, Vanessa; Ho, Kevin; Hopkins, Andrew;
   Hudson, Mike; Ibata, Rodrigo; Isani, Sidik; Jarvis, Matt; Johnson,
   Andrew; Jullo, Eric; Kaiser, Nick; Kneib, Jean-Paul; Koda, Jun;
   Koshy, George; Mignot, Shan; Murowinski, Rick; Newman, Jeff; Nusser,
   Adi; Pancoast, Anna; Peng, Eric; Peroux, Celine; Pichon, Christophe;
   Poggianti, Bianca; Richard, Johan; Salmon, Derrick; Seibert, Arnaud;
   Shastri, Prajval; Smith, Dan; Sutaria, Firoza; Tao, Charling; Taylor,
   Edwar; Tully, Brent; van Waerbeke, Ludovic; Vermeulen, Tom; Walker,
   Matthew; Willis, Jon; Willot, Chris; Withington, Kanoa
2019arXiv190404907T    Altcode:
  (Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end
  science platform for the design, execution and scientific exploitation
  of spectroscopic surveys. It will unveil the composition and dynamics
  of the faint Universe and impact nearly every field of astrophysics
  across all spatial scales, from individual stars to the largest scale
  structures in the Universe. Major pillars in the science program for MSE
  include (i) the ultimate Gaia follow-up facility for understanding the
  chemistry and dynamics of the distant Milky Way, including the outer
  disk and faint stellar halo at high spectral resolution (ii) galaxy
  formation and evolution at cosmic noon, via the type of revolutionary
  surveys that have occurred in the nearby Universe, but now conducted at
  the peak of the star formation history of the Universe (iii) derivation
  of the mass of the neutrino and insights into inflationary physics
  through a cosmological redshift survey that probes a large volume of
  the Universe with a high galaxy density. MSE is positioned to become
  a critical hub in the emerging international network of front-line
  astronomical facilities, with scientific capabilities that naturally
  complement and extend the scientific power of Gaia, the Large Synoptic
  Survey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m
  telescopes and many more.

---------------------------------------------------------
Title: On the Connection between Li Depletion and Blue Stragglers
    and Possible Implications on the Spite Plateau Meltdown
Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.
2019RNAAS...3...64B    Altcode: 2019RNAAS...3d..64B
  No abstract at ADS

---------------------------------------------------------
Title: Be and O in the ultra metal-poor dwarf 2MASS J18082002-5104378:
    the Be-O correlation
Authors: Spite, M.; Bonifacio, P.; Spite, F.; Caffau, E.; Sbordone,
   L.; Gallagher, A. J.
2019A&A...624A..44S    Altcode: 2019arXiv190211048S
  Context. Measurable amounts of Be could have been synthesised
  primordially if the Universe were non-homogeneous or in the presence
  of late decaying relic particles. <BR /> Aims: We investigate the Be
  abundance in the extremely metal-poor star 2MASS J1808-5104 ([Fe/H] =
  -3.84) with the aim of constraining inhomogeneities or the presence
  of late decaying particles. <BR /> Methods: High resolution, high
  signal-to-noise ratio (S/N) UV spectra were acquired at ESO with
  the Kueyen 8.2 m telescope and the UVES spectrograph. Abundances were
  derived using several model atmospheres and spectral synthesis code. <BR
  /> Results: We measured log(Be/H) = -14.3 from a spectrum synthesis of
  the region of the Be line. Using a conservative approach, however we
  adopted an upper limit two times higher, i.e. log(Be/H) &lt; -14.0. We
  measured the O abundance from UV-OH lines and find [O/H] = -3.46
  after a 3D correction. <BR /> Conclusions: Our observation reinforces
  the existing upper limit on primordial Be. There is no observational
  indication for a primordial production of <SUP>9</SUP>Be. This places
  strong constraints on the properties of putative relic particles. This
  result also supports the hypothesis of a homogeneous Universe, at
  the time of nucleosynthesis. Surprisingly, our upper limit of the
  Be abundance is well below the Be measurements in stars of similar
  [O/H]. This may be evidence that the Be-O relation breaks down in the
  early Galaxy, perhaps due to the escape of spallation products from
  the gas clouds in which stars such as 2MASS J1808-5104 have formed. <P
  />Based on observations collected at the European Organisation for
  Astronomical Research in the Southern Hemisphere under ESO programmes
  101.A-0229(A), (PI M.Spite) and 293.D-5036 (PI J. Mélendez). This
  research has also made use of Keck Observatory Archive (KOA),
  operated by the W. M. Keck Observatory and the NASA Exoplanet Science
  Institute (NExScI), under contract with the National Aeronautics and
  Space Administration (PI A. Boesgaard).The 3D values of the oxygen
  abundance are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A44">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A44</A>

---------------------------------------------------------
Title: 4MOST: Project overview and information for the First Call
    for Proposals
Authors: de Jong, R. S.; Agertz, O.; Berbel, A. A.; Aird, J.;
   Alexander, D. A.; Amarsi, A.; Anders, F.; Andrae, R.; Ansarinejad,
   B.; Ansorge, W.; Antilogus, P.; Anwand-Heerwart, H.; Arentsen, A.;
   Arnadottir, A.; Asplund, M.; Auger, M.; Azais, N.; Baade, D.; Baker,
   G.; Baker, S.; Balbinot, E.; Baldry, I. K.; Banerji, M.; Barden,
   S.; Barklem, P.; Barthélémy-Mazot, E.; Battistini, C.; Bauer, S.;
   Bell, C. P. M.; Bellido-Tirado, O.; Bellstedt, S.; Belokurov, V.;
   Bensby, T.; Bergemann, M.; Bestenlehner, J. M.; Bielby, R.; Bilicki,
   M.; Blake, C.; Bland-Hawthorn, J.; Boeche, C.; Boland, W.; Boller,
   T.; Bongard, S.; Bongiorno, A.; Bonifacio, P.; Boudon, D.; Brooks,
   D.; Brown, M. J. I.; Brown, R.; Brüggen, M.; Brynnel, J.; Brzeski,
   J.; Buchert, T.; Buschkamp, P.; Caffau, E.; Caillier, P.; Carrick,
   J.; Casagrande, L.; Case, S.; Casey, A.; Cesarini, I.; Cescutti, G.;
   Chapuis, D.; Chiappini, C.; Childress, M.; Christlieb, N.; Church, R.;
   Cioni, M. -R. L.; Cluver, M.; Colless, M.; Collett, T.; Comparat, J.;
   Cooper, A.; Couch, W.; Courbin, F.; Croom, S.; Croton, D.; Daguisé,
   E.; Dalton, G.; Davies, L. J. M.; Davis, T.; de Laverny, P.; Deason,
   A.; Dionies, F.; Disseau, K.; Doel, P.; Döscher, D.; Driver, S. P.;
   Dwelly, T.; Eckert, D.; Edge, A.; Edvardsson, B.; Youssoufi, D. E.;
   Elhaddad, A.; Enke, H.; Erfanianfar, G.; Farrell, T.; Fechner, T.;
   Feiz, C.; Feltzing, S.; Ferreras, I.; Feuerstein, D.; Feuillet, D.;
   Finoguenov, A.; Ford, D.; Fotopoulou, S.; Fouesneau, M.; Frenk, C.;
   Frey, S.; Gaessler, W.; Geier, S.; Gentile Fusillo, N.; Gerhard,
   O.; Giannantonio, T.; Giannone, D.; Gibson, B.; Gillingham, P.;
   González-Fernández, C.; Gonzalez-Solares, E.; Gottloeber, S.; Gould,
   A.; Grebel, E. K.; Gueguen, A.; Guiglion, G.; Haehnelt, M.; Hahn, T.;
   Hansen, C. J.; Hartman, H.; Hauptner, K.; Hawkins, K.; Haynes, D.;
   Haynes, R.; Heiter, U.; Helmi, A.; Aguayo, C. H.; Hewett, P.; Hinton,
   S.; Hobbs, D.; Hoenig, S.; Hofman, D.; Hook, I.; Hopgood, J.; Hopkins,
   A.; Hourihane, A.; Howes, L.; Howlett, C.; Huet, T.; Irwin, M.; Iwert,
   O.; Jablonka, P.; Jahn, T.; Jahnke, K.; Jarno, A.; Jin, S.; Jofre,
   P.; Johl, D.; Jones, D.; Jönsson, H.; Jordan, C.; Karovicova, I.;
   Khalatyan, A.; Kelz, A.; Kennicutt, R.; King, D.; Kitaura, F.; Klar,
   J.; Klauser, U.; Kneib, J. -P.; Koch, A.; Koposov, S.; Kordopatis, G.;
   Korn, A.; Kosmalski, J.; Kotak, R.; Kovalev, M.; Kreckel, K.; Kripak,
   Y.; Krumpe, M.; Kuijken, K.; Kunder, A.; Kushniruk, I.; Lam, M. I.;
   Lamer, G.; Laurent, F.; Lawrence, J.; Lehmitz, M.; Lemasle, B.; Lewis,
   J.; Li, B.; Lidman, C.; Lind, K.; Liske, J.; Lizon, J. -L.; Loveday,
   J.; Ludwig, H. -G.; McDermid, R. M.; Maguire, K.; Mainieri, V.; Mali,
   S.; Mandel, H.; Mandel, K.; Mannering, L.; Martell, S.; Martinez
   Delgado, D.; Matijevic, G.; McGregor, H.; McMahon, R.; McMillan,
   P.; Mena, O.; Merloni, A.; Meyer, M. J.; Michel, C.; Micheva, G.;
   Migniau, J. -E.; Minchev, I.; Monari, G.; Muller, R.; Murphy, D.;
   Muthukrishna, D.; Nandra, K.; Navarro, R.; Ness, M.; Nichani, V.;
   Nichol, R.; Nicklas, H.; Niederhofer, F.; Norberg, P.; Obreschkow, D.;
   Oliver, S.; Owers, M.; Pai, N.; Pankratow, S.; Parkinson, D.; Paschke,
   J.; Paterson, R.; Pecontal, A.; Parry, I.; Phillips, D.; Pillepich,
   A.; Pinard, L.; Pirard, J.; Piskunov, N.; Plank, V.; Plüschke, D.;
   Pons, E.; Popesso, P.; Power, C.; Pragt, J.; Pramskiy, A.; Pryer,
   D.; Quattri, M.; Queiroz, A. B. d. A.; Quirrenbach, A.; Rahurkar,
   S.; Raichoor, A.; Ramstedt, S.; Rau, A.; Recio-Blanco, A.; Reiss, R.;
   Renaud, F.; Revaz, Y.; Rhode, P.; Richard, J.; Richter, A. D.; Rix,
   H. -W.; Robotham, A. S. G.; Roelfsema, R.; Romaniello, M.; Rosario, D.;
   Rothmaier, F.; Roukema, B.; Ruchti, G.; Rupprecht, G.; Rybizki, J.;
   Ryde, N.; Saar, A.; Sadler, E.; Sahlén, M.; Salvato, M.; Sassolas,
   B.; Saunders, W.; Saviauk, A.; Sbordone, L.; Schmidt, T.; Schnurr,
   O.; Scholz, R. -D.; Schwope, A.; Seifert, W.; Shanks, T.; Sheinis,
   A.; Sivov, T.; Skúladóttir, Á.; Smartt, S.; Smedley, S.; Smith,
   G.; Smith, R.; Sorce, J.; Spitler, L.; Starkenburg, E.; Steinmetz,
   M.; Stilz, I.; Storm, J.; Sullivan, M.; Sutherland, W.; Swann, E.;
   Tamone, A.; Taylor, E. N.; Teillon, J.; Tempel, E.; ter Horst, R.;
   Thi, W. -F.; Tolstoy, E.; Trager, S.; Traven, G.; Tremblay, P. -E.;
   Tresse, L.; Valentini, M.; van de Weygaert, R.; van den Ancker, M.;
   Veljanoski, J.; Venkatesan, S.; Wagner, L.; Wagner, K.; Walcher,
   C. J.; Waller, L.; Walton, N.; Wang, L.; Winkler, R.; Wisotzki, L.;
   Worley, C. C.; Worseck, G.; Xiang, M.; Xu, W.; Yong, D.; Zhao, C.;
   Zheng, J.; Zscheyge, F.; Zucker, D.
2019Msngr.175....3D    Altcode: 2019arXiv190302464D
  We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST),
  a new high-multiplex, wide-field spectroscopic survey facility under
  development for the four-metre-class Visible and Infrared Survey
  Telescope for Astronomy (VISTA) at Paranal. Its key specifications
  are: a large field of view (FoV) of 4.2 square degrees and a high
  multiplex capability, with 1624 fibres feeding two low-resolution
  spectrographs (R = λ/Δλ 6500), and 812 fibres transferring light
  to the high-resolution spectrograph (R 20 000). After a description of
  the instrument and its expected performance, a short overview is given
  of its operational scheme and planned 4MOST Consortium science; these
  aspects are covered in more detail in other articles in this edition
  of The Messenger. Finally, the processes, schedules, and policies
  concerning the selection of ESO Community Surveys are presented,
  commencing with a singular opportunity to submit Letters of Intent
  for Public Surveys during the first five years of 4MOST operations.

---------------------------------------------------------
Title: 4MOST Consortium Survey 2: The Milky Way Halo High-Resolution
    Survey
Authors: Christlieb, N.; Battistini, C.; Bonifacio, P.; Caffau, E.;
   Ludwig, H. -G.; Asplund, M.; Barklem, P.; Bergemann, M.; Church, R.;
   Feltzing, S.; Ford, D.; Grebel, E. K.; Hansen, C. J.; Helmi, A.;
   Kordopatis, G.; Kovalev, M.; Korn, A.; Lind, K.; Quirrenbach, A.;
   Rybizki, J.; Skúladóttir, Á.; Starkenburg, E.
2019Msngr.175...26C    Altcode: 2019arXiv190302468C
  We will study the formation history of the Milky Way, and the earliest
  phases of its chemical enrichment, with a sample of more than 1.5
  million stars at high galactic latitude. Elemental abundances of up to
  20 elements with a precision of better than 0.2 dex will be derived
  for these stars. The sample will include members of kinematically
  coherent substructures, which we will associate with their possible
  birthplaces by means of their abundance signatures and kinematics,
  allowing us to test models of galaxy formation. Our target catalogue
  is also expected to contain 30 000 stars at a metallicity of less than
  one hundredth that of the Sun. This sample will therefore be almost
  a factor of 100 larger than currently existing samples of metal-poor
  stars for which precise elemental abundances are available (determined
  from high-resolution spectroscopy), enabling us to study the early
  chemical evolution of the Milky Way in unprecedented detail.

---------------------------------------------------------
Title: Gaia Data Release 2. Variable stars in the colour-absolute
    magnitude diagram
Authors: Gaia Collaboration; Eyer, L.; Rimoldini, L.; Audard, M.;
   Anderson, R. I.; Nienartowicz, K.; Glass, F.; Marchal, O.; Grenon,
   M.; Mowlavi, N.; Holl, B.; Clementini, G.; Aerts, C.; Mazeh, T.;
   Evans, D. W.; Szabados, L.; Brown, A. G. A.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.;
   Biermann, M.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.;
   Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich,
   S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.;
   Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.;
   Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda,
   J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra,
   R.; Masana, E.; Messineo, R.; Panuzzo, P.; Portell, J.; Riello, M.;
   Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess,
   P.; Busso, G.; Carry, B.; Cellino, A.; Clotet, M.; Creevey, O.;
   Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant,
   C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio,
   L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit,
   J. -M.; Recio-Blanco, A.; Richards, P. J.; Robin, A. C.; Sarro,
   L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.;
   van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Altavilla,
   G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Andrei, A. H.; Anglada
   Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.;
   Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache,
   C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado,
   D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana,
   J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.;
   Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.;
   Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.;
   Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.;
   Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte,
   C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.;
   De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres,
   A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado,
   H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos,
   P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.;
   Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão,
   A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique,
   P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile,
   E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.;
   García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras,
   P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.;
   Giuffrida, G.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.;
   Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou,
   D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger,
   T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.;
   Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.;
   Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.;
   Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.;
   Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Lorenz, D.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.;
   McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina,
   D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli,
   R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva,
   T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane,
   W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.;
   Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.;
   Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum,
   G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.;
   Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.;
   Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers,
   T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern,
   L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.;
   Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.;
   Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.;
   Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.;
   Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.;
   Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.;
   Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szegedi-Elek,
   E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira,
   R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra
   Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant,
   M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck,
   E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.;
   Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba,
   V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.;
   Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.;
   Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2019A&A...623A.110G    Altcode: 2018arXiv180409382G
  Context. The ESA Gaia mission provides a unique time-domain survey
  for more than 1.6 billion sources with G ≲ 21 mag. <BR /> Aims:
  We showcase stellar variability in the Galactic colour-absolute
  magnitude diagram (CaMD). We focus on pulsating, eruptive, and
  cataclysmic variables, as well as on stars that exhibit variability
  that is due to rotation and eclipses. <BR /> Methods: We describe
  the locations of variable star classes, variable object fractions,
  and typical variability amplitudes throughout the CaMD and show
  how variability-related changes in colour and brightness induce
  "motions". To do this, we use 22 months of calibrated photometric,
  spectro-photometric, and astrometric Gaia data of stars with a
  significant parallax. To ensure that a large variety of variable
  star classes populate the CaMD, we crossmatched Gaia sources with
  known variable stars. We also used the statistics and variability
  detection modules of the Gaia variability pipeline. Corrections for
  interstellar extinction are not implemented in this article. <BR />
  Results: Gaia enables the first investigation of Galactic variable
  star populations in the CaMD on a similar, if not larger, scale as
  was previously done in the Magellanic Clouds. Although the observed
  colours are not corrected for reddening, distinct regions are visible
  in which variable stars occur. We determine variable star fractions
  to within the current detection thresholds of Gaia. Finally,
  we report the most complete description of variability-induced
  motion within the CaMD to date. <BR /> Conclusions: Gaia enables
  novel insights into variability phenomena for an unprecedented
  number of stars, which will benefit the understanding of stellar
  astrophysics. The CaMD of Galactic variable stars provides crucial
  information on physical origins of variability in a way that
  has previously only been accessible for Galactic star clusters or
  external galaxies. Future Gaia data releases will enable significant
  improvements over this preview by providing longer time series, more
  accurate astrometry, and additional data types (time series BP and
  RP spectra, RVS spectra, and radial velocities), all for much larger
  samples of stars. <P />A movie associated to Fig. 11 is available at <A
  href="https://www.aanda.org/10.1051/0004-6361/201833304/olm">https://www.aanda.org</A>.Data
  are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A110">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A110</A>.

---------------------------------------------------------
Title: Systematic investigation of chemical abundances derived using
    IR spectra obtained with GIANO
Authors: Caffau, E.; Bonifacio, P.; Oliva, E.; Korotin, S.; Capitanio,
   L.; Andrievsky, S.; Collet, R.; Sbordone, L.; Duffau, S.; Sanna, N.;
   Tozzi, A.; Origlia, L.; Ryde, N.; Ludwig, H. -G.
2019A&A...622A..68C    Altcode: 2018arXiv181205100C
  Context. Detailed chemical abundances of Galactic stars are needed in
  order to improve our knowledge of the formation and evolution of our
  galaxy, the Milky Way. <BR /> Aims: We took advantage of the GIANO
  archive spectra to select a sample of Galactic disc stars in order
  to derive their chemical inventory and to compare the abundances we
  derived from these infrared spectra to the chemical pattern derived
  from optical spectra. <BR /> Methods: We analysed high-quality spectra
  of 40 stars observed with GIANO. We derived the stellar parameters from
  the photometry and the Gaia data-release 2 (DR2) parallax; the chemical
  abundances were derived with the code MyGIsFOS. For a subsample of stars
  we compared the chemical pattern derived from the GIANO spectra with
  the abundances derived from optical spectra. We derived P abundances
  for all 40 stars, increasing the number of Galactic stars for which
  phosphorus abundance is known. <BR /> Results: We could derive
  abundances of 14 elements, 8 of which are also derived from optical
  spectra. The comparison of the abundances derived from infrared and
  optical spectra is very good. The chemical pattern of these stars is
  the one expected for Galactic disc stars and is in agreement with the
  results from the literature. <BR /> Conclusions: GIANO is providing
  the astronomical community with an extremely useful instrument, able
  to produce spectra with high resolution and a wide wavelength range
  in the infrared. <P />GIANO programme A31TAC.

---------------------------------------------------------
Title: VizieR Online Data Catalog: 3D-corrected oxygen abundances
    for halo stars (Spite+, 2019)
Authors: Spite, M.; Bonifacio, P.; Spite, F.; Caffau, E.; Sbordone,
   L.; Gallagher, A. J.
2019yCat..36240044S    Altcode:
  Oxygen abundance with 3D correction of the stars in the sample of
  Boesgaard et al. (2011, Cat. J/ApJ/743/140). <P />(1 data file).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances of very metal-poor
    stars in Sagittarius (Hansen+, 2018)
Authors: Hansen, C. J.; El-Souri, M.; Monaco, L.; Villanova, S.;
   Bonifacio, P.; Caffau, E.; Sbordone, L.
2019yCat..18550083H    Altcode:
  Observations were obtained using the high-resolution, cross-dispersed
  UV-Visual Echelle Spectrograph (UVES) mounted at the unit 2 telescope
  (UT2/Keueyen) of the ESO Very Large Telescope (VLT) in Cerro Paranal,
  Chile. Out of 13 stars, 12 were observed with central wavelengths of
  390nm and 580nm, for the blue and red arms, respectively. We adopted
  a 1.4" wide slit and 2x2 on-chip binning. All the stars were observed
  for ~2400-13000s at an airmass between 1.0 and 1.3 in 2009 April and
  July. The very metal-poor star Sgr 2300225 was observed using a slightly
  different setup in an earlier run (in 2005 August). <P />(3 data files).

---------------------------------------------------------
Title: Calibration of mixing-length parameter α for MLT and FST
    models by matching with CO<SUP>5</SUP>BOLD models
Authors: Sonoi, T.; Ludwig, H. -G.; Dupret, M. -A.; Montalbán, J.;
   Samadi, R.; Belkacem, K.; Caffau, E.; Goupil, M. -J.
2019A&A...621A..84S    Altcode: 2018arXiv181105229S
  Context. Space observations by the CoRoT and Kepler missions have
  provided a wealth of high-quality seismic data for a large number of
  stars from the main sequence to the red giant phases. One main goal of
  these missions is to take advantage of the rich spectra of solar-like
  oscillations to perform precise determinations of stellar characteristic
  parameters. To make the best of such data, we need theoretical stellar
  models with a precise near-surface structure since a near-surface
  structure of a solar-like star has significant influence on solar-like
  oscillation frequencies. The mixing-length parameter is a key factor
  to determine the near-surface structure of stellar models. In current
  versions of the convection formulations used in stellar evolution
  codes, the mixing-length parameter is a free parameter that needs to
  be properly specified. <BR /> Aims: We aim at determining appropriate
  values of the mixing-length parameter, α, to be used consistently with
  the adopted convection formulation when computing stellar evolution
  models across the Hertzsprung-Russell diagram. This determination
  is based on 3D hydrodynamical simulation models. <BR /> Methods:
  We calibrated α values by matching entropy profiles of 1D envelope
  models with those of hydrodynamical 3D models of solar-like stars
  produced by the CO<SUP>5</SUP>BOLD code. For such calibration, previous
  works concentrated on the classical mixing-length theory (MLT). We
  also analyzed full spectrum turbulence (FST) models. To construct the
  atmosphere in the 1D models, we used the Eddington gray T(τ) relation
  and that with the solar-calibrated Hopf-like function. <BR /> Results:
  For both MLT and FST models with a mixing length l = αH<SUB>p</SUB>,
  calibrated α values increase with increasing surface gravity or
  decreasing effective temperature. For the FST models, we carried
  out an additional calibration using an α<SUP>*</SUP> value defined
  as l = r<SUB>top</SUB> - r + α<SUP>*</SUP>H<SUB>p, top</SUB>, where
  α<SUP>*</SUP> is found to increase with surface gravity and effective
  temperature. We provide tables of the calibrated α values across
  the T<SUB>eff</SUB>-log g plane for solar metallicity. By computing
  stellar evolution with varying α based on our 3D α calibration, we
  find that the change from solar α to varying α shifts evolutionary
  tracks particularly for the FST model. As for the correspondence
  to the 3D models, the solar Hopf-like function generally gives a
  photospheric-minimum entropy closer to a 3D model than the Eddington
  T(τ). The structure below the photosphere depends on the adopted
  convection model. However, we cannot obtain a definitive conclusion
  about which convection model gives the best correspondence to the 3D
  models. This is because each 1D physical quantity is related via an
  equation of state (EoS), but it is not the case for the averaged 3D
  quantities. Although the FST models with l = r<SUB>top</SUB> - r +
  α<SUP>*</SUP>H<SUB>p, top</SUB> are found to give the oscillation
  frequencies closest to the solar observed frequencies, their acoustic
  cavities are formed with compensatory effects between deviating
  density and temperature profiles near the top of the convective
  envelope. In future work, an appropriate treatment of the top part of
  the 1D convective envelope is necessary, for example, by considering
  turbulent pressure and overshooting.

---------------------------------------------------------
Title: TOPoS. V. Abundance ratios in a sample of very metal-poor
    turn-off stars
Authors: François, P.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite,
   F.; Cayrel, R.; Christlieb, N.; Gallagher, A. J.; Klessen, R.; Koch,
   A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Steffen, M.; Zaggia, S.
2018A&A...620A.187F    Altcode: 2018arXiv181100035F
  Context. Extremely metal-poor stars are keys to understand the early
  evolution of our Galaxy. The ESO large programme TOPoS has been tailored
  to analyse a new set of metal-poor turn-off stars, whereas most of
  the previously known extremely metal-poor stars are giant stars. <BR
  /> Aims: Sixty five turn-off stars (preselected from SDSS spectra)
  have been observed with the X-shooter spectrograph at the ESO VLT Unit
  Telescope 2, to derive accurate and detailed abundances of magnesium,
  silicon, calcium, iron, strontium and barium. <BR /> Methods: We
  analysed medium-resolution spectra (R ≃ 10 000) obtained with the
  ESO X-shooter spectrograph and computed the abundances of several
  α and neutron-capture elements using standard one-dimensional local
  thermodynamic equilibrium (1D LTE) model atmospheres. <BR /> Results:
  Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in
  metal-poor turn-off stars as observed in metal-poor giant stars. We
  found a significant spread of the [α/Fe] ratios with several stars
  showing subsolar [Ca/Fe] ratios. We could measure the abundance of
  strontium in 12 stars of the sample, leading to abundance ratios
  [Sr/Fe] around the Solar value. We detected barium in two stars
  of the sample. One of the stars (SDSS J114424-004658) shows both
  very high [Ba/Fe] and [Sr/Fe] abundance ratios (&gt;1 dex). <P
  />Based on observations collected at the European Organisation for
  Astronomical Research in the Southern Hemisphere under ESO programme ID
  189.D-0165. <P />Equivalent widths of the Fe lines are only, and Tables
  A.1 and A.2 are also available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A187">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A187</A>

---------------------------------------------------------
Title: The Pristine survey IV: approaching the Galactic metallicity
    floor with the discovery of an ultra-metal-poor star
Authors: Starkenburg, Else; Aguado, David S.; Bonifacio, Piercarlo;
   Caffau, Elisabetta; Jablonka, Pascale; Lardo, Carmela; Martin,
   Nicolas; Sánchez-Janssen, Rubén; Sestito, Federico; Venn, Kim A.;
   Youakim, Kris; Allende Prieto, Carlos; Arentsen, Anke; Gentile, Marc;
   González Hernández, Jonay I.; Kielty, Collin; Koppelman, Helmer H.;
   Longeard, Nicolas; Tolstoy, Eline; Carlberg, Raymond G.; Côté,
   Patrick; Fouesneau, Morgan; Hill, Vanessa; McConnachie, Alan W.;
   Navarro, Julio F.
2018MNRAS.481.3838S    Altcode: 2018arXiv180704292S; 2018MNRAS.tmp.2167S
  The early Universe presented a star formation environment that
  was almost devoid of heavy elements. The lowest metallicity stars
  thus provide a unique window into the earliest Galactic stages,
  but are exceedingly rare and difficult to find. Here, we present the
  discovery of an ultra-metal-poor star, Pristine_221.8781+9.7844, using
  narrow-band Ca H&amp;K photometry from the Pristine survey. Follow-up
  medium- and high-resolution spectroscopy confirms the ultra-metal-poor
  nature of Pristine_221.8781+9.7844 ([Fe/H] = -4.66 ± 0.13 in 1D LTE)
  with an enhancement of 0.3-0.4 dex in α-elements relative to Fe,
  and an unusually low carbon abundance. We derive an upper limit of
  A(C) = 5.6, well below typical A(C) values for such ultra-metal-poor
  stars. This makes Pristine_221.8781+9.7844 one of the most metal-poor
  stars; in fact, it is very similar to the most metal-poor star known
  (SDSS J102915+172927). The existence of a class of ultra-metal-poor
  stars with low(er) carbon abundances suggest that there must have
  been several formation channels in the early Universe through which
  long-lived, low-mass stars were formed.

---------------------------------------------------------
Title: Influence of metallicity on the near-surface effect on
    oscillation frequencies
Authors: Manchon, L.; Belkacem, K.; Samadi, R.; Sonoi, T.; Marques,
   J. P. C.; Ludwig, H. -G.; Caffau, E.
2018A&A...620A.107M    Altcode: 2018arXiv180908904M
  Context. The CoRoT and Kepler missions have provided high-quality
  measurements of the frequency spectra of solar-like pulsators,
  enabling us to probe stellar interiors with a very high degree of
  accuracy by comparing the observed and modelled frequencies. However,
  the frequencies computed with 1D models suffer from systematic
  errors related to the poor modelling of the uppermost layers of
  stars. These biases are what is commonly named the near-surface
  effect. The dominant effect is thought to be related to the turbulent
  pressure that modifies the hydrostatic equilibrium and thus the
  frequencies. This has already been investigated using grids of 3D
  hydrodynamical simulations, which also were used to constrain the
  parameters of the empirical correction models. However, the effect
  of metallicity has not been considered so far. <BR /> Aims: We aim to
  study the impact of metallicity on the surface effect, investigating
  its influence across the Hertzsprung-Russell diagram, and providing
  a method for accounting for it when using the empirical correction
  models. <BR /> Methods: We computed a grid of patched 1D stellar
  models with the stellar evolution code CESTAM in which poorly modelled
  surface layers have been replaced by averaged stratification computed
  with the 3D hydrodynamical code CO<SUP>5</SUP>BOLD. It allowed us to
  investigate the dependence of both the surface effect and the empirical
  correction functions on the metallicity. <BR /> Results: We found
  that metallicity has a strong impact on the surface effect: keeping
  T<SUB>eff</SUB> and log g constant, the frequency residuals can vary by
  up to a factor of two (for instance from [Fe/H] = + 0.0 to [Fe/H] = +
  0.5). Therefore, the influence of metallicity cannot be neglected. We
  found that the correct way of accounting for it is to consider the
  surface Rosseland mean opacity. It allowed us to give a physically
  grounded justification as well as a scaling relation for the frequency
  differences at ν<SUB>max</SUB> as a function of T<SUB>eff</SUB>, log g
  and κ. Finally, we provide prescriptions for the fitting parameters of
  the most commonly used correction functions. <BR /> Conclusions: We show
  that the impact of metallicity through the Rosseland mean opacity must
  be taken into account when studying and correcting the surface effect.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Very metal-poor turn-off stars
    abundances (Francois+, 2018)
Authors: Francois, P.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite,
   F.; Cayrel, R.; Christlieb, N.; Gallagher, A.; Klessen, R.; Koch,
   A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Steffen, M.; Zaggia, S.
2018yCat..36200187F    Altcode:
  Sixty five turn-off stars (preselected from SDSS spectra) have been
  observed with the X-Shooter spectrograph at the ESO VLT Unit Telescope
  2, to derive accurate and detailed abundances of magnesium, silicon,
  calcium, iron, strontium and barium. We analysed medium-resolution
  spectra (R~10000) obtained with the ESO X-Shooter spectrograph and
  computed the abundances of several alpha and neutron-capture elements
  using standard one-dimensional local thermodynamic equilibrium (1D LTE)
  model atmospheres. <P />(3 data files).

---------------------------------------------------------
Title: A chemical study of M67 candidate blue stragglers and evolved
    blue stragglers observed with APOGEE DR14
Authors: Bertelli Motta, Clio; Pasquali, Anna; Caffau, Elisabetta;
   Grebel, Eva K.
2018MNRAS.480.4314B    Altcode: 2018MNRAS.tmp.2080M; 2018arXiv180804601B
  Within the variety of objects populating stellar clusters, blue
  straggler stars (BSSs) are among the most puzzling ones. BSSs are
  commonly found in globular clusters, but they are also known to
  populate open clusters of the Milky Way. Two main theoretical scenarios
  (collisions and mass transfer) have been suggested to explain their
  formation, although finding observational evidence in support of either
  scenario represents a challenging task. Among the APOGEE observations
  of the old open cluster M67, we found eight BSS candidates known from
  the literature and two known evolved BSSs. We carried out a chemical
  analysis of three BSS candidates and of the two evolved BSSs out of the
  sample and found that the BSS candidates have surface abundances similar
  to those of stars on the main-sequence turn-off of M67. Especially the
  absence of any anomaly in their carbon abundances seems to support a
  collisional formation scenario for these stars. Furthermore, we note
  that the abundances of the evolved BSSs S1040 and S1237 are consistent
  with the abundances of the red clump stars of M67. In particular,
  they show a depletion in carbon by ∼0.25 dex, which could be either
  interpreted as the signature of mass transfer or as the product of
  stellar evolutionary processes. Finally, we summarize the properties
  of the individual BSSs observed by APOGEE, as derived from their APOGEE
  spectra and/or from information available in the literature.

---------------------------------------------------------
Title: Chemical analysis of very metal-poor turn-off stars from
    SDSS-DR12
Authors: François, P.; Caffau, E.; Wanajo, S.; Aguado, D.; Spite,
   M.; Aoki, M.; Aoki, W.; Bonifacio, P.; Gallagher, A. J.; Salvadori,
   S.; Spite, F.
2018A&A...619A..10F    Altcode: 2018arXiv180809918F
  Context. The most metal-poor stars are the relics of the early chemical
  evolution of the Galaxy. Their chemical composition is an important tool
  to constrain the nucleosynthesis in the first generation of stars. The
  aim is to observe a sample of extremely metal-poor star (EMP stars)
  candidates selected from the Sloan Digital Sky Survey Data Release 12
  (SDSS DR12) and determine their chemical composition. <BR /> Aims:
  We obtain medium resolution spectra of a sample of six stars using the
  X-shooter spectrograph at the Very Large Telescope (VLT) and we used
  ATLAS models to compute the abundances. <BR /> Methods: Five stars
  of the sample have a metallicity [Fe/H] between -2.5 dex and -3.2
  dex. We confirm the recent discovery of SDSS J002314.00+030758.0 as a
  star with an extremely low [Fe/H] ratio. Assuming the α-enhancement
  [Ca/Fe] = +0.4 dex, we obtain [Fe/H] = -6.1 dex. <BR /> Results:
  We could also determine its magnesium abundance and found that this
  star exhibits a very high ratio [Mg/Fe]≤ +3.60 dex assuming [Fe/H]
  = -6.13 dex. We determined the carbon abundance and found A(C) = 6.4
  dex. From this carbon abundance, this stars belongs to the lower band
  of the A(C)-[Fe/H] diagram. <P />Based on observations collected at
  the European Organisation for Astronomical Research in the Southern
  Hemisphere under ESO programme ID 099.D-0576(A).

---------------------------------------------------------
Title: 3D non-LTE corrections for Li abundance and
    <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio in solar-type
    stars. I. Application to HD 207129 and HD 95456
Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian,
   G.; González Hernández, J. I.; Strassmeier, K. G.
2018A&A...618A..16H    Altcode: 2018arXiv180704089H
  Context. Convective motions in solar-type stellar atmospheres
  induce Doppler shifts that affect the strengths and shapes of
  spectral absorption lines and create slightly asymmetric line
  profiles. One-dimensional (1D) local thermodynamic equilibrium
  (LTE) studies of elemental abundances are not able to reproduce this
  phenomenon, which becomes particularly important when modeling the
  impact of isotopic fine structure, like the subtle depression created by
  the <SUP>6</SUP>Li isotope on the red wing of the Li I resonance doublet
  line. <BR /> Aims: The purpose of this work is to provide corrections
  for the lithium abundance, A(Li), and the <SUP>6</SUP>Li/<SUP>7</SUP>Li
  isotopic ratio that can easily be applied to correct 1D LTE lithium
  abundances in G and F dwarf stars of approximately solar mass and
  metallicity for three-dimensional (3D) and non-LTE (NLTE) effects. <BR
  /> Methods: The corrections for A(Li) and <SUP>6</SUP>Li/<SUP>7</SUP>Li
  are computed using grids of 3D NLTE and 1D LTE synthetic lithium
  line profiles, generated from 3D hydro-dynamical CO<SUP>5</SUP>BOLD
  and 1D hydrostatic model atmospheres, respectively. For comparative
  purposes, all calculations are performed for three different line
  lists representing the Li I λ670.8 nm spectral region. The 3D NLTE
  corrections are then approximated by analytical expressions as a
  function of the stellar parameters (T<SUB>eff</SUB>, log ℊ, [Fe/H],
  ν sin i, A(Li), <SUP>6</SUP>Li/<SUP>7</SUP>Li). These are applied to
  adjust the 1D LTE isotopic lithium abundances in two solar-type stars,
  <ASTROBJ>HD 207129</ASTROBJ> and <ASTROBJ>HD 95456</ASTROBJ>, for
  which high-quality HARPS observations are available. <BR /> Results:
  The derived 3D NLTE corrections range between -0.01 and +0.11 dex for
  A(Li), and between -4.9 and -0.4% for <SUP>6</SUP>Li/<SUP>7</SUP>Li,
  depending on the adopted stellar parameters. We confirm that the
  inferred <SUP>6</SUP>Li abundance depends critically on the strength of
  the Si I 670.8025 nm line. Our findings show a general consistency with
  recent works on lithium abundance corrections. After the application of
  such corrections, we do not find a significant amount of <SUP>6</SUP>Li
  in any of the two target stars. <BR /> Conclusions: In the case of
  <SUP>6</SUP>Li/<SUP>7</SUP>Li, our corrections are always negative,
  showing that 1D LTE analysis can significantly overestimate the
  presence of <SUP>6</SUP>Li (up to 4.9% points) in the atmospheres
  of solar-like dwarf stars. These results emphasize the importance
  of reliable 3D model atmospheres combined with NLTE line formation
  for deriving precise isotopic lithium abundances. Although 3D NLTE
  spectral synthesis implies an extensive computational effort,
  the results can be made accessible with parametric tools like
  the ones presented in this work. <P />The table with the 3D NLTE
  corrections is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/618/A16">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/618/A16</A>

---------------------------------------------------------
Title: Calibration of the mixing length of the MLT and FST models
    using 3D hydrodynamical models
Authors: Sonoi, T.; Ludwig, H. -G.; Dupret, M. -A.; Montalban, J.;
   Belkacem, K.; Caffau, E.
2018phos.confE..27S    Altcode:
  Rich spectra of solar-like oscillations obtained with space observations
  are expected to enable us to perform precise determinations of stellar
  properties. To make the best of the spectra, we need theoretical
  stellar models with precise near-surface structure, since the
  near-surface structure has significant influence on solar-like
  oscillation frequencies. The mixing-length parameter, α, is a key
  factor to determine the near-surface structure. We aimed at determining
  appropriate α values based on 3D radiation-coupled hydrodynamical
  models produced by the CO^5BOLD code. For such calibration, previous
  works concentrated on the classical mixing-length theory (MLT). Here
  we also analyzed the full spectrum turbulence (FST) models. The
  trends of the calibrated α values in the T<SUB>eff</SUB>-g plane is
  found to be similar to those of previous calibrations with the other
  grids of RHD models. A T(τ) relation based on the so-called VAL-C
  solar-atmosphere model is found to give better correspondence to
  the photospheric-minimum entropy in the 3D model than the Eddington
  T(τ) relation. Although the structure below the photosphere depends
  on convection models, not a single convection model gives the best
  correspondence to the 3D model since physical quantities in the 3D
  models are not necessarily related via an equation of states unlike
  those in the 1D models. Although the FST model with a form of a mixing
  length (l=r<SUB>top</SUB>-r+α<SUP>*</SUP>H<SUB>p,{top}</SUB>) is found
  to give solar-oscillation frequencies apparently closest to the observed
  ones, the acoustic cavity of this model is formed with compensatory
  effects between deviating density and temperature profiles just below
  the top of the convective envelope. In future work, a more sophisticated
  treatment of the top part of the 1D convective envelope is necessary.

---------------------------------------------------------
Title: A physically-grounded relation between the metallicity and
    the surface term affecting stellar oscillation frequencies
Authors: Manchon, Louis; Belkacem, Kevin; Samadi, Reza; Sonoi,
   Takafumi; Marques, J. P. C.; Ludwig, Hans-Gunter; Caffau, E.
2018phos.confE..36M    Altcode:
  The CoRoT and Kepler missions have provided high-quality measurements
  of the frequency spectra of solar-like pulsators, enabling us to probe
  stellar interiors with a very high degree of accuracy by comparing the
  observed and modeled frequencies. However, the frequencies computed with
  1D models suffer from systematic errors related to the poor modeling of
  the uppermost layers of stars. These biases are what is commonly named
  the near surface effect. The dominant effect is thought to be related
  to the turbulent pressure that modifies the hydrostatic equilibrium and
  thus the frequencies. This has already been investigated using grids
  of 3D hydrodynamical simulations, however, the effect of metallicity
  has not been considered so far. We aim at studying the impact of
  metallicity on the surface effect, investigating its influence across
  the Hertzsprung–Russell diagram, and providing a relation between
  the frequency differences and global parameters. We computed a grid
  of 29 patched 1D stellar models with the stellar evolution code
  CESTAM in which poorly modeled surface layers have been replaced by
  averaged stratification computed with the 3D hydrodynamical code CO 5
  BOLD. It allowed us to study the dependence of the surface effect on
  the metallicity. We found that a correct way of accounting for it is
  to consider the surface Rosseland mean opacity. It allowed us to give a
  physically-grounded justification as well as a scaling relation for the
  frequency differences at ν max as a function of T eff , log g and κ.

---------------------------------------------------------
Title: Abundance of zinc in the red giants of Galactic globular
    cluster 47 Tucanae
Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Bonifacio,
   P.; Ludwig, H. -G.; Caffau, E.; Steffen, M.
2018A&A...616A.142C    Altcode: 2018arXiv180603132C
  <BR /> Aims: We investigate possible relations between the abundances
  of zinc and the light elements sodium, magnesium, and potassium
  in the atmospheres of red giant branch (RGB) stars of the Galactic
  globular cluster 47 Tuc and study connections between the chemical
  composition and dynamical properties of the cluster RGB stars. <BR
  /> Methods: The abundance of zinc was determined in 27 RGB stars
  of 47 Tuc using 1D local thermal equilibrium (LTE) synthetic line
  profile fitting to the high-resolution 2dF/HERMES spectra obtained
  with the Anglo-Australian Telescope (AAT). Synthetic spectra used
  in the fitting procedure were computed with the SYNTHE code and
  1D ATLAS9 stellar model atmospheres. <BR /> Results: The average
  1D LTE zinc-to-iron abundance ratio and its RMS variations due to
  star-to-star abundance spread determined in the sample of 27 RGB stars
  is &lt;[Zn/Fe]&gt;<SUP>1D LTE</SUP> = 0.11 ± 0.09. We did not detect
  any statistically significant relations between the abundances of
  zinc and those of light elements. Neither did we find any significant
  correlation or anticorrelation between the zinc abundance in individual
  stars and their projected distance from the cluster center. Finally,
  no statistically significant relation between the absolute radial
  velocities of individual stars and the abundance of zinc in their
  atmospheres was detected. The obtained average [Zn/Fe]<SUP>1DLTE</SUP>
  ratio agrees well with those determined in this cluster in earlier
  studies and nearly coincides with that of Galactic field stars at this
  metallicity. All these results suggest that nucleosynthesis of zinc
  and light elements proceeded in separate, unrelated pathways in 47 Tuc.

---------------------------------------------------------
Title: A CEMP-no star in the ultra-faint dwarf galaxy Pisces II
Authors: Spite, M.; Spite, F.; François, P.; Bonifacio, P.; Caffau,
   E.; Salvadori, S.
2018A&A...617A..56S    Altcode: 2018arXiv180701542S
  <BR /> Aims: A probable carbon enhanced metal-poor (CEMP) star, Pisces
  II 10694, was discovered recently in the ultra-faint (UFD) galaxy Pisces
  II. This galaxy is supposed to be very old, suspected to include dark
  matter, and likely formed the bulk of its stars before the reionisation
  of the Universe. <BR /> Methods: New abundances have been obtained from
  observations of Pisces II 10694 at the Kueyen ESO VLT telescope, using
  the high-efficiency spectrograph: X-shooter. <BR /> Results: We found
  that Pisces II 10694 is a CEMP-no star with [Fe/H] = -2.60 dex. Careful
  measurements of the CH and C<SUB>2</SUB> bands confirm the enhancement
  of the C abundance ([C/Fe] = +1.23). This cool giant has very probably
  undergone extra mixing and thus its original C abundance could be even
  higher. Nitrogen, O, Na, and Mg are also strongly enhanced, but from
  Ca to Ni the ratios [X/Fe] are similar to those observed in classical
  very metal-poor stars. With its low Ba abundance ([Ba/Fe] = -1.10 dex)
  Pisces II 10694 is a CEMP-no star. No variation in the radial velocity
  could be detected between 2015 and 2017. The pattern of the elements has
  a shape similar to the pattern found in galactic CEMP-no stars like CS
  22949-037 ([Fe/H] = -4.0) or SDSS J1349+1407 ([Fe/H] = -3.6). <BR />
  Conclusions: The existence of a CEMP-no star in the UFD galaxy Pisc
  II suggests that this small galaxy likely hosted zero-metallicity
  stars. This is consistent with theoretical predictions of cosmological
  models supporting the idea that UFD galaxies are the living fossils of
  the first star-forming systems. <P />Based on observations collected
  at the European Organisation for Astronomical Research in the Southern
  Hemisphere under ESO programme 099.B-0062(A).

---------------------------------------------------------
Title: Gaia Data Release 2. Observations of solar system objects
Authors: Gaia Collaboration; Spoto, F.; Tanga, P.; Mignard, F.;
   Berthier, J.; Carry, B.; Cellino, A.; Dell'Oro, A.; Hestroffer, D.;
   Muinonen, K.; Pauwels, T.; Petit, J. -M.; David, P.; De Angeli, F.;
   Delbo, M.; Frézouls, B.; Galluccio, L.; Granvik, M.; Guiraud, J.;
   Hernández, J.; Ordénovic, C.; Portell, J.; Poujoulet, E.; Thuillot,
   W.; Walmsley, G.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de
   Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann,
   M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.;
   Lammers, U.; Lindegren, L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich,
   S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.;
   Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.;
   Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.;
   Chaoul, L.; Cheek, N.; Fabricius, C.; Guerra, R.; Holl, B.; Masana,
   E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Riello,
   M.; Seabroke, G. M.; Thévenin, F.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Audard, M.; Bellas-Velidis, I.; Benson, K.; Blomme, R.; Burgess, P.;
   Busso, G.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De
   Ridder, J.; Delchambre, L.; Ducourant, C.; Fernández-Hernández, J.;
   Fouesneau, M.; Frémat, Y.; García-Torres, M.; González-Núñez,
   J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs,
   J. -L.; Hambly, N. C.; Harrison, D. L.; Hodgkin, S. T.; Hutton,
   A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn,
   A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Lö, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Osinde, J.; Pancino, E.; Recio-Blanco, A.; Richards, P. J.;
   Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.;
   Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez,
   M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada
   Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.;
   Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache,
   C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado,
   D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana,
   J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.;
   Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.;
   Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.;
   Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard,
   A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan,
   G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.;
   Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, M.; de Laverny, P.;
   De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher,
   J.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener,
   C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson,
   B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre,
   C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.;
   Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.;
   Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Gai, M.; Galleti, S.;
   Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel,
   A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Gueguen, A.; Guerrier,
   A.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood,
   M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann,
   W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.;
   Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe,
   F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.;
   Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis,
   G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.;
   Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.;
   Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt,
   H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister,
   T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.;
   Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni,
   S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary,
   N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina,
   S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár,
   L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.;
   Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.;
   Noval, L.; O'Mullane, W.; Ordóñez-Blanco, D.; Osborne, P.; Pagani,
   C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.;
   Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.;
   Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux,
   N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi,
   V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.;
   Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski,
   G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.;
   Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.;
   Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.;
   Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.;
   Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.;
   Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.;
   Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.;
   Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.;
   Terrett, D.; Teyssandier, P.; Titarenko, A.; Torra Clotet, F.; Turon,
   C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.;
   Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.;
   Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente,
   D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.;
   Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.;
   Zurbach, C.; Zwitter, T.
2018A&A...616A..13G    Altcode: 2018arXiv180409379G
  Context. The Gaia spacecraft of the European Space Agency (ESA)
  has been securing observations of solar system objects (SSOs) since
  the beginning of its operations. Data Release 2 (DR2) contains the
  observations of a selected sample of 14,099 SSOs. These asteroids have
  been already identified and have been numbered by the Minor Planet
  Center repository. Positions are provided for each Gaia observation at
  CCD level. As additional information, complementary to astrometry, the
  apparent brightness of SSOs in the unfiltered G band is also provided
  for selected observations. <BR /> Aims: We explain the processing of SSO
  data, and describe the criteria we used to select the sample published
  in Gaia DR2. We then explore the data set to assess its quality. <BR />
  Methods: To exploit the main data product for the solar system in Gaia
  DR2, which is the epoch astrometry of asteroids, it is necessary to take
  into account the unusual properties of the uncertainty, as the position
  information is nearly one-dimensional. When this aspect is handled
  appropriately, an orbit fit can be obtained with post-fit residuals
  that are overall consistent with the a-priori error model that was used
  to define individual values of the astrometric uncertainty. The role
  of both random and systematic errors is described. The distribution
  of residuals allowed us to identify possible contaminants in the
  data set (such as stars). Photometry in the G band was compared
  to computed values from reference asteroid shapes and to the flux
  registered at the corresponding epochs by the red and blue photometers
  (RP and BP). <BR /> Results: The overall astrometric performance is
  close to the expectations, with an optimal range of brightness G 12 -
  17. In this range, the typical transit-level accuracy is well below
  1 mas. For fainter asteroids, the growing photon noise deteriorates
  the performance. Asteroids brighter than G 12 are affected by a lower
  performance of the processing of their signals. The dramatic improvement
  brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons
  to the archive data and by preliminary tests on the detection of subtle
  non-gravitational effects.

---------------------------------------------------------
Title: Carbon-enhanced metal-poor 3D model atmospheres
Authors: Steffen, M.; Gallagher, A. J.; Caffau, E.; Bonifacio, P.;
   Ludwig, H. -G.
2018IAUS..334..364S    Altcode: 2017arXiv170805686S
  We present our latest 3D model atmospheres for carbon-enhanced
  metal-poor (CEMP) stars computed with the CO5BOLD code. The stellar
  parameters are representative of hot turn-off objects (T<SUB>eff</SUB>
  ~ 6250 K, log g = 4.0, [Fe/H]=-3). The main purpose of these models
  is to investigate the role of 3D effects on synthetic spectra of the
  CH G-band (4140-4400 Å), the CN BX-band (3870-3890 Å), and several
  UV OH transitions (3122-3128 Å). By comparison with the synthetic
  spectra from standard 1D model atmospheres (assuming local thermodynamic
  equilibrium, LTE), we derive 3D abundance corrections for carbon and
  oxygen of up to -0.5 and -0.7 dex, respectively.

---------------------------------------------------------
Title: Gaia Data Release 2. The celestial reference frame (Gaia-CRF2)
Authors: Gaia Collaboration; Mignard, F.; Klioner, S. A.; Lindegren,
   L.; Hernández, J.; Bastian, U.; Bombrun, A.; Hobbs, D.; Lammers, U.;
   Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Fernández-Hernández,
   J.; Geyer, R.; Hilger, T.; Siddiqui, H. I.; Steidelmüller, H.;
   Babusiaux, C.; Barache, C.; Lambert, S.; Andrei, A. H.; Bourda, G.;
   Charlot, P.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.;
   Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti,
   P.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Cropper,
   M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari,
   C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius,
   C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.;
   Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke,
   G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme,
   R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.;
   Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.;
   Dell'Oro, A.; Ducourant, C.; Fouesneau, M.; Frémat, Y.; Galluccio,
   L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.;
   Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.;
   Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese,
   P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.;
   Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven,
   W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla,
   G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Anglada
   Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.;
   Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barata, C.;
   Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.;
   Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani,
   U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé,
   O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Borrachero, R.;
   Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breddels,
   M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.;
   Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi,
   R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin,
   T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.;
   Castellani, M.; Castro-Ginard, A.; Chemin, L.; Chiavassa, A.; Cocozza,
   G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.;
   Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.;
   David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.;
   de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.;
   Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.;
   Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.;
   Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler,
   S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.;
   Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.;
   Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato,
   D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras,
   P.; Gerssen, J.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.;
   Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud,
   J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood,
   M.; Heiter, U.; Helmi, A.; Heu, J.; Hofmann, W.; Holland, G.; Huckle,
   H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.;
   Jonker, P. G.; Juhász, A. L.; Julbe, F.; Karampelas, A.; Kewley,
   A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.;
   Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska,
   Z.; Koubsky, P.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.;
   Mazeh, T.; McMillan, P. J.; Messina, S.; Millar, N. R.; Molina, D.;
   Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli,
   R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.;
   Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.;
   Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler,
   F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet,
   E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.;
   Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard,
   A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell,
   N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.;
   Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.;
   Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.;
   Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva,
   A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo,
   R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.;
   Steele, I. A.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej,
   J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran,
   G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.;
   Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla,
   A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette,
   V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto,
   M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.;
   von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.;
   Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.;
   Zurbach, C.; Zwitter, T.
2018A&A...616A..14G    Altcode: 2018arXiv180409377M
  Context. The second release of Gaia data (Gaia DR2) contains the
  astrometric parameters for more than half a million quasars. This set
  defines a kinematically non-rotating reference frame in the optical
  domain. A subset of these quasars have accurate VLBI positions
  that allow the axes of the reference frame to be aligned with the
  International Celestial Reference System (ICRF) radio frame. <BR
  /> Aims: We describe the astrometric and photometric properties of
  the quasars that were selected to represent the celestial reference
  frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio
  positions for sources with accurate VLBI positions. <BR /> Methods:
  Descriptive statistics are used to characterise the overall properties
  of the quasar sample. Residual rotation and orientation errors and
  large-scale systematics are quantified by means of expansions in vector
  spherical harmonics. Positional differences are calculated relative to
  a prototype version of the forthcoming ICRF3. <BR /> Results: Gaia-CRF2
  consists of the positions of a sample of 556 869 sources in Gaia DR2,
  obtained from a positional cross-match with the ICRF3-prototype and
  AllWISE AGN catalogues. The sample constitutes a clean, dense, and
  homogeneous set of extragalactic point sources in the magnitude range
  G ≃ 16 to 21 mag with accurately known optical positions. The median
  positional uncertainty is 0.12 mas for G &lt; 18 mag and 0.5 mas at
  G = mag. Large-scale systematics are estimated to be in the range 20
  to 30 μas. The accuracy claims are supported by the parallaxes and
  proper motions of the quasars in Gaia DR2. The optical positions for
  a subset of 2820 sources in common with the ICRF3-prototype show very
  good overall agreement with the radio positions, but several tens of
  sources have significantly discrepant positions. <BR /> Conclusions:
  Based on less than 40% of the data expected from the nominal Gaia
  mission, Gaia-CRF2 is the first realisation of a non-rotating global
  optical reference frame that meets the ICRS prescriptions, meaning
  that it is built only on extragalactic sources. Its accuracy matches
  the current radio frame of the ICRF, but the density of sources in
  all parts of the sky is much higher, except along the Galactic equator.

---------------------------------------------------------
Title: Abundances of Mg and K in the atmospheres of turn-off starsin
    Galactic globular cluster 47 Tucanae
Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Dobrovolskas,
   V.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M.
2018A&A...615A.173C    Altcode: 2018arXiv180410033C
  <BR /> Aims: We determined abundances of Mg and K in the atmospheres
  of 53 (Mg) and 75 (K) turn-off (TO) stars of the Galactic globular
  cluster 47 Tuc. The obtained abundances, together with those of Li,
  O, and Na that we had earlier determined for the same sample of stars,
  were used to search for possible relations between the abundances of K
  and other light elements, Li, O, Na, and Mg, as well as the connections
  between the chemical composition of TO stars and their kinematical
  properties. <BR /> Methods: Abundances of Mg and K were determined using
  archival high resolution VLT FLAMES/GIRAFFE spectra, in combination
  with the one-dimensional (1D) non-local thermodynamic equilibrium
  (NLTE) spectral synthesis methodology. Spectral line profiles were
  computed with the MULTI code, using 1D hydrostatic ATLAS9 stellar model
  atmospheres. We also utilized three-dimensional (3D) hydrodynamical
  CO<SUP>5</SUP>BOLD and 1D hydrostatic LHD model atmospheres for
  computing 3D-1D LTE abundance corrections for the spectral lines
  of Mg and K, in order to assess the influence of convection on their
  formation in the atmospheres of TO stars. <BR /> Results: The determined
  average abundance-to-iron ratios and their root mean square variations
  due to star-to-star abundance spreads were &lt;[Mg/Fe]&gt;<SUP>1D
  NLTE</SUP> = 0.47 ± 0.12, and &lt;[K/Fe]&gt;<SUP>1D NLTE</SUP> = 0.39
  ± 0.09. Although the data suggest the possible existence of a weak
  correlation in the [K/Fe]-[Na/Fe] plane, its statistical significance
  is low. No statistically significant relations between the abundance
  of K and other light elements were detected. Also, we did not find any
  significant correlations or anti-correlations between the [Mg/Fe] and
  [K/Fe] ratios and projected distance from the cluster center. Similarly,
  no relations between the absolute radial velocities of individual stars
  and abundances of Mg and K in their atmospheres were detected. The
  3D-1D abundance corrections were found to be small (≤0.1 dex) for
  the lines of Mg and K used in this study, thus indicating that the
  influence of convection on their formation is small.

---------------------------------------------------------
Title: Gaia Data Release 2. Mapping the Milky Way disc kinematics
Authors: Gaia Collaboration; Katz, D.; Antoja, T.; Romero-Gómez, M.;
   Drimmel, R.; Reylé, C.; Seabroke, G. M.; Soubiran, C.; Babusiaux,
   C.; Di Matteo, P.; Figueras, F.; Poggio, E.; Robin, A. C.; Evans,
   D. W.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Eyer, L.; Jansen,
   F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri,
   X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti,
   P.; Siddiqui, H. I.; van Leeuwen, F.; Walton, N. A.; Arenou, F.;
   Bastian, U.; Cropper, M.; Lattanzi, M. G.; Bakker, J.; Cacciari,
   C.; Casta n, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius,
   C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.;
   Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Tanga, P.;
   Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.;
   Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis,
   I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.;
   Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.;
   Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant,
   C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio,
   L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit,
   J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro,
   L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.;
   van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.;
   Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson,
   R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz,
   L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch,
   T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon,
   S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan,
   A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli,
   B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza,
   G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.;
   Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.;
   David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.;
   de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.;
   Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.;
   Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.;
   Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler,
   S.; Falc a, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.;
   Fernique, P.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.;
   Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.;
   García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras,
   P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona,
   S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.;
   Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou,
   D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger,
   T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.;
   Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.;
   Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.;
   Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.;
   Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh,
   T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina,
   D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli,
   R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.;
   Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.;
   Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler,
   F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša,
   A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate,
   M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon,
   G.; Roegiers, T.; Roelens, M.; Rowell, N.; Royer, F.; Ruiz-Dern,
   L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.;
   Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.;
   Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan,
   D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith,
   K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay,
   J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller,
   H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados,
   L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor,
   M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.;
   Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.;
   Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren,
   A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato,
   A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.;
   Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz,
   O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour,
   H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2018A&A...616A..11G    Altcode: 2018arXiv180409380G
  Context. The second Gaia data release (Gaia DR2) contains high-precision
  positions, parallaxes, and proper motions for 1.3 billion sources as
  well as line-of-sight velocities for 7.2 million stars brighter than
  G<SUB>RVS</SUB> = 12 mag. Both samples provide a full sky coverage. <BR
  /> Aims: To illustrate the potential of Gaia DR2, we provide a first
  look at the kinematics of the Milky Way disc, within a radius of several
  kiloparsecs around the Sun. <BR /> Methods: We benefit for the first
  time from a sample of 6.4 million F-G-K stars with full 6D phase-space
  coordinates, precise parallaxes (σ<SUB>ϖ</SUB>/ϖ ≤ 20%), and
  precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4
  km s<SUP>-1</SUP> and 20% of the stars with uncertainties smaller than
  1 km s<SUP>-1</SUP> on all three components). From this sample, we
  extracted a sub-sample of 3.2 million giant stars to map the velocity
  field of the Galactic disc from 5 kpc to 13 kpc from the Galactic
  centre and up to 2 kpc above and below the plane. We also study the
  distribution of 0.3 million solar neighbourhood stars (r &lt; 200 pc),
  with median velocity uncertainties of 0.4 km s<SUP>-1</SUP>, in velocity
  space and use the full sample to examine how the over-densities evolve
  in more distant regions. <BR /> Results: Gaia DR2 allows us to draw 3D
  maps of the Galactocentric median velocities and velocity dispersions
  with unprecedented accuracy, precision, and spatial resolution. The
  maps show the complexity and richness of the velocity field of the
  galactic disc. We observe streaming motions in all the components of
  the velocities as well as patterns in the velocity dispersions. For
  example, we confirm the previously reported negative and positive
  galactocentric radial velocity gradients in the inner and outer disc,
  respectively. Here, we see them as part of a non-axisymmetric kinematic
  oscillation, and we map its azimuthal and vertical behaviour. We also
  witness a new global arrangement of stars in the velocity plane of
  the solar neighbourhood and in distant regions in which stars are
  organised in thin substructures with the shape of circular arches
  that are oriented approximately along the horizontal direction in the
  U - V plane. Moreover, in distant regions, we see variations in the
  velocity substructures more clearly than ever before, in particular,
  variations in the velocity of the Hercules stream. <BR /> Conclusions:
  Gaia DR2 provides the largest existing full 6D phase-space coordinates
  catalogue. It also vastly increases the number of available distances
  and transverse velocities with respect to Gaia DR1. Gaia DR2 offers
  a great wealth of information on the Milky Way and reveals clear
  non-axisymmetric kinematic signatures within the Galactic disc, for
  instance. It is now up to the astronomical community to explore its
  full potential.

---------------------------------------------------------
Title: Gaia Data Release 2. Observational Hertzsprung-Russell diagrams
Authors: Gaia Collaboration; Babusiaux, C.; van Leeuwen, F.;
   Barstow, M. A.; Jordi, C.; Vallenari, A.; Bossini, D.; Bressan,
   A.; Cantat-Gaudin, T.; van Leeuwen, M.; Brown, A. G. A.; Prusti,
   T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.;
   Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.;
   Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton,
   N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.;
   Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul,
   L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.;
   Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo,
   P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin,
   F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.;
   Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson,
   M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.;
   Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.;
   García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit,
   J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin,
   A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges,
   M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart,
   S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves,
   J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.;
   Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.;
   Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato,
   D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Bartholomé
   Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete,
   A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.;
   Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bouquillon, S.;
   Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Carballo, R.; Carlucci, T.; Carrasco, J. M.;
   Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.;
   Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell,
   S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.;
   Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.;
   De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres,
   A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado,
   H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos,
   P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.;
   Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão,
   A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique,
   P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile,
   E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.;
   García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras,
   P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona,
   S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.;
   Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou,
   D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger,
   T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.;
   Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.;
   Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.;
   Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.;
   Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.;
   Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh,
   T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina,
   D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli,
   R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.;
   Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.;
   Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.;
   Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.;
   Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša,
   A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate,
   M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard,
   A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell,
   N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.;
   Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.;
   Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.;
   Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva,
   A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo,
   R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa,
   U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.;
   Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador,
   D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett,
   D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.;
   Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini,
   G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; Vaschetto, M.;
   Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.;
   von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.;
   Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.;
   Zurbach, C.; Zwitter, T.
2018A&A...616A..10G    Altcode: 2018arXiv180409378G
  Context. Gaia Data Release 2 provides high-precision astrometry and
  three-band photometry for about 1.3 billion sources over the full
  sky. The precision, accuracy, and homogeneity of both astrometry and
  photometry are unprecedented. <BR /> Aims: We highlight the power of
  the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell
  diagram (HRD). Gaia allows us to present many different HRDs, depending
  in particular on stellar population selections. We do not aim here
  for completeness in terms of types of stars or stellar evolutionary
  aspects. Instead, we have chosen several illustrative examples. <BR />
  Methods: We describe some of the selections that can be made in Gaia
  DR2 to highlight the main structures of the Gaia HRDs. We select both
  field and cluster (open and globular) stars, compare the observations
  with previous classifications and with stellar evolutionary tracks,
  and we present variations of the Gaia HRD with age, metallicity, and
  kinematics. Late stages of stellar evolution such as hot subdwarfs,
  post-AGB stars, planetary nebulae, and white dwarfs are also analysed,
  as well as low-mass brown dwarf objects. <BR /> Results: The Gaia HRDs
  are unprecedented in both precision and coverage of the various Milky
  Way stellar populations and stellar evolutionary phases. Many fine
  structures of the HRDs are presented. The clear split of the white
  dwarf sequence into hydrogen and helium white dwarfs is presented
  for the first time in an HRD. The relation between kinematics and the
  HRD is nicely illustrated. Two different populations in a classical
  kinematic selection of the halo are unambiguously identified in the
  HRD. Membership and mean parameters for a selected list of open
  clusters are provided. They allow drawing very detailed cluster
  sequences, highlighting fine structures, and providing extremely
  precise empirical isochrones that will lead to more insight in
  stellar physics. <BR /> Conclusions: Gaia DR2 demonstrates the
  potential of combining precise astrometry and photometry for large
  samples for studies in stellar evolution and stellar population
  and opens an entire new area for HRD-based studies. <P />The full
  Table A.1 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A
  href="http://cdsarc.u-strasbg.fr">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A10">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A10</A>

---------------------------------------------------------
Title: Gaia Data Release 2. Kinematics of globular clusters and
    dwarf galaxies around the Milky Way
Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan,
   P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.;
   Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels,
   M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski,
   J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne,
   J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen,
   F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem,
   C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.;
   Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.;
   Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul,
   L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.;
   Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo,
   P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin,
   F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier,
   D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.;
   Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson,
   M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.;
   Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.;
   García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.;
   Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison,
   D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.;
   Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.;
   Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.;
   Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.;
   Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.;
   Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.;
   Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van
   Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.;
   Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson,
   R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz,
   S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch,
   T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon,
   S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet,
   N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.;
   Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere,
   R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.;
   Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.;
   Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.;
   Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte,
   C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny,
   P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de
   Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.;
   Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano,
   E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.;
   Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.;
   Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel,
   A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen,
   A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Hofmann,
   W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.;
   Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe,
   F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.;
   Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis,
   G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.;
   Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.;
   Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt,
   H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister,
   T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.;
   Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni,
   S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary,
   N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar,
   N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor,
   R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva,
   T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.;
   Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano,
   I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.;
   Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.;
   Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux,
   N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.;
   Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.;
   Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés,
   T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros,
   T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol,
   M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva,
   A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo,
   R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa,
   U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.;
   Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador,
   D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.;
   Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.;
   Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini,
   G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen,
   M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.;
   von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.;
   Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.;
   Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.;
   Zurbach, C.; Zwitter, T.
2018A&A...616A..12G    Altcode: 2018arXiv180409381G
  Note to the Readers: Following the publication of the <A
  href="https://www.aanda.org/articles/aa/full_html/2020/05/aa32698e-18/aa32698e-18.html">corrigendum</A>,
  the article was corrected on 15 May 2020. <P />Context. <BR /> Aims:
  The goal of this paper is to demonstrate the outstanding quality
  of the second data release of the Gaia mission and its power for
  constraining many different aspects of the dynamics of the satellites
  of the Milky Way. We focus here on determining the proper motions of
  75 Galactic globular clusters, nine dwarf spheroidal galaxies, one
  ultra-faint system, and the Large and Small Magellanic Clouds. <BR
  /> Methods: Using data extracted from the Gaia archive, we derived
  the proper motions and parallaxes for these systems, as well as
  their uncertainties. We demonstrate that the errors, statistical
  and systematic, are relatively well understood. We integrated the
  orbits of these objects in three different Galactic potentials, and
  characterised their properties. We present the derived proper motions,
  space velocities, and characteristic orbital parameters in various
  tables to facilitate their use by the astronomical community. <BR />
  Results: Our limited and straightforward analyses have allowed us
  for example to (i) determine absolute and very precise proper motions
  for globular clusters; (ii) detect clear rotation signatures in the
  proper motions of at least five globular clusters; (iii) show that
  the satellites of the Milky Way are all on high-inclination orbits,
  but that they do not share a single plane of motion; (iv) derive a lower
  limit for the mass of the Milky Way of 9.1<SUB>-2.6</SUB><SUP>+6.2</SUP>
  × 10<SUP>11</SUP> M<SUB>⊙</SUB> based on the assumption that the Leo
  I dwarf spheroidal is bound; (v) derive a rotation curve for the Large
  Magellanic Cloud based solely on proper motions that is competitive
  with line-of-sight velocity curves, now using many orders of magnitude
  more sources; and (vi) unveil the dynamical effect of the bar on the
  motions of stars in the Large Magellanic Cloud. <BR /> Conclusions: All
  these results highlight the incredible power of the Gaia astrometric
  mission, and in particular of its second data release. <P />Full
  Table D.3 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A
  href="http://cdsarc.u-strasbg.fr">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A12">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A12</A>

---------------------------------------------------------
Title: Gaia Data Release 2. Summary of the contents and survey
    properties
Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.;
   Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner,
   S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem,
   C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.;
   Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian,
   U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker,
   J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli,
   F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello,
   M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.;
   Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.;
   Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.;
   Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.;
   Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández,
   J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres,
   M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy,
   L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández,
   J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.;
   Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.;
   Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese,
   P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.;
   Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis,
   C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.;
   Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.;
   Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei,
   A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz,
   S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.;
   Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch,
   T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon,
   S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan,
   A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli,
   B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.;
   Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers,
   J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.;
   de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza,
   R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado,
   A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano,
   E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.;
   Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.;
   Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.;
   Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel,
   A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.;
   Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen,
   A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.;
   Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.;
   Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle,
   H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.;
   Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley,
   A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.;
   Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.;
   Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.;
   Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.;
   Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel,
   A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.;
   Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall,
   D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič,
   G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar,
   N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor,
   R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva,
   T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane,
   W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.;
   Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.;
   Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum,
   G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.;
   Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.;
   Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers,
   T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern,
   L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.;
   Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.;
   Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.;
   Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.;
   Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.;
   Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.;
   Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.;
   Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor,
   M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.;
   Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.;
   Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren,
   A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato,
   A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.;
   Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz,
   O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour,
   H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2018A&A...616A...1G    Altcode: 2018arXiv180409365G
  Context. We present the second Gaia data release, Gaia DR2, consisting
  of astrometry, photometry, radial velocities, and information on
  astrophysical parameters and variability, for sources brighter than
  magnitude 21. In addition epoch astrometry and photometry are provided
  for a modest sample of minor planets in the solar system. <BR />
  Aims: A summary of the contents of Gaia DR2 is presented, accompanied
  by a discussion on the differences with respect to Gaia DR1 and
  an overview of the main limitations which are still present in
  the survey. Recommendations are made on the responsible use of
  Gaia DR2 results. <BR /> Methods: The raw data collected with the
  Gaia instruments during the first 22 months of the mission have
  been processed by the Gaia Data Processing and Analysis Consortium
  (DPAC) and turned into this second data release, which represents
  a major advance with respect to Gaia DR1 in terms of completeness,
  performance, and richness of the data products. <BR /> Results: Gaia
  DR2 contains celestial positions and the apparent brightness in G for
  approximately 1.7 billion sources. For 1.3 billion of those sources,
  parallaxes and proper motions are in addition available. The sample
  of sources for which variability information is provided is expanded
  to 0.5 million stars. This data release contains four new elements:
  broad-band colour information in the form of the apparent brightness
  in the G<SUB>BP</SUB> (330-680 nm) and G<SUB>RP</SUB> (630-1050 nm)
  bands is available for 1.4 billion sources; median radial velocities for
  some 7 million sources are presented; for between 77 and 161 million
  sources estimates are provided of the stellar effective temperature,
  extinction, reddening, and radius and luminosity; and for a pre-selected
  list of 14 000 minor planets in the solar system epoch astrometry
  and photometry are presented. Finally, Gaia DR2 also represents a
  new materialisation of the celestial reference frame in the optical,
  the Gaia-CRF2, which is the first optical reference frame based solely
  on extragalactic sources. There are notable changes in the photometric
  system and the catalogue source list with respect to Gaia DR1, and we
  stress the need to consider the two data releases as independent. <BR
  /> Conclusions: Gaia DR2 represents a major achievement for the Gaia
  mission, delivering on the long standing promise to provide parallaxes
  and proper motions for over 1 billion stars, and representing a first
  step in the availability of complementary radial velocity and source
  astrophysical information for a sample of stars in the Gaia survey
  which covers a very substantial fraction of the volume of our galaxy.

---------------------------------------------------------
Title: VizieR Online Data Catalog: A(Li) and 6Li/7Li 3D NLTE
    corrections (Harutyunyan+, 2018)
Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian,
   G.; Gonzalez Hernandez, J. I.; Strassmeier, K. G.
2018yCat..36180016H    Altcode:
  A grid of 3D non-LTE (NLTE) corrections for the lithium abundance,
  A(Li), and the <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio are
  presented. These corrections can be easily applied to correct 1D
  LTE lithium abundances in G and F dwarf stars of approximately
  solar mass and metallicity for 3D and NLTE effects. The stellar
  parameters defining the grid are effective temperatures, Teff (5900,
  6300 and 6500K), surface gravity, logg (4.0 and 4.5), metallicity,
  [Fe/H] (-1.0, -0.5, 0.0, +0.5), 1D LTE lithium abundance, A(Li)
  (1.5, 2.0, 2.5), 1D LTE <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio
  (0, 5 and 10%), as well as projected rotational velocity, vsini (0,
  2, 4 and 6km/s). Based on this table, a web page calculator was
  created that allows to compute the 3D NLTE corrections of A(Li)
  and 6Li/7Li ratio for a given combination of stellar parameters
  (https://pages.aip.de/li67nlte3d/). <P />(1 data file).

---------------------------------------------------------
Title: Investigation of a sample of carbon-enhanced metal-poor stars
    observed with FORS and GMOS
Authors: Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.;
   Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.
2018A&A...614A..68C    Altcode: 2018arXiv180309252C
  <BR /> Aims: Carbon-enhanced metal-poor (CEMP) stars represent a
  sizeable fraction of all known metal-poor stars in the Galaxy. Their
  formation and composition remains a significant topic of investigation
  within the stellar astrophysics community. <BR /> Methods: We analysed
  a sample of low-resolution spectra of 30 dwarf stars, obtained using
  the visual and near UV FOcal Reducer and low dispersion Spectrograph
  for the Very Large Telescope (FORS/VLT) of the European Southern
  Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS)
  at the GEMINI telescope, to derive their metallicity and carbon
  abundance. <BR /> Results: We derived C and Ca from all spectra,
  and Fe and Ba from the majority of the stars. <BR /> Conclusions:
  We have extended the population statistics of CEMP stars and have
  confirmed that in general, stars with a high C abundance belonging
  to the high C band show a high Ba-content (CEMP-s or -r/s), while
  stars with a normal C abundance or that are C-rich, but belong to the
  low C band, are normal in Ba (CEMP-no). <P />Based on observations
  made with ESO Telescopes at the La Silla Paranal Observatory under
  programme ID 099.D-0791. <P />Based on observations obtained at the
  Gemini Observatory (processed using the Gemini IRAF package), which is
  operated by the Association of Universities for Research in Astronomy,
  Inc., under a cooperative agreement with the NSF on behalf of the
  Gemini partnership: the National Science Foundation (United States),
  the National Research Council (Canada), CONICYT (Chile), Ministerio
  de Ciencia, Tecnología e Innovación Productiva (Argentina),
  and Ministério da Ciência, Tecnologia e Inovação (Brazil). <P
  />Tables 1 and 2 are also available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Carbon-enhanced metal-poor stars
    sample (Caffau+, 2018)
Authors: Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.;
   Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L.
2018yCat..36140068C    Altcode:
  We selected a sample of turn-off stars from the Sloan Digital Sky
  Survey (SDSS York et al. 2000AJ....120.1579Y; Yanny et al. 2009,
  Cat. J/AJ/137/4377) that were bright enough (g&lt;17) to allow us to
  secure a reasonable spectrum quality in a single observing block of
  1h. <P />The FORS spectra have been observed in service mode during
  the ESO Programme 099.D-0791, between 01/04/2017 and 16/08/2017. <P
  />The GMOS spectra were acquired in service mode on the nights of
  21/07/2017 and 25/07/2017. <P />Table 1 lists the stars we examined
  here, along with their coordinates, g-mag, and metallicities derived
  from Fe abundances computed using SDSS and FORS/GMOS spectra. <P />(2
  data files).

---------------------------------------------------------
Title: Using the CIFIST grid of CO<SUP>5</SUP>BOLD 3D model
    atmospheres to study the effects of stellar granulation on photometric
    colours. II. The role of convection across the H-R diagram
Authors: Kučinskas, A.; Klevas, J.; Ludwig, H. -G.; Bonifacio, P.;
   Steffen, M.; Caffau, E.
2018A&A...613A..24K    Altcode: 2018arXiv180200073K
  <BR /> Aims: We studied the influence of convection on the spectral
  energy distributions (SEDs), photometric magnitudes, and colour
  indices of different types of stars across the H-R diagram. <BR />
  Methods: The 3D hydrodynamical CO<SUP>5</SUP>BOLD, averaged ⟨3D⟩,
  and 1D hydrostatic LHD model atmospheres were used to compute SEDs
  of stars on the main sequence (MS), main sequence turn-off (TO),
  subgiant branch (SGB), and red giant branch (RGB), in each case at
  two different effective temperatures and two metallicities, [M/H] =
  0.0 and - 2.0. Using the obtained SEDs, we calculated photometric
  magnitudes and colour indices in the broad-band Johnson-Cousins
  UBVRI and 2MASS JHK<SUB>s</SUB>, and the medium-band Strömgren
  uvby photometric systems. <BR /> Results: The 3D-1D differences in
  photometric magnitudes and colour indices are small in both photometric
  systems and typically do not exceed ± 0.03 mag. Only in the case of the
  coolest giants located on the upper RGB are the differences in the U and
  u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H]
  = -2.0. Generally, the 3D-1D differences are largest in the blue-UV
  part of the spectrum and decrease towards longer wavelengths. They
  are also sensitive to the effective temperature and are significantly
  smaller in hotter stars. Metallicity also plays a role and leads to
  slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are
  caused by a complex interplay between the radiation field, opacities,
  and horizontal temperature fluctuations that occur due to convective
  motions in stellar atmospheres. Although small, the 3D-1D differences
  in the magnitudes and colour indices are nevertheless comparable to
  or larger than typical photometric uncertainties and may therefore
  cause non-negligible systematic differences in the estimated effective
  temperatures.

---------------------------------------------------------
Title: Gaia Confirms that SDSS J102915+172927 is a Dwarf Star
Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; François,
   P.; Zaggia, S.; Arenou, F.; Haigron, R.; Leclerc, N.; Marchal, O.;
   Panuzzo, P.; Plum, G.; Sartoretti, P.
2018RNAAS...2...19B    Altcode: 2018arXiv180410419B; 2018RNAAS...2b..19B
  The Gaia Data Release 2 provides a parallax of 0.734+/-0.073 mas for
  SDSS J102915+172927, currently the most metal-poor known object. This
  parallax implies that it is dwarf star, ruling out the scenario that it
  is a subgiant. The subgiant scenario had as a corollary that the star
  had been formed in a medium highly enriched in C, thus making line
  cooling efficient during the collapse, that was also highly enriched
  in Fe by Type Ia SNe. This scenario can also now be ruled out for
  this star, reinforcing the need of dust cooling and fragmentation to
  explain its formation.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gaia DR2 sources in GC and dSph
    (Gaia Collaboration+, 2018)
Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; Mc
   Millan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren,
   L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels,
   M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reyle, C.; Veljanoski, J.;
   Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.;
   Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner,
   S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton,
   N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker,
   J.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli,
   F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.;
   Seabroke, G. M.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.;
   Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme,
   R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.;
   Clotet, M.; ! Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre,
   L.; Dell'Oro, A.; Ducourant, C.; Fernandez-Hernandez, J.; Fouesneau,
   M.; Fremat, Y.; Galluccio, L.; Garcia-Torres, M.; Gonzalez-Nunez,
   J.; Gonzalez-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.;
   Hambly, N. C.; Harrison, D. L.; Hernandez, J.; Hestroffer, D.; Hodgkin,
   S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan,
   S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.;
   Loeffler, W.; Manteiga, M.; Marrese, P. M.; Martin-Fleitas, J. M.;
   Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit,
   J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro,
   L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Sueveges, M.; Torra, J.;
   van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts,
   C.; Altavilla, G.; Alvarez, M. A.; Alvarez, R.; Alves, J.; Anderson,
   R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.;
   Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.;
   Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem,
   P. S.; Barra! Do, D.; Ba Rros, M.; Barstow, M. A.; Bartholome Munoz,
   S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete,
   A.; Bertone, S.; Bianchi, L.; Bienayme, O.; Blanco-Cuaresma, S.;
   Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.;
   Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan,
   A.; Brouillet, N.; Bruesemeister, T.; Brugaletta, E.; Bucciarelli,
   B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau,
   E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo,
   R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.;
   Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza,
   G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.;
   Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.;
   David, M.; de Laverny, P.; de Luise, F.; de March, R.; de Martino,
   D.; de Souza, R.; de Torres, A.; Debosscher, J.; Del Pozo, E.; Delbo,
   M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener,
   C.; Distefano, E.; Dolding, C.; Drazinos, P.; Duran, J.; Edvardsson,
   B.; Enke, H.; Eriks! Son, K.; E Squej, P.; Eynard Bontemps, G.;
   Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas,
   M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi,
   F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frezouls, B.;
   Gai, M.; Galleti, S.; Garabato, D.; Garcia-Sedano, F.; Garofalo,
   A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.;
   Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.;
   Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.;
   Gutierrez-Sanchez, R.; Hofmann, W.; Holland, G.; Huckle, H. E.;
   Hypki, A.; Icardi, V.; Janssen, K.; Jevardat de Fombelle, G.; Jonker,
   P. G.; Juhasz, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar,
   J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas,
   E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky,
   P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec,
   Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.;
   Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.;
   Lindstrom, H. E. P.; Lister, T. A.; ! Livanou, E.; Lobel, A.; Lopez,
   M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant,
   J. M.; Marconi, M.; Marinoni, S.; Marschalko, G.; Marshall, D. J.;
   Martino, M.; Marton, G.; Mary, N.; Matijevic, G.; Mazeh, T.; Messina,
   S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnar,
   L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.;
   Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.;
   Noval, L.; O'Mullane, W.; Ordenovic, C.; Ordonez-Blanco, D.; Osborne,
   P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.;
   Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.;
   Plum, G.; Poggio, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.;
   Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.;
   Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens,
   M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski,
   G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.;
   Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis,
   M.; Sciacca, E.; Segol !, M.; Segov, Ia J. C.; Segransan, D.; Shih,
   I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.;
   Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.;
   Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.;
   Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.;
   Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.;
   Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko,
   A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi,
   S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.;
   van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.;
   Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba,
   V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.;
   Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Ziaeepour, H.; Zorec, J.;
   Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T.
2018yCat..36160012G    Altcode:
  The files contains lists of possible members of each of the objects
  (75 globular clusters, 9 dwarf spheroidal galaxies, the Bootes I UFD,
  the LMC and SMC). The stars in these lists have been selected and used
  to determine the astrometric parameters of the corresponding objects
  following either the procedures described in Sec. 2.1 (for the clusters
  and dwarfs) or in Sec. 2.2 (for the LMC and SMC). The first column is
  the "source_id" as given by Gaia, the ra and declination of the star in
  degrees, and its G-band magnitude (known as "phot<SUB>g</SUB>mean_mag"
  in the Gaia archive). <P />(2 data files).

---------------------------------------------------------
Title: TOPoS. IV. Chemical abundances from high-resolution
    observations of seven extremely metal-poor stars
Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone,
   L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.;
   Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H. -G.;
   Steffen, M.; Zaggia, S.; Abate, C.
2018A&A...612A..65B    Altcode: 2018arXiv180103935B
  Context. Extremely metal-poor (EMP) stars provide us with indirect
  information on the first generations of massive stars. The TOPoS
  survey has been designed to increase the census of these stars and to
  provide a chemical inventory that is as detailed as possible. <BR />
  Aims: Seven of the most iron-poor stars have been observed with the
  UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine
  their chemical composition. <BR /> Methods: We analysed the spectra
  based on 1D LTE model atmospheres, but also used 3D hydrodynamical
  simulations of stellar atmospheres. <BR /> Results: We measured carbon
  in six of the seven stars: all are carbon-enhanced and belong to the
  low-carbon band, defined in the TOPoS II paper. We measured lithium
  (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H]
  &lt;-5.2). We were also able to measure Li in three stars at [Fe/H]
  -4.0, two of which lie on the Spite plateau. We confirm that SDSS
  J1349+1407 is extremely rich in Mg, but not in Ca. It is also very
  rich in Na. Several of our stars are characterised by low α-to-iron
  ratios. <BR /> Conclusions: The lack of high-carbon band stars at low
  metallicity can be understood in terms of evolutionary timescales
  of binary systems. The detection of Li in SDSS J1035+0641 places a
  strong constraint on theories that aim at solving the cosmological
  lithium problem. The Li abundance of the two warmer stars at [Fe/H]
  -4.0 places them on the Spite plateau, while the third, cooler star,
  lies below. We argue that this suggests that the temperature at which
  Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407
  may belong to a class of Mg-rich EMP stars. We cannot assess if there
  is a scatter in α-to-iron ratios among the EMP stars or if there are
  several discrete populations. However, the existence of stars with
  low α-to-iron ratios is supported by our observations. <P />Based
  on observations obtained at ESO Paranal Observatory, Programmes
  189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

---------------------------------------------------------
Title: Abundance patterns of the light neutron-capture elements in
    very and extremely metal-poor stars
Authors: Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau,
   E.; François, P.
2018A&A...611A..30S    Altcode: 2018arXiv180101304S
  <BR /> Aims: The abundance patterns of the neutron-capture elements
  in metal-poor stars provide a unique record of the nucleosynthesis
  products of the earlier massive primitive objects. <BR /> Methods:
  We measured new abundances of so-called light neutron-capture of first
  peak elements using local thermodynamic equilibrium (LTE) 1D analysis;
  this analysis resulted in a sample of 11 very metal-poor stars, from
  [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037
  with [Fe/H] = -4.0. The abundances were compared to those observed in
  two classical metal-poor stars: the typical r-rich star CS 31082-001
  ([Eu/Fe] &gt; +1.0) and the r-poor star HD 122563 ([Eu/Fe] &lt; 0.0),
  which are known to present a strong enrichment of the first peak
  neutron-capture elements relative to the second peak. <BR /> Results:
  Within the first peak, the abundances are well correlated in analogy
  to the well-known correlation inside the abundances of the second-peak
  elements. In contrast, there is no correlation between any first peak
  element with any second peak element. We show that the scatter of the
  ratio of the first peak abundance over second peak abundance increases
  when the mean abundance of the second peak elements decreases from
  r-rich to r-poor stars. We found two new r-poor stars that are very
  similar to HD 122563. A third r-poor star, CS 22897-008, is even more
  extreme; this star shows the most extreme example of first peak elements
  enrichment to date. On the contrary, another r-poor star (BD-18 5550)
  has a pattern of first peak elements that is similar to the typical
  r-rich stars CS 31082-001, however this star has some Mo enrichment. <BR
  /> Conclusions: The distribution of the neutron-capture elements in our
  very metal-poor stars can be understood as the combination of at least
  two mechanisms: one that enriches the forming stars cloud homogeneously
  through the main r-process and leads to an element pattern similar to
  the r-rich stars, such as CS 31082-001; and another that forms mainly
  lighter, first peak elements. <P />Based on observations collected at
  the European Organisation for Astronomical Research in the Southern
  Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).

---------------------------------------------------------
Title: Ages and Heavy Element Abundances from Very Metal-poor Stars
    in the Sagittarius Dwarf Galaxy
Authors: Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo;
   Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone,
   Luca
2018ApJ...855...83H    Altcode: 2017arXiv171102101H
  Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the
  Milky Way halo that has undergone several stripping events. Previous
  chemical studies were restricted mainly to a few, metal-rich ([Fe/H]
  \gtrapprox -1) stars that suggested a top-light initial mass function
  (IMF). Here we present the first high-resolution, very metal-poor
  ([Fe/H] =-1 to -3) sample of 13 giant stars in the main body of Sgr. We
  derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La,
  Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on
  previous studies. Our abundances from Sgr mimic those of the metal-poor
  halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure
  r-process pollution. Abundances of Sr, Pb, and Th are presented for
  the first time in Sgr, allowing for age determination using nuclear
  cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the
  sample stars have been enriched by a range of asymptotic giant branch
  (AGB) stars with masses between 1.3 and 5 M <SUB>⊙</SUB>. Sgr
  J190651.47-320147.23 shows a large overabundance of Pb (2.05 dex)
  and a peculiar abundance pattern best fit by a 3 M <SUB>⊙</SUB> AGB
  star. Based on star-to-star scatter and observed abundance patterns,
  a mixture of low- and high-mass AGB stars and supernovae (15-25 M
  <SUB>⊙</SUB>) is necessary to explain these patterns. The high level
  (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have
  existed and polluted the early ISM of Sgr before it lost its gas. This
  result is in contrast with a top-light IMF with no massive stars
  polluting Sgr. <P />Based on data obtained UVES/VLT ID: 083.B-0774,
  075.B-0127.

---------------------------------------------------------
Title: Using the CIFIST grid of CO<SUP>5</SUP>BOLD 3D model
    atmospheres to study the effects of stellar granulation on photometric
    colours. I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS,
    Gaia, and SDSS systems
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.;
   Castelli, F.; Gallagher, A. J.; Kučinskas, A.; Prakapavičius, D.;
   Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.
2018A&A...611A..68B    Altcode: 2017arXiv171200024B
  Context. The atmospheres of cool stars are temporally and spatially
  inhomogeneous due to the effects of convection. The influence of
  this inhomogeneity, referred to as granulation, on colours has never
  been investigated over a large range of effective temperatures and
  gravities. Aim. We aim to study, in a quantitative way, the impact of
  granulation on colours. <BR /> Methods: We use the CIFIST (Cosmological
  Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the
  COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2,
  3) hydrodynamical models to compute emerging fluxes. These in turn are
  used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS,
  Gaia and SDSS systems. Every CO5BOLD model has a corresponding one
  dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model
  computed for the same atmospheric parameters, which we used to define
  a "3D correction" that can be applied to colours computed from fluxes
  computed from any 1D model atmosphere code. As an example, we illustrate
  these corrections applied to colours computed from ATLAS models. <BR />
  Results: The 3D corrections on colours are generally small, of the order
  of a few hundredths of a magnitude, yet they are far from negligible. We
  find that ignoring granulation effects can lead to underestimation of
  Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when
  using colours as diagnostics. We have identified a major shortcoming in
  how scattering is treated in the current version of the CIFIST grid,
  which could lead to offsets of the order 0.01 mag, especially for
  colours involving blue and UV bands. We have investigated the Gaia and
  HIPPARCOS photometric systems and found that the (G - H<SUB>p</SUB>),
  (BP - RP) diagram is immune to the effects of granulation. In addition,
  we point to the potential of the RVS photometry as a metallicity
  diagnostic. <BR /> Conclusions: Our investigation shows that the
  effects of granulation should not be neglected if one wants to use
  colours as diagnostics of the stellar parameters of F, G, K stars. A
  limitation is that scattering is treated as true absorption in our
  current computations, thus our 3D corrections are likely an upper
  limit to the true effect. We are already computing the next generation
  of the CIFIST grid, using an approximate treatment of scattering. <P
  />The appendix tables are only available at the CDS via anonymous ftp
  to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://cdsarc.u-strasbg.fr">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A68">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A68</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: 3D correction in 5 photometric
    systems (Bonifacio+, 2018)
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.;
   Castelli, F.; Gallagher, A. J.; Kucinskas, A.; Prakapavicius, D.;
   Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.
2018yCat..36110068B    Altcode:
  We have used the CIFIST grid of CO5BOLD models to investigate the
  effects of granulation on fluxes and colours of stars of spectral
  type F, G, and K. <P />We publish tables with 3D corrections that
  can be applied to colours computed from any 1D model atmosphere. For
  Teff&gt;=5000K, the corrections are smooth enough, as a function
  of atmospheric parameters, that it is possible to interpolate the
  corrections between grid points; thus the coarseness of the CIFIST
  grid should not be a major limitation. However at the cool end there
  are still far too few models to allow a reliable interpolation. <P
  />(20 data files).

---------------------------------------------------------
Title: Galactic evolution of copper in the light of NLTE computations
Authors: Andrievsky, S.; Bonifacio, P.; Caffau, E.; Korotin, S.;
   Spite, M.; Spite, F.; Sbordone, L.; Zhukova, A. V.
2018MNRAS.473.3377A    Altcode: 2017arXiv170908619A
  We have developed a model atom for Cu with which we perform statistical
  equilibrium computations that allow us to compute the line formation of
  Cu I lines in stellar atmospheres without assuming local thermodynamic
  equilibrium (LTE). We validate this model atom by reproducing the
  observed line profiles of the Sun, Procyon and 11 metal-poor stars. Our
  sample of stars includes both dwarfs and giants. Over a wide range of
  stellar parameters, we obtain excellent agreement among different Cu
  I lines. The 11 metal-poor stars have iron abundances in the range -
  4.2 ≤ [Fe/H] ≤ -1.4, the weighted mean of the [Cu/Fe] ratios is
  -0.22 dex, with a scatter of -0.15 dex. This is very different from
  the results from LTE analysis (the difference between NLTE and LTE
  abundances reaches 1 dex) and in spite of the small size of our sample,
  it prompts for a revision of the Galactic evolution of Cu.

---------------------------------------------------------
Title: The Pristine survey - I. Mining the Galaxy for the most
    metal-poor stars
Authors: Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado,
   David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard
   J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.;
   Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke,
   Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill,
   Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas;
   McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén;
   Tolstoy, Eline; Venn, Kim A.
2017MNRAS.471.2587S    Altcode: 2017arXiv170501113S
  We present the Pristine survey, a new narrow-band photometric survey
  focused on the metallicity-sensitive Ca H&amp;K lines and conducted
  in the Northern hemisphere with the wide-field imager MegaCam on
  the Canada-France-Hawaii Telescope. This paper reviews our overall
  survey strategy and discusses the data processing and metallicity
  calibration. Additionally we review the application of these data to
  the main aims of the survey, which are to gather a large sample of
  the most metal-poor stars in the Galaxy, to further characterize the
  faintest Milky Way satellites, and to map the (metal-poor) substructure
  in the Galactic halo. The current Pristine footprint comprises over
  1000 deg<SUP>2</SUP> in the Galactic halo ranging from b ∼ 30° to
  ∼78° and covers many known stellar substructures. We demonstrate
  that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can
  calibrate the photometry at the 0.02-mag level. The comparison with
  existing spectroscopic metallicities from SDSS/Sloan Extension for
  Galactic Understanding and Exploration (SEGUE) and Large Sky Area
  Multi-Object Fiber Spectroscopic Telescope shows that, when combined
  with SDSS broad-band g and I photometry, we can use the CaHK photometry
  to infer photometric metallicities with an accuracy of ∼0.2 dex from
  [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] &lt;
  -3.0). After the removal of various contaminants, we can efficiently
  select metal-poor stars and build a very complete sample with high
  purity. The success rate of uncovering [Fe/H]<SUB>SEGUE</SUB> &lt;
  -3.0 stars among [Fe/H]<SUB>Pristine</SUB> &lt; -3.0 selected stars
  is 24 per cent, and 85 per cent of the remaining candidates are still
  very metal poor ([Fe/H]&lt;-2.0). We further demonstrate that Pristine
  is well suited to identify the very rare and pristine Galactic stars
  with [Fe/H] &lt; -4.0, which can teach us valuable lessons about the
  early Universe.

---------------------------------------------------------
Title: The Canada-France Imaging Survey: First Results from the
    u-Band Component
Authors: Ibata, Rodrigo A.; McConnachie, Alan; Cuillandre,
   Jean-Charles; Fantin, Nicholas; Haywood, Misha; Martin, Nicolas F.;
   Bergeron, Pierre; Beckmann, Volker; Bernard, Edouard; Bonifacio,
   Piercarlo; Caffau, Elisabetta; Carlberg, Raymond; Côté, Patrick;
   Cabanac, Rémi; Chapman, Scott; Duc, Pierre-Alain; Durret, Florence;
   Famaey, Benoît; Fabbro, Sébastien; Gwyn, Stephen; Hammer, Francois;
   Hill, Vanessa; Hudson, Michael J.; Lançon, Ariane; Lewis, Geraint;
   Malhan, Khyati; di Matteo, Paola; McCracken, Henry; Mei, Simona;
   Mellier, Yannick; Navarro, Julio; Pires, Sandrine; Pritchet, Chris;
   Reylé, Celine; Richer, Harvey; Robin, Annie C.; Sánchez-Janssen,
   Rubén; Sawicki, Marcin; Scott, Douglas; Scottez, Vivien; Spekkens,
   Kristine; Starkenburg, Else; Thomas, Guillaume; Venn, Kim
2017ApJ...848..128I    Altcode: 2017arXiv170806356I
  The Canada-France Imaging Survey (CFIS) will map the northern high
  Galactic latitude sky in the u-band ("CFIS-u," 10,000 °<SUP>2</SUP>)
  and in the r-band ("CFIS-r," 5000 °<SUP>2</SUP>), enabling a host
  of stand-alone science investigations, and providing some of the
  ground-based data necessary for photometric redshift determination for
  the Euclid mission. In this first contribution, we present the u-band
  component of the survey, describe the observational strategy, and
  discuss some first highlight results, based on approximately one-third
  of the final area. We show that the Galactic anticenter structure is
  distributed continuously along the line of sight, out to beyond 20 kpc,
  and possesses a metallicity distribution that is essentially identical
  to that of the outer disk sampled by APOGEE. This suggests that it
  is probably a buckled disk of old metal-rich stars, rather than a
  stream or a flare. We also discuss the future potential for CFIS-u
  in discovering star-forming dwarf galaxies around the Local Group,
  the characterization of the white dwarf and blue straggler population
  of the Milky Way, as well as its sensitivity to low surface brightness
  structures in external galaxies.

---------------------------------------------------------
Title: Chemical Mapping of the Milky Way with The Canada-France
Imaging Survey: A Non-parametric Metallicity-Distance Decomposition
    of the Galaxy
Authors: Ibata, Rodrigo A.; McConnachie, Alan; Cuillandre,
   Jean-Charles; Fantin, Nicholas; Haywood, Misha; Martin, Nicolas F.;
   Bergeron, Pierre; Beckmann, Volker; Bernard, Edouard; Bonifacio,
   Piercarlo; Caffau, Elisabetta; Carlberg, Raymond; Côté, Patrick;
   Cabanac, Rémi; Chapman, Scott; Duc, Pierre-Alain; Durret, Florence;
   Famaey, Benoît; Fabbro, Sébastien; Gwyn, Stephen; Hammer, Francois;
   Hill, Vanessa; Hudson, Michael J.; Lançon, Ariane; Lewis, Geraint;
   Malhan, Khyati; di Matteo, Paola; McCracken, Henry; Mei, Simona;
   Mellier, Yannick; Navarro, Julio; Pires, Sandrine; Pritchet, Chris;
   Reylé, Celine; Richer, Harvey; Robin, Annie C.; Sánchez-Janssen,
   Rubén; Sawicki, Marcin; Scott, Douglas; Scottez, Vivien; Spekkens,
   Kristine; Starkenburg, Else; Thomas, Guillaume; Venn, Kim
2017ApJ...848..129I    Altcode: 2017arXiv170806359I
  We present the chemical distribution of the Milky Way, based on
  2900 {\deg }<SUP>2</SUP> of u-band photometry taken as part of
  the Canada-France Imaging Survey. When complete, this survey will
  cover 10,000 {\deg }<SUP>2</SUP> of the northern sky. By combing the
  CFHT u-band photometry together with Sloan Digital Sky Survey and
  Pan-STARRS g,r, and I, we demonstrate that we are able to reliably
  measure the metallicities of individual stars to ∼0.2 dex, and
  hence additionally obtain good photometric distance estimates. This
  survey thus permits the measurement of metallicities and distances
  of the dominant main-sequence (MS) population out to approximately 30
  {kpc}, and provides a much higher number of stars at large extraplanar
  distances than have been available from previous surveys. We develop a
  non-parametric distance-metallicity decomposition algorithm and apply
  it to the sky at 30^\circ &lt; | b| &lt; 70^\circ and to the North
  Galactic Cap. We find that the metallicity-distance distribution is
  well-represented by three populations whose metallicity distributions
  do not vary significantly with vertical height above the disk. As
  traced in MS stars, the stellar halo component shows a vertical density
  profile that is close to exponential, with a scale height of around
  3 {kpc}. This may indicate that the inner halo was formed partly from
  disk stars ejected in an ancient minor merger.

---------------------------------------------------------
Title: Gaia Data Release 1. Testing parallaxes with local Cepheids
    and RR Lyrae stars
Authors: Gaia Collaboration; Clementini, G.; Eyer, L.; Ripepi, V.;
   Marconi, M.; Muraveva, T.; Garofalo, A.; Sarro, L. M.; Palmer, M.;
   Luri, X.; Molinaro, R.; Rimoldini, L.; Szabados, L.; Musella, I.;
   Anderson, R. I.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.;
   Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.;
   Biermann, M.; Evans, D. W.; Jansen, F.; Jordi, C.; Klioner, S. A.;
   Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix,
   D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.;
   Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou,
   F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.;
   O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot,
   X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.;
   Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.;
   Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo,
   R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo,
   P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.;
   Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.;
   Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann,
   M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson,
   K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.;
   Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.;
   de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat,
   Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.;
   Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle,
   H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn,
   A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco,
   A.; Robin, A. C.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.;
   Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu,
   A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla,
   G.; Álvarez, M. A.; Alves, J.; Andrei, A. H.; Anglada Varela, E.;
   Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker,
   S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.;
   Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.;
   Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.;
   Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud,
   F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.;
   Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Breddels,
   M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess,
   P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau,
   E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.;
   Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas,
   J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan,
   G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte,
   C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.;
   de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Souza,
   R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado,
   H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos
   Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.;
   Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets,
   G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras,
   F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile,
   E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.;
   Garabato, D.; García-Sedano, F.; Garralda, N.; Gavras, P.; Gerssen,
   J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.;
   González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.;
   Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.;
   Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.;
   Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.;
   Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat
   de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.;
   Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas,
   E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.;
   Kudryashova, M.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.;
   Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.;
   Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt,
   H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister,
   T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.;
   MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.;
   Mantelet, G.; Marchal, O.; Marchant, J. M.; Marinoni, S.; Marrese,
   P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.;
   Martino, M.; Mary, N.; Matijevič, G.; McMillan, P. J.; Messina,
   S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.;
   Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.;
   Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.;
   Mulone, A. F.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.;
   Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano,
   I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro,
   M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.;
   Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.;
   Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.;
   Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro,
   R. A.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell,
   N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.;
   Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.;
   Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan,
   D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro,
   F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.;
   Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.;
   Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szegedi-Elek, E.;
   Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.;
   Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla,
   E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.;
   Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt,
   S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.;
   Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.;
   Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende
   Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz,
   S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.;
   Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.;
   Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich,
   A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione,
   L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.;
   Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls,
   B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.;
   Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen,
   A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.;
   Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.;
   Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos,
   J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.;
   Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.;
   Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.;
   Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz,
   P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Park, P.; Pasquato, E.;
   Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.;
   Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.;
   Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.;
   Russo, F.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.;
   Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys,
   V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.;
   Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van
   Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.;
   Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2017A&A...605A..79G    Altcode: 2017arXiv170500688G; 2017A&A...605A..79.
  Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids,
  and 364 RR Lyrae stars in common between Gaia and the HIPPARCOS and
  Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part
  of the Tycho-Gaia Astrometric Solution (TGAS). <BR /> Aims: In order to
  test these first parallax measurements of the primary standard candles
  of the cosmological distance ladder, which involve astrometry collected
  by Gaia during the initial 14 months of science operation, we compared
  them with literature estimates and derived new period-luminosity (PL),
  period-Wesenheit (PW) relations for classical and Type II Cepheids and
  infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity
  (M<SUB>V</SUB>-[Fe/H]) relations for the RR Lyrae stars, with zero
  points based on TGAS. <BR /> Methods: Classical Cepheids were carefully
  selected in order to discard known or suspected binary systems. The
  final sample comprises 102 fundamental mode pulsators with periods
  ranging from 1.68 to 51.66 days (of which 33 with σ<SUB>ϖ</SUB>/ϖ&lt;
  0.5). The Type II Cepheids include a total of 26 W Virginis and BL
  Herculis stars spanning the period range from 1.16 to 30.00 days
  (of which only 7 with σ<SUB>ϖ</SUB>/ϖ&lt; 0.5). The RR Lyrae stars
  include 200 sources with pulsation period ranging from 0.27 to 0.80
  days (of which 112 with σ<SUB>ϖ</SUB>/ϖ&lt; 0.5). The new relations
  were computed using multi-band (V,I,J,K<SUB>s</SUB>) photometry
  and spectroscopic metal abundances available in the literature, and
  by applying three alternative approaches: (i) linear least-squares
  fitting of the absolute magnitudes inferred from direct transformation
  of the TGAS parallaxes; (ii) adopting astrometry-based luminosities;
  and (iii) using a Bayesian fitting approach. The last two methods work
  in parallax space where parallaxes are used directly, thus maintaining
  symmetrical errors and allowing negative parallaxes to be used. The
  TGAS-based PL,PW,PLZ, and M<SUB>V</SUB>- [Fe/H] relations are discussed
  by comparing the distance to the Large Magellanic Cloud provided by
  different types of pulsating stars and alternative fitting methods. <BR
  /> Results: Good agreement is found from direct comparison of the
  parallaxes of RR Lyrae stars for which both TGAS and HST measurements
  are available. Similarly, very good agreement is found between the
  TGAS values and the parallaxes inferred from the absolute magnitudes
  of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink
  method. TGAS values also compare favourably with the parallaxes inferred
  by theoretical model fitting of the multi-band light curves for two
  of the three classical Cepheids and one RR Lyrae star, which were
  analysed with this technique in our samples. The K-band PL relations
  show the significant improvement of the TGAS parallaxes for Cepheids
  and RR Lyrae stars with respect to the HIPPARCOS measurements. This
  is particularly true for the RR Lyrae stars for which improvement
  in quality and statistics is impressive. <BR /> Conclusions: TGAS
  parallaxes bring a significant added value to the previous HIPPARCOS
  estimates. The relations presented in this paper represent the first
  Gaia-calibrated relations and form a work-in-progress milestone report
  in the wait for Gaia-only parallaxes of which a first solution will
  become available with Gaia Data Release 2 (DR2) in 2018. <P />Full
  Tables A.1-A.3 are only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A79">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A79</A>

---------------------------------------------------------
Title: Lithium abundance and <SUP>6</SUP>Li/<SUP>7</SUP>Li ratio in
    the active giant HD 123351. I. A comparative analysis of 3D and 1D
    NLTE line-profile fits
Authors: Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier,
   K. G.
2017A&A...604A..44M    Altcode: 2017arXiv170406460M
  Context. Current three-dimensional (3D) hydrodynamical model
  atmospheres together with detailed spectrum synthesis, accounting
  for departures from local thermodynamic equilibrium (LTE), permit
  to derive reliable atomic and isotopic chemical abundances from
  high-resolution stellar spectra. Not much is known about the presence
  of the fragile <SUP>6</SUP>Li isotope in evolved solar-metallicity red
  giant branch (RGB) stars, not to mention its production in magnetically
  active targets like HD 123351. <BR /> Aims: A detailed spectroscopic
  investigation of the lithium resonance doublet in HD 123351 in terms
  of both abundance and isotopic ratio is presented. From fits of
  the observed spectrum, taken at the Canada-France-Hawaii telescope,
  with synthetic line profiles based on 1D and 3D model atmospheres,
  we seek to estimate the abundance of the <SUP>6</SUP>Li isotope and
  to place constraints on its origin. <BR /> Methods: We derive the
  lithium abundance A(Li) and the <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic
  ratio by fitting different synthetic spectra to the Li-line region
  of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The
  synthetic spectra are computed with four different line lists,
  using in parallel 3D hydrodynamical CO<SUP>5</SUP>BOLD and 1D LHD
  model atmospheres and treating the line formation of the lithium
  components in non-LTE (NLTE). The fitting procedure is repeated with
  different assumptions and wavelength ranges to obtain a reasonable
  estimate of the involved uncertainties. <BR /> Results: We find A(Li)
  = 1.69 ± 0.11 dex and <SUP>6</SUP>Li/<SUP>7</SUP>Li = 8.0 ± 4.4%
  in 3D-NLTE, using the line list of Meléndez et al. (2012, A&amp;A,
  543, A29), updated with new atomic data for V I, which results in
  the best fit of the lithium line profile of HD 123351. Two other line
  lists lead to similar results but with inferior fit qualities. <BR />
  Conclusions: Our 2σ detection of the <SUP>6</SUP>Li isotope is the
  result of a careful statistical analysis and the visual inspection
  of each achieved fit. Since the presence of a significant amount of
  <SUP>6</SUP>Li in the atmosphere of a cool evolved star is not expected
  in the framework of standard stellar evolution theory, non-standard,
  external lithium production mechanisms, possibly related to stellar
  activity or a recent accretion of rocky material, need to be invoked
  to explain the detection of <SUP>6</SUP>Li in HD 123351.

---------------------------------------------------------
Title: The Gaia-ESO Survey: Galactic evolution of sulphur and zinc
Authors: Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.;
   Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.;
   François, P.; Skúladóttir, Á.; Bragaglia, A.; Donati, P.; Spina,
   L.; Gallagher, A. J.; Ludwig, H. -G.; Christlieb, N.; Hansen, C. J.;
   Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.;
   Friel, E.; Jiménez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino,
   E.; Tang, B.; Tautvaišienė, G.; Vallenari, A.; Hawkins, K.; Gilmore,
   G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic,
   R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani,
   F.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis,
   J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C.
2017A&A...604A.128D    Altcode: 2017arXiv170402981D
  Context. Due to their volatile nature, when sulphur and zinc are
  observed in external galaxies, their determined abundances represent
  the gas-phase abundances in the interstellar medium. This implies
  that they can be used as tracers of the chemical enrichment of matter
  in the Universe at high redshift. Comparable observations in stars
  are more difficult and, until recently, plagued by small number
  statistics. <BR /> Aims: We wish to exploit the Gaia-ESO Survey
  (GES) data to study the behaviour of sulphur and zinc abundances
  of a large number of Galactic stars, in a homogeneous way. <BR />
  Methods: By using the UVES spectra of the GES sample, we are able to
  assemble a sample of 1301 Galactic stars, including stars in open and
  globular clusters in which both sulphur and zinc were measured. <BR
  /> Results: We confirm the results from the literature that sulphur
  behaves as an α-element. We find a large scatter in [Zn/Fe] ratios
  among giant stars around solar metallicity. The lower ratios are
  observed in giant stars at Galactocentric distances less than 7.5
  kpc. No such effect is observed among dwarf stars, since they do not
  extend to that radius. <BR /> Conclusions: Given the sample selection,
  giants and dwarfs are observed at different Galactic locations, and it
  is plausible, and compatible with simple calculations, that Zn-poor
  giants trace a younger population more polluted by SN Ia yields. It
  is necessary to extend observations in order to observe both giants
  and dwarfs at the same Galactic location. Further theoretical work on
  the evolution of zinc is also necessary. <P />Based on observations
  collected at the European Organisation for Astronomical Research in the
  Southern Hemisphere under ESO programmes 188.B-3002, 193.B-0936.The full
  table of S abundances is only available at the CDS via anonymous ftp
  to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128</A>

---------------------------------------------------------
Title: An Investigation of the Formation and Line Properties of MgH
    in 3D Hydrodynamical Model Stellar Atmospheres
Authors: Thygesen, Anders O.; Kirby, Evan N.; Gallagher, Andrew J.;
   Ludwig, Hans-G.; Caffau, Elisabetta; Bonifacio, Piercarlo; Sbordone,
   Luca
2017ApJ...843..144T    Altcode: 2017arXiv170604218T
  Studies of the isotopic composition of magnesium in cool stars have so
  far relied upon the use of 1D model atmospheres. Since the isotopic
  ratios derived are based on asymmetries of optical MgH lines, it
  is important to test the impact from other effects affecting line
  asymmetries, like stellar convection. Here, we present a theoretical
  investigation of the effects of including self-consistent modeling
  of convection. Using spectral syntheses based on 3D hydrodynamical
  CO<SUP>5</SUP>BOLD models of dwarfs (4000 K ≲ T <SUB>eff</SUB> ≲
  5160 K, 4.0 ≤ {log}g ≤ 4.5, -3.0≤slant [{Fe}/{{H}}]≤slant
  -1.0) and giants (T <SUB>eff</SUB> ∼ 4000 K, {log}g = 1.5,
  -3.0≤slant [{Fe}/{{H}}]≤slant -1.0), we perform a detailed
  analysis comparing 3D and 1D syntheses. We describe the impact on the
  formation and behavior of MgH lines from using 3D models, and perform
  a qualitative assessment of the systematics introduced by the use of 1D
  syntheses. Using 3D model atmospheres significantly affect the strength
  of the MgH lines, especially in dwarfs, with 1D syntheses requiring
  an abundance correction of up to +0.69 dex, with the largest for our
  5000 K models. The corrections are correlated with T <SUB>eff</SUB>
  and are also affected by the metallicity. The shape of the strong
  <SUP>24</SUP>MgH component in the 3D syntheses is poorly reproduced in
  1D. This results in 1D syntheses underestimating <SUP>25</SUP>Mg by
  up to ∼5 percentage points and overestimating <SUP>24</SUP>Mg by a
  similar amount for dwarfs. This discrepancy increases with decreasing
  metallicity. <SUP>26</SUP>Mg is recovered relatively well, with the
  largest difference being ∼2 percentage points. The use of 3D for
  giants has less impact, due to smaller differences in the atmospheric
  structure and a better reproduction of the line shape in 1D.

---------------------------------------------------------
Title: Abundances of Na, Mg, and K in the atmospheres of red giant
    branch stars of Galactic globular cluster 47 Tucanae
Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Prakapavičius,
   D.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M.
2017A&A...604A..35C    Altcode: 2017arXiv170402751C
  <BR /> Aims: We study the abundances of Na, Mg, and K in the atmospheres
  of 32 red giant branch (RGB) stars in the Galactic globular cluster
  (GGC) 47 Tuc, with the goal to investigate the possible existence of
  Na-K and Mg-K correlations/anti-correlations, similar to those that
  were recently discovered in two other GGCs, NGC 2419 and 2808. <BR
  /> Methods: The abundances of K, Na, and Mg were determined using
  high-resolution 2dF/HERMES spectra obtained with the Anglo-Australian
  Telescope (AAT). The one-dimensional (1D) NLTE abundance estimates
  were obtained using 1D hydrostatic ATLAS9 model atmospheres and
  spectral line profiles synthesized with the MULTI package. We also
  used three-dimensional (3D) hydrodynamical CO<SUP>5</SUP>BOLD and
  1D hydrostatic LHD model atmospheres to compute 3D-1D LTE abundance
  corrections, Δ<SUB>3D - 1D LTE</SUB>, for the spectral lines of Na,
  Mg, and K used in our study. These abundance corrections were used to
  understand the role of convection in the formation of spectral lines,
  as well as to estimate the differences in the abundances obtained with
  the 3D hydrodynamical and 1D hydrostatic model atmospheres. <BR />
  Results: The average element-to-iron abundance ratios and their RMS
  variations due to star-to-star abundance spreads determined in our
  sample of RGB stars were ⟨ [ Na / Fe ] ⟩ <SUP>1D NLTE</SUP> =
  0.42 ± 0.13, ⟨ [ Mg / Fe ] ⟩ <SUP>1D NLTE</SUP> = 0.41 ± 0.11,
  and ⟨ [ K / Fe ] ⟩ <SUP>1D NLTE</SUP> = 0.05 ± 0.14. We found no
  statistically significant relations between the abundances of the three
  elements studied here. Also, there were no abundance trends with the
  distance from the cluster center, nor any statistically significant
  relations between the abundance/abundance ratios and absolute radial
  velocities of individual stars. All these facts suggest the similarity
  of K abundance in stars that belong to different generations in 47
  Tuc which, in turn, may hint that evolution of K in this particular
  cluster was unrelated to the nucleosynthesis of Na and/or Mg.

---------------------------------------------------------
Title: New ultra metal-poor stars from SDSS: follow-up GTC
    medium-resolution spectroscopy
Authors: Aguado, D. S.; Allende Prieto, C.; González Hernández,
   J. I.; Rebolo, R.; Caffau, E.
2017A&A...604A...9A    Altcode: 2017arXiv170604179A
  Context. The first generation of stars formed in the Galaxy left behind
  the chemical signatures of their nucleosynthesis in the interstellar
  medium, visible today in the atmospheres of low-mass stars that formed
  afterwards. Sampling the chemistry of those low-mass provides insight
  into the first stars. <BR /> Aims: We aim to increase the samples
  of stars with extremely low metal abundances, identifying ultra
  metal-poor stars from spectra with modest spectral resolution and
  signal-to-noise ratio (S/N). Achieving this goal involves deriving
  reliable metallicities and carbon abundances from such spectra. <BR
  /> Methods: We carry out follow-up observations of faint, V &gt; 19,
  metal-poor candidates selected from SDSS spectroscopy and observed
  with the Optical System for Imaging and low-Intermediate-Resolution
  Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up
  OSIRIS spectra were analyzed using the FERRE code to derive effective
  temperatures, surface gravities, metallicities and carbon abundances. In
  addition, a well-known extremely metal-poor star has been included in
  our sample to calibrate the analysis methodology. <BR /> Results: We
  observed and analyzed five metal-poor candidates from modest-quality
  SDSS spectra. All stars in our sample have been confirmed as extremely
  metal-poor stars, in the [Fe/H] &lt; -3.3 regime. We report the
  recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf
  star with [Fe/H] = -4.3 and [C/Fe] = + 3.1. <P />Based on observations
  made with the Gran Telescopio Canarias (GTC), installed in the Spanish
  Observatorio del Roque de los Muchachos of the Instituto de Astrofísica
  de Canarias, on the island of La Palma. Programme ID GTC2E-16A and
  ID GTC65-16B.

---------------------------------------------------------
Title: The Pristine survey II: A sample of bright stars observed
    with FEROS
Authors: Caffau, E.; Bonifacio, P.; Starkenburg, E.; Martin, N.;
   Youakim, K.; Henden, A. A.; González Hernández, J. I.; Aguado,
   D. S.; Allende Prieto, C.; Venn, K.; Jablonka, P.
2017AN....338..686C    Altcode: 2017arXiv170510280C
  Extremely metal-poor (EMP) stars are old objects formed in the first Gyr
  of the Universe. They are rare and, to select them the most successful
  strategy has been to build on large and low-resolution spectroscopic
  surveys. The combination of narrow- and broad-band photometry provides
  a powerful and cheaper alternative to select metal-poor stars. The
  ongoing Pristine Survey is adopting this strategy, conducting photometry
  with the Canada France Hawaii Telescope MegaCam wide-field imager
  and a narrow-band filter centered at 395.2 nm on the Ca II-H and -K
  lines. In this paper, we present the results of the spectroscopic
  follow-up conducted on a sample of 26 stars at the bright end of the
  magnitude range of the Survey (g⩽15), using FEROS at the MPG/ESO
  2.2-m telescope (manufactured by Zeiss, Oberkochen, Germany). From our
  chemical investigation on the sample, we conclude that this magnitude
  range is too bright to use the Sloan Digital Sky Survey (SDSS) gri
  bands, which are typically saturated. Instead, the Pristine photometry
  can be usefully combined with the AAVSO Photometric All Sky Survey
  (APASS) griphotometry to provide reliable metallicity estimates. Data
  from FEROS.Funding Information Robert Martin Ayers Sciences Fund,
  PICS, Emmy Noether program, NSF, AST-1412587. Spanish Ministry of
  Economy and Competitiveness (MINECO);, MINECO RYC-2013-14875, MINECO
  AYA2014-56359-P.

---------------------------------------------------------
Title: VizieR Online Data Catalog: S abundances for 1301 stars from
    GES (Duffau+, 2017)
Authors: Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.;
   Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco,
   L.; Francois, P.; Skuladottir, A.; Bragaglia, A.; Donati, P.; Spina,
   L.; Gallagher, A. J.; Ludwig, H. -G.; Christlieb, N.; Hansen, C. J.;
   Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.;
   Friel, E.; Jimenez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino,
   E.; Tang, B.; Tautvaisiene, G.; Vallenari, A.; Hawkins, K.; Gilmore,
   G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic,
   R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani,
   F.; Franciosini, E.; Hourihane, A.; Jofre, P.; Lardo, C.; Lewis, J.;
   Morbidelli, L.; Sousa, S. G.; Worley, C. C.
2017yCat..36040128D    Altcode:
  GES internal star identifier (CNAME), Sulphur abundances and NLTE
  corrections to the Sulphur abundances for 1301 stars. Sulphur
  abundances are expressed in the customary logarithmic form:
  A(S)=log_10(N(S)/N(H))+12. The abundances delivered are the LTE
  ones. NLTEabundances can be determined by directly summing the NLTE
  correction delivered: A(S)<SUB>NLTE = A(S) + NLTE</SUB>C. So that a
  negative NLTE correction indicates that the NLTE abundance is lower
  than the LTE one. <P />(1 data file).

---------------------------------------------------------
Title: A Grid of NLTE Corrections for Sulphur Lines in Atmospheres
    of Cool Stars for the Gaia-ESO Survey
Authors: Korotin, S.; Andrievsky, S.; Caffau, E.; Bonifacio, P.
2017ASPC..510..141K    Altcode:
  To derive sulfur abundance in a large amount of the stars from Gaia-ESO
  survey we calculated grid of theoretical line equivalent widths of
  8th multiplet. We show that NLTE effects increase equivalent widths
  of the sulfur lines. NLTE corrections for this multiplet are not too
  large (about 0.15 dex) in contrast with corrections for other sulfur
  multiplets.

---------------------------------------------------------
Title: Gaia Data Release 1. Open cluster astrometry: performance,
    limitations, and future prospects
Authors: Gaia Collaboration; van Leeuwen, F.; Vallenari, A.; Jordi,
   C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.;
   Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann,
   M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers,
   U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton,
   N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz,
   D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc,
   C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda,
   J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.;
   Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.;
   Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.;
   Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae,
   R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.;
   Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.;
   de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat,
   Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.;
   Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle,
   H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn,
   A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco,
   A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.;
   Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia,
   W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei,
   A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay,
   B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata,
   C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.;
   Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.;
   Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé,
   O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.;
   Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.;
   Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.;
   Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.;
   Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.;
   Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.;
   Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.;
   Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.;
   David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.;
   De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo,
   E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.;
   Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.;
   Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps,
   G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs
   Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.;
   Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.;
   Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo,
   A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.;
   González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier,
   A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez,
   R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter,
   U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt,
   J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle,
   G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas,
   A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov,
   S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.;
   Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne,
   J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.;
   Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou,
   E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.;
   Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.;
   Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese,
   P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.;
   Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.;
   Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina,
   D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo,
   P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.;
   Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.;
   Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré,
   J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.;
   Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen,
   H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.;
   Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago,
   S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.;
   Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.;
   Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer,
   F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.;
   Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.;
   Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.;
   Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.;
   Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.;
   Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.;
   Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek,
   E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.;
   Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla,
   E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; vanLeeuwen,
   M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.;
   Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler,
   M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal,
   M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende
   Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.;
   Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco,
   C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.;
   Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret,
   C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny,
   E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche,
   C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries,
   A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.;
   Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky,
   A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.;
   Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.;
   Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.;
   Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.;
   Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.;
   Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander,
   T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio,
   J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.;
   Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.;
   Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.;
   Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.;
   Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert,
   A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska,
   D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede,
   C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.;
   Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.;
   Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2017A&A...601A..19G    Altcode: 2017arXiv170301131G
  Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric
  Solution (TGAS). This is a subset of about 2 million stars for which,
  besides the position and photometry, the proper motion and parallax are
  calculated using HIPPARCOS and Tycho-2 positions in 1991.25 as prior
  information. <BR /> Aims: We investigate the scientific potential
  and limitations of the TGAS component by means of the astrometric
  data for open clusters. <BR /> Methods: Mean cluster parallax and
  proper motion values are derived taking into account the error
  correlations within the astrometric solutions for individual stars,
  an estimate of the internal velocity dispersion in the cluster, and,
  where relevant, the effects of the depth of the cluster along the line
  of sight. Internal consistency of the TGAS data is assessed. <BR />
  Results: Values given for standard uncertainties are still inaccurate
  and may lead to unrealistic unit-weight standard deviations of least
  squares solutions for cluster parameters. Reconstructed mean cluster
  parallax and proper motion values are generally in very good agreement
  with earlier HIPPARCOS-based determination, although the Gaia mean
  parallax for the Pleiades is a significant exception. We have no current
  explanation for that discrepancy. Most clusters are observed to extend
  to nearly 15 pc from the cluster centre, and it will be up to future
  Gaia releases to establish whether those potential cluster-member stars
  are still dynamically bound to the clusters. <BR /> Conclusions: The
  Gaia DR1 provides the means to examine open clusters far beyond their
  more easily visible cores, and can provide membership assessments
  based on proper motions and parallaxes. A combined HR diagram shows
  the same features as observed before using the HIPPARCOS data, with
  clearly increased luminosities for older A and F dwarfs. <P />Tables
  D.1 to D.19 are also available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19</A>

---------------------------------------------------------
Title: Computation of eigenfrequencies for equilibrium models
    including turbulent pressure
Authors: Sonoi, T.; Belkacem, K.; Dupret, M. -A.; Samadi, R.; Ludwig,
   H. -G.; Caffau, E.; Mosser, B.
2017A&A...600A..31S    Altcode: 2017arXiv170107244S
  Context. The space-borne missions CoRoT and Kepler have provided a
  wealth of highly accurate data. However, our inability to properly
  model the upper-most region of solar-like stars prevents us from
  making the best of these observations. This problem is called "surface
  effect" and a key ingredient to solve it is turbulent pressure for the
  computation of both the equilibrium models and the oscillations. While
  3D hydrodynamic simulations help to include properly the turbulent
  pressure in the equilibrium models, the way this surface effect is
  included in the computation of stellar oscillations is still subject
  to uncertainties. <BR /> Aims: We aim at determining how to properly
  include the effect of turbulent pressure and its Lagrangian perturbation
  in the adiabatic computation of the oscillations. We also discuss the
  validity of the gas-gamma model and reduced gamma model approximations,
  which have been used to compute adiabatic oscillations of equilibrium
  models including turbulent pressure. <BR /> Methods: We use a patched
  model of the Sun with an inner part constructed by a 1D stellar
  evolution code (CESTAM) and an outer part by the 3D hydrodynamical
  code (CO<SUP>5</SUP>BOLD). Then, the adiabatic oscillations are
  computed using the ADIPLS code for the gas-gamma and reduced gamma
  model approximations and with the MAD code imposing the adiabatic
  condition on an existing time-dependent convection formalism. Finally,
  all those results are compared to the observed solar frequencies. <BR
  /> Results: We show that the computation of the oscillations using the
  time-dependent convection formalism in the adiabatic limit improves
  significantly the agreement with the observed frequencies compared to
  the gas-gamma and reduced gamma model approximations. Of the components
  of the perturbation of the turbulent pressure, the perturbation of the
  density and advection term is found to contribute most to the frequency
  shift. <BR /> Conclusions: The turbulent pressure is certainly the
  dominant factor responsible for the surface effects. Its inclusion into
  the equilibrium models is thus necessary but not sufficient. Indeed,
  the perturbation of the turbulent pressure must be properly taken
  into account for computing adiabatic oscillation frequencies. We
  propose a formalism to evaluate the frequency shift due to the
  inclusion of the term with the turbulent pressure perturbation in
  the variational principle in order to extrapolate our result to other
  stars at various evolutionary stages. Although this work is limited to
  adiabatic oscillations and the inclusion of the turbulent pressure,
  future works will have to account for the nonadiabatic effect and
  convective backwarming.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gaia DR1 open cluster members
    (Gaia Collaboration+, 2017)
Authors: Gaia Collaboration; van Leeuwen F.; Vallenari, A.; Jordi,
   C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.;
   Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann,
   M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers,
   U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.;
   Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton,
   N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Hog, E.; Katz,
   D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc,
   C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castaneda,
   J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra,
   R.; Hernandez, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo,
   R.; Mowlavi, N.; Nienartowicz, K.; Ordonez-Blanco, D.; Panuzzo, P.;
   Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.;
   Thevenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.;
   Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae,
   R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.;
   Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.;
   de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fremat,
   Y.; Garcia-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.;
   Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle,
   H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn,
   A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco,
   A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.;
   Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia,
   W.; Altavilla, G.; Alvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei,
   A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Anton, S.; Arcay,
   B.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Barache, C.; Barata,
   C.; Barbier, A.; Barblan, F.; Barrado, Y. Navascues D.; Barros,
   M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello Garcia, A.;
   Belokuro, V. V.; Ben Djoya, P.; Berihuete, A.; Bianchi, L.; Bienayme,
   O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.;
   Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.;
   Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Bruesemeister, T.;
   Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.;
   Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.;
   Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.;
   Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.;
   Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta,
   M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David,
   P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; de Luise,
   F.; de March, R.; de Martino, D.; de Souza, R.; Debosscher, J.;
   Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.;
   Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.;
   Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard
   Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.;
   Farras Casas, M.; Federici, L.; Fedorets, G.; Fernandez-Hernandez,
   J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen,
   K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.;
   Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; Garcia-Sedano,
   F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.;
   Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Gonzalez-Marcos,
   A.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Granvik, M.; Guerrier,
   A.; Guillout, P.; Guiraud, J.; Gurpide, A.; Gutierrez-Sanchez, R.;
   Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter,
   U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt,
   J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle,
   G.; Jofre, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas,
   A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov,
   S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.;
   Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne,
   J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Lecler, C. N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux,
   F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou,
   E.; Lobel, A.; Loeffler, W.; Lopez, M.; Lorenz, D.; MacDonald, I.;
   Magalhaes Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.;
   Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese,
   P. M.; Marschalko, G.; Marshall, D. J.; Martin-Fleitas, J. M.; Martino,
   M.; Mary, N.; Matijevic, G.; Mazeh, T.; McMillan, P. J.; Messina, S.;
   Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro,
   R.; Molinaro, M.; Molnar, L.; Moniez, M.; Montegriffo, P.; Mor, R.;
   Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.;
   Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.;
   Nicastro, L.; Noval, L.; Ordenovic, C.; Ordieres-Mere, J.; Osborne,
   P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.;
   Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikaeinen, H.; Pichon, B.;
   Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.;
   Prsa, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate,
   M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reyle, C.; Ribeiro,
   R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.;
   Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski,
   G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.;
   Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.;
   Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart,
   R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay,
   J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller,
   H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Sueveges, M.; Surdej,
   J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran,
   G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager,
   S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren,
   A.; van Hemelryck, E.; Vanleeuwen, M.; Varadi, M.; Vecchiato, A.;
   Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba,
   V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers,
   T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Zucker, S.; Zurbach,
   C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim,
   A.; Anglada-Escude, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck,
   M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli,
   M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.;
   Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.;
   Chemin, L.; Chereau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.;
   de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.;
   Dubath, P.; Fodor, F.; Frezouls, B.; Fries, A.; Fustes, D.; Fyfe,
   D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.;
   Gomez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola,
   G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.;
   Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov,
   O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; Lebouquin, D.; Liu,
   C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.;
   Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari,
   U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.;
   Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.;
   Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Peturaud,
   F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.;
   Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen,
   S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino,
   I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.;
   Soffel, M.; Sosnowska, D.; Straizys, V.; Ter Linden, M.; Terrell, D.;
   Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari,
   M.; Vachier, F.; Valles, P.; van Hamme, W.; Veltz, L.; Virtanen,
   J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.;
   Zschocke, S.
2017yCat..36010019G    Altcode:
  We have determined and examined the astrometric data for 19 open
  clusters, ranging from the Hyades at just under 47pc to NGC 2422
  at nearly 440pc. The clusters are : the Hyades, Coma Berenices, the
  Pleiades, Praesepe, alpha Per, IC 2391, IC 2602, Blanco 1, NGC 2451,
  NGC 6475, NGC 7092, NGC 2516, NGC 2232, IC 4665, NGC 6633, Collinder
  140, NGC 2422, NGC 3532 and NGC 2547. <P />(2 data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: NGC104 RGB Na, Mg, and K abundances
    (Cerniauskas+, 2017)
Authors: Cerniauskas, A.; Kucinskas, A.; Klevas, J.; Prakapavicius,
   D.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M.
2017yCat..36040035C    Altcode:
  We used 2dF/HERMES spectra obtained in two wavelength regions,
  564.9-587.3nm (GREEN) and 758.5-788.7nm (IR), using the spectral
  resolution of R~28000 and exposure time of 1200s. The observations
  were carried out during the period of Oct 22 - Dec 20, 2013 <P />(1
  data file).

---------------------------------------------------------
Title: An in-depth spectroscopic examination of molecular bands from
    3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor
    3D model atmospheres
Authors: Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.;
   Steffen, M.; Homeier, D.; Plez, B.
2017A&A...598L..10G    Altcode: 2017arXiv170109102G
  Context. Tighter constraints on metal-poor stars we observe are
  needed to better understand the chemical processes of the early
  Universe. Computing a stellar spectrum in 3D allows one to model complex
  stellar behaviours, which cannot be replicated in 1D. <BR /> Aims:
  We examine the effect that the intrinsic CNO abundances have on a 3D
  model structure and the resulting 3D spectrum synthesis. <BR /> Methods:
  Model atmospheres were computed in 3D for three distinct CNO chemical
  compositions using the CO<SUP>5</SUP>BOLD model atmosphere code,
  and their internal structures were examined. Synthetic spectra were
  computed from these models using Linfor3D and they were compared. New
  3D abundance corrections for the G-band and a selection of UV OH lines
  were also computed. <BR /> Results: The varying CNO abundances change
  the metal content of the 3D models. This had an effect on the model
  structure and the resulting synthesis. However, it was found that
  the C/O ratio had a larger effect than the overall metal content of
  a model. <BR /> Conclusions: Our results suggest that varying the
  C/O ratio has a substantial impact on the internal structure of the
  3D model, even in the hot turn-off star models explored here. This
  suggests that bespoke 3D models, for specific CNO abundances should
  be sought. Such effects are not seen in 1D at these temperature regimes.

---------------------------------------------------------
Title: 3D non-LTE corrections for the <SUP>6</SUP>Li/<SUP>7</SUP>Li
    isotopic ratio in solar-type stars
Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian,
   G.; González Hernández, J. I.; Strassmeier, K. G.
2017MmSAI..88...61H    Altcode:
  Doppler shifts induced by convective motions in stellar atmospheres
  affect the shape of spectral absorption lines and create slightly
  asymmetric line profiles. It is important to take this effect into
  account in modeling the subtle depression created by the <SUP>6</SUP>Li
  isotope which lies on the red wing of the Li I 670.8 nm resonance
  doublet line, since convective motions in stellar atmospheres can mimic
  a presence of <SUP>6</SUP>Li when intrinsically symmetric theoretical
  line profiles are presumed for the analysis of the <SUP>7</SUP>Li
  doublet \citep{cayrel2007}. Based on CO5BOLD hydrodynamical model
  atmospheres, we compute 3D non-local thermodynamic equilibrium
  (NLTE) corrections for the <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic
  ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These
  corrections must be added to the results of the 1D LTE analysis to
  correct them for the combined 3D non-LTE effects. As one would expect,
  the resulting corrections are always negative and they range between
  0 and -5 %, depending on effective temperature, surface gravity, and
  metallicity. For each metallicity we derive an analytic expression
  approximating the 3D NLTE corrections as a function of effective
  temperature, surface gravity and projected rotational velocity.

---------------------------------------------------------
Title: Using CO5BOLD models to predict the effects of granulation
    on colours .
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.;
   Castelli, F.; Gallagher, A. J.; Prakapavičius, D.; Kučinskas, A.;
   Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.
2017MmSAI..88...90B    Altcode:
  In order to investigate the effects of granulation on fluxes and
  colours, we computed the emerging fluxes from the models in the
  CO5BOLD grid with metallicities [M/H]=0.0,-1.0,-2.0 and -3.0. These
  fluxes have been used to compute colours in different photometric
  systems. We explain here how our computations have been performed and
  provide some results.

---------------------------------------------------------
Title: Enhanced methods for computing spectra from CO5BOLD models
    using Linfor3D. Molecular bands in metal-poor stars
Authors: Gallagher, A. J.; Steffen, M.; Caffau, E.; Bonifacio, P.;
   Ludwig, H. -G.; Freytag, B.
2017MmSAI..88...82G    Altcode: 2016arXiv161004427G
  Molecular features such as the G-band, CN-band and NH-band are important
  diagnostics for measuring a star's carbon and nitrogen abundances,
  especially in metal-poor stars where atomic lines are no longer visible
  in stellar spectra. Unlike atomic transitions, molecular features
  tend to form in bands, which cover large wavelength regions in a
  spectrum. While it is a trivial matter to compute carbon and nitrogen
  molecular bands under the assumption of 1D, it is extremely time
  consuming in 3D. In this contribution to the 2016 COBOLD workshop we
  review the improvements made to the 3D spectral synthesis code Linfor3D,
  and discuss the new challenges found when computing molecular features
  in 3D.

---------------------------------------------------------
Title: Lithium in the active sub-giant HD123351. A quantitative
    analysis with 3D and 1D model atmospheres using different observed
    spectra
Authors: Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G.
2017MmSAI..88...68M    Altcode:
  Current 3D hydrodynamical model atmosphere simulations together with
  non-LTE spectrum synthesis calculations permit to determine reliable
  atomic and in particular isotopic chemical abundances. Although this
  approach is computationally time demanding, it became feasible in
  studying lithium in stellar spectra. In the literature not much is
  known about the presence of the more fragile {<SUP>6</SUP>Li} isotope
  in evolved metal-rich objects. In this case the analysis is complicated
  by the lack of a suitable list of atomic and molecular lines in the
  spectral region of the lithium resonance line at 670.8 nm. <P />Here we
  present a spectroscopic comparative analysis of the Li doublet region
  of HD 123351, an active sub-giant star of solar metallicity. We fit
  the Li profile in three observed spectra characterized by different
  qualities: two very-high resolution spectra (Gecko@CFHT, R=120 000,
  SNR=400 and PEPSI@LBT, R=150 000, SNR=663) and a high-resolution
  SOPHIE@OHP spectrum (R=40 000, SNR=300). We adopt a set of model
  atmospheres, both 3D and 1D, having different stellar parameters
  (T_{eff} and log g). The 3D models are taken from the CIFIST grid of
  COBOLD model atmospheres and departures from LTE are considered for
  the lithium components. For the blends other than the lithium in this
  wavelength region we adopt the linelist of \citet{melendez12}. We find
  consistent results for all three observations and an overall good fit
  with the selected list of atomic and molecular lines, indicating a
  high {<SUP>6</SUP>Li} content. <P />The presence of {<SUP>6</SUP>Li}
  is not expected in cool stellar atmospheres. Its detection is of
  crucial importance for understanding mixing processes in stars and
  external lithium production mechanisms, possibly related to stellar
  activity or planetray accretion of {<SUP>6</SUP>Li}-rich material.

---------------------------------------------------------
Title: Investigation of the solar centre-to-limb variation of oxygen
    and lithium spectral features
Authors: Caffau, E.; Malherbe, J. -M.; Steffen, M.; Ludwig, H. -G.;
   Mott, A.
2017MmSAI..88...45C    Altcode:
  We compare intensity spectra of the Sun observed at different limb
  angles in the wavelength range covering the forbidden oxygen lines and
  the lithium resonance feature with line formation computations performed
  on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. Among
  the prime oxygen abundance indicators, the forbidden line at 630 nm
  is contaminated with a significant Ni I blend. The availability of
  observations at different positions on the solar disc allows us to
  disentangle the contributions of oxygen and nickel and to derive their
  individual abundances. We derived in the past, from the [OI] line,
  A(O)=8.73± 0.05 with a nickel abundance of A(Ni)=6.1± 0.04. From
  the observations here presented, we obtain A(O)=8.71 and A(Ni)=6.09,
  in excellent agreement with the previous result. For lithium, we
  investigated the Li doublet at 670.7 nm and compared synthetic spectra
  of the Li spectra range based on different line-lists available in the
  literature to the observed data. With these observations, we are still
  unable to conclude on which is the best line-list to be used for the
  blending lines.

---------------------------------------------------------
Title: The Gaia mission
Authors: Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown,
   A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.;
   Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi,
   C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.;
   Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.;
   Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette,
   V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper,
   M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.;
   Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.;
   Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.;
   Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo,
   A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.;
   Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.;
   Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.;
   Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.;
   Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.;
   Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso,
   G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.;
   Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre,
   L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.;
   Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.;
   Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton,
   A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame,
   A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino,
   E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro,
   L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot,
   W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart,
   S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez,
   M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.;
   Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.;
   Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata,
   C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.;
   Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.;
   Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi,
   L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma,
   S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.;
   Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister,
   T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu,
   A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.;
   Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.;
   Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.;
   Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.;
   Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.;
   Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De
   Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.;
   de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.;
   Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.;
   Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.;
   Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar,
   D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio,
   M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici,
   L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.;
   Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.;
   Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.;
   Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo,
   A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.;
   González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier,
   A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez,
   R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter,
   U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt,
   J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle,
   G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas,
   A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov,
   S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.;
   Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza,
   A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter,
   T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt,
   H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister,
   T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano,
   A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.;
   Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.;
   Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó,
   G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.;
   Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.;
   Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro,
   R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro,
   D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.;
   Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.;
   Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.;
   Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.;
   Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.;
   Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni,
   A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša,
   A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate,
   M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé,
   C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.;
   Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.;
   Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.;
   Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.;
   Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan,
   D.; Serpell, E.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Smith,
   C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.;
   Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.;
   Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.;
   Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.;
   Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.;
   Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van
   Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski,
   J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas,
   S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.;
   Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.;
   Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.;
   Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm,
   P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco,
   C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.;
   Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret,
   C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny,
   E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche,
   C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries,
   A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.;
   Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky,
   A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.;
   Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.;
   Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.;
   Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.;
   Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.;
   Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander,
   T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio,
   J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.;
   Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.;
   Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.;
   Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.;
   Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert,
   A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska,
   D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede,
   C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.;
   Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.;
   Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2016A&A...595A...1G    Altcode: 2016arXiv160904153G
  Gaia is a cornerstone mission in the science programme of the
  EuropeanSpace Agency (ESA). The spacecraft construction was approved
  in 2006, following a study in which the original interferometric
  concept was changed to a direct-imaging approach. Both the spacecraft
  and the payload were built by European industry. The involvement
  of the scientific community focusses on data processing for which
  the international Gaia Data Processing and Analysis Consortium
  (DPAC) was selected in 2007. Gaia was launched on 19 December 2013
  and arrived at its operating point, the second Lagrange point of
  the Sun-Earth-Moon system, a few weeks later. The commissioning
  of the spacecraft and payload was completed on 19 July 2014. The
  nominal five-year mission started with four weeks of special,
  ecliptic-pole scanning and subsequently transferred into full-sky
  scanning mode. We recall the scientific goals of Gaia and give a
  description of the as-built spacecraft that is currently (mid-2016)
  being operated to achieve these goals. We pay special attention to
  the payload module, the performance of which is closely related to
  the scientific performance of the mission. We provide a summary of
  the commissioning activities and findings, followed by a description
  of the routine operational mode. We summarise scientific performance
  estimates on the basis of in-orbit operations. Several intermediate
  Gaia data releases are planned and the data can be retrieved from the
  Gaia Archive, which is available through the Gaia home page. <P /><A
  href="http://www.cosmos.esa.int/gaia">http://www.cosmos.esa.int/gaia</A>

---------------------------------------------------------
Title: Gaia Data Release 1. Summary of the astrometric, photometric,
    and survey properties
Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti,
   T.; de Bruijne, J. H. J.; Mignard, F.; Drimmel, R.; Babusiaux, C.;
   Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.;
   Eyer, L.; Jansen, F.; Jordi, C.; Katz, D.; Klioner, S. A.; Lammers,
   U.; Lindegren, L.; Luri, X.; O'Mullane, W.; Panem, C.; Pourbaix, D.;
   Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette,
   V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper,
   M.; Høg, E.; Lattanzi, M. G.; Grebel, E. K.; Holland, A. D.; Huc,
   C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda,
   J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.;
   Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.;
   Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.;
   Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.;
   Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto,
   G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae,
   R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier,
   J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.;
   Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.;
   de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat,
   Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.;
   Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle,
   H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn,
   A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.;
   Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco,
   A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.;
   Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.;
   Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia,
   W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei,
   A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay,
   B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata,
   C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.;
   Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.;
   Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé,
   O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.;
   Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.;
   Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.;
   Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.;
   Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.;
   Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.;
   Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.;
   Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.;
   Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.;
   David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.;
   De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo,
   E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.;
   Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.;
   Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps,
   G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs
   Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.;
   Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.;
   Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.;
   Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo,
   A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore,
   G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.;
   González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier,
   A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez,
   R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter,
   U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt,
   J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle,
   G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas,
   A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov,
   S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.;
   Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne,
   J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.;
   Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.;
   Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou,
   E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.;
   Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.;
   Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese,
   P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.;
   Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.;
   Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina,
   D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo,
   P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.;
   Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.;
   Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré,
   J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.;
   Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen,
   H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.;
   Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago,
   S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.;
   Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.;
   Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer,
   F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.;
   Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.;
   Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.;
   Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.;
   Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.;
   Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.;
   Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek,
   E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.;
   Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla,
   E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen,
   M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.;
   Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler,
   M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal,
   M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende
   Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.;
   Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco,
   C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.;
   Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret,
   C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny,
   E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche,
   C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries,
   A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.;
   Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky,
   A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.;
   Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.;
   Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.;
   Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.;
   Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.;
   Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander,
   T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio,
   J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.;
   Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.;
   Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.;
   Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.;
   Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert,
   A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska,
   D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede,
   C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.;
   Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.;
   Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2016A&A...595A...2G    Altcode: 2016arXiv160904172G
  Context. At about 1000 days after the launch of Gaia we present
  the first Gaia data release, Gaia DR1, consisting of astrometry and
  photometry for over 1 billion sources brighter than magnitude 20.7. <BR
  /> Aims: A summary of Gaia DR1 is presented along with illustrations
  of the scientific quality of the data, followed by a discussion of
  the limitations due to the preliminary nature of this release. <BR />
  Methods: The raw data collected by Gaia during the first 14 months of
  the mission have been processed by the Gaia Data Processing and Analysis
  Consortium (DPAC) and turned into an astrometric and photometric
  catalogue. <BR /> Results: Gaia DR1 consists of three components: a
  primary astrometric data set which contains the positions, parallaxes,
  and mean proper motions for about 2 million of the brightest stars
  in common with the Hipparcos and Tycho-2 catalogues - a realisation
  of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary
  astrometric data set containing the positions for an additional 1.1
  billion sources. The second component is the photometric data set,
  consisting of mean G-band magnitudes for all sources. The G-band light
  curves and the characteristics of 3000 Cepheid and RR Lyrae stars,
  observed at high cadence around the south ecliptic pole, form the third
  component. For the primary astrometric data set the typical uncertainty
  is about 0.3 mas for the positions and parallaxes, and about 1 mas
  yr<SUP>-1</SUP> for the proper motions. A systematic component of 0.3
  mas should be added to the parallax uncertainties. For the subset of
  94 000 Hipparcos stars in the primary data set, the proper motions are
  much more precise at about 0.06 mas yr<SUP>-1</SUP>. For the secondary
  astrometric data set, the typical uncertainty of the positions is 10
  mas. The median uncertainties on the mean G-band magnitudes range from
  the mmag level to 0.03 mag over the magnitude range 5 to 20.7. <BR />
  Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia
  data release, which will feature five-parameter astrometry for all
  sources. Extensive validation shows that Gaia DR1 represents a major
  advance in the mapping of the heavens and the availability of basic
  stellar data that underpin observational astrophysics. Nevertheless,
  the very preliminary nature of this first Gaia data release does lead
  to a number of important limitations to the data quality which should
  be carefully considered before drawing conclusions from the data.

---------------------------------------------------------
Title: Abundances in a sample of turnoff and subgiant stars in NGC
    6121 (M 4)
Authors: Spite, M.; Spite, F.; Gallagher, A. J.; Monaco, L.; Bonifacio,
   P.; Caffau, E.; Villanova, S.
2016A&A...594A..79S    Altcode: 2016arXiv160803541S
  Context. The stellar abundances observed in globular clusters show
  complex structures, currently not yet understood. <BR /> Aims: The aim
  of this work is to investigate the relations between the abundances
  of different elements in the globular cluster M 4, selected for its
  uniform deficiency of iron, to explore the best models explaining the
  pattern of these observed abundances. Moreover, in turnoff stars, the
  abundances of the elements are not suspected to be affected by internal
  mixing. <BR /> Methods: In M 4, using low and moderate resolution
  spectra obtained for 91 turnoff (and subgiant) stars with the ESO
  FLAMES-Giraffe spectrograph, we have extended previous measurements of
  abundances (of Li, C and Na) to other elements (C, Si, Ca, Sr and Ba),
  using model atmosphere analysis. We have also studied the influence of
  the choice of the microturbulent velocity. <BR /> Results: Firstly,
  the peculiar turnoff star found to be very Li-rich in a previous
  paper does not show any other abundance anomalies relative to the
  other turnoff stars in M 4. Secondly, an anti-correlation between C
  and Na has been detected, the slope being significative at more than
  3σ. This relation between C and Na is in perfect agreement with the
  relation found in giant stars selected below the RGB bump. Thirdly,
  the strong enrichment of Si and of the neutron-capture elements Sr
  and Ba, already observed in the giants in M 4, is confirmed. Finally,
  the relations between Li, C, Na, Sr and Ba constrain the enrichment
  processes of the observed stars. <BR /> Conclusions: The abundances
  of the elements in the turnoff stars appear to be compatible with
  production processes by massive AGBs, but are also compatible with the
  production of second generation elements (like Na) and low Li produced
  by, for example, fast rotating massive stars. <P />Based on observations
  collected at the European Organisation for Astronomical Research
  in the Southern Hemisphere under ESO programme 085.D-0537(A).Full
  Tables 3 and 4 are only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A79">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A79</A>

---------------------------------------------------------
Title: TOPoS. III. An ultra iron-poor multiple CEMP system
Authors: Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; Monaco, L.;
   Sbordone, L.; François, P.; Gallagher, A. J.; Plez, B.; Zaggia, S.;
   Ludwig, H. -G.; Cayrel, R.; Koch, A.; Steffen, M.; Salvadori, S.;
   Klessen, R.; Glover, S.; Christlieb, N.
2016A&A...595L...6C    Altcode: 2016arXiv161004106C
  <BR /> Aims: One of the primary objectives of the TOPoS survey
  is to search for the most metal-poor stars. Our search has led
  to the discovery of one of the most iron-poor objects known, SDSS
  J092912.32+023817.0. This object is a multiple system, in which two
  components are clearly detected in the spectrum. <BR /> Methods:
  We have analysed 16 high-resolution spectra obtained using the UVES
  spectrograph at the ESO 8.2 m VLT telescope to measure radial velocities
  and determine the chemical composition of the system. <BR /> Results:
  Cross correlation of the spectra with a synthetic template yields a
  double-peaked cross-correlation function (CCF) for eight spectra, and
  in one case there is evidence for the presence of a third peak. Chemical
  analysis of the spectrum obtained by averaging all the spectra for which
  the CCF showed a single peak found that the iron abundance is [Fe/H] =
  -4.97. The system is also carbon enhanced with [C/Fe] = +3.91 (A(C) =
  7.44). From the permitted oxygen triplet we determined an upper limit
  for oxygen of [O/Fe] &lt; +3.52 such that C/O &gt; 1.3. We are also
  able to provide more stringent upper limits on the Sr and Ba abundances
  ([Sr/Fe] &lt; +0.70, and [Ba/Fe] &lt; +1.46, respectively). <P />Based
  on observations made with ESO Telescopes at the La Silla Paranal
  Observatory under programme ID 094.D-0488 and 096.D-0616.

---------------------------------------------------------
Title: A new algorithm for optimizing the wavelength coverage for
spectroscopic studies: Spectral Wavelength Optimization Code (SWOC)
Authors: Ruchti, G. R.; Feltzing, S.; Lind, K.; Caffau, E.; Korn,
   A. J.; Schnurr, O.; Hansen, C. J.; Koch, A.; Sbordone, L.; de Jong,
   R. S.
2016MNRAS.461.2174R    Altcode: 2016MNRAS.tmp.1006R; 2016arXiv160600833R
  The past decade and a half has seen the design and execution
  of several ground-based spectroscopic surveys, both Galactic and
  Extragalactic. Additionally, new surveys are being designed that extend
  the boundaries of current surveys. In this context, many important
  considerations must be done when designing a spectrograph for the
  future. Among these is the determination of the optimum wavelength
  coverage. In this work, we present a new code for determining the
  wavelength ranges that provide the optimal amount of information to
  achieve the required science goals for a given survey. In its first
  mode, it utilizes a user-defined list of spectral features to compute a
  figure-of-merit for different spectral configurations. The second mode
  utilizes a set of flux-calibrated spectra, determining the spectral
  regions that show the largest differences among the spectra. Our
  algorithm is easily adaptable for any set of science requirements and
  any spectrograph design. We apply the algorithm to several examples,
  including 4MOST, showing the method yields important design constraints
  to the wavelength regions.

---------------------------------------------------------
Title: An in-depth spectroscopic examination of molecular bands from
    3D hydrodynamical model atmospheres. I. Formation of the G-band in
    metal-poor dwarf stars
Authors: Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.;
   Steffen, M.; Spite, M.
2016A&A...593A..48G    Altcode: 2016arXiv160507215G
  Context. Recent developments in the three-dimensional (3D) spectral
  synthesis code Linfor3D have meant that for the first time, large
  spectral wavelength regions, such as molecular bands, can be synthesised
  with it in a short amount of time. <BR /> Aims: A detailed spectral
  analysis of the synthetic G-band for several dwarf turn-off-type 3D
  atmospheres (5850 ≲ T<SUB>eff</SUB> [ K ] ≲ 6550, 4.0 ≤ log g
  ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption
  of local thermodynamic equilibrium. We also examine carbon and oxygen
  molecule formation at various metallicity regimes and discuss the impact
  it has on the G-band. <BR /> Methods: Using a qualitative approach,
  we describe the different behaviours between the 3D atmospheres and
  the traditional one-dimensional (1D) atmospheres and how the different
  physics involved inevitably leads to abundance corrections, which
  differ over varying metallicities. Spectra computed in 1D were fit to
  every 3D spectrum to determine the 3D abundance correction. <BR />
  Results: Early analysis revealed that the CH molecules that make up
  the G-band exhibited an oxygen abundance dependency; a higher oxygen
  abundance leads to weaker CH features. Nitrogen abundances showed zero
  impact to CH formation. The 3D corrections are also stronger at lower
  metallicity. Analysis of the 3D corrections to the G-band allows us to
  assign estimations of the 3D abundance correction to most dwarf stars
  presented in the literature. <BR /> Conclusions: The 3D corrections
  suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high
  A(C) would remain unchanged, but would decrease in CEMP stars with lower
  A(C). It was found that the C/O ratio is an important parameter to the
  G-band in 3D. Additional testing confirmed that the C/O ratio is an
  equally important parameter for OH transitions under 3D. This presents
  a clear interrelation between the carbon and oxygen abundances in 3D
  atmospheres through their molecular species, which is not seen in 1D.

---------------------------------------------------------
Title: VizieR Online Data Catalog: NGC 6121 turnoff and subgiant
    stars abundances (Spite+, 2016)
Authors: Spite, M.; Spite, F.; Gallagher, A. J.; Monaco, L.; Bonifacio,
   P.; Caffau, E.; Villanova, S.
2016yCat..35940079S    Altcode:
  Observations were conducted at the Very Large Telescope (VLT)
  (Paranal, Chile) between April and July 2010 using the LR2 setting
  from 400 to 456nm with a resolving power R=6000, the HR12 setting
  from 583 to 614nm, and the HR15N setting from 666 to 679nm, both with
  a resolving power of about R=20000. The frames were processed using
  the FLAMES-GIRAFFE reduction pipeline. More information can be found
  in Monaco et al. (2012A&amp;A...539A.157M, Cat. J/A+A/539/A157). The
  spectroscopic data are available through the Giraffe archive at Paris
  Observatory (http://giraffe-archive.obspm.fr/). <P />(2 data files).

---------------------------------------------------------
Title: Investigation of the lithium 670.7 nm wavelength range in
    the solar spectrum
Authors: Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar;
   Malherbe, Jean-Marie; Steffen, Matthias
2016cosp...41E.281C    Altcode:
  Lithium is a key chemical element, with a chemical evolution that is
  different from that of most other elements. It is also very fragile,
  as it is destroyed by nuclear reactions with protons at temperatures
  higher than about 2.5 million K. According to standard Big Bang
  nucleosynthesis, only the isotope 7Li is produced in significant
  amounts, while the primordial abundance of the lighter isotope 6Li
  is negligible. Lithium is not produced by nucleosynthesis in normal
  stars, except in peculiar phases of stellar evolution (e.g. in AGB
  stars and Novae). Lithium may also be formed as a result of flares in
  the atmospheres of young, active stars. To investigate the history
  of Li production and depletion in the Galaxy, it is necessary to
  analyse stars of all ages, including those at solar metallicity. In
  this case, the spectroscopic determination of the Li abundance is
  complicated by the presence of other spectral lines overlapping
  with the Li doublet at 670.7 nm. The correct identification and
  knowledge of the atomic parameters of these blend lines is critical,
  especially if the 6LI/7Li isotopic ratio is to be derived. In this
  investigation, we consider several line lists of the blending components
  available in the literature and use them to compute synthetic spectra,
  performing the line formation computations both for the classical 1D
  Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the
  solar atmosphere. The synthetic spectra are then compared to the solar
  spectrum observed at different limb angles. This allows us to check the
  quality of existing line lists, to find potentially misidentified blend
  lines, and to construct an optimized line list for solar-type stars.

---------------------------------------------------------
Title: A concise overview of the Maunakea Spectroscopic Explorer
Authors: McConnachie, Alan W.; Babusiaux, Carine; Balogh, Michael;
   Caffau, Elisabetta; Côté, Pat; Driver, Simon; Robotham, Aaron;
   Starkenburg, Else; Venn, Kim; Walker, Matthew; Bauman, Steven E.;
   Flagey, Nicolas; Ho, Kevin; Isani, Sidik; Laychak, Mary Beth; Mignot,
   Shan; Murowinski, Rick; Salmon, Derrick; Simons, Doug; Szeto, Kei;
   Vermeulen, Tom; Withington, Kanoa
2016arXiv160600060M    Altcode:
  This short document is intended as a companion and introduction to the
  Detailed Science Case (DSC) for the Maunakea Spectroscopic Explorer. It
  provides a concise summary of the essential characteristics of MSE
  from the perspective of the international astronomical community. MSE
  is a wide field telescope (1.5 square degree field of view) with an
  aperture of 11.25m. It is dedicated to multi-object spectroscopy at
  several different spectral resolutions in the range R ~ 2500 - 40000
  over a broad wavelength range (0.36 - 1.8{\mu}m). MSE will enable
  transformational science in areas as diverse as exoplanetary host
  characterization; stellar monitoring campaigns; tomographic mapping
  of the interstellar and intergalactic media; the in-situ chemical
  tagging of the distant Galaxy; connecting galaxies to the large scale
  structure of the Universe; measuring the mass functions of cold dark
  matter sub-halos in galaxy and cluster-scale hosts; reverberation
  mapping of supermassive black holes in quasars. MSE is the largest
  ground based optical and near infrared telescope in its class, and
  it will occupy a unique and critical role in the emerging network
  of astronomical facilities active in the 2020s. MSE is an essential
  follow-up facility to current and next generations of multi-wavelength
  imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST,
  and is an ideal feeder facility for E-ELT, TMT and GMT.

---------------------------------------------------------
Title: The Detailed Science Case for the Maunakea Spectroscopic
Explorer: the Composition and Dynamics of the Faint Universe
Authors: McConnachie, Alan; Babusiaux, Carine; Balogh, Michael; Driver,
   Simon; Côté, Pat; Courtois, Helene; Davies, Luke; Ferrarese, Laura;
   Gallagher, Sarah; Ibata, Rodrigo; Martin, Nicolas; Robotham, Aaron;
   Venn, Kim; Villaver, Eva; Bovy, Jo; Boselli, Alessandro; Colless,
   Matthew; Comparat, Johan; Denny, Kelly; Duc, Pierre-Alain; Ellison,
   Sara; de Grijs, Richard; Fernandez-Lorenzo, Mirian; Freeman, Ken;
   Guhathakurta, Raja; Hall, Patrick; Hopkins, Andrew; Hudson, Mike;
   Johnson, Andrew; Kaiser, Nick; Koda, Jun; Konstantopoulos, Iraklis;
   Koshy, George; Lee, Khee-Gan; Nusser, Adi; Pancoast, Anna; Peng, Eric;
   Peroux, Celine; Petitjean, Patrick; Pichon, Christophe; Poggianti,
   Bianca; Schmid, Carlo; Shastri, Prajval; Shen, Yue; Willot, Chris;
   Croom, Scott; Lallement, Rosine; Schimd, Carlo; Smith, Dan; Walker,
   Matthew; Willis, Jon; Colless, Alessandro Bosselli Matthew; Goswami,
   Aruna; Jarvis, Matt; Jullo, Eric; Kneib, Jean-Paul; Konstantopoloulous,
   Iraklis; Newman, Jeff; Richard, Johan; Sutaria, Firoza; Taylor,
   Edwar; van Waerbeke, Ludovic; Battaglia, Giuseppina; Hall, Pat;
   Haywood, Misha; Sakari, Charli; Schmid, Carlo; Seibert, Arnaud;
   Thirupathi, Sivarani; Wang, Yuting; Wang, Yiping; Babas, Ferdinand;
   Bauman, Steve; Caffau, Elisabetta; Laychak, Mary Beth; Crampton,
   David; Devost, Daniel; Flagey, Nicolas; Han, Zhanwen; Higgs, Clare;
   Hill, Vanessa; Ho, Kevin; Isani, Sidik; Mignot, Shan; Murowinski,
   Rick; Pandey, Gajendra; Salmon, Derrick; Siebert, Arnaud; Simons,
   Doug; Starkenburg, Else; Szeto, Kei; Tully, Brent; Vermeulen, Tom;
   Withington, Kanoa; Arimoto, Nobuo; Asplund, Martin; Aussel, Herve;
   Bannister, Michele; Bhatt, Harish; Bhargavi, SS; Blakeslee, John;
   Bland-Hawthorn, Joss; Bullock, James; Burgarella, Denis; Chang,
   Tzu-Ching; Cole, Andrew; Cooke, Jeff; Cooper, Andrew; Di Matteo, Paola;
   Favole, Ginevra; Flores, Hector; Gaensler, Bryan; Garnavich, Peter;
   Gilbert, Karoline; Gonzalez-Delgado, Rosa; Guhathakurta, Puragra;
   Hasinger, Guenther; Herwig, Falk; Hwang, Narae; Jablonka, Pascale;
   Jarvis, Matthew; Kamath, Umanath; Kewley, Lisa; Le Borgne, Damien;
   Lewis, Geraint; Lupton, Robert; Martell, Sarah; Mateo, Mario; Mena,
   Olga; Nataf, David; Newman, Jeffrey; Pérez, Enrique; Prada, Francisco;
   Puech, Mathieu; Recio-Blanco, Alejandra; Robin, Annie; Saunders, Will;
   Smith, Daniel; Stalin, C. S.; Tao, Charling; Thanjuvur, Karun; Tresse,
   Laurence; van Waerbeke, Ludo; Wang, Jian-Min; Yong, David; Zhao,
   Gongbo; Boisse, Patrick; Bolton, James; Bonifacio, Piercarlo; Bouchy,
   Francois; Cowie, Len; Cunha, Katia; Deleuil, Magali; de Mooij, Ernst;
   Dufour, Patrick; Foucaud, Sebastien; Glazebrook, Karl; Hutchings,
   John; Kobayashi, Chiaki; Kudritzki, Rolf-Peter; Li, Yang-Shyang;
   Lin, Lihwai; Lin, Yen-Ting; Makler, Martin; Narita, Norio; Park,
   Changbom; Ransom, Ryan; Ravindranath, Swara; Eswar Reddy, Bacham;
   Sawicki, Marcin; Simard, Luc; Srianand, Raghunathan; Storchi-Bergmann,
   Thaisa; Umetsu, Keiichi; Wang, Ting-Gui; Woo, Jong-Hak; Wu, Xue-Bing
2016arXiv160600043M    Altcode:
  MSE is an 11.25m aperture observatory with a 1.5 square degree field of
  view that will be fully dedicated to multi-object spectroscopy. More
  than 3200 fibres will feed spectrographs operating at low (R ~ 2000 -
  3500) and moderate (R ~ 6000) spectral resolution, and approximately
  1000 fibers will feed spectrographs operating at high (R ~ 40000)
  resolution. MSE is designed to enable transformational science in areas
  as diverse as tomographic mapping of the interstellar and intergalactic
  media; the in-situ chemical tagging of thick disk and halo stars;
  connecting galaxies to their large scale structure; measuring the mass
  functions of cold dark matter sub-halos in galaxy and cluster-scale
  hosts; reverberation mapping of supermassive black holes in quasars;
  next generation cosmological surveys using redshift space distortions
  and peculiar velocities. MSE is an essential follow-up facility to
  current and next generations of multi-wavelength imaging surveys,
  including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is
  designed to complement and go beyond the science goals of other planned
  and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE,
  AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT
  and GMT, and provides the missing link between wide field imaging and
  small field precision astronomy. MSE is optimized for high throughput,
  high signal-to-noise observations of the faintest sources in the
  Universe with high quality calibration and stability being ensured
  through the dedicated operational mode of the observatory. (abridged)

---------------------------------------------------------
Title: Lithium spectral line formation in stellar atmospheres. The
    impact of convection and NLTE effects
Authors: Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig,
   H. -G.
2016A&A...586A.156K    Altcode: 2015arXiv151208999K
  <BR /> Aims: Because of the complexities involved in treating
  spectral line formation in full 3D and non-local thermodynamic
  equilibrium (NLTE), different simplified approaches are sometimes
  used to account for the NLTE effects with 3D hydrodynamical model
  atmospheres. In certain cases, chemical abundances are derived in
  1D NLTE and then corrected for the 3D effects by adding 3D-1D LTE
  (Local Thermodynamic Equilibrium, LTE) abundance corrections (3D+NLTE
  approach). Alternatively, average ⟨3D⟩ model atmospheres are
  sometimes used to substitute for the full 3D hydrodynamical models. <BR
  /> Methods: In this work we tested whether the results obtained using
  these simplified schemes (3D+NLTE, ⟨3D⟩ NLTE) may reproduce those
  derived using the full 3D NLTE computations. The tests were made using
  3D hydrodynamical CO<SUP>5</SUP>BOLD model atmospheres of the main
  sequence (MS), main sequence turn-off (TO), subgiant (SGB), and red
  giant branch (RGB) stars, all at two metallicities, [ M / H ] = 0.0
  and -2.0. Our goal was to investigate the role of 3D and NLTE effects
  on the formation of the 670.8 nm lithium resonance line. This was done
  by assessing differences in the strengths of synthetic 670.8 nm line
  profiles, which were computed using 3D/1D NLTE/LTE approaches. <BR />
  Results: Our results show that Li 670.8 nm line strengths obtained
  using different methodologies differ only slightly in most of the
  models at solar metallicity studied here. However, the line strengths
  predicted with the 3D NLTE and 3D+NLTE approaches become significantly
  different at subsolar metallicities. At [ M / H ] = -2.0, this may lead
  to (3D NLTE) - (3D+NLTE) differences in the predicted lithium abundance
  of ~0.46 and ~0.31 dex in the TO and RGB stars respectively. On the
  other hand, NLTE line strengths computed with the average ⟨3D⟩ and
  1D model atmospheres are similar to those obtained with the full 3D
  NLTE approach for MS, TO, SGB, and RGB stars, at all metallicities;
  3D - ⟨3D⟩ and 3D - 1D differences in the predicted abundances
  are always less than ~0.04 dex and ~0.08 dex, respectively. However,
  neither of the simplified approaches can reliably substitute 3D NLTE
  spectral synthesis when precision is required.

---------------------------------------------------------
Title: GIANO Y-band spectroscopy of dwarf stars: Phosphorus, sulphur,
    and strontium abundances
Authors: Caffau, E.; Andrievsky, S.; Korotin, S.; Origlia, L.; Oliva,
   E.; Sanna, N.; Ludwig, H. -G.; Bonifacio, P.
2016A&A...585A..16C    Altcode: 2015arXiv151006396C
  Context. In recent years a number of poorly studied chemical elements,
  such as phosphorus, sulphur, and strontium, have received special
  attention as important tracers of the Galactic chemical evolution. <BR
  /> Aims: By exploiting the capabilities of the infrared echelle
  spectrograph GIANO mounted at the Telescopio Nazionale Galileo,
  we acquired high resolution spectra of four Galactic dwarf stars
  spanning the metallicity range between about one-third and twice
  the solar value. We performed a detailed feasibility study about
  the effectiveness of the P, S, and Sr line diagnostics in the Y band
  between 1.03 and 1.10 μm. <BR /> Methods: Accurate chemical abundances
  have been derived using one-dimensional model atmospheres computed in
  local thermodynamic equilibrium (LTE). We computed the line formation
  assuming LTE for P, while we performed non-LTE analysis to derive S
  and Sr abundances. <BR /> Results: We were able to derive phosphorus
  abundance for three stars and an upper limit for one star, while we
  obtained the abundance of sulphur and strontium for all of the stars. We
  find [P/Fe] and [S/Fe] abundance ratios consistent with solar-scaled
  or slightly depleted values, while the [Sr/Fe] abundance ratios are
  more scattered (by ±0.2 dex) around the solar-scaled value. This is
  fully consistent with previous studies using both optical and infrared
  spectroscopy. <BR /> Conclusions: We verified that high-resolution,
  Y-band spectroscopy as provided by GIANO is a powerful tool to study
  the chemical evolution of P, S, and Sr in dwarf stars. <P />Based on
  observations obtained with GIANO.

---------------------------------------------------------
Title: HST/STIS abundances in the uranium rich metal poor star CS
31082-001: Constraints on the r-Process
Authors: Siqueira-Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau,
   E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen,
   J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François,
   P.; Molaro, P.
2016JPhCS.665a2056S    Altcode:
  As a brief revision, the origin of heavy elements and the role of
  abundances in extremely metal-poor (EMP) stars are presented. Heavy
  element abundances in the EMP uranium-rich star CS 31082-001
  based mainly on near-UV spectra from STIS/HST are presented. These
  results should be useful for a better characterisation of the neutron
  exposure(s) that produced the r-process elements in this star, as well
  as a guide for improving nuclear data and astrophysical site modelling,
  given that the new element abundances not available in previous works
  (Ge, Mo, Lu, Ta, W, Re, Pt, Au, and Bi) make CS 31082-001 the most
  completely well studied r-II object, with a total of 37 detections of
  n-capture elements.

---------------------------------------------------------
Title: Chemical composition of a sample of bright solar-metallicity
    stars
Authors: Caffau, E.; Mott, A.; Steffen, M.; Bonifacio, P.; Strassmeier,
   K. G.; Gallagher, A.; Faraggiana, R.; Sbordone, L.
2015AN....336..968C    Altcode: 2015arXiv151004269C
  We present a detailed analysis of seven young stars observed with the
  spectrograph SOPHIE at the Observatoire de Haute-Provence for which the
  chemical composition was incomplete or absent in the literature. For
  five stars, we derived the stellar parameters and chemical compositions
  using our automatic pipeline optimized for F, G, and K stars, while
  for the other two stars with high rotational velocity, we derived the
  stellar parameters by using other information (parallax), and performed
  a line-by-line analysis. Chromospheric emission-line fluxes from Ca
  II are obtained for all targets. The stellar parameters we derive are
  generally in good agreement with what is available in the literature. We
  provide a chemical analysis of two of the stars for the first time. The
  star HIP 80124 shows a strong Li feature at 670.8 nm implying a high
  lithium abundance. Its chemical pattern is not consistent with it
  being a solar sibling, as has been suggested. <P />Data obtained at
  Observatoire de Haute Provence, with the SOPHIE spectrograph.

---------------------------------------------------------
Title: The photospheric solar oxygen project. IV. 3D-NLTE
    investigation of the 777 nm triplet lines
Authors: Steffen, M.; Prakapavičius, D.; Caffau, E.; Ludwig, H. -G.;
   Bonifacio, P.; Cayrel, R.; Kučinskas, A.; Livingston, W. C.
2015A&A...583A..57S    Altcode: 2015arXiv150803487S
  Context. The solar photospheric oxygen abundance is still widely
  debated. Adopting the solar chemical composition based on the "low"
  oxygen abundance, as determined with the use of three-dimensional (3D)
  hydrodynamical model atmospheres, results in a well-known mismatch
  between theoretical solar models and helioseismic measurements
  that is so far unresolved. <BR /> Aims: We carry out an independent
  redetermination of the solar oxygen abundance by investigating the
  center-to-limb variation of the O i IR triplet lines at 777 nm in
  different sets of spectra. <BR /> Methods: The high-resolution and high
  signal-to-noise solar center-to-limb spectra are analyzed with the
  help of detailed synthetic line profiles based on 3D hydrodynamical
  CO5BOLD model atmospheres and 3D non-LTE line formation calculations
  with NLTE3D. The idea is to exploit the information contained in the
  observations at different limb angles to simultaneously derive the
  oxygen abundance, A(O), and the scaling factor S<SUB>H</SUB> that
  describes the cross-sections for inelastic collisions with neutral
  hydrogen relative to the classical Drawin formula. Using the same
  codes and methods, we compare our 3D results with those obtained from
  the semi-empirical Holweger-Müller model atmosphere as well as from
  different one-dimensional (1D) reference models. <BR /> Results: With
  the CO5BOLD 3D solar model, the best fit of the center-to-limb variation
  of the triplet lines is obtained when the collisions by neutral hydrogen
  atoms are assumed to be efficient, i.e., when the scaling factor
  S<SUB>H</SUB> is between 1.2 and 1.8, depending on the choice of the
  observed spectrum and the triplet component used in the analysis. The
  line profile fits achieved with standard 1D model atmospheres (with
  fixed microturbulence, independent of disk position μ) are clearly
  of inferior quality compared to the 3D case, and give the best match
  to the observations when ignoring collisions with neutral hydrogen
  (S<SUB>H</SUB> = 0). The results derived with the Holweger-Müller model
  are intermediate between 3D and standard 1D. <BR /> Conclusions: The
  analysis of various observations of the triplet lines with different
  methods yields oxygen abundance values (on a logarithmic scale where
  A(H) = 12) that fall in the range 8.74 &lt;A(O) &lt; 8.78, and our
  best estimate of the 3D non-LTE solar oxygen abundance is A(O) = 8.76
  ± 0.02. All 1D non-LTE models give much lower oxygen abundances,
  by up to -0.15 dex. This is mainly a consequence of the assumption
  of a μ-independent microturbulence. An independent determination of
  the relevant collisional cross-sections is essential to substantially
  improve the accuracy of the oxygen abundance derived from the O i IR
  triplet. <P />Appendices E and F are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201526406/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Surface-effect corrections for solar-like oscillations using
    3D hydrodynamical simulations. I. Adiabatic oscillations
Authors: Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau,
   E.; Mosser, B.
2015A&A...583A.112S    Altcode: 2015arXiv151000300S
  Context. The CoRoT and Kepler space-borne missions have provided us with
  a wealth of high-quality observational data that allows for seismic
  inferences of stellar interiors. This requires the computation of
  precise and accurate theoretical frequencies, but imperfect modeling of
  the uppermost stellar layers introduces systematic errors. To overcome
  this problem, an empirical correction has been introduced by Kjeldsen
  et al. (2008, ApJ, 683, L175) and is now commonly used for seismic
  inferences. Nevertheless, we still lack a physical justification
  allowing for the quantification of the surface-effect corrections. <BR
  /> Aims: Our aim is to constrain the surface-effect corrections across
  the Hertzsprung-Russell (HR) diagram using a set of 3D hydrodynamical
  simulations. <BR /> Methods: We used a grid of these simulations
  computed with the CO<SUP>5</SUP>BOLD code to model the outer layers of
  solar-like stars. Upper layers of the corresponding 1D standard models
  were then replaced by the layers obtained from the horizontally averaged
  3D models. The frequency differences between these patched models
  and the 1D standard models were then calculated using the adiabatic
  approximation and allowed us to constrain the Kjeldsen et al. power law,
  as well as a Lorentzian formulation. <BR /> Results: We find that the
  surface effects on modal frequencies depend significantly on both the
  effective temperature and the surface gravity. We further provide the
  variation in the parameters related to the surface-effect corrections
  using their power law as well as a Lorentzian formulation. Scaling
  relations between these parameters and the elevation (related to the
  Mach number) is also provided. The Lorentzian formulation is shown to
  be more robust for the whole frequency spectrum, while the power law
  is not suitable for the frequency shifts in the frequency range above
  ν<SUB>max</SUB>. Finally, we show that, owing to turbulent pressure,
  the elevation of the uppermost layers modifies the location of the
  hydrogen ionization zone and consequently introduces glitches in
  the surface effects for models with high (low) effective temperature
  (surface gravity). <BR /> Conclusions: Surface-effect corrections vary
  significantly across the HR diagram. Therefore, empirical relations
  like those by Kjeldsen et al. must not be calibrated on the Sun but
  should instead be constrained using realistic physical modeling as
  provided by 3D hydrodynamical simulations.

---------------------------------------------------------
Title: Lithium abundance in a turnoff halo star on an extreme orbit
Authors: Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.
2015A&A...582A..74S    Altcode: 2015arXiv150907809S
  Context. The lithium abundance in turnoff stars of the old population
  of our Galaxy is remarkably constant in the metallicity interval
  -2.8 &lt; [Fe/H] &lt; -2.0, defining a plateau. The Li abundance of
  these turnoff stars is clearly lower than the abundance predicted
  by the primordial nucleosynthesis in the frame of the standard Big
  Bang nucleosynthesis. Different scenarios have been proposed for
  explaining this discrepancy, along with the very low scatter of the
  lithium abundance around the plateau. <BR /> Aims: The recently
  identified very high velocity star, WISE J0725-2351 appears to
  belong to the old Galactic population, and appears to be an extreme
  halo star on a bound, retrograde Galactic orbit. In this paper, we
  study the abundance ratios and, in particular the lithium abundance,
  in this star. <BR /> Methods: The available spectra (ESO-Very Large
  Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al,
  Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined. <BR />
  Results: The abundance ratios in WISE J0725-2351 are those typical
  of old turnoff stars. The lithium abundance in this star is in close
  agreement with the lithium abundance found in the metal-poor turnoff
  stars located at moderate distance from the Sun. This high velocity
  star confirms, in an extreme case, that the very small scatter of
  the lithium plateau persists independent of the dynamic and kinematic
  properties of the stars. <P />Based on observations obtained at the
  ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier
  and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of
  the elements) is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74</A>

---------------------------------------------------------
Title: Grid of theoretical NLTE equivalent widths of four Ba ii
    lines and barium abundance in cool stars
Authors: Korotin, S. A.; Andrievsky, S. M.; Hansen, C. J.; Caffau,
   E.; Bonifacio, P.; Spite, M.; Spite, F.; François, P.
2015A&A...581A..70K    Altcode: 2015arXiv150707472K
  Context. We present a grid of computed non-local thermodynamic
  equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections
  for four Ba ii lines: 4554, 5853, 6141, and 6496 Å. <BR /> Aims:
  The grid can be useful in deriving the NLTE barium abundance in stars
  having parameters in the following ranges: effective temperature from
  4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent
  velocity 0 km s<SUP>-1</SUP> to 3 km s<SUP>-1</SUP>, metallicity [Fe/H]
  from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can
  be either derived by EW interpolation (using the observed Ba ii line
  EW) or by using the NLTE correction applied to a previously determined
  LTE abundance. <BR /> Methods: Ba ii line equivalent widths and the
  NLTE corrections were calculated using the updated MULTI code and
  the Ba ii atomic model that was previously applied to determine the
  NLTE barium abundance in different types of stars. <BR /> Results:
  The grid is available on-line through the web, and we find that
  the grid Ba NLTE corrections are almost as accurate as direct NLTE
  profile fitting (to within 0.05-0.08 dex). For the weakest Ba ii line
  (5853 Å) the LTE abundances almost agree with the NLTE abundances,
  whereas the other three Ba ii lines, 4554, 6141, and 6496 Å, need
  NLTE corrections even at the highest metallicities tested here. The
  4554 Å line is extremely strong and should not be used for abundance
  analysis above [Fe/H] = -1. Furthermore, we tested the impact of
  different model atmospheres and spectrum synthesis codes and found
  average differences of 0.06 dex and 0.09 dex, respectively, for all
  four lines. At these metallicities we find an average ΔNLTE of ±
  0.1 dex for the three useful Ba lines for subsolar cool dwarfs. <P
  />Tables 4 and 5 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A70">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A70</A>Appendix
  A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201526558/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Stellar science from a blue wavelength range. A possible
    design for the blue arm of 4MOST
Authors: Hansen, C. J.; Ludwig, H. -G.; Seifert, W.; Koch, A.; Xu,
   W.; Caffau, E.; Christlieb, N.; Korn, A. J.; Lind, K.; Sbordone, L.;
   Ruchti, G.; Feltzing, S.; de Jong, R. S.; Barden, S.
2015AN....336..665H    Altcode: 2015arXiv150802714H
  From stellar spectra, a variety of physical properties of stars
  can be derived. In particular, the chemical composition of stellar
  atmospheres can be inferred from absorption line analyses. These
  provide key information on large scales, such as the formation of our
  Galaxy, down to the small-scale nucleosynthesis processes that take
  place in stars and supernovae. By extending the observed wavelength
  range toward bluer wavelengths, we optimize such studies to also
  include critical absorption lines in metal-poor stars, and allow
  for studies of heavy elements (Z\ensuremath{g}e 38) whose formation
  processes remain poorly constrained. In this context, spectrographs
  optimized for observing blue wavelength ranges are essential, since many
  absorption lines at redder wavelengths are too weak to be detected in
  metal-poor stars. This means that some elements cannot be studied in
  the visual-redder regions, and important scientific tracers and science
  cases are lost. The present era of large public surveys will target
  millions of stars. It is therefore important that the next generation
  of spectrographs are designed such that they cover a wide wavelength
  range and can observe a large number of stars simultaneously. Only
  then, we can gain the full information from stellar spectra, from
  both metal-poor to metal-rich ones, that will allow us to understand
  the aforementioned formation scenarios in greater detail. Here we
  describe the requirements driving the design of the forthcoming survey
  instrument 4MOST, a multi-object spectrograph commissioned for the
  ESO VISTA 4 m-telescope. While 4MOST is also intended for studies of
  active galactic nuclei, baryonic acoustic oscillations, weak lensing,
  cosmological constants, supernovae and other transients, we focus here
  on high-density, wide-area survey of stars and the science that can
  be achieved with high-resolution stellar spectroscopy. Scientific and
  technical requirements that governed the design are described along with
  a thorough line blending analysis. For the high-resolution spectrograph,
  we find that a sampling of {\ensuremath{g}e 2.5} (pixels per resolving
  element), spectral resolution of 18 000 or higher, and a wavelength
  range covering 393-436 nm, is the most well-balanced solution for
  the instrument. A spectrograph with these characteristics will enable
  accurate abundance analysis (± 0.1 dex) in the blue and allow us to
  confront the outlined scientific questions.

---------------------------------------------------------
Title: VizieR Online Data Catalog: WISE J072543.88-235119.7 line
    abundances (Spite+, 2015)
Authors: Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.
2015yCat..35820074S    Altcode:
  Main parameters of the lines and logarithm of the corresponding
  abundances for logA(H)=12. <P />(1 data file).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Grid of NLTE EW and NLTE
    corrections BaII lines (Korotin+, 2015)
Authors: Korotin, S. A.; Andrievsky, S. M.; Hansen, C. J.; Caffau,
   E.; Bonifacio, P.; Spite, M.; Spite, F.; Francois, P.
2015yCat..35810070K    Altcode:
  The following stellar parameter ranges are covered by our grid, which
  focuses on more metal-rich stars (compared to the very metal-poor
  and extremely metal-poor stas) that are typically targeted in current
  and future surveys: <P />- effective temperature: 4000-6500K, step =
  250K; - surface gravity: 0-5, step = 0.5 - microturbulent velocity:
  0-3km/s, step = 1km/s; - metallicity: [Fe/H] = +0.5, 0.0, -0.5,
  -1.0, -1.5 and -2.0; - relative barium abundance: [Ba/Fe] = -0.40,
  -0.20, 0.00, +0.20, +0.40, +0.60. <P />For the models with [Fe/H]
  below -1.00 we calculated NLTE equivalent widths with an increased
  atmosphere abundance of alpha-elements ([alpha/Fe]=+0.4), while for
  a metallicity of -0.5 both cases (solar alpha-element abundance
  and an increased one) were considered. <P />The NLTE equivalent
  widths of the four barium lines were calculated: 4554, 5853, 6141,
  and 6496Å. <P />Tables 4 and 5 contain the NLTE equivalent widths
  and NLTE corrections, respectively. For each barium line we selected
  six values of [Ba/Fe] (-0.4, -0.2, 0.0, +0.2, +0.4 and +0.6) for
  the NLTE EW grid, and three values of [Ba/Fe] (-0.2, 0.1, and +0.4)
  for the NLTE correction grid. For each of these values we list in the
  corresponding table the EWs or corrections calculated for the full set
  of effective temperature, surface gravity, microturbulent velocity,
  and metallicity. <P />(2 data files).

---------------------------------------------------------
Title: The photospheric solar oxygen project. III. Investigation of
    the centre-to-limb variation of the 630 nm [O I]-Ni I blend
Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Livingston, W.;
   Bonifacio, P.; Malherbe, J. -M.; Doerr, H. -P.; Schmidt, W.
2015A&A...579A..88C    Altcode: 2015arXiv150600931C
  Context. The solar photospheric abundance of oxygen is still a matter
  of debate. For about ten years some determinations have favoured a
  low oxygen abundance which is at variance with the value inferred by
  helioseismology. Among the oxygen abundance indicators, the forbidden
  line at 630 nm has often been considered the most reliable even
  though it is blended with a Ni i line. In Papers I and II of this
  series we reported a discrepancy in the oxygen abundance derived
  from the 630 nm and the subordinate [O I] line at 636 nm in dwarf
  stars, including the Sun. <BR /> Aims: Here we analyse several,
  in part new, solar observations of the centre-to-limb variation
  of the spectral region including the blend at 630 nm in order to
  separate the individual contributions of oxygen and nickel. <BR />
  Methods: We analyse intensity spectra observed at different limb
  angles in comparison with line formation computations performed on a
  CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. <BR />
  Results: The oxygen abundances obtained from the forbidden line at
  different limb angles are inconsistent if the commonly adopted nickel
  abundance of 6.25 is assumed in our local thermodynamic equilibrium
  computations. With a slightly lower nickel abundance, A(Ni) ≈ 6.1,
  we obtain consistent fits indicating an oxygen abundance of A(O) = 8.73
  ± 0.05. At this value the discrepancy with the subordinate oxygen
  line remains. <BR /> Conclusions: The derived value of the oxygen
  abundance supports the notion of a rather low oxygen abundance in the
  solar photosphere. However, it is disconcerting that the forbidden
  oxygen lines at 630 and 636 nm give noticeably different results,
  and that the nickel abundance derived here from the 630 nm blend is
  lower than expected from other nickel lines.

---------------------------------------------------------
Title: TOPoS . II. On the bimodality of carbon abundance in CEMP
    stars Implications on the early chemical evolution of galaxies
Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi,
   A.; Klessen, R. S.; François, P.; Molaro, P.; Ludwig, H. -G.; Zaggia,
   S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.;
   Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.;
   Steffen, M.
2015A&A...579A..28B    Altcode: 2015arXiv150405963B
  Context. In the course of the Turn Off Primordial Stars (TOPoS) survey,
  aimed at discovering the lowest metallicity stars, we have found several
  carbon-enhanced metal-poor (CEMP) stars. These stars are very common
  among the stars of extremely low metallicity and provide important
  clues to the star formation processes. We here present our analysis
  of six CEMP stars. <BR /> Aims: We want to provide the most complete
  chemical inventory for these six stars in order to constrain the
  nucleosynthesis processes responsible for the abundance patterns. <BR
  /> Methods: We analyse both X-Shooter and UVES spectra acquired at the
  VLT. We used a traditional abundance analysis based on OSMARCS 1D local
  thermodynamic equilibrium (LTE) model atmospheres and the turbospectrum
  line formation code. <BR /> Results: Calcium and carbon are the only
  elements that can be measured in all six stars. The range is -5.0 ≤
  [Ca/H] &lt;-2.1 and 7.12 ≤ A(C) ≤ 8.65. For star SDSS J1742+2531
  we were able to detect three Fe i lines from which we deduced [Fe/H]
  = -4.80, from four Ca ii lines we derived [Ca/H] = -4.56, and from
  synthesis of the G-band we derived A(C) = 7.26. For SDSS J1035+0641 we
  were not able to detect any iron lines, yet we could place a robust
  (3σ) upper limit of [Fe/H] &lt; -5.0 and measure the Ca abundance,
  with [Ca/H] = -5.0, and carbon, A(C) = 6.90, suggesting that this star
  could be even more metal-poor than SDSS J1742+2531. This makes these
  two stars the seventh and eighth stars known so far with [Fe/H] &lt;
  -4.5, usually termed ultra-iron-poor (UIP) stars. No lithium is detected
  in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a
  robust upper limit of A(Li) &lt; 1.8 for both stars. <BR /> Conclusions:
  Our measured carbon abundances confirm the bimodal distribution of
  carbon in CEMP stars, identifying a high-carbon band and a low-carbon
  band. We propose an interpretation of this bimodality according to which
  the stars on the high-carbon band are the result of mass transfer from
  an AGB companion, while the stars on the low-carbon band are genuine
  fossil records of a gas cloud that has also been enriched by a faint
  supernova (SN) providing carbon and the lighter elements. The abundance
  pattern of the UIP stars shows a large star-to-star scatter in the
  [X/Ca] ratios for all elements up to aluminium (up to 1 dex), but
  this scatter drops for heavier elements and is at most of the order
  of a factor of two. We propose that this can be explained if these
  stars are formed from gas that has been chemically enriched by several
  SNe, that produce the roughly constant [X/Ca] ratios for the heavier
  elements, and in some cases the gas has also been polluted by the
  ejecta of a faint SN that contributes the lighter elements in variable
  amounts. The absence of lithium in four of the five known unevolved
  UIP stars can be explained by a dominant role of fragmentation in the
  formation of these stars. This would result either in a destruction
  of lithium in the pre-main-sequence phase, through rotational mixing
  or to a lack of late accretion from a reservoir of fresh gas. The
  phenomenon should have varying degrees of efficiency. <P />Based on
  observations obtained at ESO Paranal Observatory, programme 091.D-0288,
  091.D-0305, 189.D-0165.Appendix A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201425266/olm">http://www.aanda.org</A>Tables
  4 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A28">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A28</A>

---------------------------------------------------------
Title: Chemical abundances of giant stars in <ASTROBJ>NGC
    5053</ASTROBJ> and <ASTROBJ>NGC 5634</ASTROBJ>, two globular clusters
    associated with the Sagittarius dwarf spheroidal galaxy?
Authors: Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.;
   Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.;
   Caffau, E.; Duffau, S.
2015A&A...579A.104S    Altcode: 2015arXiv150501487S
  Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy
  (Sgr dSph) is producing the most prominent substructure in the Milky
  Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is
  suspected that the Sgr dSph has lost a number of globular clusters
  (GC). Many Galactic GC are thought to have originated in the Sgr
  dSph. While for some candidates an origin in the Sgr dSph has been
  confirmed owing to chemical similarities, others exist whose chemical
  composition has never been investigated. <BR /> Aims: <ASTROBJ>NGC
  5053</ASTROBJ> and <ASTROBJ>NGC 5634</ASTROBJ> are two of these scarcely
  studied Sgr dSph candidate-member clusters. To characterize their
  composition we analyzed one giant star in <ASTROBJ>NGC 5053</ASTROBJ>,
  and two in <ASTROBJ>NGC 5634</ASTROBJ>. <BR /> Methods: We analyze
  high-resolution and signal-to-noise spectra by means of the MyGIsFOS
  code, determining atmospheric parameters and abundances for up
  to 21 species between O and Eu. The abundances are compared with
  those of MW halo field stars, of unassociated MW halo globulars,
  and of the metal-poor Sgr dSph main body population. <BR /> Results:
  We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for <ASTROBJ>NGC
  5053</ASTROBJ>, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for
  the two stars in <ASTROBJ>NGC 5634</ASTROBJ>. This makes <ASTROBJ>NGC
  5053</ASTROBJ> one of the most metal-poor globular clusters in the
  MW. Both clusters display an α enhancement similar to the one of
  the halo at comparable metallicity. The two stars in <ASTROBJ>NGC
  5634</ASTROBJ> clearly display the Na-O anticorrelation widespread among
  MW globulars. Most other abundances are in good agreement with standard
  MW halo trends. <BR /> Conclusions: The chemistry of the Sgr dSph main
  body populations is similar to that of the halo at low metallicity. It
  is thus difficult to discriminate between an origin of <ASTROBJ>NGC
  5053</ASTROBJ> and <ASTROBJ>NGC 5634</ASTROBJ> in the Sgr dSph, and
  one in the MW. However, the abundances of these clusters do appear
  closer to that of Sgr dSph than of the halo, favoring an origin in the
  Sgr dSph system. <P />Appendix A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201425509/olm">http://www.aanda.org</A>Atomic
  data are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/A104">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/A104</A>

---------------------------------------------------------
Title: Chemical abundances of giant stars in the Crater stellar system
Authors: Bonifacio, P.; Caffau, E.; Zaggia, S.; François, P.;
   Sbordone, L.; Andrievsky, S. M.; Korotin, S. A.
2015A&A...579L...6B    Altcode: 2015arXiv150603615B
  <BR /> Aims: We obtained spectra for two giants of Crater (Crater
  J113613-105227 and Crater J113615-105244) using X-Shooter at the
  VLT, with the purpose of determining their radial velocities and
  metallicities. <BR /> Methods: Radial velocities were determined
  by cross-correlating the spectra with that of a standard star. The
  spectra were analysed with the MyGIsFOS code using a grid of synthetic
  spectra computed from one-dimensional, local thermodynamic equilibrium
  (LTE) model atmospheres. Effective temperature and surface gravity
  were derived from photometry measured from images obtained by the
  Dark Energy Survey. <BR /> Results: The radial velocities are 144.3
  ± 4.0 km s<SUP>-1</SUP> for Crater J113613-105227 and and 134.1 ±
  4.0km s<SUP>-1</SUP> for Crater J113615-105244. The metallicities
  are [Fe/H] = -1.73 and [Fe/H] = -1.67, respectively. In addition to
  the iron abundance, we were able to determine abundances for nine
  elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni, and Ba. For Na and Ba we
  took into account deviations from LTE because the corrections are
  significant. The abundance ratios are similar in the two stars and
  resemble those of Galactic stars of the same metallicity. In the deep
  photometric images we detected several stars that lie to the blue of
  the turn-off. <BR /> Conclusions: The radial velocities imply that
  both stars are members of the Crater stellar system. The difference
  in velocity between the two taken at face value implies a velocity
  dispersion &gt;3.7 km s<SUP>-1</SUP> at a 95% confidence level. Our
  spectroscopic metallicities agree excellently well with those determined
  by previous investigations using photometry. Our deep photometry
  and the spectroscopic metallicity imply an age of 7 Gyr for the main
  population of the system. The stars to the blue of the turn-off can be
  interpreted as a younger population that is of the same metallicity
  and an age of 2.2 Gyr. Finally, spatial and kinematical parameters
  support the idea that this system is associated with the galaxies
  Leo IV and Leo V. All the observations favour the interpretation of
  Crater as a dwarf galaxy. <P />Based on observations taken at ESO
  Paranal with the Kueyen telescope, programme 094.D-0547.Tables 3-4,
  Figs. 4-5, and Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201526366/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances of 3 CEMP stars
    (Bonifacio+, 2015)
Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi,
   A.; Klessen, R. S.; Francois, P.; Molaro, P.; Ludwig, H. -G.; Zaggia,
   S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.;
   Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.;
   Steffen, M.
2015yCat..35790028B    Altcode:
  We analyse both X-Shooter and UVES spectra acquired at the VLT. We used
  a traditional abundance analysis based on OSMARCS 1D Local Thermodynamic
  Equilibrium (LTE) model atmospheres and the TURBOSPECTRUM line formation
  code. <P />(2 data files).

---------------------------------------------------------
Title: Galactic evolution of sulphur as traced by globular clusters
Authors: Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.
2015A&A...577A..18K    Altcode: 2015arXiv150302691K
  Context. Sulphur is an important volatile α element, but its role
  in the Galactic chemical evolution is still uncertain, and more
  observations constraining the sulphur abundance in stellar photospheres
  are required. <BR /> Aims: We derive the sulphur abundances in red
  giant branch (RGB) stars in three Galactic halo globular clusters
  (GC) that cover a wide metallicity range (-2.3 &lt; [Fe/H] &lt; -1.2):
  M 4 (NGC 6121), M 22 (NGC 6656), and M 30 (NGC 7099). The halo field
  stars show a large scatter in the [S/Fe] ratio in this metallicity
  span, which is inconsistent with canonical chemical evolution
  models. To date, very few measurements of [S/Fe] exist for stars
  in GCs, which are good tracers of the chemical enrichment of their
  environment. However, some light and α elements show star-to-star
  variations within individual GCs, and it is as yet unclear whether
  the α element sulphur also varies between GC stars. <BR /> Methods:
  We used the infrared spectrograph CRIRES to obtain high-resolution (R ~
  50 000), high signal-to-noise (S/N ~ 200 per px) spectra in the region
  of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the
  literature (six stars in M 4,six stars in M 22, and three stars in M
  30). Multiplet 3 is better suited for S abundance derivation than the
  more commonly used lines of multiplet 1 at 920 nm, since its lines are
  not blended by telluric absorption or other stellar features at low
  metallicity. <BR /> Results: We used spectral synthesis to derive the
  [S/Fe] ratio of the stars assuming local thermodynamic equilibrium
  (LTE). We find mean [S/Fe]<SUB>LTE</SUB> = 0.58 ± 0.01 ± 0.20 dex
  (statistical and systematic error) for M 4, [S/Fe]<SUB>LTE</SUB> =
  0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]<SUB>LTE</SUB> = 0.55 ±
  0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated
  to be in the order of the systematic uncertainties. We do not detect
  star-to-star variations of the S abundance in any of the observed
  GCs, with the possible exception of two individual stars, one in M
  22 and one in M 30, which appear to be highly enriched in S. <BR />
  Conclusions: With the tentative exception of two stars with measured
  high S abundances, we conclude that sulphur behaves like a typical
  α element in the studied Galactic GCs, showing enhanced abundances
  with respect to the solar value at metallicities below [Fe/H]-1.0
  dex without a considerable spread. <P />Based on observations
  made with ESO telescopes at the La Silla Paranal Observatory under
  programmes ID 091.B-0171(A).The reduced spectra and the best fit
  synthetic models are available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A18">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A18</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances in NGC 5053 and NGC 5634
    (Sbordone+, 2015)
Authors: Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.;
   Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.;
   Caffau, E.; Duffau, S.
2015yCat..35790104S    Altcode:
  These two tables contain the results relative to the fitting of all
  the individual spectral features employed in the analysis. The
  "alllines.dat" table contains the feature characteristics
  (e.g. ion abundance fitted through the feature, starting and ending
  wavelength...), the fitting results (e.g. the derived abundance)
  and a star and feature identifiers. The second table (allsynth.txt)
  contain the detailed observed and fitted profiles for each feature. Each
  line contains the star and feature identifiers, the wavelength of that
  specific "pixel" and the corresponding observed and fitted normalized
  fluxes. <P />(3 data files).

---------------------------------------------------------
Title: Three-dimensional hydrodynamical CO<SUP>5</SUP>BOLD model
    atmospheres of red giant stars. IV. Oxygen diagnostics in extremely
    metal-poor red giants with infrared OH lines
Authors: Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Caffau,
   E.; Ludwig, H. -G.; Steffen, M.; Spite, M.
2015A&A...576A.128D    Altcode: 2015arXiv150206587D
  Context. Although oxygen is an important tracer of Galactic chemical
  evolution, measurements of its abundance in the atmospheres of the
  oldest Galactic stars are still scarce and rather imprecise. This
  is mainly because only a few spectral lines are available for the
  abundance diagnostics. At the lowest end of the metallicity scale,
  oxygen can only be measured in giant stars and in most of cases such
  measurements rely on a single forbidden [O i] 630 nm line that is very
  weak and frequently blended with telluric lines. Although molecular
  OH lines located in the ultraviolet and infrared could also be used
  for the diagnostics, oxygen abundances obtained from the OH lines and
  the [O i] 630 nm line are usually discrepant to a level of ~ 0.3-0.4
  dex. <BR /> Aims: We study the influence of convection on the formation
  of the infrared (IR) OH lines and the forbidden [O i] 630 nm line in the
  atmospheres of extremely metal-poor (EMP) red giant stars. Our ultimate
  goal is to clarify whether a realistic treatment of convection with
  state-of-the-art 3D hydrodynamical model atmospheres may help to bring
  the oxygen abundances obtained using the two indicators into closer
  agreement. <BR /> Methods: We used high-resolution (R = 50 000) and high
  signal-to-noise ratio (S/N ≈ 200-600) spectra of four EMP red giant
  stars obtained with the VLT CRIRES spectrograph. For each EMP star,
  4-14 IR OH vibrational-rotational lines located in the spectral range of
  1514-1548 and 1595-1632 nm were used to determine oxygen abundances by
  employing standard 1D local thermodynamic equilibrium (LTE) abundance
  analysis methodology. We then corrected the 1D LTE abundances
  obtained from each individual OH line for the 3D hydrodynamical
  effects, which was done by applying 3D-1D LTE abundance corrections
  that were determined using 3D hydrodynamical CO<SUP>5</SUP>BOLD and
  1D hydrostatic LHD model atmospheres. <BR /> Results: We find that
  the influence of convection on the formation of [O i] 630 nm line in
  the atmospheres of EMP giants studied here is minor, which leads to
  very small 3D-1D abundance corrections (Δ<SUB>3D-1D</SUB> ≤ -0.01
  dex). On the contrary, IR OH lines are strongly affected by convection
  and thus the abundance corrections for these lines are significant,
  Δ<SUB>3D-1D</SUB> ≈ -0.2···-0.3 dex. These abundance corrections
  do indeed bring the 1D LTE oxygen abundances of EMP red giants obtained
  using IR OH lines into better agreement with those determined from the
  [O i] 630 nm line. Since in the EMP red giants IR OH lines are typically
  at least a factor of two stronger than the [O i] line, OH lines may be
  useful indicators of oxygen abundances in the EMP stars, provided that
  the analysis is based on 3D hydrodynamical model atmospheres. <P />Based
  on observations obtained at the European Southern Observatory (ESO)
  Very Large Telescope (VLT) at Paranal Observatory, Chile (observing
  programme 089.D-0079).Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424885/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Reduced CRIRES spectra around S
    multiplet 3 (Kacharov+, 2015)
Authors: Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.
2015yCat..35770018K    Altcode: 2015yCat..35779018K
  We provide the reduced CRIRES spectra in the region of the S multiplet
  3 for all 15 analysed stars together with the best fit synthetic
  spectra. We have interpolated the Kurucz AODFNEW alpha-enhanced models
  to produce the synthetic spectra with scaled solar input abundances
  except the alpha elements, where [alpha/Fe]=0.4dex. The parameters
  for the synthesis are provided in Table 1 of the article. <P />(2
  data files).

---------------------------------------------------------
Title: Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen
    Abundance in Extremely Metal-Poor Giant Stars
Authors: Kucinskas, A.; Dobrovolskas, V.; Bonifacio, P.; Caffau, E.;
   Ludwig, H. -G.; Steffen, M.; Spite, M.
2015csss...18..327K    Altcode: 2014arXiv1409.3153K
  Oxygen is a powerful tracer element of Galactic chemical
  evolution. Unfortunately, only a few oxygen lines are available in the
  ultraviolet-infrared stellar spectra for the reliable determination of
  its abundance. Moreover, oxygen abundances obtained using different
  spectral lines often disagree significantly. In this contribution we
  therefore investigate whether the inadequate treatment of convection in
  1D hydrostatic model atmospheres used in the abundance determinations
  may be responsible for this disagreement. For this purpose, we used VLT
  CRIRES spectra of three EMP giants, as well as 3D hydrodynamical COBOLD
  and 1D hydrostatic LHD model atmospheres, to investigate the role of
  convection in the formation of infrared (IR) OH lines. Our results show
  that the presence of convection leads to significantly stronger IR OH
  lines. As a result, the difference in the oxygen abundance determined
  from IR OH lines with 3D hydrodynamical and classical 1D hydrostatic
  model atmospheres may reach -0.2 dots -0.3 dex. In case of the three
  EMP giants studied here, we obtain a good agrement between the 3D LTE
  oxygen abundances determined by us using vibrational-rotational IR
  OH lines in the spectral range of 1514-1626 nm, and oxygen abundances
  determined from forbidden [O I] 630 nm line in previous studies.

---------------------------------------------------------
Title: The Gaia-ESO Survey: Extracting diffuse interstellar bands
    from cool star spectra. DIB-based interstellar medium line-of-sight
    structures at the kpc scale
Authors: Puspitarini, L.; Lallement, R.; Babusiaux, C.; Chen, H. -C.;
   Bonifacio, P.; Sbordone, L.; Caffau, E.; Duffau, S.; Hill, V.;
   Monreal-Ibero, A.; Royer, F.; Arenou, F.; Peralta, R.; Drew, J. E.;
   Bonito, R.; Lopez-Santiago, J.; Alfaro, E. J.; Bensby, T.; Bragaglia,
   A.; Flaccomio, E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.;
   Smiljanic, R.; Costado, M. T.; Lardo, C.; de Laverny, P.; Zwitter, T.
2015A&A...573A..35P    Altcode: 2014arXiv1410.0842P
  <BR /> Aims: We study how diffuse interstellar bands (DIBs) measured
  toward distance-distributed target stars can be used to locate dense
  interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS)
  kinematical structure, a potentially useful tool when gaseous absorption
  lines are saturated or not available in the spectral range. Cool target
  stars are numerous enough for this purpose. <BR /> Methods: We devised
  automated DIB-fitting methods appropriate for cool star spectra and
  multiple IS components. The data were fitted with a combination of
  a synthetic stellar spectrum, a synthetic telluric transmission,
  and empirical DIB profiles. The initial number of DIB components and
  their radial velocity were guided by HI 21 cm emission spectra, or, when
  available in the spectral range, IS neutral sodium absorption lines. For
  NaI, radial velocities of NaI lines and DIBs were maintained linked
  during a global simultaneous fit. In parallel, stellar distances and
  extinctions were estimated self-consistently by means of a 2D Bayesian
  method from spectroscopically-derived stellar parameters and photometric
  data. <BR /> Results: We have analyzed Gaia-ESO Survey (GES) spectra of
  225 stars that probe between ~2 and 10 kpc long LOS in five different
  regions of the Milky Way. The targets are the two CoRoT fields, two
  open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE
  fields toward the bulge observed before the GES are also included
  (205 target stars). Depending on the observed spectral intervals, we
  extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and
  8620.4. For each field, we compared the DIB strengths with the Bayesian
  distances and extinctions, and the DIB Doppler velocities with the HI
  emission spectra. <BR /> Conclusions: For all fields, the DIB strength
  and the target extinction are well correlated. For targets that are
  widely distributed in distance, marked steps in DIBs and extinction
  radial distance profiles match each other and broadly correspond to the
  expected locations of spiral arms. For all fields, the DIB velocity
  structure agrees with HI emission spectra, and all detected DIBs
  correspond to strong NaI lines. This illustrates how DIBs can be used
  to locate the Galactic interstellar gas and to study its kinematics at
  the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ
  by ≳30 km s<SUP>-1</SUP>, in agreement with HI emission spectra. On
  the other hand, if most targets are located beyond the main absorber,
  DIBs can trace the differential reddening within the field. <P />Based
  on observations made with the ESO/VLT at Paranal Observatory, under
  programs 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey) and
  079.B-0662.Tables with the basic data and observed parameters for
  the 429 stars are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A35">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A35</A>

---------------------------------------------------------
Title: The Science Case for Multi-Object Spectroscopy on the
    European ELT
Authors: Evans, Chris; Puech, Mathieu; Afonso, Jose; Almaini, Omar;
   Amram, Philippe; Aussel, Hervé; Barbuy, Beatriz; Basden, Alistair;
   Bastian, Nate; Battaglia, Giuseppina; Biller, Beth; Bonifacio,
   Piercarlo; Bouché, Nicholas; Bunker, Andy; Caffau, Elisabetta;
   Charlot, Stephane; Cirasuolo, Michele; Clenet, Yann; Combes, Francoise;
   Conselice, Chris; Contini, Thierry; Cuby, Jean-Gabriel; Dalton,
   Gavin; Davies, Ben; de Koter, Alex; Disseau, Karen; Dunlop, Jim;
   Epinat, Benoît; Fiore, Fabrizio; Feltzing, Sofia; Ferguson, Annette;
   Flores, Hector; Fontana, Adriano; Fusco, Thierry; Gadotti, Dimitri;
   Gallazzi, Anna; Gallego, Jesus; Giallongo, Emanuele; Gonçalves,
   Thiago; Gratadour, Damien; Guenther, Eike; Hammer, Francois; Hill,
   Vanessa; Huertas-Company, Marc; Ibata, Roridgo; Kaper, Lex; Korn,
   Andreas; Larsen, Søren; Le Fèvre, Olivier; Lemasle, Bertrand;
   Maraston, Claudia; Mei, Simona; Mellier, Yannick; Morris, Simon;
   Östlin, Göran; Paumard, Thibaut; Pello, Roser; Pentericci,
   Laura; Peroux, Celine; Petitjean, Patrick; Rodrigues, Myriam;
   Rodríguez-Muñoz, Lucía; Rouan, Daniel; Sana, Hugues; Schaerer,
   Daniel; Telles, Eduardo; Trager, Scott; Tresse, Laurence; Welikala,
   Niraj; Zibetti, Stefano; Ziegler, Bodo
2015arXiv150104726E    Altcode:
  This White Paper presents the scientific motivations for a
  multi-object spectrograph (MOS) on the European Extremely Large
  Telescope (E-ELT). The MOS case draws on all fields of contemporary
  astronomy, from extra-solar planets, to the study of the halo of the
  Milky Way and its satellites, and from resolved stellar populations
  in nearby galaxies out to observations of the earliest 'first-light'
  structures in the partially-reionised Universe. The material presented
  here results from thorough discussions within the community over the
  past four years, building on the past competitive studies to agree a
  common strategy toward realising a MOS capability on the E-ELT. The
  cases have been distilled to a set of common requirements which will
  be used to define the MOSAIC instrument, entailing two observational
  modes ('high multiplex' and 'high definition'). When combined with
  the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's
  leading MOS facility. In analysing the requirements we also identify a
  high-multiplex MOS for the longer-term plans for the E-ELT, with an even
  greater multiplex (&gt;1000 targets) to enable studies of large-scale
  structures in the high-redshift Universe. Following the green light
  for the construction of the E-ELT the MOS community, structured through
  the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon
  as possible. We argue that several of the most compelling cases for ELT
  science, in highly competitive areas of modern astronomy, demand such a
  capability. For example, MOS observations in the early stages of E-ELT
  operations will be essential for follow-up of sources identified by the
  James Webb Space Telescope (JWST). In particular, multi-object adaptive
  optics and accurate sky subtraction with fibres have both recently been
  demonstrated on sky, making fast-track development of MOSAIC feasible.

---------------------------------------------------------
Title: The low Sr/Ba ratio on some extremely metal-poor stars
Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; François,
   P.; Sbordone, L.
2014A&A...571A..40S    Altcode: 2014arXiv1410.0847S
  Context. It has been noted that, in classical extremely metal-poor
  (EMP) stars, the abundance ratio of two well-observed neutron-capture
  elements, Sr and Ba, is always higher than [Sr/Ba] = -0.5, which is the
  value of the solar r-only process; however, a handful of EMP stars have
  recently been found with a very low Sr/Ba ratio. <BR /> Aims: We try to
  understand the origin of this anomaly by comparing the abundance pattern
  of the elements in these stars and in the classical EMP stars. <BR />
  Methods: For a rigorous comparison with previous data, four stars with
  very low Sr/Ba ratios were observed and analyzed in the same way as in
  the First Stars program: analysis within LTE approximation through 1D
  (hydrostatic) model atmosphere, providing homogeneous abundances of
  nine neutron-capture elements. <BR /> Results: In CS 22950-173, the
  only turnoff star of the sample, the Sr/Ba ratio is, in fact, found to
  be higher than the r-only solar ratio, so the star is discarded. The
  remaining stars (CS 29493-090, CS 30322-023, HE 305-4520) are cool
  evolved giants. They do not present a clear carbon enrichment, but in
  evolved giants C is partly burned into N, and owing to their high N
  abundance, they could still have initially been carbon-rich EMP stars
  (CEMP). The abundances of Na to Mg present similar anomalies to those
  in CEMP stars. The abundance patterns of the neutron-capture elements
  in the three stars are strikingly similar to a theoretical s-process
  pattern. This pattern could at first be attributed to pollution by a
  nearby AGB, but none of the stars presents a clear variation in the
  radial velocity indicating the presence of a companion. The stellar
  parameters seem to exclude any internal pollution in a TP-AGB phase
  for at least two of these stars. The possibility that the stars
  are early-AGB stars polluted during the core He flash does not seem
  compatible with the theory. <P />Based on observations obtained with the
  ESO Very Large Telescope at Paranal Observatory, Chile (ID 077.D-0299(A)
  PI Bonifacio, and ID 078.B-0238(A) PI Spite), and on archive data
  ID 076.D-0451(A) PI Johnson.The line list and the abundances line
  by line are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A40">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A40</A>

---------------------------------------------------------
Title: Chemical abundances of the metal-poor horizontal-branch stars
    <ASTROBJ>CS 22186-005</ASTROBJ> and <ASTROBJ>CS 30344-033</ASTROBJ>
Authors: Çalışkan, Ş.; Caffau, E.; Bonifacio, P.; Christlieb,
   N.; Monaco, L.; Beers, T. C.; Albayrak, B.; Sbordone, L.
2014A&A...571A..62C    Altcode: 2014arXiv1410.2189C
  We report on a chemical-abundance analysis of two very metal-poor
  horizontal-branch stars in the Milky Way halo: CS 22186-005 ([ Fe/H ]
  = -2.70) and CS 30344-033 ([ Fe/H ] = -2.90). The analysis is based
  on high-resolution spectra obtained at ESO, with the spectrographs
  HARPS at the 3.6 m telescope, and UVES at the VLT. We adopted
  one-dimensional, plane-parallel model atmospheres assuming local
  thermodynamic equilibrium. We derived elemental abundances for 13
  elements for CS 22186-005 and 14 elements for CS 30344-033. This
  study is the first abundance analysis of CS 30344-033. CS 22186-005
  has been analyzed previously, but we report here the first measurement
  of nickel (Ni; Z = 28) for this star, based on twenty-two Ni i lines
  ([ Ni/Fe ] = -0.21 ± 0.02); the measurement is significantly below
  the mean found for most metal-poor stars. Differences of up to 0.5
  dex in [ Ni/Fe ] ratios were determined by different authors for the
  same type of stars in the literature, which means that it is not yet
  possible to conclude that there is a real intrinsic scatter in the [
  Ni/Fe ] ratios. For the other elements for which we obtained estimates,
  the abundance patterns in these two stars match the Galactic trends
  defined by giant and turnoff stars well. This confirms the value of
  horizontal-branch stars as tracers of the chemical properties of stellar
  populations in the Galaxy. Our radial velocities measurements for CS
  22186-005 differ from previously published measurements by more than the
  expected statistical errors. More measurements of the radial velocity
  of this star are encouraged to confirm or refute its radial velocity
  variability. <P />Based on observations collected at the European
  Southern Observatory, Chile, Program IDs 077.D-0299 and 076.D-0546(A).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances in 2 extremely
    metal-poor stars (Spite+, 2014)
Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Francois,
   P.; Sbordone, L.
2014yCat..35710040S    Altcode: 2014yCat..35719040S
  For the two low-Sr/Ba stars CS29493-090 and HE305-4520 we give, line
  by line, the main line parameters and the logarithm of the abundances
  for logA(H)=12. <P />(1 data file).

---------------------------------------------------------
Title: The Gaia-ESO Survey: The analysis of high-resolution UVES
    spectra of FGK-type stars
Authors: Smiljanic, R.; Korn, A. J.; Bergemann, M.; Frasca, A.;
   Magrini, L.; Masseron, T.; Pancino, E.; Ruchti, G.; San Roman,
   I.; Sbordone, L.; Sousa, S. G.; Tabernero, H.; Tautvaišienė,
   G.; Valentini, M.; Weber, M.; Worley, C. C.; Adibekyan, V. Zh.;
   Allende Prieto, C.; Barisevičius, G.; Biazzo, K.; Blanco-Cuaresma,
   S.; Bonifacio, P.; Bragaglia, A.; Caffau, E.; Cantat-Gaudin, T.;
   Chorniy, Y.; de Laverny, P.; Delgado-Mena, E.; Donati, P.; Duffau,
   S.; Franciosini, E.; Friel, E.; Geisler, D.; González Hernández,
   J. I.; Gruyters, P.; Guiglion, G.; Hansen, C. J.; Heiter, U.; Hill, V.;
   Jacobson, H. R.; Jofre, P.; Jönsson, H.; Lanzafame, A. C.; Lardo, C.;
   Ludwig, H. -G.; Maiorca, E.; Mikolaitis, Š.; Montes, D.; Morel, T.;
   Mucciarelli, A.; Muñoz, C.; Nordlander, T.; Pasquini, L.; Puzeras,
   E.; Recio-Blanco, A.; Ryde, N.; Sacco, G.; Santos, N. C.; Serenelli,
   A. M.; Sordo, R.; Soubiran, C.; Spina, L.; Steffen, M.; Vallenari,
   A.; Van Eck, S.; Villanova, S.; Gilmore, G.; Randich, S.; Asplund,
   M.; Binney, J.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.;
   Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Alfaro, E.;
   Babusiaux, C.; Bensby, T.; Blomme, R.; Flaccomio, E.; François, P.;
   Irwin, M.; Koposov, S.; Walton, N.; Bayo, A.; Carraro, G.; Costado,
   M. T.; Damiani, F.; Edvardsson, B.; Hourihane, A.; Jackson, R.; Lewis,
   J.; Lind, K.; Marconi, G.; Martayan, C.; Monaco, L.; Morbidelli, L.;
   Prisinzano, L.; Zaggia, S.
2014A&A...570A.122S    Altcode: 2014arXiv1409.0568S
  Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using
  FLAMES at the VLT to obtain high-quality medium-resolution Giraffe
  spectra for about 10<SUP>5</SUP> stars and high-resolution UVES spectra
  for about 5000 stars. With UVES, the Survey has already observed
  1447 FGK-type stars. <BR /> Aims: These UVES spectra are analyzed
  in parallel by several state-of-the-art methodologies. Our aim is
  to present how these analyses were implemented, to discuss their
  results, and to describe how a final recommended parameter scale is
  defined. We also discuss the precision (method-to-method dispersion)
  and accuracy (biases with respect to the reference values) of the
  final parameters. These results are part of the Gaia-ESO second
  internal release and will be part of its first public release of
  advanced data products. <BR /> Methods: The final parameter scale is
  tied to the scale defined by the Gaia benchmark stars, a set of stars
  with fundamental atmospheric parameters. In addition, a set of open
  and globular clusters is used to evaluate the physical soundness
  of the results. Each of the implemented methodologies is judged
  against the benchmark stars to define weights in three different
  regions of the parameter space. The final recommended results are
  the weighted medians of those from the individual methods. <BR />
  Results: The recommended results successfully reproduce the atmospheric
  parameters of the benchmark stars and the expected T<SUB>eff</SUB>-log
  g relation of the calibrating clusters. Atmospheric parameters and
  abundances have been determined for 1301 FGK-type stars observed with
  UVES. The median of the method-to-method dispersion of the atmospheric
  parameters is 55 K for T<SUB>eff</SUB>, 0.13 dex for log g and 0.07
  dex for [Fe/H]. Systematic biases are estimated to be between 50-100
  K for T<SUB>eff</SUB>, 0.10-0.25 dex for log g and 0.05-0.10 dex for
  [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al,
  Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and
  Eu. The typical method-to-method dispersion of the abundances varies
  between 0.10 and 0.20 dex. <BR /> Conclusions: The Gaia-ESO sample of
  high-resolution spectra of FGK-type stars will be among the largest of
  its kind analyzed in a homogeneous way. The extensive list of elemental
  abundances derived in these stars will enable significant advances in
  the areas of stellar evolution and Milky Way formation and evolution. <P
  />Based on observations made with the ESO/VLT, at Paranal Observatory,
  under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey, PIs
  Gilmore and Randich). Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201423937/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Clues on the Galactic evolution of sulphur from star clusters
Authors: Caffau, E.; Monaco, L.; Spite, M.; Bonifacio, P.; Carraro,
   G.; Ludwig, H. -G.; Villanova, S.; Beletsky, Y.; Sbordone, L.
2014A&A...568A..29C    Altcode: 2014arXiv1407.0485C
  Context. The abundances of α-elements are a powerful diagnostic of the
  star formation history and chemical evolution of a galaxy. Sulphur,
  being moderately volatile, can be reliably measured in the
  interstellar medium (ISM) of damped Ly-α galaxies and extragalactic
  H ii regions. Measurements in stars of different metallicity in our
  Galaxy can then be readily compared to the abundances in external
  galaxies. Such a comparison is not possible for Si or Ca that suffer
  depletion onto dust in the ISM. Furthermore, studying sulphur is
  interesting because it probes nucleosynthetic conditions that are
  very different from those of O or Mg. In this context measurements
  in star clusters are a reliable tracers of the Galactic evolution of
  sulphur. <BR /> Aims: The aim of this paper is to determine sulphur
  abundances in several Galactic clusters that span a metallicity range
  -1.5 &lt; [Fe/H] &lt; 0.0. <BR /> Methods: We use a standard abundance
  analysis, based on 1D model atmospheres in local thermodynamical
  equilibrium (LTE) and literature corrections for non-LTE (NLTE), as
  well as 3D corrections based on hydrodynamical model atmospheres, to
  derive sulphur abundances in a sample of stars in the globular cluster
  M 4, and the open clusters Trumpler 5, NGC 2477, and NGC 5822. <BR />
  Results: We find ⟨ A(S) ⟩ <SUB>NLTE</SUB> = 6.11 ± 0.04 for M 4,
  ⟨ A(S) ⟩ <SUB>NLTE</SUB> = 7.17 ± 0.02 for NGC 2477, and ⟨ A(S)
  ⟩ <SUB>NLTE</SUB> = 7.13 ± 0.06 for NGC 5822. For the only star
  studied in Trumpler 5 we find A(S)<SUB>NLTE</SUB> = 6.43 ± 0.03 and
  A(S)<SUB>LTE</SUB> = 6.94 ± 0.05. <BR /> Conclusions: Our measurements
  show that, by and large, the S abundances in Galactic clusters trace
  reliably those in field stars. The only possible exception is Trumpler
  5, for which the NLTE sulphur abundance implies an [S/Fe] ratio lower by
  roughly 0.4 dex than observed in field stars of comparable metallicity,
  even though its LTE sulphur abundance is in line with abundances of
  field stars. Moreover the LTE sulphur abundance is consistent only
  with the abundance of another α-element, Mg, in the same star,
  while the low NLTE value is consistent with Si and Ca. We believe
  that further investigation of departures from LTE is necessary,
  as well as observation of other S i lines in this star and in other
  stars of the same cluster, before one can conclude that the sulphur
  abundance in Trumpler 5 is indeed 0.4 dex lower than in field stars
  of comparable metallicity. The S abundances in our sample of stars
  in clusters imply that the clusters are chemically homogeneous for S
  within 0.05 dex. <P />Based on observations made with ESO Telescopes
  at the La Silla Paranal Observatory under programme ID 085.D-0537(A),
  088.D-0045(A), 089.D-0062(B).

---------------------------------------------------------
Title: 4MOST: 4-metre Multi-Object Spectroscopic Telescope
Authors: de Jong, Roelof S.; Barden, Sam; Bellido-Tirado, Olga;
   Brynnel, Joar; Chiappini, Cristina; Depagne, Éric; Haynes, Roger;
   Johl, Diana; Phillips, Daniel P.; Schnurr, Olivier; Schwope, Axel D.;
   Walcher, Jakob; Bauer, Svend M.; Cescutti, Gabriele; Cioni, Maria-Rosa
   L.; Dionies, Frank; Enke, Harry; Haynes, Dionne M.; Kelz, Andreas;
   Kitaura, Francisco S.; Lamer, Georg; Minchev, Ivan; Müller, Volker;
   Nuza, Sebastián. E.; Olaya, Jean-Christophe; Piffl, Tilmann; Popow,
   Emil; Saviauk, Allar; Steinmetz, Matthias; Ural, Uǧur; Valentini,
   Monica; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji,
   Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.;
   King, David M. P.; McMahon, Richard; Koposov, Sergey; Parry, Ian R.;
   Sun, Xiaowei; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe,
   Mirko; Lizon, Jean-Louis; Mainieri, Vincenzo; Amans, Jean-Philippe;
   Bonifacio, Piercarlo; Cohen, Matthieu; François, Patrick; Jagourel,
   Pascal; Mignot, Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender,
   Ralf; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard;
   Schlichter, Jörg; Böhringer, Hans; Boller, Thomas; Bongiorno,
   Angela; Brusa, Marcella; Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal;
   Salvato, Mara; Pragt, Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit;
   Roelfsema, Ronald; Dalton, Gavin B.; Middleton, Kevin F.; Tosh,
   Ian A.; Boeche, Corrado; Caffau, Elisabetta; Christlieb, Norbert;
   Grebel, Eva K.; Hansen, Camilla J.; Koch, Andreas; Ludwig, Hans-G.;
   Mandel, Holger; Quirrenbach, Andreas; Sbordone, Luca; Seifert, Walter;
   Thimm, Guido; Helmi, Amina; trager, Scott C.; Bensby, Thomas; Feltzing,
   Sofia; Ruchti, Gregory; Edvardsson, Bengt; Korn, Andreas; Lind, Karin;
   Boland, Wilfried; Colless, Matthew; Frost, Gabriella; Gilbert, James;
   Gillingham, Peter; Lawrence, Jon; Legg, Neville; Saunders, Will;
   Sheinis, Andrew; Driver, Simon; Robotham, Aaron; Bacon, Roland;
   Caillier, Patrick; Kosmalski, Johan; Laurent, Florence; Richard, Johan
2014SPIE.9147E..0MD    Altcode:
  4MOST is a wide-field, high-multiplex spectroscopic survey facility
  under development for the VISTA telescope of the European Southern
  Observatory (ESO). Its main science drivers are in the fields
  of galactic archeology, high-energy physics, galaxy evolution
  and cosmology. 4MOST will in particular provide the spectroscopic
  complements to the large area surveys coming from space missions like
  Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like
  VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5
  degree diameter field-of-view with ~2400 fibres in the focal surface
  that are configured by a fibre positioner based on the tilting spine
  principle. The fibres feed two types of spectrographs; ~1600 fibres go
  to two spectrographs with resolution R&lt;5000 (λ~390-930 nm) and ~800
  fibres to a spectrograph with R&gt;18,000 (λ~392-437 nm and 515-572 nm
  and 605-675 nm). Both types of spectrographs are fixed-configuration,
  three-channel spectrographs. 4MOST will have an unique operations
  concept in which 5 year public surveys from both the consortium and
  the ESO community will be combined and observed in parallel during each
  exposure, resulting in more than 25 million spectra of targets spread
  over a large fraction of the southern sky. The 4MOST Facility Simulator
  (4FS) was developed to demonstrate the feasibility of this observing
  concept. 4MOST has been accepted for implementation by ESO with
  operations expected to start by the end of 2020. This paper provides
  a top-level overview of the 4MOST facility, while other papers in
  these proceedings provide more detailed descriptions of the instrument
  concept[1], the instrument requirements development[2], the systems
  engineering implementation[3], the instrument model[4], the fibre
  positioner concepts[5], the fibre feed[6], and the spectrographs[7].

---------------------------------------------------------
Title: VizieR Online Data Catalog: Abundances of 47 Tuc turn-off stars
    (Dobrovolskas+, 2014)
Authors: Dobrovolskas, V.; Kucinskas, A.; Bonifacio, P.; Korotin,
   S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.; Royer,
   F.; Prakapavicius, D.
2014yCat..35650121D    Altcode: 2014yCat..35659121D
  Spectra of the TO stars in 47 Tuc investigated in this work were
  obtained with the GIRAFFE spectrograph in August-September, 2008,
  under the programme 081.D-0287(A) (PI: Shen). The same data set
  was independently analysed by D'Orazi et al. (2010ApJ...713L...1D,
  Cat. J/ApJ/713/L1). <P />(1 data file).

---------------------------------------------------------
Title: Science case and requirements for the MOSAIC concept for a
    multi-object spectrograph for the European Extremely Large Telescope
Authors: Evans, C. J.; Puech, M.; Barbuy, B.; Bonifacio, P.; Cuby,
   J. -G.; Guenther, E.; Hammer, F.; Jagourel, P.; Kaper, L.; Morris,
   S. L.; Afonso, J.; Amram, P.; Aussel, H.; Basden, A.; Bastian,
   N.; Battaglia, G.; Biller, B.; Bouché, N.; Caffau, E.; Charlot,
   S.; Clénet, Y.; Combes, F.; Conselice, C.; Contini, T.; Dalton,
   G.; Davies, B.; Disseau, K.; Dunlop, J.; Fiore, F.; Flores, H.;
   Fusco, T.; Gadotti, D.; Gallazzi, A.; Giallongo, E.; Gonçalves,
   T.; Gratadour, D.; Hill, V.; Huertas-Company, M.; Ibata, R.; Larsen,
   S.; Le Fèvre, O.; Lemasle, B.; Maraston, C.; Mei, S.; Mellier, Y.;
   Östlin, G.; Paumard, T.; Pello, R.; Pentericci, L.; Petitjean, P.;
   Roth, M.; Rouan, D.; Schaerer, D.; Telles, E.; Trager, S.; Welikala,
   N.; Zibetti, S.; Ziegler, B.
2014SPIE.9147E..96E    Altcode: 2014arXiv1406.6369E
  Over the past 18 months we have revisited the science requirements
  for a multi-object spectrograph (MOS) for the European Extremely Large
  Telescope (E-ELT). These efforts span the full range of E-ELT science
  and include input from a broad cross-section of astronomers across
  the ESO partner countries. In this contribution we summarise the key
  cases relating to studies of high-redshift galaxies, galaxy evolution,
  and stellar populations, with a more expansive presentation of a
  new case relating to detection of exoplanets in stellar clusters. A
  general requirement is the need for two observational modes to best
  exploit the large (&gt;=40 arcmin<SUP>2</SUP>) patrol field of the
  E-ELT. The first mode (`high multiplex') requires integrated-light
  (or coarsely resolved) optical/near-IR spectroscopy of &gt;100
  objects simultaneously. The second (`high definition'), enabled by
  wide-field adaptive optics, requires spatially-resolved, near-IR of
  &gt;10 objects/sub-fields. Within the context of the conceptual study
  for an ELT-MOS called MOSAIC, we summarise the toplevel requirements
  from each case and introduce the next steps in the design process.

---------------------------------------------------------
Title: High-resolution abundance analysis of very metal-poor r-I stars
Authors: Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite,
   F.; Beers, T. C.; Caffau, E.; Bonifacio, P.; Cayrel, R.; François,
   P.; Schatz, H.; Wanajo, S.
2014A&A...565A..93S    Altcode: 2014arXiv1404.0234S
  Context. Moderately r-process-enriched stars (r-I; +0.3 ≤ [Eu/Fe]
  ≤ +1.0) are at least four times as common as those that are greatly
  enriched in r-process elements (r-II; [Eu/Fe] &gt; +1.0), and the
  abundances in their atmospheres are important tools for obtaining a
  better understanding of the nucleosynthesis processes responsible
  for the origin of the elements beyond the iron peak. <BR /> Aims:
  The main aim of this work is to derive abundances for a sample of
  seven metal-poor stars with -3.4 ≤ [Fe/H] ≤ -2.4 classified as
  r-I stars, to understand the role of these stars for constraining
  the astrophysical nucleosynthesis event(s) that is (are) responsible
  for the production of the r-process, and to investigate whether they
  differ, in any significant way, from the r-II stars. <BR /> Methods:
  We carried out a detailed abundance analysis based on high-resolution
  spectra obtained with the VLT/UVES spectrograph, using spectra in the
  wavelength ranges 3400-4500 Å, 6800-8200 Å, and 8700-10 000 Å, with
  resolving power R ~ 40 000 (blue arm) and R ~ 55 000 (red arm). The
  OSMARCS LTE 1D model atmosphere grid was employed, along with the
  spectrum synthesis code Turbospectrum. <BR /> Results: We have derived
  abundances of the light elements Li, C, and N, the α-elements Mg,
  Si, S, Ca, and Ti, the odd-Z elements Al, K, and Sc, the iron-peak
  elements V, Cr, Mn, Fe, Co, and Ni, and the trans-iron elements from
  the first peak (Sr, Y, Zr, Mo, Ru, and Pd), the second peak (Ba, La,
  Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb), the third peak (Os
  and Ir, as upper limits), and the actinides (Th) regions. The results
  are compared with values for these elements for r-II and "normal"
  very and extremely metal-poor stars reported in the literature, ages
  based on radioactive chronometry are explored using different models,
  and a number of conclusions about the r-process and the r-I stars
  are presented. Hydrodynamical models were used for some elements,
  and general behaviors for the 3D corrections were presented. Although
  the abundance ratios of the second r-process peak elements (usually
  associated with the main r-process) are nearly identical for r-I
  and r-II stars, the first r-process peak abundance ratios (probably
  associated with the weak r-process) are more enhanced in r-I stars than
  in r-II stars, suggesting that differing nucleosynthesis pathways were
  followed by stars belonging to these two different classifications. <P
  />Observations obtained with the VLT, at the European Southern
  Observatory, Paranal, Chile, under proposal 080.D-0194(A)
  (PI:V. Hill).Appendix A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201423826/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Abundances of lithium, oxygen, and sodium in the turn-off
    stars of Galactic globular cluster 47 Tucanae
Authors: Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Korotin,
   S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.; Royer,
   F.; Prakapavičius, D.
2014A&A...565A.121D    Altcode: 2013arXiv1311.1072D
  Context. The cluster 47 Tuc is among the most metal-rich Galactic
  globular clusters and its metallicity is similar to that of metal-poor
  disc stars and open clusters. Like other globular clusters, it
  displays variations in the abundances of elements lighter than Si,
  which is generally interpreted as evidence of the presence of multiple
  stellar populations. <BR /> Aims: We aim to determine abundances of
  Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order
  to study the evolution of light elements in this cluster and to put
  our results in perspective with observations of other globular and
  open clusters, as well as with field stars. <BR /> Methods: We use
  medium resolution spectra obtained with the GIRAFFE spectrograph at
  the ESO 8.2 m Kueyen VLT telescope and use state of the art 1D model
  atmospheres and NLTE line transfer to determine the abundances. We
  also employ CO<SUP>5</SUP>BOLD hydrodynamical simulations to assess
  the impact of stellar granulation on the line formation and inferred
  abundances. <BR /> Results: Our results confirm the existence of
  Na-O abundance anti-correlation and hint towards a possible Li-O
  anti-correlation in the TO stars of 47 Tuc. At the same time,
  we find no convincing evidence supporting the existence of Li-Na
  correlation. The obtained 3D NLTE mean lithium abundance in a sample
  of 94 TO stars where Li lines were detected reliably, ⟨A(Li)<SUB>3D
  NLTE</SUB>⟩ = 1.78 ± 0.18 dex, appears to be significantly lower
  than what is observed in other globular clusters. At the same time,
  star-to-star spread in Li abundance is also larger than seen in other
  clusters. The highest Li abundance observed in 47 Tuc is about 0.1
  dex lower than the lowest Li abundance observed among the un-depleted
  stars of the metal-poor open cluster NGC 2243. <BR /> Conclusions: The
  correlations/anti-correlations among light element abundances confirm
  that chemical enrichment history of 47 Tuc was similar to that of other
  globular clusters, despite the higher metallicity of 47 Tuc. The lithium
  abundances in 47 Tuc, when put into context with observations in other
  clusters and field stars, suggest that stars that are more metal-rich
  than [Fe/H] ~ -1.0 experience significant lithium depletion during
  their lifetime on the main sequence, while the more metal-poor stars
  do not. Rather strikingly, our results suggest that initial lithium
  abundance with which the star was created may only depend on its age
  (the younger the star, the higher its Li content) and not on its
  metallicity. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201322868/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: A super lithium-rich red-clump star in the open cluster
    Trumpler 5
Authors: Monaco, L.; Boffin, H. M. J.; Bonifacio, P.; Villanova, S.;
   Carraro, G.; Caffau, E.; Steffen, M.; Ahumada, J. A.; Beletsky, Y.;
   Beccari, G.
2014A&A...564L...6M    Altcode: 2014arXiv1403.6461M
  Context. The existence of lithium-rich low-mass red giant stars still
  represents a challenge for stellar evolution models. Stellar clusters
  are privileged environments for this kind of investigation. <BR />
  Aims: To investigate the chemical abundance pattern of the old open
  cluster Trumpler 5, we observed a sample of four red-clump stars with
  high-resolution optical spectrographs. One of them (#3416) reveals
  extremely strong lithium lines in its spectrum. <BR /> Methods:
  One-dimensional, local thermodynamic equilibrium analysis was
  performed on the spectra of the observed stars. A 3D-NLTE analysis
  was performed to derive the lithium abundance of star #3416. <BR />
  Results: Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack
  of <SUP>6</SUP>Li enrichment (<SUP>6</SUP>Li/<SUP>7</SUP>Li &lt;
  2%), the low carbon isotopic ratio (<SUP>12</SUP>C/<SUP>13</SUP>C =
  14 ± 3), and the lack of evidence for radial velocity variation
  or enhanced rotational velocity (vsini = 2.8 km s<SUP>-1</SUP>)
  all suggest that lithium production has occurred in this star
  through the Cameron &amp; Fowler mechanism. <BR /> Conclusions:
  We identified a super Li-rich core helium-burning, red-clump star
  in an open cluster. Internal production is the most likely cause
  of the observed enrichment. Given the expected short duration of a
  star's Li-rich phase, enrichment is likely to have occurred at the
  red clump or in the immediately preceding phases, namely during the
  He-flash at the tip of the red giant branch (RGB) or while ascending
  the brightest portion of the RGB. <P />Based on observations made
  with ESO Telescopes at the La Silla Paranal Observatory under program
  ID 088.D-0045(A).Appendix A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201323348/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: MyGIsFOS: an automated code for parameter determination and
    detailed abundance analysis in cool stars
Authors: Sbordone, L.; Caffau, E.; Bonifacio, P.; Duffau, S.
2014A&A...564A.109S    Altcode: 2013arXiv1311.5566S
  Context. The current and planned high-resolution, high-multiplexity
  stellar spectroscopic surveys, as well as the swelling amount
  of underutilized data present in public archives, have led to
  an increasing number of efforts to automate the crucial but slow
  process of retrieving stellar parameters and chemical abundances from
  spectra. <BR /> Aims: We present MyGIsFOS<SUP>1</SUP>, a code designed
  to derive atmospheric parameters and detailed stellar abundances from
  medium- to high-resolution spectra of cool (FGK) stars. We describe
  the general structure and workings of the code, present analyses of
  a number of well-studied stars representative of the parameter space
  MyGIsFOS is designed to cover, and give examples of the exploitation
  of MyGIsFOS very fast analysis to assess uncertainties through Monte
  Carlo tests. <BR /> Methods: MyGIsFOS aims to reproduce a "traditional"
  manual analysis by fitting spectral features for different elements
  against a precomputed grid of synthetic spectra. The lines of Fe
  i and Fe ii can be employed to determine temperature, gravity,
  microturbulence, and metallicity by iteratively minimizing the
  dependence of Fe i abundance from line lower energy and equivalent
  width, and imposing Fe i-Fe ii ionization equilibrium. Once parameters
  are retrieved, detailed chemical abundances are measured from lines of
  other elements. <BR /> Results: MyGIsFOS replicates closely the results
  obtained in similar analyses on a set of well-known stars. It is also
  quite fast, performing a full parameter determination and detailed
  abundance analysis in about two minutes per star on a mainstream
  desktop computer. Currently, its preferred field of application
  are high-resolution and/or large spectral coverage data (e.g.,
  UVES, X-shooter, HARPS, Sophie). <P />My God It's Full Of Stars,
  <A href="http://mygisfos.obspm.fr">http://mygisfos.obspm.fr</A>

---------------------------------------------------------
Title: r-Process abundances in metal-poor Galactic halo stars
Authors: Siqueira-Mello, C.; Barbuy, B.; Spite, M.; Spite, F.; Caffau,
   E.; Hill, V.; Wanajo, S.; François, P.; Bonifacio, P.; Cayrel, R.
2014MmSAI..85..232S    Altcode:
  The site of the r-process is not completely defined, and several
  models try to explain the origin of the trans-Fe elements. Observed
  abundances are the best clues to bring some light to this multiplicity
  of possible mechanisms, and the extremely metal-poor (EMP) Galactic
  halo stars have a special role in this problem. In this contribution
  we present the solution of a long-standing problem about the origin
  of the heavy elements in the metal-poor halo subgiant star HD 140283,
  and its correlation with the Truran's theory. Next, we describe the
  results obtained with the EMP r-II star CS 31082-001 in the frame of
  the ESO Large Program “First Stars”. Using STIS/HST observations we
  provide abundances for elements never presented before in this stars,
  making CS 31082-001 the most complete r-II object studied, with a total
  of 37 detections of neutron-capture elements. Finally, we present the
  results obtained from a sample of seven r-I stars, showing how those
  objects can help us solving the heavy elements problem. Conclusions
  are also described.

---------------------------------------------------------
Title: 3D modeling of stellar atmospheres and the impact on the
    understanding of the reliability of elemental abundances in stars
    as tracers of galactic chemical evolution
Authors: Ludwig, H. -G.; Steffen, M.; Bonifacio, P.; Caffau, E.;
   Kučinskas, A.; Freytag, B.
2014IAUS..298..343L    Altcode:
  We present a critical review of the construction of 3D model atmospheres
  with emphasis on modeling challenges. We discuss the basic physical
  processes which give rise to the effects which set 3D models apart
  from 1D standard models. We consider elemental abundances derived
  from molecular features, and the determination of the microturbulence
  with 3D models. The examples serve as illustration of the limitations
  inherent to 1D, however, also to 3D modeling. We find that 3D models
  can provide constraints on the microturbulence parameter, and predict
  substantial corrections for abundances derived from molecular species.

---------------------------------------------------------
Title: Abundance analysis of three metal poor stars: CS 22166-0030,
    CS 22186-0005, and CS 30344-0033
Authors: Çalışkan, Şeyma; Caffau, Elisabetta; Bonifacio, Piercarlo;
   Sbordone, Luca; Albayrak, Berahitdin
2014IAUS..298..381C    Altcode:
  We present the abundance analysis of three very metal poor stars,
  CS 22166-0030 ([Fe/H]=-2.96), CS 22186-0005 ([Fe/H]=-2.70), and CS
  30344-0033 ([Fe/H]=-2.90). Our study is based on high resolution spectra
  which were obtained from SARG (on TNG), HARPS (on 3.6m), and UVES (on
  VLT) spectrographs and one-dimensional ATLAS9 model atmospheres. We
  derived the abundances for 2, 9, and 16 atomic species in the spectrum
  of CS 22166-0030, CS 22186-0005, and CS 30344-0033, respectively. The
  Na and Mg abundances of CS 22166-0030 are highly under-abundant with
  respect to the solar values. The abundance patterns of CS 22186-0005
  and CS 30344-0033 are consistent with the other halo stars within
  abundance uncertainties.

---------------------------------------------------------
Title: Strontium in the era of Gaia and LAMOST
Authors: Hansen, Camilla J.; Caffau, Elisabetta; Bergemann, Maria
2014IAUS..298..409H    Altcode:
  The formation and evolution of the heavy neutron-capture elements (Z
  &gt; 37) are to date not well understood. Therefore, abundance and
  galactic chemical evolution (GCE) studies of these heavy elements
  may carry key information to this open question. Strontium (Sr) is
  one of the two heavy elements (Sr and Ba) that show intrinsically very
  strong absorption lines even in extremely metal-poor stars (and remains
  detectable at low spectral resolution). Hence, the 4077 Å Sr II line
  provides a unique insight into the behaviour of heavy neutron-capture
  elements at all metallicities and resolutions. Here the focus is
  on strontium, its 3D and NLTE (non-local thermodynamic equilibrium)
  corrections, as well as chemical evolution.

---------------------------------------------------------
Title: The first generations of stars
Authors: Caffau, E.; Gallagher, A.; Bonifacio, P.; Cayrel, R.;
   Christlieb, N.; Clark, P. C.; Francois, P.; Glover, S.; Klessen,
   R. S.; Koch, A.; Ludwig, H. G.; Monaco, L.; Plez, B.; Sbordone, L.;
   Spite, M.; Spite, F.; Steffen, M.; Zaggia, S.
2014nic..confE..53C    Altcode: 2014PoS...204E..53C
  No abstract at ADS

---------------------------------------------------------
Title: TOPoS: chemical study of extremely metal-poor stars.
Authors: Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.;
   Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.;
   Koch, A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Spite, F.; Spite,
   M.; Steffen, M.; Zaggia, S.
2014MmSAI..85..222C    Altcode:
  The extremely metal-poor (EMP) stars hold in their atmospheres
  the fossil record of the chemical composition of the early phases
  of the Galactic evolution. The chemical analysis of such objects
  provides important constraints on these early phases. EMP stars
  are very rare objects; to dig them out, large amounts of data have
  to be processed. With an automatic procedure, we analysed objects
  with colours of Turn-Off stars from the Sloan Digital Sky Survey to
  select a sample of good candidate EMP stars. In the latest years,
  we observed a sample of these candidates with X-Shooter and UVES,
  and we have an ongoing ESO large programme to use these spectrographs
  to observe EMP stars. I will report here the results on metallicity
  and Strontium abundance. <P />Based on observations obtained at ESO
  Paranal Observatory, programme 189.D-0165(A)

---------------------------------------------------------
Title: 6Li/7Li isotopic ratio in the most metal-poor binary
    CS22876-032
Authors: Gonzalez-Hernandez, J.; Caffau, E.; Ludwig, H. G.; Bonifacio,
   P.; Steffen, M.; Monaco, L.; Cayrel, R.
2014nic..confE..23G    Altcode: 2014PoS...204E..23G
  No abstract at ADS

---------------------------------------------------------
Title: High-Resolution Abundance Analysis of Very Metal-Poor R-I Stars
Authors: Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite,
   F.; Beers, T.; Caffau, E.; Bonifacio, P.; Cayrel, R.; Francois, P.;
   Schatz, H.; Wanajo, S.
2014nic..confE.157S    Altcode: 2014PoS...204E.157S
  No abstract at ADS

---------------------------------------------------------
Title: Isotope spectroscopy
Authors: Caffau, E.; Steffen, M.; Bonifacio, P.; Ludwig, H. -G.;
   Monaco, L.; Lo Curto, G.; Kamp, I.
2014AN....335...59C    Altcode: 2013arXiv1310.6058C
  The measurement of isotopic ratios provides a privileged insight
  both into nucleosynthesis and into the mechanisms operating in
  stellar envelopes, such as gravitational settling. In this article,
  we give a few examples of how isotopic ratios can be determined from
  high-resolution, high-quality stellar spectra. We consider examples of
  the lightest elements, H and He, for which the isotopic shifts are very
  large and easily measurable, and examples of heavier elements for which
  the determination of isotopic ratios is more difficult. The presence
  of <SUP>6</SUP>Li in the stellar atmospheres causes a subtle extra
  depression in the red wing of the <SUP>7</SUP>Li 670.7 nm doublet which
  can only be detected in spectra of the highest quality. But even with
  the best spectra, the derived <SUP>6</SUP>Li abundance can only be as
  good as the synthetic spectra used for their interpretation. It is now
  known that 3D non-LTE modelling of the lithium spectral line profiles
  is necessary to account properly for the intrinsic line asymmetry,
  which is produced by convective flows in the atmospheres of cool stars,
  and can mimic the presence of <SUP>6</SUP>Li. We also discuss briefly
  the case of the carbon isotopic ratio in metal-poor stars, and provide a
  new determination of the nickel isotopic ratios in the solar atmosphere.

---------------------------------------------------------
Title: X-shooter GTO: evidence for a population of extremely
    metal-poor, alpha-poor stars
Authors: Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.;
   Spite, M.; Monaco, L.; Plez, B.; Spite, F.; Zaggia, S.; Ludwig,
   H. -G.; Cayrel, R.; Molaro, P.; Randich, S.; Hammer, F.; Hill, V.
2013A&A...560A..15C    Altcode: 2013arXiv1309.4913C
  Context. The extremely metal-poor stars are the direct descendants
  of the first generation stars. They carry the chemical signature
  of the pristine Universe at the time they formed, shortly after the
  Big Bang. <BR /> Aims: We aim to derive information about extremely
  metal-poor stars from their observed spectra. <BR /> Methods: Four
  extremely metal-poor stars were selected from the Sloan Digital Sky
  Survey (SDSS) and observed during the guaranteed observing time of
  X-shooter. The X-shooter spectra were analysed using an automatic code,
  MyGIsFOS, which is based on a traditional analysis method. It makes
  use of a synthetic grid computed from one-dimensional, plane-parallel,
  hydrostatic model atmospheres. <BR /> Results: The low metallicity
  derived from the SDSS spectra is confirmed here. Two kinds of stars
  are found. Two stars are confirmed to be extremely metal-poor, with no
  evidence of any enhancement in carbon. The two other stars are strongly
  enhanced in carbon. We could not derive iron abundance for one of them,
  while [Ca/H] is below -4.5. Two of the stars are members of the rare
  population of extremely metal-poor stars low in alpha elements. <P
  />Based on observations obtained at ESO Paranal Observatory, GTO
  programme 089.D-0039.

---------------------------------------------------------
Title: TOPoS. I. Survey design and analysis of the first sample
Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; François, P.;
   Monaco, L.; Spite, M.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark,
   P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H. -G.; Spite, F.;
   Steffen, M.; Zaggia, S.
2013A&A...560A..71C    Altcode: 2013arXiv1310.6963C
  Context. The metal-weak tail of the metallicity distribution function
  (MDF) of the Galactic Halo stars contains crucial information on the
  formation mode of the first generation of stars. To determine this
  observationally, it is necessary to observe large numbers of extremely
  metal-poor stars. <BR /> Aims: We present here the Turn-Off Primordial
  Stars survey (TOPoS) that is conducted as an ESO Large Programme at the
  VLT. This project has four main goals: (i) to understand the formation
  of low-mass stars in a low-metallicity gas: determine the metal-weak
  tail of the halo MDF below [M/H] = -3.5; in particular, we aim at
  determining the critical metallicity, that is the lowest metallicity
  sufficient for the formation of low-mass stars; (ii) to determine in
  extremely metal-poor stars the relative abundances of the elements that
  are the signature of the massive first stars; (iii) to determine the
  trend of the lithium abundance at the time when the Galaxy formed; and
  (iv) to derive the fraction of C-enhanced extremely metal-poor stars
  with respect to normal extremely metal-poor stars. The large number of
  stars observed in the SDSS provides a good sample of candidate stars
  at extremely low metallicity. <BR /> Methods: Candidates with turn-off
  colours down to magnitude g = 20 were selected from the low-resolution
  spectra of SDSS by means of an automated procedure. X-Shooter has the
  potential of performing the necessary follow-up spectroscopy, providing
  accurate metallicities and abundance ratios for several key elements
  for these stars. <BR /> Results: We present here the stellar parameters
  of the first set of stars. The nineteen stars range in iron abundance
  between -4.1 and -2.9 dex relative to the Sun. Two stars have a high
  radial velocity and, according to our estimate of their kinematics,
  appear to be marginally bound to the Galaxy and are possibly accreted
  from another galaxy. <P />Based on observations obtained at ESO Paranal
  Observatory, GTO programme 189.D-0165(A).

---------------------------------------------------------
Title: Stellar granulation as seen in disk-integrated
    intensity. II. Theoretical scaling relations compared with
    observations
Authors: Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau, E.;
   Campante, T. L.; Davies, G. R.; Kallinger, T.; Lund, M. N.; Mosser,
   B.; Baglin, A.; Mathur, S.; Garcia, R. A.
2013A&A...559A..40S    Altcode: 2013arXiv1309.1488S
  Context. A large set of stars observed by CoRoT and Kepler shows clear
  evidence for the presence of a stellar background, which is interpreted
  to arise from surface convection, i.e., granulation. These observations
  show that the characteristic time-scale (τ<SUB>eff</SUB>) and the
  root-mean-square (rms) brightness fluctuations (σ) associated with the
  granulation scale as a function of the peak frequency (ν<SUB>max</SUB>)
  of the solar-like oscillations. <BR /> Aims: We aim at providing a
  theoretical background to the observed scaling relations based on a
  model developed in Paper I. <BR /> Methods: We computed for each 3D
  model the theoretical power density spectrum (PDS) associated with
  the granulation as seen in disk-integrated intensity on the basis of
  the theoretical model published in Paper I. For each PDS we derived
  the associated characteristic time (τ<SUB>eff</SUB>) and the rms
  brightness fluctuations (σ) and compared these theoretical values with
  the theoretical scaling relations derived from the theoretical model and
  the measurements made on a large set of Kepler targets. <BR /> Results:
  We derive theoretical scaling relations for τ<SUB>eff</SUB> and σ,
  which show the same dependence on ν<SUB>max</SUB> as the observed
  scaling relations. In addition, we show that these quantities also
  scale as a function of the turbulent Mach number (ℳ<SUB>a</SUB>)
  estimated at the photosphere. The theoretical scaling relations
  for τ<SUB>eff</SUB> and σ match the observations well on a
  global scale. Quantitatively, the remaining discrepancies with the
  observations are found to be much smaller than previous theoretical
  calculations made for red giants. <BR /> Conclusions: Our modelling
  provides additional theoretical support for the observed variations
  of σ and τ<SUB>eff</SUB> with ν<SUB>max</SUB>. It also highlights
  the important role of ℳ<SUB>a</SUB> in controlling the properties
  of the stellar granulation. However, the observations made with
  Kepler on a wide variety of stars cannot confirm the dependence
  of our scaling relations on ℳ<SUB>a</SUB>. Measurements of the
  granulation background and detections of solar-like oscillations in a
  statistically sufficient number of cool dwarf stars will be required
  for confirming the dependence of the theoretical scaling relations with
  ℳ<SUB>a</SUB>. <P />Appendices are available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Three-dimensional hydrodynamical CO<SUP>5</SUP>BOLD model
    atmospheres of red giant stars. III. Line formation in the atmospheres
    of giants located close to the base of the red giant branch
Authors: Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig,
   H. -G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.
2013A&A...559A.102D    Altcode: 2013arXiv1310.7791D
  <BR /> Aims: We utilize state-of-the-art three-dimensional (3D)
  hydrodynamical and classical 1D stellar model atmospheres to study
  the influence of convection on the formation properties of various
  atomic and molecular spectral lines in the atmospheres of four red
  giant stars, located close to the base of the red giant branch, RGB
  (T<SUB>eff</SUB> ≈ 5000 K, log g = 2.5), and characterized by four
  different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. <BR /> Methods:
  The role of convection in the spectral line formation is assessed with
  the aid of abundance corrections, i.e., the differences in abundances
  predicted for a given equivalent width of a particular spectral line
  with the 3D and 1D model atmospheres. The 3D hydrodynamical and
  classical 1D model atmospheres used in this study were calculated
  with the CO<SUP>5</SUP>BOLD and 1D LHD codes, respectively. Identical
  atmospheric parameters, chemical composition, equation of state, and
  opacities were used with both codes, therefore allowing a strictly
  differential analysis of the line formation properties in the 3D and 1D
  models. <BR /> Results: We find that for lines of certain neutral atoms,
  such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly
  depend both on the metallicity of a given model atmosphere and the line
  excitation potential, χ. While abundance corrections for all lines of
  both neutral and ionized elements tend to be small at solar metallicity
  (≤±0.1 dex), for lines of neutral elements with low ionization
  potential and low-to-intermediate χ they quickly increase with
  decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In
  all such cases the large abundance corrections are due to horizontal
  temperature fluctuations in the 3D hydrodynamical models. Lines of
  neutral elements with higher ionization potentials (E<SUB>ion</SUB>
  ≳ 10 eV) generally behave very similarly to lines of ionized elements
  characterized by low ionization potentials (E<SUB>ion</SUB> ≲ 6
  eV). In the latter case, the abundance corrections are small (generally,
  ≤±0.1 dex) and are caused by approximately equal contributions
  from the horizontal temperature fluctuations and differences between
  the temperature profiles in the 3D and 1D model atmospheres. Abundance
  corrections of molecular lines are very sensitive to the metallicity of
  the underlying model atmosphere and may be larger (in absolute value)
  than ~-0.5 dex at [M/H] = -3.0 (~-1.5 dex in the case of CO). At fixed
  metallicity and excitation potential, the abundance corrections show
  little variation within the wavelength range studied here, 400-1600
  nm. We also find that an approximate treatment of scattering in the
  3D model calculations (i.e., ignoring the scattering opacity in the
  outer, optically thin, atmosphere) leads to abundance corrections
  that are altered by less than ~0.1 dex, both for atomic and molecular
  (CO) lines, with respect to the model where scattering is treated as
  true absorption throughout the entire atmosphere, with the largest
  differences for the resonance and low-excitation lines. <P />Appendices
  and Figs. 3, 5, 6, 8, 9, 11 are available in electronic form at <A
  href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Granulation properties of giants, dwarfs, and white dwarfs
    from the CIFIST 3D model atmosphere grid
Authors: Tremblay, P. -E.; Ludwig, H. -G.; Freytag, B.; Steffen, M.;
   Caffau, E.
2013A&A...557A...7T    Altcode: 2013arXiv1307.2810T
  Three-dimensional model atmospheres for giants, dwarfs, and white
  dwarfs, computed with the CO5BOLD code and part of the CIFIST grid,
  have been used for spectroscopic and asteroseismic studies. Unlike
  existing plane-parallel 1D structures, these simulations predict
  the spatially and temporally resolved emergent intensity so that
  granulation can be analysed, which provides insights on how convective
  energy transfer operates in stars. The wide range of atmospheric
  parameters of the CIFIST 3D simulations (3600 &lt; T<SUB>eff</SUB>
  (K) &lt; 13 000 and 1 &lt; log g &lt; 9) allows the comparison of
  convective processes in significantly different environments. We
  show that the relative intensity contrast is correlated with both
  the Mach and Péclet numbers in the photosphere. The horizontal size
  of granules varies between 3 and 10 times the local pressure scale
  height, with a tight correlation between the factor and the Mach
  number of the flow. Given that convective giants, dwarfs, and white
  dwarfs cover the same range of Mach and Péclet numbers, we conclude
  that photospheric convection operates in a very similar way in those
  objects. <P />Table 1 and Appendix A are available in electronic form
  at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Reanalysis of the FEROS observations of HIP 11952
Authors: Müller, A.; Roccatagliata, V.; Henning, Th.; Fedele, D.;
   Pasquali, A.; Caffau, E.; Rodríguez-Ledesma, M. V.; Mohler-Fischer,
   M.; Seemann, U.; Klement, R. J.
2013A&A...556A...3M    Altcode: 2013arXiv1307.5072M
  <BR /> Aims: We reanalyze FEROS observations of the star HIP 11952 to
  reassess the existence of the proposed planetary system. <BR /> Methods:
  The radial velocity of the spectra were measured by cross-correlating
  the observed spectrum with a synthetic template. We also analyzed a
  large dataset of FEROS and HARPS archival data of the calibrator HD
  10700 spanning over more than five years. We compared the barycentric
  velocities computed by the FEROS and HARPS pipelines. <BR /> Results:
  The barycentric correction of the FEROS-DRS pipeline was found to
  be inaccurate and to introduce an artificial one-year period with a
  semi-amplitude of 62 m s<SUP>-1</SUP>. Thus the reanalysis of the
  FEROS data does not support the existence of planets around HIP
  11952. <P />Based on data products from observations made with ESO
  Telescopes at the La Silla Paranal Observatory under programme ID
  60.A-9036, 072.C-0488, 072.C-0513, 073.C-0784, 074.C-0012, 074.D-0380,
  075.C-0234, 075.D-0760, 076.C-0073, 076.C-0878, 077.A-9009, 077.C-0138,
  077.C-0192, 077.C-0530, 078.A-9048, 078.C-0378, 078.C-0833, 079.A-9006,
  079.A-9017, 079.C-0170, 079.C-0681, 080.A-9005, 080.A-9021, 080.C-0032,
  082.A-9011, 082.C-0315, 083.A-9011, 084.A-9003, 084.A-9003, 084.A-9004,
  084.A-9004, 084.A-9011, 085.A-9027, 085.A-9027, 085.C-0557, 086.A-9006,
  086.A-9006, 086.A-9014, 086.A-9014, 086.D-0460, 087.A-9014, 087.C-0476,
  088.A-9007, 088.A-9007.Appendices are available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: The photospheric solar oxygen project. II. Non-concordance
    of the oxygen abundance derived from two forbidden lines
Authors: Caffau, E.; Ludwig, H. -G.; Malherbe, J. -M.; Bonifacio,
   P.; Steffen, M.; Monaco, L.
2013A&A...554A.126C    Altcode: 2013arXiv1305.1763C
  Context. In the Sun, the two forbidden [O i] lines at 630 and 636 nm
  were previously found to provide discrepant oxygen abundances. <BR
  /> Aims: We investigate whether this discrepancy is peculiar to the
  Sun or whether it is also observed in other stars. <BR /> Methods:
  We make use of high-resolution, high signal-to-noise ratio spectra of
  four dwarf to turn-off stars, five giant stars, and one sub-giant star
  observed with THEMIS, HARPS, and UVES to investigate the coherence of
  the two lines. <BR /> Results: The two lines provide oxygen abundances
  that are consistent, within observational errors, in all the giant
  stars examined by us. On the other hand, for the two dwarf stars for
  which a measurement was possible, for Procyon, and for the sub-giant
  star Capella, the 636 nm line provides systematically higher oxygen
  abundances, as already seen for the Sun. <BR /> Conclusions: The
  only two possible reasons for the discrepancy are a serious error
  in the oscillator strength of the Ni i line blending the 630 nm line
  or the presence of an unknown blend in the 636 nm line, which makes
  the feature stronger. The CN lines blending the 636 nm line cannot
  be responsible for the discrepancy. The Ca i autoionisation line, on
  the red wing of which the 636 nm line is formed, is not well modelled
  by our synthetic spectra. However, a better reproduction of this line
  would result in even higher abundances from the 636 nm, thus increasing
  the discrepancy. <P />Based on observations collected at ESO Paranal
  Observatory, Programme 182.D-5053(A).

---------------------------------------------------------
Title: Carbon-enhanced metal-poor stars: the most pristine objects?
Authors: Spite, M.; Caffau, E.; Bonifacio, P.; Spite, F.; Ludwig,
   H. -G.; Plez, B.; Christlieb, N.
2013A&A...552A.107S    Altcode: 2013arXiv1303.1791S
  Context. Carbon-enhanced metal-poor stars (CEMP) form a significant
  proportion of the metal-poor stars, their origin is not well understood,
  and this carbon-enhancement appears in stars that exhibit different
  abundance patterns. <BR /> Aims: Three very metal-poor C-rich turnoff
  stars were selected from the SDSS survey, observed with the ESO VLT
  (UVES) to precisely determine the element abundances. In turnoff
  stars (unlike giants) the carbon abundance has not been affected by
  mixing with deep layers and is therefore easier to interpret. <BR />
  Methods: The analysis was performed with one dimensional (1D) local
  thermodynamical equilibrium (LTE) static model atmospheres. When
  available, non-LTE corrections were applied to the classical LTE
  abundances. The 3D effects on the CH and CN molecular bands were
  computed using hydrodynamical simulations of the stellar atmosphere
  (CO<SUP>5</SUP>BOLD) and are found to be very important. <BR />
  Results: To facilitate a comparison with previous results, only
  1D abundances are used in the discussion. The abundances (or upper
  limits) of the elements enable us to place these stars in different
  CEMP classes. The carbon abundances confirm the existence of a plateau
  at A(C)= 8.25 for [Fe/H] ≥ -3.4. The most metal-poor stars ([Fe/H]
  &lt; -3.4) have significantly lower carbon abundances, suggesting a
  lower plateau at A(C) ≈ 6.5. Detailed analyses of a larger sample
  of very low metallicity carbon-rich stars are required to confirm
  (or refute) this possible second plateau and specify the behavior of
  the CEMP stars at very low metallicity. <P />Based on observations
  obtained with the ESO Very Large Telescope at Paranal Observatory,
  Chile (ID 087.D-0123(A).Table 5 is available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Fluorine Abundances of Galactic Low-metallicity Giants
Authors: Li, H. N.; Ludwig, H. -G.; Caffau, E.; Christlieb, N.;
   Zhao, G.
2013ApJ...765...51L    Altcode: 2013arXiv1302.3928L
  With abundances and 2σ upper limits of fluorine (F) in seven metal-poor
  field giants, nucleosynthesis of stellar F at low metallicity is
  discussed. The measurements are derived from the HF(1-0) R9 line at
  23358 Å using near-infrared K-band high-resolution spectra obtained
  with CRIRES at the Very Large Telescope. The sample reaches lower
  metallicities than previous studies on F of field giants, ranging from
  [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model
  atmospheres on the derived F and O abundances are quantitatively
  estimated and shown to be insignificant for the program stars. The
  observed F yield in the form of [F/O] is compared with two sets of
  Galactic chemical evolution models, which quantitatively demonstrate
  the contribution of Type II supernova (SN II) ν-process and asymptotic
  giant branch/Wolf-Rayet stars. It is found that at this low-metallicity
  region, models cannot well predict the observed distribution of
  [F/O], while the observations are better fit by models considering
  an SN II ν-process with a neutrino energy of E <SUB>ν</SUB> = 3
  × 10<SUP>53</SUP> erg. Our sample contains HD 110281, a retrograde
  orbiting low-α halo star, showing a similar F evolution as globular
  clusters. This supports the theory that such halo stars are possibly
  accreted from dwarf galaxy progenitors of globular clusters in the halo.

---------------------------------------------------------
Title: Is the Sun Lighter than the Earth? Isotopic CO in the
    Photosphere, Viewed through the Lens of Three-dimensional Spectrum
    Synthesis
Authors: Ayres, Thomas R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.;
   Wedemeyer-Böhm, S.
2013ApJ...765...46A    Altcode: 2013arXiv1301.5281A
  We consider the formation of solar infrared (2-6 μm) rovibrational
  bands of carbon monoxide (CO) in CO5BOLD 3D convection models,
  with the aim of refining abundances of the heavy isotopes of carbon
  (<SUP>13</SUP>C) and oxygen (<SUP>18</SUP>O, <SUP>17</SUP>O), to
  compare with direct capture measurements of solar wind light ions
  by the Genesis Discovery Mission. We find that previous, mainly 1D,
  analyses were systematically biased toward lower isotopic ratios (e.g.,
  R <SUB>23</SUB> ≡ <SUP>12</SUP>C/<SUP>13</SUP>C), suggesting an
  isotopically "heavy" Sun contrary to accepted fractionation processes
  that were thought to have operated in the primitive solar nebula. The
  new 3D ratios for <SUP>13</SUP>C and <SUP>18</SUP>O are R <SUB>23</SUB>
  = 91.4 ± 1.3 (R <SUB>⊕</SUB> = 89.2) and R <SUB>68</SUB> =
  511 ± 10 (R <SUB>⊕</SUB> = 499), where the uncertainties are
  1σ and "optimistic." We also obtained R <SUB>67</SUB> = 2738 ±
  118 (R <SUB>⊕</SUB> = 2632), but we caution that the observed
  <SUP>12</SUP>C<SUP>17</SUP>O features are extremely weak. The new solar
  ratios for the oxygen isotopes fall between the terrestrial values and
  those reported by Genesis (R <SUB>68</SUB> = 530, R <SUB>67</SUB> =
  2798), although including both within 2σ error flags, and go in the
  direction favoring recent theories for the oxygen isotope composition
  of Ca-Al inclusions in primitive meteorites. While not a major focus
  of this work, we derive an oxygen abundance, epsilon<SUB>O</SUB> ~
  603 ± 9 ppm (relative to hydrogen; log epsilon ~ 8.78 on the H =
  12 scale). The fact that the Sun is likely lighter than the Earth,
  isotopically speaking, removes the necessity of invoking exotic
  fractionation processes during the early construction of the inner
  solar system.

---------------------------------------------------------
Title: Velocity and abundance precisions for future high-resolution
spectroscopic surveys: A study for 4MOST
Authors: Caffau, E.; Koch, A.; Sbordone, L.; Sartoretti, P.; Hansen,
   C. J.; Royer, F.; Leclerc, N.; Bonifacio, P.; Christlieb, N.; Ludwig,
   H. -G.; Grebel, E. K.; de Jong, R. S.; Chiappini, C.; Walcher, J.;
   Mignot, S.; Feltzing, S.; Cohen, M.; Minchev, I.; Helmi, A.; Piffl,
   T.; Depagne, E.; Schnurr, O.
2013AN....334..197C    Altcode: 2012arXiv1211.1406C
  In preparation for future, large-scale, multi-object, high-resolution
  spectroscopic surveys of the Galaxy, we present a series of tests
  of the precision in radial velocity and chemical abundances that any
  such project can achieve at a 4 m class telescope. We briefly discuss
  a number of science cases that aim at studying the chemo-dynamical
  history of the major Galactic components (bulge, thin and thick disks,
  and halo) - either as a follow-up to the Gaia mission or on their own
  merits. Based on a large grid of synthetic spectra that cover the full
  range in stellar parameters of typical survey targets, we devise an
  optimal wavelength range and argue for a moderately high-resolution
  spectrograph. As a result, the kinematic precision is not limited by
  any of these factors, but will practically only suffer from systematic
  effects, easily reaching uncertainties &lt;1 km s<SUP>-1</SUP>. Under
  realistic survey conditions (namely, considering stars brighter than
  r=16 mag with reasonable exposure times) we prefer an ideal resolving
  power of R∼20 000 on average, for an overall wavelength range (with
  a common two-arm spectrograph design) of [395;456.5] nm and [587;673]
  nm. We show for the first time on a general basis that it is possible
  to measure chemical abundance ratios to better than 0.1 dex for many
  species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu)
  and to an accuracy of about 0.2 dex for other species such as Zr, La,
  and Sr. While our feasibility study was explicitly carried out for
  the 4MOST facility, the results can be readily applied to and used
  for any other conceptual design study for high-resolution spectrographs.

---------------------------------------------------------
Title: Amplitudes of solar-like oscillations in red giants: Departures
    from the quasi-adiabatic approximation
Authors: Samadi, R.; Belkacem, K.; Dupret, M. -A.; Goupil, M. J.;
   Ludwig, H. -G.; Barban, C.; Baudin, F.; Caffau, E.
2013EPJWC..4303008S    Altcode:
  CoRoT and Kepler measurements reveal us that the amplitudes of
  solar-like oscillations detected in red giant stars scale from stars
  to stars in a characteristic way. This observed scaling relation
  is not yet fully understood but constitutes potentially a powerful
  diagnostic about mode physics. Quasi-adiabatic theoretical scaling
  relations in terms of mode amplitudes result in systematic and large
  differences with the measurements performed for red giant stars. The
  use of a non-adiabatic intensity-velocity relation derived from a
  non-adiabatic pulsation code significantly reduces the discrepancy
  with the CoRoT measurements. The origin of the remaining difference
  is still unknown. Departure from adiabatic eigenfunction is a very
  likely explanation that is investigated in the present work using a
  3D hydrodynamical model of the surface layers of a representative red
  giant star.

---------------------------------------------------------
Title: Isotopic CO in the Solar Photosphere, Viewed Through the Lens
    of 3D Spectrum Synthesis
Authors: Ayres, T. R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.;
   Wedemeyer-Bohm, S.
2013LPI....44.3038A    Altcode: 2013LPICo1719.3038A
  New analyses of CO isotopologue abundances in the solar photosphere
  are now consistent with Genesis solar wind results, although ^17O
  error bars are still large.

---------------------------------------------------------
Title: ELT-MOS White Paper: Science Overview &amp; Requirements
Authors: Evans, Chris; Puech, Mathieu; Barbuy, Beatriz; Bastian, Nate;
   Bonifacio, Piercarlo; Caffau, Elisabetta; Cuby, Jean-Gabriel; Dalton,
   Gavin; Davies, Ben; Dunlop, Jim; Flores, Hector; Hammer, Francois;
   Kaper, Lex; Lemasle, Bertrand; Morris, Simon; Pentericci, Laura;
   Petitjean, Patrick; Schaerer, Daniel; Telles, Eduardo; Welikala,
   Niraj; Ziegler, Bodo
2013arXiv1303.0029E    Altcode:
  The workhorse instruments of the 8-10m class observatories have become
  their multi-object spectrographs (MOS), providing comprehensive
  follow-up to both ground-based and space-borne imaging. With the
  advent of deeper imaging surveys from, e.g., the HST and VISTA, there
  are a plethora of spectroscopic targets which are already beyond the
  sensitivity limits of current facilities. This wealth of targets
  will grow even more rapidly in the coming years, e.g., after the
  completion of ALMA, the launch of the JWST and Euclid, and the advent
  of the LSST. Thus, one of the key requirements underlying plans for
  the next generation of ground-based telescopes, the Extremely Large
  Telescopes (ELTs), is for even greater sensitivity for optical and
  infrared spectroscopy. Here we revisit the scientific motivation for
  a MOS capability on the European ELT, combining updated elements of
  science cases advanced from the Phase A instrument studies with new
  science cases which draw on the latest results and discoveries. These
  science cases address key questions related to galaxy evolution over
  cosmic time, from studies of resolved stellar populations in nearby
  galaxies out to observations of the most distant galaxies, and are
  used to identify the top-level requirements on an 'E-ELT/MOS'. We
  argue that several of the most compelling ELT science cases demand MOS
  observations, in highly competitive areas of modern astronomy. Recent
  technical studies have demonstrated that important issues related to
  e.g. sky subtraction and multi-object AO can be solved, making fast-
  track development of a MOS instrument feasible. To ensure that ESO
  retains world leadership in exploring the most distant objects in the
  Universe, galaxy evolution and stellar populations, we are convinced
  that a MOS should have high priority in the instrumentation plan for
  the E-ELT.

---------------------------------------------------------
Title: Convective line shifts for the Gaia RVS from the CIFIST 3D
    model atmosphere grid
Authors: Allende Prieto, C.; Koesterke, L.; Ludwig, H. -G.; Freytag,
   B.; Caffau, E.
2013A&A...550A.103A    Altcode: 2013arXiv1301.3703A
  Context. To derive space velocities of stars along the line of sight
  from wavelength shifts in stellar spectra requires accounting for a
  number of second-order effects. For most stars, gravitational redshifts,
  convective blueshifts, and transverse stellar motion are the dominant
  contributors. <BR /> Aims: We provide theoretical corrections for the
  net velocity shifts due to convection expected for the measurements
  from the Gaia Radial Velocity Spectrometer (RVS). <BR /> Methods: We
  used a set of three-dimensional time-dependent simulations of stellar
  surface convection computed with CO5BOLD to calculate spectra of
  late-type stars in the Gaia RVS range and to infer the net velocity
  offset that convective motions will induce in radial velocities
  derived by cross-correlation. <BR /> Results: The net velocity shifts
  derived by cross-correlation depend both on the wavelength range and
  spectral resolution of the observations. Convective shifts for Gaia
  RVS observations are less than 0.1 km s<SUP>-1</SUP> for late-K-type
  stars, and they increase with stellar mass, reaching about 0.3 km
  s<SUP>-1</SUP> or more for early F-type dwarfs. This tendency is the
  result of an increase with effective temperature in both temperature
  and velocity fluctuations in the line-forming region. Our simulations
  also indicate that the net RVS convective shifts can be positive
  (i.e. redshifts) in some cases. Overall, the blueshifts weaken
  slightly with increasing surface gravity, and are enhanced at low
  metallicity. Gravitational redshifts amount to 0.7 km s<SUP>-1</SUP>
  and dominate convective blueshifts for dwarfs, but become much
  weaker for giants. <P />Appendix A is available in electronic form
  at <A href="http://www.aanda.org">http://www.aanda.org</A>Model
  spectra from the 1D and 3D calculations are only available
  in electronic form at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A><A
  href="http://130.79.128.5">130.79.128.5</A> or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A103">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A103</A>

---------------------------------------------------------
Title: First stars. XVI. HST/STIS abundances of heavy elements in
    the uranium-rich metal-poor star CS 31082-001
Authors: Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau,
   E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen,
   J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François,
   P.; Molaro, P.
2013A&A...550A.122S    Altcode: 2012arXiv1212.0211S
  Context. The origin and site(s) of the r-process nucleosynthesis is(are)
  still not known with certainty, but complete, detailed r-element
  abundances offer our best clues. The few extremely metal-poor (EMP)
  stars with large r-element excesses allow us to study the r-process
  signatures in great detail, with minimal interference from later stages
  of Galactic evolution. CS 31082-001 is an outstanding example of the
  information that can be gathered from these exceptional stars. <BR />
  Aims: Here we aim to complement our previous abundance determinations
  for third-peak r-process elements with new and improved results for
  elements of the first and second r-process peaks from near-UV HST/STIS
  and optical UVES spectra. These results should provide new insight
  into the nucleosynthesis of the elements beyond iron. <BR /> Methods:
  The spectra were analyzed by a consistent approach based on an OSMARCS
  LTE model atmosphere and the Turbospectrum spectrum synthesis code
  to derive abundances of heavy elements in CS 31082-001, and using
  updated oscillator strengths from the recent literature. Synthetic
  spectra were computed for all lines of the elements of interest
  to check for proper line intensities and possible blends in these
  crowded spectra. Our new abundances were combined with the best
  previous results to provide reliable mean abundances for the first
  and second-peak r-process elements. <BR /> Results: We present new
  abundances for 23 neutron-capture elements, 6 of which - Ge, Mo,
  Lu, Ta, W, and Re - have not been reported before. This makes CS
  31082-001 the most completely studied r-II star, with abundances for
  a total of 37 neutron-capture elements. We also present the first
  NLTE+3D abundance of lead in this star, further constraining the
  nature of the r-process. <P />Based on observations made with the
  NASA/ESA Hubble Space Telescope (HST) through the Space Telescope
  Science Institute, operated by the Association of Universities for
  Research in Astronomy, Inc., under NASA contract NAS5-26555; and
  with the ESO Very Large Telescope at Paranal Observatory, Chile;
  Progr. ID 165.N-0276.Appendix A is available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Three-dimensional hydrodynamical CO<SUP>5</SUP>BOLD model
    atmospheres of red giant stars. II. Spectral line formation in the
    atmosphere of a giant located near the RGB tip
Authors: Kučinskas, A.; Steffen, M.; Ludwig, H. -G.; Dobrovolskas,
   V.; Ivanauskas, A.; Klevas, J.; Prakapavičius, D.; Caffau, E.;
   Bonifacio, P.
2013A&A...549A..14K    Altcode: 2012arXiv1211.7313K
  <BR /> Aims: We investigate the role of convection in the formation of
  atomic and molecular lines in the atmosphere of a red giant star. For
  this purpose we study the formation properties of spectral lines that
  belong to a number of astrophysically important tracer elements,
  including neutral and singly ionized atoms (Li I, N I, O I, Na I,
  Mg I, Al I, Si I, Si II, S I, K I, Ca I, Ca II, Ti I, Ti II, Cr I,
  Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Zn I, Sr II, Ba II, and Eu II),
  and molecules (CH, CO, C<SUB>2</SUB>, NH, CN, and OH). <BR /> Methods:
  We focus our investigation on a prototypical red giant located close to
  the red giant branch (RGB) tip (T<SUB>eff</SUB> = 3660 K, log g = 1.0,
  [M/H] = 0.0). We used two types of model atmospheres, 3D hydrodynamical
  and classical 1D, calculated with the CO<SUP>5</SUP>BOLD and LHD
  stellar atmosphere codes, respectively. Both codes share the same
  atmospheric parameters, chemical composition, equation of state,
  and opacities, which allowed us to make a strictly differential
  comparison between the line formation properties predicted in 3D and
  1D. The influence of convection on the spectral line formation was
  assessed with the aid of 3D-1D abundance corrections, which measure
  the difference between the abundances of chemical species derived
  with the 3D hydrodynamical and 1D classical model atmospheres. <BR
  /> Results: We find that convection plays a significant role in
  the spectral line formation in this particular red giant. The
  derived 3D-1D abundance corrections rarely exceed ± 0.1 dex when
  lines of neutral atoms and molecules are considered, which is in
  line with the previous findings for solar-metallicity red giants
  located on the lower RGB. The situation is different with lines that
  belong to ionized atoms, or to neutral atoms with high ionization
  potential. In both cases, the corrections for high-excitation lines
  (χ &gt; 8 eV) may amount to Δ<SUB>3D-1D</SUB> ~ -0.4 dex. The
  3D-1D abundance corrections generally show a significant wavelength
  dependence; in most cases they are smaller in the near-infrared, at
  1600-2500 nm. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Micro- and macroturbulence predictions from CO5BOLD 3D stellar
    atmospheres .
Authors: Steffen, M.; Caffau, E.; Ludwig, H. -G.
2013MSAIS..24...37S    Altcode: 2013arXiv1306.4307S
  We present an overview of the current status of our efforts to derive
  the microturbulence and macroturbulence parameters (xi_mic and xi_mac)
  from the CIFIST grid of CO5BOLD 3D model atmospheres as a function
  of the basic stellar parameters T_{eff}, log g, and [M/H]. The latest
  results for the Sun and Procyon show that the derived microturbulence
  parameter depends significantly on the numerical resolution of the
  underlying 3D simulation, confirming that `low-resolution' models tend
  to underestimate the true value of xi_mic . Extending the investigation
  to 12 further simulations with different T_{eff}, log g, and [M/H],
  we obtain a first impression of the predicted trend of xi_mic over the
  Hertzsprung-Russell diagram: in agreement with empirical evidence,
  microturbulence increases towards higher effective temperature and
  lower gravity. The metallicity dependence of xi_mic must be interpreted
  with care, since it also reflects the deviation between the 1D and 3D
  photospheric temperature stratifications that increases systematically
  towards lower [M/H].

---------------------------------------------------------
Title: CO5BOLD workshop 2012
Authors: Caffau, E.; Sbordone, L.
2013MSAIS..24....3C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The influence of convection on the atmospheric structures
    and observable properties of red giant stars.
Authors: Kučinskas, A.; Ludwig, H. -G.; Steffen, M.; Dobrovolskas,
   V.; Klevas, J.; Prakapavičius, D.; Caffau, E.; Bonifacio, P.
2013MSAIS..24...68K    Altcode: 2013arXiv1305.3441K
  During the recent years significant progress has been made in the
  modeling of red giant atmospheres with the aid of 3D hydrodynamical
  model atmosphere codes. In this contribution we provide an overview of
  selected results obtained in this context by utilizing 3D hydrodynamical
  CO<SUP>5</SUP>BOLD stellar model atmospheres. Hydrodynamical simulations
  show that convective motions lead to significant differences in the
  atmospheric structures of red giants with respect to those predicted by
  the classical 1D model atmospheres. Results of these simulations also
  show that in certain cases 1D models fail to reproduce even the average
  properties of the 3D hydrodynamical models, such as P-T profiles. Large
  horizontal temperature fluctuations in the 3D model atmospheres, as well
  as differences between the temperature profiles of the average xtmean
  {3D} and 1D models, lead to large discrepancies in the strengths of
  spectral lines predicted by the 3D and 1D model atmospheres. This is
  especially important in models at lowest metallicities ([M/H]&lt;-2.0)
  where the 3D-1D abundance differences may reach (or even exceed) -0.6
  dex for lines of neutral atoms and molecules. We also discuss several
  simplifications and numerical aspects involved in the present 3D
  hydrodynamical modeling of red giant atmospheres, and briefly address
  several issues where urgent progress may be needed.

---------------------------------------------------------
Title: Molecular bands in extremely metal-poor stars: Granulation
    effects
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Spite, M.; Plez,
   B.; Steffen, M.; Spite, F.
2013MSAIS..24..138B    Altcode: 2013arXiv1305.2065B
  The bands of diatomic molecules are important abundance indicators,
  especially in metal-poor stars, where they are still measurable in
  metallicity regimes where the atomic lines of their constituting
  metallic elements have become vanishingly small. In order to use
  them for abundance determinations it is imperative to understand the
  formation of these bands. In this contribution we report on our results
  obtained using CO^5{BOLD} hydrodynamical simulations. Some effects
  that are qualitatively different from what found in 1D computations
  are highlighted. Due to the large number of lines that form the bands,
  their spectrum synthesis is computationally challenging. We discuss
  some of the computational strategies we employed to parallelise the
  computation and possible future developments.

---------------------------------------------------------
Title: Signs of atmospheric inhomogeneities  in cool stars from
    1D-NLTE analysis of iron lines
Authors: Mashonkina, L.; Ludwig, H. -G.; Korn, A.; Sitnova, T.;
   Caffau, E.
2013MSAIS..24..120M    Altcode: 2013arXiv1303.0357M
  For the well studied halo star HD 122563 and the four stars in the
  globular cluster NGC 6397, we determine NLTE abundances of iron
  using classical plane-parallel model atmospheres. Each star reveals
  a discrepancy in abundances between the Fe I lines arising from the
  ground state and the other Fe I lines, in qualitative agreement with
  the 3D-LTE line formation predictions, however, the magnitude of the
  observed effect is a factor of 2 smaller compared with the predicted
  one. When ignoring the Fe I low-excitation lines, the NLTE abundances
  from the two ionization stages, Fe I and Fe II are consistent in each
  investigated star. For the subgiants in NGC 6397, this is only true when
  using the cooler effective temperature scale of \citet{Alonso1999}. We
  also present full 3D-LTE line formation calculations for some selected
  iron lines in the solar and metal-poor 4480/2/-3 models and NLTE
  calculations with the corresponding spatial and temporal average
  &lt;{3D}&gt; models. The use of the &lt;{3D}&gt; models is justified
  only for particular Fe I lines in particular physical conditions. Our
  NLTE calculations reproduce well the centre-to-limb variation of
  the solar Fe I 7780 Å line, but they are unsuccessful for Fe I 6151
  Å. The metal-poor &lt;{3D}&gt; model was found to be adequite for
  the strong Fe I 5166 Å (E_exc = 0) line, but inadequite in all other
  investigated cases.

---------------------------------------------------------
Title: Solar carbon monoxide: poster child for 3D effects .
Authors: Ayres, T. R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.;
   Wedemeyer-Böhm, S.
2013MSAIS..24...85A    Altcode:
  Photospheric infrared (2-6 mu m) rovibrational bands of carbon
  monoxide (CO) provide a tough test for 3D convection models such as
  those calculated using CO5BOLD. The molecular formation is highly
  temperature-sensitive, and thus responds in an exaggerated way to
  thermal fluctuations in the dynamic atmosphere. CO, itself, is an
  important tracer of the oxygen abundance, a still controversial
  issue in solar physics; as well as the heavy isotopes of carbon
  (<SUP>13</SUP>C) and oxygen (<SUP>18</SUP>O, <SUP>17</SUP>O), which,
  relative to terrestrial values, are fingerprints of fractionation
  processes that operated in the primitive solar nebula. We show how 3D
  models impact the CO line formation, and add in a second constraint
  involving the near-UV Ca RIPTSIZE II line wings, which also are highly
  temperature sensitive, but in the opposite sense to the molecules. We
  find that our reference CO5BOLD snapshots appear to be slightly too
  cool on average in the outer layers of the photosphere where the CO
  absorptions and Ca RIPTSIZE II wing emissions arise. We show, further,
  that previous 1D modeling was systematically biased toward higher
  oxygen abundances and lower isotopic ratios (e.g., R<SUB>23</SUB>equiv
  <SUP>12</SUP>C/<SUP>13</SUP>C), suggesting an isotopically “heavy”
  Sun contrary to direct capture measurements of solar wind light ions
  by the Genesis Discovery Mission. New 3D ratios for the oxygen isotopes
  are much closer to those reported by Genesis, and the associated oxygen
  abundance from CO now is consistent with the recent Caffau et al. study
  of atomic oxygen. Some lingering discrepancies perhaps can be explained
  by magnetic bright points. Solar CO demonstrates graphically the wide
  gulf that can occur between a 3D analysis and 1D.

---------------------------------------------------------
Title: Oxygen spectral line synthesis: 3D non-LTE with
    CO<SUP>5</SUP>BOLD hydrodynamical model atmospheres.
Authors: Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig,
   H. -G.; Freytag, B.; Caffau, E.; Cayrel, R.
2013MSAIS..24..111P    Altcode: 2013arXiv1303.2016P
  In this work we present first results of our current project aimed at
  combining the 3D hydrodynamical stellar atmosphere approach with non-LTE
  (NLTE) spectral line synthesis for a number of key chemical species. We
  carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm
  triplet, using a modified and improved version of our NLTE3D package to
  calculate departure coefficients for the atomic levels of oxygen in a
  CO<SUP>5</SUP>BOLD 3D hydrodynamical solar model atmosphere. Spectral
  line synthesis was subsequently performed with the Linfor3D code. In
  agreement with previous studies, we find that the lines of the
  oxygen triplet produce deeper cores under NLTE conditions, due to
  the diminished line source function in the line forming region. This
  means that the solar oxygen IR 777 nm lines should be stronger in NLTE,
  leading to negative 3D NLTE-LTE abundance corrections. Qualitatively
  this result would support previous claims for a relatively low solar
  oxygen abundance. Finally, we outline several further steps that need
  to be taken in order to improve the physical realism and numerical
  accuracy of our current 3D-NLTE calculations.

---------------------------------------------------------
Title: r-process abundances in the EMP star CS 31082-001 using
    STIS/HST
Authors: Siqueira-Mello, C., Jr.; Spite, M.; Barbuy, B.; Spite, F.;
   Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.;
   Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio,
   P.; François, P.; Molaro, P.
2012sf2a.conf..129S    Altcode:
  We present a brief revision of the origin of heavy elements and the role
  of abundances in extremely metal-poor (EMP) stars, in providing improved
  constraints on the nature of the early nucleosynthesis mechanisms. Heavy
  element abundances in the EMP uranium-rich star CS 31082-001 based
  mainly on near-UV spectra from STIS/HST are presented. With new
  abundances for 9 n-elements not available in previous works (Ge, Mo,
  Lu, Ta, W, Re, Pt, Au, and Bi) this work makes CS 31082-001 the most
  completely well studied r-II object, with a total of 37 detections
  of n-capture elements. These results should be useful for a better
  characterisation of the neutron exposure(s) that produced the r-process
  elements in this star, as well as a guide for improving nuclear data
  and astrophysical site modelling.

---------------------------------------------------------
Title: Constraining the Milky Way thick disk formation: Chemical
    characterization of the thick disk outside of the solar neighbourhood
Authors: Posbic, H.; Katz, D.; Haywood, M.; Bonifacio, P.; Caffau,
   E.; Gomez, A.; Sbordone, L.; Arenou, F.; Royer, F.
2012sf2a.conf..103P    Altcode:
  The formation of the Milky Way disk is still an open question. Many
  scenarios are proposed. Different formation scenarios predict different
  disk chemical trends. This work aims to chemically characterize
  the Milky Way disk inside and outside the solar neighbourhood, to
  better constrain its formation scenario. This is possible thanks to
  high resolution spectra of 200 disk stars observed using the Giraffe
  spectrograph on the Very Large Telescope (VLT). They were selected to
  have galactic altitudes |Z| that cover both the thin and thick disk
  (|Z| up to 2 kpc). The new automatic spectra analysis software SPADES
  (Stellar PArameters DEtermination Software, Posbic et al. 2012) was
  used to determine the stellar parameters, and most importantly, the
  elemental abundances of these stars. The distances of these stars were
  also determined. The metallicity distribution function of the disk
  using this sample was calculated. It showed a large contribution of
  the thick disk stars and a smooth transition at the metallicity of the
  thick disk/halo interface. The vertical behaviour of the metallicity
  distribution function was also studied. A vertical metallicity gradient
  in the disk of partial [Fe/H] / partial |Z| = -0.19 ± 0.14 dex/kpc was
  marginally detected at the 1.4 sigma level. The [Ti/Fe] and [Ca/Fe]
  vs [Fe/H] trends for the stars are determined. The main result of
  the analysis is that the trends of [Ca/Fe] vs [Fe/H] and [Ti/Fe] vs
  [Fe/H] show no significant difference close (i.e. |Z| leq 1 kpc) and
  farther away (1 &lt; |Z| &lt; 2.5 kpc) from the Galactic plane. This
  suggests that thick disk gas and stars have been enriched by the same
  proportion of type II and type I super-novae from the galactic plane
  up to at least 2.5 kpc. These results support thick disk formation
  scenarios like collapse or gas-rich accretion and disfavour a thick
  disk formed of stars captured during a merger event.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Model 1D (LHD) and 3D (CO5BOLD)
    spectra (Allende Prieto+, 2013)
Authors: Allende Prieto, C.; Koesterke, L. Ludwig H. -G.; Freytag,
   B.; Caffau, E.
2012yCat..35500103A    Altcode: 2012yCat..35509103A
  Model spectral fluxes for late-type stars computed from 3D
  hydrodynamical simulations of surface convection performed with the
  CO5BOLD code. Their 1D hydrostatic counterparts are included, based on
  the LHD code, sharing the same microphysics as the CO5BOLD models. The
  fluxes for both the 3D and 1D models are calculated with the same
  opacities and radiative transfer code (ASSET). <P />(6 data files).

---------------------------------------------------------
Title: 4MOST: 4-metre multi-object spectroscopic telescope
Authors: de Jong, Roelof S.; Bellido-Tirado, Olga; Chiappini,
   Cristina; Depagne, Éric; Haynes, Roger; Johl, Diana; Schnurr,
   Olivier; Schwope, Axel; Walcher, Jakob; Dionies, Frank; Haynes,
   Dionne; Kelz, Andreas; Kitaura, Francisco S.; Lamer, Georg; Minchev,
   Ivan; Müller, Volker; Nuza, Sebastián. E.; Olaya, Jean-Christophe;
   Piffl, Tilmann; Popow, Emil; Steinmetz, Matthias; Ural, Ugur; Williams,
   Mary; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji,
   Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.;
   King, Dave; McMahon, Richard G.; Koposov, Sergey; Parry, Ian R.; Sun,
   David; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe, Mirko;
   Lizon, Jean-Louis; Vincenzo, Mainieri; Amans, Jean-Philippe; Bonifacio,
   Piercarlo; Cohen, Mathieu; Francois, Patrick; Jagourel, Pascal; Mignot,
   Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender, Ralf; Grupp,
   Frank; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard;
   Böhringer, Hans; Boller, Thomas; Bongiorno, Angela; Brusa, Marcella;
   Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal; Salvato, Mara; Pragt,
   Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit; Roelfsema, Ronald;
   Dalton, Gavin B.; Middleton, Kevin F.; Tosh, Ian A.; Boeche, Corrado;
   Caffau, Elisabetta; Christlieb, Norbert; Grebel, Eva K.; Hansen,
   Camilla; Koch, Andreas; Ludwig, Hans-G.; Quirrenbach, Andreas;
   Sbordone, Luca; Seifert, Walter; Thimm, Guido; Trifonov, Trifon;
   Helmi, Amina; Trager, Scott C.; Feltzing, Sofia; Korn, Andreas;
   Boland, Wilfried
2012SPIE.8446E..0TD    Altcode: 2012arXiv1206.6885D
  The 4MOST consortium is currently halfway through a Conceptual
  Design study for ESO with the aim to develop a wide-field ( &lt;
  3 square degree, goal &lt; 5 square degree), high-multiplex ( &lt;
  1500 fibres, goal 3000 fibres) spectroscopic survey facility for
  an ESO 4m-class telescope (VISTA). 4MOST will run permanently on
  the telescope to perform a 5 year public survey yielding more than
  20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more
  than 2 million spectra at R~20,000 (395-456.5 nm and 587-673 nm). The
  4MOST design is especially intended to complement three key all-sky,
  space-based observatories of prime European interest: Gaia, eROSITA and
  Euclid. Initial design and performance estimates for the wide-field
  corrector concepts are presented. Two fibre positioner concepts are
  being considered for 4MOST. The first one is a Phi-Theta system similar
  to ones used on existing and planned facilities. The second one is a
  new R-Theta concept with large patrol area. Both positioner concepts
  effectively address the issues of fibre focus and pupil pointing. The
  4MOST spectrographs are fixed configuration two-arm spectrographs,
  with dedicated spectrographs for the high- and low-resolution fibres. A
  full facility simulator is being developed to guide trade-off decisions
  regarding the optimal field-of-view, number of fibres needed, and the
  relative fraction of high-to-low resolution fibres. The simulator takes
  mock catalogues with template spectra from Design Reference Surveys
  as starting point, calculates the output spectra based on a throughput
  simulator, assigns targets to fibres based on the capabilities of the
  fibre positioner designs, and calculates the required survey time by
  tiling the fields on the sky. The 4MOST consortium aims to deliver the
  full 4MOST facility by the end of 2018 and start delivering high-level
  data products for both consortium and ESO community targets a year
  later with yearly increments.

---------------------------------------------------------
Title: 4MOST spectral data simulation
Authors: Sartoretti, Paola; Leclerc, Nicolas; Walcher, Jakob; Caffau,
   Elisabetta; Sbordone, Luca; Laporte, Philippe
2012SPIE.8446E..5PS    Altcode:
  4MOST is a phase A study of a very high-multiplex, wide-field fibre-fed
  spectrograph system for the VISTA or NTT telescope. The main stellar
  goal of the instrument is to complement and complete the informations
  on the Milky Way, that Gaia will provide both on radial velocity and
  chemical analysis. Two resolution modes (about 5000 and 20000) are
  foreseen to operate at the same time. We have developed a simulator
  of spectral data for the 4MOST spectrograph. This simulator produces
  mock scientic spectra to be analyzed by the science team in order to
  constrain the feasibility of their requirements and help refine the
  high-level specications of the instrument. We present here the spectra
  simulator and how some of the simulation results are used to define
  the performances of 4MOST.

---------------------------------------------------------
Title: Detailed abundances in EMP dwarfs from SDSS
Authors: Sbordone, Luca; Caffau, Elisabetta; Bonifacio, Piercarlo
2012AIPC.1480..160S    Altcode:
  We report on the current status of an ongoing survey to select extremely
  metal poor (EMP) turn-off (TO) stars from Sloan Digital Sky Survey
  (SDSS) spectra, and determine their detailed chemical composition
  through high resolution follow-up. So far, 26 stars have been observed
  with UVESatVLT and X-SHOOTERatVLT, all but two showing an iron content
  below [Fe/H]=-3. Among them we detected the current record holder for
  the lowest total metallicity (SDSS J102915+172927, Z=10-5 Zsolar),
  four carbon-enhanced extremely metal poor objects (CEMP), as well
  as subsets with enhanced Ni and Mn. Lithium abundances or upper
  limits were derived, confirming the previously detected “meltdown”
  of the Spite plateau for metallicities below about [Fe/H]=-2.8. SDSS
  J102915+172927 in particular shows no detectable Li I 670.8 doublet,
  leading to an upper limit of A(Li)&lt;1.1, hinting to an even deeper
  Li depletion in TO stars below [Fe/H]=-4. Spectroscopic follow-up is
  currently being prosecuted by the recently started ESO large program
  TOPoS, aiming to observe about 80 more EMP candidates.

---------------------------------------------------------
Title: SPADES: Stellar Parameters Determination Software
Authors: Posbic, Helene; Katz, David; Caffau, Elisabetta; Bonifacio,
   Piercarlo; Gomez, Ana; Sbordone, Luca; Arenou, Frederic
2012arXiv1209.0407P    Altcode:
  Context. As increasingly more spectroscopic data are being delivered
  by medium- and high-resolving power multi-object spectrographs,
  more automatic stellar parameter determination softwares are
  being developed. The quality of the spectra collected also allows
  the determination of elemental abundances. Aims. SPADES is an
  automated software for determining: the radial velocity (Vr),
  the effective temperature (Teff), the surface gravity (log g),
  the metallicity ([Fe/H]), and most importantly, the individual
  abundances. In this first version it is targeted on the analysis of
  mid-F-G dwarfs, but is meant to evolve to analyze any type of single
  stars. Methods. SPADES relies on a line-by-line modeling to determine
  the stellar parameters. Results. The internal systematic and random
  errors of SPADES were assessed by Monte Carlo method simulations with
  synthetic spectra and the external systematic errors by analysing real
  ground-based observed spectra. For example, by simulating the Giraffe
  setups HR13 and HR14B with synthetic spectra for a dwarf with Teff =
  5800 K, log g = 4.5, [Fe/H] = 0.0 dex and with a signal-tonoise ratio
  (S/N) of 100, the stellar parameters are recovered with no significant
  bias and with 1-{\sigma} precisions of 8 K for Teff, 0.05 for log g,
  0.009 for [Fe/H], 0.003 for [Ti/Fe] and 0.01 for [Ni/Fe].

---------------------------------------------------------
Title: An upper limit on the sulphur abundance in HE 1327-2326
Authors: Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L.
2012A&A...544A.102B    Altcode: 2012arXiv1207.1806B
  Context. Star HE 1327-2326 is a unique object, with the lowest measured
  iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that
  includes large overabundances of C, N, and O with respect to iron. One
  important question is whether the chemical abundances in this star
  reflect the chemical composition of the gas cloud from which it was
  formed or if they have been severely affected by other processes,
  such as dust-gas winnowing. <BR /> Aims: We measure or provide an
  upper limit to the abundance of the volatile element sulphur, which
  can help to discriminate between the two scenarios. <BR /> Methods: We
  observed HE 1327-2326 with the high resolution infra-red spectrograph
  CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045
  nm. <BR /> Results: We do not detect the S i line. A 3σ upper limit
  on the equivalent width (EW) of any line in our spectrum is EW &lt;
  0.66 pm. Using either one-dimensional static or three-dimensional
  hydrodynamical model-atmospheres, this translates into a robust upper
  limit of [S/H] &lt; -2.6. <BR /> Conclusions: This upper limit does
  not provide conclusive evidence for or against dust-gas winnowing,
  and the evidence coming from other elements (e.g., Na and Ti) is
  also inconclusive or contradictory. The formation of dust in the
  atmosphere versus an origin of the metals in a metal-poor supernova
  with extensive "fall-back" are not mutually exclusive. It is possible
  that dust formation distorts the peculiar abundance pattern created by a
  supernova with fall-back, thus the abundance ratios in HE 1327-2326 may
  be used to constrain the properties of the supernova(e) that produced
  its metals, but with some caution. <P />Based on spectra obtained with
  CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095.

---------------------------------------------------------
Title: SPADES: a stellar parameters determination software
Authors: Posbic, H.; Katz, D.; Caffau, E.; Bonifacio, P.; Gómez,
   A.; Sbordone, L.; Arenou, F.
2012A&A...544A.154P    Altcode: 2011arXiv1111.0474P
  Context. As increasingly more spectroscopic data are being delivered
  by medium- and high-resolving power multi-object spectrographs,
  more automatic stellar parameter determination softwares are being
  developed. The quality of the spectra collected also allows the
  determination of elemental abundances. <BR /> Aims: SPADES is an
  automated software for determining: the radial velocity (V<SUB>r</SUB>),
  the effective temperature (T<SUB>eff</SUB>), the surface gravity (log
  g), the metallicity ( [Fe/H] ), and most importantly, the individual
  abundances. In this first version it is targeted on the analysis of
  mid-F-G dwarfs, but is meant to evolve to analyze any type of single
  stars. <BR /> Methods: SPADES relies on a line-by-line modeling
  to determine the stellar parameters. <BR /> Results: The internal
  systematic and random errors of SPADES were assessed by Monte Carlo
  method simulations with synthetic spectra and the external systematic
  errors by analysing real ground-based observed spectra. For example,
  by simulating the Giraffe setups HR13 and HR14B with synthetic spectra
  for a dwarf with K, , dex and with a signal-to-noise ratio (S/N) of
  100, the stellar parameters are recovered with no significant bias
  and with 1-σ precisions of 8 K for T<SUB>eff</SUB>, 0.05 for log g,
  0.009 for [Fe/H] , 0.003 for [Ti/Fe] and 0.01 for [Ni/Fe] .

---------------------------------------------------------
Title: Detailed Abundances in Extremely Metal Poor Dwarf Stars
    Extracted from SDSS
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.
2012ASPC..458...69S    Altcode: 2012arXiv1201.1044S
  We report on the result of an ongoing campaign to determine chemical
  abundances in extremely metal poor (EMP) turn-off (TO) stars selected
  from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This
  contribution focuses principally on the largest part of the sample
  (18 stars out of 29), observed with UVES@VLT and analyzed by means of
  the automatic abundance analysis code MyGIsFOS to derive atmosphere
  parameters and detailed compositions. The most significant findings
  include i) the detection of a C-rich, strongly Mg-enhanced star
  ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]&gt;-0.4); iii)
  a group of Ni-rich stars ([Ni/Fe]&gt;0.2). Li is measured in twelve
  stars, while for three upper limits are derived.

---------------------------------------------------------
Title: Amplitudes of solar-like oscillations in red giant
    stars. Evidence for non-adiabatic effects using CoRoT observations
Authors: Samadi, R.; Belkacem, K.; Dupret, M. -A.; Ludwig, H. -G.;
   Baudin, F.; Caffau, E.; Goupil, M. -J.; Barban, C.
2012A&A...543A.120S    Altcode: 2012arXiv1205.4846S
  Context. A growing number of solar-like oscillations has been detected
  in red giant stars thanks to the CoRoT and Kepler space-crafts. In
  the same way as for main-sequence stars, mode driving is attributed
  to turbulent convection in the uppermost convective layers of those
  stars. <BR /> Aims: The seismic data gathered by CoRoT on red giant
  stars allow us to test the mode driving theory in physical conditions
  different from main-sequence stars. <BR /> Methods: Using a set of
  3D hydrodynamical models representative of the upper layers of sub-
  and red giant stars, we computed the acoustic mode energy supply rate
  ({p_max}). Assuming adiabatic pulsations and using global stellar
  models that assume that the surface stratification comes from the
  3D hydrodynamical models, we computed the mode amplitude in terms
  of surface velocity. This was converted into intensity fluctuations
  using either a simplified adiabatic scaling relation or a non-adiabatic
  one. <BR /> Results: From L and M (the luminosity and mass), the energy
  supply rate {p_max} is found to scale as (L/M)<SUP>2.6</SUP> for both
  main-sequence and red giant stars, extending previous results. The
  theoretical amplitudes in velocity under-estimate the Doppler velocity
  measurements obtained so far from the ground for red giant stars by
  about 30%. In terms of intensity, the theoretical scaling law based
  on the adiabatic intensity-velocity scaling relation results in an
  under-estimation by a factor of about 2.5 with respect to the CoRoT
  seismic measurements. On the other hand, using the non-adiabatic
  intensity-velocity relation significantly reduces the discrepancy with
  the CoRoT data. The theoretical amplitudes remain 40% below, however,
  the CoRoT measurements. <BR /> Conclusions: Our results show that
  scaling relations of mode amplitudes cannot be simply extended from
  main-sequence to red giant stars in terms of intensity on the basis of
  adiabatic relations because non-adiabatic effects for red giant stars
  are important and cannot be neglected. We discuss possible reasons
  for the remaining differences.

---------------------------------------------------------
Title: Chemical abundances of distant extremely metal-poor unevolved
    stars
Authors: Bonifacio, P.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.;
   Spite, M.; González Hernández, J. I.; Behara, N. T.
2012A&A...542A..87B    Altcode: 2012arXiv1204.1641B
  Context. The old Galactic halo stars hold the fossil record of
  the interstellar medium chemical composition at the time of their
  formation. Most of the stars studied so far are relatively near to the
  Sun, this prompts the study of more distant stars, both to increase the
  size of the sample and to search for possible variations of abundance
  patterns at greater distances. <BR /> Aims: The purpose of our study
  is to determine the chemical composition of a sample of 16 candidate
  extremely metal-poor (EMP) dwarf stars, extracted from the Sloan
  Digital Sky Survey (SDSS). There are two main purposes: in the first
  place to verify the reliability of the metallicity estimates derived
  from the SDSS spectra; in the second place to see if the abundance
  trends found for the brighter nearer stars studied previously also
  hold for this sample of fainter, more distant stars. <BR /> Methods:
  We used the UVES at the VLT to obtain high-resolution spectra of the
  programme stars. The abundances were determined by an automatic analysis
  with the MyGIsFOS code, with the exception of lithium, for which the
  abundances were determined from the measured equivalent widths of the
  Li i resonance doublet. <BR /> Results: All candidates are confirmed
  to be EMP stars, with [Fe/H] ≤ -3.0. The chemical composition of the
  sample of stars is similar to that of brighter and nearer samples. We
  measured the lithium abundance for 12 stars and provide stringent upper
  limits for three other stars, for a fourth star the upper limit is not
  significant, owing to the low signal-to noise ratio of the spectrum. The
  "meltdown" of the Spite plateau is confirmed, but some of the lowest
  metallicity stars of the sample lie on the plateau. <BR /> Conclusions:
  The concordance of the metallicities derived from high-resolution
  spectra and those estimated from the SDSS spectra suggests that
  the latter may be used to study the metallicity distribution of the
  halo. The abundance pattern suggests that the halo was well mixed for
  all probed metallicities and distances. The fact that at the lowest
  metallicities we find stars on the Spite plateau suggests that the
  meltdown depends on at least another parameter, besides metallicity. <P
  />Based on spectra obtained with UVES at the 8.2 m Kueyen ESO telescope,
  programmes 078.D-0217 and 081.D.0373.Table 1 is available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: A primordial star in the heart of the Lion
Authors: Caffau, E.; Bonifacio, P.; François, P.; Spite, M.; Spite,
   F.; Zaggia, S.; Ludwig, H. -G.; Steffen, M.; Mashonkina, L.; Monaco,
   L.; Sbordone, L.; Molaro, P.; Cayrel, R.; Plez, B.; Hill, V.; Hammer,
   F.; Randich, S.
2012A&A...542A..51C    Altcode: 2012arXiv1203.2607C
  Context. The discovery and chemical analysis of extremely metal-poor
  stars permit a better understanding of the star formation of the first
  generation of stars and of the Universe emerging from the Big Bang. <BR
  /> Aims: We report the study of a primordial star situated in the centre
  of the constellation Leo (SDSS J102915+172927). <BR /> Methods: The
  star, selected from the low-resolution spectrum of the Sloan Digital
  Sky Survey, was observed at intermediate (with X-Shooter at VLT) and
  at high spectral resolution (with UVES at VLT). The stellar parameters
  were derived from the photometry. The standard spectroscopic analysis
  based on 1D ATLAS models was completed by applying 3D and non-LTE
  corrections. <BR /> Results: An iron abundance of [Fe/H ] = -4.89 makes
  SDSS J102915+172927 one of the lowest [Fe/H] stars known. However,
  the absence of measurable C and N enhancements indicates that it has
  the lowest metallicity, Z ≤ 7.40 × 10<SUP>-7</SUP> (metal-mass
  fraction), ever detected. No oxygen measurement was possible. <BR />
  Conclusions: The discovery of SDSS J102915+172927 highlights that
  low-mass star formation occurred at metallicities lower than previously
  assumed. Even lower metallicity stars may yet be discovered, with a
  chemical composition closer to the composition of the primordial gas
  and of the first supernovae. <P />Based on observations obtained at ESO
  Paranal Observatory, GTO programme 086.D-0094 and programme 286.D-5045.

---------------------------------------------------------
Title: NLTE determination of the calcium abundance and 3D corrections
    in extremely metal-poor stars
Authors: Spite, M.; Andrievsky, S. M.; Spite, F.; Caffau, E.; Korotin,
   S. A.; Bonifacio, P.; Ludwig, H. -G.; François, P.; Cayrel, R.
2012A&A...541A.143S    Altcode: 2012arXiv1204.1139S
  Context. Calcium is a key element for constraining the models of
  chemical enrichment of the Galaxy. <BR /> Aims: Extremely metal-poor
  stars contain the fossil records of the chemical composition of the
  early Galaxy and it is important to compare Ca abundance with abundances
  of other light elements, that are supposed to be synthesized in the
  same stellar evolution phases. <BR /> Methods: The NLTE profiles of the
  calcium lines were computed in a sample of 53 extremely metal-poor stars
  with a modified version of the program MULTI, which allows a very good
  description of the radiation field. <BR /> Results: With our new model
  atom we are able to reconcile the abundance of Ca deduced from the Ca
  I and Ca II lines in Procyon. This abundance is found to be solar. We
  find that [Ca/Fe] = 0.50±0.09 in the early Galaxy, a value slightly
  higher than the previous LTE estimations. The scatter of the ratios
  [X/Ca] is generally smaller than the scatter of the ratio [X/Mg] where
  X is a "light metal" (O, Na, Mg, Al, S, and K) with the exception of
  Al. These scatters cannot be explained by error of measurements, except
  for oxygen. Surprisingly, the scatter of [X/Fe] is always equal to, or
  even smaller than, the scatter around the mean value of [X/Ca]. We note
  that at low metallicity, the wavelength of the Ca I resonance line is
  shifted relative to the (weaker) subordinate lines, a signature of the
  effect of convection. The Ca abundance deduced from the Ca I resonance
  line (422.7 nm) is found to be systematically smaller at very low
  metallicity than the abundance deduced from the subordinate lines. Our
  computations of the effects of convection (3D effects) are not able to
  explain this difference. A fully consistent 3D NLTE model atmosphere
  and line formation scheme would be necessary to fully capture the
  physics of the stellar atmosphere. <P />Based on observations obtained
  with the ESO Very Large Telescope at Paranal Observatory, Chile (Large
  Programme "First Stars", ID 165.N-0276(A); P.I.: R. Cayrel).The NLTE
  corrections of the Ca lines are available in electronic form at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/541/A143">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/541/A143</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Li and Na in globular cluster M4
    (Monaco+, 2012)
Authors: Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Geisler,
   D.; Marconi, G.; Momany, Y.; Ludwig, H. -G.
2012yCat..35390157M    Altcode: 2012yCat..35399157M
  We observed stars along the M4 MS and SGB using the FLAMES/GIRAFFE
  spectrograph at ESO Paranal. Observations were conducted in service
  mode between April and July 2010 using the HR12 and HR15N settings. <P
  />(1 data file).

---------------------------------------------------------
Title: Barium abundance in red giants of NGC 6752. Non-local
    thermodynamic equilibrium and three-dimensional effects
Authors: Dobrovolskas, V.; Kučinskas, A.; Andrievsky, S. M.; Korotin,
   S. A.; Mishenina, T. V.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.
2012A&A...540A.128D    Altcode: 2012arXiv1203.3124D
  <BR /> Aims: We study the effects related to departures from non-local
  thermodynamic equilibrium (NLTE) and homogeneity in the atmospheres
  of red giant stars, to assess their influence on the formation of
  Ba II lines. We estimate the impact of these effects on the barium
  abundance determinations for 20 red giants in Galactic globular cluster
  NGC 6752. <BR /> Methods: One-dimensional (1D) local thermodynamic
  equilibrium (LTE) and 1D NLTE barium abundances were derived using
  classical 1D ATLAS9 stellar model atmospheres. The three-dimensional
  (3D) LTE abundances were obtained for 8 red giants on the lower RGB,
  by adjusting their 1D LTE abundances using 3D-1D abundance corrections,
  i.e., the differences between the abundances obtained from the same
  spectral line using the 3D hydrodynamical and classical 1D stellar
  model atmospheres. The 3D-1D abundance corrections were obtained
  in a strictly differential way using the 3D hydrodynamical and
  classical 1D codes CO<SUP>5</SUP>BOLD and LHD. Both codes utilized
  identical stellar atmospheric parameters, opacities, and equation
  of state. <BR /> Results: The mean 1D barium-to-iron abundance
  ratios derived for 20 giants are ⟨[Ba/Fe]⟩<SUB>1D LTE</SUB> =
  0.24 ± 0.05(stat.) ± 0.08(sys.) and ⟨[Ba/Fe]⟩<SUB>1D NLTE</SUB>
  = 0.05 ± 0.06(stat.) ± 0.08(sys.). The 3D-1D abundance correction
  obtained for 8 giants is small (~+0.05 dex), thus leads to only minor
  adjustment when applied to the mean 1D NLTE barium-to-iron abundance
  ratio for the 20 giants, ⟨[Ba/Fe]⟩<SUB>3D + NLTE</SUB> = 0.10
  ± 0.06(stat.) ± 0.10(sys.). The intrinsic abundance spread between
  the individual cluster stars is small and can be explained in terms
  of uncertainties in the abundance determinations. <BR /> Conclusions:
  Deviations from LTE play an important role in the formation of barium
  lines in the atmospheres of red giants studied here. The role of
  3D hydrodynamical effects should not be dismissed either, even if
  the obtained 3D-1D abundance corrections are small. This result is
  a consequence of subtle fine-tuning of individual contributions from
  horizontal temperature fluctuations and differences between the average
  temperature profiles in the 3D and 1D model atmospheres: owing to the
  comparable size and opposite sign, their contributions nearly cancel
  each other. This fine-tuning is characteristic of the particular set
  of atmospheric parameters and the element investigated, hence should
  not necessarily be a general property of spectral line formation in
  the atmospheres of red giant stars.

---------------------------------------------------------
Title: Chemical evolution of the Milky Way: the origin of phosphorus
Authors: Cescutti, G.; Matteucci, F.; Caffau, E.; François, P.
2012A&A...540A..33C    Altcode: 2011arXiv1112.3824C
  Context. Recently, the abundance of P was measured for the first
  time in disk stars. This provides the opportunity of comparing the
  observed abundances with predictions from theoretical models. <BR />
  Aims: We aim at predicting the chemical evolution of P in the Milky
  Way and compare our results with the observed P abundances in disk
  stars to derive constraints on the P nucleosynthesis. <BR /> Methods:
  We adopted the two-infall model of galactic chemical evolution,
  which is a good model for the Milky Way, and computed the evolution
  of the abundances of P and Fe. We adopted stellar yields for these
  elements from different sources. The element P is expected to form
  mainly in type-II supernovae, whereas Fe is mainly produced by type-Ia
  supernovae. <BR /> Results: Our results confirm that to reproduce the
  observed trend of [P/Fe] vs. [Fe/H] in disk stars, P must be formed
  mainly in massive stars. However, none of the available yields for
  P can reproduce the solar abundance of this element. In other words,
  to reproduce the data one needs to assume that massive stars produce
  three times more P than predicted. <BR /> Conclusions: We conclude
  that the entire available yields of P from massive stars are largely
  underestimated and that nucleosynthesis calculations should be
  revised. We also predict the [P/Fe] expected in halo stars.

---------------------------------------------------------
Title: LTE Model Atmospheres: MARCS, ATLAS and CO5BOLD
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.
2012IAUS..282..213B    Altcode:
  In this talk, we review the basic assumptions and physics covered
  by classical 1D LTE model atmospheres. We will focus on ATLAS and
  MARCS models of F-G-K stars and describe what resources are available
  through the web, both in terms of codes and model-atmosphere grids. We
  describe the advances made in hydrodynamical simulations of convective
  stellar atmospheres with the CO<SUP>5</SUP>BOLD code and what grids
  and resources are available, with a prospect of what will be available
  in the near future.

---------------------------------------------------------
Title: Planetary companions around the metal-poor star HIP 11952
Authors: Setiawan, J.; Roccatagliata, V.; Fedele, D.; Henning, Th.;
   Pasquali, A.; Rodríguez-Ledesma, M. V.; Caffau, E.; Seemann, U.;
   Klement, R. J.
2012A&A...540A.141S    Altcode: 2012arXiv1208.4000S
  <BR /> Aims: We carried out a radial-velocity survey to search for
  planets around metal-poor stars. In this paper we report the discovery
  of two planets around HIP 11952, a metal-poor star with [Fe/H] = -1.9
  that belongs to our target sample. <BR /> Methods: Radial velocity
  variations of HIP 11952 were monitored systematically with FEROS
  at the 2.2 m telescope located at the ESO La Silla observatory from
  August 2009 until January 2011. We used a cross-correlation technique
  to measure the stellar radial velocities (RV). <BR /> Results:
  We detected a long-period RV variation of 290 d and a short-period
  one of 6.95 d. The spectroscopic analysis of the stellar activity
  reveals a stellar rotation period of 4.8 d. The Hipparcos photometry
  data shows intra-day variabilities, which give evidence for stellar
  pulsations. Based on our analysis, the observed RV variations are most
  likely caused by the presence of unseen planetary companions. Assuming
  a primary mass of 0.83 M<SUB>⊙</SUB>, we computed minimum planetary
  masses of 0.78 M<SUB>Jup</SUB> for the inner and 2.93 M<SUB>Jup</SUB>
  for the outer planet. The semi-major axes are a<SUB>1</SUB> = 0.07
  AU and a<SUB>2</SUB> = 0.81 AU, respectively. <BR /> Conclusions:
  HIP 11952 is one of very few stars with [Fe/H] &lt; -1.0 which have
  planetary companions. This discovery is important to understand planet
  formation around metal-poor stars.

---------------------------------------------------------
Title: VizieR Online Data Catalog: NLTE Corrections of the Ca lines
    (Spite+, 2012)
Authors: Spite, M.; Andrievsky, S. M.; Spite, F.; Caffau, E.; Korotin,
   S. A.; Bonifacio, P.; Ludwig, H. -G.; Francois, P.; Cayrel, R.
2012yCat..35410143S    Altcode: 2012yCat..35419143S
  The NLTE corrections were computed for 51 CaI lines and 16 CaII lines
  for a grid of models with different metallicities from [Fe/H]=0.0
  to [Fe/H]=-3. These corrections must be added to the LTE value of
  [Ca/H], they were computed only if the equivalent width of the Ca line
  was stronger than 3mÅ. In the tables the model is given in the form
  (Teff, logg, [Fe/H], [Ca/Fe]) where Teff is the effective temperature,
  and logg the logarithm of the surface gravity) <P />(5 data files).

---------------------------------------------------------
Title: The Gaia-ESO Public Spectroscopic Survey
Authors: Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio,
   P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.;
   Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Alfaro, E.;
   Allende-Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia,
   A.; Flaccomio, E.; François, P.; Irwin, M.; Koposov, S.; Korn, A.;
   Lanzafame, A.; Pancino, E.; Paunzen, E.; Recio-Blanco, A.; Sacco,
   G.; Smiljanic, R.; Van Eck, S.; Walton, N.; Aden, D.; Aerts, C.;
   Affer, L.; Alcala, J. -M.; Altavilla, G.; Alves, J.; Antoja, T.;
   Arenou, F.; Argiroffi, C.; Asensio Ramos, A.; Bailer-Jones, C.;
   Balaguer-Nunez, L.; Bayo, A.; Barbuy, B.; Barisevicius, G.; Barrado
   y Navascues, D.; Battistini, C.; Bellas Velidis, I.; Bellazzini, M.;
   Belokurov, V.; Bergemann, M.; Bertelli, G.; Biazzo, K.; Bienayme, O.;
   Bland-Hawthorn, J.; Boeche, C.; Bonito, S.; Boudreault, S.; Bouvier,
   J.; Brandao, I.; Brown, A.; de Bruijne, J.; Burleigh, M.; Caballero,
   J.; Caffau, E.; Calura, F.; Capuzzo-Dolcetta, R.; Caramazza, M.;
   Carraro, G.; Casagrande, L.; Casewell, S.; Chapman, S.; Chiappini,
   C.; Chorniy, Y.; Christlieb, N.; Cignoni, M.; Cocozza, G.; Colless,
   M.; Collet, R.; Collins, M.; Correnti, M.; Covino, E.; Crnojevic,
   D.; Cropper, M.; Cunha, M.; Damiani, F.; David, M.; Delgado, A.;
   Duffau, S.; Edvardsson, B.; Eldridge, J.; Enke, H.; Eriksson, K.;
   Evans, N. W.; Eyer, L.; Famaey, B.; Fellhauer, M.; Ferreras, I.;
   Figueras, F.; Fiorentino, G.; Flynn, C.; Folha, D.; Franciosini,
   E.; Frasca, A.; Freeman, K.; Fremat, Y.; Friel, E.; Gaensicke, B.;
   Gameiro, J.; Garzon, F.; Geier, S.; Geisler, D.; Gerhard, O.; Gibson,
   B.; Gomboc, A.; Gomez, A.; Gonzalez-Fernandez, C.; Gonzalez Hernandez,
   J.; Gosset, E.; Grebel, E.; Greimel, R.; Groenewegen, M.; Grundahl,
   F.; Guarcello, M.; Gustafsson, B.; Hadrava, P.; Hatzidimitriou, D.;
   Hambly, N.; Hammersley, P.; Hansen, C.; Haywood, M.; Heber, U.; Heiter,
   U.; Held, E.; Helmi, A.; Hensler, G.; Herrero, A.; Hill, V.; Hodgkin,
   S.; Huelamo, N.; Huxor, A.; Ibata, R.; Jackson, R.; de Jong, R.;
   Jonker, P.; Jordan, S.; Jordi, C.; Jorissen, A.; Katz, D.; Kawata,
   D.; Keller, S.; Kharchenko, N.; Klement, R.; Klutsch, A.; Knude,
   J.; Koch, A.; Kochukhov, O.; Kontizas, M.; Koubsky, P.; Lallement,
   R.; de Laverny, P.; van Leeuwen, F.; Lemasle, B.; Lewis, G.; Lind,
   K.; Lindstrom, H. P. E.; Lobel, A.; Lopez Santiago, J.; Lucas, P.;
   Ludwig, H.; Lueftinger, T.; Magrini, L.; Maiz Apellaniz, J.; Maldonado,
   J.; Marconi, G.; Marino, A.; Martayan, C.; Martinez-Valpuesta, I.;
   Matijevic, G.; McMahon, R.; Messina, S.; Meyer, M.; Miglio, A.;
   Mikolaitis, S.; Minchev, I.; Minniti, D.; Moitinho, A.; Momany, Y.;
   Monaco, L.; Montalto, M.; Monteiro, M. J.; Monier, R.; Montes, D.;
   Mora, A.; Moraux, E.; Morel, T.; Mowlavi, N.; Mucciarelli, A.; Munari,
   U.; Napiwotzki, R.; Nardetto, N.; Naylor, T.; Naze, Y.; Nelemans, G.;
   Okamoto, S.; Ortolani, S.; Pace, G.; Palla, F.; Palous, J.; Parker, R.;
   Penarrubia, J.; Pillitteri, I.; Piotto, G.; Posbic, H.; Prisinzano,
   L.; Puzeras, E.; Quirrenbach, A.; Ragaini, S.; Read, J.; Read, M.;
   Reyle, C.; De Ridder, J.; Robichon, N.; Robin, A.; Roeser, S.; Romano,
   D.; Royer, F.; Ruchti, G.; Ruzicka, A.; Ryan, S.; Ryde, N.; Santos,
   N.; Sanz Forcada, J.; Sarro Baro, L. M.; Sbordone, L.; Schilbach, E.;
   Schmeja, S.; Schnurr, O.; Schoenrich, R.; Scholz, R. -D.; Seabroke, G.;
   Sharma, S.; De Silva, G.; Smith, M.; Solano, E.; Sordo, R.; Soubiran,
   C.; Sousa, S.; Spagna, A.; Steffen, M.; Steinmetz, M.; Stelzer, B.;
   Stempels, E.; Tabernero, H.; Tautvaisiene, G.; Thevenin, F.; Torra,
   J.; Tosi, M.; Tolstoy, E.; Turon, C.; Walker, M.; Wambsganss, J.;
   Worley, C.; Venn, K.; Vink, J.; Wyse, R.; Zaggia, S.; Zeilinger, W.;
   Zoccali, M.; Zorec, J.; Zucker, D.; Zwitter, T.; Gaia-ESO Survey Team
2012Msngr.147...25G    Altcode:
  The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high
  quality spectroscopy of some 100000 Milky Way stars, in the field and
  in open clusters, down to magnitude 19, systematically covering all the
  major components of the Milky Way. This survey will provide the first
  homogeneous overview of the distributions of kinematics and chemical
  element abundances in the Galaxy. The motivation, organisation and
  implementation of the Gaia-ESO Survey are described, emphasising the
  complementarity with the ESA Gaia mission. Spectra from the very first
  observing run of the survey are presented.

---------------------------------------------------------
Title: Lithium and sodium in the globular cluster <ASTROBJ>M
4</ASTROBJ>. Detection of a Li-rich dwarf star: preservation or
    pollution?
Authors: Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Geisler,
   D.; Marconi, G.; Momany, Y.; Ludwig, H. -G.
2012A&A...539A.157M    Altcode: 2011arXiv1108.0138M
  Context. The abundance inhomogeneities of light elements observed
  in globular clusters (GCs), and notably the ubiquitous Na-O
  anti-correlation, are generally interpreted as evidence that GCs
  comprise several generations of stars. There is an on-going debate
  as to the nature of the stars, which produce the inhomogeneous
  elements, and investigating the behavior of several elements is
  a way to shed new light on this problem. <BR /> Aims: We aim at
  investigating the Li and Na content of the GC M 4, that is known to
  have a well defined Na-O anti-correlation. <BR /> Methods: We obtained
  moderate resolution (R = 17 000-18 700) spectra for 91 main sequence
  (MS)/sub-giant branch stars of M 4 with the Giraffe spectrograph at
  the FLAMES/VLT ESO facility. Using model atmospheres analysis we
  measured lithium and sodium abundances. <BR /> Results: We detect
  a weak Li-Na anti-correlation among un-evolved MS stars. One star
  in the sample, # 37934, shows the remarkably high lithium abundance
  A(Li) = 2.87, compatible with current estimates of the primordial
  lithium abundance. <BR /> Conclusions: The shallow slope found
  for the Li-Na anti-correlation suggests that lithium is produced
  in parallel to sodium. This evidence, coupled with its sodium-rich
  nature, suggests that the high lithium abundance of star # 37934 may
  originate by pollution from a previous generations of stars. The
  recent detection of a Li-rich dwarf of pollution origin in the
  globular cluster NGC 6397 may also point in this direction. Still,
  no clear cut evidence is available against a possible preservation
  of the primordial lithium abundance for star # 37934. <P />Based on
  observations taken at ESO VLT Kueyen telescope (Cerro Paranal, Chile,
  program: 085.D-0537A).Table A.1 is available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: <SUP>6</SUP>Li detection in metal-poor stars: can 3D model
    atmospheres solve the second lithium problem?
Authors: Steffen, M.; Cayrel, R.; Caffau, E.; Bonifacio, P.; Ludwig,
   H. -G.; Spite, M.
2012MSAIS..22..152S    Altcode: 2012arXiv1206.2239S
  The presence of <SUP>6</SUP>Li in the atmospheres of metal-poor
  halo stars is usually inferred from the detection of a subtle extra
  depression in the red wing of the <SUP>7</SUP>Li doublet line at
  670.8 nm. However, as pointed out recently by \cite{Cayrel2007},
  the intrinsic line asymmetry caused by convective flows in the
  photospheres of cool stars is almost indistinguishable from the
  asymmetry produced by a weak <SUP>6</SUP>Li blend on a (presumed)
  symmetric <SUP>7</SUP>Li profile. Previous determinations of the
  <SUP>6</SUP>Li/ <SUP>7</SUP>Li isotopic ratio based on 1D model
  atmospheres, ignoring the convection-induced line asymmetry, must
  therefore be considered as upper limits. By comparing synthetic
  1D LTE and 3D non-LTE line profiles of the <SUP>i</SUP>Li 670.8 nm
  feature, we quantify the differential effect of the convective line
  asymmetry on the derived <SUP>6</SUP>Li abundance as a function of
  effective temperature, gravity, and metallicity. As expected, we
  find that the asymmetry effect systematically reduces the resulting
  <SUP>6</SUP>Li/<SUP>7</SUP>Li ratios. Depending on the stellar
  parameters, the 3D-1D offset in <SUP>6</SUP>Li/<SUP>7</SUP>Li ranges
  between -0.005 and -0.020. When this purely theoretical correction is
  taken into account for the \cite{A2006} sample of stars, the number of
  significant <SUP>6</SUP>Li detections decreases from 9 to 5 (2sigma
  criterion), or from 5 to 2 (3sigma criterion). <P />We also present
  preliminary results of a re-analysis of high-resolution, high S/N
  spectra of individual metal-poor turn-off stars, to see whether the
  second Lithium problem actually disappears when accounting properly for
  convection and non-LTE line formation in 3D stellar atmospheres. Out
  of 8 stars, HD 84937 seems to be the only significant (2sigma )
  detection of <SUP>6</SUP>Li. In view of our results, the existence of
  a <SUP>6</SUP>Li plateau appears questionable.

---------------------------------------------------------
Title: Lithium abundances in extremely metal-poor turn-off stars
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.
2012MSAIS..22...29S    Altcode: 2012arXiv1206.7008S
  We discuss the current status of the sample of Lithium abundances in
  extremely metal poor (EMP) turn-off (TO) stars collected by our group,
  and compare it with the available literature results. In the last years,
  evidences have accumulated of a progressive disruption of the Spite
  plateau in stars of extremely low metallicity. What appears to be a
  flat, thin plateau above [Fe/H]∼-2.8 turns, at lower metallicities,
  into a broader distribution for which the plateau level constitutes
  the upper limit, but more and more stars show lower Li abundances. The
  sample we have collected currently counts abundances or upper limits for
  44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor
  star SDSS J102915+172927 at [Fe/H]=-4.9. The “meltdown” of the Spite
  plateau is quite evident and, at the current status of the sample,
  does not appear to be restricted to the cool end of the effective
  temperature distribution. SDSS J102915+172927 displays an extreme
  Li depletion that contrasts with its otherwise quite ordinary set of
  [X/Fe] ratios.

---------------------------------------------------------
Title: Observing metal-poor stars with X-Shooter
Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.;
   François; , P.
2012MmSAI..83.1161C    Altcode:
  The extremely metal-poor stars (EMP) hold in their atmospheres
  the fossil record of the chemical composition of the early phases
  of the Galactic evolution. The chemical analysis of such objects
  provides important constraints on these early phases. EMP stars are
  very rare objects; to dig them out large amounts of data have to
  be considered. With an automatic procedure, we analysed objects with
  colours of Turn-Off stars from the Sloan Digital Sky Survey to select a
  sample of good candidate EMP stars. During the French-Italian GTO of the
  spectrograph X-Shooter, we observed a sample of these candidates. We
  could confirm the low metallicity of our sample of stars, and we
  succeeded in finding a record metal-poor star.

---------------------------------------------------------
Title: Preliminary determination of the Non-LTE Calcium abundance
    in a sample of extremely metal-poor stars*
Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Andrievsky,
   S.; Korotin, S.; Cayrel, R.; François, P.
2011sf2a.conf..353S    Altcode:
  The abundance ratios of the elements found in the extremely metal-poor
  stars (EMP) are a test of the yields predicted by the models of
  supernovae. For precise comparisons, it is of course preferable to
  avoid the approximation of LTE. The difference of LTE and NLTE profiles
  is displayed for three strong lines. The NLTE abundances of Ca are
  derived from the profiles of about 15 Ca I lines in the EMP giants and
  about 10 lines in the turnoff stars. The improved abundance trends
  are consistent with a [Ca/Fe] ratio constant vs. [Fe/H], and with a
  [Ca/Mg] ratio slightly declining when [Mg/H] increases. Also [Ca/Mg]
  presents a scatter larger than [Ca/Fe]. As far as the comparison
  with sulfur (another alpha elment) is concerned we find that [S/Ca]
  presents a scatter smaller than [S/Mg].

---------------------------------------------------------
Title: SPADES: a Stellar PArameters DEtermination Software
Authors: Posbic, H.; Katz, D.; Caffau, E.; Bonifacio, P.; Sbordone,
   L.; Gomez, A.; Arenou, F.
2011sf2a.conf..333P    Altcode:
  With the large amounts of spectroscopic data available today and
  the very large surveys to come (e.g. Gaia), the need for automatic
  data analysis software is unquestionable. We thus developed an
  automatic spectra analysis program for the determination of stellar
  parameters: radial velocity, effective temperature, surface gravity,
  micro-turbulence, metallicity and the elemental abundances of the
  elements present in the spectral range. Target stars for this software
  should include all types of stars. The analysis method relies on a
  line by line comparison of the spectrum of a target star to a library
  of synthetic spectra. The idea is built on the experience acquired in
  developing the TGMET (Katz et al. 1998, Soubiran et al. 2003), ETOILE
  (Katz 2001) and Abbo (Bonifacio &amp; Caffau 2003) software.The method
  is presented and the performances are illustrated with GIRAFFE-like
  simulated spectra with high resolution (R = 25000), with high and low
  signal to noise ratios (down to SNR = 30). These spectra should be
  close to what could be targeted by the Gaia-ESO Survey (GCDS).

---------------------------------------------------------
Title: X-shooter Finds an Extremely Primitive Star
Authors: Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.;
   Monaco, L.; Spite, M.; Spite, F.; Ludwig, H. -G.; Cayrel, R.; Zaggia,
   S.; Hammer, F.; Randich, S.; Molaro, P.; Hill, V.
2011Msngr.146...28C    Altcode:
  Low-mass extremely metal-poor (EMP) stars hold the fossil record of
  the chemical composition of the early phases of the Universe in their
  atmospheres. Chemical analysis of such objects provides important
  constraints on these early phases. EMP stars are rather rare objects:
  to dig them out, large amounts of data have to be considered. We have
  analysed stars from the Sloan Digital Sky Survey using an automatic
  procedure and selected a sample of good candidate EMP stars, which we
  observed with the spectrographs X-shooter and UVES. We could confirm
  the low metallicity of our sample of stars, and we succeeded in finding
  a record metal-poor star.

---------------------------------------------------------
Title: Sulphur in the metal poor globular cluster NGC 6397
Authors: Koch, A.; Caffau, E.
2011A&A...534A..52K    Altcode: 2011arXiv1108.6054K
  Sulphur (S) is a non-refractory α-element that is not locked into
  dust grains in the interstellar medium. Thus no correction to the
  measured, interstellar sulphur abundance is needed and it can be readily
  compared to the S content in stellar photospheres. Here we present
  the first measurement of sulphur in the metal poor globular cluster
  (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise,
  high-resolution spectrum of one red giant star. While abundance ratios
  of sulphur are available for a larger number of Galactic stars down
  to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more
  metal poor than -1.5 dex have been reported so far. We find aNLTE,
  3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.),
  based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent
  with a Galactic halo plateau as typical of other α-elements in GCs
  and field stars, but we cannot rule out its membership with a second
  branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the
  literature, which leads to a large scatter at metallicities around -
  2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with
  a Solar value to within the (large) uncertainties. Despite the very
  large scatter in these ratios across Galactic stars between literature
  samples, this indicates that sulphur traces the chemical imprints of
  the other α-elements in metal poor GCs. Combined with its moderate
  sodium abundance ([S/Na]<SUB>NLTE</SUB> = 0.48), the [S/Fe] ratio
  in this GC extends a global, positive S-Na correlation that is not
  seen in field stars and might indicate that proton-capture reactions
  contributed to the production of sulphur in the (metal poor) early GC
  environments. <P />This paper includes data gathered with the 6.5 m
  Magellan Telescopes located at Las Campanas Observatory, Chile.

---------------------------------------------------------
Title: X-Shooter GTO: chemical analysis of a sample of EMP candidates
Authors: Caffau, E.; Bonifacio, P.; François, P.; Spite, M.; Spite,
   F.; Zaggia, S.; Ludwig, H. -G.; Monaco, L.; Sbordone, L.; Cayrel,
   R.; Hammer, F.; Randich, S.; Hill, V.; Molaro, P.
2011A&A...534A...4C    Altcode: 2011arXiv1109.0992C
  Context. Extremely metal-poor stars (EMP) are very rare objects that
  hold in their atmospheres the fossil record of the chemical composition
  of the early phases of Galactic evolution. Finding these objects and
  determining their chemical composition provides important constraints
  on these early phases. <BR /> Aims: Using a carefully designed selection
  method, we chose a sample of candidate EMP stars from the low resolution
  spectra of the Sloan Digital Sky Survey and observed them with X-Shooter
  at the VLT to confirm their metallicities and determine abundances
  for as many elements as possible. <BR /> Methods: The X-Shooter
  spectra are analysed by means of one-dimensional, plane-parallel,
  hydrostatic model atmospheres. Corrections for the granulation effects
  are computed using CO5BOLD hydrodynamical simulations. <BR /> Results:
  All the candidates are confirmed to be EMP stars, proving the efficiency
  of our selection method within about 0.5 dex. The chemical composition
  of this sample is compatible with those of brighter samples, suggesting
  that the stars in the Galactic halo are well mixed. <BR /> Conclusions:
  These observations show that it is feasible to observe, in a limited
  amount of time, a large sample of about one hundred stars among EMP
  candidates selected from the SDSS. Such a size of sample will allow us,
  in particular, to confirm or refute the existence of a vertical drop
  in the Galactic halo metallicity distribution function around [Fe/H] ~
  -3.5. <P />Based on observations obtained at ESO Paranal Observatory,
  GTO programme 086.D-0094.

---------------------------------------------------------
Title: An extremely primitive star in the Galactic halo
Authors: Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick;
   Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François;
   Ludwig, Hans-G.; Cayrel, Roger; Zaggia, Simone; Hammer, François;
   Randich, Sofia; Molaro, Paolo; Hill, Vanessa
2011Natur.477...67C    Altcode: 2012arXiv1203.2612C
  The early Universe had a chemical composition consisting of
  hydrogen, helium and traces of lithium; almost all other elements
  were subsequently created in stars and supernovae. The mass fraction
  of elements more massive than helium, Z, is known as `metallicity'. A
  number of very metal-poor stars has been found, some of which have a
  low iron abundance but are rich in carbon, nitrogen and oxygen. For
  theoretical reasons and because of an observed absence of stars
  with Z&lt;1.5×10<SUP>-5</SUP>, it has been suggested that low-mass
  stars cannot form from the primitive interstellar medium until it
  has been enriched above a critical value of Z, estimated to lie in
  the range 1.5×10<SUP>-8</SUP> to 1.5×10<SUP>-6</SUP> (ref. 8),
  although competing theories claiming the contrary do exist. (We
  use `low-mass' here to mean a stellar mass of less than 0.8 solar
  masses, the stars that survive to the present day.) Here we report the
  chemical composition of a star in the Galactic halo with a very low Z
  (&lt;=6.9×10<SUP>-7</SUP>, which is 4.5×10<SUP>-5</SUP> times that
  of the Sun) and a chemical pattern typical of classical extremely
  metal-poor stars--that is, without enrichment of carbon, nitrogen
  and oxygen. This shows that low-mass stars can be formed at very low
  metallicity, that is, below the critical value of Z. Lithium is not
  detected, suggesting a low-metallicity extension of the previously
  observed trend in lithium depletion. Such lithium depletion implies
  that the stellar material must have experienced temperatures above
  two million kelvin in its history, given that this is necessary to
  destroy lithium.

---------------------------------------------------------
Title: LTE model atmopsheres MARCS, ATLAS and CO5BOLD
Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Ludwig,
   Hans-Guenter; Steffen, Matthias
2011arXiv1109.0717B    Altcode:
  In this talk we review the basic assumptions and physics covered by
  classical 1D LTE model atmospheres. We will focus on ATLAS and MARCS
  models of F-G-K stars and describe what resources are available through
  the web, both in terms of codes and model-atmosphere grids. We describe
  the advances made in hydrodynamical simulations of convective stellar
  atmospheres with the CO5BOLD code and what grids and resources are
  available, with a prospect of what will be available in the near future.

---------------------------------------------------------
Title: The Galactic evolution of phosphorus
Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.
2011A&A...532A..98C    Altcode: 2011arXiv1107.2657C
  Context. As a galaxy evolves, its chemical composition changes and
  the abundance ratios of different elements are powerful probes of
  the underlying evolutionary processes. Phosphorous is an element
  whose evolution has remained quite elusive until now, because it is
  difficult to detect in cool stars. The infrared weak P i lines of
  the multiplet 1, at 1050-1082 nm, are the most reliable indicators
  of the presence of phosphorus. The availability of CRIRES at VLT has
  permitted access to this wavelength range in stellar spectra. <BR />
  Aims: We attempt to measure the phosphorus abundance of twenty cool
  stars in the Galactic disk. <BR /> Methods: The spectra are analysed
  with one-dimensional model-atmospheres computed in local thermodynamic
  equilibrium (LTE). The line formation computations are performed
  assuming LTE. <BR /> Results: The ratio of phosphorus to iron behaves
  similarly to sulphur, increasing towards lower metallicity stars. Its
  ratio with respect to sulphur is roughly constant and slightly larger
  than solar, [P/S] = 0.10 ± 0.10. <BR /> Conclusions: We succeed in
  taking an important step towards the understanding of the chemical
  evolution of phosphorus in the Galaxy. However, the observed rise in
  the P/Fe abundance ratio is steeper than predicted by Galactic chemical
  evolution model developed by Kobayashi and collaborators. Phosphorus
  appears to evolve differently from the light odd-Z elements sodium
  and aluminium. The constant value of [P/S] with metallicity implies
  that P production is insensitive to the neutron excess, thus processes
  other than neutron captures operate. We suggest that proton captures on
  <SUP>30</SUP>Si and α captures on <SUP>27</SUP>Al are possibilities
  to investigate. We see no clear distinction between our results for
  stars with planets and stars without any detected planet. <P />Based
  on observations obtained with the CRIRES spectrograph at ESO-VLT Antu
  8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

---------------------------------------------------------
Title: NGC 1866: a milestone for understanding the chemical evolution
    of stellar populations in the Large Magellanic Cloud
Authors: Mucciarelli, A.; Cristallo, S.; Brocato, E.; Pasquini, L.;
   Straniero, O.; Caffau, E.; Raimondo, G.; Kaufer, A.; Musella, I.;
   Ripepi, V.; Romaniello, M.; Walker, A. R.
2011MNRAS.413..837M    Altcode: 2010arXiv1012.1476M
  We present new FLAMES@VLT spectroscopic observations of 30 stars in
  the field of the Large Magellanic Cloud (LMC) stellar cluster NGC
  1866. NGC 1866 is one of the few young and massive globular clusters
  that is close enough so that its stars can be individually studied in
  detail. Radial velocities have been used to separate stars belonging
  to the cluster and to the LMC field, and the same spectra have been
  used to derive chemical abundances for a variety of elements, from
  [Fe/H] to the light (i.e. Na, O, Mg, etc.) to the heavy ones. The
  average iron abundance of NGC 1866 turns out to be [Fe/H]=-0.43 ±
  0.01 dex (with a dispersion σ= 0.04 dex), from the analysis of 14
  cluster member stars. Within our uncertainties, the cluster stars are
  homogeneous, as far as chemical composition is concerned, independent
  of the evolutionary status. The observed cluster stars do not show
  any sign of the light elements' ‘anticorrelation’ present in all
  the Galactic globular clusters so far studied and are also found in
  the old LMC stellar clusters. A similar lack of anticorrelations has
  been detected in the massive intermediate-age LMC clusters, indicating
  a different formation/evolution scenario for the LMC massive clusters
  younger than ∼3 Gyr with respect to the old ones. <P />Also opposite
  to the Galactic globulars, the chemical composition of the older red
  giant branch field stars and of the young post-main-sequence cluster
  stars show robust homogeneity suggesting a quite similar process of
  chemical evolution. The field and cluster abundances are in agreement
  with recent chemical analysis of LMC stars, which show a distinctive
  chemical pattern for this galaxy with respect to the Milky Way. We
  discuss these findings in light of the theoretical scenario of chemical
  evolution of the LMC.

---------------------------------------------------------
Title: First stars. XIV. Sulfur abundances in extremely metal-poor
    stars
Authors: Spite, M.; Caffau, E.; Andrievsky, S. M.; Korotin, S. A.;
   Depagne, E.; Spite, F.; Bonifacio, P.; Ludwig, H. -G.; Cayrel, R.;
   François, P.; Hill, V.; Plez, B.; Andersen, J.; Barbuy, B.; Beers,
   T. C.; Molaro, P.; Nordström, B.; Primas, F.
2011A&A...528A...9S    Altcode: 2010arXiv1012.4358S
  Context. Precise S abundances are important in the study of the
  early chemical evolution of the Galaxy. In particular the site of the
  formation remains uncertain because, at low metallicity, the trend
  of this α-element versus [Fe/H] remains unclear. Moreover, although
  sulfur is not bound significantly in dust grains in the ISM, it seems
  to behave differently in DLAs and old metal-poor stars. <BR /> Aims:
  We attempt a precise measurement of the S abundance in a sample of
  extremely metal-poor stars observed with the ESO VLT equipped with
  UVES, taking into account NLTE and 3D effects. <BR /> Methods: The
  NLTE profiles of the lines of multiplet 1 of S I were computed with a
  version of the program MULTI, including opacity sources from ATLAS9
  and based on a new model atom for S. These profiles were fitted to
  the observed spectra. <BR /> Results: We find that sulfur in EMP stars
  behaves like the other α-elements, with [S/Fe] remaining approximately
  constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly
  with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg,
  Al, S, and K are most closely matched by the SN model yields by Heger
  &amp; Woosley. The [S/Zn] ratio in EMP stars is solar, as also found
  in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] &lt;
  +0.5 for the ultra metal-poor star CS 22949-037. This, along with a
  previously reported measurement of zinc, argues against the conjecture
  that the light-element abundance pattern of this star (and by analogy,
  the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be
  due to dust depletion. <P />Based on observations obtained with the
  ESO Very Large Telescope at Paranal (Large Programme "First Stars",
  ID 165, N-0276, P.I.: Cayrel.

---------------------------------------------------------
Title: Extremely metal-poor stars in SDSS fields
Authors: Bonifacio, P.; Caffau, E.; François, P.; Sbordone, L.;
   Ludwig, H. -G.; Spite, M.; Molaro, P.; Spite, F.; Cayrel, R.; Hammer,
   F.; Hill, V.; Nonino, M.; Randich, S.; Stelzer, B.; Zaggia, S.
2011AN....332..251B    Altcode: 2011arXiv1101.3139B
  Some insight on the first generation of stars can be obtained from
  the chemical composition of their direct descendants, extremely
  metal-poor stars (EMP), with metallicity less than or equal to 1/1000
  of the solar metallicity. Such stars are exceedingly rare, the most
  successful surveys, for this purpose, have so far provided only about
  100 stars with 1/1 000 the solar metallicity and 4 stars with about
  1/10 000 of the solar metallicity. The Sloan Digital Sky Survey has
  the potential to provide a large number of candidates of extremely
  low metallicity. X-shooter has the unique capability of performing the
  necessary follow-up spectroscopy providing accurate metallicities and
  abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr, ...) for
  EMP candidates. We here report on the results for the first two stars
  observed in the course of our Franco-Italian X-shooter GTO. The two
  stars were targeted to be of metallicity around -3.0, the analysis of
  the X-shooter spectra showed them to be of metallicity around -2.0,
  but with a low α to iron ratio, which explains the underestimate of
  the metallicity from the SDSS spectra. The efficiency of X-shooter
  allows an in situ study of the outer halo, for the two stars studied
  here we estimate distances of 3.9 and 9.1 kpc, these are likely the
  most distant dwarf stars studied in detail to date. <P />Based on
  spectra obtained with X-shooter at the 8.2-m Kueyen ESO telescope,
  GTO programmes 085.D-0194 and 086.D.0094.

---------------------------------------------------------
Title: The solar photospheric abundance of zirconium
Authors: Caffau, E.; Faraggiana, R.; Ludwig, H. -G.; Bonifacio, P.;
   Steffen, M.
2011AN....332..128C    Altcode: 2010arXiv1012.1038C
  Zirconium (Zr), together with strontium and yttrium, is an important
  element in the understanding of the Galactic nucleosynthesis. In
  fact, the triad Sr-Y-Zr constitutes the first peak of s-process
  elements. Despite its general relevance not many studies of the solar
  abundance of Zr were conducted. We derive the zirconium abundance in
  the solar photosphere with the same CO<SUP>5</SUP>BOLD hydrodynamical
  model of the solar atmosphere that we previously used to investigate
  the abundances of C-N-O. We review the zirconium lines available in
  the observed solar spectra and select a sample of lines to determine
  the zirconium abundance, considering lines of neutral and singly
  ionised zirconium. We apply different line profile fitting strategies
  for a reliable analysis of Zr lines that are blended by lines of other
  elements. The abundance obtained from lines of neutral zirconium is very
  uncertain because these lines are commonly blended and weak in the solar
  spectrum. However, we believe that some lines of ionised zirconium are
  reliable abundance indicators. Restricting the set to Zr II lines,
  from the CO<SUP>5</SUP>BOLD 3D model atmosphere we derive A(Zr)
  {=2.62± 0.06}, where the quoted error is the RMS line-to-line scatter.

---------------------------------------------------------
Title: Solar Chemical Abundances Determined with a CO5BOLD 3D Model
    Atmosphere
Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Freytag, B.;
   Bonifacio, P.
2011SoPh..268..255C    Altcode: 2010SoPh..tmp...66C; 2010arXiv1003.1190C
  In the last decade, the photospheric solar metallicity as determined
  from spectroscopy experienced a remarkable downward revision. Part
  of this effect can be attributed to an improvement of atomic data and
  the inclusion of NLTE computations, but also the use of hydrodynamical
  model atmospheres seemed to play a role. This "decrease" with time of
  the metallicity of the solar photosphere increased the disagreement
  with the results from helioseismology. With a CO<SUP>5</SUP>BOLD 3D
  model of the solar atmosphere, the CIFIST team at the Paris Observatory
  re-determined the photospheric solar abundances of several elements,
  among them C, N, and O. The spectroscopic abundances are obtained by
  fitting the equivalent width and/or the profile of observed spectral
  lines with synthetic spectra computed from the 3D model atmosphere. We
  conclude that the effects of granular fluctuations depend on the
  characteristics of the individual lines, but are found to be relevant
  only in a few particular cases. 3D effects are not responsible for
  the systematic lowering of the solar abundances in recent years. The
  solar metallicity resulting from this analysis is Z=0.0153, Z/X=0.0209.

---------------------------------------------------------
Title: Cu I resonance lines in turn-off stars of NGC 6752 and NGC
    6397. Effects of granulation from CO5BOLD models
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.
2010A&A...524A..96B    Altcode: 2010arXiv1009.1848B
  Context. Copper is an element whose interesting evolution with
  metallicity is not fully understood. Observations of copper abundances
  rely on a very limited number of lines, the strongest are the Cu I
  lines of Mult. 1 at 324.7 nm and 327.3 nm which can be measured even at
  extremely low metallicities. <BR /> Aims: We investigate the quality of
  these lines as abundance indicators. <BR /> Methods: We measure these
  lines in two turn-off (TO) stars in the Globular Cluster NGC 6752 and
  two TO stars in the Globular Cluster NGC 6397 and derive abundances
  with 3D hydrodynamical model atmospheres computed with the CO5BOLD
  code. These abundances are compared to the Cu abundances measured in
  giant stars of the same clusters, using the lines of Mult. 2 at 510.5
  nm and 578.2 nm. <BR /> Results: The abundances derived from the lines
  of Mult. 1 in TO stars differ from the abundances of giants of the same
  clusters. This is true both using CO5BOLD models and using traditional
  1D model atmospheres. The LTE 3D corrections for TO stars are large,
  while they are small for giant stars. <BR /> Conclusions: The Cu I
  resonance lines of Mult. 1 are not reliable abundance indicators. It
  is likely that departures from LTE should be taken into account to
  properly describe these lines, although it is not clear if these alone
  can account for the observations. An investigation of these departures
  is indeed encouraged for both dwarfs and giants. Our recommendation to
  those interested in the study of the evolution of copper abundances is
  to rely on the measurements in giants, based on the lines of Mult. 2. We
  caution, however, that NLTE studies may imply a revision in all the
  Cu abundances, both in dwarfs and giants. <P />Based on observations
  made with the ESO Very Large Telescope at Paranal Observatory, Chile
  (Programmes 71.D-0155, 75.D-0807, 76.B-0133).

---------------------------------------------------------
Title: The metal-poor end of the Spite plateau. I. Stellar parameters,
    metallicities, and lithium abundances
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.;
   Behara, N. T.; González Hernández, J. I.; Steffen, M.; Cayrel, R.;
   Freytag, B.; van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite,
   M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V.
2010A&A...522A..26S    Altcode: 2010arXiv1003.4510S
  Context. The primordial nature of the Spite plateau is at odds with
  the WMAP satellite measurements, implying a primordial Li production
  at least three times higher than observed. It has also been suggested
  that A(Li) might exhibit a positive correlation with metallicity below
  [Fe/H] ~ -2.5. Previous samples studied comprised few stars below
  [Fe/H] = -3. <BR /> Aims: We present VLT-UVES Li abundances of 28
  halo dwarf stars between [Fe/H] = -2.5 and -3.5, ten of which have
  [Fe/H] &lt;-3. <BR /> Methods: We determined stellar parameters and
  abundances using four different T<SUB>eff</SUB> scales. The direct
  infrared flux method was applied to infrared photometry. Hα wings were
  fitted with two synthetic grids computed by means of 1D LTE atmosphere
  models, assuming two different self-broadening theories. A grid of Hα
  profiles was finally computed by means of 3D hydrodynamical atmosphere
  models. The Li i doublet at 670.8 nm has been used to measure A(Li)
  by means of 3D hydrodynamical NLTE spectral syntheses. An analytical
  fit of A(Li)<SUB>3D, NLTE</SUB> as a function of equivalent width,
  T<SUB>eff</SUB>, log g, and [Fe/H] has been derived and is made
  available. <BR /> Results: We confirm previous claims that A(Li)
  does not exhibit a plateau below [Fe/H] = -3. We detect a strong
  positive correlation with [Fe/H] that is insensitive to the choice of
  T<SUB>eff</SUB> estimator. From a linear fit, we infer a steep slope
  of about 0.30 dex in A(Li) per dex in [Fe/H], which has a significance
  of 2-3σ. The slopes derived using the four T<SUB>eff</SUB> estimators
  are consistent to within 1σ. A significant slope is also detected
  in the A(Li)-T<SUB>eff</SUB> plane, driven mainly by the coolest
  stars in the sample (T<SUB>eff</SUB> &lt; 6250), which appear to be
  Li-poor. However, when we remove these stars the slope detected in
  the A(Li)-[Fe/H] plane is not altered significantly. When the full
  sample is considered, the scatter in A(Li) increases by a factor
  of 2 towards lower metallicities, while the plateau appears very
  thin above [Fe/H] = -2.8. At this metallicity, the plateau lies at
  &lt;A(Li)<SUB>3D, NLTE</SUB>&gt; = 2.199±0.086. <BR /> Conclusions:
  The meltdown of the Spite plateau below [Fe/H] ~ -3 is established,
  but its cause is unclear. If the primordial A(Li) were that derived
  from standard BBN, it appears difficult to envision a single depletion
  phenomenon producing a thin, metallicity independent plateau above
  [Fe/H] = -2.8, and a highly scattered, metallicity dependent
  distribution below. That no star below [Fe/H] = -3 lies above the
  plateau suggests that they formed at plateau level and experienced
  subsequent depletion. <P />Based on observations made with the ESO Very
  Large Telescope at Paranal Observatory, Chile (Programmes 076.A-0463
  and 077.D-0299).Full Table 3 is available in electronic form at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A26">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A26</A>IDL
  code (appendix) is only available in electronic form at <A
  href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Galactic evolution of oxygen. OH lines in 3D hydrodynamical
    model atmospheres
Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.; Behara, N. T.; Freytag, B.
2010A&A...519A..46G    Altcode: 2010arXiv1005.3754G
  Context. Oxygen is the third most common element in the Universe. The
  measurement of oxygen lines in metal-poor unevolved stars, in
  particular near-UV OH lines, can provide invaluable information
  about the properties of the Early Galaxy. <BR /> Aims: Near-UV OH
  lines constitute an important tool to derive oxygen abundances in
  metal-poor dwarf stars. Therefore, it is important to correctly model
  the line formation of OH lines, especially in metal-poor stars, where
  3D hydrodynamical models commonly predict cooler temperatures than
  plane-parallel hydrostatic models in the upper photosphere. <BR />
  Methods: We have made use of a grid of 52 3D hydrodynamical model
  atmospheres for dwarf stars computed with the code CO<SUP>5</SUP>BOLD,
  extracted from the more extended CIFIST grid. The 52 models cover
  the effective temperature range 5000-6500 K, the surface gravity
  range 3.5-4.5 and the metallicity range -3 &lt; [Fe/H] &lt; 0. <BR />
  Results: We determine 3D-LTE abundance corrections in all 52 3D models
  for several OH lines and ion{Fe}{i} lines of different excitation
  potentials. These 3D-LTE corrections are generally negative and reach
  values of roughly -1 dex (for the OH 3167 with excitation potential
  of approximately 1 eV) for the higher temperatures and surface
  gravities. <BR /> Conclusions: We apply these 3D-LTE corrections
  to the individual O abundances derived from OH lines of a sample
  the metal-poor dwarf stars reported in Israelian et al. (1998, ApJ,
  507, 805), Israelian et al. (2001, ApJ, 551, 833) and Boesgaard et
  al. (1999, AJ, 117, 492) by interpolating the stellar parameters of the
  dwarfs in the grid of 3D-LTE corrections. The new 3D-LTE [O/Fe] ratio
  still keeps a similar trend as the 1D-LTE, i.e., increasing towards
  lower [Fe/H] values. We applied 1D-NLTE corrections to 3D ion{Fe}{i}
  abundances and still see an increasing [O/Fe] ratio towards lower
  metallicites. However, the Galactic [O/Fe] ratio must be revisited
  once 3D-NLTE corrections become available for OH and Fe lines for a
  grid of 3D hydrodynamical model atmospheres.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Fe Abundances in metal-poor stars
    (Sbordone+ 2010)
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.;
   Behara, N. T.; Gonzalez Hernandez, J. I.; Steffen, M.; Cayrel, R.;
   Freytag, B.; van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite,
   M.; Spite, F.; Beers, T. C.; Christlieb, N.; Francois, P.; Hill, V.
2010yCat..35220026S    Altcode: 2010yCat..35229026S
  Line-by-line abundances for FeI and FeII lines used to estimate
  metallicity and gravity for the program stars. The first column lists
  the star name, then the ion (FeI or FeII) The the wavelength in nm,
  the loggf, the measured EW (pm) and the derived abundance assuming the
  four stellar parameter sets used in the article, respectively 3D, BA,
  ALI and IRFM. <P />(3 data files).

---------------------------------------------------------
Title: Sulphur abundances in halo stars from multiplet 3 at 1045 nm
Authors: Caffau, E.; Sbordone, L.; Ludwig, H. -G.; Bonifacio, P.;
   Spite, M.
2010AN....331..725C    Altcode: 2010arXiv1003.4914C
  Sulphur is a volatile α-element which is not locked into dust grains
  in the interstellar medium (ISM). Hence, its abundance does not need
  to be corrected for dust depletion when comparing the ISM to the
  stellar atmospheres. The abundance of sulphur in the photosphere of
  metal-poor stars is a matter of debate: according to some authors,
  [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while,
  according to other studies, there is a large scatter or perhaps a
  bimodal distribution. In metal-poor stars sulphur is detectable by its
  lines of multiplet 1 at 920 nm, but this range is heavily contaminated
  by telluric absorptions, and one line of the multiplet is blended by the
  hydrogen Paschen ζ line. We study the possibility of using multiplet 3
  (at 1045 nm) for deriving the sulphur abundance because this range,
  now observable at the VLT with the infra-red spectrograph CRIRES,
  is little contaminated by telluric absorption and not affected by
  blends at least in metal-poor stars. We compare the abundances derived
  from multiplets 1 and 3, taking into account NLTE corrections and
  3D effects. Here we present the results for a sample of four stars,
  although the scatter is less pronounced than in previous analysis,
  we cannot find a plateau in [S/Fe], and confirm the scatter of the
  sulphur abundance at low metallicity. <P />Using data from CRIRES at
  the ESO-VLT, Programme 079.D-0434.

---------------------------------------------------------
Title: Science with GYES: a multifibre high-resolution spectrograph
    for the prime focus of the Canada-France-Hawaii Telescope
Authors: Bonifacio, P.; Arenou, F.; Babusiaux, C.; Balkowski,
   C.; Bienaymé, O.; Briot, D.; Caffau, E.; Carlberg, R.; Famaey,
   B.; François, P.; Frémat, Y.; Gomez, A.; Haywood, M.; Hill, V.;
   Katz, D.; Kudritzki, R.; Lallement, R.; de Laverny, P.; Lemasle, B.;
   Martayan, C.; Monier, R.; Mourard, D.; Nardetto, N.; Recio Blanco,
   A.; Robichon, N.; Robin, A. C.; Rodrigues, M.; Royer, Fr.; Soubiran,
   C.; Turon, C.; Venn, K.; Viala, Y.
2010SPIE.7735E..0EB    Altcode: 2010SPIE.7735E..13B
  We present the scientific motivations for GYES: a high multiplex (of the
  order of several hundred), high resolution (about 20 000), spectrograph
  to be placed at the prime focus of the CFHT. The main purpose of such
  an instrument is to conduct a spectroscopic survey complementary to
  the Gaia mission. The final Gaia catalogue (expected around 2020) will
  provide accurate distances, proper motions and spectrophotometry for
  all the stars down to a magnitude of 20. The spectroscopic instrument on
  board the Gaia satellite will provide intermediate resolution (R=11 500)
  spectra for stars down to the 17th magnitude. For the fainter stars
  there will be no radial velocity information. For all the stars the
  chemical information will be limited to a few species. A multifibre
  spectrograph at the prime focus of the CFHT will be able to provide
  the high resolution spectra for stars fainter than 13th magnitude,
  needed to obtain both accurate radial velocities and detailed chemical
  abundances. The possible use of GYES will not be limited to Gaia
  complementary surveys and we here describe the potentialities of
  such an instrument. We describe here how the scientific drivers are
  translated into technical requirements. The results of our on-going
  feasibility study are described in an accompanying poster.

---------------------------------------------------------
Title: The solar photospheric abundance of carbon. Analysis of atomic
    carbon lines with the CO5BOLD solar model
Authors: Caffau, E.; Ludwig, H. -G.; Bonifacio, P.; Faraggiana, R.;
   Steffen, M.; Freytag, B.; Kamp, I.; Ayres, T. R.
2010A&A...514A..92C    Altcode: 2010arXiv1002.2628C
  Context. The analysis of the solar spectra using hydrodynamical
  simulations, with a specific selection of lines, atomic data, and method
  for computing deviations from local thermodynamical equilibrium, has
  led to a downward revision of the solar metallicity, Z. We are using
  the latest simulations computed with the CO5BOLD code to reassess
  the solar chemical composition. Our previous analyses of the key
  elements, oxygen and nitrogen, have not confirmed any extreme downward
  revision of Z, as derived in other works based on hydrodynamical
  models. <BR /> Aims: We determine the solar photospheric carbon
  abundance with a radiation-hydrodynamical CO5BOLD model and compute
  the departures from local thermodynamical equilibrium by using the
  Kiel code. <BR /> Methods: We measured equivalent widths of atomic C
  I lines on high-resolution, high signal-to-noise ratio solar atlases
  of disc-centre intensity and integrated disc flux. These equivalent
  widths were analysed with our latest solar 3D hydrodynamical simulation
  computed with CO5BOLD. Deviations from local thermodynamic equilibrium
  we computed in 1D with the Kiel code, using the average temperature
  structure of the hydrodynamical simulation as a background model. <BR />
  Results: Our recommended value for the solar carbon abundance relies
  on 98 independent measurements of observed lines and is A(C)=8.50
  ± 0.06. The quoted error is the sum of statistical and systematic
  errors. Combined with our recent results for the solar oxygen and
  nitrogen abundances, this implies a solar metallicity of Z = 0.0154
  and Z/X = 0.0211. <BR /> Conclusions: Our analysis implies a solar
  carbon abundance that is about 0.1 dex higher than what was found in
  previous analyses based on different 3D hydrodynamical computations. The
  difference is partly driven by our equivalent width measurements
  (we measure, on average, larger equivalent widths than the other work
  based on a 3D model), in part because of the different properties of
  the hydrodynamical simulations and the spectrum synthesis code. The
  solar metallicity we obtain from the CO5BOLD analyses is in slightly
  better agreement with the constraints of helioseismology than the
  previous 3D abundance results.

---------------------------------------------------------
Title: A 3D-NLTE study of the 670 nm solar lithium feature
Authors: Caffau, Elisabetta; Ludwig, Hans-Günter; Steffen, Matthias;
   Bonifacio, Piercarlo
2010IAUS..268..329C    Altcode:
  We derive the 3D-NLTE lithium abundance in the solar photosphere from
  the Lii line at 670 nm as measured in several solar atlases. The Li
  abundance is obtained from line profile fitting with 1D/3D-LTE/3D-NLTE
  synthetic spectra, considering several possibilities for the
  atomic parameters of the lines blending the Li feature. The 670 nm
  spectral region shows considerable differences in the two available
  disc-centre solar atlases, while the two integrated disc spectra are
  very similar. We obtain A(Li)<SUB>3D-NLTE</SUB> = 1.03. The 1D-LTE
  abundance is 0.07 dex smaller. The line-lists giving the best fit
  for the Sun may fail for other stars, while some line-lists fail to
  reproduce the solar profile satisfactorily. We need a better knowledge
  of the atomic parameters of the lines blending the Li feature in order
  to be able to reproduce both the solar spectrum and the spectra of
  other stars. An improved line-list is also required to derive reliable
  estimates of the isotopic Li ratio in solar-metallicity stars.

---------------------------------------------------------
Title: Three carbon-enhanced metal-poor dwarf stars from the
    SDSS. Chemical abundances from CO<SUP>5</SUP>BOLD 3D hydrodynamical
    model atmospheres
Authors: Behara, N. T.; Bonifacio, P.; Ludwig, H. -G.; Sbordone, L.;
   González Hernández, J. I.; Caffau, E.
2010A&A...513A..72B    Altcode: 2010arXiv1002.1670B
  Context. The origin of carbon-enhanced metal-poor stars enriched
  with both s and r elements is highly debated. Detailed abundances of
  these types of stars are crucial to understand the nature of their
  progenitors. <BR /> Aims: The aim of this investigation is to study
  in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS
  J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital
  Sky Survey. <BR /> Methods: Using high resolution VLT/UVES spectra
  (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al,
  Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We
  made use of CO<SUP>5</SUP>BOLD 3D hydrodynamical model atmospheres
  in the analysis of the carbon, nitrogen and oxygen abundances. NLTE
  corrections for Ci and Oi lines were computed using the Kiel code. <BR
  /> Results: We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s
  stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced
  Ba, but deficient Sr, of which it is the third member discovered to
  date. Radial-velocity variations have been observed in SDSS J1349-0229,
  providing evidence that it is a member of a binary system. <BR />
  Conclusions: The chemical composition of the three stars is generally
  compatible with mass transfer from an AGB companion. However, many
  details remain difficult to explain. Most notably of those are the
  abundance of Li at the level of the Spite plateau in SDSS J1036+1212
  and the large over-abundance of the pure r-process element Eu in all
  three stars. <P />Based on observations obtained with the ESO Very
  Large Telescope at Paranal Observatory, Chile (programmes 078.D-0217
  and 383.D-0927).

---------------------------------------------------------
Title: Convection and <SUP>6</SUP>Li in the atmospheres of metal-poor
    halo stars
Authors: Steffen, Matthias; Cayrel, R.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.
2010IAUS..268..215S    Altcode: 2010arXiv1001.3274S
  Based on 3D hydrodynamical model atmospheres computed with the
  CO<SUP>5</SUP>BOLD code and 3D non-LTE (NLTE) line formation
  calculations, we study the effect of the convection-induced line
  asymmetry on the derived <SUP>6</SUP>Li abundance for a range in
  effective temperature, gravity, and metallicity covering the stars
  of the Asplund et al. (2006) sample. When the asymmetry effect
  is taken into account for this sample of stars, the resulting
  <SUP>6</SUP>Li/<SUP>7</SUP>Li ratios are reduced by about 1.5% on
  average with respect to the isotopic ratios determined by Asplund et
  al. (2006). This purely theoretical correction diminishes the number
  of significant <SUP>6</SUP>Li detections from 9 to 4 (2σ criterion),
  or from 5 to 2 (3σ criterion). In view of this result the existence
  of a <SUP>6</SUP>Li plateau appears questionable. A careful reanalysis
  of individual objects by fitting the observed lithium 6707 Å doublet
  both with 3D NLTE and 1D LTE synthetic line profiles confirms that the
  inferred <SUP>6</SUP>Li abundance is systematically lower when using
  3D NLTE instead of 1D LTE line fitting. Nevertheless, halo stars with
  unquestionable <SUP>6</SUP>Li detection do exist even if analyzed in
  3D-NLTE, the most prominent example being HD 84937.

---------------------------------------------------------
Title: The metal-poor end of the Spite plateau: gravity sensitivity
    of the Hα wings fitting.
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.;
   Behara, N.; Gonzalez-Hernandez, J. I.; Steffen, M.; Cayrel, R.;
   Freytag, B.; Van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite,
   M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V.
2010IAUS..268..355S    Altcode:
  We recently presented (Sbordone et al., 2009a) the largest sample to
  date of lithium abundances in extremely metal-poor (EMP) Halo dwarf and
  Turn-Off (TO) stars. One of the most crucial aspects in estimating Li
  abundances is the T<SUB>eff</SUB> determination, since the Li I 670.8
  nm doublet is highly temperature sensitive. In this short contribution
  we concentrate on the T<SUB>eff</SUB> determination based on Hα wings
  fitting, and on its sensitivity to the chosen stellar gravity.

---------------------------------------------------------
Title: Main-sequence and sub-giant stars in the globular cluster
NGC 6397: The complex evolution of the lithium abundance
Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.;
   Steffen, M.; Ludwig, H. -G.; Behara, N.; Sbordone, L.; Cayrel, R.;
   Zaggia, S.
2010IAUS..268..257G    Altcode: 2009arXiv0912.4105G
  Thanks to the high multiplex and efficiency of Giraffe at the VLT
  we have been able for the first time to observe the Li I doublet in
  the Main Sequence stars of a globular cluster. At the same time we
  observed Li in a sample of Sub-Giant stars of the same B-V colour. <P
  />Our final sample is composed of 84 SG stars and 79 MS stars. In
  spite of the fact that SG and MS span the same temperature range we
  find that the equivalent widths of the Li I doublet in SG stars are
  systematically larger than those in MS stars, suggesting a higher Li
  content among SG stars. This is confirmed by our quantitative analysis
  carried out making use of 1D hydrostatic plane-parallel models and
  3D hydrodynamical simulations of the stellar atmospheres. <P />We
  derived the effective temperatures of stars in our the sample from Hα
  fitting. Theoretical profiles were computed using 3D hydrodynamical
  simulations and 1D ATLAS models. Therefore, we are able to determined
  1D and 3D-based effective temperatures. We then infer Li abundances
  taking into account non-local thermodynamical equilibrium effects when
  using both 1D and 3D models. <P />We find that SG stars have a mean
  Li abundance higher by 0.1 dex than MS stars. This result is obtained
  using both 1D and 3D models. We also detect a positive slope of Li
  abundance with effective temperature, the higher the temperature the
  higher the Li abundance, both for SG and MS stars, although the slope
  is slightly steeper for MS stars. These results provide an unambiguous
  evidence that the Li abundance changes with evolutionary status. <P
  />The physical mechanisms responsible for this behaviour are not yet
  clear, and none of the existing models seems to describe accurately
  these observations. Based on these conclusions, we believe that the
  cosmological lithium problem still remains an open question.

---------------------------------------------------------
Title: <SUP>6</SUP>Li in metal-poor halo stars: real or spurious?
Authors: Steffen, M.; Cayrel, R.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.
2010IAUS..265...23S    Altcode: 2009arXiv0910.5917S
  The presence of convective motions in the atmospheres of metal-poor
  halo stars leads to systematic asymmetries of the emergent spectral
  line profiles. Since such line asymmetries are very small, they can be
  safely ignored for standard spectroscopic abundance analysis. However,
  when it comes to the determination of the <SUP>6</SUP>Li/<SUP>7</SUP>Li
  isotopic ratio, q(Li)=n(<SUP>6</SUP>Li)/n(<SUP>7</SUP>Li), the
  intrinsic asymmetry of the <SUP>7</SUP>Li line must be taken into
  account, because its signature is essentially indistinguishable from
  the presence of a weak <SUP>6</SUP>Li blend in the red wing of the
  <SUP>7</SUP>Li line. In this contribution we quantity the error of the
  inferred <SUP>6</SUP>Li/<SUP>7</SUP>Li isotopic ratio that arises if
  the convective line asymmetry is ignored in the fitting of the λ6707
  Å lithium blend. Our conclusion is that <SUP>6</SUP>Li/<SUP>7</SUP>Li
  ratios derived by Asplund et al. (2006), using symmetric line profiles,
  must be reduced by typically Δq(Li) ≈ 0.015. This diminishes the
  number of certain <SUP>6</SUP>Li detections from 9 to 4 stars or less,
  casting some doubt on the existence of a <SUP>6</SUP>Li plateau.

---------------------------------------------------------
Title: Can we trust elemental abundances derived in late-type giants
    with the classical 1D stellar atmosphere models?
Authors: Kučinskas, A.; Dobrovolskas, V.; Ivanauskas, A.; Ludwig,
   H. -G.; Caffau, E.; Blaževičius, K.; Klevas, J.; Prakapavičius, D.
2010IAUS..265..209K    Altcode: 2009arXiv0910.3397K
  We compare the abundances of various chemical species as derived
  with 3D hydrodynamical and classical 1D stellar atmosphere codes in
  a late-type giant characterized by T<SUB>eff</SUB> =3640 K, log g =
  1.0, [M/H]= 0.0. For this particular set of atmospheric parameters the
  3D-1D abundance differences are generally small for neutral atoms and
  molecules but they may reach up to 0.3-0.4 dex in case of ions. The
  3D-1D differences generally become increasingly more negative at
  higher excitation potentials and are typically largest in the optical
  wavelength range. Their sign can be both positive and negative, and
  depends on the excitation potential and wavelength of a given spectral
  line. While our results obtained with this particular late-type giant
  model suggest that 1D stellar atmosphere models may be safe to use
  with neutral atoms and molecules, care should be taken if they are
  exploited with ions.

---------------------------------------------------------
Title: Detailed analyses of three neutron-capture-rich carbon-enhanced
    metal-poor stars
Authors: Behara, N. T.; Bonifacio, P.; Ludwig, H. -G.; Sbordone, L.;
   González Hernández, J. I.; Caffau, E.
2010IAUS..265..122B    Altcode: 2009arXiv0909.0180B
  Approximately 20% of very metal-poor stars ([Fe/H] &lt; -2.0)
  are strongly enhanced in carbon ([C/Fe] &gt; +1.0). Such stars are
  referred to as carbon-enhanced metal-poor (CEMP) stars. We present a
  chemical abundance analysis based on high resolution spectra acquired
  with UVES at the VLT of three dwarf CEMP stars: SDSS J1349-0229, SDSS
  J0912+0216 and SDSS J1036+1212. These very metal-poor stars, with
  [Fe/H] &lt; -2.5, were selected from our ongoing survey of extremely
  metal-poor dwarf candidates from the SDSS. <P />Among these CEMPs,
  SDSS J1349-0229 has been identified as a carbon star ([C/O] &gt;
  +1.0). First and second peak s-process elements, as well as second
  peak r-process elements have been detected in all stars. In addition,
  elements from the third r-process peak were detected in one of the
  stars, SDSS J1036+1212. We present the abundance results of these
  stars in the context of neutron-capture nucleosynthesis theories.

---------------------------------------------------------
Title: Solar abundances and 3D model atmospheres
Authors: Ludwig, Hans-Günter; Caffau, Elisabetta; Steffen, Matthias;
   Bonifacio, Piercarlo; Freytag, Bernd; Cayrel, Roger
2010IAUS..265..201L    Altcode: 2009arXiv0911.4248L
  We present solar photospheric abundances for 12 elements from optical
  and near-infrared spectroscopy. The abundance analysis was conducted
  employing 3D hydrodynamical (CO<SUP>5</SUP>BOLD) as well as standard
  1D hydrostatic model atmospheres. We compare our results to others
  with emphasis on discrepancies and still lingering problems, in
  particular exemplified by the pivotal abundance of oxygen. We argue
  that the thermal structure of the lower solar photosphere is very
  well represented by our 3D model. We obtain an excellent match of
  the observed center-to-limb variation of the line-blanketed continuum
  intensity, also at wavelengths shortward of the Balmer jump.

---------------------------------------------------------
Title: The metal-poor end of the Spite plateau
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.;
   Behara, N.; Gonzalez-Hernandez, J. I.; Steffen, M.; Cayrel, R.;
   Freytag, B.; Van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite,
   M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V.
2010IAUS..265...75S    Altcode:
  We present the largest sample available to date of lithium abundances in
  extremely metal poor (EMP) Halo dwarfs. Four T<SUB>eff</SUB> estimators
  are used, including IRFM and Hα wings fitting against 3D hydrodynamical
  synthetic profiles. Lithium abundances are computed by means of 1D and
  3D-hydrodynamical NLTE computations. Below [Fe/H]~-3, a strong positive
  correlation of A(Li) with [Fe/H] appears, not influenced by the choice
  of the Teff estimator. A linear fit finds a slope of about 0.30 dex in
  A(Li) per dex in [Fe/H], significant to 2-3 σ, and consistent within
  1 σ among all the T<SUB>eff</SUB> estimators. The scatter in A(Li)
  increases significantly below [Fe/H]~-3. Above, the plateau lies at
  &lt;A(Li)<SUB>3D, NLTE</SUB>&gt; = 2.199 ± 0.086. If the primordial
  A(Li) is the one derived from standard Big Bang Nucleosynthesis
  (BBN), it appears difficult to envision a single depletion phenomenon
  producing a thin, metallicity independent plateau above [Fe/H] = -2.8,
  and a highly scattered, metallicity dependent distribution below.

---------------------------------------------------------
Title: Accuracy of spectroscopy-based radioactive dating of stars
Authors: Ludwig, H. -G.; Caffau, E.; Steffen, M.; Bonifacio, P.;
   Sbordone, L.
2010A&A...509A..84L    Altcode: 2009arXiv0911.4251L
  Context. Combined spectroscopic abundance analyses of stable and
  radioactive elements can be applied for deriving stellar ages. The
  achievable precision depends on factors related to spectroscopy,
  nucleosynthesis, and chemical evolution. <BR /> Aims: We quantify the
  uncertainties arising from the spectroscopic analysis, and compare these
  to the other error sources. <BR /> Methods: We derive formulae for the
  age uncertainties arising from the spectroscopic abundance analysis,
  and apply them to spectroscopic and nucleosynthetic data compiled
  from the literature for the Sun and metal-poor stars. <BR /> Results:
  We obtained ready-to-use analytic formulae of the age uncertainty for
  the cases of stable+unstable and unstable+unstable chronometer pairs,
  and discuss the optimal relation between to-be-measured age and mean
  lifetime of a radioactive species. Application to the literature
  data indicates that, for a single star, the achievable spectroscopic
  accuracy is limited to about ±20% for the foreseeable future. At
  present, theoretical uncertainties in nucleosynthesis and chemical
  evolution models form the precision bottleneck. For stellar clusters,
  isochrone fitting provides a higher accuracy than radioactive dating,
  but radioactive dating becomes competitive when applied to many cluster
  members simultaneously, reducing the statistical errors by a factor
  √{N}. <BR /> Conclusions: Spectroscopy-based radioactive stellar
  dating would benefit from improvements in the theoretical understanding
  of nucleosynthesis and chemical evolution. Its application to clusters
  can provide strong constraints for nucleosynthetic models.

---------------------------------------------------------
Title: GYES, A Multifibre Spectrograph for the CFHT
Authors: Bonifacio, P.; Mignot, S.; Dournaux, J. -L.; François,
   P.; Caffau, E.; Royer, F.; Babusiaux, C.; Arenou, F.; Balkowski,
   C.; Bienaymé, O.; Briot, D.; Carlberg, R.; Cohen, M.; Dalton,
   G. B.; Famaey, B.; Fasola, G.; Frémat, Y.; Gómez, A.; Guinouard,
   I.; Haywood, M.; Hill, V.; Huet, J. -M.; Katz, D.; Horville, D.;
   Kudritzki, R.; Lallement, R.; Laporte, Ph.; de Laverny, P.; Lemasle,
   B.; Lewis, I. J.; Martayan, C.; Monier, R.; Mourard, D.; Nardetto,
   N.; Recio Blanco, A.; Robichon, N.; Robin, A. C.; Rodrigues, M.;
   Soubiran, C.; Turon, C.; Venn, K.; Viala, Y.
2010EAS....45..219B    Altcode: 2011EAS....45..219B; 2010arXiv1009.3644B
  We have chosen the name of GYES, one of the mythological giants with
  one hundred arms, offspring of Gaia and Uranus, for our instrument
  study of a multifibre spectrograph for the prime focus of the
  Canada-France-Hawaii Telescope. Such an instrument could provide an
  excellent ground-based complement for the Gaia mission and a northern
  complement to the HERMES project on the AAT. The CFHT is well known
  for providing a stable prime focus environment, with a large field
  of view, which has hosted several imaging instruments, but has never
  hosted a multifibre spectrograph. Building upon the experience gained
  at GÉPI with FLAMES-Giraffe and X-Shooter, we are investigating the
  feasibility of a high multiplex spectrograph (about 500 fibres) over a
  field of view one degree in diameter. We are investigating an instrument
  with resolution in the range 15 000 to 30 000, which should provide
  accurate chemical abundances for stars down to 16th magnitude and radial
  velocities, accurate to 1 km s<SUP>-1</SUP> for fainter stars. The
  study is led by GÉPI-Observatoire de Paris with a contribution from
  Oxford for the study of the positioner. The financing for the study
  comes from INSU CSAA and Observatoire de Paris. The conceptual study
  will be delivered to CFHT for review by October 1st 2010.

---------------------------------------------------------
Title: Chemical abundances in metal-poor giants: limitations imposed
    by the use of classical 1D stellar atmosphere models
Authors: Dobrovolskas, V.; Kucinskas, A.; Ludwig, H. G.; Caffau, E.;
   Klevas, J.; Prakapavicius, D.
2010nuco.confE.288D    Altcode: 2010arXiv1010.2507D; 2010PoS...100E.288D
  In this work we have used 3D hydrodynamical (CO5BOLD) and 1D hydrostatic
  (LHD) stellar atmosphere models to study the importance of convection
  and horizontal temperature inhomogeneities in stellar abundance work
  related to late-type giants. We have found that for a number of key
  elements, such as Na, Mg, Si, Ca, Ti, Fe, Ni, Zn, Ba, Eu, differences
  in abundances predicted by 3D and 1D models are typically minor (&lt;
  0.1 dex) at solar metallicity. However, at [M/H] = -3 they become
  larger and reach to -0.5...-0.8 dex. In case of neutral atoms and fixed
  metallicity, the largest abundance differences were obtained for the
  spectral lines with lowest excitation potential, while for ionized
  species the largest 3D-1D abundance differences were found for lines
  of highest excitation potential. The large abundance differences at
  low metallicity are caused by large horizontal temperature fluctuations
  and lower mean temperature in the outer layers of the 3D hydrodynamical
  model compared with its 1D counterpart.

---------------------------------------------------------
Title: Lithium abundances of main-sequence and subgiant stars in
    the globular cluster NGC 6397
Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.;
   Steffen, M.; Ludwig, H. -G.; Behara, N.; Sbordone, L.; Cayrel, R.;
   Zaggia, S.
2010IAUS..266..407G    Altcode: 2009arXiv0910.2305G
  We present FLAMES/GIRAFFE spectroscopy obtained with the Very Large
  Telescope (VLT). Using these observations, we have been able (for the
  first time) to observe the Lii doublet in the main-sequence (MS) stars
  of a globular cluster. We also observed Li in a sample of subgiant (SG)
  stars of the same B - V colour. Our final sample is composed of 84 SG
  and 79 MS stars. In spite of the fact that SG and MS stars span the same
  temperature range, we find that the equivalent widths of the Lii doublet
  in SG stars are systematically greater than in MS stars, suggesting a
  higher Li content among SG stars. This is confirmed by our quantitative
  analysis, which makes use of both 1D and 3D model atmospheres. We find
  that SG stars show, on average, a higher Li abundance, by 0.1 dex, than
  MS stars. We also detect a positive slope of Li abundance with effective
  temperature: the higher the temperature the higher the Li abundance,
  both for SG and MS stars, although the slope is slightly steeper for MS
  stars. These results provide unambiguous evidence that the Li abundance
  changes with evolutionary state. The physical mechanisms that contribute
  to this are not yet clear, since none of the proposed models seem to
  describe accurately the observations. Whether such a mechanism can
  explain the cosmological lithium problem is still an open question.

---------------------------------------------------------
Title: Sulfur in the globular clusters 47 Tuc and NGC 6752
Authors: Sbordone, L.; Chieffi, A.; Limongi, M.; Caffau, E.; Ludwig,
   H. -G.; Bonifacio, P.
2010IAUS..266..537S    Altcode:
  The light elements Li, O, Na, Al, and Mg are known to show star-to-star
  variations in the globular clusters 47 Tuc and NGC 6752. We have
  investigated the behavior of the α element sulfur, for which no
  previous measurements exist in any Galactic globular cluster. We
  used high-resolution UVES spectra of Si multiplet 1 around 923 nm,
  and determined S abundances by means of ATLAS static plano-parallel
  models. NLTE corrections were applied and 3D corrections were also
  computed from co5bold 3D hydrodynamical models. Sulfur has been measured
  in four subgiant stars in NGC 6752, leading to an average value of
  [S/Fe] = +0.49 ± 0.15 dex, consistent with what is observed in field
  stars of similar metallicity. In 47 Tuc, we measured S in four turnoff
  (TO) and five subgiant (SG) stars, for an average value of [S/Fe] =
  0.18 ± 0.14 dex. While the measurement errors are consistent with a
  constant value among all cluster stars analyzed, we detected a highly
  significant correlation with sodium abundance, as well as a tentative
  one with silicon. The sulfur-sodium correlation is difficult to explain
  in terms of nucleosynthesis. Given its high statistical significance,
  it is also difficult to dismiss it as fortuitous. Until better data for
  more stars are available, the question as to its origin remains open.

---------------------------------------------------------
Title: Local stars formed at z&gt;10: a sample extracted from the SDSS
Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. G.
2010nuco.confE.294S    Altcode: 2010arXiv1009.5210S; 2010PoS...100E.294S
  As the Universe emerged from its initial hot and dense phase, its
  chemical composition was extremely simple, being limited to stable H
  and He isotopes, and traces of Li. The first stars that formed had such
  initial composition. However, they quickly began to produce a whole
  array of heavier nuclei, polluting the interstellar medium. While none
  among these first stars has been detected to date, an increasing sample
  exists of their direct descendant, stars with heavy elements content of
  the order of 1/1000 of the solar value, or less. In most cases, such
  stars should have formed at redshift of about 10 or beyond, and their
  chemical composition can provide crucial constraints to the nature of
  the very first stars. Extremely metal poor (EMP) stars are exceedingly
  rare. We used the low resolution spectra obtained by the Sloan Digital
  Sky Survey (SDSS) to search for EMP candidates: results of VLT-UVES
  high resolution follow-up for 16 of them is presented here. A newly
  developed automatic abundance analysis and parameter determination
  code, MyGIsFOS, has been employed to analyze the detailed chemical
  abundances of such stars.

---------------------------------------------------------
Title: 3D hydrodynamical CO5BOLD model atmospheres of late-type
giants: stellar abundances from molecular lines
Authors: Ivanauskas, A.; Kucinskas, A.; Ludwig, H. G.; Caffau, E.
2010nuco.confE.290I    Altcode: 2010PoS...100E.290I; 2010arXiv1010.1722I
  We investigate the influence of convection on the formation of
  molecular spectral lines in the atmospheres of late-type giants. For
  this purpose we use the 3D hydrodynamical CO5BOLD and classical 1D
  LHD stellar atmosphere codes and synthesize a number of fictitious
  lines belonging to a number of astrophysically relevant molecules, C2,
  CH, CN, CO, NH, OH. We find that differences between the abundances
  obtained from molecular lines using the 3D and 1D model atmospheres are
  generally small at [M/H]=0.0, but they quickly increase at sub-solar
  metallicities where for certain molecules they may reach -2.0
  dex. The 3D-1D abundance differences show a significant dependence
  on the spectral line parameters, such as wavelength and excitation
  potential. Our comparison, therefore, reveals a complex interplay
  between the spectral line formation and convection that can not be
  properly accounted for with the classical 1D model atmospheres.

---------------------------------------------------------
Title: Theoretical amplitudes and lifetimes of non-radial solar-like
    oscillations in red giants
Authors: Dupret, M. -A.; Belkacem, K.; Samadi, R.; Montalban, J.;
   Moreira, O.; Miglio, A.; Godart, M.; Ventura, P.; Ludwig, H. -G.;
   Grigahcène, A.; Goupil, M. -J.; Noels, A.; Caffau, E.
2009A&A...506...57D    Altcode: 2009arXiv0906.3951D
  Context: Solar-like oscillations have been observed in numerous red
  giants from ground and from space. An important question arises:
  could we expect to detect non-radial modes probing the internal
  structure of these stars? <BR />Aims: We investigate under what physical
  circumstances non-radial modes could be observable in red giants; what
  would be their amplitudes, lifetimes and heights in the power spectrum
  (PS)? <BR />Methods: Using a non-radial non-adiabatic pulsation
  code including a non-local time-dependent treatment of convection,
  we compute the theoretical lifetimes of radial and non-radial modes
  in several red giant models. Next, using a stochastic excitation
  model, we compute the amplitudes of these modes and their heights in
  the PS. <BR />Results: Distinct cases appear. Case A corresponds to
  subgiants and stars at the bottom of the ascending giant branch. Our
  results show that the lifetimes of the modes are mainly proportional to
  the inertia I, which is modulated by the mode trapping. The predicted
  amplitudes are lower for non-radial modes. But the height of the peaks
  in the PS are of the same order for radial and non-radial modes as
  long as they can be resolved. The resulting frequency spectrum is
  complex. Case B corresponds to intermediate models in the red giant
  branch. In these models, the radiative damping becomes high enough to
  destroy the non-radial modes trapped in the core. Hence, only modes
  trapped in the envelope have significant heights in the PS and could
  be observed. The resulting frequency spectrum of detectable modes is
  regular for ℓ=0 and 2, but a little more complex for ℓ=1 modes
  because of less efficient trapping. Case C corresponds to models
  of even higher luminosity. In these models the radiative damping of
  non-radial modes is even larger than in the previous case and only
  radial and non-radial modes completely trapped in the envelope could be
  observed. The frequency pattern is very regular for these stars. The
  comparison between the predictions for radial and non-radial modes
  is very different if we consider the heights in the PS instead of the
  amplitudes. This is important as the heights (not the amplitudes) are
  used as detection criterion. <P />CIFIST Marie Curie Excellence Team.

---------------------------------------------------------
Title: Lithium in the globular cluster NGC 6397. Evidence for
    dependence on evolutionary status
Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.;
   Steffen, M.; Ludwig, H. -G.; Behara, N. T.; Sbordone, L.; Cayrel,
   R.; Zaggia, S.
2009A&A...505L..13G    Altcode: 2009arXiv0909.0983G
  Context: Most globular clusters are believed to host a single
  stellar population. They can thus be considered a good place to
  study the Spite plateau and to search for possible evolutionary
  modifications of the Li content. <BR />Aims: We want to determine the
  Li content of subgiant (SG) and main sequence (MS) stars of the old,
  metal-poor globular cluster NGC 6397. This work was aimed not only
  at studying possible Li abundance variations but also to investigate
  the cosmological Li discrepancy. <BR />Methods: Here, we present
  FLAMES/GIRAFFE observations of a sample of 84 SG and 79 MS stars in
  NGC 6397 selected in a narrow range of B-V colour and, therefore,
  effective temperatures. We determine both effective temperatures and
  Li abundances using three-dimensional hydrodynamical model atmospheres
  for all the MS and SG stars of the sample. <BR />Results: We find
  a significant difference in the Li abundance between SG stars and
  MS stars, the SG stars having an abundance higher by almost 0.1
  dex on average. We also find a decrease in the lithium abundance
  with decreasing effective temperature, both in MS and SG stars,
  albeit with a significantly different slope for the two classes of
  stars. This suggests that the lithium abundance in these stars is,
  indeed, altered by some process, which is temperature-dependent. <BR
  />Conclusions: The lithium abundance pattern observed in NGC 6397 is
  different from what is found among field stars, casting some doubt on
  the use of globular cluster stars as representative of Population II
  with respect to the lithium abundance. None of the available theories
  of Li depletion appears to satisfactorily describe our observations. <P
  />Based on observations obtained with FLAMES/GIRAFFE at VLT Kueyen
  8.2 m telescope in programme 079.D-0399(A). Table and Figs. 3-10 are
  only available in electronic form at http://www.aanda.org Table 2
  is available in electronic form at http://www.aanda.org and at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
  http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/L13

---------------------------------------------------------
Title: The Solar Photospheric Nitrogen Abundance: Determination with
    3D and 1D Model Atmospheres
Authors: Maiorca, E.; Caffau, E.; Bonifacio, P.; Busso, M.; Faraggiana,
   R.; Steffen, M.; Ludwig, H. -G.; Kamp, I.
2009PASA...26..345M    Altcode: 2009arXiv0912.0375M
  We present a new determination of the solar nitrogen abundance
  making use of 3D hydrodynamical modelling of the solar photosphere,
  which is more physically motivated than traditional static 1D
  models. We selected suitable atomic spectral lines, relying on
  equivalent width measurements already existing in the literature. For
  atmospheric modelling we used the co <SUP>5</SUP> bold 3D radiation
  hydrodynamics code. We investigated the influence of both deviations
  from local thermodynamic equilibrium (non-LTE effects) and photospheric
  inhomogeneities (granulation effects) on the resulting abundance. We
  also compared several atlases of solar flux and centre-disc intensity
  presently available. As a result of our analysis, the photospheric
  solar nitrogen abundance is A(N) = 7.86 +/- 0.12.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Lithium in NGC 6397 (Gonzalez
    Hernandez+, 2009)
Authors: Gonzalez Hernandez, J. I.; Bonifacio, P.; Caffau, E.; Steffen,
   M.; Ludwig, H. -G.; Behara, N. T.; Sbordone, L.; Cayrel, R.; Zaggia, S.
2009yCat..35059013G    Altcode:
  Photometric data of the dwarf and subgiant stars of the globular
  cluster NGC 6397. We also provide the signal-to-noise of the spectra,
  the 3D and 1D Halpha-based effective temperatures, 3D Li abundances,
  and the equivalent widths and errors: dEWa: Error of the equivalent
  width measurements estimated from a fitting routine that uses as
  free parameters the velocity shift, the continuum location, and the
  equivalent width of the Li line. dEWb: Error of the equivalent width
  associated to the signal-to-noise ratio and the wavelength dispersion
  of the spectra, derived using Cayrel's formula (Cayrel, 1988, IAU
  Symp. 132: The Impact of Very High S/N Spectroscopy on Stellar Physics,
  132, 345). <P />(1 data file).

---------------------------------------------------------
Title: Sulfur in the globular clusters <ASTROBJ>47 Tucanae</ASTROBJ>
    and <ASTROBJ>NGC 6752</ASTROBJ>
Authors: Sbordone, L.; Limongi, M.; Chieffi, A.; Caffau, E.; Ludwig,
   H. -G.; Bonifacio, P.
2009A&A...503..121S    Altcode: 2009arXiv0904.1417S
  Context: The light elements Li, O, Na, Al, and Mg are known to
  show star-to-star variations in the globular clusters <ASTROBJ>47
  Tuc</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>. Such variations are
  interpreted as coming from processing in a previous generation of
  stars. <BR />Aims: In this paper we investigate the abundances of
  the α-element sulfur, for which no previous measurements exist. In
  fact this element has not been investigated in any Galactic globular
  cluster so far. The only globular cluster for which such measurements
  are available is <ASTROBJ>Terzan 7</ASTROBJ>, which belongs to the
  <ASTROBJ>Sgr dSph</ASTROBJ>. <BR />Methods: We use high-resolution
  spectra of the S i Mult. 1, acquired with the UVES spectrograph at the
  8.2 m VLT-Kueyen telescope, for turn-off and giant stars in the two
  globular clusters. The spectra were analysed making use of ATLAS static
  plane parallel model atmospheres and SYNTHE spectrum synthesis. We
  also compute 3D corrections from CO^5BOLD hydrodynamic models and
  apply corrections due to NLTE effects taken from the literature. <BR
  />Results: In the cluster NGC 6752 sulfur has been measured only in
  four subgiant stars. We find no significant star-to-star scatter and a
  mean &lt;[S/Fe]&gt; = +0.49 ± 0.15, consistent with what is observed in
  field stars of the same metallicity. In the cluster 47 Tuc we measured
  S in 4 turn-off and 5 subgiant stars with a mean &lt;[S/Fe]&gt; =
  +0.18 ± 0.14. While this result is compatible with no star-to-star
  scatter we notice a statistically significant correlation of the sulfur
  abundance with the sodium abundance and a tentative correlation with
  the silicon abundance. <BR />Conclusions: The sulfur-sodium correlation
  is not easily explained in terms of nucleosynthesis. An origin due to
  atomic diffusion can be easily dismissed. The correlation cannot be
  easily dismissed either, in view of its statistical significance, until
  better data for more stars is available. <P />Based on observations
  made with the ESO VLT-Kueyen telescope at the Paranal Observatory,
  Chile, in the course of the ESO-Large Programme 165.L-0263.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Extremely metal-poor turnoff
    stars abundances (Bonifacio+, 2009)
Authors: Bonifacio, P.; Spite, M.; Cayrel, R.; Hill, V.; Spite,
   F.; Francois, P.; Plez, B.; Ludwig, H. -G.; Caffau, E.; Molaro, P.;
   Depagne, E.; Andersen, J.; Barbuy, B.; Beers, T. C.; Nordstroem, B.;
   Primas, F.
2009yCat..35010519B    Altcode:
  The detailed chemical abundances of extremely metal-poor (EMP) stars
  are key guides to understanding the early chemical evolution of the
  Galaxy. Most existing data, however, treat giant stars that may have
  experienced internal mixing later. We aim to compare the results for
  giants with new, accurate abundances for all observable elements in
  18 EMP turnoff stars. VLT/UVES spectra at ~45000 and S/N ~130 per
  pixel (330-1000nm) are analysed with OSMARCS model atmospheres and
  the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc,
  Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. For Ca, Ni, Sr, and Ba, we find
  excellent consistency with our earlier sample of EMP giants, at all
  metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co
  are ~0.2dex larger than in giants of similar metallicity. Mg and Si
  abundances are ~0.2dex lower (the giant [Mg/Fe] values are slightly
  revised), while Zn is again ~0.4dex higher than in giants of similar
  [Fe/H] (6 stars only). For C, the dwarf/giant discrepancy could
  possibly have an astrophysical cause, but for the other elements it
  must arise from shortcomings in the analysis. Approximate computations
  of granulation (3D) effects yield smaller corrections for giants than
  for dwarfs, but suggest that this is an unlikely explanation, except
  perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide
  consistent abundances between dwarfs and giants, unlike the LTE results,
  and would be highly desirable for the other discrepant elements as
  well. Meanwhile, we recommend using the giant abundances as reference
  data for Galactic chemical evolution models. <P />(3 data files).

---------------------------------------------------------
Title: First stars XII. Abundances in extremely metal-poor turnoff
    stars, and comparison with the giants
Authors: Bonifacio, P.; Spite, M.; Cayrel, R.; Hill, V.; Spite, F.;
   François, P.; Plez, B.; Ludwig, H. -G.; Caffau, E.; Molaro, P.;
   Depagne, E.; Andersen, J.; Barbuy, B.; Beers, T. C.; Nordström, B.;
   Primas, F.
2009A&A...501..519B    Altcode: 2009arXiv0903.4174B
  Context: The detailed chemical abundances of extremely metal-poor (EMP)
  stars are key guides to understanding the early chemical evolution
  of the Galaxy. Most existing data, however, treat giant stars that
  may have experienced internal mixing later. <BR />Aims: We aim to
  compare the results for giants with new, accurate abundances for all
  observable elements in 18 EMP turnoff stars. <BR />Methods: VLT/UVES
  spectra at R ~ 45 000 and S/N ~ 130 per pixel (λλ 330-1000 nm)
  are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM
  code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co,
  Ni, Zn, Sr, and Ba. <BR />Results: For Ca, Ni, Sr, and Ba, we find
  excellent consistency with our earlier sample of EMP giants, at all
  metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and
  Co are ~0.2 dex larger than in giants of similar metallicity. Mg
  and Si abundances are ~0.2 dex lower (the giant [Mg/Fe] values are
  slightly revised), while Zn is again ~0.4 dex higher than in giants
  of similar [Fe/H] (6 stars only). <BR />Conclusions: For C, the
  dwarf/giant discrepancy could possibly have an astrophysical cause,
  but for the other elements it must arise from shortcomings in the
  analysis. Approximate computations of granulation (3D) effects yield
  smaller corrections for giants than for dwarfs, but suggest that this
  is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE
  computations for Na and Al provide consistent abundances between dwarfs
  and giants, unlike the LTE results, and would be highly desirable for
  the other discrepant elements as well. Meanwhile, we recommend using
  the giant abundances as reference data for Galactic chemical evolution
  models. <P />Based on observations obtained with the ESO Very Large
  Telescope at Paranal Observatory, Chile (Large Programme “First
  Stars”, ID 165.N-0276; P.I.: R. Cayrel, and Programme 078.B-0238;
  P.I.: M. Spite). Appendices A-C are only available in electronic form
  at http://www.aanda.org Table 7 is only available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/519

---------------------------------------------------------
Title: The solar photospheric nitrogen abundance. Analysis of atomic
    transitions with 3D and 1D model atmospheres
Authors: Caffau, E.; Maiorca, E.; Bonifacio, P.; Faraggiana, R.;
   Steffen, M.; Ludwig, H. -G.; Kamp, I.; Busso, M.
2009A&A...498..877C    Altcode: 2009arXiv0903.3406C
  Context: In recent years, the solar chemical abundances have been
  studied in considerable detail because of discrepant values of
  solar metallicity inferred from different indicators, i.e., on the
  one hand, the “sub-solar” photospheric abundances resulting
  from spectroscopic chemical composition analyses with the aid of
  3D hydrodynamical models of the solar atmosphere, and, on the other
  hand, the high metallicity inferred by helioseismology. <BR />Aims:
  After investigating the solar oxygen abundance using a CO^5BOLD 3D
  hydrodynamical solar model in previous work, we undertake a similar
  approach studying the solar abundance of nitrogen, since this element
  accounts for a significant fraction of the overall solar metallicity,
  Z. <BR />Methods: We used a selection of atomic spectral lines to
  determine the solar nitrogen abundance, relying mainly on equivalent
  width measurements in the literature. We investigate the influence on
  the abundance analysis, of both deviations from local thermodynamic
  equilibrium (“NLTE effects”) and photospheric inhomogeneities
  (“granulation effects”). <BR />Results: We recommend use of a solar
  nitrogen abundance of A(N) = 7.86 ± 0.12, whose error bar reflects
  the line-to-line scatter. <BR />Conclusions: The solar metallicity
  implied by the CO^5BOLD-based nitrogen and oxygen abundances is in the
  range 0.0145≤ Z ≤ 0.0167. This result is a step towards reconciling
  photospheric abundances with helioseismic constraints on Z. Our most
  suitable estimates are Z=0.0156 and Z/X=0.0213.

---------------------------------------------------------
Title: Observable properties of late-type giants predicted by 3D
    hydrodynamical and 1D stellar atmosphere models
Authors: Kucinskas, A.; Ludwig, H. -G.; Ivanauskas, A.; Caffau, E.
2009IAUS..254P..37K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Halo chemistry and first stars. The chemical composition of
    the matter in the early Galaxy, from C to Mg†
Authors: Spite, M.; Bonifacio, P.; Cayrel, R.; Spite, F.; Francois,
   P.; Ludwig, H. G.; Caffau, E.; Andrievsky, S.; Barbuy, B.; Plez, B.;
   Molaro, P.; Andersen, J.; Beers, T.; Depagne, E.; Nordström, B.;
   Primas, F.
2009IAUS..254..349S    Altcode:
  From NLTE computations of the magnesium abundance in a sample
  of extremely metal-poor giants we derive [Mg/Fe]=+0.7, leading to
  [Al/Mg]=-0.80 and [Na/Mg]=-0.85 in the early Galaxy. The ratio [O/Mg]
  should be near to the solar value. Measurements of nitrogen abundances
  derived from the analysis of the NH band in eight more stars confirm
  the large scatter of the ratios [N/Fe] and [N/O] in the early Galaxy.

---------------------------------------------------------
Title: Micro- and macroturbulence derived from 3D hydrodynamical
    stellar atmospheres .
Authors: Steffen, M.; Ludwig, H. -G.; Caffau, E.
2009MmSAI..80..731S    Altcode: 2009arXiv0909.2831S
  The theoretical prediction of micro- and macroturbulence (xi_mic
  and xi_mac ) as a function of stellar parameters can be useful for
  spectroscopic work based on 1D model atmospheres in cases where an
  empirical determination of xi_mic is impossible due to a lack of
  suitable lines and/or macroturbulence and rotational line broadening
  are difficult to separate. In an effort to exploit the CIFIST 3D model
  atmosphere grid for deriving the theoretical dependence of xi_mic and
  xi_mac on effective temperature, gravity, and metallicity, we discuss
  different methods to derive xi_mic from the numerical simulations,
  and report first results for the Sun and Procyon. In both cases the
  preliminary analysis indicates that the microturbulence found in the
  simulations is significantly lower than in the real stellar atmospheres.

---------------------------------------------------------
Title: The ESO Large Programme “First Stars”
Authors: Bonifacio, P.; Andersen, J.; Andrievsky, S. M.; Barbuy, B.;
   Beers, T. C.; Caffau, E.; Cayrel, R.; Depagne, E.; François, P.;
   González Hernández, J. I.; Hansen, C. J.; Herwig, F.; Hill, V.;
   Korotin, S. A.; Ludwig, H. -G.; Molaro, P.; Nordström, B.; Plez,
   B.; Primas, F.; Sivarani, T.; Spite, F.; Spite, M.
2009ASSP....9...31B    Altcode: 2008arXiv0801.1293B; 2009svlt.conf...31B
  In ESO period 65 (April-September 2000) the large programme 165.N-0276,
  led by Roger Cayrel, began making use of UVES at the Kueyen VLT
  telescope. Known within the Team and outside as "First Stars", it was
  aimed at obtaining high resolution, high signal-to-noise ratio spectra
  in the range 320 nm-1000 nm for a large sample of extremely metal-poor
  (EMP) stars identified from the HK objective prism survey [T.C. Beers,
  G.W. Preston, S.A. Shectman in Astron. J. 90, 2089 (1985); T.C. Beers,
  G.W. Preston, S.A. Shectman in Astron. J. 103, 1987 (1992)]. The goal
  was to use these spectra to determine accurate atmospheric parameters
  and chemical composition of these stars which are among the oldest
  objects amenable to our detailed study. Although these stars are not
  the first generation of stars they must be very close descendants of
  the first generation. One may hope to gain insight on the nature of
  the progenitors from detailed information on the descendants.

---------------------------------------------------------
Title: The CIFIST 3D model atmosphere grid.
Authors: Ludwig, H. -G.; Caffau, E.; Steffen, M.; Freytag, B.;
   Bonifacio, P.; Kučinskas, A.
2009MmSAI..80..711L    Altcode: 2009arXiv0908.4496L
  Grids of stellar atmosphere models and associated synthetic spectra
  are numerical products which have a large impact in astronomy due to
  their ubiquitous application in the interpretation of radiation from
  individual stars and stellar populations. 3D model atmospheres are
  now on the verge of becoming generally available for a wide range
  of stellar atmospheric parameters. We report on efforts to develop
  a grid of 3D model atmospheres for late-type stars within the CIFIST
  Team at Paris Observatory. The substantial demands in computational
  and human labor for the model production and post-processing render
  this apparently mundane task a challenging logistic exercise. At
  the moment the CIFIST grid comprises 77 3D model atmospheres with
  emphasis on dwarfs of solar and sub-solar metallicities. While the
  model production is still ongoing, first applications are already
  worked upon by the CIFIST Team and collaborators.

---------------------------------------------------------
Title: Effects of granulation on neutral copper resonance lines in
    metal-poor stars
Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.
2009MmSAI..80..739B    Altcode: 2009arXiv0910.4730B
  We make use of three dimensional hydrodynamical simulations to
  investigate the effects of granulation on the Cu I lines of Mult. 1
  in the near UV, at 324.7 nm and 327.3 nm. These lines remain strong
  even at very low metallicity and provide the opportunity to study the
  chemical evolution of Cu in the metal-poor populations. We find very
  strong granulation effects on these lines. In terms of abundances the
  neglect of such effects can lead to an overestimate of the A(Cu) by
  as much as 0.8 dex in dwarf stars. Comparison of our computations with
  stars in the metal-poor Globular Clusters NGC 6752 and NGC 6397, show
  that there is a systematic discrepancy between the copper abundances
  derived from Mult. 2 in TO stars and those derived in giant stars of the
  same cluster from the lines of Mult. 2 at at 510.5 nm and 587.2 nm. We
  conclude that the Cu I resonance lines are not reliable indicators of
  Cu abundance and we believe that an investigations of departures from
  LTE is mandatory to make use of these lines.

---------------------------------------------------------
Title: Solar abundances and granulation effects
Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.
2009MmSAI..80..643C    Altcode: 2009arXiv0910.4733C
  The solar abundances have undergone a major downward revision
  in the last decade, reputedly as a result of employing 3D
  hydrodynamical simulations to model the inhomogeneous structure of
  the solar photosphere. The very low oxygen abundance advocated by
  \citet{asplund04}, A(O)=8.66, together with the downward revision of
  the carbon and nitrogen abundances, has created serious problems for
  solar models to explain the helioseismic measurements. <P />In an
  effort to contribute to the dispute we have re-derived photospheric
  abundances of several elements independently of previous analysis. We
  applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation
  of the solar granulation as well as different 1D model atmospheres
  for the line by line spectroscopic abundance determinations. The
  analysis is based on both standard disc-centre and disc-integrated
  spectral atlases; for oxygen we acquired in addition spectra at
  different heliocentric angles. The derived abundances are the result
  of equivalent width and/or line profile fitting of the available atomic
  lines. We discuss the different granulation effects on solar abundances
  and compare our results with previous investigations. According to
  our investigations hydrodynamical models are important in the solar
  abundance determination, but are not responsible for the recent downward
  revision in the literature of the solar metallicity.

---------------------------------------------------------
Title: NLTE Abundances of Sodium, Magnesium and Barium in the Globular
    Clusters M10 and M71
Authors: Mishenina, T. V.; Kučinskas, A.; Andrievsky, S. M.; Korotin,
   S. A.; Dobrovolskas, V.; Ivanauskas, A.; Caffau, E.; Ludwig, H. -G.;
   Steffen, M.; Sperauskas, J.; Klochkova, V. G.; Panchuk, V. E.
2009BaltA..18..193M    Altcode: 2009OAst...18..193M
  We derive NLTE abundances of Na, Mg and Ba in four late-type giants
  belonging to globular clusters M10 and M71. The obtained relative
  [Na/Fe] ratios, which were measured only in M10, are positive, with
  the average value [Na/Fe] = +0.3. The ratios [Mg/Fe] in both clusters
  are supersolar, +0.15 to +0.28, while [Ba/Fe] scatter between --0.14
  and +0.09. Differences between the NLTE abundances derived in this
  work and those obtained in LTE by Mishenina et al. (2003) are small,
  typically within ±0.1 dex. We also perform numerical simulations with
  the CO<SUP>5</SUP>BOLD 3D hydrodynamical stellar atmosphere code to
  investigate the influence of convection on the formation of spectral
  lines used in our NLTE study. For this purpose we use a model of
  late-type giant with T<SUB></SUB> eff = 4020 K, log g = 1.0, [M/H] =
  --1.0 and find that for Na, Mg and Ba the 3D--1D abundance corrections
  are below ∼ 0.02 dex. However, their size strongly depends on the
  value of microturbulent velocity used with the 1D model.

---------------------------------------------------------
Title: 3D hydrodynamical simulations of stellar photospheres with
    the CO<SUP>5</SUP>BOLD code. Photometric colors of a late-type giant
Authors: Kučinskas, A.; Ludwig, H. -G.; Caffau, E.; Steffen, M.
2009MmSAI..80..723K    Altcode: 2009arXiv0910.3412K
  We present synthetic broad-band photometric colors of a late-type
  giant located close to the RGB tip (T_eff≈3640 K, log g=1.0 and
  [M/H]=0.0). Johnson-Cousins-Glass BVRIJHK colors were obtained from
  the spectral energy distributions calculated using 3D hydrodynamical
  and 1D classical stellar atmosphere models. The differences between
  photometric magnitudes and colors predicted by the two types of models
  are significant, especially at optical wavelengths where they may
  reach, e.g., Delta V≈0.16, Delta R≈0.13 and Delta (V-I)≈0.14,
  Delta (V-K)≈0.20. Differences in the near-infrared are smaller but
  still non-negligible (e.g., Delta K≈ 0.04). Such discrepancies may
  lead to noticeably different photometric parameters when these are
  inferred from photometry (e.g., effective temperature will change by
  Delta T_eff≈60 K due to difference of Delta (V-K)≈0.20).

---------------------------------------------------------
Title: 3D molecular line formation in dwarf carbon-enhanced metal-poor
    stars.
Authors: Behara, N. T.; Ludwig, H. -G.; Bonifacio, P.; Sbordone, L.;
   González Hernández, J. I.; Caffau, E.
2009MmSAI..80..735B    Altcode: 2009arXiv0909.1010B
  We present a detailed analysis of the carbon and nitrogen abundances
  of two dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229
  and SDSS J0912+0216. We also report the oxygen abundance of SDSS
  J1349-0229. These stars are metal-poor, with [Fe/H] &lt; -2.5,
  and were selected from our ongoing survey of extremely metal-poor
  dwarf candidates from the Sloan Digital Sky Survey (SDSS). The carbon,
  nitrogen and oxygen abundances rely on molecular lines which form in the
  outer layers of the stellar atmosphere. It is known that convection in
  metal-poor stars induces very low temperatures which are not predicted
  by `classical' 1D stellar atmospheres. To obtain the correct temperature
  structure, one needs full 3D hydrodynamical models. Using CO5BOLD 3D
  hydrodynamical model atmospheres and the Linfor3D line formation code,
  molecular lines of CH, NH, OH and C_2 were computed, and 3D carbon,
  nitrogen and oxygen abundances were determined. The resulting carbon
  abundances were compared to abundances derived using atomic C I lines
  in 1D LTE and NLTE. For one star, SDSS J1349-0229, we were able to
  compare the 3D oxygen abundance from OH lines to O I lines in 1D LTE
  and NLTE. There is not a good agreement between the carbon abundances
  determined from C_2 bands and from the CH band, and molecular lines
  do not agree with the atomic C I lines. Although this may be partly
  due to uncertainties in the transition probabilities of the molecular
  bands it certainly has to do with the temperature structure of the
  outer layers of the adopted model atmosphere. In fact the discrepancy
  between C_2 and CH is in opposite directions when using 3D and 1D
  models. Confronted with this inconsistency, we explore the influence
  of the 3D model properties on the molecular abundance determination. In
  particular, the choice of the number of opacity bins used in the model
  calculations and its subsequent effects on the temperature structure
  and molecular line formation is discussed.

---------------------------------------------------------
Title: Extremely metal-poor stars from the SDSS
Authors: Ludwig, H. -G.; Bonifacio, P.; Caffau, E.; Behara, N. T.;
   González Hernández, J. I.; Sbordone, L.
2008PhST..133a4037L    Altcode: 2008arXiv0809.2948L
  We give a progress report on the activities within the CIFIST Team
  related to the search for extremely metal-poor (EMP) stars in the
  Sloan Digital Sky Survey's (SDSS) spectroscopic catalogue. So far,
  the search has provided 25 candidates with metallicities around or
  smaller than -3. For 15 candidates, high-resolution spectroscopy with
  UVES at the VLT has confirmed their EMP status. Work is under way to
  extend the search to the SDSS's photometric catalogue by augmenting
  the SDSS photometry and by gauging the capabilities of X-shooter when
  going to significantly fainter targets.

---------------------------------------------------------
Title: Radiation-hydrodynamics simulations of surface convection in
low-mass stars: connections to stellar structure and asteroseismology
Authors: Ludwig, Hans-G.; Caffau, Elisabetta; Kučinskas, A.
2008IAUS..252...75L    Altcode: 2008arXiv0809.2939L
  Radiation-hydrodynamical simulations of surface convection in low-mass
  stars can be exploited to derive estimates of i) the efficiency of
  the convective energy transport in the stellar surface layers; ii)
  the convection-related photometric micro-variability. We comment
  on the universality of the mixing-length parameter, and point out
  potential pitfalls in the process of its calibration which may be in
  part responsible for the contradictory findings about its variability
  across the Hertzsprung-Russell digramme. We further comment on the
  modelling of the photometric micro-variability in HD 49933 one of the
  first main COROT targets.

---------------------------------------------------------
Title: 3D model atmospheres and the solar photospheric oxygen
    abundance
Authors: Caffau, E.; Ludwig, H. -G.
2008IAUS..252...35C    Altcode:
  In recent years the photospheric solar oxygen abundance experienced a
  significant downward revision. However, a low photospheric abundance
  is incompatible with the value in the solar interior inferred
  from helioseismology. For contributing to the dispute whether the
  solar oxygen abundance is “high” or “low”, we re-derived its
  photospheric abundance independently of previous analyses. We applied
  3D (CO5BOLD) as well as 1D model atmospheres. We considered standard
  disc-centre and disc-integrated spectral atlases, as well as newly
  acquired solar intensity spectra at different heliocentric angles. We
  determined the oxygen abundances from equivalent width and/or line
  profile fitting of a number of atomic lines. As preliminary result,
  we find an oxygen abundance in the range 8.73 8.79, encompassing the
  value obtained by Holweger (2001), and somewhat higher than the value
  obtained by Asplund et al. (2005).

---------------------------------------------------------
Title: The Solar Photospheric Oxygen Abundance and the Role of 3D
    Model Atmospheres
Authors: Caffau, E.; Steffen, M.; Ludwig, H. -G.
2008ESPM...12..3.7C    Altcode:
  The solar oxygen abundance has undergone a major downward revision in
  the last decade, reputedly as a result of employing 3D hydrodynamical
  simulations to model the inhomogeneous structure of the solar
  photosphere. <P />The very low oxygen abundance advocated by Asplund
  et al. 2004, A(O)=8.66, together with the downward revision of the
  abundances of other key elements, has created serious problems for solar
  models to explain the helioseismic measurements. <P />In an effort to
  contribute to the dispute of whether the Sun has "solar" or "sub-solar"
  abundances, we have re-derived its photospheric abundance of oxygen,
  nitrogen, and other elements, independently of previous analyses. <P
  />We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation
  of the solar granulation as well as different 1D model atmospheres for
  the line by line spectroscopic abundance determinations. The analysis
  is based on both standard disk-center and full-disk spectral atlases;
  for oxygen we acquired in addition spectra at different heliocentric
  angles. The derived abundances are the result of equivalent width
  and/or line profile fitting of the available atomic lines. Our
  recommended oxygen abundance is A(O)=8.76+- 0.07, 0.1 dex higher
  than the value of Asplund et al. (2004). Our current estimate of the
  overall solar metallicity is 0.014&lt; Z&lt;0.016. <P />Questions we
  discuss include: (i) Is the general downward revision of the solar
  abundances a 3D effect? (ii) How large are the abundance corrections
  due to horizontal inhomogeneities? (iii) What is the main reason for
  the differences between the abundances obtained in our study and those
  derived by Apslund and coworkers? (iv) How large are the uncertainties
  in the observed solar spectra? (v) What is the reason why the two
  forbidden oxygen lines, [OI] lambda 630 nm and [OI] lambda 636.3 nm,
  give significantly different answers for the solar oxygen abundance?

---------------------------------------------------------
Title: The photospheric solar oxygen project. I. Abundance analysis
    of atomic lines and influence of atmospheric models
Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Ayres, T. R.;
   Bonifacio, P.; Cayrel, R.; Freytag, B.; Plez, B.
2008A&A...488.1031C    Altcode: 2008arXiv0805.4398C
  Context: The solar oxygen abundance has undergone a major downward
  revision in the past decade, the most noticeable one being the
  update including 3D hydrodynamical simulations to model the solar
  photosphere. Up to now, such an analysis has only been carried out
  by one group using one radiation-hydrodynamics code. <BR />Aims:
  We investigate the photospheric oxygen abundance considering lines
  from atomic transitions. We also consider the relationship between
  the solar model used and the resulting solar oxygen abundance, to
  understand whether the downward abundance revision is specifically
  related to 3D hydrodynamical effects. <BR />Methods: We performed
  a new determination of the solar photospheric oxygen abundance by
  analysing different high-resolution high signal-to-noise ratio atlases
  of the solar flux and disc-centre intensity, making use of the latest
  generation of CO5BOLD 3D solar model atmospheres. <BR />Results: We
  find 8.73 ≤ log (N_O/N_H) +12 ≤ 8.79. The lower and upper values
  represent extreme assumptions on the role of collisional excitation
  and ionisation by neutral hydrogen for the NLTE level populations
  of neutral oxygen. The error of our analysis is ± (0.04± 0.03)
  dex, the last being related to NLTE corrections, the first error
  to any other effect. The 3D “granulation effects” do not play a
  decisive role in lowering the oxygen abundance. <BR />Conclusions:
  Our recommended value is log (N_O/N_H) = 8.76 ± 0.07, considering our
  present ignorance of the role of collisions with hydrogen atoms on the
  NLTE level populations of oxygen. The reasons for lower O abundances in
  the past are identified as (1) the lower equivalent widths adopted and
  (2) the choice of neglecting collisions with hydrogen atoms in the
  statistical equilibrium calculations for oxygen. <P />This paper is
  dedicated to the memory of Hartmut Holweger.

---------------------------------------------------------
Title: The solar photospheric abundance of europium. Results from
    CO5BOLD 3D hydrodynamical model atmospheres
Authors: Mucciarelli, A.; Caffau, E.; Freytag, B.; Ludwig, H. -G.;
   Bonifacio, P.
2008A&A...484..841M    Altcode: 2008arXiv0803.0863M
  Context: Europium is an almost pure r-process element, which may be
  useful as a reference in nucleocosmochronology. <BR />Aims: Determine
  the photospheric solar abundance using CO5BOLD 3D hydrodynamical
  model atmospheres. <BR />Methods: Disc-centre and integrated-flux
  observed solar spectra are used. The europium abundance is derived
  using equivalent-width measurements. As a reference, one-dimensional
  model atmospheres are in addition used. <BR />Results: The europium
  photospheric solar abundance (0.52 ± 0.02) agrees with previous
  determinations. We determine the photospheric isotopic fraction of
  <SUP>151</SUP>Eu to be 49% ± 2.3% using the intensity spectra, and 50%
  ± 2.3% using the flux spectra. This compares well to the meteoritic
  isotopic fraction 47.8%. We explore 3D corrections for dwarfs and
  sub-giants in the temperature range ~5000 K to ~6500 K and solar and
  1/10-solar metallicities and find them to be negligible for all models
  investigated. <BR />Conclusions: Our photospheric Eu abundance agrees
  well with previous determinations based on 1D models. This is in line
  with our conclusion that 3D effects for this element are negligible
  in the case of the Sun.

---------------------------------------------------------
Title: The solar photospheric abundance of hafnium and
    thorium. Results from CO<SUP>5</SUP>BOLD 3D hydrodynamic model
    atmospheres
Authors: Caffau, E.; Sbordone, L.; Ludwig, H. -G.; Bonifacio, P.;
   Steffen, M.; Behara, N. T.
2008A&A...483..591C    Altcode: 2008arXiv0803.3585C
  Context: The stable element hafnium (Hf) and the radioactive element
  thorium (Th) were recently suggested as a suitable pair for radioactive
  dating of stars. The applicability of this elemental pair needs to
  be established for stellar spectroscopy. <BR />Aims: We aim at a
  spectroscopic determination of the abundance of Hf and Th in the
  solar photosphere based on a CO<SUP>5</SUP>BOLD 3D hydrodynamical
  model atmosphere. We put this into a wider context by investigating 3D
  abundance corrections for a set of G- and F-type dwarfs. <BR />Methods:
  High-resolution, high signal-to-noise solar spectra were compared to
  line synthesis calculations performed on a solar CO<SUP>5</SUP>BOLD
  model. For the other atmospheres, we compared synthetic spectra
  of CO<SUP>5</SUP>BOLD 3D and associated 1D models. <BR />Results:
  For Hf we find a photospheric abundance A(Hf) = 0.87 ± 0.04, in good
  agreement with a previous analysis, based on 1D model atmospheres. The
  weak Th II 401.9 nm line constitutes the only Th abundance indicator
  available in the solar spectrum. It lies in the red wing of a Ni-Fe
  blend exhibiting a non-negligible convective asymmetry. Accounting for
  the asymmetry-related additional absorption, we obtain A(Th) = 0.08 ±
  0.03, consistent with the meteoritic abundance, and about 0.1 dex lower
  than obtained in previous photospheric abundance determinations. <BR
  />Conclusions: Only for the second time, to our knowledge, has a
  non-negligible effect of convective line asymmetries on an abundance
  derivation been highlighted. Three-dimensional hydrodynamical
  simulations should be employed to measure Th abundances in dwarfs
  if similar blending is present, as in the solar case. In contrast,
  3D effects on Hf abundances are small in G- to mid F-type dwarfs and
  sub-giants, and 1D model atmospheres can be conveniently used.

---------------------------------------------------------
Title: Hydrodynamical Model Atmospheres of Metal-Poor Stars
Authors: Ludwig, Hans-Günter; González Hernández, Jonay I.; Behara,
   Natalie; Caffau, Elisabetta; Steffen, Matthias
2008AIPC..990..268L    Altcode:
  Standard one-dimensional (1D) model atmospheres rely on the assumption
  of radiative equilibrium in the non-convective part of the stellar
  photosphere. However, gas-dynamical effects can lead to dramatic
  deviations from radiative equilibrium conditions, especially in
  metal-poor stellar atmospheres. These can be taken into account in
  3D stellar atmosphere models representing the detailed interplay of
  hydrodynamics and radiation. During the last two years efforts have been
  invested to compute such 3D models for metal-poor atmospheres with the
  CO<SUP>5</SUP> BOLD code within the CIFIST (Cosmological Impact of the
  FIrst STars) Team, an European Union funded research group dedicated
  to the study of metal-poor stars. Based on the available models we will
  give an account of the radiation-hydrodynamical processes at work, and
  discuss consequences for the temperature scale and abundance analysis
  of metal-poor stars.

---------------------------------------------------------
Title: First stars XI. Chemical composition of the extremely
    metal-poor dwarfs in the binary CS 22876-032
Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.; Spite, M.; Spite, F.; Cayrel, R.; Molaro, P.; Hill, V.;
   François, P.; Plez, B.; Beers, T. C.; Sivarani, T.; Andersen, J.;
   Barbuy, B.; Depagne, E.; Nordström, B.; Primas, F.
2008A&A...480..233G    Altcode: 2007arXiv0712.2949G
  Context: Unevolved metal-poor stars constitute a fossil record of the
  early Galaxy, and can provide invaluable information on the properties
  of the first generations of stars. Binary systems also provide direct
  information on the stellar masses of their member stars. <BR />Aims:
  The purpose of this investigation is a detailed abundance study of the
  double-lined spectroscopic binary CS 22876-032, which comprises the two
  most metal-poor dwarfs known. <BR />Methods: We used high-resolution,
  high-S/N ratio spectra from the UVES spectrograph at the ESO VLT
  telescope. Long-term radial-velocity measurements and broad-band
  photometry allowed us to determine improved orbital elements and
  stellar parameters for both components. We used OSMARCS 1D models and
  the turbospectrum spectral synthesis code to determine the abundances
  of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also
  used the CO^5BOLD model atmosphere code to compute the 3D abundance
  corrections, notably for Li and O. <BR />Results: We find a metallicity
  of [Fe/H] ~ -3.6 for both stars, using 1D models with 3D corrections of
  ~-0.1 dex from averaged 3D models. We determine the oxygen abundance
  from the near-UV OH bands; the 3D corrections are large, -1 and -1.5
  dex for the secondary and primary respectively, and yield [O/Fe] ~
  0.8, close to the high-quality results obtained from the [OI] 630
  nm line in metal-poor giants. Other [ α/Fe] ratios are consistent
  with those measured in other dwarfs and giants with similar [Fe/H],
  although Ca and Si are somewhat low ([X/Fe] ⪉ 0). Other element
  ratios follow those of other halo stars. The Li abundance of the
  primary star is consistent with the Spite plateau, but the secondary
  shows a lower abundance; 3D corrections are small. <BR />Conclusions:
  The Li abundance in the primary star supports the extension of the Spite
  Plateau value at the lowest metallicities, without any decrease. The
  low abundance in the secondary star could be explained by endogenic
  Li depletion, due to its cooler temperature. If this is not the case,
  another, yet unknown mechanism may be causing increased scatter in A(Li)
  at the lowest metallicities.

---------------------------------------------------------
Title: CS 22876-032: The Most Metal-Poor Dwarfs. Abundances and
    3D Effects
Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.; Spite, M.; Spite, F.; Cayrel, R.; Molaro, P.; Hill, V.;
   François, P.; Plez, B.; Beers, T. C.; Sivarani, T.; Andersen, J.;
   Barbuy, B.; Depagne, E.; Nordström, B.; Primas, F.
2008AIPC..990..175G    Altcode: 2008AIPC..990..175H
  Unevolved extremely metal-poor stars offer us a unique tool to infer
  knowledge of the first generation of stars. We have analysed UVES
  high-resolution spectra of the double-lined spectroscopic binary CS
  22876-032 which comprises the two most metal-poor dwarfs currently
  known. In particular, we determine the oxygen (from OH lines in the
  near-UV) and lithium abundances taking into account 3D effects. <P
  />The long-time baseline radial velocity measurements and photometric
  data available allowed us to determine the orbital elements as well as
  stellar parameters of both components. We use OSMARCS 1D models and the
  TURBOSPECTRUM spectral synthesis code to determine the abundances of Li,
  O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also use the
  CO<SUP>5</SUP> BOLD 3D model atmosphere code to predict the 3D abundance
  corrections, mainly for Li, O and Fe. <P />We find a metallicity
  of [Fe/H]~-3.6 for both stars using 1D models with 3D corrections
  of ~-0.1 dex from horizontal and temporal averaged 3D models. The
  [α/Fe] ratios are consistent with those found for metal-poor giants
  with similar [Fe/H], although Ca and Si are rather low, [X/Fe]~=0. The
  1D O abundance, [O/Fe]~2 for both stars, is very large, but 3D models
  predict abundance corrections of roughly -1.0 dex and -1.5 dex for the
  secondary and primary stars, respectively. These 3D corrections bring
  the O abundances derived from near-UV OH bands in these two dwarfs
  closer to other high-quality measurements from the forbidden [OI]
  630 nm line in metal-poor giants. The Li abundance is consistent with
  the Spite plateau, although the secondary star shows a lower abundance.

---------------------------------------------------------
Title: Spectral analyses of three carbon-enhanced metal-poor stars
Authors: Behara, N.; Bonifacio, P.; Ludwig, H. G.; Sbordone, L.;
   Gonzales Hernandez, J. I.; Caffau, E.
2008nuco.confE..68B    Altcode: 2008arXiv0809.4204B; 2008PoS....53E..68B
  We are conducting a high-resolution follow-up of candidate EMP stars
  extracted from the Sloan Digital Sky Survey (SDSS; York et al. 2000)
  using UVES at the VLT. Three of the programme stars, SDSS J0912+0216,
  SDSS J1036+1212 and SDSS J1349-0229, where deliberately targetted as
  CEMP stars since a strong $G$ band was evident from the SDSS spectra
  and the weakness of the Ca {\sc ii} K line testified their very
  low metallicity. The UVES high resolution follow-up confirmed the
  original findings ([Fe/H] $&lt;-2.50$) and allowed a more detailed
  investigation of their chemical composition. We determined the carbon
  abundance from molecular lines which form in the outer layers of the
  stellar atmosphere. It is known that convection in metal-poor stars
  induces very low temperatures which are not predicted by classical
  1D stellar atmospheres. To obtain the correct temperature structure,
  one needs full 3D hydrodynamical models. 3D carbon abundances were
  determined for all three stars, using CO$^5$BOLD 3D hydrodynamical
  model atmospheres. 3D effects on the carbon abundance are found to be
  quite significant for these stars, with 3D corrections of up to --0.7
  dex. Two of the stars, SDSS J0912+0216 and SDSS J1349-0229 exhibit
  an overabundance of neutron capture elements which classifies them as
  CEMP-s. Star SDSS J1036+1212, instead belongs to the elusive class of
  CEMP-no/s stars, with enhanced Ba, but deficient Sr, of which it is
  the third member discovered to date.

---------------------------------------------------------
Title: Overview of the Li problem in metal-poor stars and new results
    on 6Li
Authors: Cayrel, R.; Steffen, M.; Bonifacio, P.; Ludwig, H. -G.;
   Caffau, E.
2008nuco.confE...2C    Altcode: 2008arXiv0810.4290C; 2008PoS....53E...2C
  Two problems are discussed here. The first one is the 0.4 dex
  discrepancy between the 7Li abundance derived from the spectra
  of metal-poor halo stars on the one hand, and from Big Bang
  nucleosynthesis, based on the cosmological parameters constrained
  by the WMAP measurements, on the other hand. Lithium, indeed,
  can be depleted in the convection zone of unevolved stars. The
  understanding of the hydrodynamics of the crucial zone near the
  bottom of the convective envelope in dwarfs or turn-off stars of solar
  metallicity has recently made enormous progress with the inclusion of
  internal gravity waves. However, similar work for metal-poor stars is
  still lacking. Therefore it is not yet clear whether the depletion
  occurring in the metal-poor stars themselves is adequate to produce
  a 7Li plateau. The second problem pertains to the large amount of
  6Li recently found in metal-poor halo stars. The convection-related
  asymmetry of the 7Li line could mimic the signal attributed so far
  to the weak blend of 6Li in the red wing of the 7Li line. Theoretical
  computations show that the signal generated by the asymmetry of 7Li is
  2.0, 2.1, and 3.7 per cent for [Fe/H]= -3.0, -2.0, -1.0, respectively
  (Teff =6250 K and log g=4.0 [cgs]). In addition we re-investigate
  the statistical properties of the 6Li plateau and show that previous
  analyses were biased. Our conclusion is that the 6Li plateau can be
  reinterpreted in terms of intrinsic line asymmetry, without the need
  to invoke a contribution of 6Li. (abridged)

---------------------------------------------------------
Title: The solar photospheric abundance of phosphorus: results from
    CO^5BOLD 3D model atmospheres
Authors: Caffau, E.; Steffen, M.; Sbordone, L.; Ludwig, H. -G.;
   Bonifacio, P.
2007A&A...473L...9C    Altcode: 2007arXiv0708.1607C
  Aims:We determine the solar abundance of phosphorus using CO^5BOLD
  3D hydrodynamic model atmospheres. <BR />Methods: High-resolution,
  high signal-to-noise solar spectra of the P i lines of Multiplet 1 at
  1051-1068 nm are compared to line-formation computations performed
  on a CO^5BOLD solar model atmosphere. <BR />Results: We find A(P)
  = 5.46 ± 0.04, in good agreement with previous analyses based on
  1D model atmospheres, due to the P i lines of Mult. 1 not being
  affected much by 3D effects. We cannot confirm an earlier claim by
  other authors of a downward revision of the solar P abundance by 0.1
  dex when employing a 3D model atmosphere. Concerning other stars,
  we find modest (&lt;0.1 dex) 3D abundance corrections for P among
  four F-dwarf model atmospheres of different metallicities, and these
  corrections are largest at lowest metallicity. <BR />Conclusions:
  We conclude that 3D abundance corrections are generally rather small
  for the P i lines studied in this work. They are marginally relevant
  for metal-poor stars, but may be neglected in the Sun. <P />Tables
  2-4 are only available in electronic form at http://www.aanda.org

---------------------------------------------------------
Title: Line shift, line asymmetry, and the ^6Li/^7Li isotopic ratio
    determination
Authors: Cayrel, R.; Steffen, M.; Chand, H.; Bonifacio, P.; Spite,
   M.; Spite, F.; Petitjean, P.; Ludwig, H. -G.; Caffau, E.
2007A&A...473L..37C    Altcode: 2007arXiv0708.3819C
  Context: Line asymmetries are generated by convective Doppler shifts in
  stellar atmospheres, especially in metal-poor stars, where convective
  motions penetrate to higher atmospheric levels. Such asymmetries are
  usually neglected in abundance analyses. The determination of the
  ^6Li/^7Li isotopic ratio is prone to suffering from such asymmetries,
  as the contribution of ^6Li is a slight blending reinforcement of the
  red wing of each component of the corresponding ^7Li line, with respect
  to its blue wing. <BR />Aims: The present paper studies the halo star
  HD 74000 and estimates the impact of convection-related asymmetries
  on the Li isotopic ratio determination. <BR />Methods: Two methods
  are used to meet this aim. The first, which is purely empirical,
  consists in deriving a template profile from another element that can
  be assumed to originate in the same stellar atmospheric layers as Li
  I, producing absorption lines of approximately the same equivalent
  width as individual components of the ^7Li I resonance line. The
  second method consists in conducting the abundance analysis based on
  NLTE line formation in a 3D hydrodynamical model atmosphere, taking
  into account the effects of photospheric convection. <BR />Results:
  The results of the first method show that the convective asymmetry
  generates an excess absorption in the red wing of the ^7Li absorption
  feature that mimics the presence of ^6Li at a level comparable to
  the hitherto published values. This opens the possibility that only
  an upper limit on ^6Li/^7Li has thus far been derived. The second
  method confirms these findings. <BR />Conclusions: From this work,
  it appears that a systematic reappraisal of former determinations of
  ^6Li abundances in halo stars is warranted. <P />Based on observations
  carried out at the European Southern Observatory (ESO), under prog. ID
  75.D-0600. Tables 1-3, and additional references are only available
  in electronic form at http://www.aanda.org

---------------------------------------------------------
Title: UV flux distributions of γ Doradus stars
Authors: Gerbaldi, M.; Faraggiana, R.; Caffau, E.
2007A&A...472..241G    Altcode:
  Context: It seems that the recently identified class of pulsating
  stars, the γ Dor type-variables, includes objects with different metal
  abundances and a large percentage of binaries. <BR />Aims: We looked
  for indicators of metal abundance peculiarities and stellar binarity
  in a sample of 40 confirmed γ Dor stars. <BR />Methods: Absolute
  magnitudes from Hipparcos parallaxes and UV magnitudes, from the S2/S68
  experiment on board the TD1 satellite, are retrieved from databases
  and compared with predicted values. A set of non variable normal stars
  is used to check the consistency of this analysis and also serve as
  reference stars. <BR />Results: Twenty-nine stars of the γ Dor star
  sample, which is 73% of it, are discovered having abnormal UV fluxes
  constantly showing UV flux excesses compared to those computed with
  the atmospheric parameters (T<SUB>eff </SUB>, log g, and metallicity)
  determined from calibration of the uvbyβ indices. The reason for this
  UV excess of flux at 196.5 nm and at 236.5 nm, which was previously
  known only for HD 209295, cannot be ascribed to binarity alone. An
  extra source of UV flux or less UV absorption - yet unknown - must
  be present. <P />Tables 1-3 are only available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/472/241

---------------------------------------------------------
Title: Sulphur abundances from the S i near-infrared triplet at
    1045 nm
Authors: Caffau, E.; Faraggiana, R.; Bonifacio, P.; Ludwig, H. -G.;
   Steffen, M.
2007A&A...470..699C    Altcode: 2007arXiv0704.2335C
  Context: Unlike silicon and calcium, sulphur is an α-element
  that does not form dust. Some of the available observations of
  the evolution of sulphur with metallicity indicate an increased
  scatter of sulphur-to-iron ratios at low metallicities or even
  a bimodal distribution, with some stars showing constant S/Fe at
  all metallicities and others showing an increasing S/Fe ratio with
  decreasing metallicity. In metal-poor stars S i lines of Multiplet
  1 at 920 nm are not yet too weak to permit the measurement of the
  sulphur abundance A(S); however, in ground-based observations they
  are severely affected by telluric lines. <BR />Aims: We investigate
  the possibility of measuring sulphur abundances from S iMult. 3 at
  1045 nm lines. These lie in the near infrared and are slightly weaker
  than those of Mult. 1, but lie in a range not affected by telluric
  lines. <BR />Methods: We investigated the lines of Mult. 3 in the Sun
  (G2V), Procyon (F5V), HD 33256 (F5V), HD 25069 (G9V), and ɛ Eri (HD
  22049, K2V). For the Sun and Procyon the analysis was performed with
  CO^5BOLD 3D hydrodynamical model atmospheres, while the three other
  stars, for which hydrodynamical simulations are not available, were
  analysed using 1D model atmospheres. <BR />Results: For our sample of
  stars we find a global agreement between A(S) from lines of different
  multiplets. <BR />Conclusions: Our results suggest that the infrared
  lines of Mult. 3 are a viable indicator of the sulphur abundance
  that, because of the intrinsic strength of this multiplet, should be
  suitable for studying the trend of [S/Fe] at low metallicities. <P
  />Based on data from the UVES Paranal Observatory Project (ESO DDT
  Program ID 266.D-5655). Appendix is only available in electronic form
  at http://www.aanda.org

---------------------------------------------------------
Title: VizieR Online Data Catalog: UV Flux distributions of gamma
    Dor stars (Gerbaldi+, 2007)
Authors: Gerbaldi, M.; Faraggiana, R.; Caffau, E.
2007yCat..34720241G    Altcode:
  Reddening and atmospheric parameters (Teff, logg, metallicity,
  and visual absolute magnitude) for the gamma Dor stars and a set of
  reference stars. <P />(4 data files).

---------------------------------------------------------
Title: The forbidden 1082 nm line of sulphur:. the photospheric
    abundance of sulphur in the Sun and 3D effects
Authors: Caffau, E.; Ludwig, H. -G.
2007A&A...467L..11C    Altcode: 2007astro.ph..3423C
  Context: Sulphur is an element which is formed in the α-process and
  is easily measured in the gaseous phase in external galaxies. Since
  it does not form dust, it is the preferred indicator for α-elements,
  rather than Si or Mg, for which dust corrections are necessary. The
  measurement of the sulphur abundance in stars is not an easy
  task, relying mainly on high excitation lines with non-negligible
  deviations from LTE. The 1082 nm sulphur forbidden transition is
  less sensitive to departures from LTE and is less dependent on
  temperature uncertainties than other sulphur lines usually employed
  as abundance indicators. Therefore it should provide a more robust
  abundance diagnostics. <BR />Aims: To derive the solar photospheric
  abundance of sulphur from the 1082 nm [SI] line and to investigate
  3D effects present in G- and F-type atmospheres at solar and lower
  metallicity. <BR />Methods: High-resolution, high signal-to-noise
  solar intensity and flux spectra were used to measure the sulphur
  abundance from the [SI] 1082 nm line. CO^5BOLD hydrodynamical model
  atmospheres were applied to predict 3D abundance corrections for the
  [SI] line. <BR />Results: The solar sulphur abundance is derived to be
  7.15± (0.01)_stat ± (0.05)_sys, where the statistical uncertainty
  represents the scatter in the determination using four different
  solar spectra and the systematic uncertainty is due to the modelling
  of the blending lines. Sulphur abundances obtained from this line are
  insensitive to the micro-turbulence. 3D abundance corrections, found
  from strictly differential comparisons between 1D and 3D models, are
  negligible in the Sun, but become sizable for more metal-poor dwarfs.

---------------------------------------------------------
Title: Abundances in Sagittarius Stars
Authors: Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco,
   L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.;
   di Marcantonio, P.; Caffau, E.; Bellazzini, M.
2006cams.book..232B    Altcode:
  The Sagittarius dwarf spheroidal is a very complex galaxy, which has
  undergone prolonged star formation. From the very first high resolution
  chemical analysis of Sgr stars, conducted using spectra obtained
  during the commissioning of UVES at VLT, it was clear that the star had
  undergone a high level of chemical processing, at variance with most
  of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we
  now have accurate metallicities and abundances of alpha-chain elements
  for about 150 stars, which provide the first reliable metallicity
  distribution for this galaxy. Besides the already known high metallicity
  tail the existence of a metal-poor population has also been highlighted,
  although an assessment of the fraction of Sgr stars which belong to
  this population requires a larger sample. From our data it is also
  obvious that Sagittarius is a nucleated galaxy and that the centre of
  the nucleus coincides with M54, as already shown by Monaco et al.

---------------------------------------------------------
Title: Sulphur abundance in Galactic stars
Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; François, P.;
   Gratton, R. G.; Barbieri, M.
2005A&A...441..533C    Altcode: 2005astro.ph..7030C
  We investigate sulphur abundance in 74 Galactic stars by using high
  resolution spectra obtained at ESO VLT and NTT telescopes. For the first
  time the abundances are derived, where possible, from three optical
  multiplets: Mult. 1, 6, and 8. By combining our own measurements
  with data in the literature we assemble a sample of 253 stars in the
  metallicity range -3.2 ⪉ [Fe/H] ⪉ +0.5. Two important features,
  which could hardly be detected in smaller samples, are obvious from this
  large sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]∼
  -1; 2) at low metallicities we observe stars with [S/Fe]∼ 0.4, as
  well as stars with higher [S/Fe] ratios. The latter do not seem to be
  kinematically different from the former ones. Whether the latter finding
  stems from a distinct population of metal-poor stars or simply from
  an increased scatter in sulphur abundances remains an open question.

---------------------------------------------------------
Title: Sulphur abundances in Terzan 7
Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; Sbordone, L.
2005A&A...436L...9C    Altcode: 2005astro.ph..4463C
  We present here the first measurements of sulphur abundances in
  extragalactic stars. We make use of high resolution spectra, obtained
  with UVES at the ESO 8.2 m Kueyen telescope, of three giants of the
  Globular Cluster Terzan 7, which belongs to the Sagittarius dwarf
  galaxy. We measure the sulphur abundances using the lines of S I
  multiplet 1. The S/Fe ratios for all three stars are nearly solar, thus
  considerably lower than what is found in Galactic stars of comparable
  iron content ([Fe/H] ∼ -0.50). This finding is in keeping with the
  abundances of other α-chain elements in this cluster and in Sagittarius
  and other dSphs in general. These low α-chain elements to iron ratios
  suggest that Sagittarius and its Globular Clusters have experienced a
  low or bursting star-formation rate. Our sulphur abundances imply &lt;
  log (S/O)&gt; = -1.61 which is comparable to what is found in many
  H II regions of similar oxygen content, and is slightly lower than
  the solar value (log (S/O)<SUB>⊙</SUB> = -1.51). These are also
  the first measurements of sulphur abundances in a Globular Cluster,
  thus a direct comparison of Terzan 7 and Galactic Globular Clusters
  is not possible yet. However our analysis suggests that the lines of
  S I multiplet 1 should be measurable for other Globular Clusters at
  least down to a metallicity ~-1.5.

---------------------------------------------------------
Title: The Sagittarius dwarf mass-to-light ratio
Authors: Zaggia, S.; Bonifacio, P.; Bellazzini, M.; Caffau, E.;
   Ferraro, F.; Marconi, G.; Monaco, L.; Monai, S.; Sbordone, L.
2005nfcd.conf..101Z    Altcode: 2005IAUCo.198..101Z
  We report on the use of high-resolution spectra to obtain a detailed
  description of the Sagittarius dwarf spheroidal internal dynamics,
  its Mass and Mass to Light ratio (M/L). Our direct measure of the
  central velocity dispersion of SGR give σ<SUB>SGR</SUB>=8.1±0.4
  km/s which translates in a total mass estimate of M<SUB>SGR</SUB>
  =1.6×10<SUP>8</SUP> M<SUB>⊙</SUB> and corresponding
  (M/L)<SUB>SGR</SUB>=9.1 (M/L)<SUB>⊙</SUB>. We also report on a
  possible detection of rotation in the core of SGR.

---------------------------------------------------------
Title: λ Bootis stars with composite spectra
Authors: Faraggiana, R.; Bonifacio, P.; Caffau, E.; Gerbaldi, M.;
   Nonino, M.
2004A&A...425..615F    Altcode: 2004astro.ph..6265F
  We examine the large sample of λ Boo candidates collected in Table 1
  of Gerbaldi et al. (\cite{Gerbaldi2003}) to see how many of them show
  composite spectra. Of the 132 λ Boo candidates we identify 22 which
  definitely show composite spectra and 15 more for which there are good
  reasons to suspect a composite spectrum. The percentage of λ Boo
  candidates with composite spectra is therefore &gt;17% and possibly
  considerably higher. For such stars the λ Boo classification should
  be reconsidered taking into account the fact that their spectra are
  composite. We argue that some of the underabundances reported in the
  literature may simply be the result of the failure to consider the
  composite nature of the spectra. This leads to the legitimate suspicion
  that some, if not all, the λ Boo candidates are not chemically
  peculiar at all. A thorough analysis of even a single one of the λ Boo
  candidates with composite spectra, in which the composite nature of the
  spectrum is duly considered, which would demonstrate that the chemical
  peculiarities persist, would clear the doubt we presently have that
  the stars with composite spectra may not be λ Boo stars at all. <P
  />Based on observations collected at ESO (Echelec spectrograph) and
  at TBL (Telescope Bernard Lyot) of the Pic du Midi Observatory (France).

---------------------------------------------------------
Title: The Sagittarius dwarf galaxy as seen by the VLT/FLAMES facility
Authors: Zaggia, S.; Bonifacio, P.; Bellazzini, M.; Caffau, E.; Di
   Marcantonio, P.; Ferraro, F.; Marconi, G.; Monaco, L.; Monai, S.;
   Santin, P.; Sbordone, L.
2004MSAIS...5..291Z    Altcode:
  This is the first report of the use of the VLT FLAMES facility on
  the local group dwarf galaxy Sagittarius (SGR). The observing program
  aimed at collecting a large sample of high-resolution spectra with two
  main goals: (1) to obtain a detailed description of SGR metallicity
  distribution, and (2) to study the internal dynamics of SGR, its Mass
  and Mass to Light ratio (M/L). With the present work, we confirm
  the existence of a metal-rich population, extending above solar
  metallicity. The main component of SGR stars is peaked at [Fe/H]∼
  -0.5, while we found evidence, for the first time, of a metal-weak tail
  in the SGR populations, considerably more metal-weak than M54 ([Fe/H]∼
  -1.5). Our direct measure of the central velocity dispersion of SGR
  give sigma =8.2±0.3 km s<SUP>-1</SUP> which translates in an M/L=12.5
  using current values of the SGR structural parameters. This new value
  is in good agreement with the accretion self-consistent “model II”
  of \cite{HW01}. <P />Based on Observations collected at the VLT

---------------------------------------------------------
Title: Automatic abundance analysis of high resolution spectra
Authors: Bonifacio, P.; Caffau, E.
2003A&A...399.1183B    Altcode: 2002astro.ph.12424B
  We describe an automatic procedure for determining abundances from
  high resolution spectra. Such procedures are becoming increasingly
  important as large amounts of data are delivered from 8 m telescopes
  and their high-multiplexing fiber facilities, such as FLAMES on
  ESO-VLT. The present procedure is specifically targeted for the
  analysis of spectra of giants in the Sgr dSph; however, the procedure
  may be, in principle, tailored to analyse stars of any type. Emphasis
  is placed on the algorithms and on the stability of the method;
  the external accuracy rests, ultimately, on the reliability of the
  theoretical models (model-atmospheres, synthetic spectra) used to
  interpret the data. Comparison of the results of the procedure with
  the results of a traditional analysis for 12 Sgr giants shows that
  abundances accurate at the level of 0.2 dex, comparable with that of
  traditional analysis of the same spectra, may be derived in a fast
  and efficient way. Such automatic procedures are not meant to replace
  the traditional abundance analysis, but as an aid to extract rapidly
  a good deal of the information contained in the spectra.

---------------------------------------------------------
Title: An astrophysical oscillator strength for the S ii 94.7-nm
    resonance line and S abundances in DLAs
Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Centurión, Miriam;
   Molaro, Paolo; Vladilo, Giovanni
2001MNRAS.325..767B    Altcode: 2001astro.ph..3234B
  By using UV spectra for the O star HD 93521 taken with the ORFEUS
  II echelle spectrograph, we determine an `astrophysical' f value
  for the Siiλ94.7-nm line: f=0.00498-0.00138+0.00172, error at 1σ
  level. This is almost a factor of 30 smaller than the guessed value
  found in the Kurucz data base (f=0.1472), which was until now the
  only one available for this transition. We use our `astrophysical'
  f to investigate the S abundance in two damped Lyα absorption systems
  (DLAs) observed with the UV-Visual Echelle Spectrograph (UVES)Q3 at the
  European Southern Observatory's 8.2-m Kueyen telescope. In the case
  of the absorber at z<SUB>abs</SUB>=3.02486 towards QSO 0347-3819, we
  find a sulphur column density which is consistent, within errors, with
  that determined by Centurión et al. by means of the λ125.9-nm line,
  thus providing an external check on the accuracy of our f value. For
  the damped absorber at z<SUB>abs</SUB>=4.4680 towards BR J0307-4945,
  we determine a high value of the S abundance, which, however, is
  probably the result of blending with Lyα forest lines.

---------------------------------------------------------
Title: Intrinsic colour calibration for F, G, K stars
Authors: Bonifacio, P.; Caffau, E.; Molaro, P.
2000A&AS..145..473B    Altcode: 2000astro.ph..6433B
  We derive an intrinsic colour calibration for F-K stars using broad band
  Johnson colours and line indices KP and HP2. Through this calibration we
  can determine E(B-V) of an individual star within 0.03 mag. The E(B-V)
  values thus derived are in excellent agreement with those derived from
  Strömgren photometry through the Schuster &amp; Nissen (\cite{sch89})
  calibration. The agreement is also good with the reddening maps of
  Burstein &amp; Heiles (\cite{bur82}) and Schlegel et al. (\cite{sch98}),
  although in this case there exists a small offset of about 0.01
  mag. This calibration may be applied to the large body of data of the
  HK survey extension which will be published in the near future.

---------------------------------------------------------
Title: Photometry of Nova V 1493 Aql
Authors: Bonifacio, P.; Selvelli, P. L.; Caffau, E.
2000A&A...356L..53B    Altcode: 2000astro.ph..3156B
  We report on photometric observations of V 1493 Aql during the early
  decline and highlight some uncommon aspects of the light curve. V
  1493 Aql was hotter at maximum light than in the following phases,
  and was characterized by the presence of a long lasting secondary
  maximum, that, unlike in other novae, was quite red in color. The mean
  of three distance estimates yields d ~ 18.8+/- 3.6 Kpc. Such a large
  distance would place V 1493 Aql at the extreme outskirts of our Galaxy
  or even in an external Local Group galaxy. Based on data collected at
  the Osservatorio Astrofisico di Catania, stazione M. G. Fracastoro,
  Serra la Nave (Etna), Italia

---------------------------------------------------------
Title: Determination of neutrino incoming direction in the CHOOZ
    experiment and its application to supernova explosion location by
    scintillator detectors
Authors: Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei,
   F.; Déclais, Y.; de Kerret, H.; Dieterle, B.; Etenko, A.; Foresti, L.;
   George, J.; Giannini, G.; Grassi, M.; Kozlov, Y.; Kropp, W.; Kryn, D.;
   Laiman, M.; Lane, C. E.; Lefièvre, B.; Machulin, I.; Martemyanov,
   A.; Martemyanov, V.; Mikaelyan, L.; Nicolò, D.; Obolensky, M.;
   Pazzi, R.; Pieri, G.; Price, L.; Riley, S.; Reeder, R.; Sabelnikov,
   A.; Santin, G.; Skorokhvatov, M.; Sobel, H.; Steele, J.; Steinberg,
   R.; Sukhotin, S.; Tomshaw, S.; Veron, D.; Vyrodov, V.
1999PhRvD..61a2001A    Altcode: 2000PhRvD..61a2001A; 1999hep.ex....6011A
  The CHOOZ experiment has measured the antineutrino flux at
  about 1 km from two nuclear reactors to search for possible
  ν¯<SUB>e</SUB>--&gt;ν¯<SUB>x</SUB> oscillations with mass-squared
  differences as low as 10<SUP>-3</SUP> eV<SUP>2</SUP> for full mixing. We
  show that the analysis of the ~2700 ν¯<SUB>e</SUB> events, collected
  by our liquid scintillation detector, locates the antineutrino source
  within a cone of half-aperture ~18° at the 68 % C.L. We discuss the
  implications of this result for locating a supernova explosion.