explanation      blue bibcodes open ADS page with paths to full text
Author name code: fan
ADS astronomy entries on 2022-09-14
=author:"Fan, Y." 

---------------------------------------------------------
Title: Synthetic Lyman-α emissions for the coronagraph aboard the
    ASO-S mission. I. An eruptive prominence-cavity system
Authors: Zhao, J.; Zhang, P.; Gibson, S. E.; Fan, Y.; Feng, L.; Yu,
   F.; Li, H.; Gan, W. Q.
2022A&A...665A..39Z    Altcode:
  Context. Strong ultraviolet (UV) emission from the sun will be observed
  by the Lyman-α Solar Telescope (LST) on board the Advanced Space-based
  Solar Observatory (ASO-S), scheduled for launch in 2022. It will
  provide continuous observations from the solar disk to the corona
  below a 2.5 solar radius with high resolution. To configure the
  appropriate observing modes and also to better understand its upcoming
  observations, a series of simulations and syntheses of different
  structures and processes need to be done in advance. <BR /> Aims:
  As prominence eruptions are the main drivers of space weather, the
  need to monitor such phenomena has been set as a priority among the
  objectives of ASO-S mission. In this work, we synthesize the evolution
  of a modeled prominence-cavity system before and during its eruption
  in the field of view (FOV) of LST. <BR /> Methods: We adopted the
  input magnetohydrodynamic (MHD) model of a prominence-cavity system,
  which is readily comparable to the Atmospheric Imaging Assembly (AIA)
  observations. The Lyman-α emission of the prominence and its eruptive
  counterparts are synthesized through the PRODOP code, which considers
  non-local thermodynamic equilibrium (NLTE) radiative transfer processes,
  while the other coronal part such as the cavity and surrounding
  streamer, are synthesized with the FORWARD package, which deals with
  optically thin structures. <BR /> Results: We present a discussion
  of the evolution of the eruptive prominence-cavity system, analyzing
  the synthetic emissions both on the disk near the limb and above the
  limb as viewed by the coronagraph, as well as the three-dimensional
  (3D) data of the MHD simulation. <BR /> Conclusions: The evolution of
  the prominence-cavity system exhibits the condensation of cavity mass
  onto the prominence and the evaporation of prominence plasma into the
  central cavity. The synthetic emission in Lyman-α shows a similar
  pattern as in the AIA extreme ultraviolet (EUV) wavelengths before
  eruption, namely, the appearance of a "horn" substructure as a precursor
  to the eruption. The emission of prominence with an optically thick
  assumption is one to two orders of magnitude lower than the optically
  thin one. Here, the dimming effect in Lyman-α is analyzed, for the
  first time, for the eruptive prominence-cavity system. Accompanying the
  prominence plasma motion during the eruption, the apparent dimming shows
  a preferred location evolving from the top and bottom of the bright
  core to the whole body above the bottom part, while the collisional
  component progressively dominates the total emission of the flux rope
  bright core at these locations. By analyzing the signal-to-noise ratio
  (S/N) with a consideration of LST's optical design, we conclude that
  the substructures in the cavity and the bright core of the CME can be
  observed with sufficient S/N at different stages in the FOV of LST.

---------------------------------------------------------
Title: Erratum: "Probing the Solar Meridional Circulation Using
    Fourier Legendre Decomposition" (2021, ApJ, 911, 54)
Authors: Braun, D. C.; Birch, A. C.; Fan, Y.
2022ApJ...924..140B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for the doubly charmed baryon
    Ω<SUB>cc</SUB><SUP>+</SUP>
Authors: LHCb Collaboration; Aaij, R.; Abellán Beteta, C.; Ackernley,
   T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C. A.; Aiola, S.;
   Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.;
   Alfonso Albero, A.; Aliouche, Z.; Alkhazov, G.; Alvarez Cartelle, P.;
   Amato, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreianov, A.; Andreotti,
   M.; Archilli, F.; Artamonov, A.; Artuso, M.; Arzymatov, K.; Aslanides,
   E.; Atzeni, M.; Audurier, B.; Bachmann, S.; Bachmayer, M.; Back, J. J.;
   Baladron Rodriguez, P.; Balagura, V.; Baldini, W.; Baptista Leite, J.;
   Barlow, R. J.; Barsuk, S.; Barter, W.; Bartolini, M.; Baryshnikov, F.;
   Basels, J. M.; Bassi, G.; Batsukh, B.; Battig, A.; Bay, A.; Becker, M.;
   Bedeschi, F.; Bediaga, I.; Beiter, A.; Belavin, V.; Belin, S.; Bellee,
   V.; Belous, K.; Belov, I.; Belyaev, I.; Bencivenni, G.; Ben-Haim, E.;
   Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bernstein, H. C.; Bertella,
   C.; Bertolin, A.; Betancourt, C.; Betti, F.; Bezshyiko, I.; Bhasin,
   S.; Bhom, J.; Bian, L.; Bieker, M. S.; Bifani, S.; Billoir, P.; Birch,
   M.; Bishop, F. C. R.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blago,
   M. P.; Blake, T.; Blanc, F.; Blusk, S.; Bobulska, D.; Boelhauve, J. A.;
   Boente Garcia, O.; Boettcher, T.; Boldyrev, A.; Bondar, A.; Bondar,
   N.; Borghi, S.; Borisyak, M.; Borsato, M.; Borsuk, J. T.; Bouchiba,
   S. A.; Bowcock, T. J. V.; Boyer, A.; Bozzi, C.; Bradley, M. J.; Braun,
   S.; Brea Rodriguez, A.; Brodski, M.; Brodzicka, J.; Brossa Gonzalo,
   A.; Brundu, D.; Buonaura, A.; Burr, C.; Bursche, A.; Butkevich, A.;
   Butter, J. S.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.;
   Calabrese, R.; Calefice, L.; Calero Diaz, L.; Cali, S.; Calladine,
   R.; Calvi, M.; Calvo Gomez, M.; Camargo Magalhaes, P.; Campana,
   P.; Campoverde Quezada, A. F.; Capelli, S.; Capriotti, L.; Carbone,
   A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carli, I.; Carniti, P.;
   Carus, L.; Carvalho Akiba, K.; Casais Vidal, A.; Casse, G.; Cattaneo,
   M.; Cavallero, G.; Celani, S.; Cerasoli, J.; Chadwick, A. J.; Chapman,
   M. G.; Charles, M.; Charpentier, P.; Chatzikonstantinidis, G.; Chavez
   Barajas, C. A.; Chefdeville, M.; Chen, C.; Chen, S.; Chernov, A.;
   Chobanova, V.; Cholak, S.; Chrzaszcz, M.; Chubykin, A.; Chulikov, V.;
   Ciambrone, P.; Cicala, M. F.; Cid Vidal, X.; Ciezarek, G.; Clarke,
   P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cobbledick, J. L.;
   Coco, V.; Coelho, J. A. B.; Cogan, J.; Cogneras, E.; Cojocariu,
   L.; Collins, P.; Colombo, T.; Congedo, L.; Contu, A.; Cooke, N.;
   Coombs, G.; Corti, G.; Costa Sobral, C. M.; Couturier, B.; Craik,
   D. C.; Crkovská, J.; Cruz Torres, M.; Currie, R.; Da Silva, C. L.;
   Dadabaev, S.; Dall'Occo, E.; Dalseno, J.; D'Ambrosio, C.; Danilina,
   A.; d'Argent, P.; Davis, A.; De Aguiar Francisco, O.; De Bruyn,
   K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.;
   De Serio, M.; De Simone, D.; De Simone, P.; de Vries, J. A.; Dean,
   C. T.; Decamp, D.; Del Buono, L.; Delaney, B.; Dembinski, H. -P.;
   Dendek, A.; Denysenko, V.; Derkach, D.; Deschamps, O.; Desse, F.;
   Dettori, F.; Dey, B.; Di Cicco, A.; Di Nezza, P.; Didenko, S.; Dieste
   Maronas, L.; Dijkstra, H.; Dobishuk, V.; Donohoe, A. M.; Dordei, F.;
   dos Reis, A. C.; Douglas, L.; Dovbnya, A.; Downes, A. G.; Dreimanis,
   K.; Dudek, M. W.; Dufour, L.; Duk, V.; Durante, P.; Durham, J. M.;
   Dutta, D.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev,
   V.; Eidelman, S.; Eisenhardt, S.; Ek-In, S.; Eklund, L.; Ely, S.;
   Ene, A.; Epple, E.; Escher, S.; Eschle, J.; Esen, S.; Evans, T.;
   Falabella, A.; Fan, J.; Fan, Y.; Fang, B.; Farry, S.; Fazzini, D.;
   Féo, M.; Fernandez Prieto, A.; Fernandez-tenllado Arribas, J. M.;
   Fernez, A. D.; Ferrari, F.; Ferreira Lopes, L.; Ferreira Rodrigues, F.;
   Ferreres Sole, S.; Ferrillo, M.; Ferro-Luzzi, M.; Filippov, S.; Fini,
   R. A.; Fiorini, M.; Firlej, M.; Fischer, K. M.; Fitzgerald, D. S.;
   Fitzpatrick, C.; Fiutowski, T.; Fkiaras, A.; Fleuret, F.; Fontana,
   M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; Franco Sevilla, M.;
   Frank, M.; Franzoso, E.; Frau, G.; Frei, C.; Friday, D. A.; Fu, J.;
   Fuehring, Q.; Funk, W.; Gabriel, E.; Gaintseva, T.; Gallas Torreira,
   A.; Galli, D.; Gambetta, S.; Gan, Y.; Gandelman, M.; Gandini, P.;
   Gao, Y.; Garau, M.; Garcia Martin, L. M.; Garcia Moreno, P.; García
   Pardiñas, J.; Garcia Plana, B.; Garcia Rosales, F. A.; Garrido, L.;
   Gaspar, C.; Geertsema, R. E.; Gerick, D.; Gerken, L. L.; Gersabeck,
   E.; Gersabeck, M.; Gershon, T.; Gerstel, D.; Ghez, P.; Gibson, V.;
   Giemza, H. K.; Giovannetti, M.; Gioventù, A.; Gironella Gironell, P.;
   Giubega, L.; Giugliano, C.; Gizdov, K.; Gkougkousis, E. L.; Gligorov,
   V. V.; Göbel, C.; Golobardes, E.; Golubkov, D.; Golutvin, A.; Gomes,
   A.; Gomez Fernandez, S.; Goncalves Abrantes, F.; Goncerz, M.; Gong,
   G.; Gorbounov, P.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski,
   J. P.; Grammatico, T.; Granado Cardoso, L. A.; Graugés, E.; Graverini,
   E.; Graziani, G.; Grecu, A.; Greeven, L. M.; Griffith, P.; Grillo, L.;
   Gromov, S.; Gruberg Cazon, B. R.; Gu, C.; Guarise, M.; Günther, P. A.;
   Gushchin, E.; Guth, A.; Guz, Y.; Gys, T.; Hadavizadeh, T.; Haefeli,
   G.; Haen, C.; Haimberger, J.; Halewood-leagas, T.; Hamilton, P. M.;
   Hammerich, J. P.; Han, Q.; Han, X.; Hancock, T. H.; Hansmann-Menzemer,
   S.; Harnew, N.; Harrison, T.; Hasse, C.; Hatch, M.; He, J.; Hecker,
   M.; Heijhoff, K.; Heinicke, K.; Hennequin, A. M.; Hennessy, K.; Henry,
   L.; Heuel, J.; Hicheur, A.; Hill, D.; Hilton, M.; Hollitt, S. E.; Hu,
   J.; Hu, J.; Hu, W.; Hu, X.; Huang, W.; Huang, X.; Hulsbergen, W.;
   Hunter, R. J.; Hushchyn, M.; Hutchcroft, D.; Hynds, D.; Ibis, P.;
   Idzik, M.; Ilin, D.; Ilten, P.; Inglessi, A.; Ishteev, A.; Ivshin,
   K.; Jacobsson, R.; Jakobsen, S.; Jans, E.; Jashal, B. K.; Jawahery,
   A.; Jevtic, V.; Jezabek, M.; Jiang, F.; John, M.; Johnson, D.; Jones,
   C. R.; Jones, T. P.; Jost, B.; Jurik, N.; Kandybei, S.; Kang, Y.;
   Karacson, M.; Karpov, M.; Keizer, F.; Kenzie, M.; Ketel, T.; Khanji,
   B.; Kharisova, A.; Kholodenko, S.; Kirn, T.; Kirsebom, V. S.; Kitouni,
   O.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kondybayeva, A.;
   Konoplyannikov, A.; Kopciewicz, P.; Kopecna, R.; Koppenburg, P.;
   Korolev, M.; Kostiuk, I.; Kot, O.; Kotriakhova, S.; Kravchenko, P.;
   Kravchuk, L.; Krawczyk, R. D.; Kreps, M.; Kress, F.; Kretzschmar, S.;
   Krokovny, P.; Krupa, W.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.;
   Kudryavtsev, V.; Kuindersma, H. S.; Kunde, G. J.; Kvaratskheliya, T.;
   Lacarrere, D.; Lafferty, G.; Lai, A.; Lampis, A.; Lancierini, D.; Lane,
   J. J.; Lane, R.; Lanfranchi, G.; Langenbruch, C.; Langer, J.; Lantwin,
   O.; Latham, T.; Lazzari, F.; Le Gac, R.; Lee, S. H.; Lefèvre, R.;
   Leflat, A.; Legotin, S.; Leroy, O.; Lesiak, T.; Leverington, B.;
   Li, H.; Li, L.; Li, P.; Li, S.; Li, Y.; Li, Y.; Li, Z.; Liang, X.;
   Lin, T.; Lindner, R.; Lisovskyi, V.; Litvinov, R.; Liu, G.; Liu,
   H.; Liu, S.; Loi, A.; Lomba Castro, J.; Longstaff, I.; Lopes, J. H.;
   Lovell, G. H.; Lu, Y.; Lucchesi, D.; Luchuk, S.; Lucio Martinez, M.;
   Lukashenko, V.; Luo, Y.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani,
   A.; Lyu, X.; Ma, L.; Ma, R.; Maccolini, S.; Machefert, F.; Maciuc, F.;
   Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Madejczyk, O.; Madhan
   Mohan, L. R.; Maev, O.; Maevskiy, A.; Maisuzenko, D.; Majewski, M. W.;
   Malczewski, J. J.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.;
   Malygina, H.; Manca, G.; Mancinelli, G.; Manuzzi, D.; Marangotto, D.;
   Maratas, J.; Marchand, J. F.; Marconi, U.; Mariani, S.; Marin Benito,
   C.; Marinangeli, M.; Marks, J.; Marshall, A. M.; Marshall, P. J.;
   Martellotti, G.; Martinazzoli, L.; Martinelli, M.; Martinez Santos, D.;
   Martinez Vidal, F.; Massafferri, A.; Materok, M.; Matev, R.; Mathad,
   A.; Mathe, Z.; Matiunin, V.; Matteuzzi, C.; Mattioli, K. R.; Mauri,
   A.; Maurice, E.; Mauricio, J.; Mazurek, M.; McCann, M.; Mcconnell,
   L.; Mcgrath, T. H.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.;
   Meier, G.; Meinert, N.; Melnychuk, D.; Meloni, S.; Merk, M.; Merli,
   A.; Meyer Garcia, L.; Mikhasenko, M.; Milanes, D. A.; Millard, E.;
   Milovanovic, M.; Minard, M. -N.; Minotti, A.; Minzoni, L.; Mitchell,
   S. E.; Mitreska, B.; Mitzel, D. S.; Mödden, A.; Mohammed, R. A.;
   Moise, R. D.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.;
   Morello, G.; Morello, M. J.; Moron, J.; Morris, A. B.; Morris, A. G.;
   Mountain, R.; Mu, H.; Muheim, F.; Mulder, M.; Müller, D.; Müller,
   K.; Murphy, C. H.; Murray, D.; Muzzetto, P.; Naik, P.; Nakada, T.;
   Nandakumar, R.; Nanut, T.; Nasteva, I.; Needham, M.; Neri, I.; Neri,
   N.; Neubert, S.; Neufeld, N.; Newcombe, R.; Nguyen, T. D.; Nguyen-Mau,
   C.; Niel, E. M.; Nieswand, S.; Nikitin, N.; Nolte, N. S.; Normand,
   C.; Nunez, C.; Oblakowska-Mucha, A.; Obraztsov, V.; O'Hanlon, D. P.;
   Oldeman, R.; Olivares, M. E.; Onderwater, C. J. G.; O'neil, R. H.;
   Ossowska, A.; Otalora Goicochea, J. M.; Ovsiannikova, T.; Owen,
   P.; Oyanguren, A.; Pagare, B.; Pais, P. R.; Pajero, T.; Palano,
   A.; Palutan, M.; Pan, Y.; Panshin, G.; Papanestis, A.; Pappagallo,
   M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.;
   Parkinson, C. J.; Passalacqua, B.; Passaleva, G.; Pastore, A.; Patel,
   M.; Patrignani, C.; Pawley, C. J.; Pearce, A.; Pellegrino, A.; Pepe
   Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Petric, M.;
   Petridis, K.; Petrolini, A.; Petrov, A.; Petrucci, S.; Petruzzo, M.;
   Pham, T. T. H.; Philippov, A.; Pica, L.; Piccini, M.; Pietrzyk, B.;
   Pietrzyk, G.; Pili, M.; Pinci, D.; Pisani, F.; Resmi, P. K.; Placinta,
   V.; Plews, J.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poliakova,
   M.; Poluektov, A.; Polukhina, N.; Polyakov, I.; Polycarpo, E.; Pomery,
   G. J.; Ponce, S.; Popov, D.; Popov, S.; Poslavskii, S.; Prasanth, K.;
   Promberger, L.; Prouve, C.; Pugatch, V.; Pullen, H.; Punzi, G.; Qi,
   H.; Qian, W.; Qin, J.; Qin, N.; Quagliani, R.; Quintana, B.; Raab,
   N. V.; Rabadan Trejo, R. I.; Rachwal, B.; Rademacker, J. H.; Rama,
   M.; Ramos Pernas, M.; Rangel, M. S.; Ratnikov, F.; Raven, G.; Reboud,
   M.; Redi, F.; Reiss, F.; Remon Alepuz, C.; Ren, Z.; Renaudin, V.;
   Ribatti, R.; Ricciardi, S.; Rinnert, K.; Robbe, P.; Robertson, G.;
   Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rollings,
   A.; Roloff, P.; Romanovskiy, V.; Romero Lamas, M.; Romero Vidal, A.;
   Roth, J. D.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Vidal, J.;
   Ryzhikov, A.; Ryzka, J.; Saborido Silva, J. J.; Sagidova, N.; Sahoo,
   N.; Saitta, B.; Salomoni, M.; Sanchez Gonzalo, D.; Sanchez Gras, C.;
   Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti,
   E.; Saranin, D.; Sarpis, G.; Sarpis, M.; Sarti, A.; Satriano, C.;
   Satta, A.; Saur, M.; Savrina, D.; Sazak, H.; Scantlebury Smead,
   L. G.; Scarabotto, A.; Schael, S.; Schiller, M.; Schindler, H.;
   Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger,
   M.; Schulte, S.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sellam,
   S.; Semennikov, A.; Senghi Soares, M.; Sergi, A.; Serra, N.; Sestini,
   L.; Seuthe, A.; Seyfert, P.; Shang, Y.; Shangase, D. M.; Shapkin,
   M.; Shchemerov, I.; Shchutska, L.; Shears, T.; Shekhtman, L.; Shen,
   Z.; Shevchenko, V.; Shields, E. B.; Shmanin, E.; Shupperd, J. D.;
   Siddi, B. G.; Silva Coutinho, R.; Simi, G.; Simone, S.; Skidmore, N.;
   Skwarnicki, T.; Slater, M. W.; Slazyk, I.; Smallwood, J. C.; Smeaton,
   J. G.; Smetkina, A.; Smith, E.; Smith, M.; Snoch, A.; Soares, M.;
   Soares Lavra, L.; Sokoloff, M. D.; Soler, F. J. P.; Solovev, A.;
   Solovyev, I.; Souza De Almeida, F. L.; Souza De Paula, B.; Spaan,
   B.; Spadaro Norella, E.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl,
   S.; Stefko, P.; Steinkamp, O.; Stenyakin, O.; Stevens, H.; Stone,
   S.; Stramaglia, M. E.; Straticiuc, M.; Strekalina, D.; Suljik, F.;
   Sun, J.; Sun, L.; Sun, Y.; Svihra, P.; Swallow, P. N.; Swientek, K.;
   Szabelski, A.; Szumlak, T.; Szymanski, M.; Taneja, S.; Tanner, A. R.;
   Terentev, A.; Teubert, F.; Thomas, E.; Thomson, K. A.; Tisserand,
   V.; T'Jampens, S.; Tobin, M.; Tomassetti, L.; Torres Machado, D.;
   Tou, D. Y.; Tran, M. T.; Trifonova, E.; Trippl, C.; Tuci, G.; Tully,
   A.; Tuning, N.; Ukleja, A.; Unverzagt, D. J.; Ursov, E.; Usachov,
   A.; Ustyuzhanin, A.; Uwer, U.; Vagner, A.; Vagnoni, V.; Valassi,
   A.; Valenti, G.; Valls Canudas, N.; van Beuzekom, M.; Van Dijk, M.;
   van Herwijnen, E.; Van Hulse, C. B.; van Veghel, M.; Vazquez Gomez,
   R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis,
   J. J.; Veltri, M.; Venkateswaran, A.; Veronesi, M.; Vesterinen,
   M.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona,
   X.; Vilella Figueras, E.; Villa, A.; Vincent, P.; Vom Bruch, D.;
   Vorobyev, A.; Vorobyev, V.; Voropaev, N.; Vos, K.; Waldi, R.; Walsh,
   J.; Wang, C.; Wang, J.; Wang, J.; Wang, J.; Wang, J.; Wang, M.; Wang,
   R.; Wang, Y.; Wang, Z.; Wang, Z.; Wark, H. M.; Watson, N. K.; Weber,
   S. G.; Websdale, D.; Weisser, C.; Westhenry, B. D. C.; White, D. J.;
   Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams,
   I.; Williams, M.; Williams, M. R. J.; Wilson, F. F.; Wislicki, W.;
   Witek, M.; Witola, L.; Wormser, G.; Wotton, S. A.; Wu, H.; Wyllie,
   K.; Xiang, Z.; Xiao, D.; Xie, Y.; Xu, A.; Xu, J.; Xu, L.; Xu, M.;
   Xu, Q.; Xu, Z.; Xu, Z.; Yang, D.; Yang, S.; Yang, Y.; Yang, Z.; Yang,
   Z.; Yao, Y.; Yeomans, L. E.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko,
   O.; Zaffaroni, E.; Zavertyaev, M.; Zdybal, M.; Zenaiev, O.; Zeng, M.;
   Zhang, D.; Zhang, L.; Zhang, S.; Zhang, Y.; Zhang, Y.; Zharkova, A.;
   Zhelezov, A.; Zheng, Y.; Zhou, X.; Zhou, Y.; Zhu, X.; Zhu, Z.; Zhukov,
   V.; Zonneveld, J. B.; Zou, Q.; Zucchelli, S.; Zuliani, D.; Zunica, G.
2021SCPMA..6401062L    Altcode: 2021arXiv210506841A
  A search for the doubly charmed baryon Ω<SUB>cc</SUB><SUP>+</SUP>
  with the decay mode Ω<SUB>cc</SUB><SUP>+</SUP> →
  Ξ<SUB>c</SUB><SUP>+</SUP>K<SUP>−</SUP>π<SUP>+</SUP> is
  performed using proton-proton collision data at a centre-of-mass
  energy of 13 TeV collected by the LHCb experiment from 2016
  to 2018, corresponding to an integrated luminosity of 5.4
  fb<SUP>−1</SUP>. No significant signal is observed within the
  invariant mass range of 3.6 to 4.0GeV/c<SUP>2</SUP>. Upper limits
  are set on the ratio R of the production cross-section times
  the total branching fraction of the Ω<SUB>cc</SUB><SUP>+</SUP>
  → Ξ<SUB>c</SUB><SUP>+</SUP>K<SUP>−</SUP>π<SUP>+</SUP>
  decay with respect to the Ξ<SUB>c</SUB><SUP>c
  ++</SUP>→Λ<SUB>c</SUB><SUP>+</SUP>K<SUP>−</SUP>π<SUP>+</SUP>π<SUP>+</SUP>
  decay. Upper limits at 95% credibility level for R in the
  range 0.005 to 0.11 are obtained for different hypotheses on the
  Ω<SUB>cc</SUB><SUP>+</SUP> mass and lifetime in the rapidity range
  from 2.0 to 4.5 and transverse momentum range from 4 to 15 GeV/c.

---------------------------------------------------------
Title: The 4 m New Robotic Telescope Project: An Updated Report
Authors: Gutiérrez, C. M.; Torres, M.; Oria, A.; Fernández-Valdivia,
   J. J.; Arnold, D.; Copley, D.; Copperwheat, C.; de Cos Juez, J.;
   Franco, A.; Fan, Y.; García Piñero, A.; Harvey, E.; Jermak, H.;
   Jiang, X.; Knapen, J. H.; McGrath, A.; Ranjbar, A.; Rebolo, R.;
   Smith, R.; Steele, I. A.; Wang, Z.; Wu, X.; Xu, D.; Xue, S.; Yuan,
   W.; Zheng, Y.
2021RMxAC..53....8G    Altcode:
  The New Robotic Telescope (NRT) is an international collaboration
  to build and operate a 4m diameter fully robotic telescope. The
  telescope will take advantage of the superb atmospheric conditions at
  the Observatory of the Roque de los Muchachos (ORM). In conjunction
  with a large aperture, entirely robotic operation, quick response,
  and a set of versatile instrumentation in the optical and near-infrared
  this guarantees a high scientific impact focused mainly in the area of
  time domain astronomy. This paper presents the scientific motivation
  and the status of the project, discussing possible technical solutions
  under evaluation for the optics, mechanics and control system.

---------------------------------------------------------
Title: The BOOTES Network in the Gravitational Wave Era
Authors: Hu, Y. D.; Li, X. Y.; Castro-Tirado, A. J.; Fernandez-García,
   E. J.; Castellón, A.; Carrasco-García, I.; Perez del Pulgar, C.;
   Caballero-García, M. D.; Querel, R.; Bai, J.; Fan, Y.; Guziy, S.;
   Wang, C.; Xiong, D.; Xin, Y.; Zhao, X.; Hiriart, D.; Lee, W. H.;
   Jeong, S.; Park, I. H.
2021RMxAC..53...75H    Altcode:
  The Burst Optical Observer and Transient Exploring System (BOOTES) is a
  world-wide automatic telescope network which aims to repaid follow-up
  of transient and astrophysical sources in the sky for which the first
  station was installed in 1998. With the advent in 2015 of the LIGO/Virgo
  interferometers, as part of the new generation of detectors designed
  for the detection of the signal of gravitational waves, a new window
  to explore the Universe has been opened. Here we present the status of
  the BOOTES network, the related strategies regarding the follow-up of
  gravitational wave events and the developments in the Gravitational
  Wave Era. Some preliminary results regarding the BOOTES follow-up
  observations are presented.

---------------------------------------------------------
Title: GRB 140102A: insight into prompt spectral evolution and early
    optical afterglow emission
Authors: Gupta, Rahul; Oates, S. R.; Pandey, S. B.; Castro-Tirado,
   A. J.; Joshi, Jagdish C.; Hu, Y. -D.; Valeev, A. F.; Zhang, B. B.;
   Zhang, Z.; Kumar, Amit; Aryan, A.; Lien, A.; Kumar, B.; Cui, Ch; Wang,
   Ch; Dimple; Bhattacharya, D.; Sonbas, E.; Bai, J.; Tello, J. C.;
   Gorosabel, J.; Castro Cerón, J. M.; Porto, J. R. F.; Misra, K.;
   De Pasquale, M.; Caballero-García, M. D.; Jelínek, M.; Kubánek,
   P.; Minaev, P. Yu; Cunniffe, R.; Sánchez-Ramírez, R.; Guziy, S.;
   Jeong, S.; Tiwari, S. N.; Razzaque, S.; Bhalerao, V.; Pintado, V. C.;
   Sokolov, V. V.; Zhao, X.; Fan, Y.; Xin, Y.
2021MNRAS.505.4086G    Altcode: 2021MNRAS.505.4086.; 2021arXiv210513145G
  We present and perform a detailed analysis of multiwavelength
  observations of GRB 140102A, an optical bright GRB with an observed
  reverse shock (RS) signature. Observations of this GRB were acquired
  with the BOOTES-4 robotic telescope, the Fermi, and the Swift
  missions. Time-resolved spectroscopy of the prompt emission shows
  that changes to the peak energy (E<SUB>p</SUB>) tracks intensity and
  the low-energy spectral index seems to follow the intensity for the
  first episode, whereas this tracking behaviour is less clear during
  the second episode. The fit to the afterglow light curves shows that
  the early optical afterglow can be described with RS emission and
  is consistent with the thin shell scenario of the constant ambient
  medium. The late time afterglow decay is also consistent with the
  prediction of the external forward shock model. We determine the
  properties of the shocks, Lorentz factor, magnetization parameters,
  and ambient density of GRB 140102A, and compare these parameters with
  another 12 GRBs, consistent with having RS produced by thin shells in
  an interstellar medium like medium. The value of the magnetization
  parameter (R<SUB>B</SUB> ≍ 18) indicates a moderately magnetized
  baryonic dominant jet composition for GRB 140102A. We also report the
  host galaxy photometric observations of GRB 140102A obtained with 10.4
  m GTC, 3.5 m Calar Alto Astronomical Observatory, and 3.6 m Devasthal
  optical telescope and find the host (photo z = $2.8^{+0.7}_{-0.9}$)
  to be a high-mass, star-forming galaxy with a star formation rate of
  $20 \pm 10 {\rm ~M_{\odot }}\, \rm yr^{-1}$.

---------------------------------------------------------
Title: Boundary data-driven MHD simulations of the evolution of
    AR 11158
Authors: Fan, Y.; Kazachenko, M.; Afanasev, A.; Fisher, G.
2021AAS...23831320F    Altcode:
  We have performed initial data-driven MHD simulations of the emergence
  and evolution of Active Region (AR) 11158, using a lower boundary
  driving electric field inferred from the time sequence of vector
  magnetograms observed by the SDO/HMI with the PDFI-SS inversion method
  (developed by Fisher et al. 2020), and an additional driving electric
  field that represents sunspot rotation and shearing at the polarity
  inversion line (PIL). We found that highly sheared, S-shaped sigmoid
  loops form above the PIL of the central delta-sunspot, showing
  morphology similar to that seen in the SDO/AIA observations. We
  experiment with the additional electric field that drives the sunspot
  rotation and shearing at the PIL and examine the conditions for the
  development of the eruptive flares. <P />Acknowledgement: This work
  is supported in part by the NASA LWS grant 80NSSC19K0070 to NCAR.

---------------------------------------------------------
Title: Formation of Coronal Flux Rope and Development of Blowout
    Jet due to Magnetic Flux Emergence from the Solar Interior
Authors: Manek, B.; Fan, Y.; Fang, F.
2021AAS...23821313M    Altcode:
  We present 3D MHD simulations of a blowout jet formation from the
  emergence of a twisted magnetic flux tube from the solar interior,
  through the photosphere, into the corona. We explicitly incorporate the
  solar corona's non-adiabatic effects, including simple empirical coronal
  heating, optically thin radiative cooling, and field-aligned thermal
  conduction. In the presence of an inclined ambient field in our study,
  a coronal flux rope with an inverse configuration is formed. We find
  that the coronal flux rope formed in our simulations is not due to the
  subsurface flux tube's bodily emergence but due to the rotation of the
  field lines above the PIL. This rotation arises from the shearing and
  twisting motions at footpoints of the field lines, which transport twist
  from the interior flux rope into the corona. <P />A parameter survey
  with varying lengths of the subsurface flux tube's buoyant segment
  and different orientations of the inclined ambient field is carried
  out in this work. We find that the formation of a rotating blowout
  jet is a robust phenomenon in these cases. The coronal flux rope's
  emerging core field erupts due to external magnetic reconnection with
  the ambient field, thus transferring the twist from the flux tube to
  the open field jet column. Interestingly, a subsurface flux tube with a
  shorter buoyant section leads to a relatively earlier jet eruption due
  to smaller anchoring at the photosphere. The jet eruption's energetics
  also highlight the relative importance of shear Poynting flux than the
  vertical Poynting flux in the relatively earlier jet eruption. <P />This
  work is supported in part by the NASA LWS grant 80NSSC19K0070 to NCAR.

---------------------------------------------------------
Title: Probing the Solar Meridional Circulation Using Fourier
    Legendre Decomposition
Authors: Braun, D. C.; Birch, A. C.; Fan, Y.
2021ApJ...911...54B    Altcode: 2021arXiv210302499B
  We apply the helioseismic methodology of Fourier Legendre decomposition
  to 88 months of Dopplergrams obtained by the Helioseismic and Magnetic
  Imager (HMI) as the basis of inferring the depth variation of the mean
  meridional flow, as averaged between 20° and 60° latitude and in
  time, in both the northern and southern hemispheres. We develop and
  apply control procedures designed to assess and remove center-to-limb
  artifacts using measurements obtained by performing the analysis with
  respect to artificial poles at the east and west limbs. Forward modeling
  is carried out using sensitivity functions proportional to the mode
  kinetic energy density to evaluate the consistency of the corrected
  frequency shifts with models of the depth variation of the meridional
  circulation in the top half of the convection zone. The results, taken
  at face value, imply substantial differences between the meridional
  circulation in the northern and southern hemispheres. The inferred
  presence of a return (equatorward propagating) flow at a depth of
  approximately 40 Mm below the photosphere in the northern hemisphere is
  surprising and appears to be inconsistent with many other helioseismic
  analyses. This discrepancy may be the result of the inadequacy of our
  methodology to remove systematic errors in HMI data. Our results appear
  to be at least qualitatively similar to those by Gizon et al., which
  point to an anomaly in HMI data that is not present in MDI or GONG data.

---------------------------------------------------------
Title: Tracking CME substructure evolution through the solar wind
Authors: Gibson, S. E.; DeForest, C.; de Koning, C. A.; Fan, Y.;
   Malanushenko, A. V.; Merkin, V. G.; Provornikova, E.; Thompson, B. J.;
   Webb, D. F.
2020AGUFMSH0280005G    Altcode:
  Future coronagraphs and heliospheric imagers, in particular those
  to be launched on the PUNCH mission, will have the capability to
  track the evolution of CME substructures as the CME moves through and
  interacts with the solar wind. We present analysis using polarization
  data obtained from forward modeling simulations of CMEs in the corona
  and inner heliosphere. We use these data to track the evolution
  of substructures in three dimensions, and consider the diagnostic
  potential of internal substructure vs structure at the front of the
  CME. In particular, we develop methods for extracting information
  about chirality of CME magnetic flux ropes from polarization data.

---------------------------------------------------------
Title: GRB 201223A: BOOTES-4/MET early optical observation
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro, M. A.;
   Castro-Tirado, A. J.; Perez del Pulgar, C.; Castellon, A.; Carrasco,
   I.; Guziy, S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2020GCN.29160....1H    Altcode:
  Following the detection of GRB 201223A by Swift (Gropp et al. GCNC
  29158), the 0.6m BOOTES-4/MET robotic telescope at Lijiang Astronomical
  Observatory (China) started to gather images in clear filter starting
  at 18:01:22 UT (~176 s after trigger). The optical afterglow reported
  by Swift/UVOT (Gropp et al. GCNC 29158), MASTER (Lipunov et al. GCNC
  29157) and Nanshan/NEXT (Zhu et al. GCNC 29159) is detected with a
  magnitude of 15.7+-0.15. Additional observations are ongoing. We thank
  the staff at Lijiang observatory for their excellent support.

---------------------------------------------------------
Title: Solar Prominence Bubbles and Associated Plasma Instabilities:
    IRIS Observations and MHD Modeling
Authors: Liu, W.; Berger, T. E.; Fan, Y.
2020AGUFMSH0010014L    Altcode:
  Solar prominences are cool and dense plasma in the hot corona. The
  so-called prominence bubbles are mysterious, dome-shaped, apparently
  void structures residing in the lower portions of prominences. Such
  bubbles are associated with various plasma instabilities, such as the
  Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH) instabilities. The
  former is manifested in plumes that are often produced at the top
  boundary of a bubble and intrude upward into the dense prominence
  material. The latter is found to be triggered by shear flows at the
  bubble boundaries. We present recent observations of prominence
  bubbles by IRIS, focusing on the diagnostic potential of RT and
  KH instabilities on the physical conditions of the prominence and
  its supporting magnetic field. We search for evidence of magnetic
  flux emergence as the origin of prominence bubbles. We also present
  preliminary 3D MHD simulations of the interaction of a bipole, as a
  hypothetical bubble, emerging into an overlying prominence-carrying
  flux-rope system. The simulations can provide further clues to the
  origin and nature of prominence bubbles. We discuss their roll in mass
  ad magnetic flux transport in the solar atmosphere.

---------------------------------------------------------
Title: SunCET: A CubeSat Mission Dedicated to the Middle Corona
Authors: Mason, J. P.; Seaton, D. B.; Chamberlin, P. C.; Burkepile,
   J.; Colaninno, R. C.; Dissauer, K.; Eparvier, F. G.; Fan, Y.; Gibson,
   S. E.; Jones, A. R.; Kay, C.; Kirk, M. S.; Kohnert, R.; Thompson,
   B. J.; Veronig, A.; West, M. J.; Woods, T. N.
2020AGUFMSH0300006M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: MHD Simulation of the 13 December 2006 Eruptive Flare of
    AR10930
Authors: Fan, Y.
2020AGUFMSH0440008F    Altcode:
  We present an MHD simulation of the initiation of the coronal mass
  ejection (CME) on 13 December 2006 in the emerging δ-sunspot active
  region NOAA 10930. We have improved upon a previous simulation by Fan
  (2016) in the following ways: (1) Incorporate an ambient solar wind
  instead of using a static potential magnetic field extrapolation as
  the initial state; (2) In addition to imposing the emergence of a
  twisted flux rope at the lower boundary to build up the pre-eruption
  field, also impose at the lower boundary a random electric field that
  represents the effect of turbulent convection that drives field-line
  braiding and the resultant resistive heating in the corona. With the
  inclusion of this heating, which depends on the magnetic field topology,
  we are able to model the synthetic soft X-ray emissions produced by
  the coronal loops. We find that the simulated pre-eruption active
  region magnetic field, where a twisted magnetic flux rope is built up
  due to the flux emergence, produces synthetic soft X-ray emission that
  shows qualitatively similar morphology as the observed X-ray image by
  the Hinode/XRT, with the formation of an inverse-S shaped "sigmoid"
  that sharpens at the onset of eruption. It is found that the rotation
  and expansion of the erupting flux rope is significantly affected by
  the two fast solar wind streams adjacent to the active region.

---------------------------------------------------------
Title: Validation of the PDFI_SS Electric Field Inversion Method
    Using MHD Simulations of Magnetic Flux Emergence
Authors: Afanasev, A.; Kazachenko, M.; Fan, Y.
2020AGUFMSH046..02A    Altcode:
  Knowledge of the vector electric field in the photosphere is useful
  for calculations of the energy flux through the photosphere and for
  boundary conditions for data-driven simulations of the evolving active
  regions. Recently, the PDFI_SS method for estimating electric fields
  from vector magnetic fields and Doppler velocities was improved to
  incorporate the spherical geometry and a staggered-grid description
  (Fisher et al. 2020). The method was previously validated using
  synthetic input data from an anelastic magnetohydrodynamic simulation
  (ANMHD). In this study, we further test the PDFI_SS method using
  synthetic data from a more realistic flux emergence MHD simulation. We
  use the output of the MHD simulations to perform the electric field
  inversions at the photosphere and compare these to the known fields
  in the simulation. We present results for different components of the
  electric field vector and the Poynting flux. We discuss the similarities
  and the differences, in particular, due to the complex structure of
  horizontal plasma flows in the regions of high smooth magnetic fields.

---------------------------------------------------------
Title: Major Scientific Challenges and Opportunities in Understanding
    Magnetic Reconnection and Related Explosive Phenomena in Solar and
    Heliospheric Plasmas
Authors: Ji, H.; Karpen, J.; Alt, A.; Antiochos, S.; Baalrud, S.;
   Bale, S.; Bellan, P. M.; Begelman, M.; Beresnyak, A.; Bhattacharjee,
   A.; Blackman, E. G.; Brennan, D.; Brown, M.; Buechner, J.; Burch, J.;
   Cassak, P.; Chen, B.; Chen, L. -J.; Chen, Y.; Chien, A.; Comisso,
   L.; Craig, D.; Dahlin, J.; Daughton, W.; DeLuca, E.; Dong, C. F.;
   Dorfman, S.; Drake, J.; Ebrahimi, F.; Egedal, J.; Ergun, R.; Eyink,
   G.; Fan, Y.; Fiksel, G.; Forest, C.; Fox, W.; Froula, D.; Fujimoto,
   K.; Gao, L.; Genestreti, K.; Gibson, S.; Goldstein, M.; Guo, F.; Hare,
   J.; Hesse, M.; Hoshino, M.; Hu, Q.; Huang, Y. -M.; Jara-Almonte, J.;
   Karimabadi, H.; Klimchuk, J.; Kunz, M.; Kusano, K.; Lazarian, A.; Le,
   A.; Lebedev, S.; Li, H.; Li, X.; Lin, Y.; Linton, M.; Liu, Y. -H.;
   Liu, W.; Longcope, D.; Loureiro, N.; Lu, Q. -M.; Ma, Z-W.; Matthaeus,
   W. H.; Meyerhofer, D.; Mozer, F.; Munsat, T.; Murphy, N. A.; Nilson,
   P.; Ono, Y.; Opher, M.; Park, H.; Parker, S.; Petropoulou, M.; Phan,
   T.; Prager, S.; Rempel, M.; Ren, C.; Ren, Y.; Rosner, R.; Roytershteyn,
   V.; Sarff, J.; Savcheva, A.; Schaffner, D.; Schoeffier, K.; Scime, E.;
   Shay, M.; Sironi, L.; Sitnov, M.; Stanier, A.; Swisdak, M.; TenBarge,
   J.; Tharp, T.; Uzdensky, D.; Vaivads, A.; Velli, M.; Vishniac, E.;
   Wang, H.; Werner, G.; Xiao, C.; Yamada, M.; Yokoyama, T.; Yoo, J.;
   Zenitani, S.; Zweibel, E.
2020arXiv200908779J    Altcode:
  Magnetic reconnection underlies many explosive phenomena in the
  heliosphere and in laboratory plasmas. The new research capabilities in
  theory/simulations, observations, and laboratory experiments provide the
  opportunity to solve the grand scientific challenges summarized in this
  whitepaper. Success will require enhanced and sustained investments
  from relevant funding agencies, increased interagency/international
  partnerships, and close collaborations of the solar, heliospheric,
  and laboratory plasma communities. These investments will deliver
  transformative progress in understanding magnetic reconnection and
  related explosive phenomena including space weather events.

---------------------------------------------------------
Title: GRB 200608A: BOOTES-3 and BOOTES-4 optical upper limit
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro-Tirado, A. J.;
   Carrasco, I.; Perez del Pulgar, C.; Caballero-Garcia, M. D.; Querel,
   R.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2020GCN.27907....1H    Altcode:
  The 60cm BOOTES-3/YA robotic telescope at NIWA Lauder in Otago (New
  Zealand) responded to the Swift trigger of GRB 200608A (Moss et al. GCNC
  27906). The first image (clear filter) was obtained at 19:18:40 UT
  (~ 1.83 hr after trigger). In the co-added image (5 exposures 30s
  each), no source is found at the region reported by Swift/BAT (Moss
  et al. GCNC 27906) down to 17.4 mag. The 60cm BOOTES-4/MET robotic
  telescope at Lijiang Astronomical Observatory (China) also gathered
  images starting at 19:32:24 UT (~ 2.06 hr after trigger). No optical
  afterglow is found down to 18.1 mag (unfiltered images) within the
  Swift/BAT error box. Both observations were severely affected by the
  presence of the moon about 13 degrees away. We thank the staff at NIWA
  and YNO for their excellent support.

---------------------------------------------------------
Title: The Mineralogy and Geochemistry of Shidian: A New Fall of CM
    Chondrite in China
Authors: Fan, Y.; Li, S. J.; Liu, S.
2020LPI....51.1234F    Altcode:
  Shidian is a new falling meteorite in Yunnan, China which has
  experienced serious aqueous alteration and was classified as CM2.2
  subtype.

---------------------------------------------------------
Title: SGR Swift J1818.0-1607: BOOTES-4/MET optical limit
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro-Tirado, A. J.;
   Perez del Pulgar, C.; Castellon, A.; Carrasco, I.; Guziy, S.; Xiong,
   D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.; et al.
2020GCN.27378....1H    Altcode:
  Following the detection of SGR Swift J1818.0-1607 by Swift (Evans et
  al. GCNC 27373), the 0.6m BOOTES-4/MET robotic telescope at Lijiang
  Astronomical Observatory (China) gathered images starting at 21:17:34
  UT (47 s after trigger). No optical afterglow is found down to 19.3 mag
  (in co-added 10x10 s unfiltered images) within the Swift/XRT error box,
  consistent with the non-detection by Swift/UVOT (Evans et al. GCNC
  27373). Further observations are ongoing. [GCN OPS NOTE(14mar20):
  Per author's request, Y.Xin's affiliation was changed from "Yunnan
  Nacional Astronomical Observatory" to "Yunnan Observatories of CAS".]

---------------------------------------------------------
Title: Major Scientific Challenges and Opportunities in Understanding
    Magnetic Reconnection and Related Explosive Phenomena throughout
    the Universe
Authors: Ji, H.; Alt, A.; Antiochos, S.; Baalrud, S.; Bale, S.;
   Bellan, P. M.; Begelman, M.; Beresnyak, A.; Blackman, E. G.; Brennan,
   D.; Brown, M.; Buechner, J.; Burch, J.; Cassak, P.; Chen, L. -J.;
   Chen, Y.; Chien, A.; Craig, D.; Dahlin, J.; Daughton, W.; DeLuca, E.;
   Dong, C. F.; Dorfman, S.; Drake, J.; Ebrahimi, F.; Egedal, J.; Ergun,
   R.; Eyink, G.; Fan, Y.; Fiksel, G.; Forest, C.; Fox, W.; Froula, D.;
   Fujimoto, K.; Gao, L.; Genestreti, K.; Gibson, S.; Goldstein, M.; Guo,
   F.; Hesse, M.; Hoshino, M.; Hu, Q.; Huang, Y. -M.; Jara-Almonte, J.;
   Karimabadi, H.; Klimchuk, J.; Kunz, M.; Kusano, K.; Lazarian, A.;
   Le, A.; Li, H.; Li, X.; Lin, Y.; Linton, M.; Liu, Y. -H.; Liu, W.;
   Longcope, D.; Loureiro, N.; Lu, Q. -M.; Ma, Z-W.; Matthaeus, W. H.;
   Meyerhofer, D.; Mozer, F.; Munsat, T.; Murphy, N. A.; Nilson, P.;
   Ono, Y.; Opher, M.; Park, H.; Parker, S.; Petropoulou, M.; Phan, T.;
   Prager, S.; Rempel, M.; Ren, C.; Ren, Y.; Rosner, R.; Roytershteyn,
   V.; Sarff, J.; Savcheva, A.; Schaffner, D.; Schoeffier, K.; Scime, E.;
   Shay, M.; Sitnov, M.; Stanier, A.; TenBarge, J.; Tharp, T.; Uzdensky,
   D.; Vaivads, A.; Velli, M.; Vishniac, E.; Wang, H.; Werner, G.; Xiao,
   C.; Yamada, M.; Yokoyama, T.; Yoo, J.; Zenitani, S.; Zweibel, E.
2020arXiv200400079J    Altcode:
  This white paper summarizes major scientific challenges and
  opportunities in understanding magnetic reconnection and related
  explosive phenomena as a fundamental plasma process.

---------------------------------------------------------
Title: Probing the Variation with Depth of the Solar Meridional
    Circulation Using Legendre Function Decomposition
Authors: Braun, D. C.; Birch, A.; Fan, Y.
2020ASSP...57..125B    Altcode:
  We apply the helioseismic methodology of Legendre Function Decomposition
  to 7.5 years of Dopplergrams obtained by the Helioseismic and
  Magnetic Imager (HMI) as the basis of inferring the depth variation
  of the meridional flow between 20<SUP>∘</SUP> and 60<SUP>∘</SUP>
  latitude in both hemispheres. We assess and remove center-to-limb
  artifacts using measurements obtained by applying the procedure to
  pseudo poles at the east and west limbs. Forward modeling is carried
  out to evaluate the consistency of the corrected frequency shifts
  with models of the depth variation of the meridional circulation in
  the top half of the convection zone. The observations are consistent
  with a return flow in the northern hemisphere below about 40 Mm depth,
  but no obvious return flow in the south.

---------------------------------------------------------
Title: Testing Data-driven Simulations of Solar Eruptive Flares
    Using Synthetic Magnetograms from Flux Emergence Simulations
Authors: Fan, Y.; Rempel, M.
2019AGUFMSH33B3393F    Altcode:
  To understand the feasibility of data-driven simulations of
  solar eruptive events using the electric field inferred from the
  observed time sequences of vector magnetograms, we have performed
  synthetic data driven simulations using synthetic magnetograms and
  electric fields extracted from interior-to-corona flux emergence
  simulations. We have carried out coronal simulations of eruptive
  flares with the MFE MHD code driven by the boundary data at the
  base of the corona extracted from the flux emergence simulations
  with the MURaM MHD code. We performed simulations driven with only
  the horizontal v×B electric field and the vector B field extracted
  from the MURaM simulation at the transition region height, but with
  the thermodynamics self-determined from the MFE coronal simulation,
  which includes the coronal heating due to numerical dissipation,
  radiative cooling, and field aligned thermal conduction. The coronal
  heating is due to dissipation of the Poynting flux from the lower
  boundary electric field due to magneto-convection. We find that the
  driven coronal simulations produce coronal emissions in AIA channels
  that are qualitatively similar to those produced by MURaM, and most
  importantly re-produce the main eruptive flares with sigmoid brightening
  during the evolution. These experiments suggest that with only the VxB
  electric field and the B field at the lower boundary (which would be
  the situation using the observed vector magnetograms), it is possible
  for coronal MHD simulations to reproduce the coronal magnetic field
  evolution and onset of eruptions.

---------------------------------------------------------
Title: Coronal Solar Magnetism Observatory Science Objectives
Authors: Gibson, S. E.; Tomczyk, S.; Burkepile, J.; Casini, R.;
   DeLuca, E.; de Toma, G.; de Wijn, A.; Fan, Y.; Golub, L.; Judge,
   P. G.; Landi, E.; McIntosh, S. W.; Reeves, K.; Seaton, D. B.; Zhang, J.
2019AGUFMSH11C3395G    Altcode:
  Space-weather forecast capability is held back by our current
  lack of basic scientific understanding of CME magnetic evolution,
  and the coronal magnetism that structures and drives the solar
  wind. Comprehensive observations of the global magnetothermal
  environment of the solar atmosphere are needed for progress. When fully
  implemented, the COSMO suite of synoptic ground-based telescopes will
  provide the community with comprehensive and simultaneous measurements
  of magnetism, temperature, density and plasma flows and waves from the
  photosphere through the chromosphere and out into the corona. We will
  discuss how these observations will uniquely address a set of science
  objectives that are central to the field of solar and space physics:
  in particular, to understand the storage and release of magnetic energy,
  to understand CME dynamics and consequences for shocks, to determine the
  role of waves in solar atmospheric heating and solar wind acceleration,
  to understand how the coronal magnetic field relates to the solar
  dynamo, and to constrain and improve space-weather forecast models.

---------------------------------------------------------
Title: GRB 191106A: BOOTES-4/MET optical limit
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro-Tirado, A. J.;
   Perez del Pulgar, C.; Castellon, A.; Carrasco, I.; Guziy, S.; Xiong,
   D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.26179....1H    Altcode:
  Following the detection of GRB 191106A by Swift (Marshall et
  al. GCNC 26177), the 0.6m BOOTES-4/MET robotic telescope at Lijiang
  Astronomical Observatory (China) gathered images starting at 14:21 UT
  (~5.7 min after trigger). No optical afterglow is found down to 20.7 mag
  (unfiltered images) within the Swift/XRT error box, consistent with the
  non-detections by Swift/UVOT (Marshall et al. GCNC 26177) and MASTER
  (Lipunov et al. GCNC 26178). Observations are ongoing. We thank the
  staff at Lijiang Astronomical Observatory for their excellent support.

---------------------------------------------------------
Title: GRB 191122A: BOOTES-4/MET optical limit
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro-Tirado, A. J.;
   Perez del Pulgar, C.; Castellon, A.; Carrasco, I.; Guziy, S.; Xiong,
   D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.26273....1H    Altcode:
  Following the detection of GRB 191122A by Swift (Sbarufatti et al. GCNC
  26269), the 0.6m BOOTES-4/MET robotic telescope at Lijiang Astronomical
  Observatory (China) started to gather images at 13:34 UT (~94s after
  trigger). No optical afterglow is found down to 20.3 mag (unfiltered
  images) at the enhaced Swift/XRT position (Evans et al. GCNC 26270),
  consistent with the non-detections by Swift/UVOT (Sbarufatti et
  al. GCNC 26269) and CHES (Sun et al. GCNC 26271). Observations are
  ongoing." We thank the staff at Lijiang Astronomical Observatory for
  their excellent support.

---------------------------------------------------------
Title: GRB 191029A: BOOTES-4/MET optical limit
Authors: Hu, Y. -D.; Fernandez-Garcia, E.; Castro-Tirado, A. J.;
   Perez del Pulgar, C.; Castellon, A.; Carrasco, I.; Reina, A.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.26092....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A multiwavelength analysis of a collection of short-duration
    GRBs observed between 2012 and 2015
Authors: Pandey, S. B.; Hu, Y.; Castro-Tirado, Ao J.; Pozanenko,
   A. S.; Sánchez-Ramírez, R.; Gorosabel, J.; Guziy, S.; Jelinek, M.;
   Tello, J. C.; Jeong, S.; Oates, S. R.; Zhang, B. -B.; Mazaeva, E. D.;
   Volnova, A. A.; Minaev, P. Yu; van Eerten, H. J.; Caballero-García,
   M. D.; Pérez-Ramírez, D.; Bremer, M.; Winters, J. -M.; Park, I. H.;
   Guelbenzu, A. Nicuesa; Klose, S.; Moskvitin, A.; Sokolov, V. V.;
   Sonbas, E.; Ayala, A.; Cepa, J.; Butler, N.; Troja, E.; Chernenko,
   A. M.; Molkov, S. V.; Volvach, A. E.; Inasaridze, R. Ya; Egamberdiyev,
   Sh A.; Burkhonov, O.; Reva, I. V.; Polyakov, K. A.; Matkin, A. A.;
   Ivanov, A. L.; Molotov, I.; Guver, T.; Watson, A. M.; Kutyrev, A.; Lee,
   W. H.; Fox, O.; Littlejohns, O.; Cucchiara, A.; Gonzalez, J.; Richer,
   M. G.; Román-Zúñiga, C. G.; Tanvir, N. R.; Bloom, J. S.; Prochaska,
   J. X.; Gehrels, N.; Moseley, H.; de Diego, J. A.; Ramírez-Ruiz, E.;
   Klunko, E. V.; Fan, Y.; Zhao, X.; Bai, J.; Wang, Ch; Xin, Y.; Cui,
   Ch; Tungalag, N.; Peng, Z. -K.; Kumar, Amit; Gupta, Rahul; Aryan,
   Amar; Kumar, Brajesh; Volvach, L. N.; Lamb, G. P.; Valeev, A. F.
2019MNRAS.485.5294P    Altcode: 2019MNRAS.tmp..525P; 2019arXiv190207900P
  We investigate the prompt emission and the afterglow properties of
  short-duration gamma-ray burst (sGRB) 130603B and another eight sGRB
  events during 2012-2015, observed by several multiwavelength facilities
  including the Gran Canarias Telescope 10.4 m telescope. Prompt emission
  high energy data of the events were obtained by INTEGRAL-SPI-ACS,
  Swift-BAT, and Fermi-GBM satellites. The prompt emission data by
  INTEGRAL in the energy range of 0.1-10 MeV for sGRB 130603B, sGRB
  140606A, sGRB 140930B, sGRB 141212A, and sGRB 151228A do not show
  any signature of the extended emission or precursor activity and
  their spectral and temporal properties are similar to those seen
  in case of other short bursts. For sGRB 130603B, our new afterglow
  photometric data constrain the pre-jet-break temporal decay due to
  denser temporal coverage. For sGRB 130603B, the afterglow light curve,
  containing both our new and previously published photometric data is
  broadly consistent with the ISM afterglow model. Modeling of the host
  galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software
  supports a scenario in which the environment of the burst is undergoing
  moderate star formation activity. From the inclusion of our late-time
  data for eight other sGRBs we are able to: place tight constraints
  on the non-detection of the afterglow, host galaxy, or any underlying
  `kilonova' emission. Our late-time afterglow observations of the sGRB
  170817A/GW170817 are also discussed and compared with the sub-set
  of sGRBs.

---------------------------------------------------------
Title: Data-optimized Coronal Field Model. I. Proof of Concept
Authors: Dalmasse, K.; Savcheva, A.; Gibson, S. E.; Fan, Y.; Nychka,
   D. W.; Flyer, N.; Mathews, N.; DeLuca, E. E.
2019ApJ...877..111D    Altcode: 2019arXiv190406308D
  Deriving the strength and direction of the three-dimensional
  (3D) magnetic field in the solar atmosphere is fundamental for
  understanding its dynamics. Volume information on the magnetic field
  mostly relies on coupling 3D reconstruction methods with photospheric
  and/or chromospheric surface vector magnetic fields. Infrared
  coronal polarimetry could provide additional information to better
  constrain magnetic field reconstructions. However, combining such
  data with reconstruction methods is challenging, e.g., because of the
  optical thinness of the solar corona and the lack and limitations of
  stereoscopic polarimetry. To address these issues, we introduce the
  data-optimized coronal field model (DOCFM) framework, a model-data
  fitting approach that combines a parameterized 3D generative model,
  e.g., a magnetic field extrapolation or a magnetohydrodynamic model,
  with forward modeling of coronal data. We test it with a parameterized
  flux-rope insertion method and infrared coronal polarimetry where
  synthetic observations are created from a known “ground-truth”
  physical state. We show that this framework allows us to accurately
  retrieve the ground-truth 3D magnetic field of a set of force-free
  field solutions from the flux-rope insertion method. In observational
  studies, the DOCFM will provide a means to force the solutions
  derived with different reconstruction methods to satisfy additional
  common coronal constraints. The DOCFM framework therefore opens new
  perspectives for the exploitation of coronal polarimetry in magnetic
  field reconstructions and for developing new techniques to more
  reliably infer the 3D magnetic fields that trigger solar flares and
  coronal mass ejections.

---------------------------------------------------------
Title: Major Scientific Challenges and Opportunities in Understanding
    Magnetic Reconnection and Related Explosive Phenomena throughout
    the Universe
Authors: Ji, Hantao; Alt, A.; Antiochos, S.; Baalrud, S.; Bale, S.;
   Bellan, P. M.; Begelman, M.; Beresnyak, A.; Blackman, E. G.; Brennan,
   D.; Brown, M.; Buechner, J.; Burch, J.; Cassak, P.; Chen, L. -J.;
   Chen, Y.; Chien, A.; Craig, D.; Dahlin, J.; Daughton, W.; DeLuca, E.;
   Dong, C. F.; Dorfman, S.; Drake, J.; Ebrahimi, F.; Egedal, J.; Ergun,
   R.; Eyink, G.; Fan, Y.; Fiksel, G.; Forest, C.; Fox, W.; Froula, D.;
   Fujimoto, K.; Gao, L.; Genestreti, K.; Gibson, S.; Goldstein, M.;
   Guo, F.; Hesse, M.; Hoshino, M.; Hu, Q.; Huang, Y. -M.; Jara-Almonte,
   J.; Karimabadi, H.; Klimchuk, J.; Kunz, M.; Kusano, K.; Lazarian,
   A.; Le, A.; Li, H.; Li, X.; Lin, Y.; Linton, M.; Liu, Y. -H.; Liu,
   W.; Longcope, D.; Louriero, N.; Lu, Q. -M.; Ma, Z. -W.; Matthaeus,
   W. H.; Meyerhofer, D.; Mozer, F.; Munsat, T.; Murphy, N. A.; Nilson,
   P.; Ono, Y.; Opher, M.; Park, H.; Parker, S.; Petropoulou, M.; Phan,
   T.; Prager, S.; Rempel, M.; Ren, C.; Ren, Y.; Rosner, R.; Roytershteyn,
   V.; Sarff, J.; Savcheva, A.; Schaffner, D.; Schoeffier, K.; Scime, E.;
   Shay, M.; Sitnov, M.; Stanier, A.; TenBarge, J.; Tharp, T.; Uzdensky,
   D.; Vaivads, A.; Velli, M.; Vishniac, E.; Wang, H.; Werner, G.; Xiao,
   C.; Yamada, M.; Yokoyama, T.; Yoo, J.; Zenitani, S.; Zweibel, E.
2019BAAS...51c...5J    Altcode: 2019astro2020T...5J
  This is a group white paper of 100 authors (each with explicit
  permission via email) from 51 institutions on the topic of magnetic
  reconnection which is relevant to 6 thematic areas. Grand challenges
  and research opportunities are described in observations, numerical
  modeling and laboratory experiments in the upcoming decade.

---------------------------------------------------------
Title: GRB 190515B: BOOTES-4/MET and 2.2m CAHA optical limits.
Authors: Hu, Y. -D.; Li, X. -Y.; Fernandez-Garcia, E.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.; Mao,
   J.; Fernandez, A.; Hermelo, I.
2019GCN.24567....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GRB 190211A: BOOTES-4/MET optical afterglow confirmation.
Authors: Hu, Y. -D.; Li, X. -Y.; Fernandez-Garcia, E.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.23886....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GRB 190106A: BOOTES-4/MET optical observations.
Authors: Hu, Y. -D.; Li, X. -Y.; Fernandez-Garcia, E.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.23627....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GRB 190114B: BOOTES-4/MET optical afterglow detection.
Authors: Fernandez-Garcia, E.; Hu, Y. -D.; Li, X. -Y.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Xiong,
   D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.23694....1F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GRB 190220B: BOOTES-4 optical observation.
Authors: Hu, Y. -D.; Li, X. -Y.; Fernandez-Garcia, E.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.23916....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GRB 190123A: BOOTES-4/MET optical limit.
Authors: Hu, Y. -D.; Li, X. -Y.; Fernandez-Garcia, E.; Ayala, A.;
   Castro-Tirado, A. J.; Perez, C.; Castellon, A.; Carrasco, I.; Guziy,
   S.; Xiong, D.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.
2019GCN.23772....1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Modeling the Solar Convective Dynamo and Emerging Flux
Authors: Fan, Y.
2017AGUFMSH12A..02F    Altcode:
  Significant advances have been made in recent years in global-scale
  fully dynamic three-dimensional convective dynamo simulations of the
  solar/stellar convective envelopes to reproduce some of the basic
  features of the Sun's large-scale cyclic magnetic field. It is found
  that the presence of the dynamo-generated magnetic fields plays an
  important role for the maintenance of the solar differential rotation,
  without which the differential rotation tends to become anti-solar
  (with a faster rotating pole instead of the observed faster rotation at
  the equator). Convective dynamo simulations are also found to produce
  emergence of coherent super-equipartition toroidal flux bundles with
  a statistically significant mean tilt angle that is consistent with
  the mean tilt of solar active regions. The emerging flux bundles are
  sheared by the giant cell convection into a forward leaning loop shape
  with its leading side (in the direction of rotation) pushed closer to
  the strong downflow lanes. Such asymmetric emerging flux pattern may
  lead to the observed asymmetric properties of solar active regions.

---------------------------------------------------------
Title: Terminator 2020: Get Ready for the "Event" of The Next Decade
Authors: McIntosh, S. W.; Leamon, R. J.; Fan, Y.; Rempel, M.;
   Dikpati, M.
2017AGUFMSH22B..06M    Altcode:
  The abrupt end of solar activity cycles 22 and 23 at the Sun's
  equator are observed with instruments from the Solar and Heliospheric
  Observatory (SOHO), Solar Terrestrial Relations Observatory (STEREO),
  and Solar Dynamics Observatory (SDO). These events are remarkable in
  that they rapidly trigger the onset of magnetic activity belonging
  to the next solar cycle at mid-latitudes. The triggered onset of new
  cycle flux emergence leads to blossoming of the new cycle shortly
  thereafter. Using small-scale tracers of magnetic solar activity we
  examine the timing of the cycle “termination points” in relation
  to the excitation of new activity and find that the time taken
  for the solar plasma to communicate this transition is less than
  one solar rotation, and possibly as little as a eight days. This
  very short transition time implies that the mean magnetic field
  present in the Sun's convection zone is approximately 80 kG. This
  value may be considerably larger than conventional explorations
  estimate and therefore, have a significant dynamical impact on the
  physical appearance of solar activity, and considerably impacting
  our ability to perform first-principles numerical simulations of the
  same. Should solar cycle 24 [and 25] continue in their progression
  we anticipate that a termination event of this type should occur in
  the 2020 timeframe. PSP will have a front row seat to observe this
  systemic flip in solar magnetism and the induced changes in our star's
  radiative and partiuculate output. Such observations may prove to be
  critical in assessing the Sun's ability to force short term evolution
  in the Earth's atmosphere.

---------------------------------------------------------
Title: Update of the China-VO AstroCloud
Authors: Cui, C.; Yu, C.; Xiao, J.; He, B.; Li, C.; Fan, D.; Wang, C.;
   Hong, Z.; Li, S.; Mi, L.; Wan, W.; Cao, Z.; Wang, J.; Yin, S.; Fan, Y.;
   Wang, J.; Yang, S.; Ling, Y.; Zhang, H.; Chen, J.; Liu, L.; Chen, X.
2017ASPC..512..553C    Altcode: 2018ASPC..512..553C; 2017adass..25..553C; 2016arXiv160103155C
  As the cyber-infrastructure for Astronomical research from Chinese
  Virtual Observatory (China-VO) project, AstroCloud has achieved
  solid progress during the last year. The proposal management system
  and data access system were redesigned. Several new sub-systems were
  developed, including China-VO PaperData, AstroCloud Statics and Public
  channel. More data sets and application environments are integrated into
  the platform. LAMOST DR1, the largest astronomical spectrum archive,
  was released to the public using the platform. The latest progress
  will be introduced.

---------------------------------------------------------
Title: Numerical MHD Coronal Simulations: Energy Statistics and
    FORWARD Analysis.
Authors: Nimmo, K.; Rempel, M.; Chen, F.; Gibson, S. E.; Fan, Y.
2017AGUFMSH43A2800N    Altcode:
  We analyse a recent realistic radiative MHD simulation of the solar
  corona that was computed with the extended version of the MURaM
  code. The simulation covers the uppermost 8Mm of the solar convection
  zone and reaches 115Mm into the solar corona. The simulation covers 48
  hours of solar time and simulates the evolution of a complex active
  region. The energy release in the corona is highly intermittent and
  we identify a total of 118 individual events including flares and a
  coronal mass ejection, which we analyse in further detail. From the
  simulation we compute an X-ray flux mimicking observations by the GOES
  (Geostationary Operational Environmental Satellite) satellite in the
  wavelength range 1-8 Å. The power law index for the GOES X-ray flux
  for flares of class C and above in this simulation is found to be
  1.33452. We analyze the correlation between synthetic coronal emission
  during flares and the magnetic energy release in the corona. The latter
  is a quantity that cannot be directly determined in observations.The
  FORWARD code is a tool used for the purpose of coronal magnetometry. It
  can be used to compute synthetic observables from coronal models. We
  focus on the interpretation of the High Altitude Observatory's CoMP
  observations. The CoMP (COronal Multi-channel Polarimeter) instrument
  measures the intensity and the linear and circular polarisation of
  FeXIII at 1074.7nm.We discuss some important limitations of coronal
  emission line polarimetry when simulating an extremely active solar
  region, with emphasis on the influence of high velocities, temperatures
  and densities on the FORWARD output.

---------------------------------------------------------
Title: The Design and Application of Astronomy Data Lake in China-VO
Authors: Li, C.; Cui, C.; He, B.; Fan, D.; Wang, J.; Li, S.; Mi, L.;
   Wan, W.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.;
   Fan, Y.; Hong, Z.; Wang, J.; Yin, S.; Liu, L.; Chen, X.
2017ASPC..512..157L    Altcode: 2017adass..25..157L; 2018ASPC..512..157L
  With the coming of many large astronomy observation facilities, such
  as LAMOST, TMT, FAST, LSST, SKA, data storage for these facilities is
  facing big challenges. Astronomy Data Lake, a distributed storage system
  is designed to meet these requirements in the big data era. Astronomy
  Data Lake, basing on a master-slave framework, integrates many
  geographic distributed data storage resources into a single mount
  point. It implements automatic data backup and disaster recovery,
  with easy expansion capability. Based on this system, we developed
  many data storage services, including database storage, private file
  storage, computing data and paper data services for astronomers.

---------------------------------------------------------
Title: Multi-messenger Observations of a Binary Neutron Star Merger
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri,
   R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.;
   Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.;
   Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya,
   G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.;
   Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.;
   De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi,
   C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker,
   C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.;
   Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel,
   S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.;
   Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov,
   B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch,
   R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña
   Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.;
   Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh,
   P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland,
   D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.;
   Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff,
   M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi,
   A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.;
   Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery,
   M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall,
   L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.;
   Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell,
   J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration;
   Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.;
   Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles,
   M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen,
   R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.;
   Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro,
   M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno,
   C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.;
   Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain,
   E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.;
   Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev,
   R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.;
   Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.;
   Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.;
   Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser,
   J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.;
   Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.;
   Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de
   André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.;
   De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With,
   M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.;
   Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.;
   Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.;
   Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.;
   Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.;
   Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt,
   A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren,
   A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing,
   K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman,
   K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber,
   M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski,
   P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani,
   A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher,
   T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.;
   Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.;
   Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.;
   Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.;
   Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak,
   M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.;
   Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer,
   R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki,
   S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha,
   A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper,
   J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.;
   Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea,
   I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.;
   Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg,
   S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.;
   Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.;
   Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.;
   Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar,
   J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav,
   S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.;
   Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.;
   Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.;
   Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky,
   N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.;
   Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams,
   D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg,
   K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.;
   Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan,
   G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride
   Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks,
   D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik,
   Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration;
   Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao,
   X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen,
   Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du,
   Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.;
   Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia,
   S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li,
   C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li,
   Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.;
   Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.;
   Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.;
   Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.;
   Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang,
   Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.;
   Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang,
   C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.;
   Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang,
   Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.;
   Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu,
   Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André,
   M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas,
   T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.;
   Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.;
   Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr,
   J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella,
   M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.;
   Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis,
   G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic,
   D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.;
   Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.;
   Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz,
   R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.;
   Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon,
   C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler,
   M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.;
   Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre,
   D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.;
   Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael,
   T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.;
   Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa,
   V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa,
   A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti,
   M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti,
   M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.;
   Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.;
   Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.;
   Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.;
   de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall,
   C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall,
   F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.;
   Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.;
   Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration;
   Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani,
   L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma,
   I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo,
   F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.;
   Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti,
   F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.;
   Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico,
   F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia,
   M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley,
   R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.;
   Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.;
   Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.;
   Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.;
   Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot,
   E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook,
   E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout,
   M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman,
   J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley,
   W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.;
   Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.;
   Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.;
   Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.;
   Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny,
   B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol,
   K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke,
   D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander,
   F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.;
   Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.;
   Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.;
   Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson,
   M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.;
   Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon,
   R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol,
   R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.;
   Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell,
   M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins,
   A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel,
   M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.;
   Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.;
   Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration;
   Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.;
   Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti,
   S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo,
   P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola,
   L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti,
   A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli,
   L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.;
   Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta,
   A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti,
   N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera,
   M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.;
   Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria,
   T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu,
   S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.;
   Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu,
   L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini,
   Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin,
   D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau,
   M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.;
   Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.;
   Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma,
   K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz,
   D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao,
J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA:
   GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini,
   L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.;
   Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang,
   J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.;
   Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla,
   N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke,
   W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano,
   F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.;
   Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec,
   S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei,
   S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.;
   Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill,
   J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.;
   Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti,
   E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.;
   Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.;
   Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.;
   Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer,
   O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.;
   Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.;
   Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo,
   L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello,
   G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison,
   J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch,
   C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array,
ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon,
R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi,
   I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.;
   Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las
   Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller,
   A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.;
   Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken,
   C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.;
   Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.;
   Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.;
   Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li,
   X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.;
   Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff,
   J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program,
   Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.;
   Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner,
   J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen,
   B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun,
   S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.;
   Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas,
   T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers,
   R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.;
   Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.;
   Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato,
   H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.;
   Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov,
   D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo,
   R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER
   Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.;
   Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa,
   H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim,
   J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi,
   K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata,
   K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata,
   F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito,
   Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi,
   J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.;
   Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi,
   M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.;
   Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.;
   Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.;
   Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.;
   Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.;
   Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.;
   Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou,
   G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.;
   Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim,
   N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.;
   Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.;
   Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.;
   Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.;
   Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.;
   Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.;
   Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH;
   JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers,
   K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.;
   Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman,
   M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.;
   Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai,
   H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima,
   K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.;
   Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki,
   R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita,
   S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.;
   Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka,
   K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team;
   Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier,
   R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.;
   Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee,
   S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.;
   Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo,
   J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt,
   S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra,
   C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith,
   K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan,
   D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.;
   Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla,
   M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia,
   A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.;
   Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.;
   González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz,
   A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.;
   Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.;
   Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence,
   A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.;
   O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.;
   Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.;
   Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice,
   S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.;
   Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen,
   B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron,
   O.; pre="(">ePESSTO, <author; Chen, T. -W.; Krühler, T.; Schady,
   P.; Wiseman, P.; Greiner, J.; Rau, A.; Schweyer, T.; Klose, S.;
   Nicuesa Guelbenzu, A.; GROND; Palliyaguru, N. T.; Tech University,
   Texas; Shara, M. M.; Williams, T.; Vaisanen, P.; Potter, S. B.; Romero
   Colmenero, E.; Crawford, S.; Buckley, D. A. H.; Mao, J.; SALT Group;
   Díaz, M. C.; Macri, L. M.; García Lambas, D.; Mendes de Oliveira,
   C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell,
   W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz,
   M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Chavushyan, V.; Coelho,
   P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; Domínguez
   Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.;
   Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.;
   Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Melia,
   R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones,
   C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.;
   Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.;
Torres-Flores, S.; Tornatore, M.; Zadrożny, A.; Castillo, M.; TOROS:
   Transient Robotic Observatory of South Collaboration; Castro-Tirado,
   A. J.; Tello, J. C.; Hu, Y. -D.; Zhang, B. -B.; Cunniffe, R.;
   Castellón, A.; Hiriart, D.; Caballero-García, M. D.; Jelínek,
   M.; Kubánek, P.; Pérez del Pulgar, C.; Park, I. H.; Jeong, S.;
   Castro Cerón, J. M.; Pandey, S. B.; Yock, P. C.; Querel, R.; Fan,
   Y.; Wang, C.; BOOTES Collaboration; Beardsley, A.; Brown, I. S.;
   Crosse, B.; Emrich, D.; Franzen, T.; Gaensler, B. M.; Horsley,
   L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.;
   Sokolowski, M.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.;
Wayth, R.; Williams, A.; Wu, C.; Murchison Widefield Array, MWA:;
   Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Yamaoka, K.; Takahashi,
   I.; Asaoka, Y.; Ozawa, S.; Torii, S.; Shimizu, Y.; Tamura, T.;
   Ishizaki, W.; Cherry, M. L.; Ricciarini, S.; Penacchioni, A. V.;
   Marrocchesi, P. S.; CALET Collaboration; Pozanenko, A. S.; Volnova,
   A. A.; Mazaeva, E. D.; Minaev, P. Yu.; Krugov, M. A.; Kusakin, A. V.;
   Reva, I. V.; Moskvitin, A. S.; Rumyantsev, V. V.; Inasaridze, R.;
   Klunko, E. V.; Tungalag, N.; Schmalz, S. E.; Burhonov, O.; IKI-GW
   Follow-up Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.;
   Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert,
   P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus,
   J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher,
   M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.;
   Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.;
   Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.;
   Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon,
   B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt,
   P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson,
   K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J. -P.;
   Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.;
   Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.;
   Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.;
   Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.;
   Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.;
   Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.;
   Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.;
   Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt,
   I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Kerszberg,
   D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov,
   D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.;
   Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J. -P.;
   Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.;
   Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Malyshev,
   D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.;
   Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.;
   Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach,
   T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.;
   Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski,
   M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur,
   N. W.; Pelletier, G.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.;
   Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph,
   H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth,
   R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger,
   F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.;
   Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.;
   Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer,
   S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon,
   I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob,
   M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch,
   I.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.;
   Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard,
   C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt,
   D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis,
   G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin,
   F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.;
   Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann,
   P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.;
   Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn,
   J.; Żywucka, N.; H. E. S. S. Collaboration; Fender, R. P.; Broderick,
   J. W.; Rowlinson, A.; Wijers, R. A. M. J.; Stewart, A. J.; ter Veen,
   S.; Shulevski, A.; LOFAR Collaboration; Kavic, M.; Simonetti, J. H.;
   League, C.; Tsai, J.; Obenberger, K. S.; Nathaniel, K.; Taylor,
   G. B.; Dowell, J. D.; Liebling, S. L.; Estes, J. A.; Lippert, M.;
Sharma, I.; Vincent, P.; Farella, B.; Wavelength Array, LWA: Long;
   Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.;
   Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.;
   Barber, A. S.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno,
   E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.;
   Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova,
   S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.;
   De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.;
   Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth,
   R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack,
   H.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.;
   Gonzõlez Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias,
   Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.;
   Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann,
   S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.;
   Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García,
   R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.;
   Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.;
   Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.;
   Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo,
   R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière,
   C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar,
   H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.;
   Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Tibolla, O.;
   Tollefson, K.; Torres, I.; Ukwatta, T. N.; Weisgarber, T.; Westerhoff,
   S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.;
   Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aab, A.; Abreu,
   P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte,
   I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi,
   G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene,
   N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.;
   Barbato, F.; Barreira Luz, R. J.; Becker, K. H.; Bellido, J. A.; Berat,
   C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess,
   S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi,
   C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.;
   Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink,
   S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio,
   A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi,
   G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay,
   R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica,
   L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.;
   Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.;
   Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de
   Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.;
   De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny,
   O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.;
   Dorosti, Q.; Dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.;
   Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.;
   Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.;
   Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.;
   Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.;
   García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.;
   Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup,
   G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi,
   A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes,
   G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison,
   T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann,
   P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.;
   Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.;
   Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili,
   M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer,
   B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.;
   Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.;
   Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd,
   D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira,
   M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti,
   D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.;
   Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.;
   Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez,
   H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys,
   S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.;
   Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal,
   S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.;
   Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino,
   G.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa,
   R.; Naranjo, I.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol,
   M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.;
   Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka,
   M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.;
   Pech, M.; Pedreira, F.; Pȩkala, J.; Peña-Rodriguez, J.; Pereira,
   L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok,
   J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.;
   Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel,
   E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.;
   Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.;
   Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo,
   J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl,
   P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.;
   Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos,
   E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer,
   M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten,
   O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.;
   Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard,
   R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.;
   Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.;
   Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich,
   A.; Suarez, F.; Suarez-Durán, M.; Sudholz, T.; Suomijärvi, T.;
   Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.;
   Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.;
   Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.;
   Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño,
   I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.;
   van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.;
   Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha,
   J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.;
   Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.;
   Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler,
   B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.;
   Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello,
   F.; Pierre Auger Collaboration; Kim, S.; Schulze, S.; Bauer, F. E.;
   Corral-Santana, J. M.; de Gregorio-Monsalvo, I.; González-López,
   J.; Hartmann, D. H.; Ishwara-Chandra, C. H.; Martín, S.; Mehner,
   A.; Misra, K.; Michałowski, M. J.; Resmi, L.; ALMA Collaboration;
   Paragi, Z.; Agudo, I.; An, T.; Beswick, R.; Casadio, C.; Frey, S.;
   Jonker, P.; Kettenis, M.; Marcote, B.; Moldon, J.; Szomoru, A.;
   van Langevelde, H. J.; Yang, J.; Euro VLBI Team; Cwiek, A.; Cwiok,
   M.; Czyrkowski, H.; Dabrowski, R.; Kasprowicz, G.; Mankiewicz, L.;
   Nawrocki, K.; Opiela, R.; Piotrowski, L. W.; Wrochna, G.; Zaremba,
   M.; Żarnecki, A. F.; Pi of Sky Collaboration; Haggard, D.; Nynka,
   M.; Ruan, J. J.; Chandra Team at McGill University; Bland, P. A.;
   Booler, T.; Devillepoix, H. A. R.; de Gois, J. S.; Hancock, P. J.;
   Howie, R. M.; Paxman, J.; Sansom, E. K.; Towner, M. C.; Desert
Fireball Network, DFN:; Tonry, J.; Coughlin, M.; Stubbs, C. W.;
   Denneau, L.; Heinze, A.; Stalder, B.; Weiland, H.; ATLAS; Eatough,
   R. P.; Kramer, M.; Kraus, A.; Time Resolution Universe Survey, High;
   Troja, E.; Piro, L.; Becerra González, J.; Butler, N. R.; Fox, O. D.;
   Khandrika, H. G.; Kutyrev, A.; Lee, W. H.; Ricci, R.; Ryan, R. E.,
   Jr.; Sánchez-Ramírez, R.; Veilleux, S.; Watson, A. M.; Wieringa,
   M. H.; Burgess, J. M.; van Eerten, H.; Fontes, C. J.; Fryer, C. L.;
   Korobkin, O.; Wollaeger, R. T.; RIMAS; RATIR; Camilo, F.; Foley,
   A. R.; Goedhart, S.; Makhathini, S.; Oozeer, N.; Smirnov, O. M.;
   Fender, R. P.; Woudt, P. A.; South Africa/MeerKAT, SKA
2017ApJ...848L..12A    Altcode: 2017arXiv171005833L
  On 2017 August 17 a binary neutron star coalescence candidate (later
  designated GW170817) with merger time 12:41:04 UTC was observed
  through gravitational waves by the Advanced LIGO and Advanced Virgo
  detectors. The Fermi Gamma-ray Burst Monitor independently detected a
  gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with
  respect to the merger time. From the gravitational-wave signal, the
  source was initially localized to a sky region of 31 deg<SUP>2</SUP>
  at a luminosity distance of {40}<SUB>-8</SUB><SUP>+8</SUP> Mpc and
  with component masses consistent with neutron stars. The component
  masses were later measured to be in the range 0.86 to 2.26 {M}<SUB>⊙
  </SUB>. An extensive observing campaign was launched across the
  electromagnetic spectrum leading to the discovery of a bright optical
  transient (SSS17a, now with the IAU identification of AT 2017gfo) in
  NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
  One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
  optical transient was independently detected by multiple teams
  within an hour. Subsequent observations targeted the object and its
  environment. Early ultraviolet observations revealed a blue transient
  that faded within 48 hours. Optical and infrared observations showed
  a redward evolution over ∼10 days. Following early non-detections,
  X-ray and radio emission were discovered at the transient's position ∼
  9 and ∼ 16 days, respectively, after the merger. Both the X-ray and
  radio emission likely arise from a physical process that is distinct
  from the one that generates the UV/optical/near-infrared emission. No
  ultra-high-energy gamma-rays and no neutrino candidates consistent with
  the source were found in follow-up searches. These observations support
  the hypothesis that GW170817 was produced by the merger of two neutron
  stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A)
  and a kilonova/macronova powered by the radioactive decay of r-process
  nuclei synthesized in the ejecta. <P />Any correspondence should be
  addressed to .

---------------------------------------------------------
Title: Introduction to the High Energy cosmic-Radiation Detection
    (HERD) Facility onboard China's Future Space Station
Authors: Zhang, S. N.; Adriani, O.; Consortium, H.; Albergo, S.;
   Ambrosi, G.; An, Q.; Azzarello, P.; Bai, Y.; Bao, T.; Bernardini, P.;
   Bertucci, B.; Bi, X.; Bongi, M.; Bottai, S.; Cao, W.; Cao, Z.; Chai,
   J.; Chang, J.; Chen, G.; Chen, Y.; Chen, Z.; Cui, X. H.; Dai, Z. G.;
   D'Alessandro, R.; Santo, M. D.; Dong, Y.; Duranti, M.; Fan, Y.; Fang,
   K.; Feng, C. Q.; Feng, H.; Formato, V.; Fusco, P.; Gao, J.; Gargano,
   F.; Giglietto, N.; Gou, Q.; Guo, Y. Q.; He, H. H.; Hu, H.; Hu, P.;
   Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, R.; Li, Y.; Li,
   Z.; Liang, E. W.; Lin, S.; Liu, H.; Liu, H.; Liu, J. B.; Liu, S. B.;
   Liu, S. M.; Liu, X.; Loparco, F.; Lyu, J.; Marsella, G.; Mazziottai,
   M. N.; Mitri, I. D.; Mori, N.; Papini, P.; Pearce, M.; Peng, W.; Pohl,
   M.; Quan, Z.; Ryde, F.; Shi, D.; Su, M.; Sun, X. L.; Sun, X.; Surdo,
   A.; Tang, Z. C.; Vannuccini, E.; Walter, R.; Wang, B.; Wang, B.; Wang,
   J. C.; Wang, J. M.; Wang, J.; Wang, L.; Wang, R.; Wang, X. L.; Wang,
   X. Y.; Wang, Z.; Wei, D. M.; Wu, B.; Wu, J.; Wu, Q.; Wu, X.; Wu,
   X. F.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan,
   Q.; Zha, M.; Zhang, L.; Zhang, L.; Yi, Z.; Zhang, Y. L.; Zhao, Z. G.
2017ICRC...35.1077Z    Altcode: 2017PoS...301.1077Z
  No abstract at ADS

---------------------------------------------------------
Title: Tapping the Core - a study of Alfvénic energy flow in an
    erupting flux-rope configuration
Authors: Fletcher, L.; Dalmasse, K.; Gibson, S. E.; Fan, Y.
2016AGUFMSH31B2564F    Altcode:
  We analyze the evolution of reconnecting magnetic field in a 3-D
  numerical simulation of a partially-ejected solar flux rope, with a
  focus on understanding how the flux rope dynamics is linked to the
  flow of energy through the field and the solar atmosphere as Alfvénic
  Poynting flux. The magnetic flux rope splits in two during its eruption,
  with reconnection taking place between the erupting rope and surrounding
  fields, and internally in the strong field of the rope. We track the
  Poynting flux entering and leaving the simulation current sheets,
  and by mapping this down to the solar surface we identify locations of
  weak and strong energy deposition in the lower atmosphere. Our tracking
  method enables us to link the lower atmosphere signatures to different
  stages of the coronal reconnection. We find a predominantly two-ribbon
  morphology in the locations of Poynting flux deposition in the lower
  atmosphere, in which the transition from reconnection involving weaker
  field external to the flux rope, to reconnection involving the flux rope
  core field, is accompanied by rapid ribbon spreading. In the core-field
  reconnection phase, ribbons move into strong field regions on the
  solar surface, and locations of highly concentrated downward-directed
  Poynting flux are found, which may be linked to the most energetic flare
  `footpoints' seen in optical and hard X-ray emission.

---------------------------------------------------------
Title: Scientific objectives and capabilities of the Coronal Solar
    Magnetism Observatory
Authors: Tomczyk, S.; Landi, E.; Burkepile, J. T.; Casini, R.; DeLuca,
   E. E.; Fan, Y.; Gibson, S. E.; Lin, H.; McIntosh, S. W.; Solomon,
   S. C.; Toma, G.; Wijn, A. G.; Zhang, J.
2016JGRA..121.7470T    Altcode:
  Magnetic influences increase in importance in the solar atmosphere
  from the photosphere out into the corona, yet our ability to routinely
  measure magnetic fields in the outer solar atmosphere is lacking. We
  describe the scientific objectives and capabilities of the COronal Solar
  Magnetism Observatory (COSMO), a proposed synoptic facility designed
  to measure magnetic fields and plasma properties in the large-scale
  solar atmosphere. COSMO comprises a suite of three instruments chosen
  to enable the study of the solar atmosphere as a coupled system: (1)
  a coronagraph with a 1.5 m aperture to measure the magnetic field,
  temperature, density, and dynamics of the corona; (2) an instrument
  for diagnostics of chromospheric and prominence magnetic fields and
  plasma properties; and (3) a white light K-coronagraph to measure
  the density structure and dynamics of the corona and coronal mass
  ejections. COSMO will provide a unique combination of magnetic field,
  density, temperature, and velocity observations in the corona and
  chromosphere that have the potential to transform our understanding
  of fundamental physical processes in the solar atmosphere and their
  role in the origins of solar variability and space weather.

---------------------------------------------------------
Title: Supplement: “Localization and Broadband Follow-up of the
    Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO
   Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.;
   Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee,
   W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla,
   T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.;
   Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.;
   Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.;
   Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock,
   R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.;
   da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor,
   Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.;
   Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley,
   R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer,
   C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.;
   Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.;
   Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.;
   Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.;
   Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.;
   Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT
   Collaboration; Zadko Collaboration; Algerian National Observatory,
   Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela,
   T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral,
   J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares,
   M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration
2016ApJS..225....8A    Altcode: 2016arXiv160407864A
  This Supplement provides supporting material for Abbott et
  al. (2016a). We briefly summarize past electromagnetic (EM) follow-up
  efforts as well as the organization and policy of the current EM
  follow-up program. We compare the four probability sky maps produced
  for the gravitational-wave transient GW150914, and provide additional
  details of the EM follow-up observations that were performed in the
  different bands.

---------------------------------------------------------
Title: XIPE: the x-ray imaging polarimetry explorer
Authors: Soffitta, P.; Bellazzini, R.; Bozzo, E.; Burwitz, V.;
   Castro-Tirado, A.; Costa, E.; Courvoisier, T.; Feng, H.; Gburek,
   S.; Goosmann, R.; Karas, V.; Matt, G.; Muleri, F.; Nandra, K.;
   Pearce, M.; Poutanen, J.; Reglero, V.; Sabau Maria, D.; Santangelo,
   A.; Tagliaferri, G.; Tenzer, C.; Vink, J.; Weisskopf, M. C.; Zane,
   S.; Agudo, I.; Antonelli, A.; Attina, P.; Baldini, L.; Bykov, A.;
   Carpentiero, R.; Cavazzuti, E.; Churazov, E.; Del Monte, E.; De
   Martino, D.; Donnarumma, I.; Doroshenko, V.; Evangelista, Y.; Ferreira,
   I.; Gallo, E.; Grosso, N.; Kaaret, P.; Kuulkers, E.; Laranaga, J.;
   Latronico, L.; Lumb, D. H.; Macian, J.; Malzac, J.; Marin, F.; Massaro,
   E.; Minuti, M.; Mundell, C.; Ness, J. U.; Oosterbroek, T.; Paltani, S.;
   Pareschi, G.; Perna, R.; Petrucci, P. -O.; Pinazo, H. B.; Pinchera,
   M.; Rodriguez, J. P.; Roncadelli, M.; Santovincenzo, A.; Sazonov,
   S.; Sgro, C.; Spiga, D.; Svoboda, J.; Theobald, C.; Theodorou, T.;
   Turolla, R.; Wilhelmi de Ona, E.; Winter, B.; Akbar, A. M.; Allan,
   H.; Aloisio, R.; Altamirano, D.; Amati, L.; Amato, E.; Angelakis,
   E.; Arezu, J.; Atteia, J. -L.; Axelsson, M.; Bachetti, M.; Ballo, L.;
   Balman, S.; Bandiera, R.; Barcons, X.; Basso, S.; Baykal, A.; Becker,
   W.; Behar, E.; Beheshtipour, B.; Belmont, R.; Berger, E.; Bernardini,
   F.; Bianchi, S.; Bisnovatyi-Kogan, G.; Blasi, P.; Blay, P.; Bodaghee,
   A.; Boer, M.; Boettcher, M.; Bogdanov, S.; Bombaci, I.; Bonino, R.;
   Braga, J.; Brandt, W.; Brez, A.; Bucciantini, N.; Burderi, L.; Caiazzo,
   I.; Campana, R.; Campana, S.; Capitanio, F.; Cappi, M.; Cardillo,
   M.; Casella, P.; Catmabacak, O.; Cenko, B.; Cerda-Duran, P.; Cerruti,
   C.; Chaty, S.; Chauvin, M.; Chen, Y.; Chenevez, J.; Chernyakova, M.;
   Cheung, C. C. Teddy; Christodoulou, D.; Connell, P.; Corbet, R.; Coti
   Zelati, F.; Covino, S.; Cui, W.; Cusumano, G.; D'Ai, A.; D'Ammando,
   F.; Dadina, M.; Dai, Z.; De Rosa, A.; de Ruvo, L.; Degenaar, N.;
   Del Santo, M.; Del Zanna, L.; Dewangan, G.; Di Cosimo, S.; Di Lalla,
   N.; Di Persio, G.; Di Salvo, T.; Dias, T.; Done, C.; Dovciak, M.;
   Doyle, G.; Ducci, L.; Elsner, R.; Enoto, T.; Escada, J.; Esposito,
   P.; Eyles, C.; Fabiani, S.; Falanga, M.; Falocco, S.; Fan, Y.; Fender,
   R.; Feroci, M.; Ferrigno, C.; Forman, W.; Foschini, L.; Fragile, C.;
   Fuerst, F.; Fujita, Y.; Gasent-Blesa, J. L.; Gelfand, J.; Gendre, B.;
   Ghirlanda, G.; Ghisellini, G.; Giroletti, M.; Goetz, D.; Gogus, E.;
   Gomez, J. -L.; Gonzalez, D.; Gonzalez-Riestra, R.; Gotthelf, E.; Gou,
   L.; Grandi, P.; Grinberg, V.; Grise, F.; Guidorzi, C.; Gurlebeck, N.;
   Guver, T.; Haggard, D.; Hardcastle, M.; Hartmann, D.; Haswell, C.;
   Heger, A.; Hernanz, M.; Heyl, J.; Ho, L.; Hoormann, J.; Horak, J.;
   Huovelin, J.; Huppenkothen, D.; Iaria, R.; Inam Sitki, C.; Ingram,
   A.; Israel, G.; Izzo, L.; Burgess, M.; Jackson, M.; Ji, L.; Jiang, J.;
   Johannsen, T.; Jones, C.; Jorstad, S.; Kajava, J. J. E.; Kalamkar, M.;
   Kalemci, E.; Kallman, T.; Kamble, A.; Kislat, F.; Kiss, M.; Klochkov,
   D.; Koerding, E.; Kolehmainen, M.; Koljonen, K.; Komossa, S.; Kong,
   A.; Korpela, S.; Kowalinski, M.; Krawczynski, H.; Kreykenbohm, I.;
   Kuss, M.; Lai, D.; Lan, M.; Larsson, J.; Laycock, S.; Lazzati, D.;
   Leahy, D.; Li, H.; Li, J.; Li, L. -X.; Li, T.; Li, Z.; Linares, M.;
   Lister, M.; Liu, H.; Lodato, G.; Lohfink, A.; Longo, F.; Luna, G.;
   Lutovinov, A.; Mahmoodifar, S.; Maia, J.; Mainieri, V.; Maitra, C.;
   Maitra, D.; Majczyna, A.; Maldera, S.; Malyshev, D.; Manfreda, A.;
   Manousakis, A.; Manuel, R.; Margutti, R.; Marinucci, A.; Markoff, S.;
   Marscher, A.; Marshall, H.; Massaro, F.; McLaughlin, M.; Medina-Tanco,
   G.; Mehdipour, M.; Middleton, M.; Mignani, R.; Mimica, P.; Mineo, T.;
   Mingo, B.; Miniutti, G.; Mirac, S. M.; Morlino, G.; Motlagh, A. V.;
   Motta, S.; Mushtukov, A.; Nagataki, S.; Nardini, F.; Nattila, J.;
   Navarro, G. J.; Negri, B.; Negro, Matteo; Nenonen, S.; Neustroev,
   V.; Nicastro, F.; Norton, A.; Nucita, A.; O'Brien, P.; O'Dell, S.
2016SPIE.9905E..15S    Altcode:
  XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to
  X-ray Astronomy. At the time of writing XIPE is in a competitive phase
  A as fourth medium size mission of ESA (M4). It promises to reopen
  the polarimetry window in high energy Astrophysics after more than 4
  decades thanks to a detector that efficiently exploits the photoelectric
  effect and to X-ray optics with large effective area. XIPE uniqueness is
  time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough
  in high energy astrophysics and fundamental physics. Indeed the payload
  consists of three Gas Pixel Detectors at the focus of three X-ray
  optics with a total effective area larger than one XMM mirror but with
  a low weight. The payload is compatible with the fairing of the Vega
  launcher. XIPE is designed as an observatory for X-ray astronomers with
  75 % of the time dedicated to a Guest Observer competitive program and
  it is organized as a consortium across Europe with main contributions
  from Italy, Germany, Spain, United Kingdom, Poland, Sweden.

---------------------------------------------------------
Title: PANGU: a wide field gamma-ray imager and polarimeter
Authors: Wu, X.; Walter, R.; Su, M.; Ambrosi, G.; Azzarello, P.;
   Böttcher, M.; Chang, J.; Chernyakova, M.; Fan, Y.; Farnier, C.;
   Gargano, F.; Grenier, I.; Hajdas, W.; Mazziotta, M. N.; Pearce, M.;
   Pohl, M.; Zdziarski, A.
2016SPIE.9905E..6EW    Altcode:
  PANGU (the PAir-productioN Gamma-ray Unit) is a gamma-ray telescope
  with a wide field of view optimized for spectro-imaging, timing and
  polarization studies. It will map the gamma-ray sky from 10 MeV to a few
  GeV with unprecedented spatial resolution. This window on the Universe
  is unique to detect photons produced directly by relativistic particles,
  via the decay of neutral pions, or the annihilation or decay light from
  anti-matter and the putative light dark matter candidates. A wealth
  of questions can be probed among the most important themes of modern
  physics and astrophysics. The PANGU instrument is a pair-conversion
  gamma-ray telescope based on an innovative design of a silicon strip
  tracker. It is light, compact and accurate. It consists of 100 layers
  of silicon micro-strip detector of 80 x 80 cm<SUP>2</SUP> in area,
  stacked to height of about 90 cm, and covered by an anticoincidence
  detector. PANGU relies on multiple scattering effects for energy
  measurement, reaching an energy resolution between 30-50% for 10 MeV -
  1 GeV. The novel tracker will allow the first polarization measurement
  and provide the best angular resolution ever obtained in the soft
  gamma ray and GeV band.

---------------------------------------------------------
Title: Constraining coronal magnetic field models using coronal
    polarimetry
Authors: Dalmasse, Kévin; Nychka, D. W.; Gibson, S. E.; Flyer, N.;
   Fan, Y.
2016shin.confE..42D    Altcode:
  Knowing the 3D coronal magnetic field prior to the trigger of a
  coronal mass ejection (CME) is one of the key features for predicting
  their geomagnetic effect. Since the magnetic field is essentially
  measured at the photosphere, one must rely on models to obtain the
  3D magnetic field in the corona. Various coronal observables can then
  be used to constrain the parameters, and hence the magnetic field, of
  these models. One type of observable that is receiving an increasing
  attention is coronal polarization of infrared lines such as the Fe
  XIII 10747 A and 10798 A lines observed by the Coronal Multichannel
  Polarimeter (CoMP), which are sensitive to the coronal magnetic
  field. By combining forward modeling with a novel optimization method
  applied to a synthetic test bed of a coronal magnetic flux rope, we
  show that the polarimetric signal of coronal infrared lines contains
  enough information to constrain the parameters, and hence the magnetic
  structure, of coronal magnetic field models. We discuss future plans
  for application of our method to solar observations.

---------------------------------------------------------
Title: Localization and Broadband Follow-up of the Gravitational-wave
    Transient GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma,
   I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo
   Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong,
   S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart,
   D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.;
   Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott,
   T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.;
   Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.;
   Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander,
   F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.;
   D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich,
   J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.;
   Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher,
   B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.;
   Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen,
   D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James,
   D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.;
   Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin,
   N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.;
   di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot,
   Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.;
   Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech,
   R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.;
   Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration
2016ApJ...826L..13A    Altcode: 2016arXiv160208492A
  A gravitational-wave (GW) transient was identified in data recorded
  by the Advanced Laser Interferometer Gravitational-wave Observatory
  (LIGO) detectors on 2015 September 14. The event, initially designated
  G184098 and later given the name GW150914, is described in detail
  elsewhere. By prior arrangement, preliminary estimates of the time,
  significance, and sky location of the event were shared with 63 teams of
  observers covering radio, optical, near-infrared, X-ray, and gamma-ray
  wavelengths with ground- and space-based facilities. In this Letter we
  describe the low-latency analysis of the GW data and present the sky
  localization of the first observed compact binary merger. We summarize
  the follow-up observations reported by 25 teams via private Gamma-ray
  Coordinates Network circulars, giving an overview of the participating
  facilities, the GW sky localization coverage, the timeline, and depth
  of the observations. As this event turned out to be a binary black hole
  merger, there is little expectation of a detectable electromagnetic
  (EM) signature. Nevertheless, this first broadband campaign to search
  for a counterpart of an Advanced LIGO source represents a milestone and
  highlights the broad capabilities of the transient astronomy community
  and the observing strategies that have been developed to pursue neutron
  star binary merger events. Detailed investigations of the EM data and
  results of the EM follow-up campaign are being disseminated in papers
  by the individual teams.

---------------------------------------------------------
Title: Transient Classification Report for 2016-02-19
Authors: Zhang, J.; Fan, Y.; Wang, X.
2016TNSCR.136....1Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM):
    Synthetic Test Beds and Multiwavelength Forward Modeling
Authors: Gibson, S. E.; Dalmasse, K.; Fan, Y.; Fineschi, S.; MacKay,
   D.; Rempel, M.; White, S. M.
2015AGUFMSH54B..04G    Altcode:
  Understanding the physical state of the solar corona is key to
  deciphering the origins of space weather as well as to realistically
  representing the environment to be navigated by missions such as
  Solar Orbiter and Solar Probe Plus. However, inverting solar coronal
  observations to reconstruct this physical state -- and in particular
  the three-dimensional coronal magnetic field - is complicated by
  limited lines of sight and by projection effects. On the other hand,
  the sensitivity of multiwavelength observations to different physical
  mechanisms implies a potential for simultaneous probing of different
  parts of the coronal plasma. In order to study this complementarity, and
  to ultimately establish an optimal set of observations for constraining
  the three-dimensional coronal magnetic field, we are developing a suite
  of representative simulations to act as diagnostic test beds. We will
  present three such test beds: a coronal active region, a quiescent
  prominence, and a global corona. Each fully define the physical state
  of density, temperature, and vector magnetic field in three dimensions
  throughout the simulation domain. From these test beds, and using the
  FORWARD SolarSoft IDL codes, we will create a broad range of synthetic
  data. Radio observables will include intensity and circular polarization
  (including gyroresonance effects) and Faraday rotation for a range of
  frequencies. Infrared and visible forbidden line diagnostics of Zeeman
  and saturated Hanle effects will yield full Stokes vector (I, Q, U,
  V) synthetic data, and UV permitted line Hanle diagnostics will yield
  intensity and linear polarization. In addition, we will synthesize
  UV and SXR imager data, UV/EUV spectrometric data, and white light
  brightness and polarized brightness. All of these synthetic data,
  along with the "ground truth" physical state of the simulations from
  which they are derived, will be made available to the community for
  the purpose of testing coronal inversion techniques.

---------------------------------------------------------
Title: On the Observation and Simulation of Solar Coronal Twin Jets
Authors: Liu, J.; Fang, F.; Wang, Y.; Mcintosh, S. W.; Fan, Y.;
   Zhang, Q.
2015AGUFMSH31B2405L    Altcode:
  We present the first observation, analysis and modeling on solar coronal
  twin jets, which occurred after a preceding jet. Detailed analysis
  on the kinetics of the preceding jet reveals its blowout-jet nature,
  which resembles the study by Liu et al. 2014. However the erupting
  process and kinetics of the twin jets appear to be different from
  the preceding one. To address the triggering mechanism of the twins,
  we continue the 3D MHD numerical simulation work in Fang et al. 2014
  after the eruption of a blowout jet. Numerical simulation shows that
  the resulting sigmoidal magnetic fields after the blowout jet keep
  reconnecting with the ambient fields, producing the observed twin
  jets. Combining our observation and simulation, we suggest that with
  the continuous energy transport from the subsurface convection zone into
  the corona, solar coronal twin jets could be generated by reconnection
  between a sigmoidal magnetic structure and the open ambient fields.

---------------------------------------------------------
Title: Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM):
    Simulating Flux Ropes with the Flux Rope Insertion Method
Authors: Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.;
   Fan, Y.
2015AGUFMSH51B2444D    Altcode:
  Knowledge of the 3D magnetic filed structure at the time of major solar
  eruptions is vital or understanding of the space weather effects of
  these eruptions. Multiple data-constrained techniques that reconstruct
  the 3D coronal field based on photospheric magnetograms have been
  used to achieve this goal. In particular, we have used the flux rope
  insertion method to obtain the coronal magnetic field of multiple
  regions containing flux ropes or sheared arcades based on line-of-sight
  magnetograms and X-ray and EUV observations of coronal loops. For the
  purpose of developing statistical measures of the goodness of fit of
  these models to the observations, here we present our modeling of flux
  ropes based on synthetic magnetograms obtained from Fan &amp; Gibson
  emerging flux rope simulation. The goal is to reproduce the flux rope
  structure from a given time step of the MHD simulations based only
  on the photospheric magnetogram and synthetic forward modeled coronal
  emission obtained from the same step of the MHD simulation. For this
  purpose we create a large grid of models with the flux rope insertion
  method with different combinations of axial and poloidal flux, which
  give us different morphology of the flux rope. Then we compare the
  synthetic coronal emission with the shape of the current distribution
  and field lines from the models to come up with a best fit. This fit
  is then tested using the statistical methods developed by our team.

---------------------------------------------------------
Title: Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM):
    Statistical Method for Diagnosing the Coronal Magnetic Field
Authors: Dalmasse, K.; Nychka, D. W.; Gibson, S. E.; Fan, Y.
2015AGUFMSH21B2395D    Altcode:
  Solar coronal mass ejections (CMEs) and solar flares are the
  main drivers of space weather. Their potential impact on Earth is
  determined by the morphology and orientation of the magnetic structure
  associated with these events and its evolution as it propagates into the
  interplanetary magnetic field. Knowing the 3D coronal magnetic field
  prior to the trigger of a CME is therefore one of the key features
  for predicting their geomagnetic effect. Since the magnetic field is
  essentially measured at the photosphere, one must rely on reconstruction
  models to obtain the 3D magnetic field in the corona. Hence, obtaining
  an accurate model of the real 3D coronal magnetic field is one of
  the cornerstones for precise Space Weather Forecasting. In this work,
  we propose a new method for data-constrained reconstruction of the 3D
  coronal magnetic field. Model-data fitting is achieved by optimizing
  a user-specified metric, M, quantifying the difference between a
  dataset (including e.g. polarization, extreme-ultraviolet emission,
  X-ray emission) and its synthetic analogue. The synthetic data is
  produced by forward calculations applied to a 3D magnetic model that
  depends upon a finite set of parameters. After introducing the method,
  we present its validation on a synthetic test bed consisting of a
  coronal magnetic flux rope assumed to depend on four parameters,
  i.e. height in the corona, latitude, longitude, and tilt angle. A
  specific value of each parameter is used to generate a ground truth
  and the corresponding synthetic data. We show that, when M does not
  possess any degenerate minimum, our method performs well and the
  best-fit parameters provide a good approximation of the ground-truth
  parameters. We then show how using additional observations can help
  in removing any existing degeneracy. Finally, we discuss future plans
  for validation and application of our method to solar observations.

---------------------------------------------------------
Title: Early optical follow-up of the nearby active star DG CVn
    during its 2014 superflare
Authors: Caballero-García, M. D.; Šimon, V.; Jelínek, M.;
   Castro-Tirado, A. J.; Cwiek, A.; Claret, A.; Opiela, R.; Żarnecki,
   A. F.; Gorosabel, J.; Oates, S. R.; Cunniffe, R.; Jeong, S.; Hudec, R.;
   Sokolov, V. V.; Makarov, D. I.; Tello, J. C.; Lara-Gil, O.; Kubánek,
   P.; Guziy, S.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.
2015MNRAS.452.4195C    Altcode: 2015arXiv150703143C
  DG Canum Venaticorum (DG CVn) is a binary system in which one of the
  components is an M-type dwarf ultrafast rotator, only three of which are
  known in the solar neighbourhood. Observations of DG CVn by the Swift
  satellite and several ground-based observatories during its superflare
  event on 2014 allowed us to perform a complete hard X-ray-optical
  follow-up of a superflare from the red-dwarf star. The observations
  support the fact that the superflare can be explained by the presence of
  (a) large active region(s) on the surface of the star. Such activity is
  similar to the most extreme solar flaring events. This points towards
  a plausible extrapolation between the behaviour from the most active
  red-dwarf stars and the processes occurring in the Sun.

---------------------------------------------------------
Title: AstroCloud, a Cyber-Infrastructure for Astronomy Research:
    Cloud Computing Environments
Authors: Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen,
   J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong,
   Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.
2015ASPC..495..487L    Altcode: 2015adass..24..487L
  AstroCloud is a cyber-Infrastructure for Astronomy Research initiated
  by Chinese Virtual Observatory (China-VO) under funding support from
  NDRC (National Development and Reform commission) and CAS (Chinese
  Academy of Sciences). Based on CloudStack, an open source software,
  we set up the cloud computing environment for AstroCloud Project. It
  consists of five distributed nodes across the mainland of China. Users
  can use and analysis data in this cloud computing environment. Based
  on GlusterFS, we built a scalable cloud storage system. Each user has
  a private space, which can be shared among different virtual machines
  and desktop systems. With this environments, astronomer can access to
  astronomical data collected by different telescopes and data centers
  easily, and data producers can archive their datasets safely.

---------------------------------------------------------
Title: AstroCloud, a Cyber-Infrastructure for Astronomy Research:
    Data Access and Interoperability
Authors: Fan, D.; He, B.; Xiao, J.; Li, S.; Li, C.; Cui, C.; Yu,
   C.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Mi, L.; Wan, W.;
   Wang, J.
2015ASPC..495..477F    Altcode: 2014arXiv1411.5072F; 2015adass..24..477F
  Data access and interoperability module connects the observation
  proposals, data, virtual machines and software. According to the
  unique identifier of PI (principal investigator), an email address
  or an internal ID, data can be collected by PI's proposals, or by the
  search interfaces, e.g. conesearch. Files associated with the searched
  results could be easily transported to cloud storages, including
  the storage with virtual machines, or several commercial platforms
  like Dropbox. Benefitted from the standards of IVOA (International
  Observatories Alliance), VOTable formatted searching result could be
  sent to kinds of VO software. Latter endeavor will try to integrate
  more data and connect archives and some other astronomical resources.

---------------------------------------------------------
Title: AstroCloud, a Cyber-Infrastructure for Astronomy Research:
    Overview
Authors: Cui, C.; Yu, C.; Xiao, J.; He, B.; Li, C.; Fan, D.; Wang,
   C.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Cao, Z.; Wang, J.; Yin, S.;
   Fan, Y.; Wang, J.
2015ASPC..495..469C    Altcode: 2015adass..24..469C
  AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by
  Chinese Virtual Observatory (China-VO) under funding support from NDRC
  (National Development and Reform commission) and CAS (Chinese Academy
  of Sciences). Tasks such as proposal submission, proposal peer-review,
  data archiving, data quality control, data release and open access,
  Cloud based data processing and analyzing, will be all supported on
  the platform. It will act as a full lifecycle management system for
  astronomical data and telescopes. Achievements from international
  Virtual Observatories and Cloud Computing are adopted heavily. In
  this paper, backgrounds of the project, key features of the system,
  and latest progresses are introduced.

---------------------------------------------------------
Title: AstroCloud, a Cyber-Infrastructure for Astronomy Research:
    Architecture
Authors: Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong,
   Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.;
   Wang, J.; Zhang, H.
2015ASPC..495..473X    Altcode: 2014arXiv1411.5070X; 2015adass..24..473X
  AstroCloud is a cyber-Infrastructure for Astronomy Research initiated
  by Chinese Virtual Observatory (China-VO) under funding support from
  NDRC (National Development and Reform commission) and CAS (Chinese
  Academy of Sciences). The ultimate goal of this project is to provide a
  comprehensive end-to-end astronomy research environment where several
  independent systems seamlessly collaborate to support the full lifecycle
  of the modern observational astronomy based on big data, from proposal
  submission, to data archiving, data release, and to in-situ data
  analysis and processing. In this paper, the architecture and key
  designs of the AstroCloud platform are introduced, including data
  access middleware, access control and security framework, extendible
  proposal workflow, and system integration mechanism.

---------------------------------------------------------
Title: PANGU: A High Resolution Gamma-Ray Space Telescope
Authors: Wu, X.; Chang, J.; Walter, R.; Su, M.; Ambrosi, G.; Böttcher,
   M.; Chernyakova, M.; Fan, Y.; Farnier, C.; Gargano, F.; Grenier, I.;
   Hajdas, W.; Mazziotta, M. N.; Morselli, A.; Pearce, M.; Pohl, M.;
   von Ballmoos, P.; Zdziarski, A.; Pangu Collaboration
2015ICRC...34..964W    Altcode: 2015PoS...236..964W
  No abstract at ADS

---------------------------------------------------------
Title: Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent
    Solar-like Convection
Authors: Weber, M. A.; Fan, Y.
2015SoPh..290.1295W    Altcode: 2015arXiv150308034W; 2015SoPh..tmp...33W
  We study the combined effects of convection and radiative
  diffusion on the evolution of thin magnetic flux tubes in the solar
  interior. Radiative diffusion is the primary supplier of heat to
  convective motions in the lower convection zone, and it results in
  a heat input per unit volume of magnetic flux tubes that has been
  ignored by many previous thin flux tube studies. We use a thin flux tube
  model subject to convection taken from a rotating spherical shell of
  turbulent, solar-like convection as described by Weber, Fan, and Miesch
  (Astrophys. J.741, 11, 2011; Solar Phys.287, 239, 2013), now taking
  into account the influence of radiative heating on 10<SUP>22</SUP> Mx
  flux tubes, corresponding to flux tubes of large active regions. Our
  simulations show that flux tubes of ≤ 60 kG that are subject to
  solar-like convective flows do not anchor in the overshoot region,
  but rather drift upward because of the increased buoyancy of the flux
  tube earlier in its evolution, which results from including radiative
  diffusion. Flux tubes of magnetic field strengths ranging from 15 kG
  to 100 kG have rise times of ≤ 0.2 years and exhibit a Joy's Law
  tilt-angle trend. Our results suggest that radiative heating is an
  effective mechanism by which flux tubes can escape from the stably
  stratified overshoot region. Moreover, flux tubes do not necessarily
  need to be anchored in the overshoot region to produce emergence
  properties similar to those of active regions on the Sun.

---------------------------------------------------------
Title: PANGU (PAir-productioN Gamma-ray Unit): A High Resolution
    Gamma-ray Space Telescope
Authors: Wu, X.; Chang, J.; Walter, R.; Su, M.; Ambrosi, G.; Böttcher,
   M.; Chernyakova, M.; Fan, Y.; Farnier, C.; Gargano, F.; Grenier, I.;
   Hajdas, W.; Mazziotta, M. N.; Morselli, A.; Pearce, M.; Pohl, M.;
   von Ballmoos, P.; Zdziarski, A.; Pangu Collaboration
2015mbhe.confE..69W    Altcode: 2015PoS...246E..69W
  No abstract at ADS

---------------------------------------------------------
Title: GRB 150423A: GMG observation limit.
Authors: Mao, J.; Fan, Y.; Bai, J. -M.
2015GCN.17803....1M    Altcode: 2015GCN..17803...1M
  No abstract at ADS

---------------------------------------------------------
Title: Coronal Eruptions in Simulations of Magnetic Flux Emergence
    from the Convection Zone
Authors: Fang, F.; Fan, Y.; Mcintosh, S. W.
2014AGUFMSH44A..06F    Altcode:
  Solar magnetic fields permeate various layers of the Sun from the
  interior to the corona and interact with the local plasma. The physical
  properties of the plasma vary drastically from the convection zone
  to the corona, with a density drop of 14 orders of magnitude. The
  interaction between the plasma and magnetic fields strongly distort
  the field structure during the emergence. The emerged fields dominate
  the dynamics in the corona and may drive magnetic eruptions, with
  significant release of magnetic energy into thermal and kinetic energy
  of the plasma. Here we present numerical simulations of flux emergence
  into pre-existing fields in a coupled convection-zone-corona system,
  and study the resulting eruption of the magnetic fields in the corona,
  e.g. blowout jets. Analysis of the simulation results illustrates
  how the mass and energy is transferred from the interior into outer
  atmosphere during the eruptions. Comparison with modern observations
  provides us a physical understanding of the observed coronal eruptions
  in flux emerging regions.

---------------------------------------------------------
Title: The dark nature of GRB 130528A and its host galaxy
Authors: Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters,
   J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.;
   Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin,
   A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.;
   Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.
2014A&A...569A..93J    Altcode: 2014arXiv1404.0939J
  <BR /> Aims: We study the dark nature of GRB 130528A through
  multi-wavelength observations and conclude that the main reason
  for the optical darkness is local extinction inside of the host
  galaxy. <BR /> Methods: Automatic observations were performed at the
  Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET
  robotic telescope. We also triggered target of opportunity (ToO)
  observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau
  de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC
  + OSIRIS). The host galaxy photometric observations in optical
  to near-infrared (nIR) wavelengths were achieved through large
  ground-based aperture telescopes, such as 10.4 m Gran Telescopio
  Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi
  Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope
  (LT). Based on these observations, spectral energy distributions (SED)
  for the host galaxy and afterglow were constructed. <BR /> Results:
  Thanks to millimetre (mm) observations at PdBI, we confirm the presence
  of a mm source within the XRT error circle that faded over the course of
  our observations and identify the host galaxy. However, we do not find
  any credible optical source within early observations with BOOTES-4/MET
  and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by
  GTC showed a single faint emission line that likely corresponds to [OII]
  3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate
  (M<SUB>⊙</SUB>/yr) &gt; 6.18 M<SUB>⊙</SUB>/yr without correcting
  for dust extinction. The probable line-of-sight extinction towards GRB
  130528A is revealed through analysis of the afterglow SED, resulting
  in a value of A^GRB<SUB>V</SUB>≥ 0.9 at the rest frame; this is
  comparable to extinction levels found among other dark GRBs. The SED
  of the host galaxy is explained well (χ<SUP>2</SUP>/d.o.f. = 0.564)
  by a luminous (M<SUB>B</SUB> = -21.16), low-extinction (A<SUB>V</SUB> =
  0, rest frame), and aged (2.6 Gyr) stellar population. We can explain
  this apparent contradiction in global and line-of-sight extinction if
  the GRB birth place happened to lie in a local dense environment. In
  light of having relatively small specific star formation rate ~5.3
  M<SUB>⊙</SUB>/yr (L/L<SUP>⋆</SUP>)<SUP>-1</SUP>, this also could
  explain the age of the old stellar population of host galaxy.

---------------------------------------------------------
Title: Circular polarization in the optical afterglow of GRB 121024A
Authors: Wiersema, K.; Covino, S.; Toma, K.; van der Horst, A. J.;
   Varela, K.; Min, M.; Greiner, J.; Starling, R. L. C.; Tanvir,
   N. R.; Wijers, R. A. M. J.; Campana, S.; Curran, P. A.; Fan, Y.;
   Fynbo, J. P. U.; Gorosabel, J.; Gomboc, A.; Götz, D.; Hjorth, J.;
   Jin, Z. P.; Kobayashi, S.; Kouveliotou, C.; Mundell, C.; O'Brien,
   P. T.; Pian, E.; Rowlinson, A.; Russell, D. M.; Salvaterra, R.; di
   Serego Alighieri, S.; Tagliaferri, G.; Vergani, S. D.; Elliott, J.;
   Fariña, C.; Hartoog, O. E.; Karjalainen, R.; Klose, S.; Knust, F.;
   Levan, A. J.; Schady, P.; Sudilovsky, V.; Willingale, R.
2014Natur.509..201W    Altcode: 2014arXiv1410.0489W
  Gamma-ray bursts (GRBs) are most probably powered by collimated
  relativistic outflows (jets) from accreting black holes at cosmological
  distances. Bright afterglows are produced when the outflow collides
  with the ambient medium. Afterglow polarization directly probes the
  magnetic properties of the jet when measured minutes after the burst,
  and it probes the geometric properties of the jet and the ambient medium
  when measured hours to days after the burst. High values of optical
  polarization detected minutes after the burst of GRB 120308A indicate
  the presence of large-scale ordered magnetic fields originating from the
  central engine (the power source of the GRB). Theoretical models predict
  low degrees of linear polarization and no circular polarization at late
  times, when the energy in the original ejecta is quickly transferred to
  the ambient medium and propagates farther into the medium as a blast
  wave. Here we report the detection of circularly polarized light in
  the afterglow of GRB 121024A, measured 0.15 days after the burst. We
  show that the circular polarization is intrinsic to the afterglow
  and unlikely to be produced by dust scattering or plasma propagation
  effects. A possible explanation is to invoke anisotropic (rather than
  the commonly assumed isotropic) electron pitch-angle distributions,
  and we suggest that new models are required to produce the complex
  microphysics of realistic shocks in relativistic jets.

---------------------------------------------------------
Title: GRB 141109B: BOOTES-4 and TERSKOL optical upper limit.
Authors: Sokolov, I. V.; Moskvitin, A.; Sokolov, V. V.; Guziy, S.;
   Castro-Tirado, A. J.; Tello, J. C.; Fan, Y.; Zhao, X.; Bai, J.; Wang,
   Ch.; Xin, Y.
2014GCN.17047....1S    Altcode: 2014GCN..17047...1S
  No abstract at ADS

---------------------------------------------------------
Title: GRB 140102A: BOOTES-4 early optical observations.
Authors: Guziy, S.; Gorosabel, J.; Castro-Tirado, A. J.; Cunniffe,
   R.; Jelinek, M.; Jeong, S.; Lara-Gil, O.; Sanchez-Ramirez, R.; Tello,
   J. C.; Kubanek, P.; Pandey, S. B.; Fan, Y.; Zhao, X.; Bai, J.; Wang,
   Ch.; Xin, Y.; Cui, Ch.
2014GCN.15685....1G    Altcode: 2014GCN..15685...1G
  No abstract at ADS

---------------------------------------------------------
Title: Coronal Cavity Survey: Morphological Clues to Eruptive
    Magnetic Topologies
Authors: Forland, B. C.; Gibson, S. E.; Dove, J. B.; Rachmeler, L. A.;
   Fan, Y.
2013SoPh..288..603F    Altcode:
  We present a survey on coronal prominence cavities conducted using 19
  months of data from the Atmospheric Imaging Assembly (AIA) instrument
  aboard the Solar Dynamics Observatory (SDO) satellite. Coronal
  cavities are elliptical regions of rarefied density lying above and
  around prominences. They can be long-lived (weeks to months) but are
  often observed to eventually erupt as part of a coronal mass ejection
  (CME). We determine morphological properties of the cavities both
  by qualitatively assessing their shape, and quantitatively fitting
  them with ellipses. We demonstrate consistency between these two
  approaches, and find that fitted ellipses are taller than they are wide
  for almost all cavities studied, in agreement with an earlier analysis
  of white-light cavities. We examine correlations between cavity shape,
  aspect ratio, and propensity for eruption. We find that cavities with
  a teardrop-shaped morphology are more likely to erupt, and we discuss
  the implications of this morphology for magnetic topologies associated
  with CME models. We provide the full details of the survey for broad
  scientific use as supplemental material.

---------------------------------------------------------
Title: Polarimetric Properties of Flux Ropes and Sheared Arcades in
    Coronal Prominence Cavities
Authors: Rachmeler, L. A.; Gibson, S. E.; Dove, J. B.; DeVore, C. R.;
   Fan, Y.
2013SoPh..288..617R    Altcode: 2013arXiv1304.7594R
  The coronal magnetic field is the primary driver of solar dynamic
  events. Linear and circular polarization signals of certain infrared
  coronal emission lines contain information about the magnetic field,
  and to access this information either a forward or an inversion method
  must be used. We study three coronal magnetic configurations that
  are applicable to polar-crown filament cavities by doing forward
  calculations to produce synthetic polarization data. We analyze
  these forward data to determine the distinguishing characteristics of
  each model. We conclude that it is possible to distinguish between
  cylindrical flux ropes, spheromak flux ropes, and sheared arcades
  using coronal polarization measurements. If one of these models is
  found to be consistent with observational measurements, it will mean
  positive identification of the magnetic morphology that surrounds
  certain quiescent filaments, which will lead to a better understanding
  of how they form and why they erupt.

---------------------------------------------------------
Title: Comparing Simulations of Rising Flux Tubes Through the
Solar Convection Zone with Observations of Solar Active Regions:
    Constraining the Dynamo Field Strength
Authors: Weber, M. A.; Fan, Y.; Miesch, M. S.
2013SoPh..287..239W    Altcode: 2012arXiv1208.1292W; 2012SoPh..tmp..208W
  We study how active-region-scale flux tubes rise buoyantly from the
  base of the convection zone to near the solar surface by embedding
  a thin flux tube model in a rotating spherical shell of solar-like
  turbulent convection. These toroidal flux tubes that we simulate range
  in magnetic field strength from 15 kG to 100 kG at initial latitudes
  of 1<SUP>∘</SUP> to 40<SUP>∘</SUP> in both hemispheres. This
  article expands upon Weber, Fan, and Miesch (Astrophys. J.741, 11,
  2011) (Article 1) with the inclusion of tubes with magnetic flux
  of 10<SUP>20</SUP> Mx and 10<SUP>21</SUP> Mx, and more simulations
  of the previously investigated case of 10<SUP>22</SUP> Mx, sampling
  more convective flows than the previous article, greatly improving
  statistics. Observed properties of active regions are compared to
  properties of the simulated emerging flux tubes, including: the tilt
  of active regions in accordance with Joy's Law as in Article 1, and
  in addition the scatter of tilt angles about the Joy's Law trend, the
  most commonly occurring tilt angle, the rotation rate of the emerging
  loops with respect to the surrounding plasma, and the nature of the
  magnetic field at the flux tube apex. We discuss how these diagnostic
  properties constrain the initial field strength of the active-region
  flux tubes at the bottom of the solar convection zone, and suggest
  that flux tubes of initial magnetic field strengths of ≥ 40 kG are
  good candidates for the progenitors of large (10<SUP>21</SUP> Mx to
  10<SUP>22</SUP> Mx) solar active regions, which agrees with the results
  from Article 1 for flux tubes of 10<SUP>22</SUP> Mx. With the addition
  of more magnetic flux values and more simulations, we find that for all
  magnetic field strengths, the emerging tubes show a positive Joy's Law
  trend, and that this trend does not show a statistically significant
  dependence on the magnetic flux.

---------------------------------------------------------
Title: The Active Longitude Phenomenon and its Possible Convective
    Origin
Authors: Weber, Maria A.; Fan, Y.; Miesch, M. S.
2013SPD....4420403W    Altcode:
  Using a thin flux tube model in a rotating spherical shell of
  turbulent, solar-like convection, we find that the distribution of
  emerging flux tubes in our simulation is inhomogeneous in longitude,
  with properties similar to those of active longitudes on the Sun and
  other solar-like stars. The large-scale pattern of flux emergence our
  simulations produce exhibit preferred longitudinal modes of low order,
  drift with respect to a fixed reference system, and show alignment
  at low latitudes within 15 degrees on either side of the equator. We
  suggest that these active-longitude-like emergence patterns are the
  result of columnar, rotationally aligned giant cells present in our
  convection simulation at low latitudes. If giant convecting cells exist
  in the bulk of the solar convection zone, this phenomenon, along with
  differential rotation, could in part provide an explanation for the
  existence and behavior of active longitudes.

---------------------------------------------------------
Title: Formation of Magnetic Structures during Emergence of Untwisted
    Flux Rope
Authors: Fang, Fang; Fan, Y.; Rempel, M.
2013SPD....44..102F    Altcode:
  Ideal MHD simulations have shown that the twist of the magnetic flux
  rope before emergence plays an important role in the coherency of the
  emerged magnetic structures. Recently, with more realistic simulations
  with turbulent convection, it is found that magnetic structures can
  form at the photosphere from emergence of uniform magnetic fields. The
  discrepancy therefore leads to a controversial question that whether the
  twist exists before the emergence or is formed afterwards by surface
  flows. In light of this, we carry out simulations on the emergence of
  untwisted flux rope from the convection zone into the corona, using
  more realistic treatment of the thermodynamic processes in the solar
  interior and the outer atmosphere. In our coupled simulations, we
  study the interaction between the convective motion and the magnetic
  fields and also the formation of coronal structures in comparison
  with observations.

---------------------------------------------------------
Title: GRBS Followed-up by the bootes network
Authors: Guziy, S.; Castro-Tirado, A.; Jelínek, M.; Gorosabel,
   J.; Kubánek, P.; Cunniffe, R.; Lara-Gil, O.; Rabaza-Castillo, O.;
   de Ugarte Postigo, A.; Sánchez-Ramírez, R.; Tello, J.; Pérez del
   Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J.; Mateo Sanguino,
   T. de J.; Hudec, R.; Vitek, S.; de la Morena Carretero, B.; Díaz
   Andreu, J.; Fernández-Muñoz, R.; Pérez-Ramírez, D.; Yock, P.;
   Allen, W.; Bond, I.; Kheyfets, I.; Christie, G.; Sabau-Graziati, L.;
   Cui, C.; Fan, Y.; Park, I. H.
2013EAS....61..251G    Altcode:
  The Burst Observer and Optical Transient Exploring System (BOOTES),
  is a global robotic observatory network, which started in 1998 with
  Spanish leadership devoted to study optical emissions from gamma ray
  bursts (GRBs) that occur in the Universe. We present shot history and
  current status of BOOTES network. The Network philosophy, science and
  some details of 117 GRBs followed-up are discussed.

---------------------------------------------------------
Title: A Theory on the Possible Convective Origins of Active
    Longitudes on Solar-like Stars
Authors: Weber, Maria A.; Fan, Y.; Miesch, M. S.
2013AAS...22230403W    Altcode:
  Using a thin flux tube model in a rotating spherical shell of turbulent,
  solar- like convective flows, we find that the distribution of
  emerging flux tubes in our simulation is inhomogeneous in longitude,
  with properties similar to those of active longitudes on the Sun and
  other solar-like stars. The large-scale pattern of flux emergence our
  simulations produce exhibits preferred longitudinal modes of low order,
  drift with respect to a fixed reference system, and alignment across the
  Equator at low latitudes between ±15 degrees. We suggest that these
  active-longitude- like emergence patterns are the result of columnar,
  rotationally aligned giant cells present in our convection simulation
  at low latitudes. If giant convecting cells exist in the bulk of
  the solar convection zone, this phenomenon, along with differential
  rotation, could in part provide an explanation for the behavior of
  active longitudes.

---------------------------------------------------------
Title: Approach to Integrate Global-Sun Models of Magnetic Flux
    Emergence and Transport for Space Weather Studies
Authors: Mansour, Nagi Nicolas; Wray, A.; Mehrotra, P.; Henney, C.;
   arge, N.; Manchester, C.; Godinez, H.; Koller, J.; Kosovichev, A.;
   Scherrer, P.; Zhao, J.; Stein, R.; Duvall, T.; Fan, Y.
2013enss.confE.125M    Altcode:
  The Sun lies at the center of space weather and is the source of its
  variability. The primary input to coronal and solar wind models is
  the activity of the magnetic field in the solar photosphere. Recent
  advancements in solar observations and numerical simulations provide
  a basis for developing physics-based models for the dynamics of
  the magnetic field from the deep convection zone of the Sun to the
  corona with the goal of providing robust near real-time boundary
  conditions at the base of space weather forecast models. The goal is
  to develop new strategic capabilities that enable characterization
  and prediction of the magnetic field structure and flow dynamics of
  the Sun by assimilating data from helioseismology and magnetic field
  observations into physics-based realistic magnetohydrodynamics (MHD)
  simulations. The integration of first-principle modeling of solar
  magnetism and flow dynamics with real-time observational data via
  advanced data assimilation methods is a new, transformative step in
  space weather research and prediction. This approach will substantially
  enhance an existing model of magnetic flux distribution and transport
  developed by the Air Force Research Lab. The development plan is to use
  the Space Weather Modeling Framework (SWMF) to develop Coupled Models
  for Emerging flux Simulations (CMES) that couples three existing models:
  (1) an MHD formulation with the anelastic approximation to simulate
  the deep convection zone (FSAM code), (2) an MHD formulation with
  full compressible Navier-Stokes equations and a detailed description
  of radiative transfer and thermodynamics to simulate near-surface
  convection and the photosphere (Stagger code), and (3) an MHD
  formulation with full, compressible Navier-Stokes equations and an
  approximate description of radiative transfer and heating to simulate
  the corona (Module in BATS-R-US). CMES will enable simulations of the
  emergence of magnetic structures from the deep convection zone to the
  corona. Finally, a plan will be summarized on the development of a
  Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived
  data and vector magnetic maps are assimilated into CMES that couples
  the dynamics of magnetic flux from the deep interior to the corona.

---------------------------------------------------------
Title: GRB 130313A: simultaneous and follow-up optical observations
    at BOOTES-3  and BOOTES-4.
Authors: Tello, J. C.; Guziy, S.; Lara-Gil, O.; Cunniffe, R.; Jelinek,
   M.; Gorosabel, J.; Kubanek, P.; Cr, I. A.; Fan, Y.; Zhao, X.; Bai, J.;
   Wang, C.; Xin, Y.; Cui, Ch.; Allen, W.; Yock, Ph.; Castro-Tirado, A. J.
2013GCN.14299....1T    Altcode: 2013GCN..14299...1T
  No abstract at ADS

---------------------------------------------------------
Title: Solar Active Longitudes and North/South Flux Emergence
    Asymmetries Resulting from Thin Flux Tube Simulations in a Solar-like
    Convective Envelope
Authors: Weber, M. A.; Fan, Y.; Miesch, M. S.
2012AGUFMSH41D2126W    Altcode:
  Solar observations show that the emergence of active features
  is distributed inhomogeneously in longitude according to sunspot
  activity, solar x-ray flares, and coronal streamers. In addition,
  an asymmetry exists between active region associated phenomena in the
  Northern and Southern hemispheres. Using a thin flux tube model in a
  rotating spherical shell of solar-like convective flows, we find that
  these simulated flux tubes tend to emerge asymmetrically in number
  in the Northern and Southern hemispheres, and emerge at preferred
  longitudes. The active longitudes our simulations produce often span
  across the equator between low latitudes of 15° to -15°, and persist
  and propagate prograde for multiple solar rotation periods. We suggest
  that the active longitudes in our simulation are the result of columnar,
  rotationally aligned giant cells present in the convection simulation at
  low latitudes. If giant convecting cells exist in the bulk of the solar
  convection zone, this phenomenon could in part provide an explanation
  for the North/South asymmetry of active region emergence as well as
  active longitudes.

---------------------------------------------------------
Title: Search for Gravitational Waves Associated with Gamma-Ray
    Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R. X.;
   Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador
   Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos,
   I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz,
   J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.;
   Beker, M. G.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Berliner,
   J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.;
   Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu,
   R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi,
   V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer,
   J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo,
   J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani,
   F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.;
   Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski,
   S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho,
   H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton,
   J. H.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colacino, C. N.; Colas,
   J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt,
   T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin,
   M.; Coulon, J. -P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne,
   D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin,
   S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.;
   Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga,
   T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo,
   W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio,
   M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.;
   Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.;
   Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler,
   A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans,
   M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.;
   Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante,
   I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio,
   R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.;
   Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.;
   Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M. -K.; Fulda,
   P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia,
   J.; Garufi, F.; Gáspár, M. E.; Gehrels, N.; Gemme, G.; Geng, R.;
   Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill,
   C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky,
   M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson,
   R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna,
   C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera,
   V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop,
   M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.;
   Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.;
   Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James,
   E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones,
   D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.;
   Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.;
   Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim,
   C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda,
   S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.;
   Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.;
   Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lastzka, N.;
   Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li,
   T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lough, J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.;
   Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.;
   Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.;
   Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.;
   McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller,
   J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori,
   T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.;
   Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton,
   G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.;
   Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti,
   G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.;
   Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.;
   Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.;
   Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton,
   G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto,
   J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein,
   L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski,
   S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer,
   A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.;
   Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.;
   Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor,
   R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli,
   A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier,
   E.; Tucker, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.;
   Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.;
   Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.;
   Villar, A. E.; Vinet, J. -Y.; Vitale, S.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.;
   Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner, A.;
   Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.;
   Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration; Briggs, M. S.;
   Connaughton, V.; Hurley, K. C.; Jenke, P. A.; von Kienlin, A.; Rau,
   A.; Zhang, X. -L.
2012ApJ...760...12A    Altcode: 2012arXiv1205.2216T; 2012arXiv1205.2216B
  We present the results of a search for gravitational waves associated
  with 154 gamma-ray bursts (GRBs) that were detected by satellite-based
  gamma-ray experiments in 2009-2010, during the sixth LIGO science run
  and the second and third Virgo science runs. We perform two distinct
  searches: a modeled search for coalescences of either two neutron stars
  or a neutron star and black hole, and a search for generic, unmodeled
  gravitational-wave bursts. We find no evidence for gravitational-wave
  counterparts, either with any individual GRB in this sample or with
  the population as a whole. For all GRBs we place lower bounds on
  the distance to the progenitor, under the optimistic assumption of a
  gravitational-wave emission energy of 10<SUP>-2</SUP> M <SUB>⊙</SUB> c
  <SUP>2</SUP> at 150 Hz, with a median limit of 17 Mpc. For short-hard
  GRBs we place exclusion distances on binary neutron star and
  neutron-star-black-hole progenitors, using astrophysically motivated
  priors on the source parameters, with median values of 16 Mpc and 28
  Mpc, respectively. These distance limits, while significantly larger
  than for a search that is not aided by GRB satellite observations,
  are not large enough to expect a coincidence with a GRB. However,
  projecting these exclusions to the sensitivities of Advanced LIGO and
  Virgo, which should begin operation in 2015, we find that the detection
  of gravitational waves associated with GRBs will become quite possible.

---------------------------------------------------------
Title: Thermal Signatures of Tether-cutting Reconnections in
Pre-eruption Coronal Flux Ropes: Hot Central Voids in Coronal Cavities
Authors: Fan, Y.
2012ApJ...758...60F    Altcode: 2012arXiv1205.1028F
  Using a three-dimensional MHD simulation, we model the quasi-static
  evolution and the onset of eruption of a coronal flux rope. The
  simulation begins with a twisted flux rope emerging at the lower
  boundary and pushing into a pre-existing coronal potential arcade
  field. At a chosen time the emergence is stopped with the lower
  boundary taken to be rigid. Then the coronal flux rope settles
  into a quasi-static rise phase during which an underlying, central
  sigmoid-shaped current layer forms along the so-called hyperbolic flux
  tube (HFT), a generalization of the X-line configuration. Reconnections
  in the dissipating current layer effectively add twisted flux to the
  flux rope and thus allow it to rise quasi-statically, even though
  the magnetic energy is decreasing as the system relaxes. We examine
  the thermal features produced by the current layer formation and the
  associated "tether-cutting" reconnections as a result of heating and
  field aligned thermal conduction. It is found that a central hot,
  low-density channel containing reconnected, twisted flux threading
  under the flux rope axis forms on top of the central current layer. When
  viewed in the line of sight roughly aligned with the hot channel (which
  is roughly along the neutral line), the central current layer appears as
  a high-density vertical column with upward extensions as a "U"-shaped
  dense shell enclosing a central hot, low-density void. Such thermal
  features have been observed within coronal prominence cavities. Our MHD
  simulation suggests that they are the signatures of the development
  of the HFT topology and the associated tether-cutting reconnections,
  and that the central void grows and rises with the reconnections,
  until the flux rope reaches the critical height for the onset of the
  torus instability and dynamic eruption ensues.

---------------------------------------------------------
Title: Erratum: Search for gravitational waves from binary black
    hole inspiral, merger, and ringdown [Phys. Rev. D 83, 122005 (2011)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.;
   Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson,
   M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard,
   M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.;
   Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.;
   Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia,
   C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.;
   Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.;
   Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill,
   S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.;
   Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas,
   J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward, D. M.;
   Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.;
   Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.;
   Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das,
   K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw,
   E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.;
   Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.;
   DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.;
   Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.;
   Dueck, J.; Dumas, J. -C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler,
   A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.;
   Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann,
   H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori,
   I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest,
   C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.;
   Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.;
   Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.;
   Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.;
   Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.;
   González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall,
   P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.;
   Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel,
   J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.;
   Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini,
   A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li,
   J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück, H.;
   Lundgren, A. D.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.;
   Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa,
   A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca,
   A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi,
   V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix,
   R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo,
   P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radke,
   T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani,
   P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid,
   S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.;
   Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi,
   A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.;
   Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.;
   Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría,
   L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.;
   Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling,
   R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.;
   Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock,
   D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.;
   Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith,
   N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein,
   A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.;
   Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton,
   P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner,
   D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne,
   K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov,
   K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie,
   C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng,
   K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav,
   B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel,
   A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vocca, H.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner,
   A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.;
   Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey,
   D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..86f9903A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Implications for the Origin of GRB 051103 from LIGO
    Observations
Authors: Abadie, J.; Abbott, B. P.; Abbott, T. D.; Abbott, R.;
   Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.;
   Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.;
   Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.;
   Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barnum, S.; Barr, B.;
   Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.;
   Bastarrika, M.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski,
   I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.;
   Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas,
   R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.;
   Born, M.; Bose, S.; Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau,
   J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.;
   Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.;
   Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.;
   Cavaglia, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung,
   S.; Chung, C. T. Y.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.;
   Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Costa, C. A.;
   Coughlin, M.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.;
   Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Culter,
   R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.;
   Das, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga,
   T.; DeBra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; DeRosa, R.;
   DeSalvo, R.; Dhurandhar, S.; Di Palma, I.; Díaz, M.; Donovan, F.;
   Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drever, R. W. P.;
   Driggers, J. C.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.;
   Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.;
   Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi,
   D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan, M.; Foley, S.;
   Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Garcia, J.; Garofoli, J. A.; Gholami, I.;
   Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.;
   Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler,
   S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.;
   Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.;
   Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian,
   K.; Hayama, K.; Heefner, J.; Hendry, M. A.; Heng, I. S.; Heptonstall,
   A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.;
   Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell,
   E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta,
   R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones,
   G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.;
   Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khazanov, E. A.; Kim, N.; Kim, H.; King, P. J.;
   Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu,
   R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz,
   B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li,
   J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu,
   P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.;
   Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandel,
   I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Maros, E.; Martin,
   I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone,
   L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors,
   G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell,
   G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.;
   Miller, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.;
   Moreno, G.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray,
   P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa, A.;
   Nolting, D.; Nuttall, L.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.;
   O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.;
   Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pedraza, M.; Pekowsky,
   L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer,
   J.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken,
   O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov,
   M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.;
   Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson,
   E. L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.;
   Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi,
   F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.;
   Saraf, S.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.;
   Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev,
   A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan
   Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg,
   D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen,
   B. J. J.; Slutsky, J.; Smith, R.; Smith, J. R.; Smith, M. R.; Smith,
   N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.;
   Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.;
   Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.;
   Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton,
   P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.;
   Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch,
   H.; Vaishnav, B.; Vallisneri, M.; Van Den Broeck, C.; van der Sluys,
   M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels,
   P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.;
   White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams,
   H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.;
   Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey,
   D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.;
   Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Collaboration; Bizouard,
   M. A.; Dietz, A.; Guidi, G. M.; Was, M.
2012ApJ...755....2A    Altcode: 2012arXiv1201.4413T
  We present the results of a LIGO search for gravitational waves
  (GWs) associated with GRB 051103, a short-duration hard-spectrum
  gamma-ray burst (GRB) whose electromagnetically determined sky
  position is coincident with the spiral galaxy M81, which is 3.6 Mpc
  from Earth. Possible progenitors for short-hard GRBs include compact
  object mergers and soft gamma repeater (SGR) giant flares. A merger
  progenitor would produce a characteristic GW signal that should be
  detectable at a distance of M81, while GW emission from an SGR is not
  expected to be detectable at that distance. We found no evidence of a
  GW signal associated with GRB 051103. Assuming weakly beamed γ-ray
  emission with a jet semi-angle of 30°, we exclude a binary neutron
  star merger in M81 as the progenitor with a confidence of 98%. Neutron
  star-black hole mergers are excluded with &gt;99% confidence. If the
  event occurred in M81, then our findings support the hypothesis that
  GRB 051103 was due to an SGR giant flare, making it one of the most
  distant extragalactic magnetars observed to date.

---------------------------------------------------------
Title: Upper limits on a stochastic gravitational-wave background
    using LIGO and Virgo interferometers at 600-1000 Hz
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador
   Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker,
   M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista,
   M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge,
   N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.;
   Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.;
   Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.;
   Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.;
   Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen,
   Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.;
   Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg,
   R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza,
   H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra,
   D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar,
   M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.;
   Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone,
   V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.;
   Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.;
   Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc, J.;
   Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.;
   Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.;
   Fujimoto, M. -K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.;
   Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.;
   Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime,
   J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova,
   S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.;
   Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Guido, C. .; Gupta, R.; Gustafson, E. K.;
   Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks,
   J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera,
   V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop,
   M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.;
   Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.;
   Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.;
   Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman,
   W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.;
   Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim,
   N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko,
   S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska,
   I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu,
   Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück,
   H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic,
   I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.;
   Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.;
   Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.;
   McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller,
   J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori,
   T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry,
   C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.;
   Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton,
   G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti,
   G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.;
   Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.;
   Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.;
   Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton,
   G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto,
   J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein,
   L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski,
   S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer,
   A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.;
   Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.;
   Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor,
   R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring,
   A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre,
   O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor,
   G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den
   Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel,
   A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.;
   Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade,
   M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.;
   Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.;
   Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85l2001A    Altcode: 2011arXiv1112.5004A
  A stochastic background of gravitational waves is expected to arise
  from a superposition of many incoherent sources of gravitational waves,
  of either cosmological or astrophysical origin. This background is
  a target for the current generation of ground-based detectors. In
  this article we present the first joint search for a stochastic
  background using data from the LIGO and Virgo interferometers. In a
  frequency band of 600-1000 Hz, we obtained a 95% upper limit on the
  amplitude of Ω<SUB>GW</SUB>(f)=Ω<SUB>3</SUB>(f/900Hz)<SUP>3</SUP>,
  of Ω<SUB>3</SUB>&lt;0.32, assuming a value of the Hubble parameter
  of h<SUB>100</SUB>=0.71. These new limits are a factor of seven better
  than the previous best in this frequency band.

---------------------------------------------------------
Title: All-sky search for gravitational-wave bursts in the second
    joint LIGO-Virgo run
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador
   Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker,
   M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista,
   M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge,
   N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.;
   Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.;
   Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.;
   Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.;
   Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen,
   Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.;
   Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg,
   R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza,
   H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra,
   D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar,
   M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.;
   Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone,
   V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.;
   Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.;
   Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc, J.;
   Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.;
   Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.;
   Fujimoto, M. -K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.;
   Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.;
   Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime,
   J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova,
   S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.;
   Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson,
   E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond,
   G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Hardt, A.; Harry,
   G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.;
   Hayama, K.; Hayau, J. -F.; Heefner, J.; Heidmann, A.; Heintze, M. C.;
   Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall,
   A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.;
   Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.;
   Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson,
   M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis,
   E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.;
   Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski,
   A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.;
   Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth,
   W. Z.; Kowalska, I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam,
   P. K.; Landry, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini,
   A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.;
   Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori,
   N.; Lindquist, P. E.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia,
   D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough,
   J.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald,
   E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic,
   V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.;
   Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo,
   G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McKechan, D. J. A.; McWilliams, S.; Meadors, G. D.;
   Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.;
   Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.;
   Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado,
   N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.;
   Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray,
   P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson,
   J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.;
   O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino,
   L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.;
   Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel,
   P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.;
   Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni,
   F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.;
   Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.;
   Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.;
   Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton,
   G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto,
   J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein,
   L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski,
   S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer,
   A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.;
   Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.;
   Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor,
   R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.;
   Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.;
   Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.;
   Tseng, K.; Tucker, E.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den
   Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel,
   A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.;
   Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade,
   M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.;
   Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.;
   Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85l2007A    Altcode: 2012arXiv1202.2788T
  We present results from a search for gravitational-wave bursts in
  the data collected by the LIGO and Virgo detectors between July 7,
  2009 and October 20, 2010: data are analyzed when at least two
  of the three LIGO-Virgo detectors are in coincident operation,
  with a total observation time of 207 days. The analysis searches
  for transients of duration ≲1s over the frequency band 64-5000
  Hz, without other assumptions on the signal waveform, polarization,
  direction or occurrence time. All identified events are consistent with
  the expected accidental background. We set frequentist upper limits
  on the rate of gravitational-wave bursts by combining this search
  with the previous LIGO-Virgo search on the data collected between
  November 2005 and October 2007. The upper limit on the rate of strong
  gravitational-wave bursts at the Earth is 1.3 events per year at 90%
  confidence. We also present upper limits on source rate density per
  year and Mpc<SUP>3</SUP> for sample populations of standard-candle
  sources. As in the previous joint run, typical sensitivities of the
  search in terms of the root-sum-squared strain amplitude for these
  waveforms lie in the range ∼5×10<SUP>-22</SUP>Hz<SUP>-1/2</SUP>
  to ∼1×10<SUP>-20</SUP>Hz<SUP>-1/2</SUP>. The combination of the
  two joint runs entails the most sensitive all-sky search for generic
  gravitational-wave bursts and synthesizes the results achieved by the
  initial generation of interferometric detectors.

---------------------------------------------------------
Title: Dynamic Evolution of Active Region Flux Tubes in the Turbulent
Convective Envelope of a Young Sun: Solar-like Fast Rotators
Authors: Weber, Maria A.; Brown, B. P.; Fan, Y.
2012AAS...22020109W    Altcode:
  Our Sun rotated much more rapidly when it was younger, as is suggested
  by observations of rapidly rotating solar-like stars and the influence
  of the solar wind, which removes angular momentum from the Sun. By
  studying how flux emergence may have occurred on the young Sun,
  we are likely to learn more about the nature of the solar dynamo
  early in the Sun's history, as well as other solar-like stars. To
  investigate this, we embed a toroidal flux tube near the base of the
  convection zone of a rotating spherical shell of turbulent convection
  performed for solar-like stars that rotate 3, 5, and 10 times the
  current solar rate. Our objective is to understand how the convective
  flows of these fast rotators can influence the emergent properties of
  flux tubes which would rise to create active regions, or starspots,
  of a variety of magnetic flux strengths, magnetic fields, and initial
  latitudes. Flux tube properties we will discuss include rise times,
  latitude of emergence, and tilt angles of the emerging flux tube limbs
  with respect to the east-west direction. Also of interest is identifying
  the regimes where dynamics of the flux tube are convection dominated
  or magnetic buoyancy dominated, as well as attempting to identify
  active longitudes.

---------------------------------------------------------
Title: First low-latency LIGO+Virgo search for binary inspirals and
    their electromagnetic counterparts
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador
   Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker,
   M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista,
   M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge,
   N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.;
   Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.;
   Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini,
   S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.;
   Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.;
   Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.;
   Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen,
   Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.;
   Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg,
   R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza,
   H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra,
   D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar,
   M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.;
   Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone,
   V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.;
   Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.;
   Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc, J.;
   Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.;
   Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.;
   Fujimoto, M. -K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.;
   Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.;
   Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime,
   J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova,
   S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.;
   Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.;
   Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks,
   J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera,
   V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop,
   M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.;
   Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.;
   Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.;
   Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman,
   W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.;
   Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim,
   N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko,
   S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska,
   I.; Kozak, D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu,
   Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück,
   H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic,
   I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.;
   Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.;
   Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.;
   McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller,
   J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori,
   T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.;
   Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton,
   G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Perreca, A.; Persichetti,
   G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.;
   Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.;
   Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.;
   Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton,
   G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Soto,
   J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Stein,
   L. C.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski,
   S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer,
   A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.;
   Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.;
   Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor,
   R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring,
   A.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre,
   O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor,
   G.; Tseng, K.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den
   Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel,
   A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.;
   Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade,
   M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.;
   Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.;
   Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012A&A...541A.155A    Altcode: 2011arXiv1112.6005T
  <BR /> Aims: The detection and measurement of gravitational-waves
  from coalescing neutron-star binary systems is an important science
  goal for ground-based gravitational-wave detectors. In addition
  to emitting gravitational-waves at frequencies that span the most
  sensitive bands of the LIGO and Virgo detectors, these sources
  are also amongst the most likely to produce an electromagnetic
  counterpart to the gravitational-wave emission. A joint detection of
  the gravitational-wave and electromagnetic signals would provide a
  powerful new probe for astronomy. <BR /> Methods: During the period
  between September 19 and October 20, 2010, the first low-latency search
  for gravitational-waves from binary inspirals in LIGO and Virgo data
  was conducted. The resulting triggers were sent to electromagnetic
  observatories for followup. We describe the generation and processing
  of the low-latency gravitational-wave triggers. The results of the
  electromagnetic image analysis will be described elsewhere. <BR />
  Results: Over the course of the science run, three gravitational-wave
  triggers passed all of the low-latency selection cuts. Of these, one
  was followed up by several of our observational partners. Analysis of
  the gravitational-wave data leads to an estimated false alarm rate
  of once every 6.4 days, falling far short of the requirement for a
  detection based solely on gravitational-wave data.

---------------------------------------------------------
Title: Search for gravitational waves from intermediate mass binary
    black holes
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador
   Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker,
   M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista,
   M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge,
   N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.;
   Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.;
   Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini,
   S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.;
   Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.;
   Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.;
   Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen,
   Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.;
   Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg,
   R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza,
   H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra,
   D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar,
   M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.;
   Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone,
   V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.;
   Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.;
   Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc, J.;
   Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.;
   Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.;
   Fujimoto, M. -K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.;
   Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.;
   Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime,
   J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill,
   C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky,
   M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.;
   Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.;
   Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. -F.; Heefner,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry,
   M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.;
   Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.;
   Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa,
   S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai,
   T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.;
   Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.;
   Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.;
   Kanner, J. B.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kelley, D.; Kells, W.; Keppel,
   D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov,
   E. A.; Kim, B.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. -M.;
   King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama,
   K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak,
   D.; Kranz, O.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee,
   H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre,
   N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Liu, Y.;
   Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M.; Lück,
   H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic,
   I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.;
   Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.;
   Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.;
   McWilliams, S.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller,
   J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.;
   Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss,
   S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt,
   H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.;
   Naticchioni, L.; Necula, V.; Nelson, J.; Newton, G.; Nguyen, T.;
   Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.;
   Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott,
   C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.;
   Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.;
   Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.;
   Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione,
   F.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.;
   Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai,
   P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.;
   Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze,
   D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet,
   F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez,
   C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano,
   R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Sainathan, P.; Salemi, F.; Sammut, L.; Sandberg,
   V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi,
   G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.;
   Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.;
   Schreiber, E.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.;
   Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.;
   Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.;
   Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya,
   K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky,
   M.; Stein, A. J.; Stein, L. C.; Steinert, E.; Steinlechner, J.;
   Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.;
   Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels,
   B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin,
   S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne,
   K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Tomlinson, C.;
   Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.;
   Tournefier, E.; Travasso, F.; Traylor, G.; Tseng, K.; Ugolini, D.;
   Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.;
   Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.; Vitale, S.; Vocca, H.;
   Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman,
   S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wang, Z.; Wanner,
   A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.;
   Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85j2004A    Altcode: 2012arXiv1201.5999T
  We present the results of a weakly modeled burst search for
  gravitational waves from mergers of nonspinning intermediate mass
  black holes in the total mass range 100-450M<SUB>⊙</SUB> and with the
  component mass ratios between 1∶1 and 4∶1. The search was conducted
  on data collected by the LIGO and Virgo detectors between November of
  2005 and October of 2007. No plausible signals were observed by the
  search which constrains the astrophysical rates of the intermediate
  mass black holes mergers as a function of the component masses. In
  the most efficiently detected bin centered on 88+88M<SUB>⊙</SUB>,
  for nonspinning sources, the rate density upper limit is 0.13 per
  Mpc<SUP>3</SUP> per Myr at the 90% confidence level.

---------------------------------------------------------
Title: Implementation and testing of the first prompt search for
    gravitational wave transients with electromagnetic counterparts
Authors: LIGO Scientific Collaboration; Virgo Collaboration; Abadie,
   J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia,
   T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.;
   Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya,
   M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert,
   C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer,
   S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.;
   Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.;
   Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.;
   Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski,
   I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.;
   Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock,
   O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli,
   L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.;
   Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie,
   P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.;
   Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarin, E.; Chaibi, O.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin,
   E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.;
   Coccia, E.; Cohadon, P. -F.; Colacino, C. N.; Colas, J.; Colla,
   A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.;
   Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.;
   Coulon, J. -P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.;
   D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.;
   Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; DeRosa, R.;
   Debra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Del Prete,
   M.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhillon, V.;
   Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; De Paolo
   Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Diguglielmo, J.;
   Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar,
   M.; Edwards, M.; Effler, A.; Ehrens, P.; Endröczi, G.; Engel, R.;
   Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone,
   V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann,
   H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori,
   I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.;
   Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc, J.; Frasca,
   S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey,
   R.; Fricke, T. T.; Fridriksson, J. K.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni,
   L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár,
   M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.;
   Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto,
   A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky,
   M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.;
   Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.;
   Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler,
   T.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.;
   Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Homan,
   J.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.;
   Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.;
   Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang,
   H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones,
   R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer,
   H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.;
   Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. -M.;
   King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.;
   Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan,
   B.; Krâ´Olak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Laas-Bourez, M.;
   Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie,
   C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker,
   N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li,
   T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia,
   D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.;
   Lubinski, M.; Lück, H.; Lundgren, A. P.; MacDonald, E.; Machenschalk,
   B.; Macinnis, M.; MacLeod, D. M.; Mageswaran, M.; Mailand, K.;
   Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.;
   Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.;
   Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo,
   G.; McCarthy, R.; McClelland, D. E.; McDaniel, P.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet,
   M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez,
   D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.;
   Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.;
   Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno,
   G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours,
   B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray,
   P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula,
   V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.;
   Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi,
   V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix,
   R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.;
   Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.;
   Rapoport, S.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson,
   E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland,
   L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska,
   D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll,
   H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut,
   L.; Sancho de La Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya,
   K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky,
   M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.;
   Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.;
   Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor,
   J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane,
   E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli,
   M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso,
   F.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.;
   Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.;
   van den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.;
   Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.; Vitale, S.;
   Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.;
   Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.;
   Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.;
   Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.;
   Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.;
   Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.;
   Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.;
   Zweizig, J.; Akerlof, C.; Boer, M.; Fender, R.; Gehrels, N.; Klotz,
   A.; Ofek, E. O.; Smith, M.; Sokolowski, M.; Stappers, B. W.; Steele,
   I.; Swinbank, J.; Wijeres, R. A. M. J.
2012A&A...539A.124L    Altcode: 2011arXiv1109.3498T; 2012A&A...539A.124A
  <BR /> Aims: A transient astrophysical event observed in both
  gravitational wave (GW) and electromagnetic (EM) channels would yield
  rich scientific rewards. A first program initiating EM follow-ups to
  possible transient GW events has been developed and exercised by the
  LIGO and Virgo community in association with several partners. In this
  paper, we describe and evaluate the methods used to promptly identify
  and localize GW event candidates and to request images of targeted sky
  locations. <BR /> Methods: During two observing periods (Dec. 17, 2009
  to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis
  pipeline was used to identify GW event candidates and to reconstruct
  maps of possible sky locations. A catalog of nearby galaxies and
  Milky Way globular clusters was used to select the most promising sky
  positions to be imaged, and this directional information was delivered
  to EM observatories with time lags of about thirty minutes. A Monte
  Carlo simulation has been used to evaluate the low-latency GW pipeline's
  ability to reconstruct source positions correctly. <BR /> Results:
  For signals near the detection threshold, our low-latency algorithms
  often localized simulated GW burst signals to tens of square degrees,
  while neutron star/neutron star inspirals and neutron star/black hole
  inspirals were localized to a few hundred square degrees. Localization
  precision improves for moderately stronger signals. The correct sky
  location of signals well above threshold and originating from nearby
  galaxies may be observed with ~50% or better probability with a few
  pointings of wide-field telescopes.

---------------------------------------------------------
Title: Publisher's Note: Search for gravitational waves associated
    with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D
    83, 042001 (2011)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Bennett,
   M. F.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born,
   M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer,
   J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.;
   Brown, D. A.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer,
   R. L.; Cadonati, L.; Cain, J.; Camp, J. B.; Cannizzo, J.; Cannon,
   K. C.; Cao, J.; Capano, C.; Cardenas, L.; Caudill, S.; Cavaglià, M.;
   Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji,
   S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.;
   Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Dahl, K.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Dayanga, T.; DeBra, D.; Degallaix, J.;
   Dergachev, V.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Donovan, F.;
   Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Driggers, J.; Dueck,
   J.; Duke, I.; Dumas, J. -C.; Dwyer, S.; Edgar, M.; Edwards, M.; Effler,
   A.; Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas,
   Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley,
   S.; Forrest, C.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.; Ghosh, S.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond,
   G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Haughian, K.; Hayama, K.; Hayler, T.; Heefner, J.;
   Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.;
   Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell,
   E.; Hoyland, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.;
   Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones,
   R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.;
   Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.;
   Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov,
   E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kringel, V.;
   Krishnan, B.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci,
   P.; Lei, M.; Leindecker, N.; Leonor, I.; Lin, H.; Lindquist, P. E.;
   Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.;
   Lubinski, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk,
   B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mak, C.; Mandel,
   I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz,
   J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.;
   Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez,
   D. F.; Mercer, R. A.; Merrill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moreno, G.; Mors, K.; Mossavi, K.; MowLowry, C.;
   Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Mullavey, A.; Munch,
   J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.;
   Nishida, E.; Nishizawa, A.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ochsner, E.; Ogin, G. H.; Oldenburg, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa,
   M. A.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.;
   Peralta, C.; Perreca, A.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix,
   R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling,
   D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Raymond,
   V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.;
   Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.;
   Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sammut,
   L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría,
   L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato,
   S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton,
   G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F.; Stein, A. J.;
   Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.;
   Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung,
   M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thorne,
   K. A.; Thorne, K. S.; Thüring, A.; Titsler, C.; Tokmakov, K. V.;
   Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Turner, L.; Ugolini,
   D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; Van Den Broeck,
   C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.;
   Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner,
   A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Buchner, S.
2012PhRvD..85h9902A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for gravitational waves from low mass compact binary
    coalescence in LIGO's sixth science run and Virgo's science runs 2
    and 3
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador
   Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson,
   W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone,
   P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.;
   Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr,
   B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos,
   I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.;
   Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.;
   Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi,
   M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.;
   Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan,
   C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.;
   Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.;
   Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.;
   Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.;
   Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak,
   T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.;
   Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua,
   S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark,
   D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte,
   A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.;
   Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.; Couvares, P.;
   Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.;
   Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.;
   Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann,
   K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.;
   Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto,
   A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.;
   Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J. -C.;
   Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens,
   P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans,
   T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.;
   Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro,
   F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.;
   Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.;
   Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.;
   Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni,
   L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár,
   M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.;
   Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto,
   A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky,
   M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.;
   Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi,
   G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.;
   Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna,
   C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera,
   V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.;
   Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa,
   S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai,
   T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.;
   Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski,
   A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim,
   H.; Kim, K.; Kim, N.; Kim, Y. -M.; King, P. J.; Kinsey, M.; Kinzel,
   D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.;
   Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn,
   G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee,
   H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre,
   N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald,
   E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran,
   M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.;
   Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet,
   M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez,
   D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.;
   Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.;
   Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno,
   G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours,
   B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray,
   P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula,
   V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.;
   Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.;
   Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.;
   Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.;
   Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson,
   E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland,
   L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska,
   D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll,
   H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut,
   L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya,
   K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky,
   M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca,
   M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli,
   A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier,
   E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.;
   Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.;
   van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.;
   Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.;
   Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.;
   Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.;
   Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin,
   I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida,
   S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J. -P.;
   Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.;
   Zucker, M. E.; Zweizig, J.
2012PhRvD..85h2002A    Altcode: 2011arXiv1111.7314T; 2011arXiv1111.7314S
  We report on a search for gravitational waves from coalescing compact
  binaries using LIGO and Virgo observations between July 7, 2009, and
  October 20, 2010. We searched for signals from binaries with total mass
  between 2 and 25M<SUB>⊙</SUB>; this includes binary neutron stars,
  binary black holes, and binaries consisting of a black hole and neutron
  star. The detectors were sensitive to systems up to 40 Mpc distant
  for binary neutron stars, and further for higher mass systems. No
  gravitational-wave signals were detected. We report upper limits on
  the rate of compact binary coalescence as a function of total mass,
  including the results from previous LIGO and Virgo observations. The
  cumulative 90% confidence rate upper limits of the binary coalescence
  of binary neutron star, neutron star-black hole, and binary black
  hole systems are 1.3×10<SUP>-4</SUP>, 3.1×10<SUP>-5</SUP>, and
  6.4×10<SUP>-6</SUP>Mpc<SUP>-3</SUP>yr<SUP>-1</SUP>, respectively. These
  upper limits are up to a factor 1.4 lower than previously derived
  limits. We also report on results from a blind injection challenge.

---------------------------------------------------------
Title: Publisher's Note: Search for gravitational waves from
    compact binary coalescence in LIGO and Virgo data from S5 and VSR1
    [Phys. Rev. D 82, 102001 (2010)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia,
   T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson,
   W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun,
   K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi,
   M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.;
   Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya,
   T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini,
   S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain,
   J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo,
   J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.;
   Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.;
   Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.;
   Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day,
   R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete,
   M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar,
   S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.;
   Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.;
   Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. -C.; Dwyer, S.; Eberle,
   T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel,
   R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan,
   Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante,
   I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan,
   M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti,
   M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin,
   E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras,
   S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie,
   C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer,
   D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.;
   Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge,
   K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King,
   P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.;
   Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.;
   Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy,
   N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück,
   H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.;
   Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt,
   R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.;
   Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson,
   C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.;
   Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky,
   M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.;
   Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.;
   Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.;
   Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley,
   A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.;
   Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith,
   N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein,
   A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino,
   A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton,
   P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.;
   Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.;
   Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner,
   L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente,
   G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.;
   van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin,
   I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu,
   P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85h9903A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Publisher's Note: Search for gravitational waves from binary
    black hole inspiral, merger, and ringdown [Phys. Rev. D 83, 122005
    (2011)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.;
   Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson,
   M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard,
   M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.;
   Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.;
   Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia,
   C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.;
   Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.;
   Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.;
   Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas,
   J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward, D. M.;
   Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.;
   Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.;
   Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das,
   K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw,
   E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.;
   Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma,
   I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.;
   Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas,
   E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.;
   Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler,
   A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.;
   Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann,
   H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori,
   I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest,
   C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.;
   Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.;
   Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.;
   Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.;
   Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.;
   González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall,
   P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.;
   Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel,
   J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.;
   Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini,
   A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li,
   J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück, H.;
   Lundgren, A. D.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.;
   Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa,
   A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab,
   F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai,
   P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.;
   Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci,
   F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet,
   F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland,
   L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska,
   D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata,
   S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.;
   Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield,
   R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott,
   S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits,
   F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.;
   Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung,
   M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca,
   M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.;
   Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.;
   Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.;
   Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek,
   K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys,
   M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp,
   C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet,
   J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.;
   Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.;
   Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.;
   Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85h9904A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Publisher's Note: All-sky search for gravitational-wave bursts
    in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese,
   F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron,
   E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.;
   Arain, M. A.; Araya, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin,
   G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.;
   Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.;
   Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile,
   A.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.;
   Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard,
   M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.;
   Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.;
   Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown,
   D. A.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.;
   Buonanno, A.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.;
   Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.;
   Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.;
   Capano, C. D.; Carbognani, F.; Cardenas, L.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton,
   J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla,
   A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish,
   N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.;
   del Prete, M.; Dergachev, V.; DeSalvo, R.; Dhurandhar, S.; Di Fiore,
   L.; Di Lieto, A.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.;
   Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J. -C.;
   Dwyer, S.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel,
   T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.;
   Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn,
   L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.;
   Fotopoulos, N.; Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.;
   Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.;
   Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme,
   G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Giazotto, A.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Gouaty, R.; Granata, M.; Grant, A.; Gras, S.; Gray,
   C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.;
   Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson,
   R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.;
   Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.;
   Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ivanov, A.; Jaranowski,
   P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; Kim, H.;
   King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Kringel,
   V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.;
   Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.;
   Lazzarini, A.; Leaci, P.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy,
   N.; Letendre, N.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Littenberg,
   T. B.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lu, P.; Lubinski, M.; Lucianetti, A.; Lück,
   H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.;
   McKechan, D. J. A.; Mehmet, M.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.;
   Mohanty, S. D.; Mohapatra, S. R. P.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.;
   Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.;
   Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera,
   F.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.;
   Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.;
   Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Principe, M.; Prix,
   R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Rapagnani, P.; Raymond,
   V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Rehbein, H.; Reid,
   S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.;
   Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi,
   A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.;
   Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Sakata, S.; Salemi, F.; Sammut, L.; Sancho de la
   Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi,
   G.; Saraf, S.; Sarin, P.; Sassolas, B.; Sathyaprakash, B. S.; Sato,
   S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes,
   A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.;
   Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Sperandio, L.;
   Stein, A. J.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.;
   Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.;
   Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels,
   B.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres,
   C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias,
   M.; Trummer, J.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.;
   Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van der Sluys, M. V.; Vass, S.; Vaulin, R.;
   Vavoulidis, M.; Vecchio, A.; Vedovato, G.; van Veggel, A. A.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.;
   Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey,
   D.; Yoshida, S.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao,
   C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85h9905A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Numerical calculation of convection with reduced speed of
    sound technique
Authors: Hotta, H.; Rempel, M.; Yokoyama, T.; Iida, Y.; Fan, Y.
2012A&A...539A..30H    Altcode: 2012arXiv1201.1061H
  Context. The anelastic approximation is often adopted in numerical
  calculations with low Mach numbers, such as those including stellar
  internal convection. This approximation requires so-called frequent
  global communication, because of an elliptic partial differential
  equation. Frequent global communication is, however, negative factor for
  the parallel computing performed with a large number of CPUs. <BR />
  Aims: We test the validity of a method that artificially reduces the
  speed of sound for the compressible fluid equations in the context of
  stellar internal convection. This reduction in the speed of sound leads
  to longer time steps despite the low Mach number, while the numerical
  scheme remains fully explicit and the mathematical system is hyperbolic,
  thus does not require frequent global communication. <BR /> Methods:
  Two- and three-dimensional compressible hydrodynamic equations are
  solved numerically. Some statistical quantities of solutions computed
  with different effective Mach numbers (owing to the reduction in the
  speed of sound) are compared to test the validity of our approach. <BR
  /> Results: Numerical simulations with artificially reduced speed
  of sound are a valid approach as long as the effective Mach number
  (based on the lower speed of sound) remains less than 0.7.

---------------------------------------------------------
Title: Building the BOOTES world-wide Network of Robotic telescopes
Authors: Castro-Tirado, A. J.; Jelínek, M.; Gorosabel, J.; Kubánek,
   P.; Cunniffe, R.; Guziy, S.; Lara-Gil, O.; Rabaza-Castillo,
   O.; de Ugarte Postigo, A.; Sánchez-Ramírez, R.; Tello, J. C.;
   Muñoz-Martínez, V.; Pérez del Pulgar, C.; Castillo-Carrión, S.;
   Castro Cerón, J. M.; Mateo Sanguino, T. de J.; Hudec, R.; Vitek, S.;
   de la Morena Carretero, B. A.; Díaz Andreu, J. A.; Fernández-Muñoz,
   R.; Pérez-Ramírez, D.; Yock, P. A.; Allen, W. H.; Bond, I.; Christie,
   G.; Sabau-Graziati, L.; Castro, A.; Pozanenko, A.; Bai, J.; Fan, Y.;
   Cui, C.
2012ASInC...7..313C    Altcode:
  We show the status of the BOOTES Network, which is expanding worldwide
  with four autonomous robotic observatories already deployed in Spain,
  New Zealand and China. We briefly discuss the technical as well as
  the scientific aspects we have already achieved and the goals we are
  aiming at.

---------------------------------------------------------
Title: All-sky search for periodic gravitational waves in the full
    S5 LIGO data
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.;
   Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker,
   P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.;
   Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.;
   Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.;
   Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.;
   Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.;
   Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu,
   R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi,
   V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer,
   J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister,
   O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.;
   Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.;
   Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley,
   E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.;
   Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.;
   Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.;
   Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.;
   Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi,
   A.; Costa, C. A.; Coughlin, M.; Coulon, J. -P.; Couvares, P.; Coward,
   D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise,
   A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl,
   K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.;
   Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Debreczeni, G.;
   Degallaix, J.; Del Pozzo, W.; Del Prete, M.; Dent, T.; Dergachev, V.;
   Derosa, R.; Desalvo, R.; Dhurandhar, S.; di Fiore, L.; Diguglielmo,
   J.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio,
   A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.;
   Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J. -C.;
   Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens,
   P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans,
   T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.;
   Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro,
   F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.;
   Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.;
   Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.;
   Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni,
   L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár,
   M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.;
   Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto,
   A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky,
   M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.;
   Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.;
   Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.;
   Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.;
   Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson,
   M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper,
   S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai,
   T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.;
   Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski,
   A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim,
   H.; Kim, K.; Kim, N.; Kim, Y. -M.; King, P. J.; Kinsey, M.; Kinzel,
   D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.;
   Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn,
   G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee,
   H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre,
   N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacDonald,
   E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Mageswaran,
   M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.;
   Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet,
   M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez,
   D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.;
   Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.;
   Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno,
   G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours,
   B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray,
   P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula,
   V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.;
   Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.;
   Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.;
   Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.;
   Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.;
   Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.;
   Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson,
   E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland,
   L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska,
   D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll,
   H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut,
   L.; Sancho de La Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya,
   K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky,
   M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.;
   Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.;
   Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor,
   J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane,
   E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli,
   M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso,
   F.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.;
   Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.;
   van den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.;
   Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Villar, A. E.; Vinet, J. -Y.; Vitale, S.; Vitale, S.;
   Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.;
   Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.;
   Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley,
   R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.;
   Zadroźny, A.; Zanolin, M.; Zendri, J. -P.; Zhang, F.; Zhang, L.;
   Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012PhRvD..85b2001A    Altcode: 2011arXiv1110.0208A
  We report on an all-sky search for periodic gravitational waves in the
  frequency band 50-800 Hz and with the frequency time derivative in the
  range of 0 through -6×10<SUP>-9</SUP>Hz/s. Such a signal could be
  produced by a nearby spinning and slightly nonaxisymmetric isolated
  neutron star in our Galaxy. After recent improvements in the search
  program that yielded a 10× increase in computational efficiency,
  we have searched in two years of data collected during LIGO’s
  fifth science run and have obtained the most sensitive all-sky upper
  limits on gravitational-wave strain to date. Near 150 Hz our upper
  limit on worst-case linearly polarized strain amplitude h<SUB>0</SUB>
  is 1×10<SUP>-24</SUP>, while at the high end of our frequency range
  we achieve a worst-case upper limit of 3.8×10<SUP>-24</SUP> for all
  polarizations and sky locations. These results constitute a factor
  of 2 improvement upon previously published data. A new detection
  pipeline utilizing a loosely coherent algorithm was able to follow up
  weaker outliers, increasing the volume of space where signals can be
  detected by a factor of 10, but has not revealed any gravitational-wave
  signals. The pipeline has been tested for robustness with respect to
  deviations from the model of an isolated neutron star, such as caused
  by a low-mass or long-period binary companion.

---------------------------------------------------------
Title: GRB 121123A: BOOTES-4 and IAC80 optical observations.
Authors: Guziy, S.; Sanchez-Ramirez, R.; Monteagudo Narvion, L.; Lara,
   O.; Jelinek, M.; Kubanek, P.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.;
   Xin, Y.; Cui, C.; Cunniffe, R.; Castro-Tirado, A. J.; Tello, J. C.;
   Gorosabel, J.
2012GCN.13987....1G    Altcode: 2012GCN..13987...1G
  No abstract at ADS

---------------------------------------------------------
Title: GRB 121226A: BOOTES-4/MET optical observations.
Authors: Guziy, S.; Lara, O.; Cunniffe, R.; Gorosabel, J.; Jelinek,
   M.; Kubanek, P.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.; Xin, Y.; Cui,
   Ch.; Castro-Tirado, A. J.
2012GCN.14106....1G    Altcode: 2012GCN..14106...1G
  No abstract at ADS

---------------------------------------------------------
Title: GRB 121123A: BOOTES-4 optical observations.
Authors: Guziy, S.; Sanchez-Ramirez, R.; Monteagudo Narvion, L.; Lara,
   O.; Jelinek, M.; Kubanek, P.; Fan, Y.; Zhao, X.; Bai, J.; Wang, C.;
   Xin, Y.; Cui, C.; Cunniffe, R.; Castro-Tirado, A. J.; Tello, J. C.;
   Gorosabel, J.
2012GCN.14026....1G    Altcode: 2012GCN..14026...1G
  No abstract at ADS

---------------------------------------------------------
Title: GRB 120320A: BOOTES-4 optical upper limit.
Authors: Tello, J. C.; Kubanek, P.; Gorosabel, J.; Castro-Tirado,
   A. J.; Guziy, S.; Fan, Y.; Zhao, X.; Bai, J.; Cui, C.
2012GCN.13080....1T    Altcode: 2012GCN..13080...1T
  No abstract at ADS

---------------------------------------------------------
Title: Fermi trigger 358364818: BOOTES-4 observations.
Authors: Guziy, S.; Kubanek, P.; Fan, Y.; Castro-Tirado, A. J.
2012GCN.13286....1G    Altcode: 2012GCN..13286...1G
  No abstract at ADS

---------------------------------------------------------
Title: Directional Limits on Persistent Gravitational Waves Using
    LIGO S5 Science Data
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.;
   Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.;
   Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu,
   R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose,
   S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.;
   Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon,
   K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas,
   J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward, D. M.;
   Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.;
   Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.;
   Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das,
   K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw,
   E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.;
   Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.;
   Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo
   Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.;
   Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago,
   M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. -C.;
   Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel,
   R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan,
   Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante,
   I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan,
   M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti,
   M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin,
   E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.;
   González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall,
   P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.;
   Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel,
   J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.;
   Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini,
   A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li,
   J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück, H.;
   Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.;
   Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa,
   A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca,
   A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.;
   Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.;
   Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.;
   Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.;
   Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.;
   Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata,
   S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.;
   Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield,
   R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott,
   S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits,
   F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.;
   Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor,
   R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring,
   A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.;
   Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.;
   Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek,
   K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van
   den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der
   Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp,
   C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet,
   J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.;
   Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.;
   Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.;
   Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2011PhRvL.107A1102A    Altcode: 2011arXiv1109.1809A
  The gravitational-wave (GW) sky may include nearby pointlike sources as
  well as stochastic backgrounds. We perform two directional searches for
  persistent GWs using data from the LIGO S5 science run: one optimized
  for pointlike sources and one for arbitrary extended sources. Finding
  no evidence to support the detection of GWs, we present 90% confidence
  level (C.L.) upper-limit maps of GW strain power with typical values
  between 2-20×10<SUP>-50</SUP>strain<SUP>2</SUP>Hz<SUP>-1</SUP> and
  5-35×10<SUP>-49</SUP>strain<SUP>2</SUP>Hz<SUP>-1</SUP>sr<SUP>-1</SUP>
  for pointlike and extended sources, respectively. The latter result is
  the first of its kind. We also set 90% C.L. limits on the narrow-band
  root-mean-square GW strain from interesting targets including Sco X-1,
  SN 1987A and the Galactic center as low as ≈7×10<SUP>-25</SUP>
  in the most sensitive frequency range near 160 Hz.

---------------------------------------------------------
Title: A gravitational wave observatory operating beyond the quantum
    shot-noise limit
Authors: Ligo Scientific Collaboration; Abadie, J.; Abbott, B. P.;
   Abbott, R.; Abbott, T. D.; Abernathy, M.; Adams, C.; Adhikari, R.;
   Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei,
   D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain,
   M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert,
   C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.;
   Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Batch, J.; Bauchrowitz, J.; Behnke,
   B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Berliner, J. M.;
   Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black,
   E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock,
   O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.;
   Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.;
   Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown,
   D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister,
   O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo,
   J.; Cannon, K.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.;
   Cavagliá, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Cho, H.; Chua, S. S. Y.;
   Chung, S.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark,
   J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier,
   M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Couvares,
   P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton,
   T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cutler, R. M.;
   Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Daudert,
   B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.;
   Degallaix, J.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.;
   Dhurandhar, S.; Diguglielmo, J.; di Palma, I.; Díaz, M.; Donovan,
   F.; Dooley, K. L.; Dorsher, S.; Drever, R. W. P.; Driggers, J. C.;
   Du, Z.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards,
   M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, K.; Evans,
   M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.;
   Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher,
   R. P.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.;
   Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Ganija, M. R.;
   Garcia, J.; Garofoli, J. A.; Geng, R.; Gergely, L. Á.; Gholami, I.;
   Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.;
   Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler,
   S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.;
   Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.;
   Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson,
   M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.;
   Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Huynh-Dinh, T.;
   Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov,
   A.; Izumi, K.; Jacobson, M.; Jang, H.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos,
   I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.;
   Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells,
   W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.;
   Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.;
   Kim, Y. -M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda,
   S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan,
   B.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.;
   Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee,
   C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Li, J.;
   Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Luan, J.;
   Lubinski, M.; Lück, H.; Lundgren, A. P.; MacDonald, E.; Machenschalk,
   B.; Macinnis, M.; MacLeod, D. M.; Mageswaran, M.; Mailand, K.; Mandel,
   I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Markosyan, A.;
   Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo,
   G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.;
   Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer,
   R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller,
   J.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.;
   Mori, T.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.;
   Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy,
   D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nawrodt, R.; Necula, V.;
   Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.;
   O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker,
   E.; Oh, J. J.; Oh, S. H.; Ogin, G. H.; Oldenburg, R. G.; Osthelder,
   C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen,
   B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Ajith, P.; Patel,
   P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.;
   Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Pöld, J.; Postiglione, F.; Predoi,
   V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix,
   R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins,
   H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra,
   S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.;
   Reitze, D. H.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rollins,
   J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.;
   Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski,
   A.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sankar, S.;
   Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi,
   G.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.;
   Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.;
   Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   R. J. E.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.;
   Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinert, E.;
   Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.;
   Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.;
   Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton,
   P. J.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.;
   Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.;
   Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch,
   H.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vitale,
   S.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace,
   L.; Wan, Y.; Wanner, A.; Wang, X.; Wang, Z.; Ward, R. L.; Wei, P.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels,
   P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.;
   White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams,
   H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wittel, H.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden,
   J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.;
   Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang,
   W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2011NatPh...7..962L    Altcode: 2011arXiv1109.2295T
  Around the globe several observatories are seeking the first direct
  detection of gravitational waves (GWs). These waves are predicted by
  Einstein's general theory of relativity and are generated, for example,
  by black-hole binary systems. Present GW detectors are Michelson-type
  kilometre-scale laser interferometers measuring the distance changes
  between mirrors suspended in vacuum. The sensitivity of these detectors
  at frequencies above several hundred hertz is limited by the vacuum
  (zero-point) fluctuations of the electromagnetic field. A quantum
  technology--the injection of squeezed light--offers a solution to
  this problem. Here we demonstrate the squeezed-light enhancement of
  GEO600, which will be the GW observatory operated by the LIGO Scientific
  Collaboration in its search for GWs for the next 3-4 years. GEO600 now
  operates with its best ever sensitivity, which proves the usefulness
  of quantum entanglement and the qualification of squeezed light as a
  key technology for future GW astronomy.

---------------------------------------------------------
Title: Comparing Simulations of Rising Flux Tubes Through the Solar
Convection Zone with Observations of Active Region Properties:
    Constraining the Dynamo Field Strength
Authors: Weber, M. A.; Fan, Y.; Miesch, M.
2011AGUFMSH41B..05W    Altcode:
  We use a thin flux tube model in a rotating spherical shell of turbulent
  convective flows to study how active region scale flux tubes rise
  buoyantly from the bottom of the convection zone to near the solar
  surface. We investigate toroidal flux tubes originating at the base
  of the convection zone with field strengths ranging from 15 kG to 100
  kG at initial latitudes ranging from 1° to 40° with a total flux
  of 10<SUP>20</SUP> Mx to 10<SUP>22</SUP> Mx. With the influence of
  a convective velocity field, the dynamic evolution of the flux tube
  changes from convection dominated to magnetic buoyancy dominated as the
  initial field strength increases from 15 kG to 100 kG. With convection,
  rise times are reduced (from years to months) for all fluxes, and loops
  are able to emerge at low latitudes even for a large flux. We examine
  phase velocities of the emerging loop apices, geometric and magnetic
  field asymmetries between the leading and following legs of the emerging
  loops, and the tilt angle of the emerging flux tube as a function of the
  latitude in order to identify a Joy's Law trend. Also, we investigate
  whether there is a larger spread in tilt angles at lower latitudes. By
  comparing our flux tube simulation results with observations of solar
  active regions, we attempt to constrain the magnetic field generated
  by the solar dynamo at the base of the convection zone.

---------------------------------------------------------
Title: A Magnetohydrodynamic Model of the 2006 December 13 Eruptive
    Flare
Authors: Fan, Y.
2011ApJ...740...68F    Altcode: 2011arXiv1109.3734F
  We present a three-dimensional magnetohydrodynamic simulation
  that qualitatively models the coronal magnetic field evolution
  associated with the eruptive flare that occurred on 2006 December 13
  in the emerging δ-sunspot region NOAA 10930 observed by the Hinode
  satellite. The simulation is set up to drive the emergence of an
  east-west-oriented magnetic flux rope at the lower boundary into a
  preexisting coronal field constructed from the Solar and Heliospheric
  Observatory/Michelson Doppler Imager full-disk magnetogram at 20:51:01
  UT on 2006 December 12. The resulting coronal flux rope embedded in
  the ambient coronal magnetic field first settles into a stage of
  quasi-static rise and then undergoes a dynamic eruption, with the
  leading edge of the flux rope cavity accelerating to a steady speed of
  about 830 km s<SUP>-1</SUP>. The pre-eruption coronal magnetic field
  shows morphology that is in qualitative agreement with that seen in
  the Hinode soft X-ray observation in both the magnetic connectivity
  as well as the development of an inverse-S-shaped X-ray sigmoid. We
  examine the properties of the erupting flux rope and the morphology
  of the post-reconnection loops, and compare them with the observations.

---------------------------------------------------------
Title: Dynamic Evolution of Emerging Magnetic Flux Tubes in the
    Solar Convective Envelope
Authors: Fan, Y.
2011sdmi.confE..35F    Altcode:
  I present recent results on modeling the buoyant rise of active region
  scale flux tubes in the solar convective envelope based on both a thin
  flux tube model incorporating the effects of giant-cell convection as
  well as 3D spherical-shell anelastic MHD simulations. It is found that
  the dynamic evolution of the flux tube changes from magnetic buoyancy
  dominated to convection dominated as the initial field strength of
  the flux tube varies from about 100 kG to 15 kG. Overall, the effect
  of the convective flow is found to allow mid to weak field strength
  range flux tubes (∼ 15 kG - 50 kG) to develop emerging loops with
  properties that are more consistent with the observed properties of
  solar active regions. For these flux tubes, the convective flow is
  found to reduce the rise time, reduce the latitude of emergence through
  anchoring by downdrafts, and promote tilt angles that are consistent
  with the observed mean tilt of solar active regions because of the mean
  kinetic helicity in the flow. The initial twist of the tube cannot be
  too high in order for the tilt of the emerging loops to be dominated
  by the effect of the Coriolis force and be consistent with the mean
  tilt of solar active regions. I will also discuss the properties of the
  emerging flux tube as it approaches the top layers of solar convective
  envelope based on these models.

---------------------------------------------------------
Title: Beating the Spin-down Limit on Gravitational Wave Emission
    from the Vela Pulsar
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin,
   R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.;
   Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr,
   B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos,
   I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer,
   Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile,
   A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.;
   Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu,
   F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose,
   S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon,
   K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley,
   E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.;
   Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.;
   Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva,
   F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.;
   Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa,
   C. A.; Coughlin, M.; Coulon, J. -P.; Coward, D. M.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.;
   Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.;
   Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day,
   R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix,
   J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di
   Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley,
   K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.;
   Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.;
   Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr,
   B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro,
   F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc,
   J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia,
   J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin,
   E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi,
   G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.;
   Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.;
   Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.;
   Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough,
   J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.;
   Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner,
   M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.;
   Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko,
   S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska,
   I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka,
   N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren,
   A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic,
   V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors,
   G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell,
   G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.;
   Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.;
   Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.;
   Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton,
   G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.;
   O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy,
   R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba,
   C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.;
   Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta,
   C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack,
   M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin,
   M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.;
   Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.;
   Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.;
   Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond,
   V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid,
   S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.;
   Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi,
   A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.;
   Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit,
   M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel,
   R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.;
   Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev,
   M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu,
   B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein,
   A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino,
   A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.;
   Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler,
   C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres,
   C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias,
   M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.;
   Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.;
   Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van
   Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J. -Y.;
   Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace,
   L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams,
   L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman,
   A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.;
   Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida,
   S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.;
   Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration;
   Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.
2011ApJ...737...93A    Altcode: 2011arXiv1104.2712T
  We present direct upper limits on continuous gravitational wave
  emission from the Vela pulsar using data from the Virgo detector's
  second science run. These upper limits have been obtained using three
  independent methods that assume the gravitational wave emission follows
  the radio timing. Two of the methods produce frequentist upper limits
  for an assumed known orientation of the star's spin axis and value of
  the wave polarization angle of, respectively, 1.9 × 10<SUP>-24</SUP>
  and 2.2 × 10<SUP>-24</SUP>, with 95% confidence. The third method,
  under the same hypothesis, produces a Bayesian upper limit of 2.1 ×
  10<SUP>-24</SUP>, with 95% degree of belief. These limits are below the
  indirect spin-down limit of 3.3 × 10<SUP>-24</SUP> for the Vela pulsar,
  defined by the energy loss rate inferred from observed decrease in
  Vela's spin frequency, and correspond to a limit on the star ellipticity
  of ~10<SUP>-3</SUP>. Slightly less stringent results, but still well
  below the spin-down limit, are obtained assuming the star's spin axis
  inclination and the wave polarization angles are unknown.

---------------------------------------------------------
Title: Solar Prominence Eruptions and CMEs at the Start of Cycle 24
Authors: de Toma, Giuliana; Gibson, S.; Burkepile, J.; Fan, Y.;
   Reinard, A.
2011shin.confE.147D    Altcode:
  We present the analysis of prominence eruptions and CMEs during the
  rising phase of cycle 24. We combine data from the two STEREO and
  SDO spacecraft (that are near quadrature) to observe simultaneously
  the region where a CME originates and the CME moving outward in the
  plane-of-the-sky. This allows us to compute trajectories for the
  CME and the associated eruptive prominence and, at the same time, to
  study the on-disk CME manifestations such as flares, dimming regions,
  and coronal waves with high spatial and temporal resolution.

---------------------------------------------------------
Title: Search for gravitational waves from binary black hole inspiral,
    merger, and ringdown
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.;
   Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger,
   T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.;
   Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke,
   B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.;
   Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi,
   M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.;
   Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.;
   Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born,
   M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini,
   S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain,
   J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo,
   J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.;
   Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.;
   Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.;
   Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.;
   Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia,
   E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon,
   J. -P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton,
   T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio,
   S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.;
   Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.;
   Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev,
   V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore,
   L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio,
   A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.;
   Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Dueck, J.; Dumas, J. -C.; Eberle, T.; Edgar, M.; Edwards, M.;
   Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.;
   Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi,
   D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn,
   L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.;
   Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.;
   Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.;
   Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.;
   Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.;
   Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.;
   González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall,
   P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.;
   Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel,
   J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy,
   S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.;
   Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini,
   A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li,
   J.; Li, T. G. F.; Liguori, N.; Lin, H.; Lindquist, P. E.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.;
   Lundgren, A. D.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee,
   S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.;
   Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa,
   A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab,
   F. J.; Rabeling, D. S.; Rácz, I.; Radke, T.; Radkins, H.; Raffai,
   P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.;
   Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci,
   F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet,
   F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland,
   L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska,
   D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata,
   S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.;
   Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield,
   R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott,
   S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits,
   F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor,
   J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane,
   E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli,
   M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.;
   Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek,
   K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den
   Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys,
   M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp,
   C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet,
   J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.;
   Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.;
   Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.;
   Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration
2011PhRvD..83l2005A    Altcode: 2011arXiv1102.3781T
  We present the first modeled search for gravitational waves using
  the complete binary black-hole gravitational waveform from inspiral
  through the merger and ringdown for binaries with negligible component
  spin. We searched approximately 2 years of LIGO data, taken between
  November 2005 and September 2007, for systems with component masses of
  1-99M<SUB>⊙</SUB> and total masses of 25-100M<SUB>⊙</SUB>. We did
  not detect any plausible gravitational-wave signals but we do place
  upper limits on the merger rate of binary black holes as a function of
  the component masses in this range. We constrain the rate of mergers for
  19M<SUB>⊙</SUB>≤m<SUB>1</SUB>, m<SUB>2</SUB>≤28M<SUB>⊙</SUB>
  binary black-hole systems with negligible spin to be no more than
  2.0Mpc<SUP>-3</SUP>Myr<SUP>-1</SUP> at 90% confidence.

---------------------------------------------------------
Title: Search for Gravitational Wave Bursts from Six Magnetars
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
   Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin,
   R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.;
   Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson,
   D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.;
   Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.;
   Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.;
   Bauer, Th. S.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile,
   A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.;
   Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu,
   F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose,
   S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon,
   K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley,
   E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.;
   Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.;
   Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva,
   F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.;
   Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa,
   C. A.; Coughlin, M.; Coulon, J. -P.; Coward, D. M.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.;
   Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.;
   Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day,
   R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix,
   J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di
   Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley,
   K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Dumas, J. -C.; Dwyer, S.; Eberle, T.; Edgar, M.;
   Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.;
   Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr,
   B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro,
   F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.;
   Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J. -D.; Franc,
   J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia,
   J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin,
   E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi,
   G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J. -F.; Hayler, T.;
   Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.;
   Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.;
   Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough,
   J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.;
   Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner,
   M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.;
   Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko,
   S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska,
   I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka,
   N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lück, H.; Lundgren,
   A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic,
   V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors,
   G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell,
   G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.;
   Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia,
   A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.;
   Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri,
   I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.;
   Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly,
   B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.;
   Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.;
   Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa,
   M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.;
   Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.;
   Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.;
   Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.;
   Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.;
   Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.;
   Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.;
   Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.;
   Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana,
   L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto,
   I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.;
   Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling,
   R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.;
   Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev,
   A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan
   Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg,
   D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen,
   B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith,
   R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio,
   L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.;
   Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung,
   M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca,
   M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.;
   Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli,
   M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso,
   F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.;
   Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten,
   S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.;
   Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.;
   Villar, A. E.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels,
   P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.;
   White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams,
   H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.;
   Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey,
   D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration; Aptekar, R. L.; Boynton, W. V.;
   Briggs, M. S.; Cline, T. L.; Connaughton, V.; Frederiks, D. D.;
   Gehrels, N.; Goldsten, J. O.; Golovin, D.; van der Horst, A. J.;
   Hurley, K. C.; Kaneko, Y.; von Kienlin, A.; Kouveliotou, C.; Krimm,
   H. A.; Lin, L.; Mitrofanov, I.; Ohno, M.; Pal'shin, V. D.; Rau, A.;
   Sanin, A.; Tashiro, M. S.; Terada, Y.; Yamaoka, K.
2011ApJ...734L..35A    Altcode: 2010arXiv1011.4079L; 2010arXiv1011.4079A
  Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are
  thought to be magnetars: neutron stars powered by extreme magnetic
  fields. These rare objects are characterized by repeated and sometimes
  spectacular gamma-ray bursts. The burst mechanism might involve
  crustal fractures and excitation of non-radial modes which would emit
  gravitational waves (GWs). We present the results of a search for GW
  bursts from six galactic magnetars that is sensitive to neutron star
  f-modes, thought to be the most efficient GW emitting oscillatory
  modes in compact stars. One of them, SGR 0501+4516, is likely ~1
  kpc from Earth, an order of magnitude closer than magnetars targeted
  in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst
  with an estimated isotropic energy &gt;10<SUP>44</SUP> erg which is
  comparable to the giant flares. We find no evidence of GWs associated
  with a sample of 1279 electromagnetic triggers from six magnetars
  occurring between 2006 November and 2009 June, in GW data from the LIGO,
  Virgo, and GEO600 detectors. Our lowest model-dependent GW emission
  energy upper limits for band- and time-limited white noise bursts in
  the detector sensitive band, and for f-mode ringdowns (at 1090 Hz),
  are 3.0 × 10<SUP>44</SUP> d <SUP>2</SUP> <SUB>1</SUB> erg and 1.4
  × 10<SUP>47</SUP> d <SUP>2</SUP> <SUB>1</SUB> erg, respectively,
  where d_{1} = \frac{d_{{0501}}}{1\,{kpc}} and d <SUB>0501</SUB> is the
  distance to SGR 0501+4516. These limits on GW emission from f-modes are
  an order of magnitude lower than any previous, and approach the range
  of electromagnetic energies seen in SGR giant flares for the first time.

---------------------------------------------------------
Title: Comparison Between Observation and Simulation of Magnetic
    Field Changes Associated with Flares
Authors: Li, Yixuan; Jing, J.; Fan, Y.; Wang, H.
2011SPD....42.2220L    Altcode: 2011BAAS..43S.2220L
  It has been a long-standing question in solar physics how magnetic
  field structure changes with eruptive events (e.g., flares and coronal
  mass ejections). In an effort to understand the physics behind the
  phenomena, we present the eruption-associated changes in magnetic
  inclination angle, the horizontal component of magnetic field vectors,
  the Lorentz force, the magnetic shear angle and the footpoint motion
  of the flare. The study is mainly based on the three-dimensional MHD
  simulation of the evolution of the magnetic field in the corona by
  Yuhong Fan, and compared with some observational data. The results
  suggest that the field lines at the flaring magnetic polarity inversion
  line become more horizontal near the surface, that is in agreement
  with the prediction of Hudson et al. In addition, the footpoints show
  the de-shearing and diverging motion following the converging motion
  during the flare.

---------------------------------------------------------
Title: The Rise of Active Region Flux Tubes in the Turbulent Solar
    Convective Envelope
Authors: Weber, Maria A.; Fan, Y.; Miesch, M.
2011SPD....42.0206W    Altcode: 2011BAAS..43S.0206W
  We use a thin flux tube model in a rotating spherical shell of
  turbulent convective flows to study how active region scale flux
  tubes rise buoyantly from the bottom of the convection zone to near
  the solar surface. We investigate toroidal flux tubes at the base
  of the convection zone with field strengths ranging from 15 kG to
  100 kG at initial latitudes ranging from 1 to 40 degrees. We find
  that the dynamic evolution of the flux tube changes from convection
  dominated to magnetic buoyancy dominated as the initial field strength
  increases from 15 kG to 100 kG. At 100 kG, the development of rising
  loops are mainly controlled by the growth of the magnetic buoyancy
  instability. Mean properties of the emerging loops are in agreement
  with previous thin flux tube models in the absence of convection. At
  a low field strength of 15 kG, the development of the rising loops
  are largely controlled by convective flows, and the properties of the
  emerging loops are significantly changed compared to previous results
  in the absence of convection. With convection, the rise times are
  drastically reduced (from years to months), and the loops are able to
  emerge at low latitudes. However the tilt angles of these emerging
  loops show large scatters and are not consistent with Joy's law of
  active region tilts. In order for the mean tilts of emerging loops to
  be consistent with Joy's Law, the initial field strength at the base
  of the convection zone needs to be greater than or equal to 40 kG. We
  also examine other asymmetries that develop between the leading and
  following sides of the emerging loops. Including all results, we find
  that field strengths of 40 - 50 kG produce emerging loops that best
  match the observed properties of solar active regions.

---------------------------------------------------------
Title: Publisher's Note: Search for gravitational waves associated
    with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D
    83, 042001 (2011)]
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Bennett,
   M. F.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born,
   M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer,
   J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.;
   Brown, D. A.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer,
   R. L.; Cadonati, L.; Cain, J.; Camp, J. B.; Cannizzo, J.; Cannon,
   K. C.; Cao, J.; Capano, C.; Cardenas, L.; Caudill, S.; Cavaglià, M.;
   Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji,
   S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.;
   Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Dahl, K.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.;
   Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Donovan, F.;
   Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Driggers, J.; Dueck,
   J.; Duke, I.; Dumas, J. -C.; Edgar, M.; Edwards, M.; Effler, A.;
   Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.;
   Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.;
   Forrest, C.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.; Ghosh, S.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond,
   G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Haughian, K.; Hayama, K.; Hayler, T.; Heefner, J.;
   Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.;
   Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell,
   E.; Hoyland, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.;
   Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones,
   R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.;
   Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.;
   Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov,
   E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kringel, V.;
   Krishnan, B.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci,
   P.; Lei, M.; Leindecker, N.; Leonor, I.; Lin, H.; Lindquist, P. E.;
   Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.;
   Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk,
   B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mak, C.; Mandel,
   I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz,
   J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.;
   Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez,
   D. F.; Mercer, R. A.; Merrill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moreno, G.; Mors, K.; Mossavi, K.; Mowlowry, C.;
   Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Mullavey, A.; Munch,
   J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.;
   Nishida, E.; Nishizawa, A.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ochsner, E.; Ogin, G. H.; Oldenburg, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa,
   M. A.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.;
   Peralta, C.; Perreca, A.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix,
   R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling,
   D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Raymond,
   V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.;
   Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.;
   Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sammut,
   L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría,
   L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato,
   S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton,
   G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F.; Stein, A. J.;
   Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.;
   Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung,
   M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thorne,
   K. A.; Thorne, K. S.; Thüring, A.; Titsler, C.; Tokmakov, K. V.;
   Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Turner, L.; Ugolini,
   D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck,
   C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.;
   Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner,
   A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Buchner, S.
2011PhRvD..83f9902A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for gravitational waves associated with the August
    2006 timing glitch of the Vela pulsar
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Bennett,
   M. F.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.;
   Bland, B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born,
   M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer,
   J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.;
   Brown, D. A.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer,
   R. L.; Cadonati, L.; Cain, J.; Camp, J. B.; Cannizzo, J.; Cannon,
   K. C.; Cao, J.; Capano, C.; Cardenas, L.; Caudill, S.; Cavaglià, M.;
   Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji,
   S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.;
   Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Dahl, K.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.;
   Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Donovan, F.;
   Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Driggers, J.; Dueck,
   J.; Duke, I.; Dumas, J. -C.; Edgar, M.; Edwards, M.; Effler, A.;
   Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.;
   Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.;
   Forrest, C.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise,
   A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.; Ghosh, S.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond,
   G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Harstad, E. D.; Haughian, K.; Hayama, K.; Hayler, T.; Heefner, J.;
   Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.;
   Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell,
   E.; Hoyland, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.;
   Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones,
   R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.;
   Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.;
   Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov,
   E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kringel, V.;
   Krishnan, B.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci,
   P.; Lei, M.; Leindecker, N.; Leonor, I.; Lin, H.; Lindquist, P. E.;
   Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.;
   Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk,
   B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mak, C.; Mandel,
   I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz,
   J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.;
   Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez,
   D. F.; Mercer, R. A.; Merrill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moreno, G.; Mors, K.; Mossavi, K.; Mowlowry, C.;
   Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Mullavey, A.; Munch,
   J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.;
   Nishida, E.; Nishizawa, A.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ochsner, E.; Ogin, G. H.; Oldenburg, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa,
   M. A.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.;
   Peralta, C.; Perreca, A.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix,
   R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling,
   D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Raymond,
   V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.;
   Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.;
   Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sammut,
   L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría,
   L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato,
   S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton,
   G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F.; Stein, A. J.;
   Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.;
   Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung,
   M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thorne,
   K. A.; Thorne, K. S.; Thüring, A.; Titsler, C.; Tokmakov, K. V.;
   Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Turner, L.; Ugolini,
   D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck,
   C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.;
   Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner,
   A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Buchner, S.
2011PhRvD..83d2001A    Altcode: 2010arXiv1011.1357T
  The physical mechanisms responsible for pulsar timing glitches are
  thought to excite quasinormal mode oscillations in their parent neutron
  star that couple to gravitational-wave emission. In August 2006, a
  timing glitch was observed in the radio emission of PSR B0833-45,
  the Vela pulsar. At the time of the glitch, the two colocated
  Hanford gravitational-wave detectors of the Laser Interferometer
  Gravitational-wave observatory (LIGO) were operational and taking
  data as part of the fifth LIGO science run (S5). We present the first
  direct search for the gravitational-wave emission associated with
  oscillations of the fundamental quadrupole mode excited by a pulsar
  timing glitch. No gravitational-wave detection candidate was found. We
  place Bayesian 90% confidence upper limits of 6.3×10<SUP>-21</SUP>
  to 1.4×10<SUP>-20</SUP> on the peak intrinsic strain amplitude of
  gravitational-wave ring-down signals, depending on which spherical
  harmonic mode is excited. The corresponding range of energy upper
  limits is 5.0×10<SUP>44</SUP> to 1.3×10<SUP>45</SUP>erg.

---------------------------------------------------------
Title: Dynamics of active region flux tubes in the solar convection
    zone
Authors: Fan, Y.
2011ASInC...2...81F    Altcode:
  I review recent results on modeling the buoyant rise of active region
  scale flux tubes in the solar convective envelope based on both a thin
  flux tube model incorporating the effects of giant-cell convection
  as well as direct 3D spherical-shell anelastic MHD simulations. It is
  found that the dynamic evolution of the flux tube changes from magnetic
  buoyancy dominated to convection dominated as the initial field strength
  of the flux tube varies from about 100 kG to 15 kG. Mid-range field
  strengths of about 40 - 50 kG seem to produce emerging loops that best
  match the observed properties of solar active regions. The initial
  twist of the tube cannot be too high in order for the tilt of the
  emerging loops to be dominated by the effect of the Coriolis force and
  be consistent with the mean tilt of solar active regions. Future high
  resolution (low diffusivity) global-scale MHD simulations in a rotating,
  fully convecting spherical shell representative of the solar convective
  envelope are needed to self-consistently study the formation and dynamic
  rise of active region scale flux tubes in the solar convection zone.

---------------------------------------------------------
Title: 3D Study of Solar Eruptions Using SDO and STEREO Observations
Authors: de Toma, G.; Reinard, A. A.; Gibson, S. E.; Burkepile, J.;
   Fan, Y.; Torok, T.
2010AGUFMSH23A1834D    Altcode:
  Combination of data from the recently launched SDO and the two STEREO
  spacecraft -that are now at about 80deg from the Sun-Earth direction-
  offers the unprecedented opportunity to observe simultaneously the
  region where a CME originates and the CME moving outward in the
  plane-of-the-sky. This allows us to compute trajectories for the
  CME and the associated eruptive prominence and, at the same time, to
  study the on-disk CME manifestations such as flares, dimming regions,
  and coronal waves with very high spatial and temporal resolution. We
  present examples of Earth-directed CMEs, when the CME can be traced
  from the Sun to the Earth, that take advantage of this unique satellite
  configuration.

---------------------------------------------------------
Title: The Rise of Active Region Flux Tubes in the Turbulent Solar
    Convective Envelope
Authors: Weber, M. A.; Fan, Y.; Miesch, M.
2010AGUFMSH42A..03W    Altcode:
  We use a thin flux tube model in a rotating spherical shell of
  turbulent convective flows computed separately from an existing 3D
  global simulation to study how active region scale flux tubes rise
  buoyantly from the bottom of the convection zone to near the solar
  surface. We investigate initial toroidal flux tubes at the base of
  the convection zone with field strengths ranging from 15 kG to 100 kG
  at initial latitudes ranging from 2 to 40 degrees. We find that the
  dynamic evolution of the flux tube changes from magnetic buoyancy
  dominated to convection dominated as we decrease the initial field
  strength from 100 kG to 15 kG. At 100 kG, the strong tension of the
  flux tube is able to resist the bending due to the convective flows and
  the development of Omega-shaped rising loops are mainly controlled by
  the growth of the magnetic buoyancy instability, with the strongest
  convective down drafts producing some moderate perturbations to the
  final emerging loops. The mean properties of the final emerging loops
  are in agreement with previous thin flux tube models in the absence
  of convection. On the other hand, at a low field strength of 15 kG, we
  find that the development of the rising Omega-shaped loops are largely
  controlled by the convective flows and the properties of the emerging
  loops are significantly changed compared to the results from previous
  thin flux tube models in the absence of convection. With convection,
  the rise times are drastically reduced (from years to 1-2 months),
  the loops are able to emerge at low latitudes, and the majority of the
  emerging loops show tilt angles of the proper sign (consistent with
  the active region tilts), and also show a field strength asymmetry
  that would be consistent with the observed morphological asymmetry
  of active regions. We discuss the implications of these results with
  regard to the field strength of the dynamo generated large-scale
  toroidal magnetic field at the base of the solar convection zone.

---------------------------------------------------------
Title: On the Eruption of Coronal Flux Ropes
Authors: Fan, Y.
2010AGUFMSH23B1842F    Altcode:
  We present 3D MHD simulations of the evolution of the magnetic field in
  the corona where the emergence of a twisted magnetic flux tube is driven
  at the lower boundary into a pre-existing coronal potential arcade
  field. In all the simulations, a quasi-equilibrium of a coronal flux
  rope with an underlying sigmoid-shaped current sheet is formed after
  the emergence is stopped, and subsequently the flux rope under-goes
  a quasi-static rise due to reconnections in the current sheet. It is
  found that the onset of eruption of the coronal flux rope takes place
  when the flux rope reaches a critical height at which the corresponding
  potential field declines with height at a sufficiently steep rate,
  consistent with the onset of the torus instability of the flux rope. We
  find that the modeled magnetic field evolution in the corona during
  both the earlier quasi-static rise and the subsequent eruptive phase
  can explain several basic observed features associated with eruptive
  flares and CMEs originating from regions with pre-existing X-ray
  sigmoids. We also report progress on simulations of improved realism
  where the pre-existing coronal magnetic field and the lower boundary
  driving conditions are specified based on the observed magnetic field
  evolution on the solar surface.

---------------------------------------------------------
Title: Calibration of the LIGO gravitational wave detectors in the
    fifth science run
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Adams,
   C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.;
   Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya,
   M.; Aronsson, M.; Aso, Y.; Aston, S.; Atkinson, D. E.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barnum,
   S.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Behnke, B.; Benacquista,
   M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black,
   E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock,
   O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.;
   Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.;
   Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown,
   D. A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.;
   Cadonati, L.; Cain, J.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon,
   K. C.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.; Cavaglià, M.;
   Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski,
   S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark,
   D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R.;
   Cornish, N.; Costa, C. A.; Coward, D. M.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann,
   K.; Das, K.; Daudert, B.; Davies, G.; Davis, A.; Daw, E. J.; Dayanga,
   T.; Debra, D.; Degallaix, J.; Dergachev, V.; Derosa, R.; Desalvo,
   R.; Devanka, P.; Dhurandhar, S.; di Palma, I.; Díaz, M.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.;
   Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. -C.; Eberle,
   T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel,
   T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi,
   D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan, M.; Flasch, K.;
   Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei,
   M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.;
   Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.;
   Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.;
   Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.;
   Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.;
   Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A. W.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai,
   T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.;
   Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.;
   Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.;
   Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.;
   Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.;
   Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kullman,
   J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka,
   N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li, J.; Lin,
   H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu,
   P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück, H.; Lundgren,
   A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.;
   Mak, C.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Maros, E.;
   Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe,
   B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.;
   Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C. M.; Mueller, G.;
   Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray,
   P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa,
   A.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg,
   R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.;
   Pankow, C.; Papa, M. A.; Pareja, M.; Patel, P.; Pathak, D.; Pedraza,
   M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Pickenpack, M.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione,
   F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.;
   Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radke, T.;
   Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Raymond, V.;
   Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles,
   K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.;
   Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.;
   Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi,
   F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sathyaprakash, B. S.;
   Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling,
   R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.;
   Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu,
   B.; Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.;
   Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner,
   D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne,
   K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov,
   K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.;
   Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.;
   Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel,
   A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.;
   Veltkamp, C.; Villar, A. E.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.;
   Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto,
   K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Zanolin, M.; Zhang,
   L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration
2010NIMPA.624..223A    Altcode: 2010arXiv1007.3973L
  The Laser Interferometer Gravitational Wave Observatory (LIGO) is a
  network of three detectors built to detect local perturbations in the
  space-time metric from astrophysical sources. These detectors, two in
  Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot
  Michelson interferometers. In their fifth science run (S5), between
  November 2005 and October 2007, these detectors accumulated one year of
  triple coincident data while operating at their designed sensitivity. In
  this paper, we describe the calibration of the instruments in the S5
  data set, including measurement techniques and uncertainty estimation.

---------------------------------------------------------
Title: An Estimate of the Detectability of Rising Flux Tubes
Authors: Birch, A. C.; Braun, D. C.; Fan, Y.
2010ApJ...723L.190B    Altcode:
  The physics of the formation of magnetic active regions (ARs) is one
  of the most important problems in solar physics. One main class of
  theories suggests that ARs are the result of magnetic flux that rises
  from the tachocline. Time-distance helioseismology, which is based on
  measurements of wave propagation, promises to allow the study of the
  subsurface behavior of this magnetic flux. Here, we use a model for a
  buoyant magnetic flux concentration together with the ray approximation
  to show that the dominant effect on the wave propagation is expected
  to be from the roughly 100 m s<SUP>-1</SUP> retrograde flow associated
  with the rising flux. Using a B-spline-based method for carrying out
  inversions of wave travel times for flows in spherical geometry, we
  show that at 3 days before emergence the detection of this retrograde
  flow at a depth of 30 Mm should be possible with a signal-to-noise
  level of about 8 with a sample of 150 emerging ARs.

---------------------------------------------------------
Title: Search for gravitational waves from compact binary coalescence
    in LIGO and Virgo data from S5 and VSR1
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia,
   T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson,
   W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun,
   K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi,
   M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.;
   Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya,
   T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork,
   R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini,
   S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.;
   Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain,
   J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo,
   J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.;
   Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.;
   Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.;
   Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day,
   R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete,
   M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar,
   S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.;
   di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.;
   Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. -C.; Eberle, T.;
   Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.;
   Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan,
   Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante,
   I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan,
   M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti,
   M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin,
   E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras,
   S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie,
   C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer,
   D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau,
   J. -F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.;
   Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge,
   K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King,
   P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.;
   Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.;
   Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy,
   N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück,
   H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.;
   Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt,
   R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.;
   Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak,
   D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.;
   Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka,
   M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi,
   M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson,
   C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.;
   Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky,
   M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas,
   B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.;
   Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.;
   Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.;
   Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley,
   A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.;
   Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith,
   N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein,
   A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino,
   A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton,
   P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.;
   Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.;
   Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner,
   L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente,
   G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.;
   van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin,
   I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu,
   P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zweizig, J.
2010PhRvD..82j2001A    Altcode: 2010arXiv1005.4655T
  We report the results of the first search for gravitational waves from
  compact binary coalescence using data from the Laser Interferometer
  Gravitational-Wave Observatory and Virgo detectors. Five months of data
  were collected during the Laser Interferometer Gravitational-Wave
  Observatory’s S5 and Virgo’s VSR1 science runs. The search
  focused on signals from binary mergers with a total mass between 2
  and 35M<SUB>⊙</SUB>. No gravitational waves are identified. The
  cumulative 90%-confidence upper limits on the rate of compact
  binary coalescence are calculated for nonspinning binary neutron
  stars, black hole-neutron star systems, and binary black holes to
  be 8.7×10<SUP>-3</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  2.2×10<SUP>-3</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  and 4.4×10<SUP>-4</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  respectively, where L<SUB>10</SUB> is 10<SUP>10</SUP> times the blue
  solar luminosity. These upper limits are compared with astrophysical
  expectations.

---------------------------------------------------------
Title: First Search for Gravitational Waves from the Youngest Known
    Neutron Star
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Adams,
   C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.;
   Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya,
   M.; Aronsson, M.; Aso, Y.; Aston, S.; Atkinson, D. E.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.;
   Barnum, S.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Behnke,
   B.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.;
   Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas,
   R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born, M.;
   Bose, S.; Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks,
   A. F.; Brown, D. A.; Buonanno, A.; Burguet-Castell, J.; Burmeister,
   O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo,
   J.; Cannon, K. C.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.;
   Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Costa, C. A.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Dahl, K.; Danilishin, S. L.; Dannenberg,
   R.; Danzmann, K.; Das, K.; Daudert, B.; Davies, G.; Davis, A.; Daw,
   E. J.; Dayanga, T.; DeBra, D.; Degallaix, J.; Dergachev, V.; DeRosa,
   R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Palma, I.; Díaz,
   M.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas,
   E. S. D.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. -C.;
   Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel,
   R.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Farr,
   B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan,
   M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.;
   Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.;
   Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Garofoli, J. A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis,
   S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.;
   Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall,
   P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.;
   Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt,
   K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.;
   Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.;
   Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner,
   J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells,
   W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.;
   Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.;
   Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kullman,
   J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka,
   N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li, J.; Lin,
   H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu,
   P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren,
   A.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.;
   Mak, C.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Maros, E.;
   Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; MowLowry, C.; Mueller, G.;
   Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray,
   P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa,
   A.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg,
   R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan,
   Y.; Pankow, C.; Papa, M. A.; Pareja, M.; Patel, P.; Pedraza, M.;
   Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Pickenpack, M.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione,
   F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.;
   Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radke, T.;
   Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Raymond, V.;
   Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles,
   K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.;
   Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.;
   Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi,
   F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale,
   V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sathyaprakash, B. S.;
   Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers,
   D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.;
   Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits,
   F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski,
   S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer,
   A.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.;
   Sutton, P. J.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor,
   J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane,
   E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie,
   C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.;
   Vahlbruch, H.; Vaishnav, B.; Vallisneri, M.; Van Den Broeck, C.; van
   der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward,
   R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler,
   W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.;
   Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida,
   S.; Yu, P. P.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration
2010ApJ...722.1504A    Altcode: 2010arXiv1006.2535L
  We present a search for periodic gravitational waves from the neutron
  star in the supernova remnant Cassiopeia A. The search coherently
  analyzes data in a 12 day interval taken from the fifth science run of
  the Laser Interferometer Gravitational-Wave Observatory. It searches
  gravitational-wave frequencies from 100 to 300 Hz and covers a wide
  range of first and second frequency derivatives appropriate for
  the age of the remnant and for different spin-down mechanisms. No
  gravitational-wave signal was detected. Within the range of search
  frequencies, we set 95% confidence upper limits of (0.7-1.2) ×
  10<SUP>-24</SUP> on the intrinsic gravitational-wave strain, (0.4-4)
  × 10<SUP>-4</SUP> on the equatorial ellipticity of the neutron star,
  and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron
  star. These direct upper limits beat indirect limits derived from
  energy conservation and enter the range of theoretical predictions
  involving crystalline exotic matter or runaway r-modes. This paper is
  also the first gravitational-wave search to present upper limits on
  the r-mode amplitude.

---------------------------------------------------------
Title: TOPICAL REVIEW:  Predictions for the rates of compact binary
    coalescences observable by ground-based gravitational-wave detectors
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.;
   Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.;
   Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.;
   Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.;
   Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson,
   D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker,
   M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser,
   J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.;
   Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya,
   T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.;
   Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.;
   Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.;
   Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna,
   E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.;
   Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin,
   E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua,
   S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva,
   F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.;
   Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi,
   A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.;
   D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert,
   B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga,
   T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev,
   V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore,
   L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio,
   A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.;
   Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.;
   Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.;
   Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann,
   H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori,
   I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.;
   Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.;
   Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.;
   Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda,
   P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme,
   G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna,
   C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng,
   I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.;
   Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland,
   D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.;
   King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov,
   V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.;
   Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy,
   N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück,
   H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mackowski, J. M.;
   Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.;
   Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera,
   F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg,
   R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.;
   Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.;
   Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa,
   M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.;
   Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack,
   M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin,
   M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.;
   Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.;
   Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabaste, O.;
   Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.;
   Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed,
   T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson,
   C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rogstad, S.;
   Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata,
   S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.;
   Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield,
   R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott,
   S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer,
   A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler,
   C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie,
   C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer,
   J.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.;
   Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.;
   Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels,
   P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.;
   White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams,
   L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman,
   A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto,
   H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert,
   M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2010CQGra..27q3001A    Altcode: 2010arXiv1003.2480L
  We present an up-to-date, comprehensive summary of the rates for all
  types of compact binary coalescence sources detectable by the initial
  and advanced versions of the ground-based gravitational-wave detectors
  LIGO and Virgo. Astrophysical estimates for compact-binary coalescence
  rates depend on a number of assumptions and unknown model parameters and
  are still uncertain. The most confident among these estimates are the
  rate predictions for coalescing binary neutron stars which are based
  on extrapolations from observed binary pulsars in our galaxy. These
  yield a likely coalescence rate of 100 Myr<SUP>-1</SUP> per Milky Way
  Equivalent Galaxy (MWEG), although the rate could plausibly range
  from 1 Myr<SUP>-1</SUP> MWEG<SUP>-1</SUP> to 1000 Myr<SUP>-1</SUP>
  MWEG<SUP>-1</SUP> (Kalogera et al 2004 Astrophys. J. 601 L179;
  Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert
  coalescence rates into detection rates based on data from the LIGO S5
  and Virgo VSR2 science runs and projected sensitivities for our advanced
  detectors. Using the detector sensitivities derived from these data,
  we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo
  interferometers, with a plausible range between 2 × 10<SUP>-4</SUP>
  and 0.2 per year. The likely binary neutron-star detection rate for
  the Advanced LIGO-Virgo network increases to 40 events per year,
  with a range between 0.4 and 400 per year.

---------------------------------------------------------
Title: On the Eruption of Coronal Flux Ropes
Authors: Fan, Y.
2010ApJ...719..728F    Altcode:
  We present three-dimensional MHD simulations of the evolution of
  the magnetic field in the corona where the emergence of a twisted
  magnetic flux tube is driven at the lower boundary into a pre-existing
  coronal potential arcade field. Through a sequence of simulations in
  which we vary the amount of twisted flux transported into the corona
  before the emergence is stopped, we investigate the conditions that
  lead to a dynamic eruption of the resulting coronal flux rope. It is
  found that the critical condition for the onset of eruption is for
  the center of the flux rope to reach a critical height at which the
  corresponding potential field declines with height at a sufficiently
  steep rate, consistent with the onset of the torus instability of the
  flux rope. In some cases, immediately after the emergence is stopped,
  the coronal flux rope first settles into a quasi-static rise with an
  underlying sigmoid-shaped current layer developing. Preferential heating
  of field lines going through this current layer may give rise to the
  observed quiescent X-ray sigmoid loops before eruption. Reconnections
  in the current layer during the initial quasi-static stage is found
  to add detached flux to the coronal flux rope, allowing it to rise
  quasi-statically to the critical height and dynamic eruption of the
  flux rope then ensues. By identifying field lines whose tops are
  in the most intense part of the current layer during the eruption,
  we deduce the evolution and morphology of the post-flare X-ray loops
  and the flare ribbons at their footpoints.

---------------------------------------------------------
Title: Synthetic aperture controlled source electromagnetics
Authors: Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.; Singer, J.;
   Sheiman, J.; Rosenquist, M.
2010GeoRL..3713305F    Altcode:
  Controlled-source electromagnetics (CSEM) has been used as a de-risking
  tool in the hydrocarbon exploration industry. Although there have been
  successful applications of CSEM, this technique is still not widely used
  in the industry because the limited types of hydrocarbon reservoirs
  CSEM can detect. In this paper, we apply the concept of synthetic
  aperture to CSEM data. Synthetic aperture allows us to design sources
  with specific radiation patterns for different purposes. The ability to
  detect reservoirs is dramatically increased after forming an appropriate
  synthetic aperture antenna. Consequently, the types of hydrocarbon
  reservoirs that CSEM can detect are significantly extended. Because
  synthetic apertures are constructed as a data processing step, there
  is no additional cost for the CSEM acquisition. Synthetic aperture has
  potential for simplifying and reducing the cost of CSEM acquisition. We
  show a data example that illustrates the increased sensitivity obtained
  by applying synthetic aperture CSEM source.

---------------------------------------------------------
Title: Search for Gravitational-wave Inspiral Signals Associated
    with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First
    Science Run
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese,
   F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron,
   E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci,
   F.; Aoudia, S.; Arain, M. A.; Araya, M.; Arun, K. G.; Aso, Y.;
   Aston, S.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker,
   P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.;
   Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M. G.;
   Belletoile, A.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.;
   Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas,
   R.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.;
   Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.;
   Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born,
   M.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.;
   Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.; Buonanno,
   A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp,
   J. B.; Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.;
   Capano, C. D.; Carbognani, F.; Cardenas, L.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton,
   J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla,
   A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish,
   N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.;
   del Prete, M.; Dergachev, V.; DeSalvo, R.; Dhurandhar, S.; Di Fiore,
   L.; Di Lieto, A.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.;
   Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J. -C.;
   Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel, T.; Evans, M.;
   Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.;
   Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.;
   Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti,
   M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.;
   Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.;
   Giazotto, A.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.;
   Gouaty, R.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson,
   J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.;
   Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.;
   Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell,
   E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Ingram, D. R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; Kim, H.; King, P. J.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda,
   S.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.;
   Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Lei, M.;
   Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li, T. G. F.; Lin,
   H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.;
   Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk,
   B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak,
   C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Mehmet,
   M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.;
   Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.;
   Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino,
   Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors,
   K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry,
   C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.;
   Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri,
   I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Ochsner, E.;
   O'Dell, J.; Ogin, G. H.; Oldenburg, R.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.;
   Papa, M. A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.;
   Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn,
   S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack,
   M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin,
   M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.;
   Prato, M.; Predoi, V.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.;
   Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau,
   T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.;
   Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson,
   C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.;
   Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Salemi, F.;
   Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sassolas, B.;
   Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.;
   Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.;
   Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.;
   Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.;
   Sigg, D.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, A. J.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.;
   Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.;
   Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels,
   B.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres,
   C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias,
   M.; Trummer, J.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.;
   Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van der Sluys, M. V.; Vass, S.; Vaulin, R.;
   Vavoulidis, M.; Vecchio, A.; Vedovato, G.; van Veggel, A. A.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.;
   Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey,
   D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang,
   Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration
2010ApJ...715.1453A    Altcode: 2010arXiv1001.0165T; 2010arXiv1001.0165L
  Progenitor scenarios for short gamma-ray bursts (short GRBs)
  include coalescenses of two neutron stars or a neutron star and
  black hole, which would necessarily be accompanied by the emission
  of strong gravitational waves. We present a search for these known
  gravitational-wave signatures in temporal and directional coincidence
  with 22 GRBs that had sufficient gravitational-wave data available
  in multiple instruments during LIGO's fifth science run, S5, and
  Virgo's first science run, VSR1. We find no statistically significant
  gravitational-wave candidates within a [ - 5, + 1) s window around
  the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test,
  we find no evidence for an excess of weak gravitational-wave signals
  in our sample of GRBs. We exclude neutron star-black hole progenitors
  to a median 90% confidence exclusion distance of 6.7 Mpc.

---------------------------------------------------------
Title: Search For Gravitational-wave Bursts Associated with Gamma-ray
    Bursts using Data from LIGO Science Run 5 and Virgo Science Run 1
Authors: Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya,
   M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black,
   E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara,
   C.; Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.;
   Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brummit, A.;
   Brunet, G.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.;
   Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Cannizzo,
   J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani, F.; Cardenas, L.;
   Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak,
   T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia,
   E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.; Cornish,
   N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.;
   Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.;
   Di Lieto, A.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz,
   A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever,
   R. W. P.; Dueck, J.; Duke, I.; Dumas, J. -C.; Dwyer, J. G.; Echols,
   C.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Espinoza, E.;
   Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas,
   Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn,
   L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.;
   Fotopoulos, N.; Fournier, J. -D.; Franc, J.; Franzen, A.; Frasca,
   S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey,
   R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi,
   V.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin,
   E.; Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.;
   Gorodetsky, M. L.; Goeßzetler, S.; Goßler, S.; Gouaty, R.; Granata,
   M.; Granata, V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grimaldi, F.; Grosso, R.;
   Grote, H.; Grunewald, S.; Guenther, M.; Guidi, G.; Gustafson, E. K.;
   Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.;
   Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad,
   E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello,
   P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.;
   Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland,
   D.; Huet, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.;
   Ito, M.; Ivanov, A.; Jaranowski, P.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda,
   S.; Kowalska, I.; Kozak, D.; Krishnan, B.; Królak, A.; Kumar, R.;
   Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini,
   A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre,
   N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.;
   Machenschalk, B.; MacInnis, M.; Mackowski, J. -M.; Mageswaran, M.;
   Mailand, K.; Majorana, E.; Man, N.; Mandel, I.; Mandic, V.; Mantovani,
   M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.;
   McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell,
   G.; Menéndez, D. F.; Menzinger, F.; Mercer, R. A.; Meshkov, S.;
   Messenger, C.; Meyer, M. S.; Michel, C.; Milano, L.; Miller, J.;
   Minelli, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia,
   A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.;
   Mours, B.; MowLowry, C.; Mueller, G.; Muhammad, D.; Mukherjee, S.;
   Mukhopadhyay, H.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray,
   P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Neri, I.; Newton,
   G.; Nishizawa, A.; Nocera, F.; Numata, K.; Ochsner, E.; O'Dell, J.;
   Ogin, G. H.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pagliaroli, G.; Palomba, C.; Pan,
   Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameshwaraiah, V.;
   Pardi, S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel,
   P.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pietka, M.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione,
   F.; Prato, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.;
   Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabaste, O.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.;
   Rainer, N.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Re, V.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Ricci, F.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson,
   N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy,
   S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie,
   J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Russell, P.; Ryan, K.; Sakata, S.; Salemi, F.; Sancho de la Jordana,
   L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin,
   P.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shapiro, B.;
   Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.;
   Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.;
   Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.; Swinkels, B.; Szokoly,
   G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.;
   Taylor, J. R.; Taylor, R.; Terenzi, R.; Thacker, J.; Thorne, K. A.;
   Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Toncelli, A.; Tonelli,
   M.; Torres, C.; Torrie, C.; Tournefier, E.; Travasso, F.; Traylor,
   G.; Trias, M.; Trummer, J.; Ugolini, D.; Ulmen, J.; Urbanek, K.;
   Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.;
   Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van
   Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P.; Veltkamp, C.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J. -Y.; Vocca, H.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Was, M.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yvert, M.; Zanolin, M.; Zhang,
   J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; zur Mühlen, H.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2010ApJ...715.1438A    Altcode: 2009arXiv0908.3824L
  We present the results of a search for gravitational-wave bursts
  (GWBs) associated with 137 gamma-ray bursts (GRBs) that were
  detected by satellite-based gamma-ray experiments during the fifth
  LIGO science run and first Virgo science run. The data used in this
  analysis were collected from 2005 November 4 to 2007 October 1, and
  most of the GRB triggers were from the Swift satellite. The search
  uses a coherent network analysis method that takes into account the
  different locations and orientations of the interferometers at the
  three LIGO-Virgo sites. We find no evidence for GWB signals associated
  with this sample of GRBs. Using simulated short-duration (&lt;1 s)
  waveforms, we set upper limits on the amplitude of gravitational
  waves associated with each GRB. We also place lower bounds on the
  distance to each GRB under the assumption of a fixed energy emission in
  gravitational waves, with a median limit of D ~ 12 Mpc(E <SUP>iso</SUP>
  <SUB>GW</SUB>/0.01 M <SUB>sun</SUB> c <SUP>2</SUP>)<SUP>1/2</SUP> for
  emission at frequencies around 150 Hz, where the LIGO-Virgo detector
  network has best sensitivity. We present astrophysical interpretations
  and implications of these results, and prospects for corresponding
  searches during future LIGO-Virgo runs.

---------------------------------------------------------
Title: Developing Physics-Based Procedures for Local Helioseismic
    Probing of Sunspots and Magnetic Regions
Authors: Birch, Aaron; Braun, D. C.; Crouch, A.; Rempel, M.; Fan,
   Y.; Centeno, R.; Toomre, J.; Haber, D.; Hindman, B.; Featherstone,
   N.; Duvall, T., Jr.; Jackiewicz, J.; Thompson, M.; Stein, R.; Gizon,
   L.; Cameron, R.; Saidi, Y.; Hanasoge, S.; Burston, R.; Schunker, H.;
   Moradi, H.
2010AAS...21630805B    Altcode:
  We have initiated a project to test and improve the local helioseismic
  techniques of time-distance and ring-diagram analysis. Our goals are
  to develop and implement physics-based methods that will (1) enable the
  reliable determinations of subsurface flow, magnetic field, and thermal
  structure in regions of strong magnetic fields and (2) be quantitatively
  tested with realistic solar magnetoconvection simulations in the
  presence of sunspot-like magnetic fields. We are proceeding through a
  combination of improvements in local helioseismic measurements, forward
  modeling of the helioseismic wavefield, kernel computations, inversions,
  and validation through numerical simulations. As improvements over
  existing techniques are made they will be applied to the SDO/HMI
  observations. This work is funded through the the NASA Heliophysics
  Science Division through the Solar Dynamics Observatory (SDO) Science
  Center program.

---------------------------------------------------------
Title: All-sky search for gravitational-wave bursts in the first
    joint LIGO-GEO-Virgo run
Authors: Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese,
   F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron,
   E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.;
   Arain, M. A.; Araya, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin,
   G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.;
   Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.;
   Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile,
   A.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.;
   Bilenko, I. A.; Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard,
   M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland,
   B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.;
   Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.;
   Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown,
   D. A.; Budzyński, R.; Bulik, T.; Bullington, A.; Bulten, H. J.;
   Buonanno, A.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.;
   Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.;
   Campagna, E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.;
   Capano, C. D.; Carbognani, F.; Cardenas, L.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen,
   N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton,
   J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla,
   A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish,
   N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.;
   Del Prete, M.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; di Fiore,
   L.; di Lieto, A.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.;
   Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J. -C.;
   Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel, T.; Evans, M.;
   Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.;
   Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.;
   Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti,
   M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.;
   Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.;
   Giazotto, A.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.;
   Gouaty, R.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson,
   J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Hayau, J. -F.; Hayler, T.; Heefner, J.; Heitmann,
   H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild,
   S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.;
   Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; Kim, H.; King, P. J.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R.; Koranda, S.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.;
   Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci,
   P.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.; Letendre, N.; Li,
   T. G. F.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren,
   A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.;
   Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic,
   V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.;
   Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.; Martelli, F.;
   Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.;
   Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.;
   Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez,
   D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer,
   M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.;
   Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors,
   K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry,
   C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.;
   Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri,
   I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Ochsner, E.;
   O'Dell, J.; Ogin, G. H.; Oldenburg, R.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.;
   Paoletti, F.; Papa, M. A.; Pardi, S.; Parisi, M.; Pasqualetti, A.;
   Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.;
   Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.;
   Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani,
   R.; Postiglione, F.; Prato, M.; Principe, M.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.;
   Raab, F. J.; Rabeling, D. S.; Rabeling, D. S.; Radkins, H.; Raffai, P.;
   Raics, Z.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Re, V.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.;
   Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.;
   Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Ryan, K.; Sakata, S.; Salemi, F.; Sammut, L.; Sancho de La Jordana,
   L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.;
   Saraf, S.; Sarin, P.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel,
   R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott,
   J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Sentenac, D.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton,
   G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.;
   Smith, N. D.; Somiya, K.; Sorazu, B.; Sperandio, L.; Stein, A. J.;
   Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.;
   Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly,
   G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Titsler,
   C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie,
   C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer,
   J.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.;
   Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der
   Putten, S.; van der Sluys, M. V.; Vass, S.; Vaulin, R.; Vavoulidis,
   M.; Vecchio, A.; Vedovato, G.; van Veggel, A. A.; Veitch, J.; Veitch,
   P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar,
   A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West,
   M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.;
   Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yvert,
   M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2010PhRvD..81j2001A    Altcode: 2010arXiv1002.1036T
  We present results from an all-sky search for unmodeled
  gravitational-wave bursts in the data collected by the LIGO, GEO
  600 and Virgo detectors between November 2006 and October 2007. The
  search is performed by three different analysis algorithms over
  the frequency band 50-6000 Hz. Data are analyzed for times with at
  least two of the four LIGO-Virgo detectors in coincident operation,
  with a total live time of 266 days. No events produced by the search
  algorithms survive the selection cuts. We set a frequentist upper limit
  on the rate of gravitational-wave bursts impinging on our network of
  detectors. When combined with the previous LIGO search of the data
  collected between November 2005 and November 2006, the upper limit on
  the rate of detectable gravitational-wave bursts in the 64-2048 Hz band
  is 2.0 events per year at 90% confidence. We also present event rate
  versus strength exclusion plots for several types of plausible burst
  waveforms. The sensitivity of the combined search is expressed in terms
  of the root-sum-squared strain amplitude for a variety of simulated
  waveforms and lies in the range 6×10<SUP>-22</SUP>Hz<SUP>-1/2</SUP>
  to 2×10<SUP>-20</SUP>Hz<SUP>-1/2</SUP>. This is the first untriggered
  burst search to use data from the LIGO and Virgo detectors together,
  and the most sensitive untriggered burst search performed so far.

---------------------------------------------------------
Title: Searches for Gravitational Waves from Known Pulsars with
    Science Run 5 LIGO Data
Authors: Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya,
   M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black,
   E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara,
   C.; Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.;
   Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Van Den Broeck, C.; Brooks, A. F.; Brown,
   D. A.; Brummit, A.; Brunet, G.; Budzyński, R.; Bulik, T.; Bullington,
   A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna,
   E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani,
   F.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen,
   N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva,
   F.; Coccia, E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.;
   Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.;
   Cornish, N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio,
   S.; Danzmann, K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.;
   Davies, G.; Daw, E. J.; Day, R.; De Rosa, R.; DeBra, D.; Degallaix,
   J.; del Prete, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar,
   S.; Di Fiore, L.; Di Lieto, A.; Emilio, M. Di Paolo; Di Virgilio,
   A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.;
   Drago, M.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J. -C.; Dwyer,
   J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.;
   Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas,
   Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn,
   L. S.; Fiori, I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.;
   Fotopoulos, N.; Fournier, J. -D.; Franc, J.; Franzen, A.; Frasca,
   S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey,
   R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.;
   Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.;
   Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin, L. M.; González,
   G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Granata, M.; Granata,
   V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Greverie, C.; Grimaldi, F.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guenther, M.; Guidi, G.; Gustafson, E. K.; Gustafson,
   R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.;
   Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng,
   I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.;
   Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Huet,
   D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.;
   Ivanov, A.; Jaranowski, P.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Sancho de la Jordana, L.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krishnan, B.; Królak, A.;
   Kumar, R.; Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.;
   Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti,
   A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mackowski, J. -M.;
   Mageswaran, M.; Mailand, K.; Majorana, E.; Man, N.; Mandel, I.;
   Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Menzinger, F.;
   Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Michel,
   C.; Milano, L.; Miller, J.; Minelli, J.; Minenkov, Y.; Mino, Y.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.;
   Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreau, J.;
   Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca,
   S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry, C.; Mueller,
   G.; Muhammad, D.; zur Mühlen, H.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Myers,
   E.; Myers, J.; Nash, T.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa,
   A.; Nocera, F.; Numata, K.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.;
   Overmier, H.; Owen, B. J.; Pagliaroli, G.; Palomba, C.; Pan, Y.;
   Pankow, C.; Paoletti, F.; Papa, M. A.; Parameshwaraiah, V.; Pardi,
   S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.;
   Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pietka, M.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione,
   F.; Prato, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.;
   Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabaste, O.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.;
   Rainer, N.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Re, V.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Ricci, F.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson,
   N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy,
   S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Russell,
   P.; Ryan, K.; Sakata, S.; Salemi, F.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sassolas, B.; Sathyaprakash,
   B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov,
   P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz,
   B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle,
   A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley,
   A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen,
   B. J. J.; Slutsky, J.; van der Sluys, M. V.; Smith, J. R.; Smith,
   M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.;
   Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Terenzi, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.;
   Thüring, A.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres,
   C.; Torrie, C.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias,
   M.; Trummer, J.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.;
   Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van der Putten,
   S.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.;
   van Veggel, A. A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J. -Y.; Vocca, H.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Was, M.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams,
   L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.;
   Yamamoto, H.; Yan, Z.; Yoshida, S.; Yvert, M.; Zanolin, M.; Zhang, J.;
   Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Bégin,
   S.; Corongiu, A.; D'Amico, N.; Freire, P. C. C.; Hessels, J. W. T.;
   Hobbs, G. B.; Kramer, M.; Lyne, A. G.; Manchester, R. N.; Marshall,
   F. E.; Middleditch, J.; Possenti, A.; Ransom, S. M.; Stairs, I. H.;
   Stappers, B.; LIGO Scientific Collaboration; Virgo Collaboration
2010ApJ...713..671A    Altcode: 2009arXiv0909.3583T
  We present a search for gravitational waves from 116 known millisecond
  and young pulsars using data from the fifth science run of the LIGO
  detectors. For this search, ephemerides overlapping the run period
  were obtained for all pulsars using radio and X-ray observations. We
  demonstrate an updated search method that allows for small uncertainties
  in the pulsar phase parameters to be included in the search. We report
  no signal detection from any of the targets and therefore interpret our
  results as upper limits on the gravitational wave signal strength. The
  most interesting limits are those for young pulsars. We present updated
  limits on gravitational radiation from the Crab pulsar, where the
  measured limit is now a factor of 7 below the spin-down limit. This
  limits the power radiated via gravitational waves to be less than ~2%
  of the available spin-down power. For the X-ray pulsar J0537 - 6910 we
  reach the spin-down limit under the assumption that any gravitational
  wave signal from it stays phase locked to the X-ray pulses over timing
  glitches, and for pulsars J1913+1011 and J1952+3252 we are only a
  factor of a few above the spin-down limit. Of the recycled millisecond
  pulsars, several of the measured upper limits are only about an order
  of magnitude above their spin-down limits. For these our best (lowest)
  upper limit on gravitational wave amplitude is 2.3 × 10<SUP>-26</SUP>
  for J1603 - 7202 and our best (lowest) limit on the inferred pulsar
  ellipticity is 7.0 × 10<SUP>-8</SUP> for J2124 - 3358.

---------------------------------------------------------
Title: Sensitivity to Gravitational Waves from Compact Binary
    Coalescences Achieved during LIGO's Fifth and Virgo's First Science
    Run
Authors: The LIGO Scientific Collaboration; the Virgo Collaboration;
   Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M; Accadia, T.;
   Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen,
   G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.;
   Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.;
   Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker,
   M. G.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge,
   N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu,
   F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.;
   Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau,
   J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik,
   T.; Bulten, H. J.; Buonanno, A.; Burguet--Castell, J.; Burmeister,
   O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni,
   E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon,
   K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton,
   P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.;
   Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark,
   J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.;
   Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda,
   C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. -P.; Coward,
   D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise,
   A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl,
   K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.;
   Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.;
   Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.;
   Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.;
   Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.;
   Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas,
   J. -C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.;
   Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.;
   Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante,
   I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan,
   M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.;
   Fournier, J. -D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich,
   D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni,
   L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.;
   Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González,
   G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi,
   G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam,
   J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.;
   Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.;
   Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge,
   K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh--Dinh, T.;
   Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.;
   King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov,
   V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.;
   Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.;
   Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.;
   Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy,
   N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.;
   Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lucianetti, A.; Lück,
   H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mackowski, J. M.;
   Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Man, N.; Mandel,
   I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.;
   Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.;
   Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.;
   Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov,
   S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.;
   Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.;
   Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado,
   N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.;
   Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.;
   Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash,
   T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.;
   Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.;
   Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page,
   A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow,
   C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza,
   M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti,
   G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard,
   L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani,
   R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.;
   Rabaste, O.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.;
   Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed,
   C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.;
   Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.;
   Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.;
   Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata,
   S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.;
   Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf,
   S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield,
   R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott,
   S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer,
   A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.;
   Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin,
   S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.;
   Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler,
   C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie,
   C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer,
   J.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.;
   Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Villar, A.; Vinet, J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was,
   M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen,
   S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin,
   I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu,
   P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zweizig, J.; Belczynski, K.
2010arXiv1003.2481T    Altcode: 2010arXiv1003.2481L
  We summarize the sensitivity achieved by the LIGO and Virgo
  gravitational wave detectors for compact binary coalescence (CBC)
  searches during LIGO's fifth science run and Virgo's first science
  run. We present noise spectral density curves for each of the
  four detectors that operated during these science runs which are
  representative of the typical performance achieved by the detectors
  for CBC searches. These spectra are intended for release to the public
  as a summary of detector performance for CBC searches during these
  science runs.

---------------------------------------------------------
Title: On the Origin of the Asymmetric Helicity Injection in Emerging
    Active Regions
Authors: Fan, Y.; Alexander, D.; Tian, L.
2009ApJ...707..604F    Altcode:
  To explore the possible causes of the observed asymmetric helicity flux
  in emerging active regions between the leading and following polarities
  reported in a recent study by Tian &amp; Alexander, we examine the
  subsurface evolution of buoyantly rising Ω-shaped flux tubes using
  three-dimensional, spherical-shell anelastic MHD simulations. We find
  that due to the asymmetric stretching of the Ω-shaped tube by the
  Coriolis force, the leading side of the emerging tube has a greater
  field strength, is more buoyant, and remains more cohesive compared
  to the following side. As a result, the magnetic field lines in the
  leading leg show more coherent values of local twist α ≡ (∇ × B)
  · B/B <SUP>2</SUP>, whereas the values in the following leg show large
  fluctuations and are of mixed sign. On average, however, the field
  lines in the leading leg do not show a systematically greater mean
  twist compared to the following leg. Due to the higher rise velocity
  of the leading leg, the upward helicity flux through a horizontal
  cross section at each depth in the upper half of the convection zone
  is significantly greater in the leading polarity region than that in
  the following leg. This may contribute to the observed asymmetric
  helicity flux in emerging active regions. Furthermore, based on a
  simplified model of active region flux emergence into the corona by
  Longcope &amp; Welsch, we show that a stronger field strength in the
  leading tube can result in a faster rotation of the leading polarity
  sunspot driven by torsional Alfvén waves during flux emergence into
  the corona, contributing to a greater helicity injection rate in the
  leading polarity of an emerging active region.

---------------------------------------------------------
Title: Modeling the Subsurface Evolution of Active-Region Flux Tubes
Authors: Fan, Y.
2009ASPC..416..489F    Altcode: 2009arXiv0901.1822F
  I present results from a set of 3-D spherical-shell MHD simulations
  of the buoyant rise of active region flux tubes in the solar interior
  that put new constraints on the initial twist of the subsurface tubes
  in order for them to emerge with tilt angles consistent with the
  observed Joy's law for the mean tilt of solar active regions. Due to
  asymmetric stretching of the Ω-shaped tube by the Coriolis force, a
  field strength asymmetry develops with the leading side having a greater
  field strength and thus being more cohesive compared to the following
  side. Furthermore, the magnetic flux in the leading leg shows more
  coherent values of local twist α ≡ &lt;STRONG&gt;J&lt;/STRONG&gt;
  ṡ &lt;STRONG&gt;B&lt;/STRONG&gt; / B<SUP>2</SUP>, whereas the values
  in the following leg show large fluctuations and are of mixed signs.

---------------------------------------------------------
Title: Erratum: All-sky search for periodic gravitational waves in
    LIGO S4 data [Phys. Rev. D 77, 022001 (2008)]
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski,
   A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey,
   E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini,
   F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.;
   Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton,
   T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.;
   Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.;
   Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.;
   Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.;
   Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.;
   Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran,
   M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.;
   Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone,
   L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire,
   S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.;
   Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.;
   Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.;
   Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.;
   Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.;
   Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov,
   M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..80l9904A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ERRATUM: "Beating the Spin-Down Limit on
    Gravitational Wave Emission from the Crab Pulsar" <A
    href="bib_query\?2008ApJ...683L..45A">(2008, ApJ, 683, L45)</A>
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.;
   Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton,
   M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.;
   Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.;
   Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.;
   Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne,
   D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.;
   Dalrymple, J.; Danzmann, K.; Davies, G.; De Bra, D.; Degallaix, J.;
   Degree, M.; Dergachev, V.; Desai, S.; De Salvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes,
   E. E.; Drever, R. W. P.; Duke, I.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer,
   M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.;
   Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther,
   M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama,
   K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall,
   A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough,
   J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.;
   Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; Mac Innis, M.; Mageswaran,
   M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre,
   G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.;
   Mossavi, K.; Lowry, C. Mow; Mueller, G.; Mukherjee, S.; Mukhopadhyay,
   H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell,
   J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.;
   Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, L. C.; Stochino, A.; Stone, R.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.;
   Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ulmen,
   J.; Urbanek, K.; Vahlbruch, H.; Van Den Broeck, C.; van der Sluys,
   M.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar,
   A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   H.; Ward, R.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zweizig, J.; LIGO Scientific Collaboration; Santostasi, G.
2009ApJ...706L.203A    Altcode:
  A processing error in the signal template used in this search led to
  upper limits about 30% lower than we now know is warranted by the early
  S5 data. We have re-analyzed that data and find new upper limits on
  the strain parameter h <SUB>0</SUB> of 4.9 × 10<SUP>-25</SUP>/3.9 ×
  10<SUP>-25</SUP> for uniform/restricted prior assumptions concerning
  the Crab inclination and polarization angles. These results have now
  been superseded by upper limits of 2.6 × 10<SUP>-25</SUP>/2.0 ×
  10<SUP>-25</SUP> based on the full S5 data and presented in Abbott et
  al. (2009). The multitemplate search was not affected by the error.

---------------------------------------------------------
Title: Search for high frequency gravitational-wave bursts in the
    first calendar year of LIGO's fifth science run
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser,
   J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.;
   Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington,
   A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp,
   J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.;
   Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak,
   T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen,
   Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton,
   J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt,
   T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; di Credico, A.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.;
   Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.;
   Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand,
   K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli,
   J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.;
   Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; de La Jordana, L. Sancho; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.;
   Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck,
   C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.;
   Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villadsen, J.;
   Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace,
   L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..80j2002A    Altcode: 2009arXiv0904.4910L
  We present an all-sky search for gravitational waves in the frequency
  range 1 to 6 kHz during the first calendar year of LIGO’s fifth
  science run. This is the first untriggered LIGO burst analysis
  to be conducted above 3 kHz. We discuss the unique properties of
  interferometric data in this regime. 161.3 days of triple-coincident
  data were analyzed. No gravitational events above threshold were
  observed and a frequentist upper limit of 5.4year<SUP>-1</SUP> on
  the rate of strong gravitational-wave bursts was placed at a 90%
  confidence level. Implications for specific theoretical models of
  gravitational-wave emission are also discussed.

---------------------------------------------------------
Title: Search for gravitational-wave bursts in the first year of
    the fifth LIGO science run
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.;
   Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; di Credico, A.;
   Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.;
   Dueck, J.; Duke, I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar,
   M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans,
   T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn,
   L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen,
   A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler,
   S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson,
   J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram,
   D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor,
   I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran,
   M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.;
   Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin,
   R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner,
   R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet,
   M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.;
   Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.;
   Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.;
   Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van
   der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.;
   Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner,
   A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..80j2001A    Altcode: 2009arXiv0905.0020L
  We present the results obtained from an all-sky search for
  gravitational-wave (GW) bursts in the 64-2000 Hz frequency range
  in data collected by the LIGO detectors during the first year
  (November 2005—November 2006) of their fifth science run. The
  total analyzed live time was 268.6 days. Multiple hierarchical
  data analysis methods were invoked in this search. The overall
  sensitivity expressed in terms of the root-sum-square (rss) strain
  amplitude h<SUB>rss</SUB> for gravitational-wave bursts with various
  morphologies was in the range of 6×10<SUP>-22</SUP>Hz<SUP>-1/2</SUP> to
  a few×10<SUP>-21</SUP>Hz<SUP>-1/2</SUP>. No GW signals were observed
  and a frequentist upper limit of 3.75 events per year on the rate of
  strong GW bursts was placed at the 90% confidence level. As in our
  previous searches, we also combined this rate limit with the detection
  efficiency for selected waveform morphologies to obtain event rate
  versus strength exclusion curves. In sensitivity, these exclusion
  curves are the most stringent to date.

---------------------------------------------------------
Title: A Model of Coronal Streamers with Underlying Flux Ropes
Authors: Cottaar, M.; Fan, Y.
2009ApJ...704..576C    Altcode:
  We present global two-dimensional axisymmetric isothermal MHD
  simulations of the dynamic evolution of a coronal helmet streamer,
  driven at the lower boundary by the emergence of a twisted flux rope. By
  varying both the detached toroidal and poloidal fluxes emerged into
  the corona, but fixing the normal flux distribution at the surface at
  the end of the emergence, we obtain solutions that either settle to a
  new steady state of a stable helmet streamer containing a flux rope,
  or result in a disruption of the helmet with the underlying flux rope
  being expelled in a coronal mass ejection (CME)-like eruption. In all
  of the cases studied, we find that the transition from a stable to an
  eruptive state takes place at a magnetic energy that is very close to
  the Aly open field energy. Furthermore, we find that the transition
  from a stable to an eruptive end state does not occur at a single
  critical value of the total relative magnetic helicity, but depends
  on the profile of the underlying flux rope. Cases where the detached
  flux rope contains a higher amount of self-helicity, i.e., higher
  internal twist or detached poloidal flux, are found to become eruptive
  at a significantly lower total helicity. For the eruptive cases, the
  detached flux rope after emergence first rises quasi-statically due
  to a gradual opening of the field lines at the edge of the streamer
  and a slow reconnection below the flux rope, which continues to
  slowly increase the amount of the detached flux. This decreases the
  downward magnetic tension on the flux rope. The dynamic eruption is
  initiated when the magnetic pressure gradient no longer decreases fast
  enough to balance the decrease in the magnetic tension. Later rapid
  reconnections below the flux rope are important for accelerating the
  flux rope. For the stable helmets, we find that no cavities are formed
  due to the simplifying assumption of isothermal energetics and the
  uniform density lower boundary condition. However during the eruption
  we see the development of the 3-part structure of a CME.

---------------------------------------------------------
Title: Search for gravitational wave ringdowns from perturbed black
    holes in LIGO S4 data
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser,
   J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.;
   Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington,
   A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp,
   J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Cardoso,
   V.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.;
   Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.;
   Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand,
   K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli,
   J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov,
   L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; de La Jordana, L. Sancho; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini,
   D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den
   Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin,
   R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen,
   L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..80f2001A    Altcode: 2009arXiv0905.1654T
  According to general relativity a perturbed black hole will settle
  to a stationary configuration by the emission of gravitational
  radiation. Such a perturbation will occur, for example, in the
  coalescence of a black hole binary, following their inspiral and
  subsequent merger. At late times the waveform is a superposition of
  quasinormal modes, which we refer to as the ringdown. The dominant
  mode is expected to be the fundamental mode, l=m=2. Since this is a
  well-known waveform, matched filtering can be implemented to search for
  this signal using LIGO data. We present a search for gravitational waves
  from black hole ringdowns in the fourth LIGO science run S4, during
  which LIGO was sensitive to the dominant mode of perturbed black holes
  with masses in the range of 10M<SUB>⊙</SUB> to 500M<SUB>⊙</SUB>, the
  regime of intermediate-mass black holes, to distances up to 300 Mpc. We
  present a search for gravitational waves from black hole ringdowns
  using data from S4. No gravitational wave candidates were found;
  we place a 90%-confidence upper limit on the rate of ringdowns from
  black holes with mass between 85M<SUB>⊙</SUB> and 390M<SUB>⊙</SUB>
  in the local universe, assuming a uniform distribution of sources, of
  3.2×10<SUP>-5</SUP>yr<SUP>-1</SUP>Mpc<SUP>-3</SUP>=1.6×10<SUP>-3</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,where
  L<SUB>10</SUB> is 10<SUP>10</SUP> times the solar blue-light luminosity.

---------------------------------------------------------
Title: First LIGO search for gravitational wave bursts from cosmic
    (super)strings
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.;
   Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.;
   Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.;
   Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand,
   K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli,
   J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov,
   L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini,
   D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den
   Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin,
   R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen,
   L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig,
   J.; Robinet, F.
2009PhRvD..80f2002A    Altcode: 2009arXiv0904.4718L
  We report on a matched-filter search for gravitational wave bursts
  from cosmic string cusps using LIGO data from the fourth science run
  (S4) which took place in February and March 2005. No gravitational
  waves were detected in 14.9 days of data from times when all three
  LIGO detectors were operating. We interpret the result in terms of a
  frequentist upper limit on the rate of gravitational wave bursts and
  use the limits on the rate to constrain the parameter space (string
  tension, reconnection probability, and loop sizes) of cosmic string
  models. Many grand unified theory-scale models (with string tension
  Gμ/c<SUP>2</SUP>≈10<SUP>-6</SUP>) can be ruled out at 90% confidence
  for reconnection probabilities p≤10<SUP>-3</SUP> if loop sizes are
  set by gravitational back reaction.

---------------------------------------------------------
Title: Additive Self-helicity as a Kink Mode Threshold
Authors: Malanushenko, A.; Longcope, D. W.; Fan, Y.; Gibson, S. E.
2009ApJ...702..580M    Altcode: 2009arXiv0909.4959M
  In this paper, we propose that additive self-helicity, introduced
  by Longcope and Malanushenko, plays a role in the kink instability
  for complex equilibria, similar to twist helicity for thin flux
  tubes. We support this hypothesis by a calculation of additive
  self-helicity of a twisted flux tube from the simulation of Fan and
  Gibson. As more twist gets introduced, the additive self-helicity
  increases, and the kink instability of the tube coincides with the
  drop of additive self-helicity, after the latter reaches the value
  of H<SUB>A</SUB> /Φ<SUP>2</SUP> ≈ 1.5 (where Φ is the flux of the
  tube and H<SUB>A</SUB> is the additive self-helicity). We compare the
  additive self-helicity to twist for a thin subportion of the tube
  to illustrate that H<SUB>A</SUB> /Φ<SUP>2</SUP> is equal to the
  twist number, studied by Berger and Field, when the thin flux tube
  approximation is applicable. We suggest that the quantity H<SUB>A</SUB>
  /Φ<SUP>2</SUP> could be treated as a generalization of a twist number,
  when the thin flux tube approximation is not applicable. A threshold on
  a generalized twist number might prove extremely useful studying complex
  equilibria, just as the twist number itself has proven useful studying
  idealized thin flux tubes. We explicitly describe a numerical method
  for calculating additive self-helicity, which includes an algorithm
  for identifying a domain occupied by a flux bundle and a method of
  calculating potential magnetic field confined to this domain. We also
  describe a numerical method to calculate twist of a thin flux tube,
  using a frame parallelly transported along the axis of the tube.

---------------------------------------------------------
Title: Einstein@Home search for periodic gravitational waves in
    early S5 LIGO data
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.;
   Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn,
   L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen,
   A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler,
   S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson,
   J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram,
   D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor,
   I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran,
   M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.;
   Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin,
   R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner,
   R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet,
   M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.;
   Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov,
   L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini,
   D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den
   Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin,
   R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen,
   L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig,
   J.; Anderson, D. P.
2009PhRvD..80d2003A    Altcode: 2009arXiv0905.1705L
  This paper reports on an all-sky search for periodic gravitational
  waves from sources such as deformed isolated rapidly spinning neutron
  stars. The analysis uses 840 hours of data from 66 days of the fifth
  LIGO science run (S5). The data were searched for quasimonochromatic
  waves with frequencies f in the range from 50 to 1500 Hz, with a linear
  frequency drift f˙ (measured at the solar system barycenter) in the
  range -f/τ&lt;f˙&lt;0.1f/τ, for a minimum spin-down age τ of 1000
  years for signals below 400 Hz and 8000 years above 400 Hz. The main
  computational work of the search was distributed over approximately 100
  000 computers volunteered by the general public. This large computing
  power allowed the use of a relatively long coherent integration time
  of 30 hours while searching a large parameter space. This search
  extends Einstein@Home’s previous search in LIGO S4 data to about
  3 times better sensitivity. No statistically significant signals
  were found. In the 125-225 Hz band, more than 90% of sources with
  dimensionless gravitational-wave strain tensor amplitude greater than
  3×10<SUP>-24</SUP> would have been detected.

---------------------------------------------------------
Title: An upper limit on the stochastic gravitational-wave background
    of cosmological origin
Authors: Abbott, B. P.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith,
   P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R. S.; Anderson,
   S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya,
   M.; Armandula, H.; Armor, P.; Arun, K. G.; Aso, Y.; Aston, S.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.;
   Ballmer, S.; Barker, C.; Barker, D.; Barone, F.; Barr, B.; Barriga,
   P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri,
   R.; Bastarrika, M.; Bauer, Th. S.; Behnke, B.; Beker, M.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.;
   Billingsley, G.; Birindelli, S.; Biswas, R.; Bizouard, M. A.; Black,
   E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Boccara, C.;
   Bodiya, T. P.; Bogue, L.; Bondu, F.; Bonelli, L.; Bork, R.; Boschi,
   V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Van Den Brand, J. F. J.; Brau, J. E.; Bridges,
   D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; van den Broeck, C.;
   Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington,
   A.; Bulten, H. J.; Buonanno, A.; Burmeister, O.; Buskulic, D.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna,
   E.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Carbognani, F.;
   Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.;
   Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin,
   E.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung,
   C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia,
   E.; Cokelaer, T.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini,
   M.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Corda, C.; Cornish,
   N.; Corsi, A.; Coulon, J. -P.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Cuoco, E.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dari, A.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Daw,
   E. J.; Day, R.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.;
   Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Fiore, L.; di
   Lieto, A.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.;
   Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drago, M.; Drever, R. W. P.;
   Dueck, J.; Duke, I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar,
   M.; Effler, A.; Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans,
   M.; Evans, T.; Fafone, V.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi,
   D.; Fehrmann, H.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori,
   I.; Flaminio, R.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos,
   N.; Fournier, J. -D.; Franc, J.; Franzen, A.; Frasca, S.; Frasconi,
   F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Gammaitoni, L.;
   Garofoli, J. A.; Gennai, A.; Gholami, I.; Giaime, J. A.; Giampanis,
   S.; Giardina, K. D.; Giazotto, A.; Goda, K.; Goetz, E.; Goggin,
   L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.;
   Granata, M.; Granata, V.; Grant, A.; Gras, S.; Gray, C.; Gray, M.;
   Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grimaldi,
   F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Guidi, G.;
   Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer,
   D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.;
   Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.;
   Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.;
   Hough, J.; Hoyland, D.; Huet, D.; Hughey, B.; Huttner, S. H.; Ingram,
   D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Sancho de La Jordana, L.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.;
   Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.;
   Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov,
   E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.;
   Kwee, P.; La Penna, P.; Lam, P. K.; Landry, M.; Lantz, B.; Laval, M.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Leroy, N.;
   Letendre, N.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.;
   Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lu, P.; Lubiński, M.; Lucianetti,
   A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mackowski, J. -M.;
   Mageswaran, M.; Mailand, K.; Majorana, E.; Man, N.; Mandel, I.;
   Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Marque, J.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Menzinger, F.;
   Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Michel,
   C.; Milano, L.; Miller, J.; Minelli, J.; Minenkov, Y.; Mino, Y.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.;
   Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreau, J.;
   Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca,
   S.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Muhammad,
   D.; Mühlen, H. Zur; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera,
   F.; Numata, K.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; O'Reilly, B.;
   O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen,
   B. J.; Pagliaroli, G.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti,
   F.; Papa, M. A.; Parameshwaraiah, V.; Pardi, S.; Pasqualetti, A.;
   Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Penn, S.;
   Perreca, A.; Persichetti, G.; Pichot, M.; Piergiovanni, F.; Pierro, V.;
   Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Poggiani, R.; Postiglione, F.; Principe, M.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Punken, O.; Punturo, M.; Puppo, P.; Van Der Putten,
   S.; Quetschke, V.; Raab, F. J.; Rabaste, O.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.;
   Rivera, B.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson,
   C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins,
   J.; Romano, J. D.; Romano, R.; Romie, J. H.; Röver, C.; Rowan, S.;
   Rüdiger, A.; Ruggi, P.; Russell, P.; Ryan, K.; Sakata, S.; Salemi,
   F.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin,
   P.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.;
   Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg,
   P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg,
   D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.;
   van der Sluys, M. V.; Smith, J. R.; Smith, M. R.; Smith, N. D.;
   Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.;
   Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Swinkels, B. L.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Terenzi, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie,
   C.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer,
   J.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vajente, G.;
   Vallisneri, M.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.;
   Vedovato, G.; van Veggel, A. A.; Veitch, J.; Veitch, P.; Veltkamp,
   C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet,
   J. -Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.;
   Wallace, L.; Ward, H.; Ward, R. L.; Was, M.; Weidner, A.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.;
   Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann,
   L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Yvert, M.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Zweizig, J.; LIGO Collaboration; Virgo Collaboration
2009Natur.460..990A    Altcode: 2009arXiv0910.5772T
  A stochastic background of gravitational waves is expected to arise
  from a superposition of a large number of unresolved gravitational-wave
  sources of astrophysical and cosmological origin. It should carry unique
  signatures from the earliest epochs in the evolution of the Universe,
  inaccessible to standard astrophysical observations. Direct measurements
  of the amplitude of this background are therefore of fundamental
  importance for understanding the evolution of the Universe when it
  was younger than one minute. Here we report limits on the amplitude
  of the stochastic gravitational-wave background using the data from a
  two-year science run of the Laser Interferometer Gravitational-wave
  Observatory (LIGO). Our result constrains the energy density of the
  stochastic gravitational-wave background normalized by the critical
  energy density of the Universe, in the frequency band around 100Hz, to
  be &lt;6.9×10<SUP>-6</SUP> at 95% confidence. The data rule out models
  of early Universe evolution with relatively large equation-of-state
  parameter, as well as cosmic (super)string models with relatively small
  string tension that are favoured in some string theory models. This
  search for the stochastic background improves on the indirect limits
  from Big Bang nucleosynthesis and cosmic microwave background at 100Hz.

---------------------------------------------------------
Title: Stacked Search for Gravitational Waves from the 2006 SGR
    1900+14 Storm
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.;
   Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; DeBra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.;
   Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.;
   Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand,
   K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli,
   J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mow Lowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov,
   L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini,
   D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den
   Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin,
   R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen,
   L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; zur Mühlen, H.; Zweizig;
   J.; LIGO Scientific Collaboration
2009ApJ...701L..68A    Altcode: 2009arXiv0905.0005L
  We present the results of a LIGO search for short-duration gravitational
  waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A
  new search method is used, "stacking" the GW data around the
  times of individual soft-gamma bursts in the storm to enhance
  sensitivity for models in which multiple bursts are accompanied by
  GW emission. We assume that variation in the time difference between
  burst electromagnetic emission and potential burst GW emission is
  small relative to the GW signal duration, and we time-align GW excess
  power time-frequency tilings containing individual burst triggers to
  their corresponding electromagnetic emissions. We use two GW emission
  models in our search: a fluence-weighted model and a flat (unweighted)
  model for the most electromagnetically energetic bursts. We find
  no evidence of GWs associated with either model. Model-dependent
  GW strain, isotropic GW emission energy E <SUB>GW</SUB>, and γ ≡
  E <SUB>GW</SUB>/E <SUB>EM</SUB> upper limits are estimated using a
  variety of assumed waveforms. The stacking method allows us to set
  the most stringent model-dependent limits on transient GW strain
  published to date. We find E <SUB>GW</SUB> upper limit estimates (at
  a nominal distance of 10 kpc) of between 2 × 10<SUP>45</SUP> erg and
  6 × 10<SUP>50</SUP> erg depending on the waveform type. These limits
  are an order of magnitude lower than upper limits published previously
  for this storm and overlap with the range of electromagnetic energies
  emitted in soft gamma repeater (SGR) giant flares.

---------------------------------------------------------
Title: Search for gravitational waves from low mass compact binary
    coalescence in 186 days of LIGO's fifth science run
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser,
   J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.;
   Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington,
   A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp,
   J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Capano, C. D.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn,
   L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen,
   A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler,
   S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh,
   R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage,
   B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson,
   J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian,
   K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken,
   D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram,
   D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.;
   Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.;
   Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor,
   I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Lundgren, A. P.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka,
   S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin,
   I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone,
   L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.;
   McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie,
   K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.;
   Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry,
   C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.;
   Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.;
   Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata,
   K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin,
   G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan,
   Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza,
   M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix,
   R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling,
   D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.;
   Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins,
   J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell,
   P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash,
   B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.;
   Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.;
   Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.;
   Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.;
   Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.;
   Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.;
   Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly,
   G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor,
   J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.;
   van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.;
   Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace,
   L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..80d7101A    Altcode: 2009arXiv0905.3710T; 2009arXiv0905.3710L
  We report on a search for gravitational waves from coalescing
  compact binaries, of total mass between 2 and 35M<SUB>⊙</SUB>,
  using LIGO observations between November 14, 2006 and May 18,
  2007. No gravitational-wave signals were detected. We report upper
  limits on the rate of compact binary coalescence as a function of
  total mass. The LIGO cumulative 90%-confidence rate upper limits
  of the binary coalescence of neutron stars, black holes and black
  hole-neutron star systems are 1.4×10<SUP>-2</SUP>, 7.3×10<SUP>-4</SUP>
  and 3.6×10<SUP>-3</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  respectively, where L<SUB>10</SUB> is 10<SUP>10</SUP> times the blue
  solar luminosity.

---------------------------------------------------------
Title: LIGO: the Laser Interferometer Gravitational-Wave Observatory
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker,
   C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista,
   M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley,
   G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair,
   D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.;
   Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas,
   L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda,
   C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.;
   Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.;
   Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.;
   Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.;
   Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert,
   B.; Davies, G.; Daw, E. J.; DeBra, D.; Degallaix, J.; Dergachev, V.;
   Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan,
   F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke,
   I.; Dumas, J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmenn, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.;
   Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.;
   Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.;
   Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand,
   K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala,
   N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.;
   McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos,
   A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli,
   J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno,
   G.; Morioka, T.; Mors, K.; Mossavi, K.; Mow Lowry, C.; Mueller, G.;
   Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.;
   Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash,
   T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.;
   Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov,
   L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.;
   Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson,
   C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano,
   J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.;
   Sakata, S.; de la Jordana, L. Sancho; Sandberg, V.; Sannibale, V.;
   Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan,
   M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz,
   B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro,
   B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain,
   K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.;
   Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.;
   Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van
   der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.;
   Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner,
   A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan,
   G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov,
   N.; Zucker, M. E.; Mühlen, H. zur; Zweizig, J.
2009RPPh...72g6901A    Altcode: 2007arXiv0711.3041T
  The goal of the Laser Interferometric Gravitational-Wave Observatory
  (LIGO) is to detect and study gravitational waves (GWs) of
  astrophysical origin. Direct detection of GWs holds the promise of
  testing general relativity in the strong-field regime, of providing
  a new probe of exotic objects such as black holes and neutron stars
  and of uncovering unanticipated new astrophysics. LIGO, a joint
  Caltech-MIT project supported by the National Science Foundation,
  operates three multi-kilometer interferometers at two widely
  separated sites in the United States. These detectors are the result
  of decades of worldwide technology development, design, construction
  and commissioning. They are now operating at their design sensitivity,
  and are sensitive to gravitational wave strains smaller than one part
  in 10<SUP>21</SUP>. With this unprecedented sensitivity, the data
  are being analyzed to detect or place limits on GWs from a variety of
  potential astrophysical sources.

---------------------------------------------------------
Title: The H, O isotopic characteristics and mineralization age of
    the Baishan molybdenum deposit in Eastern Tianshan
Authors: Zhang, D. Y.; Zhou, T. F.; Yuan, F.; Fan, Y.
2009GeCAS..73R1503Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for gravitational waves from low mass binary
    coalescences in the first year of LIGO's S5 data
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker,
   D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.;
   Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser,
   J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.;
   Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.;
   Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks,
   A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno,
   A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo,
   J.; Cannon, K. C.; Cao, J.; Capano, C. D.; Cardenas, L.; Caride, S.;
   Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak,
   T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.;
   Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.;
   Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.;
   Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton,
   J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.;
   Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies,
   G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.;
   Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley,
   K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas,
   J. -C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.;
   Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst,
   S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch,
   K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.;
   Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty,
   R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.;
   Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam,
   J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.;
   Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.;
   Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough,
   J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai,
   T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.;
   Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy,
   S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili,
   F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.;
   Krishnan, B.; Kumar, R.; Kwee, P.; Laljani, V.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor,
   I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie,
   N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka,
   S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin,
   I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone,
   L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.;
   McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie,
   K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.;
   Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra,
   S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry,
   C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.;
   Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.;
   Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata,
   K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin,
   G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan,
   Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza,
   M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.;
   Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix,
   R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling,
   D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.;
   Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins,
   J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell,
   P.; Ryan, K.; Sakata, S.; de La Jordana, L. Sancho; Sandberg, V.;
   Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash,
   B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov,
   P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz,
   B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle,
   A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev,
   A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu,
   B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.;
   Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder,
   D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.;
   Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.;
   van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.;
   Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace,
   L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang,
   L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.
2009PhRvD..79l2001A    Altcode: 2009arXiv0901.0302L
  We have searched for gravitational waves from coalescing low mass
  compact binary systems with a total mass between 2M<SUB>⊙</SUB>
  and 35M<SUB>⊙</SUB> and a minimum component mass of 1M<SUB>⊙</SUB>
  using data from the first year of the fifth science run of the three
  LIGO detectors, operating at design sensitivity. Depending on the
  mass, we are sensitive to coalescences as far as 150 Mpc from the
  Earth. No gravitational-wave signals were observed above the expected
  background. Assuming a population of compact binary objects with a
  Gaussian mass distribution representing binary neutron star systems,
  black hole-neutron star binary systems, and binary black hole systems,
  we calculate the 90% confidence upper limit on the rate of coalescences
  to be 3.9×10<SUP>-2</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  1.1×10<SUP>-2</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  and 2.5×10<SUP>-3</SUP>yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>,
  respectively, where L<SUB>10</SUB> is 10<SUP>10</SUP> times the blue
  solar luminosity. We also set improved upper limits on the rate of
  compact binary coalescences per unit blue-light luminosity, as a
  function of mass.

---------------------------------------------------------
Title: Characteristics of hydrothermal alteration in the Shaxi
Porphyry Cu-Au deposit, Anhui Province, China: Paragenesis and
    geochemical
Authors: Zhang, L. J.; Zhou, T. F.; Fan, Y.; Yuan, F.
2009GeCAS..73R1506Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Emergence of a Twisted Flux Tube into the Solar Atmosphere:
    Sunspot Rotations and the Formation of a Coronal Flux Rope
Authors: Fan, Y.
2009ApJ...697.1529F    Altcode: 2009arXiv0903.1288F
  We present a three-dimensional simulation of the dynamic emergence of a
  twisted magnetic flux tube from the top layer of the solar convection
  zone into the solar atmosphere and corona. It is found that after a
  brief initial stage of flux emergence during which the two polarities
  of the bipolar region become separated and the tubes intersecting
  the photosphere become vertical, significant rotational motion sets
  in within each polarity. The rotational motions of the two polarities
  are found to twist up the inner field lines of the emerged fields such
  that they change their orientation into an inverse configuration (i.e.,
  pointing from the negative polarity to the positive polarity over the
  neutral line). As a result, a flux rope with sigmoid-shaped, dipped
  core fields forms in the corona, and the center of the flux rope rises
  in the corona with increasing velocity as the twisting of the flux rope
  footpoints continues. The rotational motion in the two polarities is
  a result of propagation of nonlinear torsional Alfvén waves along the
  flux tube, which transports significant twist from the tube's interior
  portion toward its expanded coronal portion. This is a basic process
  whereby twisted flux ropes are developed in the corona with increasing
  twist and magnetic energy, leading up to solar eruptions.

---------------------------------------------------------
Title: The discovery of an independent thallium mineral (TlI) in
    the Xiangquan thallium deposit in He county, Anhui Province, China
Authors: Fan, Y.; Zhou, T. F.; Yuan, F.
2009GeCAS..73Q.352F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Model of Coronal Streamers with Underlying Flux Ropes
Authors: Cottaar, Michiel; Fan, Y.
2009SPD....40.3705C    Altcode:
  We present global two-dimensional axisymmetric isothermal MHD
  simulations of the dynamic evolution of a coronal helmet streamer,
  driven at the lower boundary by the emergence of a twisted flux
  rope. By varying both the amount of the toroidal magnetic flux as well
  as the amount of the detached poloidal flux in the emerged flux rope,
  we obtain solutions that either settle to a new steady state of a
  stable helmet streamer containing a flux rope, or result in a loss of
  equilibrium of the helmet with the underlying flux rope being expelled
  in a CME-like eruption. We find that the transition from a stable to
  an eruptive end state does not occur at a single critical value of the
  total relative magnetic helicity, but depends on the profile of the
  underlying flux rope. Cases where the detached flux rope contains a
  higher amount of self helicity, i.e. higher internal twist, are found
  to become eruptive at a significantly lower total helicity. However,
  in all of the cases studied, we find that the transition from a stable
  to eruptive end state takes place at a magnetic energy that is very
  close to the Aly open field energy. For the eruptive cases, we find
  that the eruption is not driven by magnetic reconnections behind the
  flux rope, but is a result of a lack of equilibrium between the upwards
  directed magnetic pressure and the downwards directed magnetic tension
  and the gravitational force. For the stable helmets we do not find
  the formation of significant cavities due to the isothermality and
  the imposed constant pressure at the lower boundary. However during
  the eruptions we clearly see the 3-part structure of a CME.

---------------------------------------------------------
Title: All-Sky LIGO Search for Periodic Gravitational Waves in the
    Early Fifth-Science-Run Data
Authors: Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Bantilan, H.; Barish,
   B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.;
   Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.;
   Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.;
   Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn,
   L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi,
   V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann,
   M.; Brooks, A. F.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno,
   A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp,
   J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Cardoso,
   V.; Caride, S.; Casebolt, T.; Castaldi, G.; Caudill, S.; Cavaglià,
   M.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski,
   S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Clayton, J. H.;
   Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.;
   Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.;
   Cumming, A.; Cunningham, L.; Cutler, R. M.; Danzmann, K.; Daudert,
   B.; Davies, G.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai,
   S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.;
   Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke,
   I.; Dumas, J. -C.; Dwyer, J.; Echols, C.; Edgar, M.; Effler, A.;
   Ehrens, P.; Ely, G.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn,
   L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen,
   A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.;
   González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.;
   Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.;
   Gustafson, R.; Hage, B.; Hallam, J. M.; Hanna, C.; Hanson, J.; Harms,
   J.; Harry, G. M.; Harstad, E. D.; Haughian, E.; Hayama, K.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild,
   S.; Hirose, E.; Hoak, D.; Holt, K.; Hosken, D.; Hough, J.; Huttner,
   S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.;
   Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski,
   A.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.;
   Klimenko, S.; Kocsis, B.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R.; Koranda, S.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leonor, I.; Li, C.; Lin,
   H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia,
   D.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.;
   Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel,
   I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz,
   J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.;
   Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy,
   R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.;
   McKechan, D.; McKenzie, K.; Mehmet, M.; Melissinos, A.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miller, A.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Moreno,
   G.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Muhammad, D.;
   Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Müller-Ebhardt, H.;
   Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson,
   J.; Newton, G.; Nishizawa, A.; Numata, K.; Ochsner, E.; O'Dell, J.;
   Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F. J.;
   Rabeling, D. S.; Radkins, H.; Raffai, P.; Rainer, N.; Rakhmanov, M.;
   Ramsunder, M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen,
   R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson,
   E. L.; Roddy, S.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J. H.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.;
   Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.;
   Santamaria, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato,
   S.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schediwy,
   S. W.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.;
   Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.;
   Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.;
   Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein,
   L. C.; Strain, K. A.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.;
   Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Taylor, R.;
   Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias,
   M.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; van den Broeck, C.; van
   der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J. D.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R. L.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.;
   Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.;
   Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.;
   Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang,
   J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.;
   Zweizig, J.
2009PhRvL.102k1102A    Altcode: 2008arXiv0810.0283L
  We report on an all-sky search with the LIGO detectors for
  periodic gravitational waves in the frequency range 50-1100
  Hz and with the frequency’s time derivative in the range
  -5×10<SUP>-9</SUP>-0Hzs<SUP>-1</SUP>. Data from the first eight months
  of the fifth LIGO science run (S5) have been used in this search,
  which is based on a semicoherent method (PowerFlux) of summing strain
  power. Observing no evidence of periodic gravitational radiation, we
  report 95% confidence-level upper limits on radiation emitted by any
  unknown isolated rotating neutron stars within the search range. Strain
  limits below 10<SUP>-24</SUP> are obtained over a 200-Hz band, and the
  sensitivity improvement over previous searches increases the spatial
  volume sampled by an average factor of about 100 over the entire
  search band. For a neutron star with nominal equatorial ellipticity
  of 10<SUP>-6</SUP>, the search is sensitive to distances as great as
  500 pc.

---------------------------------------------------------
Title: Strategies for the control of parametric instability in
    advanced gravitational wave detectors
Authors: Ju, L.; Blair, D. G.; Zhao, C.; Gras, S.; Zhang, Z.; Barriga,
   P.; Miao, H.; Fan, Y.; Merrill, L.
2009CQGra..26a5002J    Altcode:
  Parametric instabilities have been predicted to occur in all advanced
  high optical power gravitational wave detectors. In this paper we
  review the problem of parametric instabilities, summarize the latest
  findings and assess various schemes proposed for their control. We show
  that non-resonant passive damping of test masses reduces parametric
  instability but has a noise penalty, and fails to suppress the Q-factor
  of many modes. Resonant passive damping is shown to have significant
  advantages but requires detailed modeling. An optical feedback mode
  suppression interferometer is proposed which is capable of suppressing
  all instabilities but requires experimental development.

---------------------------------------------------------
Title: Einstein@Home search for periodic gravitational waves in LIGO
    S4 data
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R.; Anderson, D. P.; Anderson, S. B.; Anderson, W. G.;
   Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston,
   S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.;
   Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton,
   M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.;
   Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.;
   Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.; Casebolt,
   T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji,
   S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.;
   Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton,
   J. D. E.; Creighton, T. D.; Cumming, A.; Cunningham, L.; Cutler,
   R. M.; Dalrymple, J.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix,
   J.; Degree, M.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar,
   S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.;
   Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J. -C.; Dupuis,
   R. J.; Dwyer, J. G.; Echols, C.; Effler, A.; Ehrens, P.; Ely, G.;
   Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Fotopoulos,
   N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.;
   Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.;
   Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.;
   Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.;
   Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.;
   Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson,
   R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.; Hanson, J.; Harms,
   J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng,
   I. S.; Hennessy, M.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose,
   E.; Hoak, D.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito,
   M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.;
   Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.;
   Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim,
   C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R. K.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee,
   P.; Lam, P. K.; Landry, M.; Lang, M. M.; Lantz, B.; Lazzarini, A.;
   Lei, M.; Leindecker, N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.;
   Lin, H.; Lindquist, P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.;
   Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.;
   Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandic, V.; Márka, S.;
   Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I.;
   Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.;
   Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire,
   S. C.; McHugh, M.; McIntyre, G.; McIvor, G.; McKechan, D.; McKenzie,
   K.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov,
   S.; Messenger, C. J.; Meyers, D.; Miller, J.; Minelli, J.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Moe, B.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Mueller, G.; Mukherjee, S.; Mukhopadhyay, H.; Müller-Ebhardt, H.;
   Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.;
   Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; Ogin, G.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.;
   Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.;
   Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Petrie, T.; Pinto,
   I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.;
   Principe, M.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D. S.;
   Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rehbein, H.;
   Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi,
   M.; de La Jordana, L. Sancho; Sandberg, V.; Sannibale, V.; Saraf, S.;
   Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.;
   Savov, P.; Schediwy, S. W.; Schilling, R.; Schnabel, R.; Schofield,
   R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.;
   Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith,
   N. D.; Somiya, K.; Sorazu, B.; Stein, L. C.; Stochino, A.; Stone, R.;
   Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun,
   K. -X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias,
   M.; Tyler, W.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.;
   van den Broeck, C.; van der Sluys, M.; Vass, S.; Vaulin, R.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Vigeland, S.; Villar, A.; Vorvick, C.;
   Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.;
   Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan,
   J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson,
   C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zweizig, J.
2009PhRvD..79b2001A    Altcode: 2008arXiv0804.1747L
  A search for periodic gravitational waves, from sources such as
  isolated rapidly spinning neutron stars, was carried out using
  510 h of data from the fourth LIGO science run (S4). The search
  was for quasimonochromatic waves in the frequency range from 50 to
  1500 Hz, with a linear frequency drift f˙ (measured at the solar
  system barycenter) in the range -f/τ&lt;f˙&lt;0.1f/τ, where the
  minimum spin-down age τ was 1000 yr for signals below 300 Hz and
  10 000 yr above 300 Hz. The main computational work of the search
  was distributed over approximately 100 000 computers volunteered by
  the general public. This large computing power allowed the use of a
  relatively long coherent integration time of 30 h, despite the large
  parameter space searched. No statistically significant signals were
  found. The sensitivity of the search is estimated, along with the
  fraction of parameter space that was vetoed because of contamination
  by instrumental artifacts. In the 100 to 200 Hz band, more than 90%
  of sources with dimensionless gravitational-wave strain amplitude
  greater than 10<SUP>-23</SUP> would have been detected.

---------------------------------------------------------
Title: First joint search for gravitational-wave bursts in LIGO and
    GEO 600 data
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bartos,
   I.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.;
   Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.;
   Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.;
   Cardenas, L.; Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.;
   Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen,
   N.; Clark, D.; Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt,
   T.; Coyne, D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.;
   Cutler, R. M.; Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.;
   Degallaix, J.; Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.;
   Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Credico, A.; Dietz, A.;
   Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke,
   I.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Echols, C.; Effler,
   A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.;
   Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch,
   K.; Fotopoulos, N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.;
   González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi,
   F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson,
   E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.;
   Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall, A.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hughey,
   B.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalili, F. Ya; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.;
   Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran,
   M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre,
   G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.;
   Mossavi, K.; Lowry, C. Mow; Mueller, G.; Mukherjee, S.; Mukhopadhyay,
   H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell,
   J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.;
   Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, L. C.; Stochino, A.; Stone, R.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.;
   Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tinto, M.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.;
   Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Van Den Broeck,
   C.; van der Sluys, M.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Ward, H.; Ward, R.; Weinert, M.; Weinstein, A.;
   Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting,
   B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.;
   Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto,
   H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration
2008CQGra..25x5008A    Altcode: 2008arXiv0807.2834L
  We present the results of the first joint search for gravitational-wave
  bursts by the LIGO and GEO 600 detectors. We search for bursts with
  characteristic central frequencies in the band 768 2048 Hz in the
  data acquired between 22 February and 23 March, 2005 (fourth LSC
  Science Run S4). We discuss the inclusion of the GEO 600 data in the
  Waveburst CorrPower pipeline that first searches for coincident excess
  power events without taking into account differences in the antenna
  responses or strain sensitivities of the various detectors. We compare
  the performance of this pipeline to that of the coherent Waveburst
  pipeline based on the maximum likelihood statistic. This likelihood
  statistic is derived from a coherent sum of the detector data streams
  that takes into account the antenna patterns and sensitivities of the
  different detectors in the network. We find that the coherent Waveburst
  pipeline is sensitive to signals of amplitude 30 50% smaller than the
  Waveburst CorrPower pipeline. We perform a search for gravitational-wave
  bursts using both pipelines and find no detection candidates in the
  S4 data set when all four instruments were operating stably.

---------------------------------------------------------
Title: Search for Gravitational-Wave Bursts from Soft Gamma Repeaters
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.;
   Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.;
   Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bartos,
   I.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.;
   Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.;
   Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.;
   Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne,
   D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.;
   Dalrymple, J.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.;
   Degree, M.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes,
   E. E.; Drever, R. W. P.; Duke, I.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer,
   M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.;
   Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther,
   M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama,
   K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall,
   A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough,
   J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.;
   Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran,
   M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre,
   G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.;
   Mossavi, K.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay,
   H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell,
   J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.;
   Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, L. C.; Stochino, A.; Stone, R.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.;
   Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ulmen,
   J.; Urbanek, K.; Vahlbruch, H.; van den Broeck, C.; van der Sluys,
   M.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar,
   A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   H.; Ward, R.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zweizig, J.; Barthelmy, S.; Gehrels, N.; Hurley, K. C.; Palmer, D.
2008PhRvL.101u1102A    Altcode: 2008arXiv0808.2050L
  We present a LIGO search for short-duration gravitational waves (GWs)
  associated with soft gamma ray repeater (SGR) bursts. This is the first
  search sensitive to neutron star f modes, usually considered the most
  efficient GW emitting modes. We find no evidence of GWs associated
  with any SGR burst in a sample consisting of the 27 Dec. 2004 giant
  flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR
  1900+14. The unprecedented sensitivity of the detectors allows us to
  set the most stringent limits on transient GW amplitudes published to
  date. We find upper limit estimates on the model-dependent isotropic
  GW emission energies (at a nominal distance of 10 kpc) between
  3×10<SUP>45</SUP> and 9×10<SUP>52</SUP> erg depending on waveform
  type, detector antenna factors and noise characteristics at the time
  of the burst. These upper limits are within the theoretically predicted
  range of some SGR models.

---------------------------------------------------------
Title: Partially ejected flux ropes: Implications for interplanetary
    coronal mass ejections
Authors: Gibson, S. E.; Fan, Y.
2008JGRA..113.9103G    Altcode:
  Connecting interplanetary coronal mass ejections (ICMEs) to their
  solar pre-eruption source requires a clear understanding of how that
  source may have evolved during eruption. Gibson and Fan (2006a) have
  presented a three-dimensional numerical magnetohydrodynamic simulation
  of a CME, which showed how, in the course of eruption, a coronal flux
  rope may writhe and reconnect both internally and with surrounding
  fields in a manner that leads to a partial ejection of only part of
  the rope as a CME. In this paper, we will explicitly describe how the
  evolution during eruption found in that simulation leads to alterations
  of the magnetic connectivity, helicity, orientation, and topology of
  the ejected portion of the rope so that it differs significantly from
  that of the pre-eruption rope. Moreover, because a significant part of
  the magnetic helicity remains behind in the lower portion of the rope
  that survives the eruption, the region is likely to experience further
  eruptions. These changes would complicate how ICMEs embedded in the
  solar wind relate to their solar source. In particular, the location
  and evolution of transient coronal holes, topology of magnetic clouds
  ("tethered spheromak"), and likelihood of interacting ICMEs would
  differ significantly from what would be predicted for a CME which did
  not undergo writhing and partial ejection during eruption.

---------------------------------------------------------
Title: Observation of three-mode parametric interactions in long
    optical cavities
Authors: Zhao, C.; Ju, L.; Fan, Y.; Gras, S.; Slagmolen, B. J. J.;
   Miao, H.; Barriga, P.; Blair, D. G.; Hosken, D. J.; Brooks, A. F.;
   Veitch, P. J.; Mudge, D.; Munch, J.
2008PhRvA..78b3807Z    Altcode: 2008arXiv0801.1150Z
  We report the observation of three-mode optoacoustic parametric
  interactions of the type predicted to cause parametric instabilities
  in a 77-m -long, high-optical-power cavity that uses suspended sapphire
  mirrors. Resonant interaction occurs between two distinct optical modes
  and an acoustic mode of one mirror when the difference in frequency
  between the two optical cavity modes is close to the frequency of the
  acoustic mode. Experimental results validate the theory of parametric
  instability in high-power optical cavities, and demonstrate tunable
  parametric gain ∼10<SUP>-2</SUP> and more than 20dB amplification of
  a high-order optical mode power generated by an applied acoustic signal.

---------------------------------------------------------
Title: Beating the Spin-Down Limit on Gravitational Wave Emission
    from the Crab Pulsar
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.;
   Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton,
   M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.;
   Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.;
   Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.;
   Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne,
   D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.;
   Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.;
   Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes,
   E. E.; Drever, R. W. P.; Duke, I.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer,
   M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.;
   Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther,
   M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama,
   K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall,
   A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough,
   J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker,
   N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist,
   P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubinski, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran,
   M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre,
   G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.;
   Mossavi, K.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay,
   H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell,
   J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.;
   Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, L. C.; Stochino, A.; Stone, R.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.;
   Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ulmen,
   J.; Urbanek, K.; Vahlbruch, H.; Van Den Broeck, C.; van der Sluys,
   M.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar,
   A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward,
   H.; Ward, R.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.;
   Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut,
   I.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.;
   Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zweizig, J.; LIGO Scientific Collaboration; Santostasi, G.
2008ApJ...683L..45A    Altcode: 2008arXiv0805.4758T
  We present direct upper limits on gravitational wave emission from the
  Crab pulsar using data from the first 9 months of the fifth science run
  of the Laser Interferometer Gravitational-wave Observatory (LIGO). These
  limits are based on two searches. In the first we assume that the
  gravitational wave emission follows the observed radio timing, giving
  an upper limit on gravitational wave emission that beats indirect
  limits inferred from the spin-down and braking index of the pulsar
  and the energetics of the nebula. In the second we allow for a small
  mismatch between the gravitational and radio signal frequencies and
  interpret our results in the context of two possible gravitational
  wave emission mechanisms.

---------------------------------------------------------
Title: Search of S3 LIGO data for gravitational wave signals from
    spinning black hole and neutron star binary inspirals
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.;
   Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.;
   Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.;
   Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.;
   Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno,
   A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.;
   Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.;
   Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook,
   D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio,
   E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.;
   Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.;
   Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara,
   V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey,
   R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.;
   Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.;
   Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson,
   A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson,
   R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer,
   E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera,
   V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.;
   King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt,
   V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo,
   M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.;
   Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.;
   Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.;
   Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.;
   Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.;
   Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.;
   Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi,
   M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.;
   Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.;
   Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.;
   Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.;
   Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha,
   S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.;
   Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.;
   Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.; Takahashi,
   H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne,
   K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.;
   Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Urbanek,
   K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.;
   Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2008PhRvD..78d2002A    Altcode: 2007arXiv0712.2050T
  We report on the methods and results of the first dedicated search
  for gravitational waves emitted during the inspiral of compact
  binaries with spinning component bodies. We analyze 788 hours
  of data collected during the third science run (S3) of the LIGO
  detectors. We searched for binary systems using a detection template
  family specially designed to capture the effects of the spin-induced
  precession of the orbital plane. We present details of the techniques
  developed to enable this search for spin-modulated gravitational
  waves, highlighting the differences between this and other recent
  searches for binaries with nonspinning components. The template bank
  we employed was found to yield high matches with our spin-modulated
  target waveform for binaries with masses in the asymmetric range
  1.0M<SUB>⊙</SUB>&lt;m<SUB>1</SUB>&lt;3.0M<SUB>⊙</SUB> and
  12.0M<SUB>⊙</SUB>&lt;m<SUB>2</SUB>&lt;20.0M<SUB>⊙</SUB>
  which is where we would expect the spin of the binary’s
  components to have a significant effect. We find that our
  search of S3 LIGO data has good sensitivity to binaries in the
  Milky Way and to a small fraction of binaries in M31 and M33
  with masses in the range 1.0M<SUB>⊙</SUB>&lt;m<SUB>1</SUB>,
  m<SUB>2</SUB>&lt;20.0M<SUB>⊙</SUB>. No gravitational wave
  signals were identified during this search. Assuming a binary
  population with spinning components and Gaussian distribution
  of masses representing a prototypical neutron star black
  hole system with m<SUB>1</SUB>≃1.35M<SUB>⊙</SUB> and
  m<SUB>2</SUB>≃5M<SUB>⊙</SUB>, we calculate the 90%-confidence
  upper limit on the rate of coalescence of these systems to be
  15.9yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP>, where L<SUB>10</SUB>
  is 10<SUP>10</SUP> times the blue light luminosity of the Sun.

---------------------------------------------------------
Title: The Science benefits and preliminary design of the southern
    hemisphere gravitational wave detector AIGO
Authors: Blair, D. G.; Barriga, P.; Brooks, A. F.; Charlton, P.;
   Coward, D.; Dumas, J. -C.; Fan, Y.; Galloway, D.; Gras, S.; Hosken,
   D. J.; Howell, E.; Hughes, S.; Ju, L.; McClelland, D. E.; Melatos,
   A.; Miao, H.; Munch, J.; Scott, S. M.; Slagmolen, B. J. J.; Veitch,
   P. J.; Wen, L.; Webb, J. K.; Wolley, A.; Yan, Z.; Zhao, C.
2008JPhCS.122a2001B    Altcode:
  The proposed southern hemisphere gravitational wave detector AIGO
  increases the projected average baseline of the global array of ground
  based gravitational wave detectors by a factor ~4. This allows the
  world array to be substantially improved. The orientation of AIGO allows
  much better resolution of both wave polarisations. This enables better
  distance estimates for inspiral events, allowing unambiguous optical
  identification of host galaxies for about 25% of neutron star binary
  inspiral events. This can allow Hubble Law estimation without optical
  identification of an outburst, and can also allow deep exposure imaging
  with electromagnetic telescopes to search for weak afterglows. This
  allows independent estimates of cosmological acceleration and dark
  energy as well as improved understanding of the physics of neutron
  star and black hole coalescences. This paper reviews and summarises the
  science benefits of AIGO and presents a preliminary conceptual design.

---------------------------------------------------------
Title: Implications for the Origin of GRB 070201 from LIGO
    Observations
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.;
   Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.;
   Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.;
   Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.;
   Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno,
   A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.;
   Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.;
   Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook,
   D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio,
   E.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.;
   Demma, T.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; Di Credico, A.; Diederichs, G.; Dietz, A.;
   Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara,
   V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey,
   R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.;
   Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina,
   K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.;
   Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson,
   A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson,
   R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer,
   E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera,
   V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.;
   Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.;
   King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt,
   V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo,
   M.; Lormand, M.; Lubinski, M.; Lück, H.; Machenschalk, B.; MacInnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier,
   T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger,
   C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno,
   G.; Mossavi, K.; MowLowry, C.; Moylan, A.; Mudge, D.; Mueller, G.;
   Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.;
   Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.;
   Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi,
   M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling,
   D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.;
   Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.;
   Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi,
   M.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.;
   Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage,
   R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield,
   R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears,
   B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker,
   D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.;
   Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya,
   K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun,
   K. -X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.;
   Van Den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.;
   Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.;
   Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weidner, A.; Weinert, M.;
   Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb,
   S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.;
   Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman,
   A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin,
   I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.;
   Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; zur Mühlen,
   H.; Zweizig, J.; LIGO Scientific Collaboration; Hurley, K. C.
2008ApJ...681.1419A    Altcode: 2007arXiv0711.1163A; 2007arXiv0711.1163L
  We analyzed the available LIGO data coincident with GRB
  070201, a short-duration, hard-spectrum γ-ray burst (GRB) whose
  electromagnetically determined sky position is coincident with the
  spiral arms of the Andromeda galaxy (M31). Possible progenitors of
  such short, hard GRBs include mergers of neutron stars or a neutron
  star and a black hole, or soft γ-ray repeater (SGR) flares. These
  events can be accompanied by gravitational-wave emission. No plausible
  gravitational-wave candidates were found within a 180 s long window
  around the time of GRB 070201. This result implies that a compact binary
  progenitor of GRB 070201, with masses in the range 1 M<SUB>⊙</SUB>
  &lt; m<SUB>1</SUB> &lt; 3 M<SUB>⊙</SUB> and 1 M<SUB>⊙</SUB> &lt;
  m<SUB>2</SUB> &lt; 40 M<SUB>⊙</SUB>, located in M31 is excluded at
  &gt;99% confidence. If the GRB 070201 progenitor was not in M31, then
  we can exclude a binary neutron star merger progenitor with distance
  D &lt; 3.5 Mpc, assuming random inclination, at 90% confidence. The
  result also implies that an unmodeled gravitational-wave burst from
  GRB 070201 most probably emitted less than 4.4 × 10<SUP>-4</SUP>
  M<SUB>⊙</SUB>c<SUP>2</SUP> (7.9 × 10<SUP>50</SUP> ergs) in any 100
  ms long period within the signal region if the source was in M31 and
  radiated isotropically at the same frequency as LIGO's peak sensitivity
  (f ≈ 150 Hz). This upper limit does not exclude current models of
  SGRs at the M31 distance.

---------------------------------------------------------
Title: Genesis of the native copper mineralisation in Eastern Tianshan
Authors: Yuan, F.; Zhou, T. F.; Zhang, D. Y.; Fan, Y.
2008GeCAS..72Q1066Y    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Multitypes of ore-forming fluid systems in the Mesozoic
    polymetallic middle and lower reaches of the Yangtze River area
    mineralization belt, china
Authors: Zhou, T. F.; Yuan, F.; Fan, Y.; Cooke, D.; Zhao, G.
2008GeCAS..72R1100Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Geochemical characteristics of Longqiao iron deposit, Anhui,
    China
Authors: Zhang, Le Jun; Zhou, T. F.; Yuan, F.; Fan, Y.; Duan, C.
2008GeCAS..72R1085Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Characteristics and zircon La-ICP MS U-Pb ages of the A-type
    intrusive rocks in Zongyang county, Anhui Province, East China
Authors: Fan, Y.; Zhou, T. F.; Yuan, F.; Cooke, D.
2008GeCAS..72R.253F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Astrophysically triggered searches for gravitational waves:
    status and prospects
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen,
   B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.;
   Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton,
   M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.;
   Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.;
   Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.;
   Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne,
   D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.;
   Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.;
   Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.;
   Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes,
   E. E.; Drever, R. W. P.; Duke, I.; Dumas, J. -C.; Dupuis, R. J.; Dwyer,
   J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer,
   M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.;
   Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson,
   A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther,
   M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama,
   K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall,
   A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough,
   J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.;
   Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus,
   P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis,
   E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.;
   Khalili, F. Ya; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel,
   J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.;
   Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry,
   M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.;
   Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.;
   Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran,
   M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.;
   Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.;
   Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre,
   G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.;
   Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.;
   Mossavi, K.; Lowry, C. Mow; Mueller, G.; Mukherjee, S.; Mukhopadhyay,
   H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell,
   J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens,
   R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.;
   Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.;
   Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.;
   Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.;
   Stein, L. C.; Stochino, A.; Stone, R.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Taylor, R.; Taylor, R.; Thacker, J.;
   Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres,
   C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ulmen,
   J.; Urbanek, K.; Vahlbruch, H.; Van Den Broeck, C.; van der Sluys, M.;
   Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.;
   Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.;
   Ward, R.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.;
   Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems,
   P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkler,
   W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.;
   Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin,
   M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; Zweizig,
   J.; LIGO Scientific Collaboration; Acernese, F.; Alshourbagy, M.;
   Amico, P.; Antonucci, F.; Aoudia, S.; Astone, P.; Avino, S.; Baggio,
   L.; Ballardin, G.; Barone, F.; Barsotti, L.; Barsuglia, M.; Bauer, Th
   S.; Bigotta, S.; Birindelli, S.; Bizouard, M. A.; Boccara, C.; Bondu,
   F.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brillet, A.; Brisson, V.;
   Buskulic, D.; Cagnoli, G.; Calloni, E.; Campagna, E.; Carbognani, F.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin,
   E.; Clapson, A. -C.; Cleva, F.; Coccia, E.; Corda, C.; Corsi, A.;
   Cottone, F.; Coulon, J. -P.; Cuoco, E.; D'Antonio, S.; Dari, A.;
   Dattilo, V.; Davier, M.; De Rosa, R.; DelPrete, M.; Di Fiore, L.; Di
   Lieto, A.; Emilio, M. Di Paolo; Di Virgilio, A.; Evans, M.; Fafone,
   V.; Ferrante, I.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Genin,
   E.; Gennai, A.; Giazotto, A.; Giordano, L.; Granata, V.; Greverie,
   C.; Grosjean, D.; Guidi, G.; Hamdani, S.; Hebri, S.; Heitmann, H.;
   Hello, P.; Huet, D.; Kreckelbergh, S.; La Penna, P.; Laval, M.;
   Leroy, N.; Letendre, N.; Lopez, B.; Lorenzini, M.; Loriette, V.;
   Losurdo, G.; Mackowski, J. -M.; Majorana, E.; Man, C. N.; Mantovani,
   M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Masserot,
   A.; Menzinger, F.; Milano, L.; Minenkov, Y.; Moins, C.; Moreau, J.;
   Morgado, N.; Mosca, S.; Mours, B.; Neri, I.; Nocera, F.; Pagliaroli,
   G.; Palomba, C.; Paoletti, F.; Pardi, S.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Punturo,
   M.; Puppo, P.; Rapagnani, P.; Regimbau, T.; Remillieux, A.; Ricci,
   F.; Ricciardi, I.; Rocchi, A.; Rolland, L.; Romano, R.; Ruggi, P.;
   Russo, G.; Solimeno, S.; Spallicci, A.; Swinkels, B. L.; Tarallo, M.;
   Terenzi, R.; Toncelli, A.; Tonelli, M.; Tournefier, E.; Travasso, F.;
   Vajente, G.; van den Brand, J. F. J.; van der Putten, S.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Vinet, J. -Y.; Vocca, H.; Yvert, M.;
   Virgo Collaboration
2008CQGra..25k4051A    Altcode: 2008arXiv0802.4320T
  In gravitational-wave detection, special emphasis is put onto searches
  that focus on cosmic events detected by other types of astrophysical
  observatories. The astrophysical triggers, e.g. from γ-ray and x-ray
  satellites, optical telescopes and neutrino observatories, provide a
  trigger time for analyzing gravitational-wave data coincident with the
  event. In certain cases the expected frequency range, source energetics,
  directional and progenitor information are also available. Beyond
  allowing the recognition of gravitational waveforms with amplitudes
  closer to the noise floor of the detector, these triggered searches
  should also lead to rich science results even before the onset of
  Advanced LIGO. In this paper we provide a broad review of LIGO's
  astrophysically triggered searches and the sources they target.

---------------------------------------------------------
Title: Forming tori: Implications and possible origins of a "tethered
    spheromak" topology for magnetic clouds
Authors: Gibson, S. E.; Fan, Y.
2008AGUSMSH31C..06G    Altcode:
  We present a "tethered spheromak" model for magnetic clouds. The
  proposed topology differs from previous magnetic cloud models invoking
  spheromaks in that large portions of the field remain connected to
  the sun. This magnetic configuration may explain observed departures
  from the standard magnetic cloud model of a cylindrically-symmetric
  magnetic flux rope, such as magnetic fields which rotate more than 180
  degrees. It is also topologically complex enough to include intermingled
  detached, doubly attached, and apparently open fields in a manner
  consistent with observations of sporadic heat flux dropouts within
  otherwise bidirectional or unidirectional streaming electrons. We use
  a numerical simulation to demonstrate how, for solar eruptions where
  the kink instability drives significant rotation of an erupting flux
  rope, such a tethered spheromak may form during that rope's partial
  ejection. It does so because writhing motions and reconnections create
  twist about two distinct axes of rotation: the first associated with
  the rotated portion of the original rope axis, and the second formed
  in situ via reconnections between the erupting rope and surrounding
  coronal arcade fields.

---------------------------------------------------------
Title: A joint search for gravitational wave bursts with AURIGA
    and LIGO
Authors: Baggio, L.; Bignotto, M.; Bonaldi, M.; Cerdonio, M.; De Rosa,
   M.; Falferi, P.; Fattori, S.; Fortini, P.; Giusfredi, G.; Inguscio, M.;
   Liguori, N.; Longo, S.; Marin, F.; Mezzena, R.; Mion, A.; Ortolan, A.;
   Poggi, S.; Prodi, G. A.; Re, V.; Salemi, F.; Soranzo, G.; Taffarello,
   L.; Vedovato, G.; Vinante, A.; Vitale, S.; Zendri, J. P.; Abbott, B.;
   Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.;
   Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.;
   Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer,
   S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.;
   Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser,
   J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.;
   Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland,
   B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown,
   D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.;
   Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp,
   J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas,
   L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkley, E.;
   Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.;
   Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.;
   Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton,
   T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; DeBra, D.;
   Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.;
   DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.;
   Frolov, V. V.; Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras,
   S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso,
   R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.;
   Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad,
   E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.;
   Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.;
   Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.;
   Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson,
   W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.;
   Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya; Kim, C.;
   King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie,
   N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk,
   B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.;
   Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx,
   J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb,
   J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Lowry, C. Mow;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.;
   Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.;
   Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi,
   M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling,
   D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder,
   M.; Rawlins, K.; Ray-Majumder, S.; Regimbau, T.; Rehbein, H.; Reid,
   S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.;
   Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez,
   A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.;
   Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.;
   Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.; Sanders, G. H.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.;
   Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg,
   P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens,
   X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky,
   J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom,
   D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton,
   P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor,
   R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tinto,
   M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; Van Den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.;
   Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.;
   Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden,
   J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes,
   N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; zur Mühlen, H.; Zweizig, J.
2008CQGra..25i5004B    Altcode: 2007arXiv0710.0497A
  The first simultaneous operation of the AURIGA detector<A
  href="http://www.auriga.lnl.infn.it">http://www.auriga.lnl.infn.it</A>
  and the LIGO observatory<A
  href="http://www.ligo.org">http://www.ligo.org</A> was an opportunity
  to explore real data, joint analysis methods between two very
  different types of gravitational wave detectors: resonant bars and
  interferometers. This paper describes a coincident gravitational
  wave burst search, where data from the LIGO interferometers are
  cross-correlated at the time of AURIGA candidate events to identify
  coincident transients. The analysis pipeline is tuned with two
  thresholds, on the signal-to-noise ratio of AURIGA candidate events and
  on the significance of the cross-correlation test in LIGO. The false
  alarm rate is estimated by introducing time shifts between data sets
  and the network detection efficiency is measured by adding simulated
  gravitational wave signals to the detector output. The simulated
  waveforms have a significant fraction of power in the narrower AURIGA
  band. In the absence of a detection, we discuss how to set an upper
  limit on the rate of gravitational waves and to interpret it according
  to different source models. Due to the short amount of analyzed data
  and to the high rate of non-Gaussian transients in the detectors' noise
  at the time, the relevance of this study is methodological: this was
  the first joint search for gravitational wave bursts among detectors
  with such different spectral sensitivity and the first opportunity
  for the resonant and interferometric communities to unify languages
  and techniques in the pursuit of their common goal.

---------------------------------------------------------
Title: Observing the unobservable? Modeling coronal cavity densities
Authors: Fuller, J.; Gibson, S. E.; Detoma, G.; Fan, Y.
2008AGUSMSP51A..04F    Altcode:
  Prominence cavities in coronal helmet streamers are readily detectable
  in white light coronagraph images, yet their interpretation may be
  complicated by projection effects. In order to determine a cavity's
  density structure, it is essential to quantify the contribution of
  non-cavity features along the line of sight. We model the coronal cavity
  as an axisymmetric torus that encircles the Sun at constant latitude,
  and fit it to observations of a white light cavity observed by the
  Mauna Loa Solar Observatory (MLSO) MK4 coronagraph from January 25-30,
  2006. We demonstrate that spurious non-cavity contributions (including
  departures from axisymmetry) are minimal enough to be incorporated in
  a density analysis as conservatively estimated uncertainties in the
  data. We calculate a radial density profile for cavity material and for
  the surrounding helmet streamer (which we refer to as the "cavity rim"),
  and find that the cavity density is depleted by a maximum of 40 percent
  compared to the surrounding helmet streamer at low altitudes (1.18 solar
  radii), but is consistently higher (double or more) than in coronal
  holes. We also find that the relative density depletion between cavity
  and surrounding helmet decreases as a function of height. We show that
  both increased temperature in the cavity relative to the surrounding
  helmet streamer and a magnetic flux rope configuration might lead to
  such a flattened density profile. Finally, our model provides general
  observational guidelines that can be used to determine when a cavity is
  sufficiently unobstructed to be a good candidate for plasma diagnostics.

---------------------------------------------------------
Title: Observing the Unobservable? Modeling Coronal Cavity Densities
Authors: Fuller, J.; Gibson, S. E.; de Toma, G.; Fan, Y.
2008ApJ...678..515F    Altcode:
  Prominence cavities in coronal helmet streamers are readily detectable
  in white-light coronagraph images, yet their interpretation may be
  complicated by projection effects. In order to determine a cavity's
  density structure, it is essential to quantify the contribution of
  noncavity features along the line of sight. We model the coronal cavity
  as an axisymmetric torus that encircles the Sun at constant latitude and
  fit it to observations of a white-light cavity observed by the Mauna
  Loa Solar Observatory (MLSO) MK4 coronagraph from 2006 January 25 to
  30. We demonstrate that spurious noncavity contributions (including
  departures from axisymmetry) are minimal enough to be incorporated in
  a density analysis as conservatively estimated uncertainties in the
  data. We calculate a radial density profile for cavity material and
  for the surrounding helmet streamer (which we refer to as the "cavity
  rim") and find that the cavity density is depleted by a maximum of 40%
  compared to the surrounding helmet streamer at low altitudes (1.18
  R<SUB>⊙</SUB>) but is consistently higher (double or more) than in
  coronal holes. We also find that the relative density depletion between
  cavity and surrounding helmet decreases as a function of height. We
  show that both increased temperature in the cavity relative to the
  surrounding helmet streamer and a magnetic flux rope configuration
  might lead to such a flattened density profile. Finally, our model
  provides general observational guidelines that can be used to determine
  when a cavity is sufficiently unobstructed to be a good candidate for
  plasma diagnostics.

---------------------------------------------------------
Title: Publisher's Note: First cross-correlation analysis of
    interferometric and resonant-bar gravitational-wave data for
    stochastic backgrounds [Phys. Rev. D 76, 022001 (2007)]
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burgamy, M.; Burmeister, O.; Busby,
   D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.;
   Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.;
   Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino,
   C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.;
   Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.;
   Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma,
   T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Diaz, M.;
   Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.;
   Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens,
   P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan,
   Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos,
   N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; Gonzalez, G.; Gossler, S.; Grant, A.; Gras,
   S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso,
   R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.;
   Hamilton, W. O.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.;
   Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson,
   B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.;
   Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.;
   Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.;
   Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Luck, H.;
   Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec,
   M.; Mandic, V.; Marano, S.; Marka, S.; Markowitz, J.; Maros, E.;
   Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala,
   N.; McCarthy, R.; McCaulley, B. J.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.;
   Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki,
   E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Miller, P.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moody, V.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Muller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton,
   G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Overmier, H.; Owen, B. J.; Paik, H. -J.; Pan, Y.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.;
   Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.;
   Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsuder, M.;
   Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rudiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi,
   M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf,
   S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.;
   Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.;
   Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle,
   A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg,
   D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thuring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.;
   Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri,
   M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weaver, J.; Webber,
   D.; Weber, A.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.;
   Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.;
   Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.;
   Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang,
   J.; Zhang, L.; Zhang, P.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Muhlen,
   H.; Zweizig, J.
2008PhRvD..77f9904A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Publisher's Note: All-sky search for periodic gravitational
    waves in LIGO S4 data [Phys. Rev. D 77, 022001 (2008)]
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski,
   A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey,
   E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini,
   F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.;
   Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton,
   T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.;
   Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.;
   Desalvo, R.; Dhurandhar, S.; Diaz, M.; Dickson, J.; di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; Gonzalez, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.;
   Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.;
   Lormand, M.; Lubiński, M.; Luck, H.; Machenschalk, B.; Macinnis, M.;
   Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Marka,
   S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.;
   Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.;
   McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams,
   S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.;
   Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.;
   Mudge, D.; Mueller, G.; Mukherjee, S.; Muller-Ebhardt, H.; Munch, J.;
   Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.;
   Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.;
   Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov,
   M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rudiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thuring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Muhlen, H.; Zweizig, J.
2008PhRvD..77f9902A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for gravitational waves from binary inspirals in S3
    and S4 LIGO data
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler,
   W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.;
   Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin,
   E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer,
   T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.;
   Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce,
   R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple,
   J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix,
   J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.;
   Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs,
   G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis,
   R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn,
   L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.;
   Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.;
   Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.;
   Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.;
   Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.;
   Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi,
   M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling,
   D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.;
   Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.;
   de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale,
   V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson,
   P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein,
   A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.;
   Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden,
   J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes,
   N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zur Mühlen, H.; Zweizig, J.
2008PhRvD..77f2002A    Altcode: 2007arXiv0704.3368L
  We report on a search for gravitational waves from the
  coalescence of compact binaries during the third and fourth
  LIGO science runs. The search focused on gravitational waves
  generated during the inspiral phase of the binary evolution. In
  our analysis, we considered three categories of compact binary
  systems, ordered by mass: (i) primordial black hole binaries
  with masses in the range 0.35M<SUB>⊙</SUB>&lt;m<SUB>1</SUB>,
  m<SUB>2</SUB>&lt;1.0M<SUB>⊙</SUB>, (ii) binary neutron stars
  with masses in the range 1.0M<SUB>⊙</SUB>&lt;m<SUB>1</SUB>,
  m<SUB>2</SUB>&lt;3.0M<SUB>⊙</SUB>, and (iii) binary black holes
  with masses in the range 3.0M<SUB>⊙</SUB>&lt;m<SUB>1</SUB>,
  m<SUB>2</SUB>&lt;m<SUB>max⁡</SUB> with the additional
  constraint m<SUB>1</SUB>+m<SUB>2</SUB>&lt;m<SUB>max⁡</SUB>,
  where m<SUB>max⁡</SUB> was set to 40.0M<SUB>⊙</SUB>
  and 80.0M<SUB>⊙</SUB> in the third and fourth science runs,
  respectively. Although the detectors could probe to distances as far as
  tens of Mpc, no gravitational-wave signals were identified in the 1364
  hours of data we analyzed. Assuming a binary population with a Gaussian
  distribution around 0.75-0.75M<SUB>⊙</SUB>, 1.4-1.4M<SUB>⊙</SUB>,
  and 5.0-5.0M<SUB>⊙</SUB>, we derived 90%-confidence upper limit rates
  of 4.9yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP> for primordial black
  hole binaries, 1.2yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP> for binary
  neutron stars, and 0.5yr<SUP>-1</SUP>L<SUB>10</SUB><SUP>-1</SUP> for
  stellar mass binary black holes, where L<SUB>10</SUB> is 10<SUP>10</SUP>
  times the blue-light luminosity of the Sun.

---------------------------------------------------------
Title: Search for gravitational waves associated with 39 gamma-ray
    bursts using data from the second, third, and fourth LIGO runs
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Berukoff, S. J.; Betzwieser, J.; Beyersdorf,
   P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.;
   Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown,
   D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.;
   Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp,
   J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas,
   L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkley, E.;
   Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.;
   Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Coles, M.; Conte, R.;
   Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.;
   Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.;
   Csatorday, P.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann,
   K.; Davies, G.; Daw, E.; Debra, D.; Degallaix, J.; Degree, M.; Delker,
   T.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar,
   S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz,
   A.; Ding, H.; Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis,
   R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.;
   Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise,
   A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.;
   Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.;
   González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.;
   Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner,
   J.; Heinzel, G.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.;
   Itoh, Y.; Ivanov, A.; Jackrel, D.; Jennrich, O.; Johnson, B.; Johnson,
   W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya.; Killow, C. J.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan,
   B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee,
   B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.;
   Libson, A.; Lindquist, P.; Lockerbie, N. A.; Logan, J.; Longo, M.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash,
   T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; Nutzman, P.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen,
   B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.;
   Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin,
   M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke,
   V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.;
   Rakhmanov, M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re,
   V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini,
   L.; Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.;
   Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.;
   Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.;
   Sancho de La Jordana, L.; Sandberg, V.; Sanders, G. H.; Sannibale,
   V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson,
   P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.;
   Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles,
   J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen,
   B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain,
   K. A.; Strand, N. E.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Sylvestre, J.; Takahashi, H.;
   Takamori, A.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tinto, M.;
   Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.;
   Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck,
   D. M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.;
   Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley,
   R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Yunes, N.; Zaleski, K. D.; Zanolin, M.; Zhang, J.; Zhang, L.;
   Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2008PhRvD..77f2004A    Altcode: 2007arXiv0709.0766L
  We present the results of a search for short-duration gravitational-wave
  bursts associated with 39 gamma-ray bursts (GRBs) detected by
  gamma-ray satellite experiments during LIGO’s S2, S3, and S4 science
  runs. The search involves calculating the crosscorrelation between
  two interferometer data streams surrounding the GRB trigger time. We
  search for associated gravitational radiation from single GRBs, and also
  apply statistical tests to search for a gravitational-wave signature
  associated with the whole sample. For the sample examined, we find no
  evidence for the association of gravitational radiation with GRBs,
  either on a single-GRB basis or on a statistical basis. Simulating
  gravitational-wave bursts with sine-Gaussian waveforms, we set
  upper limits on the root-sum-square of the gravitational-wave strain
  amplitude of such waveforms at the times of the GRB triggers. We also
  demonstrate how a sample of several GRBs can be used collectively to
  set constraints on population models. The small number of GRBs and the
  significant change in sensitivity of the detectors over the three runs,
  however, limits the usefulness of a population study for the S2, S3,
  and S4 runs. Finally, we discuss prospects for the search sensitivity
  for the ongoing S5 run, and beyond for the next generation of detectors.

---------------------------------------------------------
Title: The Three-dimensional Evolution of Buoyant Magnetic Flux
    Tubes in a Model Solar Convective Envelope
Authors: Fan, Y.
2008ApJ...676..680F    Altcode:
  We present a set of three-dimensional spherical shell anelastic MHD
  simulations of the buoyant rise of magnetic flux tubes from the base
  of the convection zone to a depth of 16 Mm below the photosphere. It
  is found that when a twisted flux tube arches upward due to buoyancy,
  it rotates out of the plane and thus produces a tilt at the apex. Our
  simulations show that for tubes with the twist rate that is necessary
  for a cohesive rise, the twist-induced tilt dominates that caused by
  the Coriolis force, and furthermore, the twist-induced tilt is of the
  wrong direction (opposite to the observational Joy's law) if the twist
  is left-handed (right-handed) in the northern (southern) hemisphere,
  following the observed hemispheric preference of the sign of the active
  region twist. It is found that in order for the emerging tube to show
  the correct tilt direction (consistent with observations), the initial
  twist rate of the flux tube needs to be less than half of that needed
  for a cohesive rise. Under such conditions, severe flux loss is found
  during the rise. We also found that due to the asymmetric stretching
  of the rising tube by the Coriolis force, a field strength asymmetry
  develops, with the field in the leading leg (leading in the direction
  of rotation) of the Ω-shaped emerging tube being stronger than the
  field in the following leg, which results in a more compact morphology
  in the leading polarity of the emerging active region.

---------------------------------------------------------
Title: Publisher's Note: Upper limits on gravitational wave emission
    from 78 radio pulsars [Phys. Rev. D 76, 042001 (2007)]
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler,
   W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.;
   Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin,
   E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer,
   T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.;
   Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce,
   R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple,
   J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix,
   J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.;
   Dhurandhar, S.; Diaz, M.; Dickson, J.; di Credico, A.; Diederichs,
   G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis,
   R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn,
   L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.;
   Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.;
   Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L.; Gonzalez, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.;
   Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.;
   Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.;
   Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt,
   V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo,
   M.; Lormand, M.; Lubiński, M.; Luck, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Marka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Muller-Ebhardt, H.;
   Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.;
   Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Parameshwaraiah, C.; Patel, P.; Pedraza, M.;
   Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi,
   M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling,
   D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.;
   Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rudiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.;
   Sancho de La Jordana, L.; Sandberg, V.; Sanders, G. H.; Sannibale,
   V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson,
   P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thuring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein,
   A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.;
   Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden,
   J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes,
   N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zur Muhlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.
2008PhRvD..77f9905A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ERRATUM:  Search for gravitational-wave bursts in LIGO data
    from the fourth science run
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.;
   Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.;
   Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.;
   Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.;
   Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.;
   Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.;
   Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.;
   Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton,
   J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise,
   A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.;
   Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev,
   V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.;
   Di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever,
   R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.;
   Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan,
   Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos,
   N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda,
   K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.;
   Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.;
   Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.;
   Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.;
   Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.;
   Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson,
   B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.;
   Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.;
   Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.;
   Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.;
   Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.;
   Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin,
   I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie,
   K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger,
   C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno,
   G.; Mossavi, K.; Lowry, C. Mow; Moylan, A.; Mudge, D.; Mueller, G.;
   Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.;
   Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.;
   Pelc, J.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov,
   M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.;
   Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.;
   Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.;
   Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias,
   M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; Van Den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; zur Mühlen, H.; Zweizig, J.; LIGO
   Scientific Collaboration
2008CQGra..25c9801A    Altcode: 2008CQGra..25c9801B
  The full text of this article is available in the PDF provided.

---------------------------------------------------------
Title: All-sky search for periodic gravitational waves in LIGO S4 data
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski,
   A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley,
   C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.;
   Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.;
   Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.;
   Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.;
   Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.;
   Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.;
   Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.;
   Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai,
   S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.;
   Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.;
   Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.;
   Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.;
   Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.;
   Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov,
   M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg,
   D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.;
   Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri,
   M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2008PhRvD..77b2001A    Altcode: 2007arXiv0708.3818L
  We report on an all-sky search with the LIGO detectors for
  periodic gravitational waves in the frequency range 50 1000
  Hz and with the frequency’s time derivative in the range
  -1×10<SUP>-8</SUP>Hzs<SUP>-1</SUP> to zero. Data from the fourth
  LIGO science run (S4) have been used in this search. Three different
  semicoherent methods of transforming and summing strain power from
  short Fourier transforms (SFTs) of the calibrated data have been
  used. The first, known as StackSlide, averages normalized power from
  each SFT. A “weighted Hough” scheme is also developed and used,
  which also allows for a multi-interferometer search. The third
  method, known as PowerFlux, is a variant of the StackSlide method
  in which the power is weighted before summing. In both the weighted
  Hough and PowerFlux methods, the weights are chosen according to the
  noise and detector antenna-pattern to maximize the signal-to-noise
  ratio. The respective advantages and disadvantages of these methods are
  discussed. Observing no evidence of periodic gravitational radiation,
  we report upper limits; we interpret these as limits on this radiation
  from isolated rotating neutron stars. The best population-based upper
  limit with 95% confidence on the gravitational-wave strain amplitude,
  found for simulated sources distributed isotropically across the sky
  and with isotropically distributed spin axes, is 4.28×10<SUP>-24</SUP>
  (near 140 Hz). Strict upper limits are also obtained for small patches
  on the sky for best-case and worst-case inclinations of the spin axes.

---------------------------------------------------------
Title: Onset of coronal mass ejections due to loss of confinement
    of coronal flux ropes
Authors: Fan, Y.; Gibson, S.
2007AGUFMSH51C..04F    Altcode:
  Using MHD numerical simulations in a three-dimensional spherical
  geometry, we model the loss of confinement and eruption of a flux
  rope emerging quasistatically into a pre-existing coronal arcade
  field. Our numerical experiments have investigated two distinct
  triggering mechanisms that led to the eruption of the flux rope. In
  one case, the overlying arcade field declines with height more slowly
  such that the emerging flux rope remains confined until a high amount
  of internal twist is built up, with the rope self-helicity normalized
  by the square of the rope flux reaching about -1.4, and the flux rope
  becomes significantly kinked. The kinking motion causes rotation of
  the tube to an orientation that makes it easier for it to rupture
  through the arcade field, leading to an eruption. In the second case,
  the overlying field is made to decline more rapidly with height and the
  emerging flux rope is found to lose equilibrium and erupt via the torus
  instability when the flux rope self-helicity normalized by the square
  of the rope flux is only -0.63, before it becomes kinked. The values of
  the total relative magnetic helicity normalized by the square of the
  total anchored flux are, on the other hand, quite close for the two
  cases when the eruption takes place. We study the eruptive properties
  resulting from the two mechansisms and compare them with observations.

---------------------------------------------------------
Title: Search for gravitational-wave bursts in LIGO data from the
    fourth science run
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.;
   Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.;
   Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.;
   Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.;
   Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.;
   Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.;
   Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.;
   Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton,
   J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise,
   A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.;
   Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev,
   V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.;
   Di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever,
   R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.;
   Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan,
   Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos,
   N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda,
   K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant,
   A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.;
   Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.;
   Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.;
   Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.;
   Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.;
   Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson,
   B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.;
   Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.;
   Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.;
   Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.;
   Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.;
   Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin,
   I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.;
   McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie,
   K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger,
   C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno,
   G.; Mossavi, K.; Lowry, C. Mow; Moylan, A.; Mudge, D.; Mueller, G.;
   Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.;
   Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.;
   Pelc, J.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch,
   H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab,
   F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov,
   M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.;
   Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.;
   Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.;
   Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias,
   M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; Van Den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; zur Mühlen, H.; Zweizig, J.; LIGO
   Scientific Collaboration
2007CQGra..24.5343A    Altcode: 2007arXiv0704.0943L
  The fourth science run of the LIGO and GEO 600 gravitational-wave
  detectors, carried out in early 2005, collected data with significantly
  lower noise than previous science runs. We report on a search for
  short-duration gravitational-wave bursts with arbitrary waveform
  in the 64 1600 Hz frequency range appearing in all three LIGO
  interferometers. Signal consistency tests, data quality cuts and
  auxiliary-channel vetoes are applied to reduce the rate of spurious
  triggers. No gravitational-wave signals are detected in 15.5 days
  of live observation time; we set a frequentist upper limit of 0.15
  day<SUP>-1</SUP> (at 90% confidence level) on the rate of bursts
  with large enough amplitudes to be detected reliably. The amplitude
  sensitivity of the search, characterized using Monte Carlo simulations,
  is several times better than that of previous searches. We also provide
  rough estimates of the distances at which representative supernova and
  binary black hole merger signals could be detected with 50% efficiency
  by this analysis.

---------------------------------------------------------
Title: Searches for periodic gravitational waves from unknown isolated
sources and Scorpius X-1: Results from the second LIGO science run
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Berukoff, S. J.; Betzwieser, J.; Beyersdorf,
   P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.;
   Black, E.; Blackburn, K.; Blackburn, L.; Blair, B.; Bland, B.;
   Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady,
   P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.;
   Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister,
   O.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.; Cagnoli,
   G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.;
   Cardenas, L.; Carter, K.; Casey, M. M.; Castaldi, G.; Cepeda, C.;
   Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.;
   Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark,
   J.; Cochrane, . P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.;
   Coles, M.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne,
   D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Csatorday, P.; Cumming, A.; Cutler, C.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw,
   E.; Debra, D.; Degallaix, J.; Degree, M.; Delker, T.; Demma, T.;
   Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz,
   M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Ding,
   H.; Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.;
   Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans,
   T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.;
   Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise,
   A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.;
   Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.; Giaime, J. A.;
   Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.;
   González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.;
   Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald,
   S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.;
   Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner,
   J.; Heinzel, G.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.;
   Itoh, Y.; Ivanov, A.; Jackrel, D.; Jennrich, O.; Johnson, B.; Johnson,
   W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya.; Killow, C. J.; Kim, C.; King, P.; Kissell, J. S.; Klimenko, S.;
   Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan,
   B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee,
   B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.;
   Libson, A.; Lindquist, P.; Lockerbie, N. A.; Logan, J.; Longo, M.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nagano, S.; Nash,
   T.; Newton, G.; Nishizawa, A.; Nocera, F.; Numata, K.; Nutzman, P.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen,
   B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Parameswariah, C.;
   Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin,
   M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke,
   V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.;
   Rakhmanov, M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.;
   Regimbau, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.;
   Richman, S.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.;
   Robinson, C.; Robison, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Rong, H.; Route, R.;
   Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata,
   S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sanders,
   G. H.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B.; Sato,
   S.; Saulson, P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.;
   Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg,
   P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles,
   J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen,
   B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain,
   K. A.; Strand, N. E.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.;
   Sun, K. -X.; Sung, M.; Sutton, P. J.; Sylvestre, J.; Takahashi, H.;
   Takamori, A.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tinto, M.;
   Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein, A.;
   Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck,
   D. . M.; Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.;
   Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.;
   Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley,
   R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Yunes, N.; Zaleski, K. D.; Zanolin, M.; Zhang, J.; Zhang, L.;
   Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2007PhRvD..76h2001A    Altcode: 2006gr.qc.....5028T
  We carry out two searches for periodic gravitational waves using the
  most sensitive few hours of data from the second LIGO science run. Both
  searches exploit fully coherent matched filtering and cover wide areas
  of parameter space, an innovation over previous analyses which requires
  considerable algorithm development and computational power. The first
  search is targeted at isolated, previously unknown neutron stars,
  covers the entire sky in the frequency band 160 728.8 Hz, and assumes
  a frequency derivative of less than 4×10<SUP>-10</SUP>Hz/s. The second
  search targets the accreting neutron star in the low-mass x-ray binary
  Scorpius X-1 and covers the frequency bands 464 484 Hz and 604 624 Hz
  as well as the two relevant binary orbit parameters. Because of the
  high computational cost of these searches we limit the analyses to
  the most sensitive 10 hours and 6 hours of data, respectively. Given
  the limited sensitivity and duration of the analyzed data set,
  we do not attempt deep follow-up studies. Rather we concentrate
  on demonstrating the data analysis method on a real data set and
  present our results as upper limits over large volumes of the parameter
  space. In order to achieve this, we look for coincidences in parameter
  space between the Livingston and Hanford 4-km interferometers. For
  isolated neutron stars our 95% confidence level upper limits on the
  gravitational wave strain amplitude range from 6.6×10<SUP>-23</SUP>
  to 1×10<SUP>-21</SUP> across the frequency band; for Scorpius
  X-1 they range from 1.7×10<SUP>-22</SUP> to 1.3×10<SUP>-21</SUP>
  across the two 20-Hz frequency bands. The upper limits presented in
  this paper are the first broadband wide parameter space upper limits
  on periodic gravitational waves from coherent search techniques. The
  methods developed here lay the foundations for upcoming hierarchical
  searches of more sensitive data which may detect astrophysical signals.

---------------------------------------------------------
Title: Upper limit map of a background of gravitational waves
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski,
   A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey,
   E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini,
   F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.;
   Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton,
   T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.;
   Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.;
   Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt,
   V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.;
   Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.;
   Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.;
   Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx,
   J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.;
   McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb,
   J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.;
   Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers,
   D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.;
   Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.;
   Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.;
   Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.;
   Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola,
   R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.;
   Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles,
   K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2007PhRvD..76h2003A    Altcode: 2007astro.ph..3234T
  We searched for an anisotropic background of gravitational waves
  using data from the LIGO S4 science run and a method that is
  optimized for point sources. This is appropriate if, for example,
  the gravitational wave background is dominated by a small number
  of distinct astrophysical sources. No signal was seen. Upper limit
  maps were produced assuming two different power laws for the source
  strain power spectrum. For an f<SUP>-3</SUP> power law and using
  the 50 Hz to 1.8 kHz band the upper limits on the source strain
  power spectrum vary between 1.2×10<SUP>-48</SUP>Hz<SUP>-1</SUP>
  (100Hz/f)<SUP>3</SUP> and 1.2×10<SUP>-47</SUP>Hz<SUP>-1</SUP>
  (100Hz/f)<SUP>3</SUP>, depending on the position in the
  sky. Similarly, in the case of constant strain power spectrum, the
  upper limits vary between 8.5×10<SUP>-49</SUP>Hz<SUP>-1</SUP> and
  6.1×10<SUP>-48</SUP>Hz<SUP>-1</SUP>. As a side product a limit on an
  isotropic background of gravitational waves was also obtained. All
  limits are at the 90% confidence level. Finally, as an application,
  we focused on the direction of Sco-X1, the brightest low-mass x-ray
  binary. We compare the upper limit on strain amplitude obtained by
  this method to expectations based on the x-ray flux from Sco-X1.

---------------------------------------------------------
Title: Onset of Coronal Mass Ejections Due to Loss of Confinement
    of Coronal Flux Ropes
Authors: Fan, Y.; Gibson, S. E.
2007ApJ...668.1232F    Altcode:
  Using MHD numerical simulations in a three-dimensional spherical
  geometry, we model the loss of confinement and eruption of a flux rope
  emerging quasi-statically into a preexisting coronal arcade field. Our
  numerical experiments investigated two distinct mechanisms that led
  to the eruption of the flux rope. In one case, the overlying arcade
  field declines with height slowly such that the emerging flux rope
  remains confined until its self-relative magnetic helicity normalized
  by the square of the rope's flux reaches -1.4 and the flux rope becomes
  significantly kinked. The kinking motion causes rotation of the tube
  to an orientation that makes it easier for it to rupture through the
  arcade field, leading to an eruption. In the second case, the overlying
  field declines more rapidly with height, and the emerging flux rope is
  found to lose equilibrium and erupt via the torus instability when its
  self-relative magnetic helicity normalized by the square of its flux
  is only approximately -0.63, before it becomes kinked. The values of
  the total relative magnetic helicity of the entire coronal magnetic
  field (including both the flux rope and the arcade field) normalized
  by the square of the total magnetic flux are, on the other hand, of
  similar magnitudes for the two cases when the eruption takes place. We
  compare and contrast the eruptive properties and the posteruption
  states resulting from the two cases.

---------------------------------------------------------
Title: Search for gravitational wave radiation associated with the
    pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004
    using LIGO
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.;
   Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork,
   R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski,
   A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey,
   E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini,
   F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane,
   P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.;
   Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton,
   T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.;
   Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.;
   Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.;
   Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico,
   A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.;
   Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi,
   D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen,
   A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kamat, S.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura,
   S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim,
   C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.;
   Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie,
   N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk,
   B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.;
   Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx,
   J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy,
   R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.;
   McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell,
   G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.;
   Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi,
   K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.;
   Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash,
   T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.;
   Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola,
   R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.;
   Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles,
   K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; de La Jordana, L. Sancho; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.;
   Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.;
   Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.;
   Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias,
   M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio,
   A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.;
   Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.;
   Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.;
   Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods,
   D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan,
   Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao,
   C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.
2007PhRvD..76f2003A    Altcode: 2007astro.ph..3419T
  We have searched for gravitational waves (GWs) associated with the
  SGR 1806-20 hyperflare of 27 December 2004. This event, originating
  from a Galactic neutron star, displayed exceptional energetics. Recent
  investigations of the x-ray light curve’s pulsating tail revealed
  the presence of quasiperiodic oscillations (QPOs) in the 30 2000 Hz
  frequency range, most of which coincides with the bandwidth of the
  LIGO detectors. These QPOs, with well-characterized frequencies, can
  plausibly be attributed to seismic modes of the neutron star which
  could emit GWs. Our search targeted potential quasimonochromatic GWs
  lasting for tens of seconds and emitted at the QPO frequencies. We
  have observed no candidate signals above a predetermined threshold,
  and our lowest upper limit was set by the 92.5 Hz QPO observed in
  the interval from 150 s to 260 s after the start of the flare. This
  bound corresponds to a (90% confidence) root-sum-squared amplitude
  h<SUB>rss-det⁡</SUB><SUP>90%</SUP>=4.5×10<SUP>-22</SUP>strainHz<SUP>-1/2</SUP>
  on the GW waveform strength in the detectable polarization
  state reaching our Hanford (WA) 4 km detector. We illustrate
  the astrophysical significance of the result via an estimated
  characteristic energy in GW emission that we would expect to be able
  to detect. The above result corresponds to 7.7×10<SUP>46</SUP>erg
  (=4.3×10<SUP>-8</SUP>M<SUB>⊙</SUB>c<SUP>2</SUP>), which is
  of the same order as the total (isotropic) energy emitted in the
  electromagnetic spectrum. This result provides a means to probe
  the energy reservoir of the source with the best upper limit on the
  GW waveform strength published and represents the first broadband
  asteroseismology measurement using a GW detector.

---------------------------------------------------------
Title: Upper limits on gravitational wave emission from 78 radio
    pulsars
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Butler,
   W. E.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Carter, K.;
   Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.;
   Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin,
   E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer,
   T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.;
   Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce,
   R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple,
   J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix,
   J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.;
   Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs,
   G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J. -C.; Dupuis,
   R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.;
   Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn,
   L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.;
   Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.;
   Fyffe, M.; Galdi, V.; Ganezer, K. S.; Garofoli, J.; Gholami, I.;
   Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.;
   Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray,
   C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote,
   H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer,
   D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler,
   T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson,
   M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell,
   E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito,
   M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.;
   Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.;
   Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe,
   F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.;
   Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu,
   R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.;
   Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.;
   Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.;
   Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason,
   K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland,
   D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.;
   McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.;
   Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov,
   E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.;
   Nishizawa, A.; Nocera, F.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Parameswariah, C.; Patel, P.; Pedraza, M.;
   Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi,
   M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling,
   D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Rawlins, K.;
   Ray-Majumder, S.; Re, V.; Regimbau, T.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.;
   de La Jordana, L. Sancho; Sandberg, V.; Sanders, G. H.; Sannibale,
   V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson,
   P. R.; Savage, R.; Savov, P.; Sazonov, A.; Schediwy, S.; Schilling,
   R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta,
   A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.;
   Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.;
   Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung,
   M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor,
   R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring,
   A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.;
   Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.;
   Vallisneri, M.; van den Broeck, C.; van Putten, M.; Varvella, M.;
   Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick,
   C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward,
   R.; Watts, K.; Webber, D.; Weidner, A.; Weinert, M.; Weinstein,
   A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.;
   Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden,
   J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes,
   N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; Zur Mühlen, H.; Zweizig, J.; Kramer, M.; Lyne, A. G.
2007PhRvD..76d2001A    Altcode: 2007gr.qc.....2039T
  We present upper limits on the gravitational wave emission from 78
  radio pulsars based on data from the third and fourth science runs
  of the LIGO and GEO 600 gravitational wave detectors. The data from
  both runs have been combined coherently to maximize sensitivity. For
  the first time, pulsars within binary (or multiple) systems have been
  included in the search by taking into account the signal modulation
  due to their orbits. Our upper limits are therefore the first measured
  for 56 of these pulsars. For the remaining 22, our results improve on
  previous upper limits by up to a factor of 10. For example, our tightest
  upper limit on the gravitational strain is 2.6×10<SUP>-25</SUP> for
  PSR J1603-7202, and the equatorial ellipticity of PSR J2124 3358 is
  less than 10<SUP>-6</SUP>. Furthermore, our strain upper limit for the
  Crab pulsar is only 2.2 times greater than the fiducial spin-down limit.

---------------------------------------------------------
Title: Publisher's Note: First cross-correlation analysis of
    interferometric and resonant-bar gravitational-wave data for
    stochastic backgrounds [Phys. Rev. DPRVDAQ0556-2821 76, 022001 (2007)]
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burgamy, M.; Burmeister, O.; Busby,
   D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.;
   Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.;
   Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino,
   C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.;
   Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.;
   Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma,
   T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Diaz, M.;
   Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.;
   Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens,
   P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan,
   Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos,
   N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; Gonzalez, G.; Gossler, S.; Grant, A.; Gras,
   S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso,
   R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.;
   Hamilton, W. O.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.;
   Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson,
   B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.;
   Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.;
   Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.;
   Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Luck, H.;
   Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec,
   M.; Mandic, V.; Marano, S.; Marka, S.; Markowitz, J.; Maros, E.;
   Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala,
   N.; McCarthy, R.; McCaulley, B. J.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.;
   Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki,
   E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Miller, P.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moody, V.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Muller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton,
   G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Overmier, H.; Owen, B. J.; Paik, H. -J.; Pan, Y.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.;
   Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.;
   Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsuder, M.;
   Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan,
   A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.;
   Rudiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi,
   M.; de La Jordana, L. Sancho; Sandberg, V.; Sannibale, V.; Saraf,
   S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.;
   Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.;
   Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle,
   A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan,
   P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg,
   D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thuring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.;
   Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri,
   M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weaver, J.; Webber,
   D.; Weber, A.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.;
   Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.;
   Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.;
   Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang,
   J.; Zhang, L.; Zhang, P.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Muhlen,
   H.; Zweizig, J.
2007PhRvD..76b9905A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: First cross-correlation analysis of interferometric and
    resonant-bar gravitational-wave data for stochastic backgrounds
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain,
   M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.;
   Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer,
   K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.;
   Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue,
   L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.;
   Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington,
   A.; Bunkowski, A.; Buonanno, A.; Burgamy, M.; Burmeister, O.; Busby,
   D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo,
   J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.;
   Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.;
   Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.;
   Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino,
   C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.;
   Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks,
   D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.;
   Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma,
   T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.;
   Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.;
   Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens,
   P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan,
   Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos,
   N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.;
   Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.;
   Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras,
   S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso,
   R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.;
   Hamilton, W. O.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken,
   D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.;
   Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson,
   B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.;
   Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe,
   K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili,
   F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.;
   Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.;
   Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.;
   Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.;
   Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.;
   Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec,
   M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.;
   Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala,
   N.; McCarthy, R.; McCaulley, B. J.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.;
   Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki,
   E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Miller, P.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa,
   O.; Mohanty, S.; Moody, V.; Moreno, G.; Mossavi, K.; Mowlowry, C.;
   Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt,
   H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nettles,
   D.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Paik, H. -J.; Pan, Y.;
   Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.;
   Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.;
   Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.;
   Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.;
   Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze,
   D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson,
   N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.;
   Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.;
   Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata,
   S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale,
   V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson,
   P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel,
   R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.;
   Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.;
   Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.;
   Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.;
   Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.;
   Stuver, A.; Summerscales, T. Z.; Sun, K. -X.; Sung, M.; Sutton, P. J.;
   Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.;
   Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov,
   K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.;
   Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri,
   M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman,
   S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weaver, J.; Webber,
   D.; Weber, A.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.;
   Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.;
   Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke,
   B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.;
   Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.;
   Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.;
   Zhang, L.; Zhang, P.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen,
   H.; Zweizig, J.
2007PhRvD..76b2001A    Altcode: 2007gr.qc.....3068L
  Data from the LIGO Livingston interferometer and the ALLEGRO
  resonant-bar detector, taken during LIGO’s fourth science run,
  were examined for cross correlations indicative of a stochastic
  gravitational-wave background in the frequency range 850 950 Hz,
  with most of the sensitivity arising between 905 and 925 Hz. ALLEGRO
  was operated in three different orientations during the experiment
  to modulate the relative sign of gravitational-wave and environmental
  correlations. No statistically significant correlations were seen in
  any of the orientations, and the results were used to set a Bayesian
  90% confidence level upper limit of Ω<SUB>gw</SUB>(f)≤1.02,
  which corresponds to a gravitational-wave strain at 915 Hz of
  1.5×10<SUP>-23</SUP>Hz<SUP>-1/2</SUP>. In the traditional units of
  h<SUB>100</SUB><SUP>2</SUP>Ω<SUB>gw</SUB>(f), this is a limit of 0.53,
  2 orders of magnitude better than the previous direct limit at these
  frequencies. The method was also validated with successful extraction
  of simulated signals injected in hardware and software.

---------------------------------------------------------
Title: λ Boo stars among the γ Dor-type pulsators: the cases of
    HD 218427 and HD 239276
Authors: Rodríguez, E.; Suárez, J. C.; Moya, A.; Dupret, M. A.;
   Grigahcène, A.; Costa, V.; López-González, M. J.; Zhou, A. -Y.;
   Amado, P. J.; Poretti, E.; Wei, J. -Y.; Fan, Y.
2007CoAst.150..131R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Splitting Flux Ropes: Modeling The Eruption Of Magnetic
    Structures On The Sun
Authors: Gibson, Sarah; Fan, Y.
2007AAS...210.5806G    Altcode: 2007BAAS...39..168G
  Coronal mass ejections (CMEs) and their associated space weather
  manifestations are routinely interpreted as possessing a helical
  magnetic flux rope structure. An ongoing controversy remains, however,
  as to whether a precursor flux rope exists as a coronal equilibrium
  state prior to eruption, or whether it is formed during eruption. This
  is an important question to resolve, since CME initiation models and
  space weather predictions depend upon a clear understanding of the
  configuration of pre-CME magnetic fields and their evolution during
  eruption. We will describe an alternative which lies between the
  two extremes of a totally erupting, pre-existing rope, and a rope
  that forms completely in situ during eruption, i.e., a precursor flux
  rope that splits in two and reconnects with surrounding fields during
  eruption. We consider the implications of such a "partially-expelled
  flux rope" model for a range of CME-related observations, including
  partially-erupting filaments, the evolution of post-flare loops and
  flare ribbon morphologies, and transient coronal holes.

---------------------------------------------------------
Title: Summertime European heat and drought waves induced by
    wintertime Mediterranean rainfall deficit
Authors: Vautard, R.; Yiou, P.; D'Andrea, F.; de Noblet, N.; Viovy,
   N.; Cassou, C.; Polcher, J.; Ciais, P.; Kageyama, M.; Fan, Y.
2007GeoRL..34.7711V    Altcode:
  The risk of extreme heat waves in Europe like the unprecedented one of
  summer 2003 is likely to increase in the future, calling for increased
  understanding of these phenomena. From an analysis of meteorological
  records over 58 years, we show that hot summers are preceded by
  winter rainfall deficits over Southern Europe. Subsequent drought
  and heat spreads northward throughout Europe in early summer, due to
  atmospheric transport of anomalously warm and dry air from Southern
  Europe in southerly wind episodes. This is shown by the observations
  and supported by mesoscale meteorological sensitivity simulations
  for Summer 1994. Moreover previous winter and early spring rainfall
  frequency in the Mediterranean regions is correlated with summer
  temperature in central continental Europe. These results emphasize
  the critical role of the water reservoir in the soil of continental
  Mediterranean areas for the maintenance of European climate.

---------------------------------------------------------
Title: Searching for a Stochastic Background of Gravitational Waves
    with the Laser Interferometer Gravitational-Wave Observatory
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith,
   P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.;
   Armandula, H.; Ashley, M.; Aston, S.; Aulbert, C.; Babak, S.; Ballmer,
   S.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.;
   Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf,
   P.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn,
   K.; Blackburn, L.; Blair, D.; Bland, B.; Bogue, L.; Bork, R.; Bose,
   S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brooks, A.; Brown,
   D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burman, R.;
   Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.;
   Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.;
   Casey, M. M.; Cepeda, C.; Charlton, P.; Chatterji, S.; Chelkowski,
   S.; Chen, Y.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Cokelaer,
   T.; Colacino, C. N.; Coldwell, R.; Cook, D.; Corbitt, T.; Coward, D.;
   Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.;
   Cruise, A. M.; Cumming, A.; Cutler, C.; Dalrymple, J.; D'Ambrosio,
   E.; Danzmann, K.; Davies, G.; de Vine, G.; DeBra, D.; Degallaix, J.;
   Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandar, S.; Di Credico,
   A.; Díaz, M.; Dickson, J.; Diederichs, G.; Dietz, A.; Doomes, E. E.;
   Drever, R. W. P.; Dumas, J. -C.; Dupuis, R. J.; Ehrens, P.; Elliffe,
   E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fejer,
   M. M.; Finn, L. S.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.;
   Frey, R. E.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.;
   Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Goda, K.;
   Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras,
   S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grimmett,
   D.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson,
   R.; Hage, B.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry,
   G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall,
   A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hirose, E.; Hoak,
   D.; Hoang, P.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Hua,
   W.; Huttner, S.; Ingram, D.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel,
   D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.;
   Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.;
   Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Khalili, F. Ya.;
   Khan, A.; Kim, C.; King, P.; Klimenko, S.; Kokeyama, K.; Kondrashov,
   V.; Koranda, S.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.;
   Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leonhardt,
   V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.;
   Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; MacInnis,
   M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Márka, S.;
   Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone,
   L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.;
   McHugh, M.; McKenzie, K.; McNabb, J. W. C.; Meier, T.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger,
   C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno,
   G.; Mossavi, K.; MowLowry, C.; Moylan, A.; Mudge, D.; Mueller, G.;
   Müller-Ebhardt, H.; Mukherjee, S.; Munch, J.; Murray, P.; Myers,
   E.; Myers, J.; Newton, G.; Numata, K.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.;
   Parameshwaraiah, V.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M. V.;
   Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola,
   R.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein,
   H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.;
   Rivera, B.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Roddy,
   S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie,
   J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan,
   K.; Sakata, S.; Samidi, M.; de la Jordana, L. Sancho; Sandberg, V.;
   Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.;
   Saulson, P. R.; Savage, R.; Schediwy, S.; Schilling, R.; Schnabel,
   R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.;
   Seader, S. E.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.;
   Sengupta, A. S.; Shawhan, P.; Sheard, B.; Shoemaker, D. H.; Sibley,
   A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Slagmolen, B.; Slutsky,
   J.; Smith, J.; Smith, M. R.; Sneddon, P.; Somiya, K.; Speake, C.;
   Spjeld, O.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales,
   T.; Sun, K.; Sung, M.; Sutton, P. J.; Tanner, D. B.; Tarallo, M.;
   Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.;
   Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor,
   G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vahlbruch,
   H.; Vallisneri, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch,
   J.; Veitch, P.; Vigeland, S.; Villar, A.; Vorvick, C.; Vyachanin,
   S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.;
   Webber, D.; Weidner, A.; Weinstein, A.; Weiss, R.; Wen, S.; Wette,
   K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.;
   Wilkinson, C.; Willems, P. A.; Willke, B.; Wilmut, I.; Winkler, W.;
   Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley,
   R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida,
   S.; Yunes, N.; Zanolin, M.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker,
   M.; zur Mühlen, H.; Zweizig, J.; LIGO Scientific Collaboration
2007ApJ...659..918A    Altcode: 2006astro.ph..8606L
  The Laser Interferometer Gravitational-Wave Observatory (LIGO) has
  performed the fourth science run, S4, with significantly improved
  interferometer sensitivities with respect to previous runs. Using
  data acquired during this science run, we place a limit on the
  amplitude of a stochastic background of gravitational waves. For
  a frequency independent spectrum, the new Bayesian 90% upper
  limit is Ω<SUB>GW</SUB>×[H<SUB>0</SUB>/(72 km s<SUP>-1</SUP>
  Mpc<SUP>-1</SUP>)<SUP>2</SUP>&lt;6.5×10<SUP>-5</SUP>. This is
  currently the most sensitive result in the frequency range 51-150 Hz,
  with a factor of 13 improvement over the previous LIGO result. We
  discuss the complementarity of the new result with other constraints
  on a stochastic background of gravitational waves, and we investigate
  implications of the new result for different models of this background.

---------------------------------------------------------
Title: The Evolving Sigmoid: Evidence for Magnetic Flux Ropes in
    the Corona Before, During, and after CMES
Authors: Gibson, S. E.; Fan, Y.; Török, T.; Kliem, B.
2007sdeh.book..131G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Coronal prominence structure and dynamics: A magnetic flux
    rope interpretation
Authors: Gibson, S. E.; Fan, Y.
2006JGRA..11112103G    Altcode:
  The solar prominence is an example of a space physics phenomenon
  that can be modeled as a twisted magnetic flux tube or magnetic flux
  "rope." In such models the prominence is one observable part of
  a larger magnetic structure capable of storing magnetic energy to
  drive eruptions. We show how a flux rope model explains a range of
  observations of prominences and associated structures such as cavities
  and soft X-ray sigmoids and discuss in particular the observational
  and dynamic consequences of three-dimensional reconnections in and
  around the evolving magnetic flux rope. We demonstrate that the
  flux rope model can describe the prominence's preeruption structure
  and dynamics, loss of equilibrium, and behavior during and after an
  eruption in which part of the flux rope is expelled from the corona.

---------------------------------------------------------
Title: Asteroseismology of the new multiperiodic γ Dor variable
    HD 239276
Authors: Rodríguez, E.; Costa, V.; Zhou, A. -Y.; Grigahcène, A.;
   Dupret, M. A.; Suárez, J. C.; Moya, A.; López-González, M. J.;
   Wei, J. -Y.; Fan, Y.
2006A&A...456..261R    Altcode:
  The variability of HD 239276 was suspected photometrically nearly
  twenty years ago, but was confirmed with new observations obtained in
  2001 during a two-site photometric campaign carried out from Spain,
  in uvbyβ Strömgren-Crawford photometry, and China, using the Johnson
  V filter. Two low-dispersion spectra were also collected. The results
  establish this star as a new multiperiodic γ Dor-type pulsator with
  deficiency in metallicity. Its possible λ Boo nature is discussed. The
  frequency analysis shows three pulsational frequencies as significant,
  but some more are probably present among the residuals. The method
  based on phase shifts and amplitude ratios in multicolour photometry is
  used to identify the excited modes with non-adiabatic time-dependent
  convection models. A very good agreement between the theoretical
  and observed amplitude ratios is obtained and the two main modes are
  identified as l=1 modes. Nevertheless, our results do not allow us to
  discriminate between a solar abundance and a metal deficient nature
  for this star. The frequency ratio method is further used for the
  identification of the modes. The results suggest low metallicity for
  this star, but a λ Boo nature may be not ruled out.

---------------------------------------------------------
Title: The Evolving Sigmoid: Evidence for Magnetic Flux Ropes in
    the Corona Before, During, and After CMES
Authors: Gibson, S. E.; Fan, Y.; Török, T.; Kliem, B.
2006SSRv..124..131G    Altcode: 2007SSRv..tmp...52G
  It is generally accepted that the energy that drives coronal mass
  ejections (CMEs) is magnetic in origin. Sheared and twisted coronal
  fields can store free magnetic energy which ultimately is released
  in the CME. We explore the possibility of the specific magnetic
  configuration of a magnetic flux rope of field lines that twist
  about an axial field line. The flux rope model predicts coronal
  observables, including heating along forward or inverse S-shaped,
  or sigmoid, topological surfaces. Therefore, studying the observed
  evolution of such sigmoids prior to, during, and after the CME gives
  us crucial insight into the physics of coronal storage and release of
  magnetic energy. In particular, we consider (1) soft-X-ray sigmoids,
  both transient and persistent; (2) The formation of a current sheet
  and cusp-shaped post-flare loops below the CME; (3) Reappearance of
  sigmoids after CMEs; (4) Partially erupting filaments; (5) Magnetic
  cloud observations of filament material.

---------------------------------------------------------
Title: Compensation of Strong Thermal Lensing in High-Optical-Power
    Cavities
Authors: Zhao, C.; Degallaix, J.; Ju, L.; Fan, Y.; Blair, D. G.;
   Slagmolen, B. J. J.; Gray, M. B.; Lowry, C. M. Mow; McClelland,
   D. E.; Hosken, D. J.; Mudge, D.; Brooks, A.; Munch, J.; Veitch, P. J.;
   Barton, M. A.; Billingsley, G.
2006PhRvL..96w1101Z    Altcode: 2006gr.qc.....2096Z
  In an experiment to simulate the conditions in high optical power
  advanced gravitational wave detectors, we show for the first time
  that the time evolution of strong thermal lenses follows the predicted
  infinite sum of exponentials (approximated by a double exponential), and
  that such lenses can be compensated using an intracavity compensation
  plate heated on its cylindrical surface. We show that high finesse
  ∼1400 can be achieved in cavities with internal compensation plates,
  and that mode matching can be maintained. The experiment achieves
  a wave front distortion similar to that expected for the input test
  mass substrate in the Advanced Laser Interferometer Gravitational Wave
  Observatory, and shows that thermal compensation schemes are viable. It
  is also shown that the measurements allow a direct measurement of
  substrate optical absorption in the test mass and the compensation
  plate.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Differential uvby photometry of
    HD 239276 (Rodriguez+, 2006)
Authors: Rodriguez, E.; Costa, V.; Zhou, A. -Y.; Grigahcene, A.;
   Dupret, M. A.; Suárez, J. C.; Moya, A.; Lopez-Gonzalez, M. J.; Wei,
   J. -Y.; Fan, Y.
2006yCat..34560261R    Altcode:
  Table 2 contents 139 simultaneous measurements collected during in each
  of the four uvby colours of the Stromgren photometric system for the
  Gamma Doradus variable HD 239276. The observations were carried out
  by the authors through the years 1986-1987 using the 0.90m telescope
  at Sierra Nevada Observatory, Spain and the six-channel uvby-Hbeta
  spectrograph photometer for simultaneous measurements in uvby or in
  the narrow and wide Hbeta channels, respectively. <P />Table 3 contents
  101 measurements collected in the V filter of the Johnson photometric
  system for the Gamma Doradus variable HD 239276. The observations were
  carried out by the authors through the year 2001 using the three-channel
  high-speed photoelectric photometer P45-A mounted on the 0.85m telescope
  at Xinglong Station of the Beijing Astronomical Observatory, China. <P
  />Table 4 contents 582 simultaneous measurements collected during in
  each of the four uvby colours of the Stromgren photometric system for
  the Gamma Doradus variable HD 239276. The observations were carried
  out by the authors through the year 2001 using the 0.90m telescope
  at Sierra Nevada Observatory, Spain and the six-channel uvby-Hbeta
  spectrograph photometer for simultaneous measurements in uvby or in
  the narrow and wide Hbeta channels, respectively. <P />(3 data files).

---------------------------------------------------------
Title: Is Reconnection Necessary for Kinked CME Onset?
Authors: Rachmeler, Laurel; DeForest, C. E.; Gibson, S. E.; Fan, Y.
2006SPD....37.0902R    Altcode: 2006BAAS...38..236R
  We present initial results from a controlled numerical experiment to
  determine whether CME onset requires reconnection or can be driven
  primarily by loss of plasma equilibrium. The early onset of the kink
  instability proceeds with little reconnection in traditional MHD
  simulations, but still at a nonzero rate. After the initial onset
  of the instability, reconnection proceeds rapidly across the newly
  formed current sheet, contributing to the ejection of the kink. We
  have simulated the kink instability driven purely by loss of plasma
  equilibrium - in the absence of numerical reconnection - as an early
  step to understanding the role of reconnection in CME evolution.

---------------------------------------------------------
Title: On the Nature of the X-Ray Bright Core in a Stable Filament
    Channel
Authors: Fan, Y.; Gibson, S. E.
2006ApJ...641L.149F    Altcode:
  In a search for the cause of the intense heating revealed by X-ray
  emission in filament channels, we have simulated the evolution of
  a twisted toroidal flux rope emerging quasi-statically into the
  corona. Initially, the simulated flux rope remains confined in
  equilibrium as the stored magnetic energy increases. With enough
  twist buildup, there is a sudden catastrophic loss of equilibrium
  and total expulsion of the flux rope. We focused on the quasi-static
  phase in which a current sheet forms within the flux rope cavity,
  along the so-called bald-patch separatrix surface (BPSS). This
  comprises an envelope of field lines that graze the anchoring lower
  boundary, enclosing the detached helical field that supports the
  prominence. Significant magnetic energy dissipation and heating are
  expected to center around such current sheets. The heating that should
  result provides a plausible explanation for the hot X-ray sources,
  although they appear to be colocated with cool material. If our
  physical picture is correct, then the development of X-ray “bright
  cores” or “sigmoids” in a filament channel suggests the presence of
  a BPSS separating the helical field of a twisted flux rope in stable
  confinement from the surrounding untwisted fields.

---------------------------------------------------------
Title: Status of the Australian Consortium for Interferometric
    Gravitational Astronomy
Authors: McClelland, D. E.; Scott, S. M.; Gray, M. B.; Searle,
   A. C.; Goßler, S.; Slagmolen, B. J. J.; Dickson, J.; Chow, J. H.;
   de Vine, G.; McKenzie, K.; Mow-Lowry, C. M.; Moylan, A.; Rabeling,
   D. S.; Sheard, B. S.; Cumpston, J.; Wette, K.; Blair, D. G.; Ju, L.;
   Burman, R.; Coward, D.; Zhao, C.; Barrigo, P.; Chin, E.; Degallaix,
   J.; Fan, Y.; Gras, S.; Howell, E.; Lee, B.; Schediwy, S.; Yan, Z.;
   Munch, J.; Veitch, P. J.; Mudge, D.; Brooks, A.; Hosken, D.
2006CQGra..23S..41M    Altcode:
  We report the status of research and development being undertaken
  by the members of the Australian Consortium for Interferometric
  Gravitational Astronomy.

---------------------------------------------------------
Title: Gingin High Optical Power Test Facility
Authors: Zhao, C.; Blair, D. G.; Barrigo, P.; Degallaix, J.; Dumas,
   J. -C.; Fan, Y.; Gras, S.; Ju, L.; Lee, B.; Schediwy, S.; Yan, Z.;
   McClelland, D. E.; Scott, S. M.; Gray, M. B.; Searle, A. C.; Gossler,
   S.; Slagmolen, B. J. J.; Dickson, J.; McKenzie, K.; Mow-Lowry, C.;
   Moylan, A.; Rabeling, D.; Cumpston, J.; Wette, K.; Munch, J.; Veitch,
   P. J.; Mudge, D.; Brooks, A.; Hosken, D.
2006JPhCS..32..368Z    Altcode:
  The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in
  collaboration with LIGO is developing a high optical power research
  facility at the AIGO site, Gingin, Western Australia. Research at
  the facility will provide solutions to the problems that advanced
  gravitational wave detectors will encounter with extremely high
  optical power. The problems include thermal lensing and parametric
  instabilities. This article will present the status of the facility
  and the plan for the future experiments.

---------------------------------------------------------
Title: The Partial Expulsion of a Magnetic Flux Rope
Authors: Gibson, S. E.; Fan, Y.
2006ApJ...637L..65G    Altcode:
  We demonstrate the partial expulsion of a three-dimensional magnetic
  flux rope, in which an upper, escaping rope is separated from a lower,
  surviving rope by cusped, reconnecting loop field lines. We use the
  three-dimensional magnetohydrodynamic model recently presented by Fan,
  extended to examine the erupting rope's end state. As in that work, the
  modeled flux rope in spherical coordinates erupts when enough twist has
  emerged to induce a loss of equilibrium. After multiple reconnections at
  current sheets that form during the eruption, the rope breaks in two,
  so that only a part of it escapes. We consider the details of how this
  separation occurs and discuss the observational significance of such
  a partially expelled flux rope for partially erupting filaments and
  re-forming X-ray sigmoids.

---------------------------------------------------------
Title: The emergence and evolution of twisted coronal magnetic fields:
    comparing models and observations
Authors: Gibson, S.; Fan, Y.
2006cosp...36.1839G    Altcode: 2006cosp.meet.1839G
  We will present new results comparing coronal plasma observations to
  observables predicted by MHD models of twisted magnetic structures in
  the corona We will focus on their emergence through the photosphere
  their subsequent equilibrium states and their eruptive properties We
  will show that observations of coronal filaments before during and
  after eruptions can be explained In particular we will demonstrate
  that the observed relationship between filament filament cavity and
  hot X-ray sources such as sigmoids are reproduced for a variety of
  twisted magnetic structures in equilibrium We will also demonstrate that
  modeled loss of equilibrium and eruption of such magnetic structures
  can explain a range of observed behaviors of filaments their cavities
  and X-ray sigmoids during and after eruptions These include observations
  of partially-erupting filaments and the immediate reformation of X-ray
  sigmoids after an eruption

---------------------------------------------------------
Title: Tolerance of yeast to ethanol decreased after space flight
Authors: Xia, B.; Sun, Y.; Yi, Z.; He, J.; Jiang, X.; Fan, Y.;
   Zhuang, F.
2006cosp...36.1911X    Altcode: 2006cosp.meet.1911X
  Background Saccharomyces cerevisiae is an important industry
  microorganism and the tolerance to ethanol is one of the main
  characteristics to decide its yield potential USA researchers reported
  that E coli cells growing in simulated microgravity environment were
  much more resistant to the growth-inhibitory and production-inhibitory
  effects of ethanol than cells growing in shaken flasks In this
  research we will investigate the tolerance of yeast to ethanol in real
  microgravity environment Method S cerevisiae cells were cultured for
  18 d in YPD medium containing various concentrations of ethanol 0 6
  8 and 10 V V during the China s 22 th recoverable satellite mission
  Optical density living cells counts metabolism and morphology in
  each culture were measured S cerevisiae cells were exposed to 20 V V
  ethanol to investigate the tolerance to ethanol Result The biomass
  of cells culture at 0 times g is 40 lower than that of the ground
  control in medium of YPD With the increase of concentration of ethanol
  in medium the rate of living cells decreased steeply especially in 0
  times g culture The living cell of 0 times g is 65 5 lower than the
  control cells The viability of 0 times g cells and ground control
  cells exposed to 20 ethanol for 6h is 1 7 and 10 5 respectively No
  remarkable differences were found in the cell morphology and glucose
  consumption Conclusion These results suggest that under

---------------------------------------------------------
Title: The Emergence and Evolution of Twisted Magnetic Flux Ropes
    in the Solar Corona
Authors: Fan, Y.; Gibson, S. E.; Manchester, W.
2005ESASP.596E..26F    Altcode: 2005ccmf.confE..26F
  No abstract at ADS

---------------------------------------------------------
Title: Coronal Mass Ejections as Loss of Confinement of Kinked
    Magnetic Flux Ropes
Authors: Fan, Y.
2005ApJ...630..543F    Altcode:
  We perform MHD simulations in a spherical geometry of the evolution
  of the three-dimensional coronal magnetic field as a twisted magnetic
  flux tube emerges slowly into the low-β corona previously occupied
  by a potential arcade. We study the evolution of the emerged flux
  rope in the corona as its twist and magnetic energy increases due to
  flux emergence. We find two distinct stages of the evolution. The
  earlier evolution is nearly quasi-static, with the flux rope being
  able to settle into an neighboring equilibrium when the emergence is
  stopped. When the twist in the emerged flux rope reaches some critical
  level, the flux rope is found to undergo kink motion and erupt through
  the arcade field at a localized region, with most of the arcade field
  remaining closed. The nonlinear evolution of the kink instability
  facilitates the loss of confinement of the flux rope by changing its
  orientation at the apex such that it becomes easier for the flux rope
  to part and erupt through the arcade. The eruption of the writhing
  flux rope produces prominence field with Λ-shaped and cross-legged
  morphologies that have been seen in the cores of some CMEs.

---------------------------------------------------------
Title: Evolution of Twisted Magnetic Flux Robes Emerging into the
    Solar Corona (Invited)
Authors: Fan, Y.; Gibson, S. E.
2005ESASP.592..241F    Altcode: 2005ESASP.592E..36F; 2005soho...16E..36F
  No abstract at ADS

---------------------------------------------------------
Title: On the Availability of Sufficient Twist in Solar Active
    Regions to Trigger the Kink Instability
Authors: Leka, K. D.; Fan, Y.; Barnes, G.
2005ApJ...626.1091L    Altcode:
  The question of whether there is sufficient magnetic twist in solar
  active regions for the onset of the kink instability is examined
  using a “blind test” of analysis methods commonly used to interpret
  observational data. “Photospheric magnetograms” are constructed from
  a recently developed numerical simulation of a kink-unstable emerging
  flux rope with nearly constant (negative) wind. The calculation of the
  best-fit linear force-free parameter α<SUB>best</SUB> is applied,
  with the goal of recovering the model input helicity. It is shown
  that for this simple magnetic structure, three effects combine to
  produce an underestimation of the known helicity: (1) the influence of
  horizontal fields with lower local α values within the flux rope; (2)
  an assumed simple relation between α<SUB>best</SUB> and the winding
  rate q does not apply to nonaxis fields in a flux rope that is not
  thin; and (3) the difficulty in interpreting the force-free twist
  parameter measured for a field that is forced. A different method to
  evaluate the magnetic twist in active region flux ropes is presented,
  which is based on evaluating the peak α value at the flux rope
  axis. When applied to data from the numerical simulation, the twist
  component of the magnetic helicity is essentially recovered. Both
  the α<SUB>best</SUB> and the new α<SUB>peak</SUB> methods are then
  applied to observational photospheric vector magnetic field data of
  NOAA AR 7201. The α<SUB>best</SUB> approach is then confounded further
  in NOAA AR 7201 by a distribution of α that contains both signs, as
  is generally observed in active regions. The result from the proposed
  α<SUB>peak</SUB> approach suggests that a larger magnetic twist is
  present in this active region's δ-spot than would have been inferred
  from α<SUB>best</SUB>, by at least a factor of 3. It is argued that
  the magnetic fields in localized active region flux ropes may indeed
  carry greater than 2π winds, and thus the kink instability is a
  possible trigger mechanism for solar flares and coronal mass ejections.

---------------------------------------------------------
Title: CME Onset Due to Loss of Confinement of Twisted Magnetic
    Flux Ropes
Authors: Fan, Y.; Gibson, S.
2005AGUSMSP23A..08F    Altcode:
  We present MHD simulations in both 2D axisymmetric and 3D spherical
  geometries of the evolution of a twisted magnetic flux rope emerging
  into the low-β corona previously occupied by a potential arcade
  field. We describe both the initial quasi-static evolution whereby
  stable equilibrium structures can form with stored free magnetic
  energy, and the eventual loss of confinement or equilibrium of the
  twisted magnetic flux rope as sufficient twist is being transported
  into the corona, resulting in the onset of a CME. We investigate how
  the evolution and the loss of equilibrium for a 3D line-tied flux rope
  differ compared to the case of a 2D axisymmetric flux rope.

---------------------------------------------------------
Title: The Source of Magnetic Shear in CME Source Regions
Authors: Manchester, W. B.; Fan, Y.; Gombosi, T. I.
2005AGUSMSH53B..03M    Altcode:
  We present a two and three-dimensional numerical magnetohydrodynamic
  simulations of magnetic flux emergence in three geometries including
  horizontal layers, arcades and flux ropes. In all cases, the magnetic
  structures are initially embedded in gravitationally stratified plasma
  in non-force-free states in which plasma pressure confines the magnetic
  fields. As the magnetic fields buoyantly rise, they greatly expand in
  the reduced pressure of the upper atmosphere. In all cases, we find
  that the legs of ascending bipole loop structures move in opposite
  horizontal directions drawing the magnetic field parallel to the
  neutral line. The shearing motions naturally occur as the magnetic
  field expands in the stratified atmosphere which produces a gradient in
  the axial field. This gradient results in a horizontal Lorentz force
  that drives the legs of the bipole loop in opposite directions. The
  shearing motions transport axial flux and energy from the submerged
  portion of the field to the expanding portion, which may cause it to
  violently erupt. This shearing process is very robust and explains the
  highly sheared state of the magnetic field associated with prominences,
  flares and coronal mass ejections.

---------------------------------------------------------
Title: Dynamics of Emerging Flux Tubes
Authors: Fan, Y.
2004ASPC..325...47F    Altcode:
  Bipolar magnetic regions on the solar surface are believed to correspond
  to the topmost portions of Ω-shaped arching flux tubes that have risen
  buoyantly from the base of the solar convection zone, where strong
  toroidal magnetic fields are being generated by the dynamo process. The
  dynamic evolution of such rising flux tubes in the solar convection zone
  has been studied extensively using a simplified 1D thin flux tube model,
  and more recently with direct multi-dimensional MHD simulations. In
  this paper we review some recent results of MHD simulations of the
  formation and dynamic rise of buoyant Ω-loops in the solar convection
  zone. We discuss results with regard to the following topics:
  (1) the formation of buoyant flux tubes from a horizontal magnetic
  layer at the base of the solar convection zone due to the growth of
  the buoyancy instabilities, (2) the necessary twist for maintaining
  cohesion of the rising flux tubes, (3) the kink evolution of highly
  twisted emerging tubes, (4) the influence of 3D stratified convection
  on the rise and the structure of buoyant flux tubes, and finally (5)
  the emergence of twisted magnetic flux tubes into the solar atmosphere.

---------------------------------------------------------
Title: Observational Consequences of a Magnetic Flux Rope Emerging
    into the Corona
Authors: Gibson, S. E.; Fan, Y.; Mandrini, C.; Fisher, G.; Demoulin, P.
2004ApJ...617..600G    Altcode:
  We show that a numerical simulation of a magnetic flux rope emerging
  into a coronal magnetic field predicts solar structures and dynamics
  consistent with observations. We first consider the structure,
  evolution, and relative location and orientation of S-shaped, or
  sigmoid, active regions and filaments. The basic assumptions are that
  (1) X-ray sigmoids appear at the regions of the flux rope known as
  “bald-patch-associated separatrix surfaces (BPSSs), where, under
  dynamic forcing, current sheets can form, leading to reconnection
  and localized heating, and that (2) filaments are regions of enhanced
  density contained within dips in the magnetic flux rope. We demonstrate
  that the shapes and relative orientations and locations of the BPSS
  and dipped field are consistent with observations of X-ray sigmoids and
  their associated filaments. Moreover, we show that current layers indeed
  form along the sigmoidal BPSS as the flux rope is driven by the kink
  instability. Finally, we consider how apparent horizontal motions of
  magnetic elements at the photosphere caused by the emerging flux rope
  might be interpreted. In particular, we show that local correlation
  tracking analysis of a time series of magnetograms for our simulation
  leads to an underestimate of the amount of magnetic helicity transported
  into the corona by the flux rope, largely because of undetectable
  twisting motions along the magnetic flux surfaces. Observations of
  rotating sunspots may provide better information about such rotational
  motions, and we show that if we consider the separated flux rope legs as
  proxies for fully formed sunspots, the amount of rotation that would
  be observed before the region becomes kink unstable would be in the
  range 40°-200° per leg/sunspot, consistent with observations.

---------------------------------------------------------
Title: The Dynamic Evolution of Twisted Magnetic Flux Tubes in a
    Three-dimensional Convecting Flow. II. Turbulent Pumping and the
    Cohesion of Ω-Loops
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.; Bercik, D. J.
2004ApJ...612..557A    Altcode:
  We present a set of three-dimensional MHD simulations using the
  anelastic approximation of active region-scale flux ropes embedded
  in a turbulent, stratified model convection zone. We simulate the
  evolution of Ω-loops and other magnetic structures of varying field
  strengths, helicities, and morphologies in both rotating and nonrotating
  background states. We show that if the magnetic energy of a flux tube
  is weak relative to the kinetic energy density of strong downdrafts,
  convective flows dominate the evolution, flux tubes of any shape
  rapidly lose cohesion, and the magnetic field redistributes itself
  throughout the domain over timescales characteristic of convective
  turnover. We determine the conditions under which magnetic tension
  resulting from field line twist can provide the force necessary to
  prevent a relatively weak flux tube from losing cohesion during its
  ascent through the turbulent convection zone. Our simulations show
  that there is no initial tendency for a horizontal magnetic flux tube
  or layer to be preferentially transported in one vertical direction
  over the other solely as a result of the presence of an asymmetric
  vertical flow field. However, as the simulations progress, there is
  a transient net transport of magnetic flux into the lower half of the
  computational domain as the distribution of the magnetic field changes
  and flux is expelled from cell centers into converging downflows and
  intergranular lanes. This pumping mechanism is weak and uncorrelated
  with the degree of vertical flow asymmetry. We find that the strong
  turbulent pumping evident in simulations of penetrative convection-the
  efficient transport of magnetic flux to the base of the convection
  zone over several local turnover times-does not manifest itself in a
  closed domain in the absence of a convective overshoot layer. Thus,
  we suggest that this rapid redistribution of flux is primarily due to
  the penetration of magnetic flux into the stable layer where it remains
  over a timescale that far exceeds that of convective turnover. We also
  find that different treatments of the viscosity of a Newtonian fluid-in
  which the coefficient of either kinematic or dynamic viscosity is
  held constant throughout the domain-do not affect the global average
  evolution of embedded magnetic structures, although the details of
  the evolution may differ between models.

---------------------------------------------------------
Title: Eruption of a Buoyantly Emerging Magnetic Flux Rope
Authors: Manchester, W., IV; Gombosi, T.; DeZeeuw, D.; Fan, Y.
2004ApJ...610..588M    Altcode:
  We present a three-dimensional numerical magnetohydrodynamic simulation
  designed to model the emergence of a magnetic flux rope passing
  from below the photosphere into the corona. For the initial state,
  we prescribe a plane-parallel atmosphere that comprises a polytropic
  convection zone, photosphere, transition region, and corona. Embedded
  in this system is an isolated horizontal magnetic flux rope located
  10 photospheric pressure scale heights below the photosphere. The
  flux rope is uniformly twisted, with the plasma temperature inside
  the rope reduced to compensate for the magnetic pressure. Density
  is reduced in the middle of the rope, so that this section buoyantly
  rises. The early evolution proceeds with the middle of the rope rising
  to the photosphere and expanding into the corona. Just as it seems the
  system might approach equilibrium, the upper part of the flux rope
  begins to separate from the lower, mass-laden part. The separation
  occurs through stretching of the field, which forms a current sheet,
  where reconnection severs the field lines to form a new system of
  closed flux. This flux then erupts into the corona. Essential to the
  eruption process are shearing motions driven by the Lorentz force,
  which naturally occur as the rope expands in the pressure-stratified
  atmosphere. The shearing motions transport axial flux and energy to
  the expanding portion of the magnetic field, driving the eruption.

---------------------------------------------------------
Title: Numerical Simulations of Three-dimensional Coronal Magnetic
    Fields Resulting from the Emergence of Twisted Magnetic Flux Tubes
Authors: Fan, Y.; Gibson, S. E.
2004ApJ...609.1123F    Altcode:
  We present the results of MHD simulations in the low-β regime of the
  evolution of the three-dimensional coronal magnetic field as an arched,
  twisted magnetic flux tube emerges into a preexisting coronal potential
  magnetic arcade. We find that the line-tied emerging flux tube becomes
  kink-unstable when a sufficient amount of twist is transported into
  the corona. For an emerging flux tube with a left-handed twist (which
  is the preferred sense of twist for active region flux tubes in the
  northern hemisphere), the kink motion of the tube and its interaction
  with the ambient coronal magnetic field lead to the formation of an
  intense current layer that displays an inverse-S shape, consistent
  with the X-ray sigmoid morphology preferentially seen in the northern
  hemisphere. The position of the current layer in relation to the
  lower boundary magnetic field of the emerging flux tube is also
  in good agreement with the observed spatial relations between the
  X-ray sigmoids and their associated photospheric bipolar magnetic
  regions. We argue that the inverse-S-shaped current layer formed is
  consistent with being a magnetic tangential discontinuity limited by
  numerical resolution and thus may result in the magnetic reconnection
  and significant heating that causes X-ray sigmoid brightenings.

---------------------------------------------------------
Title: A new asteroid-associated meteor shower and notes on
    comet-asteroid connection
Authors: Meng, H.; Zhu, J.; Gong, X.; Li, Y.; Yang, B.; Gao, J.;
   Guan, M.; Fan, Y.; Xia, D.
2004Icar..169..385M    Altcode:
  The calculation of the orbit of the potentially hazardous Asteroid 2001
  YB <SUB>5</SUB> suggests a possible meteor shower around January 7.5,
  2002 UT. Video observations revealed an unidentified radiant around the
  predicted maximum time, at RA=121.5°, Dec=+11.5°(for solar longitude
  287.30°). Visual observers also reported unusually high rates from
  that region on the same night, indicating that 2001 YB <SUB>5</SUB>
  did produce a weak meteor shower. Furthermore, it is noticed that 2001
  YB <SUB>5</SUB> is a rare B-type asteroid in same spectral class with
  Asteroid (3200) Phaethon, the parent body of the only previously known
  asteroid-associate meteor shower, Geminids.

---------------------------------------------------------
Title: Numerical Simulations of 3D Coronal Magnetic Fields Resulting
    from the Emergence of Twisted Magnetic Flux Tubes
Authors: Fan, Y.; Gibson, S. E.
2004AAS...204.1803F    Altcode: 2004BAAS...36..682F
  We present MHD simulations in the low-β regime of the evolution of
  the 3D coronal magnetic field as an arched, twisted magnetic flux
  tube is transported into a pre-existing coronal potential magnetic
  arcade. It is found that the line-tied emerging flux tube becomes
  kink unstable when a sufficient amount of twist is transported into
  the corona. For an emerging flux tube with a left-handed twist (which
  is the preferred sense of twist for active region flux tubes in the
  northern hemisphere), the kink motion of the tube and its interaction
  with the ambient coronal magnetic field lead to the formation of an
  intense current layer which displays an inverse-S shape, consistent
  with the X-ray sigmoid morphology preferentially seen in the northern
  hemisphere. Our simulation results may explain the X-ray sigmoid
  brightenings that are observed during eruptive flares and confirm the
  prediction by previous topological studies that magnetic tangential
  discontinuities (or current sheets) should form along the so called
  “bald-patch” separatrix surface, across which the connectivity of
  the coronal magnetic field with the dense photosphere undergoes a sharp
  transition. Finally, we will also present simulations in a 3D spherical
  geometry of a CME-like eruption of the coronal magnetic field due to
  the kink instability of a twisted magnetic flux rope emerging into
  the corona.

---------------------------------------------------------
Title: Eruption of a Buoyantly Emerging Magnetic Flux Rope
Authors: Manchester, W. B.; Fan, Y.; Gombosi, T.; de Zeeuw, D.;
   Sokolov, I.; Toth, G.
2003AGUFMSH22A0178M    Altcode:
  We present a three-dimensional numerical ideal magnetohydrodynamic
  simulation designed to model the emergence of magnetic flux passing
  from below the photosphere into the corona. For the initial state, we
  prescribe a plane parallel atmosphere that comprises the convection
  zone, isothermal photosphere and chromosphere, and isothermal
  corona. Embedded in this system is a isolated horizontal magnetic
  flux rope located 10 photospheric pressure scale heights below the
  photosphere. The flux rope is uniformly twisted with plasma temperature
  inside the tube reduced to compensate for the magnetic pressure. Density
  is reduced in the middle of the rope so that this section buoyantly
  rises. The early evolution of precedes with the middle of the rope
  rising to the photosphere and expanding into the corona. Just as it
  seems the system might approach equilibrium, the upper part of the
  flux rope begins to separate from the lower, mass ladened part. The
  separation occurs by stretching of the field to form a current sheet
  where reconnection severs the field lines to form a new system of closed
  flux. This flux then erupts into the corona. Essential to the eruption
  process are shearing motions driven by the Lorentz force which naturally
  occurs as the rope expands in the pressure stratified atmosphere. The
  shearing motions transport axial flux and energy to the expanding
  portion of the magnetic field which contributes to the eruption. Once
  the axial flux is largely transported from the submerged field, the
  expansion of the magnetic field in the corona begins to decelerate.

---------------------------------------------------------
Title: Observational consequences of a magnetic flux rope topology
Authors: Gibson, S.; Barnes, G.; Demoulin, P.; Fan, Y.; Fisher, G.;
   Leka, K.; Longcope, D.; Mandrini, C.; Metcalf, T.
2003AGUFMSH42B0516G    Altcode:
  We consider the implications of a magnetic flux rope topology for
  the interpretation of observations of sigmoidal active regions. A
  region of tangential magnetic discontinuities can be identified
  using techniques that determine a bald patch (BP) and corresponding
  separatrices or a quasi-separatrix layer (QSL) -- for a flux rope this
  region can be S-shaped, or sigmoidal. If such a region is physically
  driven, current sheets can form yielding conditions appropriate for
  reconnective heating. Using a numerical simulation of an emerging
  flux rope driven by the kink instability, Fan and Gibson (ApJL, 2003)
  showed that current sheets indeed formed a sigmoidal surface. In this
  poster we will demonstrate that the current sheets formed on the BP and
  BP separatrices. Moreover, we will use the results of the numerical
  simulation as proxies for observations: specifically the simulated
  field at the photosphere as proxy for the magnetic boundary condition,
  the sigmoidal current sheets as proxy for the X-ray active region
  emission, and the location of dipped magnetic field lines as proxy
  for a filament. We will then consider to what extent such observations
  might be used to understand and constrain the basic properties of the
  coronal field.

---------------------------------------------------------
Title: Turbulent Magnetic Field Generation in Rotating Stars
Authors: Bercik, D. J.; Abbett, W. P.; Fisher, G. H.; Fan, Y.
2003AGUFMSH42B0536B    Altcode:
  Observationally, it has been found that magnetic activity is a
  strong function of rotation rate. The connection between rotation and
  dynamo-generated fields is not well understood, however. The typical
  interface dynamo theory applied to the Sun to describe its activity
  cycle assumes the existence of a velocity shear layer. Such a model
  is inappropriate for fully convective stars that are nevertheless
  active, such as late-type M and L stars and pre-main sequence T Tauri
  stars; in these stars a turbulent dynamo is generally believed to
  be the mechanism of magnetic field generation. We investigate the
  connection between observed activity behavior and magnetic field
  generation in fully convective stars through a series of simulations
  of the turbulent dynamo. The simulations were performed in a Cartesian
  domain using ANMHD, a 3D MHD anelastic code. We compare the resulting
  magnetic topologies for a series of Rossby numbers and comment on the
  implications for the sizes of coronal loops and activity levels.

---------------------------------------------------------
Title: The Mass of a Solar Quiescent Prominence
Authors: Low, B. C.; Fong, B.; Fan, Y.
2003ApJ...594.1060L    Altcode:
  This paper follows up on our recent paper on the role of prominence mass
  in the storage of magnetic energy for driving a coronal mass ejection
  (CME). The previous paper erroneously rejected a set of sheet-prominence
  solutions, the recovery of which allows for a simple theoretical
  estimate of the mass of a quiescent prominence. For coronal fields
  of 5-10 G, these hydromagnetic solutions suggest that a prominence
  mass of (1-26)×10<SUP>16</SUP> g is needed to hold detached magnetic
  fields of intensity comparable to the coronal fields in an unbounded
  atmosphere such that the global magnetic field is energetically able to
  spontaneously open up and still have enough energy to account for the
  kinetic and gravitational potential energies carried away in a CME. This
  simple result is discussed in relation to observed prominence magnetic
  field intensities, densities, and masses, pointing to the relevance
  of such observations to the question of magnetic energy storage in
  the solar corona.

---------------------------------------------------------
Title: The Emergence of a Twisted Magnetic Flux Tube into a
    Preexisting Coronal Arcade
Authors: Fan, Y.; Gibson, S. E.
2003ApJ...589L.105F    Altcode:
  To investigate the dynamic evolution of a coronal magnetic field in
  response to the emergence of significantly twisted magnetic structures,
  we perform MHD simulations in the low-β regime of the emergence of
  a twisted magnetic flux tube into a preexisting coronal potential
  magnetic arcade. Our simulation of a twisted flux tube, which when
  fully emerged contains a twist of 1.875×2π field-line rotation
  about the axis between the anchored footpoints, leads to a magnetic
  structure with substantial writhing of the tube axis (with an apex
  rotation &gt;90°) as a result of the nonlinear evolution of the kink
  instability. For an emerging tube with a left-handed twist (which is the
  preferred sense of twist for active regions in the northern hemisphere),
  the writhing of the tube is also left-handed, producing a forward-S
  shape for the tube axis as viewed from the top, which is opposite to
  the inverse-S-shaped X-ray sigmoid structures preferentially seen in
  the northern hemisphere. However, we find that the writhing motion of
  the tube and its interaction with the ambient coronal magnetic field
  also drive the formation of an intense current layer that displays an
  inverse-S shape, consistent with the shape of X-ray sigmoids.

---------------------------------------------------------
Title: SAO 32177: a New Multiperiodic Dor Variable
Authors: Rodríguez, E.; Costa, V.; López-González, M. J.; Zhou,
   A. Y.; García, J. M.; Wei, J. Y.; Fan, Y.
2003aahd.conf..391R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Can Simulations of Active Region Magnetic Fields Lead to a
    Simplified Model of Turbulent Pumping?
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.; Bercik, D. J.
2003SPD....34.1905A    Altcode: 2003BAAS...35..842A
  We present a series of 3-D MHD simulations in the anelastic
  approximation of active region scale magnetic flux ropes embedded in
  a highly stratified, turbulent model convection zone. The numerical
  calculations are carried out over long time scales (of order a solar
  rotation time) at high magnetic Reynolds numbers and suggest that
  the process of “turbulent pumping” --- the tendency for magnetic
  flux to be efficiently transported from surface layers to the base of
  the convection zone --- does not manifest itself in the absence of
  a convective overshoot layer. If the overshoot layer is present, we
  suggest a simple, statistical model (similar to a 1-D, depth-dependent
  eddy-diffusivity treatment with a characteristic time-scale of
  supergranulation) that describes the average properties of the flux
  storage process.

---------------------------------------------------------
Title: The Emergence of a Twisted Magnetic Flux Tube into a
    Pre-existing Coronal Arcade
Authors: Fan, Y.; Gibson, S. E.
2003SPD....34.0416F    Altcode: 2003BAAS...35..813F
  To investigate the dynamic evolution of coronal magnetic field in
  response to the emergence of significantly twisted magnetic structures,
  we perform MHD simulations in the low-β regime of the emergence of
  a twisted magnetic flux tube into a pre-existing coronal potential
  magnetic arcade. Our simulation of a twisted flux tube, which when
  fully emerged, contains a twist of 1.875 x 2 π field-line rotation
  about the axis between the anchored footpoints, leads to a magnetic
  structure with substantial writhing of the tube axis (apex rotation
  &gt; 90<SUP>o</SUP>) as a result of the non-linear evolution of the
  kink instability. For an emerging tube with a left-handed twist
  (which is the preferred sense of twist for active regions in the
  northern hemisphere), the writhing of the tube is also left-handed,
  producing a forward S-shape for the tube axis as viewed from the top,
  which is opposite to the inverse S-shaped X-ray sigmoid structures
  preferentially seen in the northern hemisphere. However we find that
  the writhing motion of the tube and its interaction with the ambient
  coronal magnetic field also drives the formation of an intense current
  layer which displays an inverse S-shape, consistent with the shape
  of X-ray sigmoids. We compare the resulting current layer from the
  dynamic simulation with an analysis of the separatrix surface between
  winding and non-winding fields at various states of emergence. <P
  />The National Center for Atmospheric Research is sponsored by the
  National Science Foundation. This work is supported in part by AFOSR
  grant F49620-02-0191.

---------------------------------------------------------
Title: Dynamics of CME Driven by a Buoyant Prominence Flux Tube
Authors: Fan, Y.; Low, B. C.
2003ASPC..286..347F    Altcode: 2003ctmf.conf..347F
  No abstract at ADS

---------------------------------------------------------
Title: The Dynamic Evolution of Twisted Magnetic Flux Tubes in a
    Three-dimensional Convecting Flow. I. Uniformly Buoyant Horizontal
    Tubes
Authors: Fan, Y.; Abbett, W. P.; Fisher, G. H.
2003ApJ...582.1206F    Altcode:
  We present three-dimensional numerical simulations of the dynamic
  evolution of uniformly buoyant, twisted horizontal magnetic flux
  tubes in a three-dimensional stratified convective velocity field. Our
  calculations are relevant to understanding how stratified convection in
  the deep solar convection zone may affect the rise and the structure
  of buoyant flux tubes that are responsible for the emergence of solar
  active regions. We find that in order for the magnetic buoyancy force
  of the tube to dominate the hydrodynamic force due to the convective
  downflows, the field strength B of the flux tube needs to be greater
  than (H<SUB>p</SUB>/a)<SUP>1/2</SUP>B<SUB>eq</SUB>~3B<SUB>eq</SUB>,
  where H<SUB>p</SUB> is the pressure scale height, a is the tube
  radius, and B<SUB>eq</SUB> is the field strength in equipartition
  with the kinetic energy density of the strong downdrafts. For tubes
  of equipartition field strength (B=B<SUB>eq</SUB>), the dynamic
  evolution depends sensitively on the local condition of the convective
  flow. Sections of the tube in the paths of strong downdrafts are
  pinned down to the bottom despite their buoyancy, while the rise
  speed of sections within upflow regions is significantly boosted;
  Ω-shaped emerging tubes can form between downdrafts. Although flux
  tubes with B=B<SUB>eq</SUB> are found to be severely distorted by
  convection, the degree of distortion obtained from our simulations
  is not severe enough to clearly rule out the Ω-tubes that are able
  to emerge between downdrafts as possible progenitors of solar active
  regions. As the initial field strength of the tube becomes higher than
  the critical value of ~(H<SUB>p</SUB>/a)<SUP>1/2</SUP>B<SUB>eq</SUB>
  given above, the dynamic evolution converges toward the results of
  previous simulations of the buoyant rise of magnetic flux tubes in a
  static, adiabatically stratified model solar convection zone. Tubes
  with 10 times the equipartition field strength are found to rise
  unimpeded by the downdrafts and are not significantly distorted by
  the three-dimensional convective flow.

---------------------------------------------------------
Title: Numerical Simulations of Magnetic Fields in Astrophysical
    Turbulence
Authors: Zweibel, E. G.; Heitsch, F.; Fan, Y.
2003LNP...614..101Z    Altcode: 2003tmfa.conf..101Z; 2002astro.ph..2525Z
  The generation and evolution of astrophysical magnetic fields occurs
  largely through the action of turbulence. In many situations, the
  magnetic field is strong enough to influence many important properties
  of turbulence itself. Numerical simulation of magnetized turbulence
  is especially challenging in the astrophysical regime because of the
  high magnetic Reynolds numbers involved, but some aspects of this
  difficulty can be avoided in weakly ionized systems.

---------------------------------------------------------
Title: Indications and implications of twisted magnetic flux in
    the corona
Authors: Gibson, S. E.; Fan, Y.; Jain, R.; Low, B.
2002AGUFMSH52A0446G    Altcode:
  The question of whether magnetic flux ropes are fundamental to CMEs and
  their precursors will be addressed using a combination of analytic and
  numerical models, along with coronal observations. We have developed
  computational tools for evaluating observable properties of modeled
  magnetic flux ropes suspended in the corona, such as separatrix surfaces
  and dipped magnetic fields. We have also developed numerical models to
  demonstrate how a flux rope emerging into an overlying coronal magnetic
  arcade will relax to a force-free configuration, with associated
  formation of current sheets. Using the results of these two parallel
  studies, we will directly compare separatrix surfaces determined from
  an analytic (non-force-free) equilibrium model to the current sheets
  formed during numerical force-free relaxation of the same initial field
  configuration. We will then consider these in the context of observed
  X-ray sigmoid structures. We have also developed mathematical methods
  for determining the magnetic free energy in analytic models of both
  magnetic flux ropes, as well as sheared field configurations that
  contain no rope. We will compare the free energies thus determined
  for both sheared and twisted fields, as functions of spatial size,
  magnetic field strength, and degree of shear or twist. We will consider
  the implications of these results for the energetics of coronal mass
  ejections.

---------------------------------------------------------
Title: The Dynamic Evolution of Twisted Omega-loops in a 3-D
    Convecting Flow
Authors: Abbett, W. P.; Fan, Y.; Fisher, G. H.
2002AGUFMSH52A0474A    Altcode:
  We present the latest results from 3D MHD simulations (in the anelastic
  approximation) of buoyant magnetic flux tubes interacting with turbulent
  convection in the solar interior. We focus our study on active region
  scale flux ropes and Omega-loops, and perform a large parameter space
  study of the effects of not only initial field strength, but twist and
  loop geometry on the morphology and dynamics of sub-surface magnetic
  structures. We also investigate the effects of different numerical
  treatments of viscosity, and quantify the amount of magnetic field in
  each simulation that succumbs to the effects of turbulent pumping.

---------------------------------------------------------
Title: Magnetic flux ropes: Would we know one if we saw one?
Authors: Gibson, S. E.; Low, B. C.; Leka, K. D.; Fan, Y.; Fletcher, L.
2002ESASP.505..265G    Altcode: 2002IAUCo.188..265G; 2002solm.conf..265G
  There has been much debate lately about whether twisted magnetic flux
  ropes exist in the corona. When asked for observational evidence
  of them, the temptation is to show images of apparently twisted
  structures. However, we must be very careful of projection effects in
  interpreting these observations. Two critical aspects of understanding
  how we might observe flux ropes are 1) the 3D nature of the flux rope,
  and 2) physically, which bits are visible and for what reasons? In
  this paper we will use a simple but physically reasonable 3D analytic
  model to address these two issues, and develop techniques that can in
  future be used on more general models, both analytic and numerical.

---------------------------------------------------------
Title: Quiescent Solar Prominences and Magnetic-Energy Storage
Authors: Fong, B.; Low, B. C.; Fan, Y.
2002ApJ...571..987F    Altcode:
  Analytical solutions are presented to describe the hydromagnetic support
  of quiescent solar prominences treated as cold plasma sheets in the
  characteristic normal and inverse configurations. The solar corona is
  modeled to be axisymmetric outside a unit sphere, with the prominence
  sheet lying in the equatorial plane extending from the sphere out
  to a finite radial distance subject to an inverse-square Newtonian
  gravity. The relationship between prominence support and the global
  topology of the surrounding poloidal magnetic field is discussed, with
  a particular interest in the role of magnetic flux ropes in the support
  of inverse prominences. A novel solution is also studied describing
  a rope of purely azimuthal magnetic flux held in equilibrium by the
  weight of an internal distribution of cold mass and by an external
  poloidal magnetic field rigidly anchored to the base of the model
  corona. This solution illustrates the role that prominence weight may
  play in storing magnetic energy for driving coronal mass ejections.

---------------------------------------------------------
Title: The Rise of Twisted Horizontal Flux Tubes in a 3D Convecting
    Flow
Authors: Fan, Y.; Abbett, W. P.; Fisher, G. H.
2002AAS...200.0306F    Altcode: 2002BAAS...34..642F
  We present 3D numerical simulations of the dynamic evolution of twisted
  horizontal magnetic flux tubes in a stratified convecting convection
  zone. We investigate how the trajectory, rise velocity, and cohesion of
  the buoyant flux tubes are affected by the 3D stratified convection. It
  is found that the field strength of the magnetic flux tube needs to
  be significantly above the value of equipartition with the kinetic
  energy of convection in order for the flux tube to rise cohesively
  to the top of the stratified domain. These simulations add further
  support to the strong toroidal field strength ( ~ 5 x 10<SUP>4</SUP> G
  to 10<SUP>5</SUP> G) at the base of the solar convection zone, suggested
  by previous thin flux tube calculations of emerging flux tubes through
  the solar convective envelope. NCAR is sponsored by the National Science
  Foundation. Part of this work was carried out while the authors were
  participating in the solar magnetic field program held at ITP, UCSB.

---------------------------------------------------------
Title: Emergence of twisted magnetic flux into the corona
Authors: Gibson, S.; Low, B. C.; Fan, Y.; Fletcher, L.
2002AAS...200.3603G    Altcode: 2002BAAS...34..693G
  The interaction between emerging magnetic structures and preexisting
  overlying coronal structures will be addressed using a combination of
  observations and physical models that incorporate a range of twisted
  magnetic topologies. Solar explosive events such as coronal mass
  ejections (CMEs) and flares are commonly considered to be driven by
  the free magnetic energy stored in twisted (current carrying) coronal
  magnetic fields. Understanding the origin and the three-dimensional
  nature of these twisted coronal magnetic structures is a crucial step
  towards explaining and predicting CMEs and flares. One possible and
  appealing picture is that the twisted coronal magnetic structures
  form as a result of the emergence of twisted magnetic flux tubes
  from the solar interior. We might imagine a scenario where a flux
  rope forms sub-photospherically, emerges through the photosphere,
  exists in the corona until it loses its stability and erupts in a
  CME which moves out through interplanetary space until ultimately
  impacting on the Earth's magnetosphere. Attractively simple as this
  picture is, reality is likely to be more complicated since the various
  regimes are physically very different and pre-existing structures
  would get in the way of our traveling flux rope. We will concentrate
  on joining up two of these regimes, by considering how a flux rope
  could rise from beneath the photosphere and emerge into the corona,
  interacting with pre-existing coronal structures. We will approach this
  problem by using a combination of numerical models of the flux rope
  emergence from beneath the photosphere, analytic models of coronal
  dynamic and equilibrium magnetic structures, and photospheric and
  coronal observations of the 3-d structure and evolution of a so-called
  "sigmoidal", or S-shaped active region. In so doing we hope to gain
  essential insight into how twisted magnetic fields are formed and how
  they could be ultimately removed from the solar corona.

---------------------------------------------------------
Title: The Emergence of a Twisted Ω-Tube into the Solar Atmosphere
Authors: Fan, Y.
2001ApJ...554L.111F    Altcode:
  We report the results of a three-dimensional MHD simulation of the
  dynamic emergence of a twisted, Ω-shaped tube from the top layer of
  the solar convection zone into the atmosphere and the corona. It is
  found that the tube segment at the apex of the Ω-tube expands into
  the stably stratified atmosphere as a result of the magnetic buoyancy
  instability (or the Parker instability). Our simulation of the emergence
  of a left-hand-twisted Ω-tube reproduces several major observed
  features of a newly developing active region described by Strous and
  coworkers, including the orientation of the arch-filament system,
  the distribution of the vertical magnetic field on the photosphere,
  the locations of sunspot formation, and the organized shear flow
  pattern in the photospheric horizontal velocity field.

---------------------------------------------------------
Title: Emergence of a Twisted Ω -loop Into the Solar Atmosphere
Authors: Fan, Y.
2001AGUSM..SP51B09F    Altcode:
  We report the results of a 3D MHD simulation of the dynamic emergence of
  a twisted Ω -loop from the top layer of the convection zone (where the
  plasma β is high) into the solar atmosphere and the corona. Compared
  to previous 2D simulations of the emergence of an infinitely long
  horizontal flux tube by Magara (2001), our calculations include the 3D
  effect of bending the flux tube so that only a segment of the Ω -loop
  intersects the photosphere. Similar to the 2D results, we find that
  as the tube segment at the apex of the Ω -loop enters the photosphere
  boundary, the tube first decelerates because the flux tube encounters
  the stable stratification of the isothermal atmosphere. Subsequently,
  the magnetic flux entering the photosphere boundary develops a magnetic
  buoyancy instability (or the Parker instability) which causes the upper
  part of the apex tube segment to rapidly expand into the atmosphere. The
  growth of the Parker instability is characterized by an exponential
  increase with time of the rise velocity of the front boundary of the
  flux tube expanding into the atmosphere, and by downflows of plasma
  along the emerged field lines. At the beginning of the emergence, the
  emerged field lines are nearly north-south oriented. Subsequently, a
  shear motion develops where the field-line footpoints on the two sides
  of the polarity inversion line are sheared in the east-west direction,
  with the footpoints of the leading (following) polarity moving westward
  (eastward). We find that with time an intensification of vertical
  magnetic field of the leading and following polarities takes place
  respectively at the west and east corners of the emerged magnetic region
  on the photosphere, in agreement with the Hale polarity rule. The line
  connecting the two major intensification spots of the two polarities
  is tilted slightly away from the east-west direction in the sense that
  is anti-Joy's law if the emerging tube has left-handed twist in the
  northern hemisphere. We find that our simulation of the emergence of
  a left-hand-twisted Ω -loop can explain the major observed features
  in a newly emerged active region studied by Strous et al. (1996,1999),
  including the orientation of the arch-filament system, the distribution
  and horizontal motion of flux on the photosphere, and the location of
  formation of sunspot pores.

---------------------------------------------------------
Title: Supernova 2001X in NGC 5921
Authors: Li, W.; Fan, Y.; Qiu, Y. L.; Hu, J. Y.; Schwartz, M.
2001IAUC.7591....1L    Altcode: 2001IAUC.7591A...1L
  W. Li, University of California at Berkeley, communicates that Y. Fan,
  Y. L. Qiu, and J. Y. Hu, on behalf of Beijing Astronomical Observatory
  (BAO) Supernova Survey, report the discovery of an apparent supernova
  (mag about 17.0) found on an unfiltered image taken with the BAO 0.6-m
  telescope on Feb. 27.8 UT. SN 2001X is located at R.A. = 15h21m55s.45,
  Decl. = +5 03'42".1 (equinox 2000.0), which is 15".5 west and 32".4
  south of the nucleus of NGC 5921. SN 2001X was confirmed on an
  unfiltered image taken by M. Schwartz on Mar. 2.5 with the Tenagra
  Observatory 0.5-m automatic telescope, from which Li measured the
  position end figures to be 55s.46 +/- 0s.03, 43".1 +/- 0".2, and the
  magnitude of the supernova to be 15.2. Images of the same field taken
  with the BAO 0.6-m telescope on Feb. 6.9 (limiting mag about 17.5)
  and with the Tenagra 0.5-m telescope on Feb. 17.5 (limiting mag about
  18.0) showed nothing at this position. Li remarks that a normal type-Ia
  supernova in this galaxy might reach mag about 13.

---------------------------------------------------------
Title: The Emergence of Magnetic Flux in Active Regions
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.
2001IAUS..203..225A    Altcode:
  Over the past decade, “thin flux tube” models have proven successful
  in explaining many properties of active regions in terms of magnetic
  flux tube dynamics in the solar interior. Unfortunately, recent,
  more sophisticated two-dimensional MHD simulations of the emergence
  of magnetic flux have shown that many of the assumptions adopted in
  the thin flux tube approximation are invalid. For example, unless
  the flux tubes exhibit a large amount of initial field line twist ---
  and observations of emerging active regions suggest they do not ---
  they will fragment (break apart) before they are able to emerge through
  the surface. We attempt to resolve this paradox using a number of 3-D
  MHD simulations (in the anelastic approximation) that describe the
  rise and fragmentation of twisted magnetic flux tubes. We find that
  the degree of fragmentation of an evolving Omega-loop depends strongly
  on the three-dimensional geometry of the tube --- the greater the apex
  curvature, the lesser the degree of fragmentation for a fixed amount of
  initial twist. We also find that the Coriolis force plays a dynamically
  important role in the evolution and emergence of magnetic flux. We are
  able to infer general observational characteristics of the emerging
  flux, and compare our theoretical data with recent observations.

---------------------------------------------------------
Title: Formation of Arching Flux Tubes at the Base of the Solar
    Convection Zone
Authors: Fan, Y.
2001IAUS..203..273F    Altcode:
  Bipolar magnetic regions on the solar surface are believed to correspond
  to the topmost portions of Ω-shaped arching flux tubes that have risen
  buoyantly from the base of the solar convection zone, where strong
  toroidal magnetic fields are generated by the dynamo process. The
  undular Parker instability is one of the likely mechanisms by which
  buoyant, arching flux tubes can develop from the toroidal magnetic
  field. In this talk, I present our recent 3-D simulations of the growth
  of the undular Parker instability in a horizontal magnetic layer with
  uni-directional field lines, embedded in an adiabatically-stratified
  polytropic atmosphere. We consider the limit of very high plasma
  β, representing the condition at the base of the solar convection
  zone. The simulations show that distinct arching flux tubes form, and
  that buoyancy grows exponentially at the apexes of the tubes as a result
  of the diverging flow of mass from the apexes to the troughs. Even
  though the initial magnetic field is untwisted, the difference in motion
  between the apexes and the troughs causes bending and braiding of the
  longitudinal field lines, whose restoring tension force improves the
  cohesion of the rising flux tubes in comparison to previous results
  from 2-D simulations of the rise of horizontal flux tubes.

---------------------------------------------------------
Title: Nonlinear Growth of the Three-dimensional Undular Instability
    of a Horizontal Magnetic Layer and the Formation of Arching Flux Tubes
Authors: Fan, Y.
2001ApJ...546..509F    Altcode:
  We use an anelastic MHD code to simulate the nonlinear evolution of
  the three-dimensional undular instability of a horizontal magnetic
  layer with a fixed field line direction, embedded in an adiabatically
  stratified atmosphere. We consider the limit of very high plasma
  β, representing the condition at the base of the solar convection
  zone. We show that, in the limit of high plasma β and nearly
  adiabatic stratification, the anelastic formulation gives an accurate
  description of the magnetic buoyancy instabilities. We specify the
  thermodynamic conditions of the magnetic layer such that it is stable
  against pure interchange modes (with zero wavenumber in the direction
  of the magnetic field) and is unstable only to three-dimensional
  undular modes (with nonzero wavenumbers in both horizontal directions
  parallel and perpendicular to the field). Our simulations show that
  distinct arching flux tubes form as a result of the growth of the
  three-dimensional undular instability. The apices of the arching tubes
  become increasingly buoyant because of the diverging mass flow from the
  apices to the troughs. The field strength at each loop apex decreases
  with height at a significantly smaller rate in comparison with that for
  the rise of a horizontal flux tube, because of the stretching of the
  loop field lines. Even though the initial magnetic field is untwisted,
  it is found that the upward moving tube cross sections of the arching
  tubes maintain their cohesion as they rise through the distance of
  about 1 density scale height included in the simulation domain. The
  difference in motion between the apices and the troughs causes bending
  and braiding of the longitudinal field lines, whose restoring tension
  force improves the cohesion of the rising flux tubes in comparison with
  previous two-dimensional simulations of the buoyant rise of horizontal
  flux tubes with no initial twist. In addition, the fact that both the
  buoyancy and the tension forces grow self-consistently from zero as
  the tubes arch is also a crucial factor for the cohesion of the rising
  tubes. The result of our simulations suggests that the minimum value
  for the ratio of poloidal field strength over toroidal field strength
  (i.e., twist) at the base of the solar convection zone, necessary to
  ensure a cohesive rise of magnetic flux through the solar convection
  zone, may be far less than that suggested by the two-dimensional
  calculations of the buoyant rise of infinitely long horizontal tubes.

---------------------------------------------------------
Title: Multi-mode kink instability as a mechanism for δ-spot
    formation
Authors: Linton, M. G.; Fisher, G. H.; Dahlburg, R. B.; Fan, Y.;
   Longcope, D. W.
2001AdSpR..26.1781L    Altcode:
  We investigate the current driven kink instability of twisted magnetic
  flux tubes in the solar convection zone. The possibility that kinking
  flux tubes are responsible for the formation of some δ-spot active
  regions provides the motivation for this work. We simulate the evolution
  of a twisted flux tube with a highly parallelized three dimensional
  MHD spectral code run on a 128 cubed grid. We find that highly twisted
  flux tubes, when perturbed with a single wavenumber mode, develop large
  kinks which lead to δ-spot tilt angles as large as 60°. We find that
  when tubes are perturbed with multiple wavenumber modes, the modes can
  interact to create a localized kink tilted by as much as 80° with
  respect to the unkinked portion of the tube. We show that this kind
  of kinked flux tube can create a δ-spot configuration with opposite
  polarity spots emerging and remaining in close proximity to each other,
  with shear developing along the neutral line as the region develops, and
  with the opposite polarity regions rapidly rotating about each other.

---------------------------------------------------------
Title: The Effects of Rotation on the Evolution of Rising Omega
    Loops in a Stratified Model Convection Zone
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.
2001ApJ...546.1194A    Altcode: 2000astro.ph..8501A
  We present three-dimensional MHD simulations of buoyant magnetic flux
  tubes that rise through a stratified model convection zone in the
  presence of solar rotation. The equations of MHD are solved in the
  anelastic approximation, and the results are used to determine the
  effects of solar rotation on the dynamic evolution of an Ω-loop. We
  find that the Coriolis force significantly suppresses the degree
  of fragmentation at the apex of the loop during its ascent toward
  the photosphere. If the initial axial field strength of the tube is
  reduced, then, in the absence of forces due to convective motions,
  the degree of apex fragmentation is also reduced. Our simulations
  confirm the results of thin flux-tube calculations that show the
  leading polarity of an emerging active region positioned closer to
  the equator than the trailing polarity and the trailing leg of the
  loop oriented more vertically than the leading leg. We show that the
  Coriolis force slows the rise of the tube and induces a retrograde
  flow in both the magnetized and unmagnetized plasma of an emerging
  active region. Observationally, we predict that this flow will appear
  to originate at the leading polarity and will terminate at the trailing
  polarity.

---------------------------------------------------------
Title: Erratum: The Three-dimensional Evolution of Rising, Twisted
    Magnetic Flux Tubes in a Gravitationally Stratified Model Convection
    Zone
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.
2000ApJ...542.1119A    Altcode:
  In the article “The Three-dimensional Evolution of Rising, Twisted
  Magnetic Flux Tubes in a Gravitationally Stratified Model Convection
  Zone” by W. P. Abbett, G. H. Fisher, and Y. Fan (ApJ, 540, 548
  [2000]), an error was introduced into one of the equations during
  the production process. A cross product symbol was mistakenly
  removed from equation (2). The corrected equation is as follows:
  ρ<SUB>0</SUB>(∂v/∂t+v˙∇v)= -∇p<SUB>1</SUB>+ρ<SUB>1</SUB>g +
  1/4π (∇XB)XB+∇˙Π. The Press sincerely apologizes for this error.

---------------------------------------------------------
Title: The Three-dimensional Evolution of Rising, Twisted Magnetic
    Flux Tubes in a Gravitationally Stratified Model Convection Zone
Authors: Abbett, W. P.; Fisher, G. H.; Fan, Y.
2000ApJ...540..548A    Altcode: 2000astro.ph..4031A
  We present three-dimensional numerical simulations of the rise and
  fragmentation of twisted, initially horizontal magnetic flux tubes that
  evolve into emerging Ω-loops. The flux tubes rise buoyantly through an
  adiabatically stratified plasma that represents the solar convection
  zone. The MHD equations are solved in the anelastic approximation,
  and the results are compared with studies of flux-tube fragmentation
  in two dimensions. We find that if the initial amount of field line
  twist is below a critical value, the degree of fragmentation at the
  apex of a rising Ω-loop depends on its three-dimensional geometry: the
  greater the apex curvature of a given Ω-loop, the lesser the degree
  of fragmentation of the loop as it approaches the photosphere. Thus,
  the amount of initial twist necessary for the loop to retain its
  cohesion can be reduced substantially from the two-dimensional
  limit. The simulations also suggest that, as a fragmented flux
  tube emerges through a relatively quiet portion of the solar disk,
  extended crescent-shaped magnetic features of opposite polarity should
  form and steadily recede from one another. These features eventually
  coalesce after the fragmented portion of the Ω-loop emerges through
  the photosphere.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Purple Mountain H<SUB>2</SUB>O
    maser atlas (Han+
Authors: Han, F.; Mao, R. Q.; Lei, C. M.; Wu, Y. -F.; Sun, J.; Wang,
   J. S.; Pei, C. C.; Xiang, D. -L.; Fan, Y.; Tang, G. S.; Ji, H. R.
2000yCatp050001401H    Altcode:
  Observations of H<SUB>2</SUB>O maser sources on the 13.7m radio telesc
  Purple Mountain observatory from Aug 1990 to Jan 1994 are briefly
  summarized. The results of observations are presented in Table 1 and
  Figure 1. The total number of objects observed is 435. 195 objects are
  detected among them 108 are new detections. A brief description of the
  instrumentation and data processing are also given. <P />(1 data file).

---------------------------------------------------------
Title: 3D MHD Simulation of Flux Tube Dynamics: Comparison with Thin
    Flux Tube Models
Authors: Fisher, G. H.; Abbett, W. P.; Fan, Y.
2000SPD....31.0135F    Altcode: 2000BAAS...32..807F
  We have used the anelastic 3D MHD code “ANMHD” to perform simulations
  of emerging magnetic flux tubes moving in a gravitationally stratified
  background model representing the solar convection zone. The MHD
  model is computed within a local Cartesian geometry, with Coriolis
  forces included, using the f-plane approximation. The evolution of
  flux tubes computed with the code will be compared and contrasted with
  results computed with the thin flux tube approximation. This work was
  supported by NASA and NSF.

---------------------------------------------------------
Title: The Subphotospheric Structure of Emerging Flux
Authors: Fan, Y.
2000SPD....31.0305F    Altcode: 2000BAAS...32..834F
  Bipolar magnetic regions on the solar surface are believed to correspond
  to the topmost portions of Ω -shaped arching flux tubes that have
  risen buoyantly from the base of the solar convection zone, where strong
  toroidal magnetic fields are being generated by the dynamo process. The
  dynamic evolution of such rising flux tube structures in the solar
  convection zone has been studied extensively using a simplified thin
  flux tube model, and more recently with direct multi-dimensional
  MHD simulations. In this talk I will give an overview of some recent
  results of 3-dimensional MHD simulations of the formation and dynamic
  rise of buoyant Ω loops in the solar interior: (1) I will present
  direct numerical simulations of the formation of coherent, 3-D Ω -loop
  structures as a result of the growth of the undular Parker instability
  of a neutrally buoyant horizontal flux tube or flux sheet initially
  in hydrostatic equilibrium. (2) The question of the critical twist
  necessary for maintaining cohesion of the rising flux tubes will be
  discussed in light of recent 3-D simulations of fragmenting Ω -loops by
  Abbett et al. (3) I will describe simulations of the non-linear growth
  of the current driven kink instability along rising flux tubes that
  are highly twisted, and show that kinked Ω -loops reproduce several
  observed features of the so-called δ -sunspots. Finally, the issue
  of the connectivity of the emerged flux with its source at the base
  of the convection zone will be discussed by examining the conditions
  of hydrostatic equilibrium along a vertical flux tube extending across
  the solar convection zone. The National Center for Atmospheric Research
  (NCAR) is sponsored by the National Science Foundation

---------------------------------------------------------
Title: The Cohesion of 3-D Magnetic Flux Tubes in a Rotating,
    Stratified Model Convection Zone
Authors: Abbett, W. P.; Fisher, G.; Fan, Y.
2000SPD....31.0136A    Altcode: 2000BAAS...32..807A
  We present the latest results from a series of 3-D MHD simulations in
  the anelastic approximation that describe the rise of magnetic flux
  tubes through an adiabatically stratified model convection zone. The
  effects of solar rotation and the Coriolis force are included in
  the models. The simulations begin with initially horizontal magnetic
  flux tubes which subsequently evolve into Omega-loops. We find that
  the degree of “fragmentation” at the apex of a rising Omega-loop
  depends strongly on both the three-dimensional geometry of the loop,
  and on the field strength along the axis of the initial tube. Loops
  with a relatively high degree of apex curvature, and of moderate to low
  initial axial field strength retain their cohesion throughout their
  rise toward the photosphere --- even in the absence of initial field
  line twist. We are able to infer general observational characteristics
  of the emerging flux, and compare our theoretical data with recent
  observations of active regions. This work was funded by NSF grants
  AST 98-19727 and ATM 98-96316, and by NASA grant NAGS-8468. The
  computations were partially supported by the National Center for
  Atmospheric Research, and the National Computational Science Alliance.

---------------------------------------------------------
Title: Magnetic flux tubes inside the sun
Authors: Fisher, G. H.; Fan, Y.; Longcope, D. W.; Linton, M. G.;
   Abbett, W. P.
2000PhPl....7.2173F    Altcode:
  Bipolar magnetic active regions are the largest concentrations of
  magnetic flux on the Sun. In this paper, the properties of active
  regions are investigated in terms of the dynamics of magnetic flux
  tubes which emerge from the base of the solar convection zone, where
  the solar cycle dynamo is believed to operate, to the photosphere. Flux
  tube dynamics are computed with the “thin flux tube” approximation,
  and by using magnetohydrodynamics simulation. Simulations of active
  region emergence and evolution, when compared with the known observed
  properties of active regions, have yielded the following results: (1)
  The magnetic field at the base of the convection zone is confined to
  an approximately toroidal geometry with a field strength in the range
  3-10×10<SUP>4</SUP> G. The latitude distribution of the toroidal
  field at the base of the convection zone is more or less mirrored by
  the observed active latitudes; there is not a large poleward drift of
  active regions as they emerge. The time scale for emergence of an active
  region from the base of the convection zone to the surface is typically
  2-4 months. (2) The tilt of active regions is due primarily to the
  Coriolis force acting to twist the diverging flows of the rising flux
  loops. The dispersion in tilts is caused primarily by the buffeting of
  flux tubes by convective motions as they rise through the interior. (3)
  Coriolis forces also bend active region flux tube shapes toward the
  following (i.e., antirotational) direction, resulting in a steeper
  leg on the following side as compared to the leading side of an active
  region. When the active region emerges through the photosphere, this
  results in a more rapid separation of the leading spots away from the
  magnetic neutral line as compared to the following spots. This bending
  motion also results in the neutral line being closer to the following
  magnetic polarity. (4) The properties of the strongly sheared, flare
  productive δ-spot active regions can be accounted for by the dynamics
  of highly twisted Ω loops that succumb to the helical kink instability
  as they emerge through the solar interior.

---------------------------------------------------------
Title: The Solar Dynamo and Emerging Flux - (Invited Review)
Authors: Fisher, G. H.; Fan, Y.; Longcope, D. W.; Linton, M. G.;
   Pevtsov, A. A.
2000SoPh..192..119F    Altcode:
  The largest concentrations of magnetic flux on the Sun occur in
  active regions. In this paper, the properties of active regions are
  investigated in terms of the dynamics of magnetic flux tubes which
  emerge from the base of the solar convection zone, where the solar cycle
  dynamo is believed to operate, to the photosphere. Flux tube dynamics
  are computed using the `thin flux tube' approximation, and by using
  MHD simulation. Simulations of active region emergence and evolution,
  when compared with the known observed properties of active regions,
  have yielded the following results: (1) The magnetic field at the
  base of the convection zone is confined to an approximately toroidal
  geometry with a field strength in the range (3-10)×10<SUP>4</SUP>
  G. The latitude distribution of the toroidal field at the base of
  the convection zone is more or less mirrored by the observed active
  latitudes; there is not a large poleward drift of active regions as
  they emerge. The time scale for emergence of an active region from the
  base of the convection zone to the surface is typically 2-4 months. The
  equatorial gap in the distribution of active regions has two possible
  origins; if the toroidal field strength is close to 10<SUP>5</SUP> G,
  it is due to the lack of equilibrium solutions at low latitude; if it
  is closer to 3×10<SUP>4</SUP> G, it may be due to modest poleward drift
  during emergence. (2) The tilt of active regions is due primarily to the
  Coriolis force acting to twist the diverging flows of the rising flux
  loops. The dispersion in tilts is caused primarily by the buffeting of
  flux tubes by convective motions as they rise through the interior. (3)
  The Coriolis force also bends the active region flux tube shape toward
  the following (i.e., anti-rotational) direction, resulting in a steeper
  leg on the following side as compared to the leading side of an active
  region. When the active region emerges through the photosphere, this
  results in a more rapid separation of the leading spots away from the
  magnetic neutral line as compared to the following spots. This bending
  motion also results in the neutral line being closer to the following
  magnetic polarity. (4) Active regions behave kinematically after they
  emerge because of `dynamic disconnection', which occurs because of the
  lack of a solution to the hydrostatic equilibrium equation once the flux
  loop has emerged. This could explain why active regions decay once they
  have emerged, and why the advection-diffusion description of active
  regions works well after emergence. Smaller flux tubes may undergo
  `flux tube explosion', a similar process, and provide a source for the
  constant emergence of small-scale magnetic fields. (5) The slight trend
  of most active regions to have a negative magnetic twist in the northern
  hemisphere and positive twist in the south can be accounted for by the
  action of Coriolis forces on convective eddies, which ultimately writhes
  active region flux tubes to produce a magnetic twist of the correct
  sign and amplitude to explain the observations. (6) The properties of
  the strongly sheared, flare productive δ-spot active regions can be
  accounted for by the dynamics of highly twisted Ω loops that succumb to
  the helical kink instability as they emerge through the solar interior.

---------------------------------------------------------
Title: On the twist of emerging flux loops in the solar convection
    zone
Authors: Fan, Y.; Gong, Donglai
2000SoPh..192..141F    Altcode:
  We perform numerical simulations of emerging flux loops in the solar
  convective envelope based on a weakly twisted thin flux tube model
  recently derived by Longcope and Klapper, generalizing the original
  formulation for the dynamics of untwisted thin flux tubes by Spruit. The
  generalized formulation includes the description of torsional Alfvén
  waves and takes into account the coupling of the writhing motion
  of the tube axis to the change in the flux tube twist based on the
  requirement of global helicity conservation of the closed thin flux
  tube. In this model, the twist of the thin flux tube is described by
  a quantity q defined as the angular rate of field-line rotation about
  the tube axis per unit length of the tube. We examine the evolution of
  twist along Ω-shaped emerging flux loops which are formed as a result
  of the non-linear growth of the Parker instability of toroidal magnetic
  flux tubes at the base of the solar convection zone. We find that: (1)
  In the northern hemisphere, a left-handed twist is generated in the flux
  tubes as a result of the right-handed tilt or writhe of the emerging
  loops induced by the Coriolis force. The generated twist increases
  with the latitude of emergence over the range from 0° to about 38°
  latitude, but then decreases when the emerging latitude exceeds 38°,
  because of a change in the preferred eruption pattern. The magnitude
  of the generated twist q is very small, ≲2×10<SUP>−4</SUP>
  rad Mm<SUP>−1</SUP>, more than an order of magnitude smaller than
  the observed amplitude of twist (∼0.01 rad Mm<SUP>−1</SUP>) in
  solar active regions. (2) For a toroidal flux ring with a uniform
  initial twist q<SUB>0</SUB> along the ring, the twist amplitude |q|
  at the apex of the emerging loop decrease by a factor of about 0.67
  because of the stretching of the loop, as it rises from the base of the
  convection zone to about 20 Mm below the photosphere, at which depth
  the flux tube can no longer be considered thin. However, because of the
  more rapid increase of the tube cross-sectional radius a with height,
  |qa|, which corresponds to the ratio between the azimuthal field to
  the axial field B<SUB>θ</SUB>/B<SUB>l</SUB> of the tube, increases
  by a factor of about 2.5 at the apex of the loop, as it rises over
  the same distance. (3) Because of the effect of the Coriolis force,
  the distribution of twist along the emerging loop is asymmetric between
  the leading (in the direction of rotation) and the following sides of
  the loop. Both |q| and |qa| are greater at the following side than the
  leading at any depth. Based on the evolution of twist along emerging
  flux loops, we discuss possible constraints on the twist q<SUB>0</SUB>
  of initial toroidal flux tubes at the base of the convection zone.

---------------------------------------------------------
Title: The Effect of the Helical Kink Instability on the Morphology
    of Emerging Active Regions
Authors: Linton, M. G.; Fisher, G. H.; Dahlburg, R. B.; Fan, Y.
1999ESASP.448..609L    Altcode: 1999mfsp.conf..609L; 1999ESPM....9..609L
  No abstract at ADS

---------------------------------------------------------
Title: Relationship of the Multimode Kink Instability to δ-Spot
    Formation
Authors: Linton, M. G.; Fisher, G. H.; Dahlburg, R. B.; Fan, Y.
1999ApJ...522.1190L    Altcode:
  We study the current-driven kink instability with a three-dimensional
  MHD spectral code, under conditions appropriate for the convection
  zone of the Sun. Our goal is to determine whether the kink instability
  can explain the unusual morphology of certain “δ-spot” active
  regions. The characteristics of these δ-spots are unusually large
  tilt upon emergence, subsequent rotation, compactness during their
  lifetime, magnetic shear that develops along the neutral line of their
  vertical magnetic field, and unusually high flare activity. We find
  that highly twisted tubes perturbed with a single unstable kink mode
  evolve to a new helical equilibrium with finite amplitude. This kink
  would produce an active region that emerged tilted and then rotated and
  so is suggestive of δ-spot behavior. It would not, however, produce
  other characteristics of δ-spots such as compactness and shear. We
  then investigate the kink instability in tubes perturbed simultaneously
  with several unstable modes at different wavelengths. These tubes
  develop a concentrated kink at the point at which the modes interact
  constructively. We show that such a concentrated kink would first emerge
  highly tilted, rotate during its subsequent emergence while remaining
  compact, and develop strong shear along its magnetic neutral line,
  in agreement with δ-spot observations. In addition we find that very
  strong concentrated kinks develop a current sheet at which the magnetic
  field reconnects, causing field lines near the center of the tube to
  become knotted. This reconnection could be related to the high flare
  activity of δ-spots.

---------------------------------------------------------
Title: The Rise of Kink-unstable Magnetic Flux Tubes and the Origin
    of δ-Configuration Sunspots
Authors: Fan, Y.; Zweibel, E. G.; Linton, M. G.; Fisher, G. H.
1999ApJ...521..460F    Altcode:
  We perform three-dimensional simulations of the rise of twisted magnetic
  flux tubes in an adiabatically stratified model solar convection
  zone. The initial flux tube in our simulations is a uniformly twisted,
  buoyant, horizontal tube located near the bottom of the stratified
  layer. The twist of the initial flux tube is described by a parameter
  α, which is defined as the angular rate of field-line rotation about
  the tube axis per unit length of the tube. We study the nonlinear
  evolution of the helical kink instability of the flux tube as it rises
  through the stratified layer. We find from our simulations that in order
  for the tube to develop significant kinking during its rise, the initial
  twist of the tube needs to be close to or greater than the critical
  limit (α<SUB>c</SUB>) for the onset of the kink instability. If the
  initial twist is significantly below the critical limit (α below about
  50% of α<SUB>c</SUB>), we find essentially no kink development and
  the evolution is similar to the results from previous two-dimensional
  simulations of the rise of twisted, horizontal flux tubes. On the other
  hand, if the initial twist is sufficiently greater than the critical
  limit such that the e-folding period of the fastest growing kink mode
  is small compared to the rise time of the tube, we find sharp bending
  and distortion of the tube as a result of the nonlinear evolution of
  the kink instability. In this case, we find that due to the effect of
  gravitational stratification, the kinked flux tube arches upward and
  evolves into a buckled loop with a local change of tube orientation
  at the loop apex that exceeds 90° from the original direction of the
  tube. The emergence of this buckled loop can give rise to a compact
  magnetic bipole with polarity order inverted from the Hale polarity
  law, similar to the configuration often seen in δ spots. Furthermore,
  our simulations show that the writhing of the tube axis as a result
  of the kink instability stretches the flux tube and increases its
  buoyancy. Hence, the development of the kink instability can speed up
  the overall rise of the flux tube.

---------------------------------------------------------
Title: The Emergence of Kink-Unstable Magnetic Flux Tubes and the
    Origin of delta -Configuration Sunspots
Authors: Fan, Y.; Zweibel, E. G.; Linton, M. G.; Fisher, G. H.
1999AAS...194.5903F    Altcode: 1999BAAS...31Q.918F
  The so-called delta -configuration sunspots are an unusual class of
  compact sunspots in which umbrae of opposite polarities are gathered
  closely in a common penumbra, and the polarity order is often inverted
  from Hale's polarity law. One appealing suggestion for the origin of
  the delta -spots, is that they are formed through the emergence of
  flux tubes that have become kinked (or knotted) due to the onset of the
  current driven kink instability. In this talk I present 3D simulations
  of the non-linear evolution of the helical kink instability of twisted
  magnetic flux tubes rising buoyantly through an adiabatically stratified
  layer. We study the kink evolution of buoyant flux tubes with a range
  of different initial twist. We find that in order for the tube to
  develop significant kinking during its rise, the initial twist of the
  tube needs to be close to or greater than the critical limit for the
  onset of the kink instability. If the initial twist is sufficiently
  super-critical such that the e-folding period of the fastest growing
  kink mode is small compared to the rise time of the tube, we find that
  sharp bending and distortion of the tube develop. Due to the effect of
  gravitational stratification, the kinked flux tube arches upward and
  evolves into a buckled loop with a local change of tube orientation
  at the loop apex that exceeds 90(deg) from the original direction of
  the tube. I will discuss the similarities and differences between the
  structure of the buckled emerging flux loop and the magnetic field
  morphology of several delta -spots.

---------------------------------------------------------
Title: The Current Driven Kink Instability and Its Relationship to
    delta - SPOT Active Regions
Authors: Linton, M. G.; Fisher, G. H.; Longcope, D. W.; Dahlburg,
   R. B.; Fan, Y.
1999AAS...194.5902L    Altcode: 1999BAAS...31..918L
  The current driven kink instability may be the cause of both the unusual
  morphology of solar delta -spot active regions and the tendency of
  these regions to be significantly more flare active than most active
  regions. We investigate the current driven kink instability of flux
  tubes in the solar interior both with a linear stability analysis and
  with nonlinear MHD simulations. The linear analysis shows that there is
  a critical twist, which depends on the axial magnetic field profile,
  that a flux tube needs to become kink unstable. This critical twist
  decreases as the tube expands, so twisted flux tubes will become
  increasingly unstable as they rise through the convection zone. The
  nonlinear simulations show that a twisted tube excited by a single
  unstable kink mode will evolve to a helical equilibrium state. The
  emergence through the photosphere of such a kinked tube would create
  an active region which was tilted with respect to Hale's law and
  which would rotate as it evolved, as delta -spots are observed to
  do. We then find that, when excited by multiple unstable kink modes,
  highly twisted flux tubes develop concentrated kinks. These concentrated
  kinks would produce more of the observed characteristics of delta -spot
  active regions. They would create active regions which, in addition to
  emerging tilted and then rotating, would remain compact as they evolved,
  and develop strong shear along their magnetic neutral line. Finally,
  we find that a strong concentrated kink develops a current sheet at
  which the magnetic field reconnects, which may be the cause of the
  high flare activity of delta -spots.

---------------------------------------------------------
Title: Anelastic Magnetohydrodynamic Equations for Modeling Solar
    and Stellar Convection Zones
Authors: Lantz, S. R.; Fan, Y.
1999ApJS..121..247L    Altcode:
  The anelastic approximation has strong advantages for numerical
  simulations of stellar and solar convection zones. The chief and
  generally known one is that it suppresses acoustic modes, permitting
  larger simulated time steps to be taken than would be possible in a
  fully compressible model. This paper clarifies and extends previous work
  on the anelastic approximation by presenting a new vorticity-based
  formulation that can be used for two- and three-dimensional MHD
  simulations. In the new formulation, all fluctuating thermodynamic
  variables except the entropy are eliminated from the equations. This
  shows in the plainest way how the anelastic approximation generalizes
  the Boussinesq approximation, which appears as a special limit. The
  roots of both models are traced to the mixing-length theory of
  convection, which establishes the scaling parameters for “deep”
  (weakly superadiabatic) convection at low Mach numbers. The Ogura &amp;
  Phillips and the Glatzmaier derivations of the anelastic model are
  broadened to include a possible depth dependence in the thermodynamic
  properties of constituent gases. This permits a variable state of gas
  ionization, for example, which is important for stars like the Sun,
  in which the convecting regions coincide with the ionization zones
  of hydrogen and helium. Tests with the new model are presented, in
  which it is shown that the new model is capable of reproducing earlier
  results in the linear and nonlinear stages of convection.

---------------------------------------------------------
Title: The Origin and Role of Twist in Active Regions
Authors: Fisher, G. H.; Longcope, D. W.; Linton, M. G.; Fan, Y.;
   Pevtsov, A. A.
1999soho....9E..56F    Altcode:
  The implications of twist in active region magnetic fields is considered
  in this paper. The latitudinal distribution of twist that has been
  derived from recent vector magnetogram observations may be explained by
  the effects of convective turbulence with a non-zero kinetic helicity
  acting on active region scale magnetic flux tubes as they rise through
  the convection zone. Highly twisted, kink unstable flux tubes are then
  discussed as a possible explanation for many of the observed properties
  of flare productive, "d-spot” active regions.

---------------------------------------------------------
Title: Erratum: Helioseismic Measurements of the Subsurface
    Meridional Flow
Authors: Braun, D. C.; Fan, Y.
1999ApJ...510L..81B    Altcode:
  In the Letter “Helioseismic Measurements of the Subsurface Meridional
  Flow” by D. C. Braun and Y. Fan (<A href="/abs/1998ApJ...508L.105">ApJ,
  508, L105 [1998]</A>), equation (4) was misprinted and should appear as
  follows:&lt;U<SUB>θ</SUB>&gt;≡-(θ<SUB>max</SUB>-θ<SUB>min</SUB>)<SUP>-1</SUP>θ<SUB>min</SUB>θ<SUB>max</SUB>U\b.dot
  θ̂dθ. (4)

---------------------------------------------------------
Title: The Origin and Role of Twist in Active Regions
Authors: Fisher, G. H.; Longcope, D. W.; Linton, M. G.; Fan, Y.;
   Pevtsov, A. A.
1999ASPC..178...35F    Altcode: 1999sdnc.conf...35F
  No abstract at ADS

---------------------------------------------------------
Title: The Solar Dynamo and Emerging Flux
Authors: Fisher, G. H.; Fan, Y.; Longcope, D. W.; Linton, M. G.;
   Pevtsov, A. A.
1999soho....9E..18F    Altcode:
  Much has been learned about the dynamics of magnetic flux tubes in the
  solar interior over the past decade. By using theoretical models for
  the dynamics of active region flux ropes, it is possible to estimate
  observable properties of active regions, such as their orientation,
  position on the disk, and morphology, and then compare these properties
  with active region observations. By varying conditions of the magnetic
  flux ropes as the base of the convection zone until observed properties
  are matched, one can deduce properties of the magnetic field in the
  dynamo layer, such as the magnetic field strength. Observed properties
  such as the active region tilt angle, the dispersion of the tilt angle,
  and magnetic helicity in active regions will be discussed in terms
  of the dynamics of flux tubes rising through the convection zone and
  their interaction with convective motions. Properties of Delta spot
  active regions will be discussed in terms of the kink instability of
  magnetic flux ropes.

---------------------------------------------------------
Title: Formation of Kinked Emerging Loops in the Solar Convection Zone
Authors: Fan, Y.
1999soho....9E..55F    Altcode:
  Through 3D numerical simulations, we investigate the formation of kinked
  emerging magnetic flux loops as a result of the non-linear growth of the
  current driven kink instability of highly twisted magnetic flux tubes
  in the solar convection zone. The effect of the Coriolis force due to
  solar rotation is included. The initial flux tubes in our simulations
  are east-west oriented, horizontal tubes in mechanical equilibrium
  with a degree of twist that is significantly above the critical limit
  for the onset of the kink instability. The growth of the helical kink
  instability makes the flux tube buoyant and causes it to rise. Due to
  the effect of gravitational stratification, the kinked flux tube arches
  upward and evolves into a kinked emerging loop with a local change
  of tube orientation at the loop apex that exceeds 90 degrees from
  the original direction of the tube. As was discussed in our previous
  works, the emergence of the kinked loop can give rise to a compact
  magnetic bipolar region with inverted polarity order, similar to the
  structure often seen in delta-spots. Inclusion of the Coriolis force
  due to solar rotation is found to cause propagation of the kinks along
  the tube in the direction opposite to the direction of rotation. The
  Coriolis force can either enhance or reduce the amount of tilt of the
  apex of the kinked loop depending on which hemisphere the flux tube
  is in and the sense of the twist of the tube. The National Center for
  Atmospheric Research is sponsored by the National Science Foundation.

---------------------------------------------------------
Title: Helioseismic Measurements of the Subsurface Meridional Flow
Authors: Braun, D. C.; Fan, Y.
1998ApJ...508L.105B    Altcode:
  We measure the mean frequencies of acoustic (p-mode) waves propagating
  toward and away from the poles of the Sun from observations made with
  the Solar Oscillations Investigation-Michelson Doppler Imager on board
  the Solar and Heliospheric Observatory and the ground-based Global
  Oscillations Network Group. We demonstrate that there is a significant
  frequency shift between poleward- and equatorward-traveling waves
  measured over solar latitudes 20°-60°, which is consistent with
  the Doppler effect of a poleward meridional flow on the order of 10 m
  s<SUP>-1</SUP>. From the variation of the frequency shifts of p-modes
  with degree l between 72 and 882 as a function of the lower turning
  point depth, we infer the speed of the meridional flow, averaged over
  these latitudes, over a range in depth extending over the top half
  of the solar convection zone. We find no evidence for a significant
  equatorward return flow within this depth range.

---------------------------------------------------------
Title: The Rise of Kink-Unstable Magnetic Flux Tubes in the Solar
    Convection Zone
Authors: Fan, Y.; Zweibel, E. G.; Linton, M. G.; Fisher, G. H.
1998ApJ...505L..59F    Altcode:
  We report preliminary results of a three-dimensional simulation of the
  buoyant rise of a strongly twisted, kink-unstable magnetic flux tube
  through a gravitationally stratified layer representing the solar
  convection zone. The numerical calculations employ the well-known
  anelastic approximation, which is suitable for studying slow, subsonic
  dynamical processes in the pressure-dominated, high-β plasma of the
  solar interior. This Letter investigates the case in which the initial
  twist of the buoyant flux tube is sufficiently high that the e-folding
  growth times of the unstable kink modes are short in comparison to
  the rise time of the flux tube. Our simulation shows that the flux
  tube becomes kinked and that the top portion of the flux tube evolves
  into a buckled shape with the tube axis being deflected by more than
  90° from its original orientation. We suggest that the emergence
  of this buckled flux tube can give rise to a compact magnetic bipole
  with polarity order inverted from Hale's polarity law, similar to the
  configuration often seen in δ spots.

---------------------------------------------------------
Title: Seismic Holography of Solar Activity
Authors: Braun, D. C.; Lindsey, C.; Fan, Y.; Fagan, M.
1998ApJ...502..968B    Altcode:
  Helioseismic images of sunspots show a remarkable acoustic anomaly
  surrounding the sunspot. We applied the computational formalism of
  “helioseismic holography” to SOHO-MDI observations to render
  acoustic images of NOAA AR 7973, an active region containing a
  moderately large sunspot. The results of this study are based on
  simple “acoustic power holography,” to image the absorption of
  p-mode waves by the sunspot. These images clearly show a strong,
  compact acoustic deficit representing the sunspot, as well as plages
  in the neighborhood of the sunspot, consistent with earlier results of
  “Hankel analysis.” However, they also show surrounding the sunspot
  a conspicuous acoustic halo extending out to a radius of approximately
  35,000 km. We propose that this “acoustic moat” is the helioseismic
  manifestation of a single convection eddy that is driven by the thermal
  disturbance resulting from the local blockage of convective transport
  in the sunspot subphotosphere. Depth diagnostics based on acoustic
  focus show a rapidly defocusing sunspot image as the focal plane is
  submerged. Acoustic noise models in which absorption by the sunspot
  is entirely superficial yield images that defocus significantly more
  slowly with increasing focal-plane depth than the SOHO-MDI images of
  NOAA AR 7973. Extending the absorption significantly beneath the model
  photosphere enhances the discrepancy. More recent tests tentatively
  suggest that this “focus anomaly” is the result of neglect of image
  smearing introduced into the MDI instrument to suppress aliasing,
  and that a proper account of the instrumental MTF will render
  defocus profiles roughly consistent with superficial absorption. Our
  holographic images roughly indicate that the sunspot in NOAA AR 7973
  absorbs low-l waves with approximately the same efficiency as it does
  high-l waves. Contrary to widely held opinion, this result is entirely
  consistent with that of the Hankel analysis, given that the absorption
  of waves by magnetic regions is indeed superficial. We expect that the
  efficient absorption of low-l waves will make it possible to image large
  active regions on the far side of the Sun by the acoustic-absorption
  signatures they render at their antipodes.

---------------------------------------------------------
Title: Two-dimensional Simulations of Buoyantly Rising, Interacting
    Magnetic Flux Tubes
Authors: Fan, Y.; Zweibel, E. G.; Lantz, S. R.
1998ApJ...493..480F    Altcode:
  We perform two-dimensional simulations of the buoyant rise of twisted
  horizontal magnetic flux tubes through an adiabatically stratified
  layer representing the solar convection zone or other marginally
  stable atmosphere. The numerical calculations employ the anelastic
  approximation to the basic MHD equations. We confirm the results
  of recent compressible simulations by Moreno-Insertis &amp; Emonet
  that the azimuthal component of the tube magnetic field can prevent
  the splitting of the tube into a vortex pair, and that most of the
  flux in the initial tube cross section rises in the form of a rigid
  body that reaches a terminal speed similar to the prediction of the
  often-employed thin-flux-tube model. We also study the interaction
  between a pair of buoyant flux tubes as they rise in proximity. In the
  case of two identical flux tubes that start from the same level, we find
  that the wake behind each tube interacts with the wake of the other,
  prompting mirror-symmetric vortex shedding in each wake. As a result,
  each tube gains around it a net circulation of the opposite sign of
  the most recently shed eddy; this causes a periodic, horizontal lift
  force that makes the tubes oscillate horizontally as they rise. The
  tube interactions in this case differ substantially from the inviscid
  limit studied previously. For two identical flux tubes that start at
  different levels, the resulting interactions depend upon the details of
  the initial configuration of the two tubes and can be very different
  from the interactions seen in the symmetrical case. In the asymmetric
  case, it becomes possible for one flux tube to be drawn into the wake
  of the other, leading eventually to a merger of the tubes.

---------------------------------------------------------
Title: New detections of H_2O maser sources on the 13.7 M radio
    telescope of Purple Mountain Observatory
Authors: Han, F.; Mao, R. Q.; Lu, J.; Wu, Y. F.; Sun, J.; Wang, J. S.;
   Pei, C. C.; Fan, Y.; Tang, G. S.; Ji, H. R.
1998A&AS..127..181H    Altcode:
  Observations of H_2O maser sources on the 13.7 m radio telescope
  of Purple Mountain Observatory from 1990 Aug. to 1994 Jan. are
  summarized. For searching new water masers, the total number of search
  candidates is about 360, with 110 objects detected. Among them are 96
  new detections. A list of the new detections and their spectra are
  presented. Table 1 and Fig. 1 are only available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http: //cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: VizieR Online Data Catalog: H2O maser sources new detections
    (Han+ 1998)
Authors: Han, F.; Mao, R. Q.; Lu, J.; Wu, Y. F.; Sun, J.; Wang, J. S.;
   Pei, C. C.; Fan, Y.; Tang, G. S.; Ji, H. R.
1997yCat..41270181H    Altcode:
  Observations of H<SUB>2</SUB>O maser sources on the 13.7m radio
  telesc Purple Mountain Observatory from 1990 Aug. to 1994 Jan. are
  summarized. For searching new water masers, the total number of search
  candidates is about 360, with 110 objects detected. Among them are
  96 new detections. A list of the new detections and their spectra are
  presented. (1 data file).

---------------------------------------------------------
Title: Two-dimensional Anelastic MHD Simulations of the Buoyant Rise
    of Magnetic Flux Tubes in the Solar Convection Zone
Authors: Fan, Y.; Zweibel, E. G.; Lantz, S. R.
1997SPD....28.1704F    Altcode: 1997BAAS...29..921F
  We perform two-dimensional simulations of the buoyant rise of
  twisted horizontal magnetic flux tubes through an adiabatically
  stratified layer representing the solar convection zone. The numerical
  calculations employ the anelastic approximation of the basic MHD
  equations. We confirm the results of recent compressible simulations
  by Moreno-Insertis and Emonet that the transverse component of the tube
  magnetic field can prevent the splitting of the tube into a vortex pair,
  and that most of the flux in the initial tube cross-section rises in
  the form of a rigid body and reaches a terminal speed similar to the
  prediction of the thin flux tube model. Furthermore, we studied the
  interaction between a pair of buoyant flux tubes as they rise side by
  side. Our simulations show that the vortices in the wakes of the two
  tubes interact and are continuously shed by the tubes. As a result
  each tube gains around it a net circulation of the opposite sign of
  the shed eddy and experiences a periodic lift force which causes the
  tubes to show an oscillatory horizontal motion as they rise.

---------------------------------------------------------
Title: Doppler Acoustic Diagnostics of Subsurface Solar Magnetic
    Structure
Authors: Lindsey, C.; Braun, D. C.; Jefferies, S. M.; Woodard, M. F.;
   Fan, Y.; Gu, Y.; Redfield, S.
1996ApJ...470..636L    Altcode:
  We used the Bartol-NSO-NASA South Pole helioseismic observations of 1991
  January to probe the subsurface structure of active regions to depths
  of ∼15,000 km. The helioseismic signature we particularly examine is
  intended to register acoustic Doppler effects caused by horizontal flows
  associated with the active region. We propose to show that the Doppler
  acoustic signature of horizontal flows is particularly well suited
  for deep subsurface diagnostics in terms of vertical discrimination
  of the structure. This study is based primarily on observations of
  NOAA Active Regions 6431, 6432, 6440, and 6442 between 1991 January
  1 and January 8. We interpret the acoustic signatures we find in
  terms of a general outflow of the solar medium surrounding the active
  region. The acoustic signatures are strongly dependent on wavenumber,
  which suggests an outflow that is quite weak near the surface, the upper
  4000 km of the subphotosphere, but which increases strongly with depth
  to velocities of several hundred meters per second at 15,000 km. This
  depth profile evolves rapidly as the active region matures. Young
  active regions show a strong outflow signature for waves that explore
  depths between 4000 and 8000 km. As the active region matures, the
  outflow vacates these intermediate layers and submerges to depths
  mostly below 8000 km. <P />We examine the location of AR 6442 for a
  possible preemergence signature. We also show evidence for extended,
  relatively superficial flows in the quiet Sun between the active region
  bands directed roughly into the active region bands.

---------------------------------------------------------
Title: Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes
    in the Solar interior
Authors: Fan, Y.; Fisher, G. H.
1996SoPh..166...17F    Altcode:
  We study the effect of radiative heating on the evolution of thin
  magnetic flux tubes in the solar interior and on the eruption of
  magnetic flux loops to the surface. Magnetic flux tubes experience
  radiative heating because (1) the mean temperature gradient in the
  lower convection zone and the overshoot region deviates substantially
  from that of radiative equilibrium, and hence there is a non-zero
  divergence of radiative heat flux; and (2) the magnetic pressure of the
  flux tube causes a small change of the thermodynamic properties within
  the tube relative to the surrounding field-free fluid, resulting in an
  additional divergence of radiative heat flux. Our calculations show
  that the former constitutes the dominant source of radiative heating
  experienced by the flux tube.

---------------------------------------------------------
Title: Helioseismic Measurements of Subsurface Outflows From Sunspots
Authors: Braun, D. C.; Fan, Y.; Lindsey, C.; Jefferies, S. M.
1996AAS...188.6911B    Altcode: 1996BAAS...28Q.937B
  We measure the mean frequencies of acoustic waves propagating toward
  and away from sunspots employing a spot-centered Fourier-Hankel
  decomposition of p-mode amplitudes as measured from observations made at
  the South Pole in 1988 and 1991. There is a significant frequency shift
  between the inward and outward traveling waves which is consistent with
  the Doppler effect of a radial outflow from the sunspots. For p-modes
  of temporal frequencies of 3 mHz it is observed that the frequency
  shift decreases slightly with spatial frequency, for modes with degree
  l between 160 to 600. From the l dependence of the frequency shift, we
  infer that the mean radial outflow within the observed annular region
  (which extends between 30 and 137 Mm from the spots) increases nearly
  linearly with depth, reaching a magnitude of about 200 m/s at a depth
  of 20 Mm. This outflow exhibits properties similar to flows recently
  reported by Lindsey, et al. (1996 ApJ submitted) using spatially
  sensitive local helioseismic techniques. This work is supported by
  NSF Grant AST 9496171 and NASA Grant NAGW-4143.

---------------------------------------------------------
Title: Doppler Acoustic Diagnostics of Subsurface Solar Magnetic
    Structure
Authors: Lindsey, C.; Braun, D.; Jefferies, S.; Fan, Y.; Gu, Y.;
   Redfield, S.
1996AAS...188.7903L    Altcode: 1996BAAS...28R.955L
  We used the Bartol-NSO-NASA South Pole helioseismic observations of 1991
  January to study the subsurface structure of active regions to depths of
  ~ 15,000 km. The helioseismic signature we particularly examine is based
  on acoustic Doppler effects caused by horizontal flows associated with
  the active region. We demonstrate that the Doppler-acoustic signature
  of horizontal flows is particularly well suited for deep subsurface
  diagnostics in terms of vertical discrimination of the structure. This
  study is based primarily on observations of NOAA active regions 6431,
  6432, 6440 and 6442 between 1991 January 1 and January 8. We interpret
  the Doppler signatures we find in terms of a general outflow of the
  solar medium surrounding the active region. The existence of deep
  subsurface structure is indicated by the strong dependence of the
  Doppler signature on horizontal wavelength. The outflows in surface
  layers, the upper 4,000 km of the subphotosphere, are quite weak but
  increase strongly with depth to velocities of several hundred m/s at
  15,000 km. This depth profile evolves rapidly as the active region
  matures. Young active regions show strong outflows at depths between
  4,000 and 8,000 km. As the active region matures, the outflow vacates
  these intermediate layers and submerges to depths mostly below 8,000
  km. We examine the location of Region 6442 for a possible pre-emergence
  signature. We also show strong evidence for extended, relatively
  superficial flows in the quiet Sun between the active-region bands
  directed roughly into the active region bands.

---------------------------------------------------------
Title: Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes
    in the Solar Interior
Authors: Fan, Y.; Fisher, G. H.
1996AAS...188.3510F    Altcode: 1996BAAS...28..872F
  We study the effect of radiative heating on the evolution of thin
  magnetic flux tubes in the solar interior and on the eruption of
  magnetic flux loops to the surface. Magnetic flux tubes experience
  radiative heating because (1) the mean temperature gradient in the
  lower convection zone and the overshoot region deviates substantially
  from that of radiative equilibrium, and hence there is a non-zero
  divergence of radiative heat flux; and (2) The magnetic pressure of
  the flux tube causes a small change of the thermodynamic properties
  within the tube relative to the surrounding field free fluid, resulting
  in an additional divergence of radiative heat flux. We find that the
  former constitutes the dominant source of radiative heating experienced
  by the flux tube. In the overshoot region, the radiative heating is
  found to cause a quasi-static rising of the toroidal flux tubes with
  an upward drift velocity ~ 10(-3) | delta |^ {-1} cm s(-1) , where
  delta equiv bigtriangledown - bigtriangledown _ad &lt; 0 describes the
  subadiabaticity in the overshoot layer. Using numerical simulations we
  study the formation of “Omega ” shaped emerging loops from toroidal
  flux tubes in the overshoot region as a result of radiative heating. The
  initial toroidal tube is assumed to be non-uniform in its thermodynamic
  properties along the tube and lies at varying depths beneath the base
  of the convection zone. The tube is initially in a state of neutral
  buoyancy with the internal density of the tube plasma equal to the local
  external density. We find from our numerical simulations that such a
  toroidal tube rises quasi-statically due to radiative heating. The top
  portion of the non-uniform tube first enters the convection zone and
  may be brought to an unstable configuration which eventually leads to
  the eruption of an anchored flux loop to the surface.

---------------------------------------------------------
Title: Diagnostics of a Subsurface Radial Outflow From a Sunspot
Authors: Braun, D. C.; Fan, Y.; Lindsey, C.; Jefferies, S. M.
1996astro.ph..3078B    Altcode:
  We measure the mean frequencies of acoustic waves propagating toward
  and away from a sunspot employing a spot-centered Fourier-Hankel
  decomposition of p-mode amplitudes as measured from a set of
  observations made at the South Pole in 1991. We demonstrate that
  there is a significant frequency shift between the inward and outward
  traveling waves which is consistent with the Doppler effect of a radial
  outflow from the sunspot. For p-modes of temporal frequencies of 3
  mHz it is observed that the frequency shift decreases slightly with
  spatial frequency, for modes with degree l between 160 to 600. From
  the l dependence of the frequency shift, we infer that the mean radial
  outflow within the observed annular region (which extends between 30 and
  137 Mm from the spot) increases nearly linearly with depth, reaching a
  magnitude of about 200 m/s at a depth of 20 Mm. This outflow exhibits
  properties similar to flows recently reported by Lindsey, et al. (1996)
  using spatially sensitive local helioseismic techniques.

---------------------------------------------------------
Title: The Dynamics of Magnetic Flux Tubes in the Solar Convection
    Zone
Authors: Fisher, G. H.; Fan, Y.; Longcope, D. W.; Linton, M. C.
1996mpsa.conf..329F    Altcode: 1996IAUCo.153..329F
  No abstract at ADS

---------------------------------------------------------
Title: Scattering of p-Modes by Sunspots. II. Calculations of Phase
    Shifts from a Phenomenological Model
Authors: Fan, Y.; Braun, D. C.; Chou, D. -Y.
1995ApJ...451..877F    Altcode:
  We model the scattering of p-mode waves in a polytropic atmosphere
  by localized inhomogeneities in wave speed, pressure, and density
  of the medium. The effect of the inhomogeneities is attributed to
  a source term in the pressure wave equation. The inhomogeneous wave
  equation for the scattered waves is solved under the simplification
  of the Born approximation. From the solution for the scattered waves,
  we compute the phase shifts between the incoming and outgoing waves of
  individual modes. <P />We find that the variations of the computed
  phase shifts with degree l and radial order n of the modes show
  different behavior for inhomogeneities with different characteristic
  depths. Depths significantly shallower than the depth of the modes
  seem to show a phase shift dependence on l and n that is similar to
  the qualitative behavior of the observed phase shifts produced by
  sunspots. Direct quantitative comparison of the computed phase shifts
  with observations is limited to modes with lower degree (l &lt; 200)
  in which the observed phase shifts are reasonably small so that the
  Born approximation is applicable. We find that for inhomogeneities
  with a wave speed contrast reasonable for sunspots, occupying a volume
  described by a characteristic depth D 108 cm and horizontal radius R ≍
  2.5 × 10<SUP>9</SUP> cm, the computed phase shifts at lower l range
  are in agreement with the observed phase shifts from sunspots in both
  their magnitudes as well as their variation with l and frequency (or n).

---------------------------------------------------------
Title: An atlas of H<SUB>2</SUB>O maser observations on the 13.7 m
    radio telescope of Purple Mountain Observatory.
Authors: Han, F.; Mao, R. Q.; Lu, J.; Lei, C. M.; Wu, Y. F.; Sun, J.;
   Wang, J. S.; Pei, C. C.; Xiang, D. L.; Fan, Y.; Tang, G. S.; Ji, H. R.
1995PPMtO..14..184H    Altcode:
  Observations of H<SUB>2</SUB>O maser sources with the 13.7 m radio
  telescope of Purple Mountain Observatory from August 1990 to January
  1994 are briefly described and the results are presented. A total number
  of 435 objects were observed. Of these, 195 objects were detected,
  with 108 new detections.

---------------------------------------------------------
Title: An atlas of H2O maser observations on the 13.7m radio telescope
    of Purple Mountain Observatory.
Authors: Han, F.; Mao, R. Q.; Lei, C. M.; Wu, Y. F.; Sun, J.; Wang,
   J. S.; Pei, C. C.; Xiang, D. L.; Fan, Y.; Tang, G. S.; Ji, H. R.
1995PPMtO..14..185H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Ephemeral Regions and the Diffusion of Photospheric Magnetic
    Fields
Authors: Harvey, K. L.; Fan, Y.
1995SPD....26.1009H    Altcode: 1995BAAS...27..978H
  No abstract at ADS

---------------------------------------------------------
Title: Observations and Models of p-Mode Scattering by Sunspots
Authors: Braun, D. C.; Fan, Y.
1995SPD....26..403B    Altcode: 1995BAAS...27..954B
  No abstract at ADS

---------------------------------------------------------
Title: On the Post-Emergence Evolutions of Active Region Flux Tubes
    in the Solar Convection Zone
Authors: Fan, Y.; Fisher, G. H.
1995SPD....26.1004F    Altcode: 1995BAAS...27..977F
  No abstract at ADS

---------------------------------------------------------
Title: Comparisons between Theory and Observation of Active Region
    Tilts
Authors: Fisher, G. H.; Fan, Y.; Howard, R. F.
1995ApJ...438..463F    Altcode:
  Active regions in the Sun are generally tilted relative to the azimuthal
  direction, with the leading side being closer to the equator than the
  following side. This tilts is known to increase with latitude. Recently,
  theoretical calculations of the dynamics of emerging, initially toroidal
  active-region flux tubes have been done, showing that the observed
  tilts can be explained by the Coriolis force acting on a diverging
  flow field in emerging flux loops. The calculations of Fan, Fisher,
  &amp; McClymont predict that alpha proportional to Phi<SUP>1/4</SUP>
  B<SUB>0 exp -5/4</SUB> sin theta, where alpha is the tilt angle of
  the active region, B<SUB>0</SUB> is the magnetic field strength of the
  active-region flux tube near the base of the convection zone, and phi is
  the amount of magnetic flux in the tube. We compare these theoretical
  predictions with the behavior of a sample of 24,701 sunspot groups
  observed at Mount Wilson over a period of 68 yr, using the polarity
  separation distance d as a proxy for phi. Our major findings are given.

---------------------------------------------------------
Title: Dynamics of Emerging Active Region Flux Loops
Authors: Fan, Y.; Fisher, G. H.; McClymont, A. N.
1994ApJ...436..907F    Altcode:
  The buoyant rise of a magnetic flux loop arising from a single perturbed
  segment of a toroidal flux ring lying slightly beneath the base of the
  convection zone is studied by way of numerical simulations. We have
  considered flux loop evolution assuming both solid-body rotation,
  and differential rotation consistent with recent results from
  helioseismology. Our major results are presented, and we offer some
  speculations on the decay of active regions, based on the results of our
  studies. We speculate that as plasma in the tube attempts to establish
  hydrostatic equilibrium along the field lines after the flux emergence
  has taken place, the tube field strength at some intermediate depths
  below the surface becomes sufficiently small at the surface portions
  of the tube (which have cooled and undergone convective collapse)
  become dynamically disconnected from those portions near the base
  of the convection zone. The surface proportions of the emerged flux
  tubes are then transported by motions near the photosphere, such as
  supergranular convection and meridional flow.

---------------------------------------------------------
Title: A Model of P-mode Scattering by Sunspots
Authors: Fan, Y.; Braun, D. C.
1994AAS...185.4406F    Altcode: 1994BAAS...26.1377F
  It has recently been discovered that sunspots scatter intermediate and
  high-degree p-modes. The scattering may be characterized by a shift
  in phase between modes travelling toward and away from the spot. These
  observations offer the hope that suitable models of the scattering may
  yield important clues about the subsurface evolution and structure
  of magnetic regions. We model the scattering of p-mode waves in a
  polytropic atmosphere by localized inhomogeneities in compressibility
  (the wave speed), density and pressure of the media. The effect of the
  inhomogeneities is to introduce a source term in the pressure wave
  equation. We solve this inhomogeneous equation for the scattered
  wave amplitudes using standard Green's function techniques under
  the simplification of the Born approximation. We found that with
  reasonable strength (or contrast) of the inhomogeneities we can
  obtain phase shifts between the outgoing and the in-going waves
  similar to observations of p-modes in both the magnitude and degree
  (l) dependence. We discuss how the strength of the scattered waves may
  depend on the depth distribution of the inhomogeneities. This work is
  supported by a NSF grant AST-9496171 and NASA grant NAGW-4143 awarded
  to DCB. YF is supported by ONR grant N00014-91-J-1040.

---------------------------------------------------------
Title: Twisting Motions in Emerging Active Region Flux Tubes
Authors: Fisher, G. H.; Fan, Y.
1993BAAS...25R1206F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Origin of Morphological Asymmetries in Bipolar Active
    Regions
Authors: Fan, Y.; Fisher, G. H.; Deluca, E. E.
1993ApJ...405..390F    Altcode:
  A series of 3D numerical simulations was carried out to examine the
  dynamical evolution of emerging flux loops in the solar convective
  envelope. The innermost portions of the loops are anchored beneath the
  base of the convective zone by the subadiabatic temperature gradient
  of the underlying overshoot region. It is found that, as the emerging
  loops approach the photosphere, the magnetic field strength of the
  leading side of each rising loop is about twice as large as that of the
  following side at the same depth. The evacuation of plasma out of the
  leading side of the rising loop results in an enhanced magnetic field
  strength there compared with the following side. It is argued that this
  result provides a natural explanation for the fact that the preceding
  (leading) polarity tends to have a less organized and more fragmented
  appearance, and that the preceding spots tend to be larger in area and
  fewer in number, and have a longer lifetime than the following spots.

---------------------------------------------------------
Title: The Evolution of Anchored Magnetic Flux Loops in the Convective
    Envelope of the Sun
Authors: Fan, Y.; Fisher, G. H.; Deluca, E. E.
1993ASPC...42...89F    Altcode: 1993gong.conf...89F
  No abstract at ADS

---------------------------------------------------------
Title: Local Acoustic Diagnostics of the Solar Interior
Authors: Braun, D. C.; Lindsey, C.; Fan, Y.; Jefferies, S. M.
1992ApJ...392..739B    Altcode:
  Two diagnostic utilities, acoustic power maps, and surface acoustic
  flux maps are used to explore the local diagnostics of magnetic field
  structure in the solar interior. The acoustic power maps, constructed
  from 50 hr of continuous K-line intensity images, show three general
  features: acoustic power deficits at 3 mHz corresponding to surface
  magnetic flux, acoustic power enhancements at 6 mHz surrounding the
  exterior of magnetic regions, and occasional power deficits at 3 mHz
  which extend beyond magnetic regions visible on the surface to regions
  of quiet-sun. Surface acoustic flux vector maps of two active regions
  were constructed for two 6-hr time-series of Dopplergrams. Both maps
  show the divergence of 3-mHz acoustic flux into surface magnetic
  structures and also sources and sinks of wave energy which are not
  associated with surface features.

---------------------------------------------------------
Title: Prospects in Acoustic Holography of the Solar Interior
Authors: Lindsey, C.; Braun, D. C.; Fan, Y.; Jefferies, S. M.
1992AAS...180.1703L    Altcode: 1992BAAS...24..753L
  Acoustic power maps of the solar surface show strong evidence
  of magnetic structure crossing the solar equator not far beneath
  the photosphere to connect the active latitude bands. These maps,
  generated using the Bartol-NSO-NASA South Pole Observations show long
  finger-like acoustic shadows we think are caused by absorption of
  acoustic energy by the submerged magnetic structure. These features
  suggest a solar interior magnetic structure quite different from any
  previously expected. These new results open the prospect of a new and
  powerful solar interior diagnostic based on acoustic holography.

---------------------------------------------------------
Title: On the Dynamics of Emerging Toroidal Magnetic Flux Tubes
Authors: Fan, Y.; Fisher, G. H.; Deluca, E. E.
1992AAS...180.0502F    Altcode: 1992BAAS...24..733F
  We study the dynamic evolution of emerging toroidal magnetic flux
  rings in the solar convective envelope by carrying out 3D numerical
  simulations based on the thin flux tube approximation of Spruit. We
  find: 1)For an axisymmetric flux ring, the aerodynamic drag force
  experienced by the ring when moving with respect to the ambient
  fluid transfers no angular momentum to the ring. Therefore in
  both cases, with or without the drag force, the ring moves nearly
  parallel to the rotational axis of the sun and emerges at a latitude
  significantly poleward of sunspot zones, as pointed out by Choudhuri
  and Gilman. However, for a non-axisymmetric flux ring (i.e. with
  wave-like undulations along its circumference), the aerodynamic drag
  force can transfer angular momentum to the flux ring, and therefore
  reduces the latitude of flux emergence to within the observed sunspot
  latitudes. 2)As each apex of a flux loop rises due to the magnetic
  buoyancy force, gas inside the flux tube tends to diverge from the
  apex. In the meantime, however, the Coriolis force drives a flow
  within the flux tube opposite to the direction of rotation. Thus the
  point of maximum divergence in the flow within the tube is shifted
  from the apex into the leading side (in the direction of rotation)
  of the emerging loop. The evacuation of plasma from the leading side
  of the loop results in a much lower internal gas pressure there as
  compared to that in the following side at the same depth. Therefore,
  the magnetic field strength is stronger on the leading side. The
  numerical simulations show that the field strength in the leading side
  of the loop can be twice as large as that of the following side at the
  same depth. This result offers a simple explanation for the observed
  fact that the leading polarity of an active region is more compact,
  forms sunspots more easily, and has a longer life time than does the
  following polarity.

---------------------------------------------------------
Title: Fine Structures in the Solar Radio Burst at 2-CENTIMETER
    Waveband
Authors: Gao, Z. M.; Li, Z. Y.; Huo, C. P.; Fan, Y.
1992AcApS..12..167G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Temporal Fine Structure of Solar Radio Burst at 2-CENTIMETER
    Waveband
Authors: Gao, Z. M.; Li, Z. Y.; Huo, C. P.; Fan, Y.
1991AcApS..11..288G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Role of Slow Mode Waves in p-mode Absorption by Sunspots
Authors: Fan, Y.; Fisher, G. H.; McClymont, A. N.
1991BAAS...23Q1049F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: AR:5395 - Preliminary Analysis of the Double Peak Structures
    of Microwave Bursts
Authors: Gao, Z. M.; Li, W. D.; Li, Z. Y.; Huo, C. P.; Fan, Y.; Fu,
   Q. J.
1990PYunO...4..106G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Vertical Currents in a Flare-Productive Active Region
Authors: Fan, Y.; Canfield, R. C.; McClymont, A. N.
1990BAAS...22..827F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Magnetic Morphology of Chromospheric Particle Precipitation
    in Three October 1989 (AR 5747) Flares
Authors: Leka, K. D.; Canfield, R. C.; Wülser, J. -P.; Fan, Y.
1990BAAS...22..824L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A New Concept of Constructing an Accurate Coordinate System
    from Groundbased Optical Observations
Authors: Mao, W.; Hu, X. C.; Guo, X. J.; Fan, Y.
1990IAUS..141..129M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Significance of Groundbased Fundamental Astrometry during
    Spacetime
Authors: Fan, Y.; Mao, W.
1990PrA.....8..214F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Result of Solar 2-CENTIMETER Waveband in the Joint Observation
    1989JAN12-19
Authors: Gao, Z. M.; Li, Z. Y.; Huo, C. P.; Zhai, P. J.; Fan, Y.
1989PYunO.155....1G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Astronomical Review of High Time Resolution Radio Observational
    Techniques
Authors: Fan, Y.; Gao, Z. M.; Huo, C. P.
1988PYunO...4...33F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The quasi-absolute determination of the refraction correction
    by means of middle and lower latitude meridian circle.
Authors: Mao, W.; Li, Z. -M.; Fan, Y.; Hu, X. -C.; Du, M. -H.
1987POBeo..35..315M    Altcode:
  A method is proposed in this paper to determine the values of
  atmospheric refraction by observing a star in the direction of the
  prime vertical with a Middle and Lower Latitude Meridian Circle. It is
  expected to compile with these observations an atmospheric refraction
  table much closer to the actual situation.

---------------------------------------------------------
Title: Grating form of the micrometer of a low-latitude meridian
    circle. II.
Authors: Wang, L. -K.; Fan, Y.; Mao, W.
1987PYunO...2....1W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Determination of the irregularity of the pivot of the
    horizontal axisof a meridian circle by means of an axis collimator.
Authors: Fan, Y.; Wang, L. -K.; Mao, W.
1987PYunO...2....7F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A New Method of Determining Absolute Azimuth and Latitude
    and Suggestion for a New Type of Meridian Circle
Authors: Mao, W.; Li, Z. M.; Fan, Y.; Hu, S. S.; Du, M. H.
1986IAUS..109..551M    Altcode:
  This article describes a new method by which azimuth and the
  instantaneous latitude of a meridian-prime vertical-transit instrument
  can be determined absolutely in mid- and low-latitude areas, and
  discusses some experimental observations obtained on a remodeled Zeiss
  transit instrument. Requirements for the development of a new type of
  transit circle along the lines of this new method are also presented.

---------------------------------------------------------
Title: Analysis of the Effects of Errors on the Reading of the
    Graduated Circle
Authors: Fan, Y.; Mao, W.
1986PYunO...1...41F    Altcode:
  The authors propose a "one-shot determination method" for fixing
  the angular distance of the reading microscope. The effects of
  the eccentricity error of the circle, the tilt of the circle and
  the reading microscopes and the flexure of the circle on the circle
  reading are discussed. It is proved that the arbitrary distribution
  of microscopes by means of the method for fixing the angular distance
  will not affect the final accuracy of the circle reading.

---------------------------------------------------------
Title: The Comparison of Two Methods for the Absolute Determination
    of the Azimuth of a Meridian Circle
Authors: Fan, Y.; Mao, W.
1986PYunO...1...36F    Altcode:
  The conventional circumpolar star - azimuth mark observation method
  is compared to the newly proposed first vertical meridian circle
  observation method. The results show that much more accurate determined
  values can be obtained if the new method is used.

---------------------------------------------------------
Title: The Observation of a Star by Making a 180DEG Rotation of the
    Horizontal Axis of a Lower-Latitude Meridian Circle
Authors: Fan, Y.; Li, Z. M.; Mao, W.
1985PYunO...1...21F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Grating Form of the Micrometer of a Low-Latitude Meridian
    Circle
Authors: Mao, W.; Fan, Y.
1985PYunO...2...34M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Absolute Determination the Refraction Correction with a
    Lower-Latitude Meridian Circle
Authors: Mao, W.; Li, Z. M.; Fan, Y.; Hu, X. C.; Du, M. H.
1985PYunO...1...29M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A new method of absolute determination of a transit
    instrument's azimuth and latitude.
Authors: Mao, W.; Li, Z.; Fan, Y.; Hu, X.; Du, M.; Li, H.
1984SSSMP..27.1183M    Altcode:
  This article deals with a new method of the absolute determination
  for the meridian observations in mid and low latitude areas and
  raises a limitation that the traditional method cannot be used at low
  latitudes. The new method will play an important role in improving
  the reference system of the fundamental celestial sphere. Experimental
  observations with a reconstructed Zeiss transit instrument show that
  the principle of the new method is right.

---------------------------------------------------------
Title: Determination of the azimuth error of the transit instrument
    by means of prime vertical observations
Authors: Mao, W.; Li, Z. -M.; Fan, Y.; Hu, X. -S.; Li, H.
1983AcASn..24..169M    Altcode: 1984AcASn..24..169M
  The principle and some test results of determining the instrumental
  azimuth by measuring the times of passage of the same stars through the
  meridian and the prime vertical are presented. The test measurements
  were made on a reconstructed Zeiss transit instrument equipped with
  four supporting pillars. The results of the test show that the method
  is successful. Applied to the meridian circle, this method replaces
  the traditional method of determining the absolute azimuth by observing
  circumpolar stars and thereby bypases the difficulties inherent therein
  and the errors involved in the method of transfer via the azimuth mark.

---------------------------------------------------------
Title: SiO isotopic maser emission from VY Canis Majoris.
Authors: Deguchi, S.; Good, J.; Fan, Y.; Mao, X.; Wang, D.; Ukita, N.
1983ApJ...264L..65D    Altcode:
  To investigate the peculiar line shape of the ground-state SiO emission
  from VY CMa, the (Si-28)O, (Si-29)O, and (Si-30)O emission profiles were
  observed. Strong narrow emission in the (Si-29)O spectrum was detected,
  twice the strength of the (Si-28)O narrow emission. No (Si-30)O emission
  was detected at the limit of the noise. The observations are difficult
  to interpret in terms of a spherically symmetric, expanding shell,
  but they can be explained by a model in which the inner envelope
  is not a shell but rather forms a rotating edge-on disk. The maser
  amplification would occur mainly in a radial direction since there
  is no radial velocity gradient. The center of the maser emission thus
  coincides with the velocity of the central star. The pumping radiation
  comes from the central star. The inversion is produced by the same
  eight-micron absorption mechanism as in the Robinson and Van Blerkom
  (1981) model, but here the reradiated photons escape in a direction
  perpendicular to the disk.

---------------------------------------------------------
Title: A Circuit Controlled Installation for Refitting a Transit
Authors: Li, Z. M.; Hu, X. C.; Fan, Y.; Du, M. H.; Mao, W.
1983PYunO...1...29L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A further discussion on the mass loss of Mira stars
Authors: Sun, J.; Wu, S. -M.; Fan, Y.
1982AcApS...2...49S    Altcode:
  Mass-loss rates for 42 Mira-type variables with a known period, spectral
  type, and associated double-peak OH maser spectrum are calculated
  on the assumption of mass loss via a stellar wind driven by radiation
  pressure. The relations between mass-loss rate and luminosity, pulsation
  period, maser-shell expansion velocity, and effective temperature are
  determined. The results show that the mass-loss rate of a Mira-type
  variable is proportional to the first power of luminosity, is linearly
  correlated with both pulsation period and maser-shell expansion
  velocity, but is not correlated with effective temperature. It is
  concluded that pulsation period and maser-shell expansion velocity
  are linearly correlated for Mira stars.

---------------------------------------------------------
Title: The Test Results of the Azimuth Equations Absolutely Determined
    with a Refitted Transit Instrument
Authors: Li, Z. M.; Fan, Y.; Hu, X. C.; Mao, W.
1982PYunO...2...27L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Determining the Absolute Parameters of the Meridian Circle
    by Observing the Prime Vertical - Part Three - the Overall Effects
    of Several Errors and Corrected Values on the Determination of
    Azimuth Equations
Authors: Fan, Y.; Hu, X. C.; Li, Z. M.; Mao, W.
1982PYunO...2...13F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Statistics of correlation between the velocity separation
    of double peaks of maser source and associated variable's period,
    and a mass loss from variables
Authors: Fan, Y.; Sun, J.
1980AcASn..21..379F    Altcode:
  No abstract at ADS