explanation      blue bibcodes open ADS page with paths to full text
Author name code: haugan
ADS astronomy entries on 2022-09-14
author:Haugan, S.V.H.

---------------------------------------------------------
Title: Euclid: Calibrating photometric redshifts with spectroscopic
    cross-correlations
Authors: Naidoo, K.; Johnston, H.; Joachimi, B.; van den Busch,
   J. L.; Hildebrandt, H.; Ilbert, O.; Lahav, O.; Aghanim, N.; Altieri,
   B.; Amara, A.; Baldi, M.; Bender, R.; Bodendorf, C.; Branchini, E.;
   Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone,
   C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.;
   Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi,
   L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.;
   Degaudenzi, H.; Dinis, J.; Dubath, F.; Dupac, X.; Dusini, S.; Farrens,
   S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti,
   P.; Fumana, M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.;
   Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.;
   Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kiessling, A.;
   Kilbinger, M.; Kitching, T.; Kohley, R.; Kurki-Suonio, H.; Ligori,
   S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.;
   Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Meneghetti,
   M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.;
   Nakajima, R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.;
   Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.;
   Rhodes, J.; Riccio, G.; Romelli, E.; Rosset, C.; Rossetti, E.; Saglia,
   R.; Sapone, D.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.;
   Sirignano, C.; Sirri, G.; Starck, J. -L.; Surace, C.; Tallada-Crespí,
   P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.;
   Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang,
   Y.; Weller, J.; Wetzstein, M.; Zacchei, A.; Zamorani, G.; Zoubian,
   J.; Andreon, S.; Maino, D.; Scottez, V.; Wright, A. H.
2022arXiv220810503N    Altcode:
  Cosmological constraints from key probes of the Euclid imaging survey
  rely critically on the accurate determination of the true redshift
  distributions $n(z)$ of tomographic redshift bins. We determine
  whether the mean redshift $<z>$ of ten Euclid tomographic
  redshift bins can be calibrated to the Euclid target uncertainties
  of $\sigma(<z>)<0.002\,(1+z)$ via cross-correlation, with
  spectroscopic samples akin to those from the Baryon Oscillation
  Spectroscopic Survey (BOSS), Dark Energy Spectroscopic Instrument
  (DESI), and Euclid's NISP spectroscopic survey. We construct mock
  Euclid and spectroscopic galaxy samples from the Flagship simulation
  and measure small-scale clustering redshifts up to redshift $z<1.8$
  with an algorithm that performs well on current galaxy survey data. The
  clustering measurements are then fitted to two $n(z)$ models: one is
  the true $n(z)$ with a free mean; the other a Gaussian Process modified
  to be restricted to non-negative values. We show that $<z>$
  is measured in each tomographic redshift bin to an accuracy of order
  0.01 or better. By measuring the clustering redshifts on subsets of
  the full Flagship area, we construct scaling relations that allow
  us to extrapolate the method performance to larger sky areas than
  are currently available in the mock. For the full expected Euclid,
  BOSS, and DESI overlap region of approximately 6000 deg$^{2}$, the
  uncertainties attainable by clustering redshifts exceeds the Euclid
  requirement by at least a factor of three for both $n(z)$ models
  considered, although systematic biases limit the accuracy. Clustering
  redshifts are an extremely effective method for redshift calibration
  for Euclid if the sources of systematic biases can be determined and
  removed, or calibrated-out with sufficiently realistic simulations. We
  outline possible future work, in particular an extension to higher
  redshifts with quasar reference samples.

---------------------------------------------------------
Title: Euclid preparation. XX. The Complete Calibration of the
Color-Redshift Relation survey: LBT observations and data release
Authors: Euclid Collaboration; Saglia, R.; De Nicola, S.; Fabricius,
   M.; Guglielmo, V.; Snigula, J.; Zöller, R.; Bender, R.; Heidt,
   J.; Masters, D.; Stern, D.; Paltani, S.; Amara, A.; Auricchio, N.;
   Baldi, M.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.;
   Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.;
   Castellano, M.; Cavuoti, S.; Cledassou, R.; Congedo, G.; Conselice,
   C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.; Cropper,
   M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan,
   C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Frailis, M.; Franceschi,
   E.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.;
   Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.;
   Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kermiche, S.;
   Kiessling, A.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.;
   Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf, O.; Markovic, K.;
   Marulli, F.; Massey, R.; McCracken, H. J.; Melchior, M.; Meylan, G.;
   Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.;
   Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.;
   Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes,
   J.; Riccio, G.; Romelli, E.; Rossetti, E.; Sapone, D.; Sartoris,
   B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.;
   Stanco, L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno,
   I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn, E. A.;
   Valenziano, L.; Vassallo, T.; Wang, Y.; Zacchei, A.; Zamorani, G.;
   Zoubian, J.; Andreon, S.; Bardelli, S.; Graciá-Carpio, J.; Maino, D.;
   Mauri, N.; Tramacere, A.; Zucca, E.; Alvarez Ayllon, A.; Aussel, H.;
   Baccigalupi, C.; Balaguera-Antolínez, A.; Ballardini, M.; Biviano,
   A.; Bolzonella, M.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.;
   Carvalho, C. S.; Casas, S.; Castignani, G.; Cooray, A.; Coupon, J.;
   Courtois, H. M.; Davini, S.; Desprez, G.; Dole, H.; Escartin, J. A.;
   Escoffier, S.; Farina, M.; Fotopoulou, S.; Ganga, K.; Garcia-Bellido,
   J.; George, K.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hook,
   I.; Ilbert, O.; Kansal, V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick,
   C. C.; Loureiro, A.; Macías-Pérez, J.; Magliocchetti, M.; Mainetti,
   G.; Maoli, R.; Martinelli, M.; Martinet, N.; Metcalf, R. B.; Morgante,
   G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Popa, V.; Porciani,
   C.; Potter, D.; Pourtsidou, A.; Reimberg, P.; Sánchez, A. G.; Sakr,
   Z.; Schirmer, M.; Sefusatti, E.; Sereno, M.; Stadel, J.; Teyssier,
   R.; Valieri, C.; Valiviita, J.; Veropalumbo, A.; Viel, M.
2022A&A...664A.196E    Altcode: 2022arXiv220601620S; 2022arXiv220601620E
  The Complete Calibration of the Color-Redshift Relation survey (C3R2)
  is a spectroscopic program designed to empirically calibrate the galaxy
  color-redshift relation to the Euclid depth (I<SUB>E</SUB> = 24.5),
  a key ingredient for the success of Stage IV dark energy projects based
  on weak lensing cosmology. A spectroscopic calibration sample that is as
  representative as possible of the galaxies in the Euclid weak lensing
  sample is being collected, selecting galaxies from a self-organizing
  map (SOM) representation of the galaxy color space. Here, we present
  the results of a near-infrared H- and K-band spectroscopic campaign
  carried out using the LUCI instruments at the LBT. For a total of 251
  galaxies, we present new highly reliable redshifts in the 1.3 ≤ z
  ≤ 1.7 and 2 ≤ z ≤ 2.7 ranges. The newly-determined redshifts
  populate 49 SOM cells that previously contained no spectroscopic
  measurements and almost twice the occupation numbers of an additional
  153 SOM cells. A final optical ground-based observational effort is
  needed to calibrate the missing cells, in particular in the redshift
  range 1.7 ≤ z ≤ 2.7, which lack spectroscopic calibration. In the
  end, Euclid itself will deliver telluric-free near-IR spectra that can
  complete the calibration. <P />The LBT is an international collaboration
  among institutions in the United States, Italy, and Germany. The LBT
  Corporation partners are: LBT Beteiligungsgesellschaft, Germany,
  representing the Max-Planck Society, the Astrophysical Institute
  Potsdam, and Heidelberg University; The University of Arizona on behalf
  of the Arizona university system; Istituto Nazionale di Astrofisica,
  Italy; The Ohio State University, and The Research Corporation,
  on behalf of The University of Notre Dame, University of Minnesota,
  and University of Virginia.

---------------------------------------------------------
Title: Euclid preparation. XXIV. Calibration of the halo mass function
    in $\Lambda(\nu)$CDM cosmologies
Authors: Euclid Collaboration; Castro, T.; Fumagalli, A.; Angulo,
   R. E.; Bocquet, S.; Borgani, S.; Carbone, C.; Dakin, J.; Dolag,
   K.; Giocoli, C.; Monaco, P.; Ragagnin, A.; Saro, A.; Sefusatti,
   E.; Costanzi, M.; Amara, A.; Amendola, L.; Baldi, M.; Bender, R.;
   Bodendorf, C.; Branchini, E.; Brescia, M.; Camera, S.; Capobianco,
   V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.;
   Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.;
   Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.;
   Duncan, C. A. J.; Dupac, X.; Farrens, S.; Ferriol, S.; Fosalba, P.;
   Frailis, M.; Franceschi, E.; Galeotta, S.; Garilli, B.; Gillis, B.;
   Grazian, A.; Gruppi, F.; Haugan, S. V. H.; Hormuth, F.; Hornstrup,
   A.; Hudelot, P.; Jahnke, K.; Kermiche, S.; Kitching, T.; Kunz, M.;
   Kurki-Suonio, H.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf,
   O.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini,
   L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.;
   Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes,
   J.; Riccio, G.; Romelli, E.; Saglia, R.; Sapone, D.; Sartoris, B.;
   Schneider, P.; Seidel, G.; Sirri, G.; Stanco, L.; Tallada Crespí,
   P.; Taylor, A. N.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.;
   Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Weller,
   J.; Zacchei, A.; Zamorani, G.; Andreon, S.; Bardelli, S.; Bozzo, E.;
   Colodro-Conde, C.; Di Ferdinando, D.; Farina, M.; Graciá-Carpio,
   J.; Lindholm, V.; Neissner, C.; Scottez, V.; Tenti, M.; Zucca, E.;
   Baccigalupi, C.; Balaguera-Antolínez, A.; Ballardini, M.; Bernardeau,
   F.; Biviano, A.; Blanchard, A.; Borlaff, A. S.; Burigana, C.; Cabanac,
   R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Cooray,
   A.; Coupon, J.; Courtois, H. M.; Davini, S.; De Lucia, G.; Desprez,
   G.; Dole, H.; Escartin, J. A.; Escoffier, S.; Finelli, F.; Ganga,
   K.; Garcia-Bellido, J.; George, K.; Gozaliasl, G.; Hildebrandt, H.;
   Hook, I.; Ilić, S.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.;
   Loureiro, A.; Macias-Perez, J.; Magliocchetti, M.; Maoli, R.; Marcin,
   S.; Martinelli, M.; Martinet, N.; Matthew, S.; Maturi, M.; Metcalf,
   R. B.; Morgante, G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Peel,
   A.; Popa, V.; Porciani, C.; Potter, D.; Pourtsidou, A.; Pöntinen, M.;
   Sánchez, A. G.; Sakr, Z.; Schirmer, M.; Sereno, M.; Spurio Mancini,
   A.; Teyssier, R.; Valiviita, J.; Veropalumbo, A.; Viel, M.
2022arXiv220802174E    Altcode:
  Euclid's photometric galaxy cluster survey has the potential to be
  a very competitive cosmological probe. The main cosmological probe
  with observations of clusters is their number count, within which the
  halo mass function (HMF) is a key theoretical quantity. We present
  a new calibration of the analytic HMF, at the level of accuracy
  and precision required for the uncertainty in this quantity to be
  subdominant with respect to other sources of uncertainty in recovering
  cosmological parameters from Euclid cluster counts. Our model is
  calibrated against a suite of N-body simulations using a Bayesian
  approach taking into account systematic errors arising from numerical
  effects in the simulation. First, we test the convergence of HMF
  predictions from different N-body codes, by using initial conditions
  generated with different orders of Lagrangian Perturbation theory,
  and adopting different simulation box sizes and mass resolution. Then,
  we quantify the effect of using different halo-finder algorithms,
  and how the resulting differences propagate to the cosmological
  constraints. In order to trace the violation of universality in
  the HMF, we also analyse simulations based on initial conditions
  characterised by scale-free power spectra with different spectral
  indexes, assuming both Einstein--de Sitter and standard $\Lambda$CDM
  expansion histories. Based on these results, we construct a fitting
  function for the HMF that we demonstrate to be sub-percent accurate in
  reproducing results from 9 different variants of the $\Lambda$CDM model
  including massive neutrinos cosmologies. The calibration systematic
  uncertainty is largely sub-dominant with respect to the expected
  precision of future mass-observation relations; with the only notable
  exception of the effect due to the halo finder, that could lead to
  biased cosmological inference.

---------------------------------------------------------
Title: Euclid: Testing the Copernican principle with next-generation
    surveys
Authors: Camarena, D.; Marra, V.; Sakr, Z.; Nesseris, S.; Da Silva,
   A.; Garcia-Bellido, J.; Fleury, P.; Lombriser, L.; Martinelli, M.;
   Martins, C. J. A. P.; Mimoso, J.; Sapone, D.; Clarkson, C.; Camera,
   S.; Carbone, C.; Casas, S.; Ilić, S.; Pettorino, V.; Tutusaus,
   I.; Aghanim, N.; Altieri, B.; Amara, A.; Auricchio, N.; Baldi, M.;
   Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Candini, G. P.;
   Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti,
   A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.;
   Courbin, F.; Cropper, M.; Degaudenzi, H.; Dubath, F.; Duncan, C. A. J.;
   Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis,
   M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli,
   C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth,
   F.; Hornstrup, A.; Jahnke, K.; Kiessling, A.; Kohley, R.; Kunz, M.;
   Kurki-Suonio, H.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf,
   O.; Marulli, F.; Massey, R.; Meneghetti, M.; Merlin, E.; Meylan, G.;
   Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.;
   Paltani, S.; Pasian, F.; Pedersen, K.; Polenta, G.; Poncet, M.; Popa,
   L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Riccio, G.;
   Rix, Hans-Walter; Rossetti, E.; Saglia, R.; Sartoris, B.; Secroun,
   A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.; Surace, C.;
   Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.;
   Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.; Zamorani,
   G.; Zoubian, J.; Andreon, S.; Di Ferdinando, D.; Scottez, V.; Tenti, M.
2022arXiv220709995C    Altcode:
  The Copernican principle, the notion that we are not at a
  special location in the Universe, is one of the cornerstones
  of modern cosmology and its violation would invalidate the
  Friedmann-Lemaître-Robertson-Walker (FLRW) metric, causing a
  major change in our understanding of the Universe. Thus, it is
  of fundamental importance to perform observational tests of this
  principle. We determine the precision with which future surveys will
  be able to test the Copernican principle and their ability to detect
  any possible violations. We forecast constraints on the inhomogeneous
  Lemaître-Tolman-Bondi model with a cosmological constant $\Lambda$
  ($\Lambda$LTB), basically a cosmological constant $\Lambda$ and
  cold dark matter ($\Lambda$CDM) model, but endowed with a spherical
  inhomogeneity. We consider combinations of currently available data and
  simulated Euclid data, together with external data products, based on
  both $\Lambda$CDM and $\Lambda$LTB fiducial models. These constraints
  are compared to the expectations from the Copernican principle. When
  considering the $\Lambda$CDM fiducial model, we find that Euclid
  data, in combination with other current and forthcoming surveys,
  will improve the constraints on the Copernican principle by about
  $30\%$, with $\pm10\%$ variations depending on the observables and
  scales considered. On the other hand, when considering a $\Lambda$LTB
  fiducial model, we find that future Euclid data, combined with other
  current and forthcoming data sets, will be able to detect Gpc-scale
  inhomogeneities of contrast $-0.1$. Next-generation surveys, such as
  Euclid, will thoroughly test homogeneity at large scales, tightening
  the constraints on possible violations of the Copernican principle.

---------------------------------------------------------
Title: Euclid: Forecasts from the void-lensing cross-correlation
Authors: Bonici, M.; Carbone, C.; Vielzeuf, P.; Paganin, L.; Cardone,
   V.; Hamaus, N.; Pisani, A.; Hawken, A. J.; Kovacs, A.; Nadathur,
   S.; Contarini, S.; Verza, G.; Tutusaus, I.; Marulli, F.; Moscardini,
   L.; Aubert, M.; Giocoli, C.; Pourtsidou, A.; Camera, S.; Escoffier,
   S.; Caminata, A.; Martinelli, M.; Pallavicini, M.; Pettorino, V.;
   Sakr, Z.; Sapone, D.; Testera, G.; Tosi, S.; Yankelevich, V.; Amara,
   A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia,
   M.; Brinchmann, J.; Capobianco, V.; Carretero, J.; Castellano, M.;
   Cavuoti, S.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.;
   Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini,
   S.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.;
   Franceschi, E.; Fumana, M.; Gomez-Alvarez, P.; Garilli, B.; Gillis,
   B.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.;
   Hormuth, F.; Hornstrup, A.; Jahnke, K.; Kummel, M.; Kermiche, S.;
   Kiessling, A.; Kilbinger, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs,
   R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.;
   Marggraf, O.; Markovic, K.; Massey, R.; Medinaceli, E.; Melchior, M.;
   Meneghetti, M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.;
   Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.;
   Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.; Rebolo,
   R.; Renzi, A.; Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.;
   Scodeggio, M.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.;
   Stanco, L.; Starck, J. -L.; Surace, C.; Tallada-Crespi, P.; Tavagnacco,
   D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.;
   Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani,
   G.; Zoubian, J.; Andreon, S.
2022arXiv220614211B    Altcode:
  The Euclid space telescope will survey a large dataset of cosmic
  voids traced by dense samples of galaxies. In this work we estimate
  its expected performance when exploiting angular photometric void
  clustering, galaxy weak lensing and their cross-correlation. To this
  aim, we implement a Fisher matrix approach tailored for voids from
  the Euclid photometric dataset and present the first forecasts on
  cosmological parameters that include the void-lensing correlation. We
  examine two different probe settings, pessimistic and optimistic, both
  for void clustering and galaxy lensing. We carry out forecast analyses
  in four model cosmologies, accounting for a varying total neutrino mass,
  $M_\nu$, and a dynamical dark energy (DE) equation of state, $w(z)$,
  described by the CPL parametrisation. We find that void clustering
  constraints on $h$ and $\Omega_b$ are competitive with galaxy lensing
  alone, while errors on $n_s$ decrease thanks to the orthogonality
  of the two probes in the 2D-projected parameter space. We also note
  that, as a whole, the inclusion of the void-lensing cross-correlation
  signal improves parameter constraints by $10-15\%$, and enhances
  the joint void clustering and galaxy lensing Figure of Merit (FoM)
  by $10\%$ and $25\%$, in the pessimistic and optimistic scenarios,
  respectively. Finally, when further combining with the spectroscopic
  galaxy clustering, assumed as an independent probe, we find that,
  in the most competitive case, the FoM increases by a factor of 4 with
  respect to the combination of weak lensing and spectroscopic galaxy
  clustering taken as independent probes. The forecasts presented in this
  work show that photometric void-clustering and its cross-correlation
  with galaxy lensing deserve to be exploited in the data analysis of
  the Euclid galaxy survey and promise to improve its constraining power,
  especially on $h$, $\Omega_b$, the neutrino mass, and the DE evolution.

---------------------------------------------------------
Title: Euclid preparation. XVIII. The NISP photometric system
Authors: Euclid Collaboration; Schirmer, M.; Jahnke, K.; Seidel,
   G.; Aussel, H.; Bodendorf, C.; Grupp, F.; Hormuth, F.; Wachter,
   S.; Appleton, P. N.; Barbier, R.; Brinchmann, J.; Carrasco, J. M.;
   Castander, F. J.; Coupon, J.; De Paolis, F.; Franco, A.; Ganga, K.;
   Hudelot, P.; Jullo, E.; Lançon, A.; Nucita, A. A.; Paltani, S.;
   Smadja, G.; Strafella, F.; Venancio, L. M. G.; Weiler, M.; Amara,
   A.; Auphan, T.; Auricchio, N.; Balestra, A.; Bender, R.; Bonino, D.;
   Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero,
   J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou,
   R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione,
   L.; Costille, A.; Courbin, F.; Da Silva, A.; Degaudenzi, H.; Douspis,
   M.; Dubath, F.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.;
   Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti,
   P.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.;
   Grazian, A.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.;
   Hornstrup, A.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kilbinger,
   M.; Kitching, T.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Laureijs,
   R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maciaszek, T.; Maiorano, E.;
   Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.;
   Maurogordato, S.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan,
   G.; Moresco, M.; Moscardini, L.; Munari, E.; Nakajima, R.; Nichol,
   R. C.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Percival,
   W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti,
   L.; Prieto, E.; Raison, F.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.;
   Rossetti, E.; Saglia, R.; Sartoris, B.; Scaramella, R.; Schneider,
   P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco,
   L.; Tallada-Crespí, P.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.;
   Toledo-Moreo, R.; Torradeflot, F.; Trifoglio, M.; Valentijn, E. A.;
   Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.;
   Andreon, S.; Bardelli, S.; Boucaud, A.; Camera, S.; Farinelli, R.;
   Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei, S.; Morisset,
   N.; Polenta, G.; Renzi, A.; Romelli, E.; Tenti, M.; Vassallo, T.;
   Zacchei, A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.;
   Biviano, A.; Blanchard, A.; Borgani, S.; Bozzo, E.; Burigana, C.;
   Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.;
   Colodro-Conde, C.; Cooray, A. R.; Courtois, H. M.; Crocce, M.; Cuby,
   J. -G.; Davini, S.; de la Torre, S.; Di Ferdinando, D.; Escartin,
   J. A.; Farina, M.; Ferreira, P. G.; Finelli, F.; Fotopoulou, S.;
   Galeotta, S.; Garcia-Bellido, J.; Gaztanaga, E.; George, K.; Gozaliasl,
   G.; Hook, I. M.; Ilić, S.; Kansal, V.; Kashlinsky, A.; Keihanen, E.;
   Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maoli, R.; Martinelli,
   M.; Martinet, N.; Maturi, M.; Mauri, N.; McCracken, H. J.; Metcalf,
   R. B.; Monaco, P.; Morgante, G.; Nightingale, J.; Patrizii, L.; Peel,
   A.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.; Riccio, G.;
   Sánchez, A. G.; Sapone, D.; Scottez, V.; Sefusatti, E.; Teyssier,
   R.; Tutusaus, I.; Valieri, C.; Valiviita, J.; Viel, M.; Hildebrandt, H.
2022A&A...662A..92E    Altcode: 2022arXiv220301650E
  Euclid will be the first space mission to survey most of the
  extragalactic sky in the 0.95-2.02 µm range, to a 5 σ point-source
  median depth of 24.4 AB mag. This unique photometric dataset will
  find wide use beyond Euclid's core science. In this paper, we present
  accurate computations of the Euclid Y<SUB>E</SUB>, J<SUB>E</SUB>,
  and H<SUB>E</SUB> passbands used by the Near-Infrared Spectrometer
  and Photometer (NISP), and the associated photometric system. We pay
  particular attention to passband variations in the field of view,
  accounting for, among other factors, spatially variable filter
  transmission and variations in the angle of incidence on the filter
  substrate using optical ray tracing. The response curves' cut-on
  and cut-off wavelengths - and their variation in the field of view -
  are determined with ~0.8 nm accuracy, essential for the photometric
  redshift accuracy required by Euclid. After computing the photometric
  zero points in the AB mag system, we present linear transformations
  from and to common ground-based near-infrared photometric systems,
  for normal stars, red and brown dwarfs, and galaxies separately. A
  Python tool to compute accurate magnitudes for arbitrary passbands and
  spectral energy distributions is provided. We discuss various factors,
  from space weathering to material outgassing, that may slowly alter
  Euclid's spectral response. At the absolute flux scale, the Euclid
  in-flight calibration program connects the NISP photometric system
  to Hubble Space Telescope spectrophotometric white dwarf standards;
  at the relative flux scale, the chromatic evolution of the response
  is tracked at the milli-mag level. In this way, we establish an
  accurate photometric system that is fully controlled throughout
  Euclid's lifetime.

---------------------------------------------------------
Title: Euclid preparation. XIX. Impact of magnification on photometric
    galaxy clustering
Authors: Euclid Collaboration; Lepori, F.; Tutusaus, I.; Viglione,
   C.; Bonvin, C.; Camera, S.; Castander, F. J.; Durrer, R.; Fosalba,
   P.; Jelic-Cizmek, G.; Kunz, M.; Adamek, J.; Casas, S.; Martinelli,
   M.; Sakr, Z.; Sapone, D.; Amara, A.; Auricchio, N.; Bodendorf, C.;
   Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco,
   V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti,
   A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.;
   Copin, Y.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi, H.;
   Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Ealet, A.; Farrens,
   S.; Ferriol, S.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard,
   W.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.;
   Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.;
   Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel,
   M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti,
   O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato,
   S.; Melchior, M.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.;
   Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S. M.; Padilla, C.;
   Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.;
   Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Rhodes, J.;
   Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun, A.;
   Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck,
   J. -L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo,
   R.; Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Wang, Y.;
   Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Bardelli, S.;
   Fabbian, G.; Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei,
   S.; Renzi, A.; Romelli, E.; Sureau, F.; Vassallo, T.; Zacchei, A.;
   Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Bernardeau, F.;
   Biviano, A.; Blanchard, A.; Bolzonella, M.; Borgani, S.; Bozzo, E.;
   Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Castignani, G.;
   Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J. -G.; Davini,
   S.; de la Torre, S.; Di Ferdinando, D.; Farina, M.; Ferreira, P. G.;
   Finelli, F.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga,
   E.; Gozaliasl, G.; Hook, I. M.; Ilić, S.; Joachimi, B.; Kansal, V.;
   Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maoli,
   R.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Monaco, P.; Morgante,
   G.; Nightingale, J.; Nucita, A.; Patrizii, L.; Popa, V.; Potter, D.;
   Riccio, G.; Sánchez, A. G.; Schirmer, M.; Schultheis, M.; Scottez, V.;
   Sefusatti, E.; Tramacere, A.; Valiviita, J.; Viel, M.; Hildebrandt, H.
2022A&A...662A..93E    Altcode: 2021arXiv211005435L
  <BR /> Aims: We investigate the importance of lensing magnification for
  estimates of galaxy clustering and its cross-correlation with shear
  for the photometric sample of Euclid. Using updated specifications,
  we study the impact of lensing magnification on the constraints and
  the shift in the estimation of the best fitting cosmological parameters
  that we expect if this effect is neglected. <BR /> Methods: We follow
  the prescriptions of the official Euclid Fisher matrix forecast for
  the photometric galaxy clustering analysis and the combination of
  photometric clustering and cosmic shear. The slope of the luminosity
  function (local count slope), which regulates the amplitude of the
  lensing magnification, and the galaxy bias have been estimated from the
  Euclid Flagship simulation. <BR /> Results: We find that magnification
  significantly affects both the best-fit estimation of cosmological
  parameters and the constraints in the galaxy clustering analysis of
  the photometric sample. In particular, including magnification in the
  analysis reduces the 1σ errors on Ω<SUB>m, 0</SUB>, w<SUB>0</SUB>,
  w<SUB>a</SUB> at the level of 20-35%, depending on how well we will
  be able to independently measure the local count slope. In addition,
  we find that neglecting magnification in the clustering analysis leads
  to shifts of up to 1.6σ in the best-fit parameters. In the joint
  analysis of galaxy clustering, cosmic shear, and galaxy-galaxy lensing,
  magnification does not improve precision, but it leads to an up to 6σ
  bias if neglected. Therefore, for all models considered in this work,
  magnification has to be included in the analysis of galaxy clustering
  and its cross-correlation with the shear signal (3 × 2pt analysis)
  for an accurate parameter estimation.

---------------------------------------------------------
Title: Euclid preparation: XXIII. Derivation of galaxy physical
    properties with deep machine learning using mock fluxes and H-band
    images
Authors: Euclid Collaboration; Bisigello, L.; Conselice, C. J.;
   Baes, M.; Bolzonella, M.; Brescia, M.; Cavuoti, S.; Cucciati, O.;
   Humphrey, A.; Hunt, L. K.; Maraston11, C.; Pozzetti, L.; Tortora, C.;
   van Mierlo, S. E.; Aghanim, N.; Auricchio, N.; Baldi, M.; Bender, R.;
   Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Camera,
   S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.;
   Castellano, M.; Cimatti, A.; Congedo, G.; Conversi, L.; Copin, Y.;
   Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.;
   Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Franzetti, P.;
   Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.; Grazian,
   A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kermiche, S.; Kiessling, A.;
   Kilbinger, M.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.;
   Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.; Marggraf, O.;
   Markovic, K.; Marulli, F.; Massey, R.; Maurogordato, S.; Medinaceli,
   E.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini,
   L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian,
   F.; Pedersen, K.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L.;
   Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Rix, H. -W.; Romelli,
   E.; Roncarelli, M.; Rosset, C.; Rossetti, E.; Saglia, R.; Sapone, D.;
   Sartoris, B.; Schneider, P.; Scodeggio, M.; Secroun, A.; Seidel, G.;
   Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Tavagnacco,
   D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.;
   Tutusaus, I.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.; Wang,
   Y.; Zacchei, A.; Zamorani, G.; Zoubian, J.; Andreon, S.; Boucaud,
   S. Bardelli A.; Colodro-Conde, C.; Di Ferdinando, D.; Graciá-Carpio,
   J.; Lindholm, V.; Maino, D.; Mei, S.; Scottez, V.; Sureau, F.; Tenti,
   M.; Zucca, E.; Borlaff, A. S.; Ballardini, M.; Biviano, A.; Bozzo,
   E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Casas,
   S.; Castignani, G.; Cooray, A.; Coupon, J.; Courtois, H. M.; Cuby,
   J.; Davini, S.; De Lucia, G.; Desprez, G.; Dole, H.; Escartin, J. A.;
   Escoffier, S.; Farina, M.; Fotopoulou, S.; Ganga, K.; Garcia-Bellido,
   J.; George, K.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hook,
   I.; Huertas-Company, M.; Kansal, V.; Keihanen, E.; Kirkpatrick, C. C.;
   Loureiro, A.; Macías-Pérez, J. F.; Magliocchetti, M.; Mainetti, G.;
   Marcin, S.; Martinelli, M.; Martinet, N.; Metcalf, R. B.; Monaco, P.;
   Morgante, G.; Nadathur, S.; Nucita, A. A.; Patrizii, L.; Peel, A.;
   Potter, D.; Pourtsidou, A.; Pöntinen, M.; Reimberg, P.; Sánchez,
   A. G.; Sakr, Z.; Schirmer, M.; Sefusatti, E.; Sereno, M.; Stadel,
   J.; Teyssier, R.; Valieri, C.; Valiviita111, J.; Viel, M.
2022arXiv220614944E    Altcode:
  Next generation telescopes, such as Euclid, Rubin/LSST, and Roman,
  will open new windows on the Universe, allowing us to infer physical
  properties for tens of millions of galaxies. Machine learning methods
  are increasingly becoming the most efficient tools to handle this
  enormous amount of data, not only as they are faster to apply to data
  samples than traditional methods, but because they are also often more
  accurate. Properly understanding their applications and limitations
  for the exploitation of these data is of utmost importance. In this
  paper we present an exploration of this topic by investigating how well
  redshifts, stellar masses, and star-formation rates can be measured
  with deep learning algorithms for galaxies within data that mimics
  the Euclid and Rubin/LSST surveys. We find that Deep Learning Neural
  Networks and Convolutional Neutral Networks (CNN), which are dependent
  on the parameter space of the sample used for training, perform well in
  measuring the properties of these galaxies and have an accuracy which is
  better than traditional methods based on spectral energy distribution
  fitting. CNNs allow the processing of multi-band magnitudes together
  with $H_{E}$-band images. We find that the estimates of stellar
  masses improve with the use of an image, but those of redshift and
  star-formation rates do not. Our best machine learning results are
  deriving i) the redshift within a normalised error of less than 0.15 for
  99.9% of the galaxies in the sample with S/N&gt;3 in the $H_{E}$-band;
  ii) the stellar mass within a factor of two ($\sim$0.3 dex) for 99.5%
  of the considered galaxies; iii) the star-formation rates within a
  factor of two ($\sim$0.3 dex) for $\sim$70% of the sample. We discuss
  the implications of our work for application to surveys, mainly but
  not limited to Euclid and Rubin/LSST, and how measurements of these
  galaxy parameters can be improved with deep learning.

---------------------------------------------------------
Title: Euclid preparation. I. The Euclid Wide Survey
Authors: Euclid Collaboration; Scaramella, R.; Amiaux, J.; Mellier,
   Y.; Burigana, C.; Carvalho, C. S.; Cuillandre, J. -C.; Da Silva,
   A.; Derosa, A.; Dinis, J.; Maiorano, E.; Maris, M.; Tereno, I.;
   Laureijs, R.; Boenke, T.; Buenadicha, G.; Dupac, X.; Gaspar Venancio,
   L. M.; Gómez-Álvarez, P.; Hoar, J.; Lorenzo Alvarez, J.; Racca,
   G. D.; Saavedra-Criado, G.; Schwartz, J.; Vavrek, R.; Schirmer, M.;
   Aussel, H.; Azzollini, R.; Cardone, V. F.; Cropper, M.; Ealet, A.;
   Garilli, B.; Gillard, W.; Granett, B. R.; Guzzo, L.; Hoekstra, H.;
   Jahnke, K.; Kitching, T.; Maciaszek, T.; Meneghetti, M.; Miller, L.;
   Nakajima, R.; Niemi, S. M.; Pasian, F.; Percival, W. J.; Pottinger,
   S.; Sauvage, M.; Scodeggio, M.; Wachter, S.; Zacchei, A.; Aghanim,
   N.; Amara, A.; Auphan, T.; Auricchio, N.; Awan, S.; Balestra, A.;
   Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brau-Nogue, S.;
   Brescia, M.; Candini, G. P.; Capobianco, V.; Carbone, C.; Carlberg,
   R. G.; Carretero, J.; Casas, R.; Castander, F. J.; Castellano, M.;
   Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice,
   C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Courbin,
   F.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dusini,
   S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Fourmanoit, N.; Frailis,
   M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Gillis, B.; Giocoli,
   C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Hudelot, P.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kohley, R.;
   Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Lahav, O.; Ligori,
   S.; Lilje, P. B.; Lloro, I.; Mansutti, O.; Marggraf, O.; Markovic,
   K.; Marulli, F.; Massey, R.; Maurogordato, S.; Melchior, M.; Merlin,
   E.; Meylan, G.; Mohr, J. J.; Moresco, M.; Morin, B.; Moscardini,
   L.; Munari, E.; Nichol, R. C.; Padilla, C.; Paltani, S.; Peacock, J.;
   Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti,
   L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.;
   Rossetti, E.; Saglia, R.; Schneider, P.; Schrabback, T.; Secroun,
   A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Skottfelt,
   J.; Stanco, L.; Starck, J. L.; Tallada-Crespí, P.; Tavagnacco, D.;
   Taylor, A. N.; Teplitz, H. I.; Toledo-Moreo, R.; Torradeflot, F.;
   Trifoglio, M.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn,
   G. A.; Wang, Y.; Welikala, N.; Weller, J.; Wetzstein, M.; Zamorani,
   G.; Zoubian, J.; Andreon, S.; Baldi, M.; Bardelli, S.; Boucaud, A.;
   Camera, S.; Di Ferdinando, D.; Fabbian, G.; Farinelli, R.; Galeotta,
   S.; Graciá-Carpio, J.; Maino, D.; Medinaceli, E.; Mei, S.; Neissner,
   C.; Polenta, G.; Renzi, A.; Romelli, E.; Rosset, C.; Sureau, F.; Tenti,
   M.; Vassallo, T.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez,
   A.; Battaglia, P.; Biviano, A.; Borgani, S.; Bozzo, E.; Cabanac,
   R.; Cappi, A.; Casas, S.; Castignani, G.; Colodro-Conde, C.;
   Coupon, J.; Courtois, H. M.; Cuby, J.; de la Torre, S.; Desai, S.;
   Dole, H.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Finelli, F.;
   Flose-Reimberg, P.; Fotopoulou, S.; Ganga, K.; Gozaliasl, G.; Hook,
   I. M.; Keihanen, E.; Kirkpatrick, C. C.; Liebing, P.; Lindholm, V.;
   Mainetti, G.; Martinelli, M.; Martinet, N.; Maturi, M.; McCracken,
   H. J.; Metcalf, R. B.; Morgante, G.; Nightingale, J.; Nucita, A.;
   Patrizii, L.; Potter, D.; Riccio, G.; Sánchez, A. G.; Sapone, D.;
   Schewtschenko, J. A.; Schultheis, M.; Scottez, V.; Teyssier, R.;
   Tutusaus, I.; Valiviita, J.; Viel, M.; Vriend, W.; Whittaker, L.
2022A&A...662A.112E    Altcode: 2021arXiv210801201S
  Euclid is a mission of the European Space Agency that is designed
  to constrain the properties of dark energy and gravity via weak
  gravitational lensing and galaxy clustering. It will carry out a wide
  area imaging and spectroscopy survey (the Euclid Wide Survey: EWS)
  in visible and near-infrared bands, covering approximately 15 000
  deg<SUP>2</SUP> of extragalactic sky in six years. The wide-field
  telescope and instruments are optimised for pristine point spread
  function and reduced stray light, producing very crisp images. This
  paper presents the building of the Euclid reference survey: the
  sequence of pointings of EWS, deep fields, and calibration fields,
  as well as spacecraft movements followed by Euclid as it operates in a
  step-and-stare mode from its orbit around the Lagrange point L2. Each
  EWS pointing has four dithered frames; we simulated the dither pattern
  at the pixel level to analyse the effective coverage. We used up-to-date
  models for the sky background to define the Euclid region-of-interest
  (RoI). The building of the reference survey is highly constrained from
  calibration cadences, spacecraft constraints, and background levels;
  synergies with ground-based coverage were also considered. Via purposely
  built software, we first generated a schedule for the calibrations
  and deep fields observations. On a second stage, the RoI was tiled
  and scheduled with EWS observations, using an algorithm optimised
  to prioritise the best sky areas, produce a compact coverage, and
  ensure thermal stability. The result is the optimised reference survey
  RSD_2021A, which fulfils all constraints and is a good proxy for the
  final solution. The current EWS covers ≈14 500 deg<SUP>2</SUP>. The
  limiting AB magnitudes (5σ point-like source) achieved in its footprint
  are estimated to be 26.2 (visible band I<SUB>E</SUB>) and 24.5 (for
  near infrared bands Y<SUB>E</SUB>, J<SUB>E</SUB>, H<SUB>E</SUB>);
  for spectroscopy, the Hα line flux limit is 2 × 10<SUP>−16</SUP>
  erg<SUP>−1</SUP> cm<SUP>−2</SUP> s<SUP>−1</SUP> at 1600 nm;
  and for diffuse emission, the surface brightness limits are 29.8
  (visible band) and 28.4 (near infrared bands) mag arcsec<SUP>−2</SUP>.

---------------------------------------------------------
Title: Euclid: Fast two-point correlation function covariance through
    linear construction
Authors: Keihanen, E.; Lindholm, V.; Monaco, P.; Blot, L.; Carbone,
   C.; Kiiveri, K.; Sánchez, A. G.; Viitanen, A.; Valiviita, J.; Amara,
   A.; Auricchio, N.; Baldi, M.; Bonino, D.; Branchini, E.; Brescia, M.;
   Brinchmann, J.; Camera, S.; Capobianco, V.; Carretero, J.; Castellano,
   M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi,
   L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini,
   S.; Ealet, A.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.;
   Fumana, M.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo,
   L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Jahnke,
   K.; Kümmel, M.; Kermiche, S.; Kiessling, A.; Kitching, T.; Kunz,
   M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano,
   E.; Mansutti, O.; Marggraf, O.; Marulli, F.; Massey, R.; Melchior,
   M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini,
   L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.;
   Popa, L.; Raison, F.; Renzi, A.; Rhodes, J.; Romelli, E.; Saglia, R.;
   Sartoris, B.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.;
   Sirignano, C.; Sirri, G.; Stanco, L.; Surace, C.; Tallada-Crespí,
   P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.;
   Torradeflot, F.; Valentijn, E. A.; Valenziano, L.; Vassallo, T.;
   Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Maino,
   D.; de la Torre, S.
2022arXiv220511852K    Altcode:
  We present a method for fast evaluation of the covariance matrix
  for a two-point galaxy correlation function (2PCF) measured with
  the Landy-Szalay estimator. The standard way of evaluating the
  covariance matrix consists in running the estimator on a large number
  of mock catalogs, and evaluating their sample covariance. With large
  random catalog sizes (data-to-random objects ratio M&gt;&gt;1) the
  computational cost of the standard method is dominated by that of
  counting the data-random and random-random pairs, while the uncertainty
  of the estimate is dominated by that of data-data pairs. We present
  a method called Linear Construction (LC), where the covariance is
  estimated for small random catalogs of size M = 1 and M = 2, and the
  covariance for arbitrary M is constructed as a linear combination of
  these. We validate the method with PINOCCHIO simulations in range r =
  20-200 Mpc/h, and show that the covariance estimate is unbiased. With
  M = 50 and with 2 Mpc/h bins, the theoretical speed-up of the method
  is a factor of 14. We discuss the impact on the precision matrix
  and parameter estimation, and derive a formula for the covariance
  of covariance.

---------------------------------------------------------
Title: Euclid preparation: XXI. Intermediate-redshift contaminants
    in the search for $z&gt;6$ galaxies within the Euclid Deep Survey
Authors: Euclid Collaboration; van Mierlo, S. E.; Caputi, K. I.;
   Ashby, M.; Atek, H.; Bolzonella, M.; Bowler, R. A. A.; Brammer,
   G.; Conselice, C. J.; Cuby, J.; Dayal, P.; Díaz-Sánchez, A.;
   Finkelstein, S. L.; Hoekstra, H.; Humphrey, A.; Ilbert, O.; McCracken,
   H. J.; Milvang-Jensen, B.; Oesch, P. A.; Pello, R.; Rodighiero,
   G.; Schirmer, M.; Toft, S.; Weaver, J. R.; Wilkins, S. M.; Willott,
   C. J.; Zamorani, G.; Amara, A.; Auricchio, N.; Baldi, M.; Bender, R.;
   Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.;
   Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano,
   M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi,
   L.; Copin, Y.; Corcione, L.; Courbin, F.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Farrens, S.;
   Ferriol, S.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana,
   M.; Galeotta, S.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.;
   Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Hornstrup, A.; Jahnke, K.; Kümmel, M.; Kiessling, A.; Kilbinger,
   M.; Kitching, T.; Kohley, R.; Kunz, M.; Kurki-Suonio, H.; Laureijs,
   R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.;
   Marggraf, O.; Markovic, K.; Marulli, F.; Massey, R.; Maurogordato,
   S.; Medinaceli, E.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco,
   M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani,
   S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.;
   Popa, L.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio,
   G.; Romelli, E.; Rossetti, E.; Saglia, R.; Sapone, D.; Sartoris,
   B.; Schneider, P.; Secroun, A.; Sirignano, C.; Sirri, G.; Stanco,
   L.; Starck, J. -L.; Surace, C.; Tallada-Crespí, P.; Taylor, A. N.;
   Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valentijn,
   E. A.; Valenziano, L.; Vassallo, T.; Wang, Y.; Zacchei, A.; Zoubian,
   J.; Andreon, S.; Bardelli, S.; Boucaud, A.; Graciá-Carpio, J.;
   Maino, D.; Mauri, N.; Mei, S.; Sureau, F.; Zucca, E.; Aussel, H.;
   Baccigalupi, C.; Balaguera-Antolínez, A.; Biviano, A.; Blanchard,
   A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Calura, F.;
   Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde,
   C.; Cooray, A. R.; Coupon, J.; Courtois, H. M.; Crocce, M.; Cucciati,
   O.; Davini, S.; Dole, H.; Escartin, J. A.; Escoffier, S.; Fabricius,
   M.; Farina, M.; Ganga, K.; García-Bellido, J.; George, K.; Giacomini,
   F.; Gozaliasl, G.; Gwyn, S.; Hook, I.; Huertas-Company, M.; Kansal,
   V.; Kashlinsky, A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm,
   V.; Maoli, R.; Martinelli, M.; Martinet, N.; Maturi, M.; Metcalf,
   R. B.; Monaco, P.; Morgante, G.; Nucita, A. A.; Patrizii, L.; Peel,
   A.; Pollack, J.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.;
   Sánchez, A. G.; Scottez, V.; Sefusatti, E.; Stadel, J.; Teyssier,
   R.; Valiviita, J.; Viel, M.
2022arXiv220502871E    Altcode:
  (Abridged) The Euclid mission is expected to discover thousands of
  z&gt;6 galaxies in three Deep Fields, which together will cover a ~40
  deg2 area. However, the limited number of Euclid bands and availability
  of ancillary data could make the identification of z&gt;6 galaxies
  challenging. In this work, we assess the degree of contamination by
  intermediate-redshift galaxies (z=1-5.8) expected for z&gt;6 galaxies
  within the Euclid Deep Survey. This study is based on ~176,000 real
  galaxies at z=1-8 in a ~0.7 deg2 area selected from the UltraVISTA
  ultra-deep survey, and ~96,000 mock galaxies with 25.3$\leq$H&lt;27.0,
  which altogether cover the range of magnitudes to be probed in the
  Euclid Deep Survey. We simulate Euclid and ancillary photometry from
  the fiducial, 28-band photometry, and fit spectral energy distributions
  (SEDs) to various combinations of these simulated data. Our study
  demonstrates that identifying z&gt;6 with Euclid data alone will be
  very effective, with a z&gt;6 recovery of 91(88)% for bright (faint)
  galaxies. For the UltraVISTA-like bright sample, the percentage of
  z=1-5.8 contaminants amongst apparent z&gt;6 galaxies as observed with
  Euclid alone is 18%, which is reduced to 4(13)% by including ultra-deep
  Rubin (Spitzer) photometry. Conversely, for the faint mock sample,
  the contamination fraction with Euclid alone is considerably higher
  at 39%, and minimized to 7% when including ultra-deep Rubin data. For
  UltraVISTA-like bright galaxies, we find that Euclid (I-Y)&gt;2.8 and
  (Y-J)&lt;1.4 colour criteria can separate contaminants from true
  z&gt;6 galaxies, although these are applicable to only 54% of the
  contaminants, as many have unconstrained (I-Y) colours. In the most
  optimistic scenario, these cuts reduce the contamination fraction to
  1% whilst preserving 81% of the fiducial z&gt;6 sample. For the faint
  mock sample, colour cuts are infeasible.

---------------------------------------------------------
Title: Euclid: Cosmological forecasts from the void size function
Authors: Contarini, S.; Verza, G.; Pisani, A.; Hamaus, N.; Sahlén,
   M.; Carbone, C.; Dusini, S.; Marulli, F.; Moscardini, L.; Renzi, A.;
   Sirignano, C.; Stanco, L.; Aubert, M.; Bonici, M.; Castignani, G.;
   Courtois, H. M.; Escoffier, S.; Guinet, D.; Kovacs, A.; Lavaux, G.;
   Massara, E.; Nadathur, S.; Pollina, G.; Ronconi, T.; Ruppin, F.; Sakr,
   Z.; Veropalumbo, A.; Wandelt, B. D.; Amara, A.; Auricchio, N.; Baldi,
   M.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.;
   Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou,
   R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione,
   L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Dubath,
   F.; Duncan, C. A. J.; Dupac, X.; Ealet, A.; Farrens, S.; Ferriol, S.;
   Fosalba, P.; Frailis, M.; Franceschi, E.; Garilli, B.; Gillard, W.;
   Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan,
   S.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kümmel, M.; Kermiche, S.;
   Kiessling, A.; Kilbinger, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs,
   R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Mansutti, O.;
   Marggraf, O.; Markovic, K.; Massey, R.; Melchior, M.; Meneghetti,
   M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.; Padilla, C.;
   Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.;
   Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison,
   F.; Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider,
   P.; Secroun, A.; Seidel, G.; Sirri, G.; Surace, C.; Tallada-Crespí,
   P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.;
   Valentijn, E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani,
   G.; Zoubian, J.; Andreon, S.; Maino, D.; Mei, S.
2022arXiv220511525C    Altcode:
  The Euclid mission $-$ with its spectroscopic galaxy survey covering
  a sky area over $15\,000 \ \mathrm{deg}^2$ in the redshift range
  $0.9&lt;z&lt;1.8\ -$ will provide a sample of tens of thousands of
  cosmic voids. This paper explores for the first time the constraining
  power of the void size function on the properties of dark energy
  (DE) from a survey mock catalogue, the official Euclid Flagship
  simulation. We identify voids in the Flagship light-cone, which
  closely matches the features of the upcoming Euclid spectroscopic
  data set. We model the void size function considering a state-of-the
  art methodology: we rely on the volume conserving (Vdn) model,
  a modification of the popular Sheth &amp; van de Weygaert model
  for void number counts, extended by means of a linear function of
  the large-scale galaxy bias. We find an excellent agreement between
  model predictions and measured mock void number counts. We compute
  updated forecasts for the Euclid mission on DE from the void size
  function and provide reliable void number estimates to serve as
  a basis for further forecasts of cosmological applications using
  voids. We analyse two different cosmological models for DE: the
  first described by a constant DE equation of state parameter, $w$,
  and the second by a dynamic equation of state with coefficients $w_0$
  and $w_a$. We forecast $1\sigma$ errors on $w$ lower than the $10\%$,
  and we estimate an expected figure of merit (FoM) for the dynamical
  DE scenario $\mathrm{FoM}_{w_0,w_a} = 17$ when considering only the
  neutrino mass as additional free parameter of the model. The analysis
  is based on conservative assumptions to ensure full robustness, and
  is a pathfinder for future enhancements of the technique. Our results
  showcase the impressive constraining power of the void size function
  from the Euclid spectroscopic sample, both as a stand-alone probe,
  and to be combined with other Euclid cosmological probes.

---------------------------------------------------------
Title: Euclid: Constraining ensemble photometric redshift
    distributions with stacked spectroscopy
Authors: Cagliari, M. S.; Granett, B. R.; Guzzo, L.; Bolzonella,
   M.; Pozzetti, L.; Tutusaus, I.; Camera, S.; Amara, A.; Auricchio,
   N.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia,
   M.; Capobianco, V.; Carbone, C.; Carretero, J.; Castander, F. J.;
   Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo,
   G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper,
   M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Ealet, A.;
   Ferriol, S.; Fourmanoit, N.; Frailis, M.; Franceschi, E.; Franzetti,
   P.; Garilli, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.;
   Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.;
   Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel,
   M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.;
   Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini,
   L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen,
   K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet, M.; Popa,
   L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H. -W.; Roncarelli, M.;
   Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Scodeggio,
   M.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.;
   Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valentijn,
   E. A.; Valenziano, L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani,
   G.; Zoubian, J.; Baldi, M.; Farinelli, R.; Medinaceli, E.; Mei, S.;
   Polenta, G.; Romelli, E.; Vassallo, T.; Humphrey, A.
2022A&A...660A...9C    Altcode: 2021arXiv210907303C
  Context. The ESA Euclid mission will produce photometric galaxy
  samples over 15 000 square degrees of the sky that will be rich for
  clustering and weak lensing statistics. The accuracy of the cosmological
  constraints derived from these measurements will depend on the knowledge
  of the underlying redshift distributions based on photometric redshift
  calibrations. <BR /> Aims: A new approach is proposed to use the
  stacked spectra from Euclid slitless spectroscopy to augment broad-band
  photometric information to constrain the redshift distribution with
  spectral energy distribution fitting. The high spectral resolution
  available in the stacked spectra complements the photometry and helps
  to break the colour-redshift degeneracy and constrain the redshift
  distribution of galaxy samples. <BR /> Methods: We modelled the stacked
  spectra as a linear mixture of spectral templates. The mixture may be
  inverted to infer the underlying redshift distribution using constrained
  regression algorithms. We demonstrate the method on simulated Vera
  C. Rubin Observatory and Euclid mock survey data sets based on the
  Euclid Flagship mock galaxy catalogue. We assess the accuracy of the
  reconstruction by considering the inference of the baryon acoustic
  scale from angular two-point correlation function measurements. <BR />
  Results: We selected mock photometric galaxy samples at redshift z &gt;
  1 using the self-organising map algorithm. Considering the idealised
  case without dust attenuation, we find that the redshift distributions
  of these samples can be recovered with 0.5% accuracy on the baryon
  acoustic scale. The estimates are not significantly degraded by the
  spectroscopic measurement noise due to the large sample size. However,
  the error degrades to 2% when the dust attenuation model is left
  free. We find that the colour degeneracies introduced by attenuation
  limit the accuracy considering the wavelength coverage of Euclid
  near-infrared spectroscopy. <P />This paper is published on behalf of
  the Euclid Consortium.

---------------------------------------------------------
Title: Euclid: Forecast constraints on consistency tests of the
    ΛCDM model
Authors: Nesseris, S.; Sapone, D.; Martinelli, M.; Camarena, D.; Marra,
   V.; Sakr, Z.; Garcia-Bellido, J.; Martins, C. J. A. P.; Clarkson, C.;
   Da Silva, A.; Fleury, P.; Lombriser, L.; Mimoso, J. P.; Casas, S.;
   Pettorino, V.; Tutusaus, I.; Amara, A.; Auricchio, N.; Bodendorf, C.;
   Bonino, D.; Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.;
   Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou,
   R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Courbin, F.;
   Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.;
   Dupac, X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis,
   M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli,
   C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth,
   F.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kitching, T.; Kümmel,
   M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro,
   I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey,
   R.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini,
   L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Percival, W. J.; Poncet, M.; Popa, L.; Racca, G. D.;
   Raison, F.; Rhodes, J.; Roncarelli, M.; Saglia, R.; Sartoris, B.;
   Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.;
   Sirri, G.; Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Taylor,
   A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.;
   Valenziano, L.; Wang, Y.; Welikala, N.; Zamorani, G.; Zoubian, J.;
   Andreon, S.; Baldi, M.; Camera, S.; Medinaceli, E.; Mei, S.; Renzi, A.
2022A&A...660A..67N    Altcode: 2021arXiv211011421N
  Context. The standard cosmological model is based on the fundamental
  assumptions of a spatially homogeneous and isotropic universe on
  large scales. An observational detection of a violation of these
  assumptions at any redshift would immediately indicate the presence of
  new physics. <BR /> Aims: We quantify the ability of the Euclid mission,
  together with contemporary surveys, to improve the current sensitivity
  of null tests of the canonical cosmological constant Λ and the cold
  dark matter (ΛCDM) model in the redshift range 0 &lt; z &lt; 1.8. <BR
  /> Methods: We considered both currently available data and simulated
  Euclid and external data products based on a ΛCDM fiducial model,
  an evolving dark energy model assuming the Chevallier-Polarski-Linder
  parameterization or an inhomogeneous Lemaître-Tolman-Bondi model with a
  cosmological constant Λ, and carried out two separate but complementary
  analyses: a machine learning reconstruction of the null tests based on
  genetic algorithms, and a theory-agnostic parametric approach based on
  Taylor expansion and binning of the data, in order to avoid assumptions
  about any particular model. <BR /> Results: We find that in combination
  with external probes, Euclid can improve current constraints on null
  tests of the ΛCDM by approximately a factor of three when using the
  machine learning approach and by a further factor of two in the case of
  the parametric approach. However, we also find that in certain cases,
  the parametric approach may be biased against or missing some features
  of models far from ΛCDM. <BR /> Conclusions: Our analysis highlights
  the importance of synergies between Euclid and other surveys. These
  synergies are crucial for providing tighter constraints over an extended
  redshift range for a plethora of different consistency tests of some
  of the main assumptions of the current cosmological paradigm. <P />This
  paper is published on behalf of the Euclid Consortium.

---------------------------------------------------------
Title: Euclid: Covariance of weak lensing pseudo-C<SUB>ℓ</SUB>
    estimates. Calculation, comparison to simulations, and dependence
    on survey geometry
Authors: Upham, R. E.; Brown, M. L.; Whittaker, L.; Amara, A.;
   Auricchio, N.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann,
   J.; Capobianco, V.; Carbone, C.; Carretero, J.; Castellano, M.;
   Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi,
   L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini,
   S.; Ealet, A.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.;
   Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.;
   Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.;
   Hornstrup, A.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger,
   M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori,
   S.; Lilje, P. B.; Lloro, I.; Marggraf, O.; Markovic, K.; Marulli,
   F.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari,
   E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen,
   K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.;
   Rhodes, J.; Rossetti, E.; Saglia, R.; Sartoris, B.; Schneider,
   P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.; Stanco, L.;
   Starck, J. -L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.;
   Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valenziano, L.; Wang,
   Y.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.;
   Cardone, V. F.; Fabbian, G.; Polenta, G.; Renzi, A.; Joachimi, B.;
   Hall, A.; Loureiro, A.; Sellentin, E.
2022A&A...660A.114U    Altcode: 2021arXiv211207341U
  An accurate covariance matrix is essential for obtaining reliable
  cosmological results when using a Gaussian likelihood. In this
  paper we study the covariance of pseudo-C<SUB>ℓ</SUB> estimates of
  tomographic cosmic shear power spectra. Using two existing publicly
  available codes in combination, we calculate the full covariance matrix,
  including mode-coupling contributions arising from both partial sky
  coverage and non-linear structure growth. For three different sky
  masks, we compare the theoretical covariance matrix to that estimated
  from publicly available N-body weak lensing simulations, finding
  good agreement. We find that as a more extreme sky cut is applied,
  a corresponding increase in both Gaussian off-diagonal covariance
  and non-Gaussian super-sample covariance is observed in both theory
  and simulations, in accordance with expectations. Studying the
  different contributions to the covariance in detail, we find that
  the Gaussian covariance dominates along the main diagonal and the
  closest off-diagonals, but farther away from the main diagonal the
  super-sample covariance is dominant. Forming mock constraints in
  parameters that describe matter clustering and dark energy, we find
  that neglecting non-Gaussian contributions to the covariance can lead
  to underestimating the true size of confidence regions by up to 70 per
  cent. The dominant non-Gaussian covariance component is the super-sample
  covariance, but neglecting the smaller connected non-Gaussian covariance
  can still lead to the underestimation of uncertainties by 10-20 per
  cent. A real cosmological analysis will require marginalisation over
  many nuisance parameters, which will decrease the relative importance
  of all cosmological contributions to the covariance, so these values
  should be taken as upper limits on the importance of each component. <P
  />This paper is published on behalf of the Euclid Consortium.

---------------------------------------------------------
Title: Euclid: Searching for pair-instability supernovae with the
    Deep Survey
Authors: Moriya, T. J.; Inserra, C.; Tanaka, M.; Cappellaro, E.; Della
   Valle, M.; Hook, I.; Kotak, R.; Longo, G.; Mannucci, F.; Mattila,
   S.; Tao, C.; Altieri, B.; Amara, A.; Auricchio, N.; Bonino, D.;
   Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco,
   V.; Carbone, C.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti,
   A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin,
   Y.; Corcione, L.; Courbin, F.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini,
   S.; Ealet, A.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi,
   E.; Fumana, M.; Garilli, B.; Gillard, W.; Gillis, B.; Giocoli, C.;
   Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Hornstrup, A.; Jahnke, K.; Kermiche, S.; Kiessling, A.; Kilbinger, M.;
   Kitching, T.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.;
   Massey, R.; McCracken, H. J.; Melchior, M.; Meneghetti, M.; Meylan,
   G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla,
   C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Poncet, M.;
   Popa, L.; Raison, F.; Rhodes, J.; Riccio, G.; Rossetti, E.; Saglia,
   R.; Sartoris, B.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano,
   C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno,
   I.; Toledo-Moreo, R.; Torradeflot, F.; Wang, Y.; Zamorani, G.; Zoubian,
   J.; Andreon, S.; Scottez, V.; Morris, P. W.
2022arXiv220408727M    Altcode:
  Pair-instability supernovae are theorized supernovae that have not
  yet been observationally confirmed. They are predicted to exist in
  low-metallicity environments. Because overall metallicity becomes lower
  at higher redshifts, deep near-infrared transient surveys probing
  high-redshift supernovae are suitable to discover pair-instability
  supernovae. The Euclid satellite, which is planned to be launched in
  2023, has a near-infrared wide-field instrument that is suitable for
  a high-redshift supernova survey. The Euclid Deep Survey is planned
  to make regular observations of three Euclid Deep Fields (40 deg2
  in total) spanning the Euclid's 6 year primary mission period. While
  the observations of the Euclid Deep Fields are not frequent, we show
  that the predicted long duration of pair-instability supernovae would
  allow us to search for high-redshift pair-instability supernovae with
  the Euclid Deep Survey. Based on the current observational plan of the
  Euclid mission, we conduct survey simulations in order to estimate the
  expected numbers of pair-instability supernova discoveries. We find
  that up to several hundred pair-instability supernovae at z &lt; ~
  3.5 can be discovered within the Euclid Deep Survey. We also show that
  pair-instability supernova candidates can be efficiently identified by
  their duration and color that can be determined with the current Euclid
  Deep Survey plan. We conclude that the Euclid mission can lead to the
  first confirmation of pair-instability supernovae if their event rates
  are as high as those predicted by recent theoretical studies. We also
  update the expected numbers of superluminous supernova discoveries in
  the Euclid Deep Survey based on the latest observational plan.

---------------------------------------------------------
Title: The Solar ALMA Science Archive (SALSA). First release, SALAT,
    and FITS header standard
Authors: Henriques, Vasco M. J.; Jafarzadeh, Shahin; Guevara Gómez,
   Juan Camilo; Eklund, Henrik; Wedemeyer, Sven; Szydlarski, Mikołaj;
   Haugan, Stein Vidar H.; Mohan, Atul
2022A&A...659A..31H    Altcode: 2021arXiv210902374H
  In December 2016, the Atacama Large Millimeter/submillimeter Array
  (ALMA) carried out the first regular observations of the Sun. These
  early observations and the reduction of the respective data posed a
  challenge due to the novelty and complexity of observing the Sun with
  ALMA. The difficulties with producing science-ready, time-resolved
  imaging products in a format familiar to and usable by solar physicists
  based on the measurement sets delivered by ALMA had limited the
  availability of such data to this point. With the development of the
  Solar ALMA Pipeline, it has now become possible to routinely reduce
  such data sets. As a result, a growing number of science-ready solar
  ALMA data sets are now offered in the form of the Solar ALMA Science
  Archive (SALSA). So far, SALSA contains primarily time series of
  single-pointing interferometric images at cadences of one or two
  seconds, accompanied by the respective single-dish full-disc solar
  images. The data arrays are provided in FITS format. We also present
  the first version of a standardised header format that accommodates
  future expansions and fits within the scope of other standards
  including the ALMA Science Archive itself and SOLARNET. The headers
  include information designed to aid the reproduction of the imaging
  products from the raw data. Links to co-observations, if available,
  with a focus on those of the Interface Region Imaging Spectrograph,
  are also provided. SALSA is accompanied by the Solar ALMA Library of
  Auxiliary Tools (SALAT), which contains Interactive Data Language and
  Python routines for convenient loading and a quick-look analysis of
  SALSA data. <P />Movies associated to Figs. 3 and 4 are available at <A
  href="https://www.aanda.org/10.1051/0004-6361/202142291/olm">https://www.aanda.org</A>

---------------------------------------------------------
Title: Euclid: Forecasts from redshift-space distortions and the
    Alcock-Paczynski test with cosmic voids
Authors: Hamaus, N.; Aubert, M.; Pisani, A.; Contarini, S.; Verza,
   G.; Cousinou, M. -C.; Escoffier, S.; Hawken, A.; Lavaux, G.; Pollina,
   G.; Wandelt, B. D.; Weller, J.; Bonici, M.; Carbone, C.; Guzzo, L.;
   Kovacs, A.; Marulli, F.; Massara, E.; Moscardini, L.; Ntelis, P.;
   Percival, W. J.; Radinović, S.; Sahlén, M.; Sakr, Z.; Sánchez,
   A. G.; Winther, H. A.; Auricchio, N.; Awan, S.; Bender, R.; Bodendorf,
   C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco,
   V.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.;
   Cimatti, A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.;
   Corcione, L.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis,
   M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.;
   Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.;
   Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp,
   F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche,
   S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.;
   Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.;
   Marggraf, O.; Markovic, K.; Massey, R.; Maurogordato, S.; Melchior,
   M.; Meneghetti, M.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S. M.;
   Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.;
   Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Rebolo, R.; Rhodes,
   J.; Rix, H.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider,
   P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.;
   Starck, J. -L.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.;
   Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.;
   Valenziano, L.; Wang, Y.; Welikala, N.; Zamorani, G.; Zoubian, J.;
   Andreon, S.; Baldi, M.; Camera, S.; Mei, S.; Neissner, C.; Romelli, E.
2022A&A...658A..20H    Altcode: 2021arXiv210810347H
  Euclid is poised to survey galaxies across a cosmological volume of
  unprecedented size, providing observations of more than a billion
  objects distributed over a third of the full sky. Approximately 20
  million of these galaxies will have their spectroscopy available,
  allowing us to map the three-dimensional large-scale structure of the
  Universe in great detail. This paper investigates prospects for the
  detection of cosmic voids therein and the unique benefit they provide
  for cosmological studies. In particular, we study the imprints of
  dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions
  of average void shapes and their constraining power on the growth of
  structure and cosmological distance ratios. To this end, we made use
  of the Flagship mock catalog, a state-of-the-art simulation of the
  data expected to be observed with Euclid. We arranged the data into
  four adjacent redshift bins, each of which contains about 11 000 voids
  and we estimated the stacked void-galaxy cross-correlation function
  in every bin. Fitting a linear-theory model to the data, we obtained
  constraints on f/b and D<SUB>M</SUB>H, where f is the linear growth
  rate of density fluctuations, b the galaxy bias, D<SUB>M</SUB> the
  comoving angular diameter distance, and H the Hubble rate. In addition,
  we marginalized over two nuisance parameters included in our model
  to account for unknown systematic effects in the analysis. With this
  approach, Euclid will be able to reach a relative precision of about
  4% on measurements of f/b and 0.5% on D<SUB>M</SUB>H in each redshift
  bin. Better modeling or calibration of the nuisance parameters may
  further increase this precision to 1% and 0.4%, respectively. Our
  results show that the exploitation of cosmic voids in Euclid will
  provide competitive constraints on cosmology even as a stand-alone
  probe. For example, the equation-of-state parameter, w, for dark energy
  will be measured with a precision of about 10%, consistent with previous
  more approximate forecasts. <P />This paper is published on behalf of
  the Euclid Consortium.

---------------------------------------------------------
Title: Euclid preparation. XVII. Cosmic Dawn Survey: Spitzer Space
    Telescope observations of the Euclid deep fields and calibration
    fields
Authors: Euclid Collaboration; Moneti, A.; McCracken, H. J.;
   Shuntov, M.; Kauffmann, O. B.; Capak, P.; Davidzon, I.; Ilbert, O.;
   Scarlata, C.; Toft, S.; Weaver, J.; Chary, R.; Cuby, J.; Faisst,
   A. L.; Masters, D. C.; McPartland, C.; Mobasher, B.; Sanders, D. B.;
   Scaramella, R.; Stern, D.; Szapudi, I.; Teplitz, H.; Zalesky, L.;
   Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.; Branchini, E.;
   Brau-Nogue, S.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone,
   C.; Carretero, J.; Castander, F. J.; Castellano, M.; Cavuoti, S.;
   Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice, C. J.; Conversi,
   L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper, M.; Da Silva,
   A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac,
   X.; Dusini, S.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.;
   Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.;
   Granett, B. R.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra,
   H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.;
   Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel,
   M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.;
   Massey, R.; Maurogordato, S.; Meneghetti, M.; Merlin, E.; Meylan,
   G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla,
   C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pires, S.; Poncet, M.;
   Popa, L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Rix, H.;
   Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, P.; Secroun,
   A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.;
   Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.;
   Torradeflot, F.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.;
   Zoubian, J.; Andreon, S.; Bardelli, S.; Camera, S.; Graciá-Carpio,
   J.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.; Sureau, F.;
   Tenti, M.; Vassallo, T.; Zacchei, A.; Zucca, E.; Baccigalupi, C.;
   Balaguera-Antolínez, A.; Bernardeau, F.; Biviano, A.; Bolzonella,
   M.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho, C. S.;
   Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois,
   H. M.; Di Ferdinando, D.; Farina, M.; Finelli, F.; Flose-Reimberg, P.;
   Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga,
   E.; Gozaliasl, G.; Hook, I.; Joachimi, B.; Kansal, V.; Keihanen, E.;
   Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.; Maino, D.; Maoli, R.;
   Martinelli, M.; Martinet, N.; Maturi, M.; Metcalf, R. B.; Morgante,
   G.; Morisset, N.; Nucita, A.; Patrizii, L.; Potter, D.; Renzi, A.;
   Riccio, G.; Sánchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis,
   M.; Scottez, V.; Sefusatti, E.; Teyssier, R.; Tubio, O.; Tutusaus,
   I.; Valiviita, J.; Viel, M.; Hildebrandt, H.
2022A&A...658A.126E    Altcode: 2021arXiv211013928M
  We present a new infrared survey covering the three Euclid deep
  fields and four other Euclid calibration fields using Spitzer
  Space Telescope's Infrared Array Camera (IRAC). We combined these
  new observations with all relevant IRAC archival data of these
  fields in order to produce the deepest possible mosaics of these
  regions. In total, these observations represent nearly 11 % of the
  total Spitzer Space Telescope mission time. The resulting mosaics
  cover a total of approximately 71.5 deg<SUP>2</SUP> in the 3.6 and
  4.5 μm bands, and approximately 21.8 deg<SUP>2</SUP> in the 5.8 and
  8 μm bands. They reach at least 24 AB magnitude (measured to 5σ,
  in a 2″.5 aperture) in the 3.6 μm band and up to ∼5 mag deeper
  in the deepest regions. The astrometry is tied to the Gaia astrometric
  reference system, and the typical astrometric uncertainty for sources
  with 16 &lt; [3.6]&lt; 19 is ≲0″.15. The photometric calibration is
  in excellent agreement with previous WISE measurements. We extracted
  source number counts from the 3.6 μm band mosaics, and they are in
  excellent agreement with previous measurements. Given that the Spitzer
  Space Telescope has now been decommissioned, these mosaics are likely to
  be the definitive reduction of these IRAC data. This survey therefore
  represents an essential first step in assembling multi-wavelength data
  on the Euclid deep fields, which are set to become some of the premier
  fields for extragalactic astronomy in the 2020s.

---------------------------------------------------------
Title: Euclid preparation. XVI. Exploring the ultra-low surface
    brightness Universe with Euclid/VIS
Authors: Euclid Collaboration; Borlaff, A. S.; Gómez-Alvarez, P.;
   Altieri, B.; Marcum, P. M.; Vavrek, R.; Laureijs, R.; Kohley, R.;
   Buitrago, F.; Cuillandre, J. -C.; Duc, P. -A.; Gaspar Venancio, L. M.;
   Amara, A.; Andreon, S.; Auricchio, N.; Azzollini, R.; Baccigalupi,
   C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Bender, R.;
   Biviano, A.; Bodendorf, C.; Bonino, D.; Bozzo, E.; Branchini, E.;
   Brescia, M.; Brinchmann, J.; Burigana, C.; Cabanac, R.; Camera, S.;
   Candini, G. P.; Capobianco, V.; Cappi, A.; Carbone, C.; Carretero,
   J.; Carvalho, C. S.; Casas, S.; Castander, F. J.; Castellano, M.;
   Castignani, G.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Colodro-Conde,
   C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Corcione,
   L.; Coupon, J.; Courtois, H. M.; Cropper, M.; Da Silva, A.; Degaudenzi,
   H.; Di Ferdinando, D.; Douspis, M.; Dubath, F.; Duncan, C. A. J.;
   Dupac, X.; Dusini, S.; Ealet, A.; Fabricius, M.; Farina, M.; Farrens,
   S.; Ferreira, P. G.; Ferriol, S.; Finelli, F.; Flose-Reimberg, P.;
   Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta,
   S.; Ganga, K.; Garilli, B.; Gillis, B.; Giocoli, C.; Gozaliasl, G.;
   Graciá-Carpio, J.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes,
   W.; Hormuth, F.; Jahnke, K.; Keihanen, E.; Kermiche, S.; Kiessling,
   A.; Kilbinger, M.; Kirkpatrick, C. C.; Kitching, T.; Knapen, J. H.;
   Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Liebing, P.;
   Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.;
   Maino, D.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinelli, M.;
   Martinet, N.; Martínez-Delgado, D.; Marulli, F.; Massey, R.; Maturi,
   M.; Maurogordato, S.; Medinaceli, E.; Mei, S.; Meneghetti, M.; Merlin,
   E.; Metcalf, R. B.; Meylan, G.; Moresco, M.; Morgante, G.; Moscardini,
   L.; Munari, E.; Nakajima, R.; Neissner, C.; Niemi, S. M.; Nightingale,
   J. W.; Nucita, A.; Padilla, C.; Paltani, S.; Pasian, F.; Patrizii,
   L.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Poncet,
   M.; Popa, L.; Potter, D.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi,
   A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rosset, C.;
   Rossetti, E.; Saglia, R.; Sánchez, A. G.; Sapone, D.; Sauvage, M.;
   Schneider, P.; Scottez, V.; Secroun, A.; Seidel, G.; Serrano, S.;
   Sirignano, C.; Sirri, G.; Skottfelt, J.; Stanco, L.; Starck, J. L.;
   Sureau, F.; Tallada-Crespí, P.; Taylor, A. N.; Tenti, M.; Tereno,
   I.; Teyssier, R.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.;
   Valentijn, E. A.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Viel,
   M.; Wang, Y.; Weller, J.; Whittaker, L.; Zacchei, A.; Zamorani, G.;
   Zucca, E.
2022A&A...657A..92E    Altcode: 2021arXiv210810321B
  Context. While Euclid is an ESA mission specifically designed to
  investigate the nature of dark energy and dark matter, the planned
  unprecedented combination of survey area (∼15 000 deg<SUP>2</SUP>),
  spatial resolution, low sky-background, and depth also make Euclid an
  excellent space observatory for the study of the low surface brightness
  Universe. Scientific exploitation of the extended low surface brightness
  structures requires dedicated calibration procedures that are yet to
  be tested. <BR /> Aims: We investigate the capabilities of Euclid to
  detect extended low surface brightness structure by identifying and
  quantifying sky-background sources and stray-light contamination. We
  test the feasibility of generating sky flat-fields to reduce large-scale
  residual gradients in order to reveal the extended emission of galaxies
  observed in the Euclid survey. <BR /> Methods: We simulated a realistic
  set of Euclid/VIS observations, taking into account both instrumental
  and astronomical sources of contamination, including cosmic rays,
  stray-light, zodiacal light, interstellar medium, and the cosmic
  infrared background, while simulating the effects of background
  sources in the field of view. <BR /> Results: We demonstrate that
  a combination of calibration lamps, sky flats, and self-calibration
  would enable recovery of emission at a limiting surface brightness
  magnitude of μ<SUB>lim</SUB> = 29.5<SUB>−0.27</SUB><SUP>+0.08</SUP>
  mag arcsec<SUP>−2</SUP> (3σ, 10 × 10 arcsec<SUP>2</SUP>) in
  the Wide Survey, and it would reach regions deeper by 2 mag in
  the Deep Surveys. Conclusions.Euclid/VIS has the potential to be
  an excellent low surface brightness observatory. Covering the gap
  between pixel-to-pixel calibration lamp flats and self-calibration
  observations for large scales, the application of sky flat-fielding
  will enhance the sensitivity of the VIS detector at scales larger
  than 1″, up to the size of the field of view, enabling Euclid to
  detect extended surface brightness structures below μ<SUB>lim</SUB>
  = 31 mag arcsec<SUP>−2</SUP> and beyond.

---------------------------------------------------------
Title: Euclid preparation. XIII. Forecasts for galaxy morphology
    with the Euclid Survey using deep generative models
Authors: Euclid Collaboration; Bretonnière, H.; Huertas-Company,
   M.; Boucaud, A.; Lanusse, F.; Jullo, E.; Merlin, E.; Tuccillo, D.;
   Castellano, M.; Brinchmann, J.; Conselice, C. J.; Dole, H.; Cabanac,
   R.; Courtois, H. M.; Castander, F. J.; Duc, P. A.; Fosalba, P.; Guinet,
   D.; Kruk, S.; Kuchner, U.; Serrano, S.; Soubrie, E.; Tramacere,
   A.; Wang, L.; Amara, A.; Auricchio, N.; Bender, R.; Bodendorf, C.;
   Bonino, D.; Branchini, E.; Brau-Nogue, S.; Brescia, M.; Capobianco,
   V.; Carbone, C.; Carretero, J.; Cavuoti, S.; Cimatti, A.; Cledassou,
   R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.;
   Cropper, M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.;
   Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farrens, S.; Ferriol, S.;
   Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillard, W.;
   Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.;
   Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kermiche, S.;
   Kiessling, A.; Kilbinger, M.; Kitching, T.; Kohley, R.; Kümmel,
   M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.;
   Massey, R.; Maurogordato, S.; Melchior, M.; Meneghetti, M.; Meylan,
   G.; Moresco, M.; Morin, B.; Moscardini, L.; Munari, E.; Nakajima,
   R.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.;
   Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison,
   F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia,
   R.; Schneider, P.; Secroun, A.; Seidel, G.; Sirignano, C.; Sirri, G.;
   Stanco, L.; Starck, J. -L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno,
   I.; Toledo-Moreo, R.; Torradeflot, F.; Valentijn, E. A.; Valenziano,
   L.; Wang, Y.; Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.;
   Baldi, M.; Bardelli, S.; Camera, S.; Farinelli, R.; Medinaceli, E.;
   Mei, S.; Polenta, G.; Romelli, E.; Tenti, M.; Vassallo, T.; Zacchei,
   A.; Zucca, E.; Baccigalupi, C.; Balaguera-Antolínez, A.; Biviano,
   A.; Borgani, S.; Bozzo, E.; Burigana, C.; Cappi, A.; Carvalho, C. S.;
   Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; de la Torre,
   S.; Fabricius, M.; Farina, M.; Ferreira, P. G.; Flose-Reimberg, P.;
   Fotopoulou, S.; Galeotta, S.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga,
   E.; Gozaliasl, G.; Hook, I. M.; Joachimi, B.; Kansal, V.; Kashlinsky,
   A.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.; Mainetti, G.;
   Maino, D.; Maoli, R.; Martinelli, M.; Martinet, N.; McCracken, H. J.;
   Metcalf, R. B.; Morgante, G.; Morisset, N.; Nightingale, J.; Nucita,
   A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Sánchez, A. G.;
   Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Sefusatti,
   E.; Teyssier, R.; Tutusaus, I.; Valiviita, J.; Viel, M.; Whittaker,
   L.; Knapen, J. H.
2022A&A...657A..90E    Altcode: 2021arXiv210512149B; 2021arXiv210512149E
  We present a machine learning framework to simulate realistic galaxies
  for the Euclid Survey, producing more complex and realistic galaxies
  than the analytical simulations currently used in Euclid. The proposed
  method combines a control on galaxy shape parameters offered by analytic
  models with realistic surface brightness distributions learned from
  real Hubble Space Telescope observations by deep generative models. We
  simulate a galaxy field of 0.4 deg<SUP>2</SUP> as it will be seen by
  the Euclid visible imager VIS, and we show that galaxy structural
  parameters are recovered to an accuracy similar to that for pure
  analytic Sérsic profiles. Based on these simulations, we estimate
  that the Euclid Wide Survey (EWS) will be able to resolve the internal
  morphological structure of galaxies down to a surface brightness of
  22.5 mag arcsec<SUP>−2</SUP>, and the Euclid Deep Survey (EDS) down
  to 24.9 mag arcsec<SUP>−2</SUP>. This corresponds to approximately
  250 million galaxies at the end of the mission and a 50% complete
  sample for stellar masses above 10<SUP>10.6</SUP> M<SUB>⊙</SUB>
  (resp. 10<SUP>9.6</SUP> M<SUB>⊙</SUB>) at a redshift z ∼ 0.5 for the
  EWS (resp. EDS). The approach presented in this work can contribute to
  improving the preparation of future high-precision cosmological imaging
  surveys by allowing simulations to incorporate more realistic galaxies.

---------------------------------------------------------
Title: Euclid preparation. XV. Forecasting cosmological constraints
    for the Euclid and CMB joint analysis
Authors: Euclid Collaboration; Ilić, S.; Aghanim, N.; Baccigalupi,
   C.; Bermejo-Climent, J. R.; Fabbian, G.; Legrand, L.; Paoletti,
   D.; Ballardini, M.; Archidiacono, M.; Douspis, M.; Finelli, F.;
   Ganga, K.; Hernández-Monteagudo, C.; Lattanzi, M.; Marinucci, D.;
   Migliaccio, M.; Carbone, C.; Casas, S.; Martinelli, M.; Tutusaus,
   I.; Natoli, P.; Ntelis, P.; Pagano, L.; Wenzl, L.; Gruppuso, A.;
   Kitching, T.; Langer, M.; Mauri, N.; Patrizii, L.; Renzi, A.; Sirri,
   G.; Stanco, L.; Tenti, M.; Vielzeuf, P.; Lacasa, F.; Polenta, G.;
   Yankelevich, V.; Blanchard, A.; Sakr, Z.; Pourtsidou, A.; Camera, S.;
   Cardone, V. F.; Kilbinger, M.; Kunz, M.; Markovic, K.; Pettorino, V.;
   Sánchez, A. G.; Sapone, D.; Amara, A.; Auricchio, N.; Bender, R.;
   Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann,
   J.; Capobianco, V.; Carretero, J.; Castander, F. J.; Castellano,
   M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.; Conselice,
   C. J.; Conversi, L.; Copin, Y.; Corcione, L.; Costille, A.; Cropper,
   M.; Da Silva, A.; Degaudenzi, H.; Dubath, F.; Duncan, C. A. J.; Dupac,
   X.; Dusini, S.; Ealet, A.; Farrens, S.; Fosalba, P.; Frailis, M.;
   Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Gillard, W.;
   Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan,
   S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke,
   K.; Kermiche, S.; Kiessling, A.; Kohley, R.; Kubik, B.; Kümmel, M.;
   Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Mansutti, O.; Marggraf, O.; Marulli, F.; Massey, R.; Maurogordato,
   S.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Morin, B.;
   Moscardini, L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.;
   Pasian, F.; Pedersen, K.; Percival, W.; Pires, S.; Poncet, M.; Popa,
   L.; Pozzetti, L.; Raison, F.; Rebolo, R.; Rhodes, J.; Roncarelli, M.;
   Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.;
   Seidel, G.; Serrano, S.; Sirignano, C.; Starck, J. L.; Tallada-Crespí,
   P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.;
   Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang, Y.;
   Welikala, N.; Weller, J.; Zamorani, G.; Zoubian, J.; Medinaceli, E.;
   Mei, S.; Rosset, C.; Sureau, F.; Vassallo, T.; Zacchei, A.; Andreon,
   S.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Biviano, A.;
   Borgani, S.; Bozzo, E.; Burigana, C.; Cabanac, R.; Cappi, A.; Carvalho,
   C. S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.;
   Cuby, J.; de la Torre, S.; Di Ferdinando, D.; Dole, H.; Farina, M.;
   Ferreira, P. G.; Flose-Reimberg, P.; Galeotta, S.; Gozaliasl, G.;
   Graciá-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, V.;
   Mainetti, G.; Maino, D.; Martinet, N.; Maturi, M.; Metcalf, R. B.;
   Morgante, G.; Neissner, C.; Nightingale, J.; Nucita, A. A.; Potter,
   D.; Riccio, G.; Romelli, E.; Schirmer, M.; Schultheis, M.; Scottez,
   V.; Teyssier, R.; Tramacere, A.; Valiviita, J.; Viel, M.; Whittaker,
   L.; Zucca, E.
2022A&A...657A..91E    Altcode: 2021arXiv210608346E; 2021arXiv210608346I
  The combination and cross-correlation of the upcoming Euclid data with
  cosmic microwave background (CMB) measurements is a source of great
  expectation since it will provide the largest lever arm of epochs,
  ranging from recombination to structure formation across the entire
  past light cone. In this work, we present forecasts for the joint
  analysis of Euclid and CMB data on the cosmological parameters of the
  standard cosmological model and some of its extensions. This work
  expands and complements the recently published forecasts based on
  Euclid-specific probes, namely galaxy clustering, weak lensing, and
  their cross-correlation. With some assumptions on the specifications
  of current and future CMB experiments, the predicted constraints are
  obtained from both a standard Fisher formalism and a posterior-fitting
  approach based on actual CMB data. Compared to a Euclid-only analysis,
  the addition of CMB data leads to a substantial impact on constraints
  for all cosmological parameters of the standard Λ-cold-dark-matter
  model, with improvements reaching up to a factor of ten. For the
  parameters of extended models, which include a redshift-dependent dark
  energy equation of state, non-zero curvature, and a phenomenological
  modification of gravity, improvements can be of the order of two to
  three, reaching higher than ten in some cases. The results highlight
  the crucial importance for cosmological constraints of the combination
  and cross-correlation of Euclid probes with CMB data.

---------------------------------------------------------
Title: KiDS &amp; Euclid: Cosmological implications of a pseudo
    angular power spectrum analysis of KiDS-1000 cosmic shear tomography
Authors: Loureiro, A.; Whittaker, L.; Spurio Mancini, A.; Joachimi, B.;
   Cuceu, A.; Asgari, M.; Stölzner, B.; Tröster, T.; Wright, A. H.;
   Bilicki, M.; Dvornik, A.; Giblin, B.; Heymans, C.; Hildebrandt,
   H.; Shan, H.; Amara, A.; Auricchio, N.; Bodendorf, C.; Bonino, D.;
   Branchini, E.; Brescia, M.; Capobianco, V.; Carbone, C.; Carretero,
   J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo,
   G.; Conversi, L.; Copin, Y.; Corcione, L.; Cropper, M.; Da Silva,
   A.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.;
   Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.;
   Fumana, M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp,
   F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche,
   S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kümmel, M.; Kuijken,
   K.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro,
   I.; Mansutti, O.; Marggraf, O.; Markovic, K.; Marulli, F.; Massey,
   R.; Meneghetti, M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini,
   L.; Munari, E.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Raison,
   F.; Rhodes, J.; Rix, H.; Roncarelli, M.; Saglia, R.; Schneider, P.;
   Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Starck,
   J. L.; Tallada-Crespí, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo,
   R.; Torradeflot, F.; Valentijn, E. A.; Wang, Y.; Welikala, N.; Weller,
   J.; Zamorani, G.; Zoubian, J.; Andreon, S.; Baldi, M.; Camera, S.;
   Farinelli, R.; Polenta, G.; Tessore, N.
2021arXiv211006947L    Altcode:
  We present a tomographic weak lensing analysis of the Kilo Degree
  Survey Data Release 4 (KiDS-1000), using a new pseudo angular power
  spectrum estimator (pseudo-$C_{\ell}$) under development for the
  ESA Euclid mission. Over 21 million galaxies with shape information
  are divided into five tomographic redshift bins, ranging from 0.1
  to 1.2 in photometric redshift. We measured pseudo-$C_{\ell}$ using
  eight bands in the multipole range $76&lt;\ell&lt;1500$ for auto-
  and cross-power spectra between the tomographic bins. A series of
  tests were carried out to check for systematic contamination from
  a variety of observational sources including stellar number density,
  variations in survey depth, and point spread function properties. While
  some marginal correlations with these systematic tracers were observed,
  there is no evidence of bias in the cosmological inference. B-mode power
  spectra are consistent with zero signal, with no significant residual
  contamination from E/B-mode leakage. We performed a Bayesian analysis
  of the pseudo-$C_{\ell}$ estimates by forward modelling the effects
  of the mask. Assuming a spatially flat $\Lambda$CDM cosmology, we
  constrained the structure growth parameter $S_8 = \sigma_8(\Omega_{\rm
  m}/0.3)^{1/2} = 0.754_{-0.029}^{+0.027}$. When combining cosmic
  shear from KiDS-1000 with baryon acoustic oscillation and redshift
  space distortion data from recent Sloan Digital Sky Survey (SDSS)
  measurements of luminous red galaxies, as well as the Lyman-$\alpha$
  forest and its cross-correlation with quasars, we tightened these
  constraints to $S_8 = 0.771^{+0.006}_{-0.032}$. These results are
  in very good agreement with previous KiDS-1000 and SDSS analyses and
  confirm a $\sim 3\sigma$ tension with early-Universe constraints from
  cosmic microwave background experiments.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Euclid preparation. XIV. C3R2
    survey DR3 (Stanford+, 2021)
Authors: Stanford, S. A.; Masters, D.; Darvish, B.; Stern, D.; Cohen,
   J. G.; Capak, P.; Hernitschek, N.; Davidzon, I.; Rhodes, J.; Sanders,
   D. B.; Mobasher, B.; Castander, F. J.; Paltani, S.; Aghanim, N.;
   Amara, A.; Auricchio, N.; Balestra, A.; Bender, R.; Bodendorf, C.;
   Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, V.; Carbone,
   C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.;
   Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper,
   M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Fosalba,
   P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli,
   B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes,
   W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kiessling, A.; Kilbinger,
   M.; Kitching, T.; Kubik, B.; Kummel, M.; Kunz, M.; Kurki-Suonio,
   H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.;
   Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.;
   Moscardini, L.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen,
   K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.;
   Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.;
   Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.;
   Sirri, G.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo,
   R.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang,
   Y.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.;
   Copin, Y.; Kermiche, S.; Kohley, R.; Medinaceli, E.; Mei, S.; Moresco,
   M.; Morin, B.; Munari, E.; Polenta, G.; Sureau, F.; Tallada Crespi,
   P.; Vassallo, T.; Zacchei, A.; Andreon, S.; Aussel, H.; Baccigalupi,
   C.; Balaguera-Antolinez, A.; Baldi, M.; Bardelli, S.; Biviano, A.;
   Borsato, E.; Bozzo, E.; Burigana, C.; Cabanac, R.; Camera, S.; Cappi,
   A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.;
   Coupon, J.; Courtois, H. M.; Cuby, J. -G.; da Silva, A.; de la Torre,
   S.; di Ferdinando, D.; Duncan, C. A. J.; Dupac, X.; Fabricius, M.;
   Farina, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg,
   P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Gillard, W.; Gozaliasl,
   G.; Gracia-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm,
   V.; Mainetti, G.; Maino, D.; Martinet, N.; Marulli, F.; Maturi,
   M.; Maurogordato, S.; Metcalf, R. B.; Nakajima, R.; Neissner, C.;
   Nightingale, J. W.; Nucita, A. A.; Patrizii, L.; Potter, D.; Renzi,
   A.; Riccio, G.; Romelli, E.; Sanchez, A. G.; Sapone, D.; Schirmer,
   M.; Schultheis, M.; Scottez, V.; Stanco, L.; Tenti, M.; Teyssier,
   R.; Torradeflot, F.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca, E.
2021yCat..22560009S    Altcode:
  The observations were carried out at the Keck Observatory located on
  Maunakea in Hawaii. Both of the two 10m telescopes were used, as the Low
  Resolution Imaging Spectrometer (LRIS) and Multi-Object Spectrometer
  For Infra-Red Exploration (MOSFIRE) are located on KeckI and the DEep
  Imaging Multi-Object Spectrograph (DEIMOS) on KeckII. The 19 observing
  nights span 2017 Dec 11 to 2020 Oct 19. <P />Observations for DR3
  were carried out essentially in the same manner as described in M17
  (Masters+ 2017, J/ApJ/841/111) and M19 (Masters+ 2019, J/ApJ/877/81)
  for the previous data releases. <P />(2 data files).

---------------------------------------------------------
Title: Euclid: Constraining dark energy coupled to electromagnetism
    using astrophysical and laboratory data
Authors: Martinelli, M.; Martins, C. J. A. P.; Nesseris, S.; Tutusaus,
   I.; Blanchard, A.; Camera, S.; Carbone, C.; Casas, S.; Pettorino,
   V.; Sakr, Z.; Yankelevich, V.; Sapone, D.; Amara, A.; Auricchio, N.;
   Bodendorf, C.; Bonino, D.; Branchini, E.; Capobianco, V.; Carretero,
   J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Corcione,
   L.; Costille, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini,
   S.; Ealet, A.; Ferriol, S.; Frailis, M.; Franceschi, E.; Garilli,
   B.; Giocoli, C.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes,
   W.; Hormuth, F.; Jahnke, K.; Kiessling, A.; Kümmel, M.; Kunz, M.;
   Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.; Mansutti, O.;
   Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.;
   Moscardini, L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.;
   Pedersen, K.; Pires, S.; Poncet, M.; Popa, L.; Raison, F.; Rebolo,
   R.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Secroun,
   A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Starck,
   J. -L.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo,
   R.; Valenziano, L.; Wang, Y.; Zamorani, G.; Zoubian, J.; Baldi,
   M.; Brescia, M.; Congedo, G.; Conversi, L.; Copin, Y.; Fabbian, G.;
   Farinelli, R.; Medinaceli, E.; Mei, S.; Polenta, G.; Romelli, E.;
   Vassallo, T.
2021A&A...654A.148M    Altcode: 2021arXiv210509746M
  In physically realistic, scalar-field-based dynamical dark energy models
  (including, e.g., quintessence), one naturally expects the scalar field
  to couple to the rest of the model's degrees of freedom. In particular,
  a coupling to the electromagnetic sector leads to a time (redshift)
  dependence in the fine-structure constant and a violation of the weak
  equivalence principle. Here we extend the previous Euclid forecast
  constraints on dark energy models to this enlarged (but physically more
  realistic) parameter space, and forecast how well Euclid, together with
  high-resolution spectroscopic data and local experiments, can constrain
  these models. Our analysis combines simulated Euclid data products
  with astrophysical measurements of the fine-structure constant, α,
  and local experimental constraints, and it includes both parametric
  and non-parametric methods. For the astrophysical measurements of α,
  we consider both the currently available data and a simulated dataset
  representative of Extremely Large Telescope measurements that are
  expected to be available in the 2030s. Our parametric analysis shows
  that in the latter case, the inclusion of astrophysical and local data
  improves the Euclid dark energy figure of merit by between 8% and
  26%, depending on the correct fiducial model, with the improvements
  being larger in the null case where the fiducial coupling to the
  electromagnetic sector is vanishing. These improvements would be
  smaller with the current astrophysical data. Moreover, we illustrate
  how a genetic algorithms based reconstruction provides a null test for
  the presence of the coupling. Our results highlight the importance
  of complementing surveys like Euclid with external data products,
  in order to accurately test the wider parameter spaces of physically
  motivated paradigms. <P />This paper is published on behalf of the
  Euclid Consortium.

---------------------------------------------------------
Title: Euclid: Estimation of the Impact of Correlated Readout Noise
    for Flux Measurements with the Euclid NISP Instrument
Authors: Jiménez Muñoz, A.; Macías-Pérez, J.; Secroun, A.; Gillard,
   W.; Kubik, B.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.;
   Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Carbone,
   C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti,
   A.; Cledassou, R.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione,
   L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath,
   F.; Dusini, S.; Ealet, A.; Franceschi, E.; Franzetti, P.; Fumana,
   M.; Garilli, B.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.;
   Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kermiche, S.;
   Kiessling, A.; Kilbinger, M.; Kümmel, M.; Kunz, M.; Kurki-Suonio,
   H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.;
   Mansutti, O.; Marggraf, O.; Markovic, K.; Massey, R.; Medinaceli, E.;
   Mei, S.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.;
   Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.;
   Pires, S.; Polenta, G.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison,
   F.; Rebolo, R.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sauvage,
   M.; Scaramella, R.; Schneider, P.; Seidel, G.; Serrano, S.; Sirignano,
   C.; Sirri, G.; Tavagnacco, D.; Taylor, A. N.; Teplitz, H. I.; Tereno,
   I.; Toledo-Moreo, R.; Valenziano, L.; Vassallo, T.; Verdoes Kleijn,
   G. A.; Wang, Y.; Weller, J.; Wetzstein, M.; Zamorani, G.; Zoubian, J.
2021PASP..133i4502J    Altcode: 2021arXiv210412752J
  The Euclid satellite, to be launched by ESA in 2022, will be a major
  instrument for cosmology for the next decades. Euclid is composed of two
  instruments: the Visible instrument and the Near Infrared Spectrometer
  and Photometer (NISP). In this work, we estimate the implications of
  correlated readout noise in the NISP detectors for the final in-flight
  flux measurements. Considering the multiple accumulated readout mode,
  for which the UTR (Up The Ramp) exposure frames are averaged in
  groups, we derive an analytical expression for the noise covariance
  matrix between groups in the presence of correlated noise. We also
  characterize the correlated readout noise properties in the NISP
  engineering-grade detectors using long dark integrations. For
  this purpose, we assume a (1/f)<SUP> α</SUP>-like noise model
  and fit the model parameters to the data, obtaining typical values
  of $\sigma ={19.7}_{-0.8}^{+1.1}$ e<SUP>-</SUP> Hz<SUP>-0.5</SUP>,
  ${f}_{\mathrm{knee}}=({5.2}_{-1.3}^{+1.8})\times {10}^{-3}\,\mathrm{Hz}$
  and $\alpha ={1.24}_{-0.21}^{+0.26}$ . Furthermore, via realistic
  simulations and using a maximum likelihood flux estimator we derive
  the bias between the input flux and the recovered one. We find that
  using our analytical expression for the covariance matrix of the
  correlated readout noise we diminish this bias by up to a factor of
  four with respect to the white noise approximation for the covariance
  matrix. Finally, we conclude that the final bias on the in-flight
  NISP flux measurements should still be negligible even in the white
  readout noise approximation, which is taken as a baseline for the
  Euclid on-board processing to estimate the on-sky flux. * This paper
  is published on behalf of the Euclid Consortium.

---------------------------------------------------------
Title: Euclid Preparation. XIV. The Complete Calibration of the
Color-Redshift Relation (C3R2) Survey: Data Release 3
Authors: Stanford, S. A.; Masters, D.; Darvish, B.; Stern, D.; Cohen,
   J. G.; Capak, P.; Hernitschek, N.; Davidzon, I.; Rhodes, J.; Sanders,
   D. B.; Mobasher, B.; Castander, F. J.; Paltani, S.; Aghanim, N.;
   Amara, A.; Auricchio, N.; Balestra, A.; Bender, R.; Bodendorf, C.;
   Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, V.; Carbone,
   C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.;
   Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper,
   M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Fosalba,
   P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli,
   B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes,
   W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kiessling, A.; Kilbinger,
   M.; Kitching, T.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio,
   H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, I.; Maiorano, E.;
   Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.;
   Moscardini, L.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen,
   K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.;
   Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.;
   Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.;
   Sirri, G.; Taylor, A. N.; Teplitz, H. I.; Tereno, I.; Toledo-Moreo,
   R.; Valentijn, E. A.; Valenziano, L.; Verdoes Kleijn, G. A.; Wang,
   Y.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.;
   Copin, Y.; Kermiche, S.; Kohley, R.; Medinaceli, E.; Mei, S.; Moresco,
   M.; Morin, B.; Munari, E.; Polenta, G.; Sureau, F.; Tallada Crespí,
   P.; Vassallo, T.; Zacchei, A.; Andreon, S.; Aussel, H.; Baccigalupi,
   C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Biviano, A.;
   Borsato, E.; Bozzo, E.; Burigana, C.; Cabanac, R.; Camera, S.; Cappi,
   A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.;
   Coupon, J.; Courtois, H. M.; Cuby, J. -G.; Da Silva, A.; de la Torre,
   S.; Di Ferdinando, D.; Duncan, C. A. J.; Dupac, X.; Fabricius, M.;
   Farina, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg,
   P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Gillard, W.; Gozaliasl,
   G.; Graciá-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm,
   V.; Mainetti, G.; Maino, D.; Martinet, N.; Marulli, F.; Maturi,
   M.; Maurogordato, S.; Metcalf, R. B.; Nakajima, R.; Neissner, C.;
   Nightingale, J. W.; Nucita, A. A.; Patrizii, L.; Potter, D.; Renzi,
   A.; Riccio, G.; Romelli, E.; Sánchez, A. G.; Sapone, D.; Schirmer,
   M.; Schultheis, M.; Scottez, V.; Stanco, L.; Tenti, M.; Teyssier,
   R.; Torradeflot, F.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca,
   E.; Euclid Collaboration
2021ApJS..256....9S    Altcode: 2021arXiv210611367S; 2021arXiv210611367E
  The Complete Calibration of the Color-Redshift Relation (C3R2)
  survey is obtaining spectroscopic redshifts in order to map the
  relation between galaxy color and redshift to a depth of i ~ 24.5
  (AB). The primary goal is to enable sufficiently accurate photometric
  redshifts for Stage IV dark energy projects, particularly Euclid and
  the Nancy Grace Roman Space Telescope (Roman), which are designed to
  constrain cosmological parameters through weak lensing. We present
  676 new high-confidence spectroscopic redshifts obtained by the C3R2
  survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE
  multiobject spectrographs on the Keck telescopes. Combined with the
  4454 redshifts previously published by this project, the C3R2 survey
  has now obtained and published 5130 high-quality galaxy spectra
  and redshifts. If we restrict consideration to only the 0.2 &lt;
  z<SUB>p</SUB> &lt; 2.6 range of interest for the Euclid cosmological
  goals, then with the current data release, C3R2 has increased the
  spectroscopic redshift coverage of the Euclid color space from 51%
  (as reported by Masters et al.) to the current 91%. Once completed and
  combined with extensive data collected by other spectroscopic surveys,
  C3R2 should provide the spectroscopic calibration set needed to enable
  photometric redshifts to meet the cosmology requirements for Euclid,
  and make significant headway toward solving the problem for Roman.

---------------------------------------------------------
Title: SSTRED: Data- and metadata-processing pipeline for CHROMIS
    and CRISP
Authors: Löfdahl, Mats G.; Hillberg, Tomas; de la Cruz Rodríguez,
   Jaime; Vissers, Gregal; Andriienko, Oleksii; Scharmer, Göran B.;
   Haugan, Stein V. H.; Fredvik, Terje
2021A&A...653A..68L    Altcode: 2018arXiv180403030L
  Context. Data from ground-based, high-resolution solar telescopes
  can only be used for science with calibrations and processing, which
  requires detailed knowledge about the instrumentation. Space-based
  solar telescopes provide science-ready data, which are easier to
  work with for researchers whose expertise is in the interpretation of
  data. Recently, data-processing pipelines for ground-based instruments
  have been constructed. <BR /> Aims: We aim to provide observers
  with a user-friendly data pipeline for data from the Swedish 1-meter
  Solar Telescope (SST) that delivers science-ready data together with
  the metadata needed for proper interpretation and archiving. <BR />
  Methods: We briefly describe the CHROMospheric Imaging Spectrometer
  (CHROMIS) instrument, including its (pre)filters, as well as recent
  upgrades to the CRisp Imaging SpectroPolarimeter (CRISP) prefilters and
  polarization optics. We summarize the processing steps from raw data
  to science-ready data cubes in FITS files. We report calibrations
  and compensations for data imperfections in detail. Misalignment
  of Ca II data due to wavelength-dependent dispersion is identified,
  characterized, and compensated for. We describe intensity calibrations
  that remove or reduce the effects of filter transmission profiles
  as well as solar elevation changes. We present REDUX, a new version
  of the MOMFBD image restoration code, with multiple enhancements and
  new features. It uses projective transforms for the registration of
  multiple detectors. We describe how image restoration is used with
  CRISP and CHROMIS data. The science-ready output is delivered in FITS
  files, with metadata compliant with the SOLARNET recommendations. Data
  cube coordinates are specified within the World Coordinate System
  (WCS). Cavity errors are specified as distortions of the WCS wavelength
  coordinate with an extension of existing WCS notation. We establish
  notation for specifying the reference system for Stokes vectors with
  reference to WCS coordinate directions. The CRIsp SPectral EXplorer
  (CRISPEX) data-cube browser has been extended to accept SSTRED output
  and to take advantage of the SOLARNET metadata. <BR /> Results: SSTRED
  is a mature data-processing pipeline for imaging instruments, developed
  and used for the SST/CHROMIS imaging spectrometer and the SST/CRISP
  spectropolarimeter. SSTRED delivers well-characterized, science-ready,
  archival-quality FITS files with well-defined metadata. The SSTRED
  code, as well as REDUX and CRISPEX, is freely available through git
  repositories.

---------------------------------------------------------
Title: Euclid : Effects of sample covariance on the number counts
    of galaxy clusters
Authors: Fumagalli, A.; Saro, A.; Borgani, S.; Castro, T.; Costanzi,
   M.; Monaco, P.; Munari, E.; Sefusatti, E.; Amara, A.; Auricchio, N.;
   Balestra, A.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann,
   J.; Capobianco, V.; Carbone, C.; Castellano, M.; Cavuoti, S.; Cimatti,
   A.; Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.;
   Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.;
   Ealet, A.; Fosalba, P.; Franceschi, E.; Franzetti, P.; Fumana, M.;
   Garilli, B.; Giocoli, C.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.;
   Hoekstra, H.; Holmes, W.; Hormuth, F.; Jahnke, K.; Kiessling, A.;
   Kilbinger, M.; Kitching, T.; Kümmel, M.; Kunz, M.; Kurki-Suonio,
   H.; Laureijs, R.; Lilje, P. B.; Lloro, I.; Maiorano, E.; Marggraf,
   O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini,
   L.; Niemi, S. M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.;
   Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison,
   F.; Rhodes, J.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella,
   R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano,
   C.; Sirri, G.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valentijn,
   E. A.; Valenziano, L.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian,
   J.; Brescia, M.; Congedo, G.; Conversi, L.; Mei, S.; Moresco, M.;
   Vassallo, T.
2021A&A...652A..21F    Altcode: 2021arXiv210208914F
  <BR /> Aims: We investigate the contribution of shot-noise and sample
  variance to uncertainties in the cosmological parameter constraints
  inferred from cluster number counts, in the context of the Euclid
  survey. <BR /> Methods: By analysing 1000 Euclid-like light cones,
  produced with the PINOCCHIO approximate method, we validated the
  analytical model of Hu &amp; Kravtsov (2003, ApJ, 584, 702) for the
  covariance matrix, which takes into account both sources of statistical
  error. Then, we used such a covariance to define the likelihood function
  that is better equipped to extract cosmological information from cluster
  number counts at the level of precision that will be reached by the
  future Euclid photometric catalogs of galaxy clusters. We also studied
  the impact of the cosmology dependence of the covariance matrix on
  the parameter constraints. <BR /> Results: The analytical covariance
  matrix reproduces the variance measured from simulations within the
  10 percent; such a difference has no sizeable effect on the error of
  cosmological parameter constraints at this level of statistics. Also,
  we find that the Gaussian likelihood with full covariance is the only
  model that provides an unbiased inference of cosmological parameters
  without underestimating the errors, and that the cosmology-dependence of
  the covariance must be taken into account. <P />This paper is published
  on behalf of the Euclid Consortium.

---------------------------------------------------------
Title: Euclid: Forecasts for k-cut 3×2 Point Statistics
Authors: Taylor, Peter L.; Kitching, T.; Cardone, V. F.; Ferté,
   A.; Huff, E. M.; Bernardeau, F.; Rhodes, J.; Deshpande, A. C.;
   Tutusaus, I.; Pourtsidou, Alkistis; Camera, S.; Carbone, C.; Casas,
   S.; Martinelli, M.; Pettorino, V.; Sakr, Z.; Sapone, D.; Yankelevich,
   V.; Auricchio, N.; Balestra, A.; Bodendorf, C.; Bonino, D.; Boucaud,
   A.; Branchini, Enzo; Brescia, M.; Capobianco, V.; Carretero, J.;
   Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Congedo, G.;
   Conversi, L.; Corcione, L.; Cropper, Mark; Franceschi, E.; Garilli,
   B.; Gillis, B.; Giocoli, C.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.;
   Hormuth, F.; Jahnke, Knud; Kermiche, S.; Kilbinger, M.; Kunz, M.;
   Kurki-Suonio, H.; Ligori, S.; Lilje, Per B.; Lloro, I.; Marggraf,
   O.; Markovic, K.; Massey, R.; Mei, S.; Medinaceli, E.; Meneghetti,
   M.; Meylan, G.; Moresco, M.; Morin, B.; Moscardini, Lauro; Niemi,
   S.; Padilla, C.; Pasian, F.; Paltani, S.; Pedersen, K.; Pires, S.;
   Percival, Will J.; Polenta, G.; Poncet, M.; Popa, L.; Raison, F.;
   Roncarelli, M.; Rossetti, E.; Saglia, R.; Schneider, Peter; Secroun,
   A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Sureau, F.;
   Crespí, P. Tallada; Tavagnacco, D.; Taylor, A. N.; Teplitz, H. I.;
   Tereno, I.; Toledo-Moreo, R.; Valentijn, E. A.; Valenziano, L.;
   Vassallo, T.; Wang, Yun; Weller, Jochen; Zacchei, A.; Zoubian, J.
2021OJAp....4E...6T    Altcode: 2020arXiv201204672T
  Modelling uncertainties at small scales, i.e. high $k$ in the power
  spectrum $P(k)$, due to baryonic feedback, nonlinear structure growth
  and the fact that galaxies are biased tracers poses a significant
  obstacle to fully leverage the constraining power of the {\it Euclid}
  wide-field survey. $k$-cut cosmic shear has recently been proposed
  as a method to optimally remove sensitivity to these scales while
  preserving usable information. In this paper we generalise the $k$-cut
  cosmic shear formalism to $3 \times 2$ point statistics and estimate
  the loss of information for different $k$-cuts in a $3 \times 2$
  point analysis of the {\it Euclid} data. Extending the Fisher matrix
  analysis of~\citet{blanchard2019euclid}, we assess the degradation in
  constraining power for different $k$-cuts. We work in the idealised
  case and assume the galaxy bias is linear, the covariance is Gaussian,
  while neglecting uncertainties due to photo-z errors and baryonic
  feedback. We find that taking a $k$-cut at $2.6 \ h \ {\rm Mpc} ^{-1}$
  yields a dark energy Figure of Merit (FOM) of 1018. This is comparable
  to taking a weak lensing cut at $\ell = 5000$ and a galaxy clustering
  and galaxy-galaxy lensing cut at $\ell = 3000$ in a traditional $3
  \times 2$ point analysis. We also find that the fraction of the
  observed galaxies used in the photometric clustering part of the
  analysis is one of the main drivers of the FOM. Removing $50 \% \
  (90 \%)$ of the clustering galaxies decreases the FOM by $19 \% \
  (62 \%)$. Given that the FOM depends so heavily on the fraction of
  galaxies used in the clustering analysis, extensive efforts should be
  made to handle the real-world systematics present when extending the
  analysis beyond the luminous red galaxy (LRG) sample.

---------------------------------------------------------
Title: Euclid preparation. XI. Mean redshift determination from
    galaxy redshift probabilities for cosmic shear tomography
Authors: Euclid Collaboration; Ilbert, O.; de la Torre, S.;
   Martinet, N.; Wright, A. H.; Paltani, S.; Laigle, C.; Davidzon, I.;
   Jullo, E.; Hildebrandt, H.; Masters, D. C.; Amara, A.; Conselice,
   C. J.; Andreon, S.; Auricchio, N.; Azzollini, R.; Baccigalupi,
   C.; Balaguera-Antolínez, A.; Baldi, M.; Balestra, A.; Bardelli,
   S.; Bender, R.; Biviano, A.; Bodendorf, C.; Bonino, D.; Borgani,
   S.; Boucaud, A.; Bozzo, E.; Branchini, E.; Brescia, M.; Burigana,
   C.; Cabanac, R.; Camera, S.; Capobianco, V.; Cappi, A.; Carbone,
   C.; Carretero, J.; Carvalho, C. S.; Casas, S.; Castander, F. J.;
   Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Cledassou,
   R.; Colodro-Conde, C.; Congedo, G.; Conversi, L.; Copin, Y.; Corcione,
   L.; Costille, A.; Coupon, J.; Courtois, H. M.; Cropper, M.; Cuby,
   J.; Da Silva, A.; Degaudenzi, H.; Di Ferdinando, D.; Dubath, F.;
   Duncan, C.; Dupac, X.; Dusini, S.; Ealet, A.; Fabricius, M.; Farrens,
   S.; Ferreira, P. G.; Finelli, F.; Fosalba, P.; Fotopoulou, S.;
   Franceschi, E.; Franzetti, P.; Galeotta, S.; Garilli, B.; Gillard,
   W.; Gillis, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio, J.;
   Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Jahnke, K.; Keihanen, E.; Kermiche, S.; Kiessling, A.; Kirkpatrick,
   C. C.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro,
   I.; Maino, D.; Maiorano, E.; Marggraf, O.; Markovic, K.; Marulli, F.;
   Massey, R.; Maturi, M.; Mauri, N.; Maurogordato, S.; McCracken, H. J.;
   Medinaceli, E.; Mei, S.; Metcalf, R. Benton; Moresco, M.; Morin, B.;
   Moscardini, L.; Munari, E.; Nakajima, R.; Neissner, C.; Niemi, S.;
   Nightingale, J.; Padilla, C.; Pasian, F.; Patrizii, L.; Pedersen, K.;
   Pello, R.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa,
   L.; Potter, D.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.;
   Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.;
   Sánchez, A. G.; Sapone, D.; Schneider, P.; Schrabback, T.; Scottez,
   V.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.;
   Stanco, L.; Sureau, F.; Tallada Crespá, P.; Tenti, M.; Teplitz,
   H. I.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tramacere, A.;
   Valentijn, E. A.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Wang,
   Y.; Welikala, N.; Weller, J.; Whittaker, L.; Zacchei, A.; Zamorani,
   G.; Zoubian, J.; Zucca, E.
2021A&A...647A.117E    Altcode: 2021arXiv210102228E
  The analysis of weak gravitational lensing in wide-field imaging surveys
  is considered to be a major cosmological probe of dark energy. Our
  capacity to constrain the dark energy equation of state relies on an
  accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate
  the possibility of measuring ⟨z⟩ with an accuracy better than
  0.002 (1 + z) in ten tomographic bins spanning the redshift interval
  0.2 &lt; z &lt; 2.2, the requirements for the cosmic shear analysis
  of Euclid. We implement a sufficiently realistic simulation in order
  to understand the advantages and complementarity, as well as the
  shortcomings, of two standard approaches: the direct calibration of
  ⟨z⟩ with a dedicated spectroscopic sample and the combination
  of the photometric redshift probability distribution functions
  (zPDFs) of individual galaxies. We base our study on the Horizon-AGN
  hydrodynamical simulation, which we analyse with a standard galaxy
  spectral energy distribution template-fitting code. Such a procedure
  produces photometric redshifts with realistic biases, precisions,
  and failure rates. We find that the current Euclid design for direct
  calibration is sufficiently robust to reach the requirement on the mean
  redshift, provided that the purity level of the spectroscopic sample is
  maintained at an extremely high level of &gt; 99.8%. The zPDF approach
  can also be successful if the zPDF is de-biased using a spectroscopic
  training sample. This approach requires deep imaging data but is weakly
  sensitive to spectroscopic redshift failures in the training sample. We
  improve the de-biasing method and confirm our finding by applying it
  to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).

---------------------------------------------------------
Title: Euclid preparation. X. The Euclid photometric-redshift
    challenge
Authors: Euclid Collaboration; Desprez, G.; Paltani, S.; Coupon, J.;
   Almosallam, I.; Alvarez-Ayllon, A.; Amaro, V.; Brescia, M.; Brodwin,
   M.; Cavuoti, S.; De Vicente-Albendea, J.; Fotopoulou, S.; Hatfield,
   P. W.; Hartley, W. G.; Ilbert, O.; Jarvis, M. J.; Longo, G.; Rau,
   M. M.; Saha, R.; Speagle, J. S.; Tramacere, A.; Castellano, M.;
   Dubath, F.; Galametz, A.; Kuemmel, M.; Laigle, C.; Merlin, E.; Mohr,
   J. J.; Pilo, S.; Salvato, M.; Andreon, S.; Auricchio, N.; Baccigalupi,
   C.; Balaguera-Antolínez, A.; Baldi, M.; Bardelli, S.; Bender, R.;
   Biviano, A.; Bodendorf, C.; Bonino, D.; Bozzo, E.; Branchini, E.;
   Brinchmann, J.; Burigana, C.; Cabanac, R.; Camera, S.; Capobianco,
   V.; Cappi, A.; Carbone, C.; Carretero, J.; Carvalho, C. S.; Casas, R.;
   Casas, S.; Castander, F. J.; Castignani, G.; Cimatti, A.; Cledassou,
   R.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.;
   Copin, Y.; Corcione, L.; Courtois, H. M.; Cuby, J. -G.; Da Silva,
   A.; de la Torre, S.; Degaudenzi, H.; Di Ferdinando, D.; Douspis, M.;
   Duncan, C. A. J.; Dupac, X.; Ealet, A.; Fabbian, G.; Fabricius, M.;
   Farrens, S.; Ferreira, P. G.; Finelli, F.; Fosalba, P.; Fourmanoit, N.;
   Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Garilli, B.;
   Gillard, W.; Gillis, B.; Giocoli, C.; Gozaliasl, G.; Graciá-Carpio,
   J.; Grupp, F.; Guzzo, L.; Hailey, M.; Haugan, S. V. H.; Holmes, W.;
   Hormuth, F.; Humphrey, A.; Jahnke, K.; Keihanen, E.; Kermiche, S.;
   Kilbinger, M.; Kirkpatrick, C. C.; Kitching, T. D.; Kohley, R.; Kubik,
   B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro, I.;
   Maino, D.; Maiorano, E.; Marggraf, O.; Markovic, K.; Martinet, N.;
   Marulli, F.; Massey, R.; Maturi, M.; Mauri, N.; Maurogordato, S.;
   Medinaceli, E.; Mei, S.; Meneghetti, M.; Metcalf, R. Benton; Meylan,
   G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S.; Padilla,
   C.; Pasian, F.; Patrizii, L.; Pettorino, V.; Pires, S.; Polenta, G.;
   Poncet, M.; Popa, L.; Potter, D.; Pozzetti, L.; Raison, F.; Renzi,
   A.; Rhodes, J.; Riccio, G.; Rossetti, E.; Saglia, R.; Sapone, D.;
   Schneider, P.; Scottez, V.; Secroun, A.; Serrano, S.; Sirignano, C.;
   Sirri, G.; Stanco, L.; Stern, D.; Sureau, F.; Tallada Crespí, P.;
   Tavagnacco, D.; Taylor, A. N.; Tenti, M.; Tereno, I.; Toledo-Moreo, R.;
   Torradeflot, F.; Valenziano, L.; Valiviita, J.; Vassallo, T.; Viel,
   M.; Wang, Y.; Welikala, N.; Whittaker, L.; Zacchei, A.; Zamorani,
   G.; Zoubian, J.; Zucca, E.
2020A&A...644A..31E    Altcode: 2020arXiv200912112E
  Forthcoming large photometric surveys for cosmology require precise and
  accurate photometric redshift (photo-z) measurements for the success
  of their main science objectives. However, to date, no method has
  been able to produce photo-zs at the required accuracy using only the
  broad-band photometry that those surveys will provide. An assessment
  of the strengths and weaknesses of current methods is a crucial step
  in the eventual development of an approach to meet this challenge. We
  report on the performance of 13 photometric redshift code single
  value redshift estimates and redshift probability distributions
  (PDZs) on a common set of data, focusing particularly on the 0.2 -
  2.6 redshift range that the Euclid mission will probe. We designed
  a challenge using emulated Euclid data drawn from three photometric
  surveys of the COSMOS field. The data was divided into two samples:
  one calibration sample for which photometry and redshifts were provided
  to the participants; and the validation sample, containing only the
  photometry to ensure a blinded test of the methods. Participants were
  invited to provide a redshift single value estimate and a PDZ for each
  source in the validation sample, along with a rejection flag that
  indicates the sources they consider unfit for use in cosmological
  analyses. The performance of each method was assessed through a
  set of informative metrics, using cross-matched spectroscopic and
  highly-accurate photometric redshifts as the ground truth. We show that
  the rejection criteria set by participants are efficient in removing
  strong outliers, that is to say sources for which the photo-z deviates
  by more than 0.15(1 + z) from the spectroscopic-redshift (spec-z). We
  also show that, while all methods are able to provide reliable single
  value estimates, several machine-learning methods do not manage to
  produce useful PDZs. We find that no machine-learning method provides
  good results in the regions of galaxy color-space that are sparsely
  populated by spectroscopic-redshifts, for example z &gt; 1. However
  they generally perform better than template-fitting methods at low
  redshift (z &lt; 0.7), indicating that template-fitting methods do not
  use all of the information contained in the photometry. We introduce
  metrics that quantify both photo-z precision and completeness of the
  samples (post-rejection), since both contribute to the final figure
  of merit of the science goals of the survey (e.g., cosmic shear from
  Euclid). Template-fitting methods provide the best results in these
  metrics, but we show that a combination of template-fitting results
  and machine-learning results with rejection criteria can outperform
  any individual method. On this basis, we argue that further work
  in identifying how to best select between machine-learning and
  template-fitting approaches for each individual galaxy should be
  pursued as a priority.

---------------------------------------------------------
Title: Euclid: Forecast constraints on the cosmic distance duality
    relation with complementary external probes
Authors: Martinelli, M.; Martins, C. J. A. P.; Nesseris, S.; Sapone,
   D.; Tutusaus, I.; Avgoustidis, A.; Camera, S.; Carbone, C.; Casas,
   S.; Ilić, S.; Sakr, Z.; Yankelevich, V.; Auricchio, N.; Balestra, A.;
   Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.;
   Capobianco, V.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cledassou,
   R.; Congedo, G.; Conversi, L.; Corcione, L.; Dubath, F.; Ealet, A.;
   Frailis, M.; Franceschi, E.; Fumana, M.; Garilli, B.; Gillis, B.;
   Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.;
   Jahnke, K.; Kermiche, S.; Kilbinger, M.; Kitching, T. D.; Kubik,
   B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lloro,
   I.; Marggraf, O.; Markovic, K.; Massey, R.; Mei, S.; Meneghetti,
   M.; Meylan, G.; Moscardini, L.; Niemi, S.; Padilla, C.; Paltani, S.;
   Pasian, F.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa,
   L.; Pozzetti, L.; Raison, F.; Rhodes, J.; Roncarelli, M.; Saglia, R.;
   Schneider, P.; Secroun, A.; Serrano, S.; Sirignano, C.; Sirri, G.;
   Sureau, F.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Valenziano,
   L.; Vassallo, T.; Wang, Y.; Welikala, N.; Weller, J.; Zacchei, A.
2020A&A...644A..80M    Altcode: 2020arXiv200716153M
  Context. In metric theories of gravity with photon number conservation,
  the luminosity and angular diameter distances are related via the
  Etherington relation, also known as the distance duality relation
  (DDR). A violation of this relation would rule out the standard
  cosmological paradigm and point to the presence of new physics. <BR
  /> Aims: We quantify the ability of Euclid, in combination with
  contemporary surveys, to improve the current constraints on deviations
  from the DDR in the redshift range 0 &lt; z &lt; 1.6. <BR /> Methods:
  We start with an analysis of the latest available data, improving
  previously reported constraints by a factor of 2.5. We then present
  a detailed analysis of simulated Euclid and external data products,
  using both standard parametric methods (relying on phenomenological
  descriptions of possible DDR violations) and a machine learning
  reconstruction using genetic algorithms. <BR /> Results: We find that
  for parametric methods Euclid can (in combination with external probes)
  improve current constraints by approximately a factor of six, while
  for non-parametric methods Euclid can improve current constraints
  by a factor of three. <BR /> Conclusions: Our results highlight the
  importance of surveys like Euclid in accurately testing the pillars of
  the current cosmological paradigm and constraining physics beyond the
  standard cosmological model. <P />This paper is published on behalf
  of the Euclid Consortium.

---------------------------------------------------------
Title: SOLARNET Metadata Recommendations for Solar Observations
Authors: Haugan, Stein Vidar Hagfors; Fredvik, Terje
2020arXiv201112139H    Altcode: 2020arXiv201112139V
  Metadata descriptions of Solar observations have so far only been
  standardized for space-based observations, but the standards have
  been mostly within a single space mission at a time, at times with
  significant differences between different mission standards. In the
  context of ground-based Solar observations, data has typically not been
  made freely available to the general research community, resulting in an
  even greater lack of standards for metadata descriptions. This situation
  makes it difficult to construct multi-instrument archives/virtual
  observatories with anything more than the most basic metadata available
  for searching, as well as making it difficult to write generic software
  for instrument-agnostic data analysis. This document describes the
  metadata recommendations developed under the SOLARNET EU project,
  which aims foster more collaboration and data sharing between both
  ground-based and space-based Solar observatories. The recommendations
  will be followed by data pipelines developed under the SOLARNET
  project as well as e.g. the Solar Orbiter SPICE pipeline and the SST
  CHROMIS/CRISP common pipeline. These recommendations are meant to
  function as a common reference to which even existing diverse data
  sets may be related, for ingestion into solar virtual observatories
  and for analysis by generic software.

---------------------------------------------------------
Title: The Solar Orbiter SPICE instrument. An extreme UV imaging
    spectrometer
Authors: SPICE Consortium; Anderson, M.; Appourchaux, T.; Auchère, F.;
   Aznar Cuadrado, R.; Barbay, J.; Baudin, F.; Beardsley, S.; Bocchialini,
   K.; Borgo, B.; Bruzzi, D.; Buchlin, E.; Burton, G.; Büchel, V.;
   Caldwell, M.; Caminade, S.; Carlsson, M.; Curdt, W.; Davenne, J.;
   Davila, J.; Deforest, C. E.; Del Zanna, G.; Drummond, D.; Dubau,
   J.; Dumesnil, C.; Dunn, G.; Eccleston, P.; Fludra, A.; Fredvik, T.;
   Gabriel, A.; Giunta, A.; Gottwald, A.; Griffin, D.; Grundy, T.; Guest,
   S.; Gyo, M.; Haberreiter, M.; Hansteen, V.; Harrison, R.; Hassler,
   D. M.; Haugan, S. V. H.; Howe, C.; Janvier, M.; Klein, R.; Koller,
   S.; Kucera, T. A.; Kouliche, D.; Marsch, E.; Marshall, A.; Marshall,
   G.; Matthews, S. A.; McQuirk, C.; Meining, S.; Mercier, C.; Morris,
   N.; Morse, T.; Munro, G.; Parenti, S.; Pastor-Santos, C.; Peter, H.;
   Pfiffner, D.; Phelan, P.; Philippon, A.; Richards, A.; Rogers, K.;
   Sawyer, C.; Schlatter, P.; Schmutz, W.; Schühle, U.; Shaughnessy,
   B.; Sidher, S.; Solanki, S. K.; Speight, R.; Spescha, M.; Szwec, N.;
   Tamiatto, C.; Teriaca, L.; Thompson, W.; Tosh, I.; Tustain, S.; Vial,
   J. -C.; Walls, B.; Waltham, N.; Wimmer-Schweingruber, R.; Woodward,
   S.; Young, P.; de Groof, A.; Pacros, A.; Williams, D.; Müller, D.
2020A&A...642A..14S    Altcode: 2019arXiv190901183A; 2019arXiv190901183S
  <BR /> Aims: The Spectral Imaging of the Coronal Environment (SPICE)
  instrument is a high-resolution imaging spectrometer operating at
  extreme ultraviolet wavelengths. In this paper, we present the concept,
  design, and pre-launch performance of this facility instrument on the
  ESA/NASA Solar Orbiter mission. <BR /> Methods: The goal of this paper
  is to give prospective users a better understanding of the possible
  types of observations, the data acquisition, and the sources that
  contribute to the instrument's signal. <BR /> Results: The paper
  discusses the science objectives, with a focus on the SPICE-specific
  aspects, before presenting the instrument's design, including optical,
  mechanical, thermal, and electronics aspects. This is followed by a
  characterisation and calibration of the instrument's performance. The
  paper concludes with descriptions of the operations concept and data
  processing. <BR /> Conclusions: The performance measurements of the
  various instrument parameters meet the requirements derived from the
  mission's science objectives. The SPICE instrument is ready to perform
  measurements that will provide vital contributions to the scientific
  success of the Solar Orbiter mission.

---------------------------------------------------------
Title: A virtual appliance as proxy pipeline for the Solar
    Orbiter/Metis coronagraph
Authors: Pancrazzi, M.; Straus, T.; Andretta, V.; Spadaro, D.; Haugan,
   S. V.; de Groof, A.; Carr, R.; Focardi, M.; Nicolini, G.; Landini,
   F.; Baccani, C.; Romoli, M.; Antonucci, E.
2016SPIE.9913E..4LP    Altcode:
  Metis is the coronagraph on board Solar Orbiter, the ESA mission devoted
  to the study of the Sun that will be launched in October 2018. Metis is
  designed to perform imaging of the solar corona in the UV at 121.6 nm
  and in the visible range where it will accomplish polarimetry studies
  thanks to a variable retarder plate. Due to mission constraints, the
  telemetry downlink on the spacecraft will be limited and data will be
  downloaded with delays that could reach, in the worst case, several
  months. In order to have a quick overview on the ongoing operations
  and to check the safety of the 10 instruments on board, a high-priority
  downlink channel has been foreseen to download a restricted amount of
  data. These so-called Low Latency Data will be downloaded daily and,
  since they could trigger possible actions, they have to be quickly
  processed on ground as soon as they are delivered. To do so, a proper
  processing pipeline has to be developed by each instrument. This
  tool will then be integrated in a single system at the ESA Science
  Operation Center that will receive the downloaded data by the Mission
  Operation Center. This paper will provide a brief overview of the on
  board processing and data produced by Metis and it will describe the
  proxy-pipeline currently under development to deal with the Metis
  low-latency data.

---------------------------------------------------------
Title: Tools for the evaluation of the possibilities of using parallax
    measurements of gravitationally lensed sources
Authors: Haugan, Stein Vidar Hagfors
2008PhDT.......291H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: 10 years of SOHO
Authors: Fleck, Bernhard; Müller, Daniel; Haugan, Stein; Sánchez
   Duarte, Luis; Siili, Tero; Gurman, Joseph B.
2006ESABu.126...24F    Altcode:
  Since its launch on 2 December 1995, SOHO has revolutionised
  our understanding of the Sun. It has provided the first images of
  structures and flows below the Sun's surface and of activity on the
  far side. SOHO has revealed the Sun's extremely dynamic atmosphere,
  provided evidence for the transfer of magnetic energy from the surface
  the outer solar atmosphere, the corona, through a "magnetic carpet",
  and identified the source regions of the fast solar wind. It has
  revolutionised our understanding of solar-terrestrial relations and
  dramatically improved our space weather-forecasting by its continuous
  stream of images covering the atmosphere, extended corona and far
  side. The findings are documented in an impressive number of scientific
  publications: over 2500 papers in refereed journals since launch,
  representing the work of over 2300 individual scientists. At the
  same time, SOHO's easily accessible, spectacular data and fundamental
  scientific results have captured the imagination of the space science
  community and the general public alike. As a byproduct of the efforts
  to provide real-time data to the public, amateurs now dominate SOHO's
  discovery of over 1100 Sungrazing comets.

---------------------------------------------------------
Title: Space Weather Effects on SOHO and its Leading Role as a Space
    Weather Wãtchdog
Authors: Brekke, P.; Fleck, B.; Haugan, S. V.; van Overbeek, T.;
   Schweitzer, H.; Simonin, B.
2005mcsp.conf...83B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Coordinating with SOHO
Authors: Haugan, Stein V. H.
2005AdSpR..36.1557H    Altcode:
  I describe how to maximise the chances of achieving a successful
  coordinated observation campaign together with SOHO instruments (and
  TRACE). The ground rules, common pitfalls, useful resources and some
  essential “tricks of the trade” are covered. The most important
  hints are: start early, make contact with the instrument teams and
  the SOCs (soc@soc.nascom.nasa.gov), ask whenever in doubt, check the
  calendar, and be specific.

---------------------------------------------------------
Title: Coordinating with SOHO
Authors: Haugan, S. V. H.
2004cosp...35.3150H    Altcode: 2004cosp.meet.3150H
  I will describe how to maximise the chances of achieving a successful
  coordinated observation campaign together with SOHO instruments (and
  TRACE). The ground rules, common pitfalls, useful resources and some
  essential "tricks of the trade" will be covered. The most important
  hints are: start early, make contact with the instrument teams, ask
  the SOCs when in doubt (soc@soc.nascom.nasa.gov), check our calendar,
  and be specific.

---------------------------------------------------------
Title: Variability and dynamic state of active region loops
Authors: Fredvik, T.; Kjeldseth-Moe, O.; Haugan, S. V. H.; Brekke,
   P.; Gurman, J. B.; Wilhelm, K.
2002AdSpR..30..635F    Altcode:
  A set of 218 consecutive CDS rasters taken at the solar limb on October
  26-28 1999 has been used to investigate the variability and plasma
  dynamics of active region loops. Each raster contains simultaneous
  images in 6 different lines, covering the full temperature range of
  CDS, 10 000 K (He I) to 2.7 MK (Fe XVI). Activity is seen to go on
  without breaks at temperatures below 1 MK for the full 39 hours of the
  series. Transition region loops or extended sections of loops, 50-200
  Mm long, appear and disappear in intervals as short as 11 minutes,
  the observing cadence. In the corona the emission is less variable,
  but significant changes are seen. Measured Doppler shifts correspond
  to typical plasma velocities of 20 km s <SUP>-1</SUP> to 100 km
  s <SUP>-1</SUP>, at temperatures 10 000 K to 450 000 K, and siphon
  flows may occur in some of the loops. High velocities are frequently
  seen where the emitted intensities are weak, often on the outer edges
  of loops as defined in that particular spectral line. At coronal
  temperatures, 1 MK and higher, systematic loop velocities occur only
  occasionally. Simultaneous observations with EIT and SUMER were made
  during part of the raster series and are compared with the CDS result.

---------------------------------------------------------
Title: The Sun During The Ulysses Fast Latitude Scan and Northern
    Polar Pass As Seen By Soho
Authors: Fleck, B.; Brekke, P.; Haugan, S. V. H.
2002EGSGA..27.3839F    Altcode:
  In 2001, during the Ulysses fast latitude scan (January - September)
  and second north- ern polar pass (September - December), the Sun showed
  a remarkable resurgence of solar activity after its rapid drop-off
  following the activity maximum in the summer of 2000. In early April
  active region 9393, the largest active region of the current cycle,
  produced a series of events, among them the biggest X-ray flare on
  record. In the fall there were three severe proton storms, one of them
  the third largest on record since measurements began in 1976. It is
  interesting to note that five out of the eight proton storms with flux
  densities greater than 10,000 cm-2 s-1 sr-1 (&gt;10 MeV) since 1976
  occurred in cycle 23, and three of these five in 2001. The overall
  change in solar ac- tivity in 2001 will be reviewed and some of the
  most dramatic events from that year discussed.

---------------------------------------------------------
Title: Space Weather Effects on SOHO
Authors: Brekke, P.; Fleck, B.; Haugan, S.; Schweitzer, H.; Chaloupy,
   M.
2002cosp...34E2156B    Altcode: 2002cosp.meetE2156B
  Since its launch on 2 December 1995, the Solar and Heliospheric
  Observatory (SOHO) has provided an unparalleled breadth and depth of
  information about the Sun, from its interior, through the hot and
  dynamic atmosphere, and out to the solar wind. SOHO is in a halo
  orbit around L1 Lagrangian point where it views the Sun 24 hours a
  day. Thus, it is situated outside the Earth's protective magnetosphere
  which shields other satellites from high energy particles from the
  Sun. We present a summary of the observed effects on the instruments
  and electronics on SOHO throughout the mission. In particular we will
  focus on a number of large particle events during the recent years
  while the Sun was approaching maximum activity, and how they affected
  both the scientific data as well as hardware components.

---------------------------------------------------------
Title: Anomalous Line Shifts on the SOHO/CDS NIS Detector
Authors: Haugan, S. V. H.
2001IAUS..203..396H    Altcode:
  Observations with the SOHO/CDS NIS detector prior to the recovery
  of SOHO show strong correlations between line shifts and local
  intensity gradients along the slit. The most plausible explanation
  is an elliptical, tilted point spread function inducing anomalous
  line shifts. This must be taken into account when interpreting NIS
  observations with strong intensity gradients. The optical properties
  of SOHO/CDS changed quite significantly during the time period when
  SOHO was out of control. Initial results from a similar analysis of
  post-recovery data will also be presented.

---------------------------------------------------------
Title: Observed Variability and Dynamics of Active Region Loops
Authors: Haugan, S. V. H.; Brekke, P.; Fredvik, T.; Kjeldseth-Moe,
   O.; Wilhelm, K.; Gurman, J. B.
2000SPD....31.0205H    Altcode: 2000BAAS...32..811H
  A series of 218 rasters taken with the Coronal Diagnostic Spectrometer
  (CDS) on SOHO demonstrates the strong time variability and
  dynamical state of the plasma in active region loops at transition
  region temperatures, i.e. 10 000 K to 500 000 K, first reported
  by Kjeldseth-Moe and Brekke (1998). The continuous raster series,
  which covered 39 hours, show how transition region loops or sections
  of loops, 50-200 Mm in length, appear and disappear in intervals as
  short as 10 minutes, the observing cadence. At the same temperatures
  plasma velocities of 20 km s<SUP>-1</SUP> to 100 km s<SUP>-1</SUP>
  are indicated from observed Doppler shifts. Siphon flows may occur in
  some of the loops, but in other loops patterns are less obvious. High
  velocities are frequently seen where the emitted intensities are weak,
  often on the “outside” of the loops as defined by the emission in
  that particular spectral line. At coronal temperatures the emission
  is less time variable, but significant changes are seen. Systematic
  loop velocities occur only occasionally in the corona. Simultaneous
  observations with EIT and SUMER were made during part of the raster
  series and is compared with the CDS result.

---------------------------------------------------------
Title: Four years of SOHO discoveries - some highlights.
Authors: Fleck, B.; Brekke, P.; Haugan, S.; Duarte, L. S.; Domingo,
   V.; Gurman, J. B.; Poland, A. I.
2000ESABu.102...68F    Altcode:
  Analysis of the helioseismic data from SOHO has shed new light on
  solar and heliosheric physics: the structure and dynamics of the
  solar interior, the heating and dynamics of the solar corona, and the
  acceleration and composition of the solar wind.

---------------------------------------------------------
Title: Structure and Dynamics in the Atmosphere Above Sunspot Regions
Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe,
   O.; Maltby, P.; Wikstøl, Ø.
2000AdSpR..25.1743B    Altcode:
  Based on simultaneous observations of 10 EUV emission lines with the
  Coronal Diagnostic Spectrometer - CDS on the Solar and Heliospheric
  Observatory - SOHO we study the spatial distributions of both line
  emission and line-of-sight velocity in the atmosphere above 17
  sunspots. We find that both the enhanced EUV line emissions and the
  velocities are distributed non-uniformly over the sunspot regions. Areas
  with enhanced line emission tend to be red shifted, but they seldom
  coincide exactly with areas with enhanced velocity. Bright sunspot
  plumes with motion directed away from the observer are observed in
  most of the sunspot regions

---------------------------------------------------------
Title: EUV Observations of Sunspot Regions with CDS on SOHO
Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe,
   O.; Maltby, P.
1999ASPC..184..266B    Altcode:
  The spatial distributions of line emission and line-of-sight velocity in
  seventeen different sunspot regions are studied, based on observations
  with the Coronal Diagnostic Spectrometer - CDS on SOHO. Ten EUV emission
  lines, formed in the chromosphere, transition region, and corona are
  observed. Enhanced EUV line emissions in the transition region are
  distributed non-uniformly over the active regions and are located both
  inside and outside sunspots. Most sunspot regions show strongly enhanced
  transition region line emission above the spot, i.e. sunspot plumes
  are reinvented. From wavelength shifts we derive the line-of-sight
  velocity, relative to the average velocity in the rastered area, 120"
  x 120". In sunspot plumes we find that the motion is directed away from
  the observer and increases with increasing line formation temperature,
  T, reaches a maximum up to 40 km s<SUP>-1</SUP> close to log T ≅ 5.5,
  then decreases abruptly. The spatial extent of both emission features
  and flow regions increase with increasing temperature within the
  transition region. The observations show a marked difference between
  the transition region and the low corona, both regarding the spatial
  distributions of line emission and line-of-sight velocity.

---------------------------------------------------------
Title: A Transition Region Eruption Observed with CDS, TRACE and EIT
Authors: Brekke, P.; Kjeldseth-Moe, O.; Fredvik, T.; Haugan, S. V. H.;
   Tarbell, T. D.; Gurman, J. B.
1999AAS...194.5905B    Altcode: 1999BAAS...31..918B
  An ejection of plasma on the west limb has been observed with CDS,
  TRACE and EIT on 19 May 1998. The start of the eruption coincided
  with a weak flare observed with GOES. Erupting material rose to 120
  Mm above the solar surface in 17 min, and then fell back to the solar
  surface. Vertical velocities of 200 km s(-1) are estimated from a series
  of TRACE images in the C(+3) resonance lines at 155 nm and from EIT
  images in the 19.5 nm band, while Doppler shifts of the transition
  region lines observed with CDS yield maximum horizontal velocities
  of 300 km s(-1) at the top of the plasma trajectories. The similar
  appearance and time variation of the eruption as seen with all three
  instruments indicate the presence of a multi-temperature plasma in
  spatial regions less than 1-2 arc seconds, with temperatures ranging
  from 10(5) K to 1.5 MK. The material did not have the momentum to break
  loose from the Sun and was not associated with any CME observed with
  LASCO. However, we may speculate that CMEs are similar to the eruption
  observed, with even higher speeds involved.

---------------------------------------------------------
Title: Time Variation of Active Region Loops Observed with CDS on SOHO
Authors: Fredvik, T.; Kjeldseth-Moe, O.; Brekke, P.; Haugan, S. V. H.
1999AAS...194.5904F    Altcode: 1999BAAS...31R.918F
  The emission from plasma filled loops, 10(4) K &lt; T &lt;1.5 MK,
  above active regions are much more time variable than previously
  considered. These loops, which define the solar atmosphere above active
  regions in this temperature range, appear or disappear, the emission
  along their length change, or they change shape or expand outward,
  all on time scales of 10-20 minutes. In this paper we report on an
  investigation with CDS on SOHO of 20 loop systems observed on the solar
  limb between September 1997 and May 1998. We describe the apparent
  isothermal appearance of many loops and discuss to what extent loops
  radiating in different emission lines, i.e. at different temperatures,
  are co-located within their recorded widths. Finally, we demonstrate
  the time variability of loop systems at different temperatures, and
  show how the rapidly changing conditions require a new conception of
  loop systems that has never before been seriously considered.

---------------------------------------------------------
Title: SOHO Observations of the Structure and Dynamics of Sunspot
    Region Atmospheres
Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.
1999SoPh..186..141B    Altcode:
  We present results from a study of the spatial distributions of line
  emission and relative line-of-sight velocity in the atmosphere above
  17 sunspot regions, from the chromosphere, through the transition
  region and into the corona, based on simultaneous observations of ten
  EUV emission lines with the Coronal Diagnostic Spectrometer - CDS on
  SOHO. We find that the spatial distributions are nonuniform over the
  sunspot region and introduce the notation 'sunspot loop' to describe an
  enhanced transition region emission feature that looks like a magnetic
  loop, extending from inside the sunspot to the surrounding regions. We
  find little evidence for the siphon flow. Attention is given to the time
  variations since we observe both a rapid variation with a characteristic
  time of a few to several minutes and a slow variation with a time
  constant of several hours to ≈ 1 day. The most prominent features
  in the transition region intensity maps are the sunspot plumes. We
  introduce an updated criterion for the presence of plumes and find
  that 15 out of 17 sunspots contain a plume in the temperature range
  logT≈5.2-5.6. The relative line-of-sight velocity in sunspot plumes
  is high and directed into the Sun in the transition region. Almost
  all the sunspot regions contain one or a few prominent, strongly
  redshifted velocity channels, several of the channels extend from the
  sunspot plume to considerable distances from the sunspot. The flow
  appears to be maintained by plasmas at transition region temperatures,
  moving from regions located at a greater height outside the sunspots
  and towards the sunspot. The spatial correlation is high to moderate
  between emission lines formed in the transition region lines, but
  low between the transition region lines and the coronal lines. From
  detailed comparisons of intensity and velocity maps we find transition
  region emission features without any sign of coronal emission in the
  vicinity. A possible explanation is that the emission originates in
  magnetic flux tubes that are too cold to emit coronal emission. The
  comparisons suggest that gas at transition region temperature occur in
  loops different from loops with coronal temperature. However, we cannot
  exclude the presence of transition region temperatures close to the
  footpoints of flux tubes emitting at coronal temperatures. Regions with
  enhanced transition region line emission tend to be redshifted, but the
  correlation between line emission and relative line-of-sight velocity
  is weak. We extend our conditional probability studies and confirm
  that there is a tendency for line profiles with large intensities and
  red shifts (blue shifts) above the average to constitute an increasing
  (decreasing) fraction of the profiles as the wavelength shift increases.

---------------------------------------------------------
Title: Anomalous Line Shifts From Local Intensity Gradients on the
    Soho/cds NIS Detector
Authors: Haugan, S. V. H.
1999SoPh..185..275H    Altcode:
  Line shifts for some emission lines on the SOHO/CDS NIS detector
  appear to be strongly correlated with local intensity gradients along
  the slit in a way that seems impossible to explain with a physical
  solar model. Line widths also show a correlation with local intensity
  gradients. The most plausible instrumental explanation seems to be an
  elliptical, tilted point-spread function inducing the line shifts. A
  toy model demonstrating the essentials of the observed behaviour is
  presented. The effective point-spread function of the instrument appears
  to modify the line shape into something other than a Gaussian, leaving
  highly structured residuals after line fitting, including 'ghost' images
  in some pixel planes. The cause of these effects is yet unknown, but
  they should warrant experiments on the engineering model to reproduce
  the observed effects, shedding light on the nature of the aberrations.

---------------------------------------------------------
Title: Systematic errors in one-dimensional light-curve convolution
    for extended sources
Authors: Haugan, S. V. H.
1999MNRAS.303..471H    Altcode:
  One-dimensional contour-following methods have proved an effective
  means of studying the statistics of microlensing light curves for point
  sources. For extended sources, however, convolving a point source light
  curve with a one-dimensional source profile results in systematic
  deviations from the true light curve. This paper demonstrates that
  these effects are generic (regardless of source size), and attempts
  to quantify the effects so that proper caution may be taken when
  interpreting previous results.

---------------------------------------------------------
Title: Flows in Sunspot Plumes Detected with SOHO
Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan,
   S. V. H.; Kjeldseth-Moe, O.; Wikstol, O.
1998ApJ...504L.135B    Altcode: 1998astro.ph..5249B
  In the Letter, “Flows in Sunspot Plumes Detected with the Solar and
  Heliospheric Observatory” by N. Brynildsen, P. Maltby, P. Brekke,
  T. Fredvik, S. V. H. Haugan, O. Kjeldseth-Moe, and Ø. Wikstøl (ApJ,
  502, L85 [1998]), the following correction should be made: <P />In
  the last line on page L86, which reads “peak line intensity I&gt;=5
  are located (1) above the umbra or, ” an “Ī” should be inserted so
  that the revised line reads “peak line intensity I&gt;=5Ī are located
  (1) above the umbra or.”

---------------------------------------------------------
Title: Flows in Sunspot Plumes Detected with the Solar and
    Heliospheric Observatory
Authors: Brynildsen, N.; Maltby, P.; Brekke, P.; Fredvik, T.; Haugan,
   S. V. H.; Kjeldseth-Moe, O.; Wikstøl, Ø.
1998ApJ...502L..85B    Altcode:
  Bright extreme-UV sunspot plumes have been observed in eight out of
  11 different sunspot regions with the Coronal Diagnostic Spectrometer
  on Solar and Heliospheric Observatory. From wavelength shifts, we
  derive the line-of-sight velocity relative to the average velocity
  in the rastered area, 120<SUP>”</SUP>×120<SUP>”</SUP>. In sunspot
  plumes, we find that the motion is directed away from the observer
  and increases with increasing line formation temperature, reaches a
  maximum between 15 and 41 km s<SUP>-1</SUP> close to log logT~5.5,
  then decreases abruptly. The flow field in the corona is not well
  correlated with the flow in the transition region, and we discuss
  briefly the implication of this finding.

---------------------------------------------------------
Title: SOHO Observations of the Connection Between Line Profile
    Parameters in Active and Quiet Regions and the Net Red Shift in EUV
    Emission Lines
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Wilhelm, K.
1998SoPh..181...23B    Altcode:
  We present high spatial and spectral resolution observations of
  one active and one quiet-Sun region, obtained with CDS and SUMER on
  SOHO. The connections between the line profile parameters are studied
  and a systematic wavelength shift towards the red with increasing peak
  line intensity (line broadening) is detected. The large scatter in
  the data calls for another approach. We apply conditional probability
  analysis to a series of EUV emission lines and find significant
  correlations between line profile parameters. For a given interval in
  wavelength shift we find that: (1) line profiles with large intensities
  (line widths) and red shifts above the average constitute an increasing
  fraction of the profiles as the relative wavelength shift increases,
  (2) line profiles with large intensities (line widths) and blue
  shifts compared to the average, on the other hand, constitute a
  decreasing fraction of the profiles as the relative wavelength shift
  increases. These results extend the findings of an earlier quiet-Sun
  study from one to several emission lines and expand the validity to
  include the active region. Interestingly, the active region observations
  show correlations between peak line intensity and wavelength shift in
  the coronal lines.

---------------------------------------------------------
Title: EUV Spectroscopy of the Sunspot Region NOAA 7981 Using SOHO -
    II. Velocities and Line Profiles
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele,
   T.; Thompson, W. T.; Wilhelm, K.
1998SoPh..179..279B    Altcode:
  We have studied the dynamics in the sunspot transition region between
  the chromosphere and the corona and investigated the extension of
  the flow field into the corona. Based on EUV spectra of a medium size
  sunspot and its surroundings, NOAA 7981, observed with CDS and SUMER
  on SOHO, we derive line-of-sight velocities and study the line profiles
  for a series of emission lines.

---------------------------------------------------------
Title: Extreme-Ultraviolet Sunspot Plumes Observed with SOHO
Authors: Maltby, P.; Brynildsen, N.; Brekke, P.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Wikstøl, Ø.; Rimmele, T.
1998ApJ...496L.117M    Altcode: 1998astro.ph..1144M
  Bright EUV sunspot plumes have been observed in five out of nine sunspot
  regions with the Coronal Diagnostic Spectrometer on the Solar and
  Heliospheric Observatory. In the other four regions, the brightest line
  emissions may appear inside the sunspot but are mainly concentrated in
  small regions outside the sunspot areas. These results are in contrast
  to those obtained during the Solar Maximum Mission but are compatible
  with the Skylab mission results. The present observations show that
  sunspot plumes are formed in the upper part of the transition region,
  occur in both magnetic unipolar and bipolar regions, and may extend
  from the umbra into the penumbra.

---------------------------------------------------------
Title: EUV Spectroscopy of the Sunspot Region NOAA 7981 Using SOHO -
    I. Line Emission and Time Dependence
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele,
   T.; Thompson, W. T.; Wilhelm, K.
1998SoPh..179...43B    Altcode:
  EUV spectra of a medium-size sunspot and its surroundings, NOAA 7981,
  were obtained on 2 August 1996 with the Coronal Diagnostic Spectrometer
  (CDS) and the Solar Ultraviolet Measurements of Emitted Radiation
  (SUMER) on the Solar and Heliospheric Observatory (SOHO). The spectral
  lines formed in the transition region and corona show considerable
  structure and large deviations from a uniform spatial distribution over
  the active region. Enhanced EUV emissions in transition region lines
  are concentrated in small regions outside the umbra of the sunspot
  throughout most of the observing sequence. Only during a short,
  active period do we find an enhanced line emission that reaches into
  the umbra. Preliminary values for the umbral intensity are given.

---------------------------------------------------------
Title: Three Dimensional EUV Imaging of Sunspot Regions Observed
    with SOHO
Authors: Brynildsen, N.; Brekke, P.; Haugan, S. V. H.; Kjeldseth-Moe,
   O.; Maltby, P.; Harrison, R. A.; Rimmele, T.; Wilhelm, K.
1998ASPC..155..171B    Altcode: 1998sasp.conf..171B
  No abstract at ADS

---------------------------------------------------------
Title: Inconstancy of the Transition Region - Variable and Dynamic
    Active Region Loops
Authors: Kjeldseth-Moe, O.; Brekke, P.; Haugan, S. V. H.
1998ESASP.417..153K    Altcode: 1998cesh.conf..153K
  No abstract at ADS

---------------------------------------------------------
Title: The Non-Uniformity in the Sunspot Transition Region
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Rimmele, T.;
   Wilhelm, K.
1997ESASP.404..257B    Altcode: 1997cswn.conf..257B
  No abstract at ADS

---------------------------------------------------------
Title: Transition Region Velocities and Line Profiles in the Sunspot
    Region 7981
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele,
   T. Thompson, W. T.; Wilhelm, K.
1997ESASP.404..251B    Altcode: 1997cswn.conf..251B
  No abstract at ADS

---------------------------------------------------------
Title: The Net Redshifts in EUV Emission Lines and the Connection
    Between Intensity and Doppler Shift
Authors: Brynildsen, N.; Fredvik, T.; Maltby, P.; Kjeldseth-Moe, O.;
   Brekke, P.; Haugan, S. V. H.; Harrison, R. A.; Wilhelm, K.
1997ESASP.404..263B    Altcode: 1997cswn.conf..263B
  No abstract at ADS

---------------------------------------------------------
Title: EUV Line Emission and Time Dependence in the Sunspot Region
    NOAA 7981
Authors: Brynildsen, N.; Brekke, P.; Fredvik, T.; Haugan, S. V. H.;
   Kjeldseth-Moe, O.; Maltby, P.; Harrison, R. A.; Pike, C. D.; Rimmele,
   T.; Thompson, W. T.; Wilhelm, K.
1997ESASP.404..245B    Altcode: 1997cswn.conf..245B
  No abstract at ADS

---------------------------------------------------------
Title: Flows and Dynamics in the Corona Observed with the Coronal
    Diagnostic Spectrometer (cds)
Authors: Brekke, P.; Kjeldseth-Moe, O.; Brynildsen, N.; Maltby, P.;
   Haugan, S. V. H.; Harrison, R. A.; Thompson, W. T.; Pike, C. D.
1997SoPh..170..163B    Altcode:
  EUV spectra obtained with the Coronal Diagnostic Spectrometer (CDS)
  on the Solar and Heliospheric Observatory (SOHO) show significant flows
  of plasma in active region loops, both at coronal and transition region
  temperatures. Wavelength shifts in the coronal lines Mgix 368 Å and
  Mgx 624 Å corresponding to upflows in the plasma reaching velocities
  of 50 km s<SUP>-1</SUP> have been observed in an active region. Smaller
  velocities are detected in the coronal lines Fexvi 360 Å and Sixii
  520 Å. Flows reaching 100 km s<SUP>-1</SUP> are observed in spectral
  lines formed at transition region temperatures, i.e., Ov 629 Å and
  Oiii 599 Å, demonstrating that both the transition region and the
  corona are clearly dynamic in nature. Some high velocity events show
  even higher velocities with line profiles corresponding to a velocity
  dispersion of 300-400 km s<SUP>-1</SUP>. Even in the quiet Sun there
  are velocity fluctuations of 20 km s<SUP>-1</SUP> in transition region
  lines. Velocities of the magnitude presented in this paper have never
  previously been observed in coronal lines except in explosive events
  and flares. Thus, the preliminary results from the CDS spectrometer
  promise to put constraints on existing models of the flows and energy
  balance in the solar atmosphere. The present results are compared to
  previous attempts to observe flows in the corona.

---------------------------------------------------------
Title: Simulation of Microlensing Lightcurves by Combining Contouring
    and Rayshooting
Authors: Haugan, S. V. H.
1996IAUS..173..275H    Altcode: 1995astro.ph..8109H
  The contouring methods described by Lewis et al. (1993) and Witt (1993)
  are very efficient and elegant for obtaining the magnification of a
  point source moving along a straight track in the source plane. The
  method is, however, not very efficient for extended sources, because the
  amplification needs to be computed for numerous parallel tracks and then
  convolved with the source profile. Rayshooting is an efficient algorithm
  for relatively large sources, but the computing time increases with the
  inverse of the source area for a given noise level. This poster presents
  a hybrid method, using the contouring method in order to find only those
  parts of the lens area that contribute to the light curve through the
  rayshooting. Calculations show that this method has the potential to
  be $10$--$10^5$ times more efficient than crude rayshooting techniques.

---------------------------------------------------------
Title: Separating Intrinsic and Microlensing Variability Using
    Parallax Measurements
Authors: Haugan, S. V. H.
1996IAUS..173..277H    Altcode: 1995astro.ph..8112H
  In gravitational lens systems with 3 or more resolved images of
  a quasar, the intrinsic variability may be unambiguously separated
  from the microlensing variability through parallax measurements from 3
  observers when there is no relative motion of the lens masses (Refsdal
  1993). In systems with fewer than 3 resolved images, however, this
  separation is not straightforward. A general approach that may be used
  for this purpose is presented. For simplicity, only the one-dimensional
  case is considered in detail: Given a well-sampled time series of
  the observed flux at two points in space with a known separation,
  choosing a velocity $v_{\perp}$ of the observers perpendicular to
  the line of sight determines the microlensing magnification history,
  and thereby also the intrinsic variability. The velocity is chosen
  by minimizing some measure ($\chi^2$) of the residual intrinsic
  variability. In many cases this gives a close approximation to the
  true magnification. In cases where the relative motion of the lensing
  point masses is important, only a partial separation will be possible.

---------------------------------------------------------
Title: The Microlensing Events In Q2237+0305A: No Case Against Small
    Masses/Large Sources
Authors: Haugan, S. V. H.
1996IAUS..173..255H    Altcode: 1995astro.ph..8103H
  It is demonstrated that the 1988-90 microlensing events in image A
  of Q2237+0305 reported by Racine (1992) do not exclude microlensing
  models with very low average mass, making the source radius larger
  than the projected Einstein radius $\eta_0$ (Refsdal and Stabell 1991,
  1993). This is contrary to what has been claimed by Witt and Mao
  (1994). Since these events are the best resolved microlensing events
  recorded in Q2237+0305, further work should not exclude the possibility
  of a large source when interpreting lightcurve data.

---------------------------------------------------------
Title: CDS quicklook display software
Authors: Brekke, P.; Haugan, S. V. H.; Brynildsen, Nils
1994ESASP.373..437B    Altcode: 1994soho....3..437B
  No abstract at ADS

---------------------------------------------------------
Title: Correlation analysis of microlensing lightcurves
Authors: Haugan, S. V.; Refsdal, S.; Stabell, R.
1993LIACo..31..447H    Altcode: 1993glu..conf..447H
  No abstract at ADS