explanation      blue bibcodes open ADS page with paths to full text
Author name code: lin-haosheng
ADS astronomy entries on 2022-09-14
author:"Lin, Haosheng" AND aff:"Hawaii"

---------------------------------------------------------
Title: Dark Energy Survey year 3 results: Constraints on cosmological
    parameters and galaxy-bias models from galaxy clustering and
    galaxy-galaxy lensing using the redMaGiC sample
Authors: Pandey, S.; Krause, E.; DeRose, J.; MacCrann, N.;
   Jain, B.; Crocce, M.; Blazek, J.; Choi, A.; Huang, H.; To, C.;
   Fang, X.; Elvin-Poole, J.; Prat, J.; Porredon, A.; Secco, L. F.;
   Rodriguez-Monroy, M.; Weaverdyck, N.; Park, Y.; Raveri, M.; Rozo, E.;
   Rykoff, E. S.; Bernstein, G. M.; Sánchez, C.; Jarvis, M.; Troxel,
   M. A.; Zacharegkas, G.; Chang, C.; Alarcon, A.; Alves, O.; Amon, A.;
   Andrade-Oliveira, F.; Baxter, E.; Bechtol, K.; Becker, M. R.; Camacho,
   H.; Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon,
   R.; Chen, R.; Chintalapati, P.; Davis, C.; Di Valentino, E.; Diehl,
   H. T.; Dodelson, S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler,
   T. F.; Elsner, F.; Everett, S.; Farahi, A.; Ferté, A.; Fosalba, P.;
   Friedrich, O.; Gatti, M.; Giannini, G.; Gruen, D.; Gruendl, R. A.;
   Harrison, I.; Hartley, W. G.; Huff, E. M.; Huterer, D.; Kovacs, A.;
   Leget, P. F.; McCullough, J.; Muir, J.; Myles, J.; Navarro-Alsina, A.;
   Omori, Y.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.; Sevilla-Noarbe,
   I.; Sheldon, E.; Shin, T.; Troja, A.; Tutusaus, I.; Varga, T. N.;
   Wechsler, R. H.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.; Abbott,
   T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.; Bertin, E.;
   Brooks, D.; Burke, D. L.; Carretero, J.; Conselice, C.; Costanzi,
   M.; da Costa, L. N.; Pereira, M. E. S.; De Vicente, J.; Dietrich,
   J. P.; Doel, P.; Evrard, A. E.; Ferrero, I.; Flaugher, B.; Frieman,
   J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio,
   T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.;
   Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuropatkin,
   N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.;
   Melchior, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.;
   Morgan, R.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres,
   A.; Plazas Malagón, A. A.; Sanchez, E.; Scarpine, V.; Serrano, S.;
   Smith, M.; Soares-Santos, M.; Suchyta, E.; Tarle, G.; Thomas, D.;
   Weller, J.; DES Collaboration
2022PhRvD.106d3520P    Altcode: 2021arXiv210513545P
  We constrain cosmological parameters and galaxy-bias parameters
  using the combination of galaxy clustering and galaxy-galaxy lensing
  measurements from the Dark Energy Survey (DES) year-3 data. We describe
  our modeling framework and choice of scales analyzed, validating their
  robustness to theoretical uncertainties in small-scale clustering
  by analyzing simulated data. Using a linear galaxy-bias model and
  redMaGiC galaxy sample, we obtain 10% constraints on the matter
  density of the Universe. We also implement a nonlinear galaxy-bias
  model to probe smaller scales that includes parametrization based on
  hybrid perturbation theory and find that it leads to a 17% gain in
  cosmological constraining power. We perform robustness tests of our
  methodology pipeline and demonstrate stability of the constraints
  to changes in the theory model. Using the redMaGiC galaxy sample as
  foreground lens galaxies and adopting the best-fitting cosmological
  parameters from DES year-1 data, we find the galaxy clustering and
  galaxy-galaxy lensing measurements to exhibit significant signals akin
  to decorrelation between galaxies and mass on large scales, which is
  not expected in any current models. This likely systematic measurement
  error biases our constraints on galaxy bias and the S<SUB>8</SUB>
  parameter. We find that a scale-, redshift- and sky-area-independent
  phenomenological decorrelation parameter can effectively capture
  this inconsistency between the galaxy clustering and galaxy-galaxy
  lensing. We trace the source of this correlation to a color-dependent
  photometric issue and minimize its impact on our result by changing
  the selection criteria of redMaGiC galaxies. Using this new sample, our
  constraints on the S<SUB>8</SUB> parameter are consistent with previous
  studies and we find a small shift in the Ω<SUB>m</SUB> constraints
  compared to the fiducial redMaGiC sample. We infer the constraints on
  the mean host-halo mass of the redMaGiC galaxies in this new sample
  from the large-scale bias constraints, finding the galaxies occupy
  halos of mass approximately 1.6 ×10<SUP>13</SUP> M<SUB>⊙</SUB>/h .

---------------------------------------------------------
Title: Dark Energy Survey Year 3 results: Exploiting small-scale
    information with lensing shear ratios
Authors: Sánchez, C.; Prat, J.; Zacharegkas, G.; Pandey, S.; Baxter,
   E.; Bernstein, G. M.; Blazek, J.; Cawthon, R.; Chang, C.; Krause,
   E.; Lemos, P.; Park, Y.; Raveri, M.; Sanchez, J.; Troxel, M. A.;
   Amon, A.; Fang, X.; Friedrich, O.; Gruen, D.; Porredon, A.; Secco,
   L. F.; Samuroff, S.; Alarcon, A.; Alves, O.; Andrade-Oliveira, F.;
   Bechtol, K.; Becker, M. R.; Camacho, H.; Campos, A.; Carnero Rosell,
   A.; Carrasco Kind, M.; Chen, R.; Choi, A.; Crocce, M.; Davis, C.;
   De Vicente, J.; DeRose, J.; Di Valentino, E.; Diehl, H. T.; Dodelson,
   S.; Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner,
   F.; Elvin-Poole, J.; Everett, S.; Ferté, A.; Fosalba, P.; Gatti, M.;
   Giannini, G.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner,
   K.; Huff, E. M.; Huterer, D.; Jarvis, M.; Jain, B.; Kuropatkin, N.;
   Leget, P. -F.; MacCrann, N.; McCullough, J.; Muir, J.; Myles, J.;
   Navarro-Alsina, A.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.;
   Rykoff, E. S.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troja,
   A.; Tutusaus, I.; Varga, T. N.; Wechsler, R. H.; Yanny, B.; Yin,
   B.; Zhang, Y.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.;
   Bacon, D.; Bertin, E.; Bhargava, S.; Brooks, D.; Buckley-Geer, E.;
   Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Pereira,
   M. E. S.; Desai, S.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Ferrero,
   I.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.;
   Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton,
   S. R.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Kuehn,
   K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall, J. L.;
   Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.;
   Morgan, R.; Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.;
   Plazas Malagón, A. A.; Rodriguez-Monroy, M.; Sanchez, E.; Scarpine,
   V.; Schubnell, M.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta,
   E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; To, C.; DES Collaboration
2022PhRvD.105h3529S    Altcode: 2021arXiv210513542S
  Using the first three years of data from the Dark Energy Survey
  (DES), we use ratios of small-scale galaxy-galaxy lensing measurements
  around the same lens sample to constrain source redshift uncertainties,
  intrinsic alignments and other systematics or nuisance parameters of our
  model. Instead of using a simple geometric approach for the ratios as
  has been done in the past, we use the full modeling of the galaxy-galaxy
  lensing measurements, including the corresponding integration over the
  power spectrum and the contributions from intrinsic alignments and
  lens magnification. We perform extensive testing of the small-scale
  shear-ratio (SR) modeling by studying the impact of different effects
  such as the inclusion of baryonic physics, nonlinear biasing, halo
  occupation distribution descriptions and lens magnification, among
  others, and using realistic N -body simulations of the DES data. We
  validate the robustness of our constraints in the data by using
  two independent lens samples with different galaxy properties, and
  by deriving constraints using the corresponding large-scale ratios
  for which the modeling is simpler. The results applied to the DES
  Y3 data demonstrate how the ratios provide significant improvements
  in constraining power for several nuisance parameters in our model,
  especially on source redshift calibration and intrinsic alignments. For
  source redshifts, SR improves the constraints from the prior by up
  to 38% in some redshift bins. Such improvements, and especially the
  constraints it provides on intrinsic alignments, translate to tighter
  cosmological constraints when shear ratios are combined with cosmic
  shear and other 2pt functions. In particular, for the DES Y3 data,
  SR improves S<SUB>8</SUB> constraints from cosmic shear by up to 31%,
  and for the full combination of probes (3 ×2 pt ) by up to 10%. The
  shear ratios presented in this work are used as an additional likelihood
  for cosmic shear, 2 ×2 pt and the full 3 ×2 pt in the fiducial DES
  Y3 cosmological analysis.

---------------------------------------------------------
Title: Dark energy survey year 3 results: High-precision measurement
    and modeling of galaxy-galaxy lensing
Authors: Prat, J.; Blazek, J.; Sánchez, C.; Tutusaus, I.; Pandey,
   S.; Elvin-Poole, J.; Krause, E.; Troxel, M. A.; Secco, L. F.; Amon,
   A.; DeRose, J.; Zacharegkas, G.; Chang, C.; Jain, B.; MacCrann, N.;
   Park, Y.; Sheldon, E.; Giannini, G.; Bocquet, S.; To, C.; Alarcon,
   A.; Alves, O.; Andrade-Oliveira, F.; Baxter, E.; Bechtol, K.; Becker,
   M. R.; Bernstein, G. M.; Camacho, H.; Campos, A.; Carnero Rosell,
   A.; Carrasco Kind, M.; Cawthon, R.; Chen, R.; Choi, A.; Cordero, J.;
   Crocce, M.; Davis, C.; De Vicente, J.; Diehl, H. T.; Dodelson, S.;
   Doux, C.; Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elsner, F.;
   Everett, S.; Fang, X.; Farahi, A.; Ferté, A.; Fosalba, P.; Friedrich,
   O.; Gatti, M.; Gruen, D.; Gruendl, R. A.; Harrison, I.; Hartley,
   W. G.; Herner, K.; Huang, H.; Huff, E. M.; Huterer, D.; Jarvis, M.;
   Kuropatkin, N.; Leget, P. -F.; Lemos, P.; Liddle, A. R.; McCullough,
   J.; Muir, J.; Myles, J.; Navarro-Alsina, A.; Porredon, A.; Raveri,
   M.; Rodriguez-Monroy, M.; Rollins, R. P.; Roodman, A.; Rosenfeld, R.;
   Ross, A. J.; Rykoff, E. S.; Sanchez, J.; Sevilla-Noarbe, I.; Shin, T.;
   Troja, A.; Varga, T. N.; Weaverdyck, N.; Wechsler, R. H.; Yanny, B.;
   Yin, B.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis,
   J.; Bacon, D.; Brooks, D.; Burke, D. L.; Carretero, J.; Conselice, C.;
   Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.; Desai, S.; Dietrich,
   J. P.; Doel, P.; Evrard, A. E.; Ferrero, I.; Flaugher, B.; Frieman,
   J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio,
   T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.;
   Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lin, H.; Maia,
   M. A. G.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.;
   Miller, C. J.; Miquel, R.; Mohr, J. J.; Morgan, R.; Ogando, R. L. C.;
   Palmese, A.; Paz-Chinchón, F.; Petravick, D.; Plazas Malagón, A. A.;
   Sanchez, E.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.;
   Tarle, G.; Thomas, D.; Weller, J.; DES Collaboration
2022PhRvD.105h3528P    Altcode: 2021arXiv210513541P
  We present and characterize the galaxy-galaxy lensing signal measured
  using the first three years of data from the Dark Energy Survey (DES
  Y3) covering 4132 deg<SUP>2</SUP> . These galaxy-galaxy measurements
  are used in the DES Y3 3 ×2 pt cosmological analysis, which combines
  weak lensing and galaxy clustering information. We use two lens
  samples: a magnitude-limited sample and the redMaGiC sample, which
  span the redshift range ∼0.2 - 1 with 10.7 and 2.6 M galaxies,
  respectively. For the source catalog, we use the METACALIBRATION
  shape sample, consisting of ≃100 M galaxies separated into four
  tomographic bins. Our galaxy-galaxy lensing estimator is the mean
  tangential shear, for which we obtain a total SNR of ∼148 for MagLim
  (∼120 for redMaGiC), and ∼67 (∼55 ) after applying the scale
  cuts of 6 Mpc /h . Thus we reach percent-level statistical precision,
  which requires that our modeling and systematic-error control be of
  comparable accuracy. The tangential shear model used in the 3 ×2 pt
  cosmological analysis includes lens magnification, a five-parameter
  intrinsic alignment model, marginalization over a point mass to
  remove information from small scales and a linear galaxy bias model
  validated with higher-order terms. We explore the impact of these
  choices on the tangential shear observable and study the significance
  of effects not included in our model, such as reduced shear, source
  magnification, and source clustering. We also test the robustness of
  our measurements to various observational and systematics effects,
  such as the impact of observing conditions, lens-source clustering,
  random-point subtraction, scale-dependent METACALIBRATION responses,
  point spread function residuals, and B modes.

---------------------------------------------------------
Title: Dark Energy Survey Year 3 results: Cosmology from cosmic
    shear and robustness to data calibration
Authors: Amon, A.; Gruen, D.; Troxel, M. A.; MacCrann, N.; Dodelson,
   S.; Choi, A.; Doux, C.; Secco, L. F.; Samuroff, S.; Krause, E.;
   Cordero, J.; Myles, J.; DeRose, J.; Wechsler, R. H.; Gatti, M.;
   Navarro-Alsina, A.; Bernstein, G. M.; Jain, B.; Blazek, J.; Alarcon,
   A.; Ferté, A.; Lemos, P.; Raveri, M.; Campos, A.; Prat, J.; Sánchez,
   C.; Jarvis, M.; Alves, O.; Andrade-Oliveira, F.; Baxter, E.; Bechtol,
   K.; Becker, M. R.; Bridle, S. L.; Camacho, H.; Carnero Rosell, A.;
   Carrasco Kind, M.; Cawthon, R.; Chang, C.; Chen, R.; Chintalapati, P.;
   Crocce, M.; Davis, C.; Diehl, H. T.; Drlica-Wagner, A.; Eckert, K.;
   Eifler, T. F.; Elvin-Poole, J.; Everett, S.; Fang, X.; Fosalba, P.;
   Friedrich, O.; Gaztanaga, E.; Giannini, G.; Gruendl, R. A.; Harrison,
   I.; Hartley, W. G.; Herner, K.; Huang, H.; Huff, E. M.; Huterer, D.;
   Kuropatkin, N.; Leget, P.; Liddle, A. R.; McCullough, J.; Muir, J.;
   Pandey, S.; Park, Y.; Porredon, A.; Refregier, A.; Rollins, R. P.;
   Roodman, A.; Rosenfeld, R.; Ross, A. J.; Rykoff, E. S.; Sanchez,
   J.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Troja, A.; Tutusaus,
   I.; Tutusaus, I.; Varga, T. N.; Weaverdyck, N.; Yanny, B.; Yin, B.;
   Zhang, Y.; Zuntz, J.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.;
   Bertin, E.; Bhargava, S.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.;
   Carretero, J.; Costanzi, M.; da Costa, L. N.; Pereira, M. E. S.;
   De Vicente, J.; Desai, S.; Dietrich, J. P.; Doel, P.; Ferrero, I.;
   Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.;
   Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Kron, R.;
   Kuehn, K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall,
   J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr,
   J. J.; Morgan, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.;
   Petravick, D.; Pieres, A.; Romer, A. K.; Sanchez, E.; Scarpine, V.;
   Schubnell, M.; Serrano, S.; Smith, M.; Soares-Santos, M.; Tarle, G.;
   Thomas, D.; To, C.; Weller, J.; DES Collaboration
2022PhRvD.105b3514A    Altcode: 2021arXiv210513543A
  &lt;related-article ext-link-type="doi" related-article-type="companion"
  xlink:href="10.1103/PhysRevD.105.023515"/&gt;This work, together with
  its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515
  (2022), 10.1103/PhysRevD.105.023515], present the Dark Energy Survey
  Year 3 cosmic-shear measurements and cosmological constraints based on
  an analysis of over 100 million source galaxies. With the data spanning
  4143 deg<SUP>2</SUP> on the sky, divided into four redshift bins,
  we produce a measurement with a signal-to-noise of 40. We conduct
  a blind analysis in the context of the Lambda-Cold Dark Matter (Λ
  CDM ) model and find a 3% constraint of the clustering amplitude,
  S<SUB>8</SUB>≡σ<SUB>8</SUB>(Ω<SUB>m</SUB>/0.3 )0.<SUP>5</SUP>=0.75
  9<SUB>-0.023</SUB><SUP>+0.025</SUP>. A Λ CDM -Optimized analysis,
  which safely includes smaller scale information, yields a 2% precision
  measurement of S<SUB>8</SUB>=0.77 2<SUB>-0.017</SUB><SUP>+0.018</SUP>
  that is consistent with the fiducial case. The two low-redshift
  measurements are statistically consistent with the Planck Cosmic
  Microwave Background result, however, both recovered S<SUB>8</SUB>
  values are lower than the high-redshift prediction by 2.3 σ and
  2.1 σ (p -values of 0.02 and 0.05), respectively. The measurements
  are shown to be internally consistent across redshift bins, angular
  scales and correlation functions. The analysis is demonstrated to be
  robust to calibration systematics, with the S<SUB>8</SUB> posterior
  consistent when varying the choice of redshift calibration sample,
  the modeling of redshift uncertainty and methodology. Similarly,
  we find that the corrections included to account for the blending
  of galaxies shifts our best-fit S<SUB>8</SUB> by 0.5 σ without
  incurring a substantial increase in uncertainty. We examine the
  limiting factors for the precision of the cosmological constraints and
  find observational systematics to be subdominant to the modeling of
  astrophysics. Specifically, we identify the uncertainties in modeling
  baryonic effects and intrinsic alignments as the limiting systematics.

---------------------------------------------------------
Title: Dark Energy Survey Year 3 results: Cosmology from cosmic
    shear and robustness to modeling uncertainty
Authors: Secco, L. F.; Samuroff, S.; Krause, E.; Jain, B.; Blazek,
   J.; Raveri, M.; Campos, A.; Amon, A.; Chen, A.; Doux, C.; Choi, A.;
   Gruen, D.; Bernstein, G. M.; Chang, C.; DeRose, J.; Myles, J.; Ferté,
   A.; Lemos, P.; Huterer, D.; Prat, J.; Troxel, M. A.; MacCrann, N.;
   Liddle, A. R.; Kacprzak, T.; Fang, X.; Sánchez, C.; Pandey, S.;
   Dodelson, S.; Chintalapati, P.; Hoffmann, K.; Alarcon, A.; Alves,
   O.; Andrade-Oliveira, F.; Baxter, E. J.; Bechtol, K.; Becker, M. R.;
   Brandao-Souza, A.; Camacho, H.; Carnero Rosell, A.; Carrasco Kind, M.;
   Cawthon, R.; Cordero, J. P.; Crocce, M.; Davis, C.; Di Valentino, E.;
   Drlica-Wagner, A.; Eckert, K.; Eifler, T. F.; Elidaiana, M.; Elsner,
   F.; Elvin-Poole, J.; Everett, S.; Fosalba, P.; Friedrich, O.; Gatti,
   M.; Giannini, G.; Gruendl, R. A.; Harrison, I.; Hartley, W. G.; Herner,
   K.; Huang, H.; Huff, E. M.; Jarvis, M.; Jeffrey, N.; Kuropatkin, N.;
   Leget, P. -F.; Muir, J.; Mccullough, J.; Navarro Alsina, A.; Omori,
   Y.; Park, Y.; Porredon, A.; Rollins, R.; Roodman, A.; Rosenfeld,
   R.; Ross, A. J.; Rykoff, E. S.; Sanchez, J.; Sevilla-Noarbe, I.;
   Sheldon, E. S.; Shin, T.; Troja, A.; Tutusaus, I.; Varga, T. N.;
   Weaverdyck, N.; Wechsler, R. H.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz,
   J.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Bacon, D.;
   Bertin, E.; Bhargava, S.; Bridle, S. L.; Brooks, D.; Buckley-Geer,
   E.; Burke, D. L.; Carretero, J.; Costanzi, M.; da Costa, L. N.; De
   Vicente, J.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Ferrero, I.;
   Flaugher, B.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.;
   Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Jeltema, T.;
   Kuehn, K.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Marshall,
   J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Mohr,
   J. J.; Morgan, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.;
   Petravick, D.; Pieres, A.; Plazas Malagón, A. A.; Rodriguez-Monroy,
   M.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Scolnic,
   D.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thomas, D.; To, C.; DES Collaboration
2022PhRvD.105b3515S    Altcode: 2021arXiv210513544S
  This work and its companion paper, Amon et al. [Phys. Rev. D
  105, 023514 (2022), 10.1103/PhysRevD.105.023514], present
  cosmic shear measurements and cosmological constraints from
  over 100 million source galaxies in the Dark Energy Survey
  (DES) Year 3 data. We constrain the lensing amplitude parameter
  S<SUB>8</SUB>≡σ<SUB>8</SUB>√{Ω<SUB>m</SUB>/0.3 } at the 3% level
  in Λ CDM : S<SUB>8</SUB>=0.75 9<SUB>-0.023</SUB><SUP>+0.025</SUP>
  (68% CL). Our constraint is at the 2% level when using angular scale
  cuts that are optimized for the Λ CDM analysis: S<SUB>8</SUB>=0.77
  2<SUB>-0.017</SUB><SUP>+0.018</SUP> (68% CL). With cosmic shear alone,
  we find no statistically significant constraint on the dark energy
  equation-of-state parameter at our present statistical power. We carry
  out our analysis blind, and compare our measurement with constraints
  from two other contemporary weak lensing experiments: the Kilo-Degree
  Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program
  (HSC). We additionally quantify the agreement between our data and
  external constraints from the Cosmic Microwave Background (CMB). Our DES
  Y3 result under the assumption of Λ CDM is found to be in statistical
  agreement with Planck 2018, although favors a lower S<SUB>8</SUB>
  than the CMB-inferred value by 2.3 σ (a p -value of 0.02). This paper
  explores the robustness of these cosmic shear results to modeling
  of intrinsic alignments, the matter power spectrum and baryonic
  physics. We additionally explore the statistical preference of our data
  for intrinsic alignment models of different complexity. The fiducial
  cosmic shear model is tested using synthetic data, and we report no
  biases greater than 0.3 σ in the plane of S<SUB>8</SUB>×Ω<SUB>m</SUB>
  caused by uncertainties in the theoretical models.

---------------------------------------------------------
Title: Dark Energy Survey Year 3 results: Cosmological constraints
    from galaxy clustering and weak lensing
Authors: Abbott, T. M. C.; Aguena, M.; Alarcon, A.; Allam, S.;
   Alves, O.; Amon, A.; Andrade-Oliveira, F.; Annis, J.; Avila, S.;
   Bacon, D.; Baxter, E.; Bechtol, K.; Becker, M. R.; Bernstein, G. M.;
   Bhargava, S.; Birrer, S.; Blazek, J.; Brandao-Souza, A.; Bridle,
   S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Camacho, H.;
   Campos, A.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.;
   Castander, F. J.; Cawthon, R.; Chang, C.; Chen, A.; Chen, R.; Choi,
   A.; Conselice, C.; Cordero, J.; Costanzi, M.; Crocce, M.; da Costa,
   L. N.; da Silva Pereira, M. E.; Davis, C.; Davis, T. M.; De Vicente,
   J.; DeRose, J.; Desai, S.; Di Valentino, E.; Diehl, H. T.; Dietrich,
   J. P.; Dodelson, S.; Doel, P.; Doux, C.; Drlica-Wagner, A.; Eckert,
   K.; Eifler, T. F.; Elsner, F.; Elvin-Poole, J.; Everett, S.; Evrard,
   A. E.; Fang, X.; Farahi, A.; Fernandez, E.; Ferrero, I.; Ferté, A.;
   Fosalba, P.; Friedrich, O.; Frieman, J.; García-Bellido, J.; Gatti,
   M.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Giannini, G.;
   Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Harrison,
   I.; Hartley, W. G.; Herner, K.; Hinton, S. R.; Hollowood, D. L.;
   Honscheid, K.; Hoyle, B.; Huff, E. M.; Huterer, D.; Jain, B.; James,
   D. J.; Jarvis, M.; Jeffrey, N.; Jeltema, T.; Kovacs, A.; Krause, E.;
   Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Leget, P. -F.; Lemos,
   P.; Liddle, A. R.; Lidman, C.; Lima, M.; Lin, H.; MacCrann, N.; Maia,
   M. A. G.; Marshall, J. L.; Martini, P.; McCullough, J.; Melchior, P.;
   Mena-Fernández, J.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Morgan,
   R.; Muir, J.; Myles, J.; Nadathur, S.; Navarro-Alsina, A.; Nichol,
   R. C.; Ogando, R. L. C.; Omori, Y.; Palmese, A.; Pandey, S.; Park,
   Y.; Paz-Chinchón, F.; Petravick, D.; Pieres, A.; Plazas Malagón,
   A. A.; Porredon, A.; Prat, J.; Raveri, M.; Rodriguez-Monroy, M.;
   Rollins, R. P.; Romer, A. K.; Roodman, A.; Rosenfeld, R.; Ross, A. J.;
   Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Sanchez, E.; Sanchez, J.;
   Sanchez Cid, D.; Scarpine, V.; Schubnell, M.; Scolnic, D.; Secco,
   L. F.; Serrano, S.; Sevilla-Noarbe, I.; Sheldon, E.; Shin, T.; Smith,
   M.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tabbutt, M.;
   Tarle, G.; Thomas, D.; To, C.; Troja, A.; Troxel, M. A.; Tucker,
   D. L.; Tutusaus, I.; Varga, T. N.; Walker, A. R.; Weaverdyck, N.;
   Wechsler, R.; Weller, J.; Yanny, B.; Yin, B.; Zhang, Y.; Zuntz, J.;
   DES Collaboration
2022PhRvD.105b3520A    Altcode: 2021arXiv210513549D
  We present the first cosmology results from large-scale structure using
  the full 5000 deg<SUP>2</SUP> of imaging data from the Dark Energy
  Survey (DES) Data Release 1. We perform an analysis of large-scale
  structure combining three two-point correlation functions (3 ×2 pt
  ): (i) cosmic shear using 100 million source galaxies, (ii) galaxy
  clustering, and (iii) the cross-correlation of source galaxy shear
  with lens galaxy positions, galaxy-galaxy lensing. To achieve the
  cosmological precision enabled by these measurements has required
  updates to nearly every part of the analysis from DES Year 1, including
  the use of two independent galaxy clustering samples, modeling advances,
  and several novel improvements in the calibration of gravitational
  shear and photometric redshift inference. The analysis was performed
  under strict conditions to mitigate confirmation or observer bias;
  we describe specific changes made to the lens galaxy sample following
  unblinding of the results and tests of the robustness of our results
  to this decision. We model the data within the flat Λ CDM and w CDM
  cosmological models, marginalizing over 25 nuisance parameters. We
  find consistent cosmological results between the three two-point
  correlation functions; their combination yields clustering amplitude
  S<SUB>8</SUB>=0.77 6<SUB>-0.017</SUB><SUP>+0.017</SUP> and matter
  density Ω<SUB>m</SUB>=0.33 9<SUB>-0.031</SUB><SUP>+0.032</SUP>
  in Λ CDM , mean with 68% confidence limits; S<SUB>8</SUB>=0.77
  5<SUB>-0.024</SUB><SUP>+0.026</SUP>, Ω<SUB>m</SUB>=0.35
  2<SUB>-0.041</SUB><SUP>+0.035</SUP>, and dark energy equation-of-state
  parameter w =-0.9 8<SUB>-0.20</SUB><SUP>+0.32</SUP> in w CDM . These
  constraints correspond to an improvement in signal-to-noise of
  the DES Year 3 3 ×2 pt data relative to DES Year 1 by a factor of
  2.1, about 20% more than expected from the increase in observing
  area alone. This combination of DES data is consistent with the
  prediction of the model favored by the Planck 2018 cosmic microwave
  background (CMB) primary anisotropy data, which is quantified with a
  probability-to-exceed p =0.13 -0.48. We find better agreement between
  DES 3 ×2 pt and Planck than in DES Y1, despite the significantly
  improved precision of both. When combining DES 3 ×2 pt data with
  available baryon acoustic oscillation, redshift-space distortion,
  and type Ia supernovae data, we find p =0.34 . Combining all of these
  datasets with Planck CMB lensing yields joint parameter constraints
  of S<SUB>8</SUB>=0.81 2<SUB>-0.008</SUB><SUP>+0.008</SUP>,
  Ω<SUB>m</SUB>=0.30 6<SUB>-0.005</SUB><SUP>+0.004</SUP>,
  h =0.68 0<SUB>-0.003</SUB><SUP>+0.004</SUP>, and
  ∑m<SUB>ν</SUB>&lt;0.13 eV (95% C.L.) in Λ CDM ;
  S<SUB>8</SUB>=0.81 2<SUB>-0.008</SUB><SUP>+0.008</SUP>,
  Ω<SUB>m</SUB>=0.30 2<SUB>-0.006</SUB><SUP>+0.006</SUP>,
  h =0.68 7<SUB>-0.007</SUB><SUP>+0.006</SUP>, and w =-1.03
  1<SUB>-0.027</SUB><SUP>+0.030</SUP> in w CDM .

---------------------------------------------------------
Title: Quantitative Validation of the Linear Polarization Tomographic
    Inversion for the 3D Coronal Magnetic Field.
Authors: Kramar, Maxim; Lin, Haosheng
2021AGUFMSH12C..08K    Altcode:
  Due to the low optical density of the solar corona, direct inference
  of the plasma properties of the corona is constrained by integration
  over a line-of-sight (LOS) of coronal radiation signals. In order to
  dis-entangle the LOS integrated observations to unveil the underlying
  3D coronal plasma structures, tomographic inversion methods should be
  applied. Information about the coronal magnetic field, electron density
  and temperature are encoded in coronal emission lines through the normal
  and saturated Hanle effect and the Zeeman effect observed in linear (LP)
  and circular (CP) polarization components, respectively, of the Fe XIII
  1074.7 nm forbidden line. We will present a quantitative study of the
  accuracy of the LP regularized tomographic inversion for the coronal
  magnetic field in expectation of the new synoptics Fe XIII 1074.7 nm LP
  data that will become available from the Upgraded Coronal Multichannel
  Polarimeter (UCoMP). Although the LP signal is stronger than CP, it
  only contains information about the magnetic field orientation, but
  not its strength. However, the photospheric magnetic field boundary
  condition provides the constraint to the magnetic fields strength. We
  use the divergence free property of the magnetic field as additional
  constraint in the tomographic inversion. A magnetogydrodynamic (MHD)
  model for the global solar coronal by Predictive Science Inc. was used
  to synthesize spectropolarimetric observations of the Fe XIII line
  during a half of the solar rotation period. The inversion result based
  on that synthesized LP data showed that the standard deviation of the
  relative error of the reconstructed magnetic field strength lies within
  about 20% for regions with the field strength greater than 0.1 Gauss.

---------------------------------------------------------
Title: The National Science Foundation's Daniel K. Inouye Solar
    Telescope — Status Update
Authors: Rimmele, T.; Woeger, F.; Tritschler, A.; Casini, R.; de Wijn,
   A.; Fehlmann, A.; Harrington, D.; Jaeggli, S.; Anan, T.; Beck, C.;
   Cauzzi, G.; Schad, T.; Criscuoli, S.; Davey, A.; Lin, H.; Kuhn, J.;
   Rast, M.; Goode, P.; Knoelker, M.; Rosner, R.; von der Luehe, O.;
   Mathioudakis, M.; Dkist Team
2021AAS...23810601R    Altcode:
  The National Science Foundation's 4m Daniel K. Inouye Solar Telescope
  (DKIST) on Haleakala, Maui is now the largest solar telescope in the
  world. DKIST's superb resolution and polarimetric sensitivity will
  enable astronomers to unravel many of the mysteries the Sun presents,
  including the origin of solar magnetism, the mechanisms of coronal
  heating and drivers of flares and coronal mass ejections. Five
  instruments, four of which provide highly sensitive measurements
  of solar magnetic fields, including the illusive magnetic field of
  the faint solar corona. The DKIST instruments will produce large and
  complex data sets, which will be distributed through the NSO/DKIST Data
  Center. DKIST has achieved first engineering solar light in December
  of 2019. Due to COVID the start of the operations commissioning phase
  is delayed and is now expected for fall of 2021. We present a status
  update for the construction effort and progress with the operations
  commissioning phase.

---------------------------------------------------------
Title: DKIST First-light Instrumentation
Authors: Woeger, F.; Rimmele, T.; Casini, R.; von der Luehe, O.; Lin,
   H.; Kuhn, J.; Dkist Team
2021AAS...23810602W    Altcode:
  The NSF's Daniel K. Inouye Solar Telescope's (DKIST) four meter aperture
  and state-of-the-art wavefront correction system and instrumentation
  will facilitate new insights into the complexities of the solar
  atmosphere. We will describe the details and status of the diverse
  first light instruments, including the high order adaptive optics
  system, that are being commissioned: The Visible Spectro-Polarimeter
  (ViSP), the Visible Broadband Imager (VBI), the Visible Tunable Filter
  (VTF), the Diffraction-Limited Spectro-Polarimeter (DL-NIRSP) and the
  Cryogenic Spectro-Polarimeter (Cryo-NIRSP). We will present first data
  demonstrating the telescope's instrument systems performance.

---------------------------------------------------------
Title: The Daniel K. Inouye Solar Telescope - Observatory Overview
Authors: Rimmele, Thomas R.; Warner, Mark; Keil, Stephen L.; Goode,
   Philip R.; Knölker, Michael; Kuhn, Jeffrey R.; Rosner, Robert R.;
   McMullin, Joseph P.; Casini, Roberto; Lin, Haosheng; Wöger, Friedrich;
   von der Lühe, Oskar; Tritschler, Alexandra; Davey, Alisdair; de Wijn,
   Alfred; Elmore, David F.; Fehlmann, André; Harrington, David M.;
   Jaeggli, Sarah A.; Rast, Mark P.; Schad, Thomas A.; Schmidt, Wolfgang;
   Mathioudakis, Mihalis; Mickey, Donald L.; Anan, Tetsu; Beck, Christian;
   Marshall, Heather K.; Jeffers, Paul F.; Oschmann, Jacobus M.; Beard,
   Andrew; Berst, David C.; Cowan, Bruce A.; Craig, Simon C.; Cross,
   Eric; Cummings, Bryan K.; Donnelly, Colleen; de Vanssay, Jean-Benoit;
   Eigenbrot, Arthur D.; Ferayorni, Andrew; Foster, Christopher; Galapon,
   Chriselle Ann; Gedrites, Christopher; Gonzales, Kerry; Goodrich, Bret
   D.; Gregory, Brian S.; Guzman, Stephanie S.; Guzzo, Stephen; Hegwer,
   Steve; Hubbard, Robert P.; Hubbard, John R.; Johansson, Erik M.;
   Johnson, Luke C.; Liang, Chen; Liang, Mary; McQuillen, Isaac; Mayer,
   Christopher; Newman, Karl; Onodera, Brialyn; Phelps, LeEllen; Puentes,
   Myles M.; Richards, Christopher; Rimmele, Lukas M.; Sekulic, Predrag;
   Shimko, Stephan R.; Simison, Brett E.; Smith, Brett; Starman, Erik;
   Sueoka, Stacey R.; Summers, Richard T.; Szabo, Aimee; Szabo, Louis;
   Wampler, Stephen B.; Williams, Timothy R.; White, Charles
2020SoPh..295..172R    Altcode:
  We present an overview of the National Science Foundation's Daniel
  K. Inouye Solar Telescope (DKIST), its instruments, and support
  facilities. The 4 m aperture DKIST provides the highest-resolution
  observations of the Sun ever achieved. The large aperture of
  DKIST combined with state-of-the-art instrumentation provide the
  sensitivity to measure the vector magnetic field in the chromosphere
  and in the faint corona, i.e. for the first time with DKIST we will
  be able to measure and study the most important free-energy source
  in the outer solar atmosphere - the coronal magnetic field. Over its
  operational lifetime DKIST will advance our knowledge of fundamental
  astronomical processes, including highly dynamic solar eruptions
  that are at the source of space-weather events that impact our
  technological society. Design and construction of DKIST took over two
  decades. DKIST implements a fast (f/2), off-axis Gregorian optical
  design. The maximum available field-of-view is 5 arcmin. A complex
  thermal-control system was implemented in order to remove at prime
  focus the majority of the 13 kW collected by the primary mirror and
  to keep optical surfaces and structures at ambient temperature, thus
  avoiding self-induced local seeing. A high-order adaptive-optics
  system with 1600 actuators corrects atmospheric seeing enabling
  diffraction limited imaging and spectroscopy. Five instruments, four
  of which are polarimeters, provide powerful diagnostic capability
  over a broad wavelength range covering the visible, near-infrared,
  and mid-infrared spectrum. New polarization-calibration strategies
  were developed to achieve the stringent polarization accuracy
  requirement of 5×10<SUP>−4</SUP>. Instruments can be combined and
  operated simultaneously in order to obtain a maximum of observational
  information. Observing time on DKIST is allocated through an open,
  merit-based proposal process. DKIST will be operated primarily in
  "service mode" and is expected to on average produce 3 PB of raw
  data per year. A newly developed data center located at the NSO
  Headquarters in Boulder will initially serve fully calibrated data to
  the international users community. Higher-level data products, such as
  physical parameters obtained from inversions of spectro-polarimetric
  data will be added as resources allow.

---------------------------------------------------------
Title: Diverse Rock Types Detected in the Lunar South Pole-Aitken
    Basin by Chang'E 4
Authors: Huang, J.; Xiao, Z.; Xiao, L.; Horgan, B. H. N.; Hu, X.;
   Lucey, P. G.; Xiao, X.; Zhao, S.; Qian, Y.; Zhang, H.; Li, C.; Xu,
   R.; He, Z.; Yang, J.; Xue, B.; He, Q.; Zhong, J.; Lin, H.; Huang,
   C.; Xie, J.
2019AGUFM.P31C3471H    Altcode:
  South Pole-Aitken (SPA) basin is the largest confirmed lunar impact
  structure between the South Pole and Aitken crater on the far side. The
  pre-Nectarian SPA basin has a 2400-km-by-2050-km elliptical structure
  centered at 53º S, 191º E, which should have exposed lower crust
  and upper mantle. The Earth mantle dominant mineral olivine has only
  been identified in small and localized exposures in the margins
  of the SPA basin, within which the dominant mafic component is
  pyroxene. The mineralogical characteristics could be explained by
  the recent hypothesis that the lunar upper mantle is dominated by
  low-calcium pyroxene (LCP), not olivine. Here we present observations
  from imaging and spectral data of China Chang'E-4 (CE-4) mission in
  the first 4 synodic days, especially the first in-situ visible/near
  infrared spectrometer (VNIS) observation of an exposed boulder. We have
  identified a variety of rock types, but not olivine-rich materials in
  the landing region, which is consistent with orbital observations. The
  obtained mineralogical information provides a better understanding of
  the nature and origin of SPA materials.

---------------------------------------------------------
Title: Tomographic Measurements of Magnetic Free Energy in CME
    Source Regions
Authors: Lin, H.; Kramar, M.; Tomczyk, S.
2019AGUFMSH53B3378L    Altcode:
  Magnetic free energies (MFEs) contained in highly non-potential coronal
  magnetic field in active regions are believed to be the primary source
  of energy of solar eruptions. Recent progresses in observational
  capabilities and tomographic inversion techniques have allowed us
  to directly determine the 3D structures of the temperature, density
  and magnetic fields of the solar corona (Kramar et al., 2016) using
  space EUV coronal emission line (CEL) data and ground-based synoptic
  IR CELs polarization observations. The magnetic free energy of the
  solar corona can now be directly derived from these observationally
  determined coronal models. We will present measurements of the MFEs at
  the source regions of coronal mass ejections (CMEs) and comparisons of
  the MFEs with direct measurements of kinetic energies of the CMEs. These
  studies will help us understand the energetics of the solar eruptions.

---------------------------------------------------------
Title: ngGONG: The Next Generation GONG - A New Solar Synoptic
    Observational Network
Authors: Hill, Frank; Hammel, Heidi; Martinez-Pillet, Valentin; de
   Wijn, A.; Gosain, S.; Burkepile, J.; Henney, C. J.; McAteer, J.; Bain,
   H. M.; Manchester, W.; Lin, H.; Roth, M.; Ichimoto, K.; Suematsu, Y.
2019BAAS...51g..74H    Altcode: 2019astro2020U..74H
  The white paper describes a next-generation GONG, a ground-based
  geographically distributed network of instrumentation to continually
  observe the Sun. This would provide data for solar magnetic field
  research and space weather forecasting, and would extend the time
  coverage of helioseismology.

---------------------------------------------------------
Title: Investigating Coronal Magnetism with COSMO: Science on
    the Critical Path To Understanding The “Weather” of Stars and
    Stellarspheres
Authors: McIntosh, Scott; Tomczyk, Steven; Gibson, Sarah E.; Burkepile,
   Joan; de Wijn, Alfred; Fan, Yuhong; deToma, Giuliana; Casini, Roberto;
   Landi, Enrico; Zhang, Jie; DeLuca, Edward E.; Reeves, Katharine K.;
   Golub, Leon; Raymond, John; Seaton, Daniel B.; Lin, Haosheng
2019BAAS...51g.165M    Altcode: 2019astro2020U.165M
  The Coronal Solar Magnetism Observatory (COSMO) is a unique ground-based
  facility designed to address the shortfall in our capability to measure
  magnetic fields in the solar corona.

---------------------------------------------------------
Title: TSMM - A Tomographic Solar Magnetism Mission
Authors: Lin, Haosheng; Kramar, Maxim
2019AAS...23412606L    Altcode:
  Detailed knowledges of the magnetic and thermal environment of the
  solar atmosphere, including the photosphere, chromosphere, and the
  corona, and how the plasma and the magnetic fields interact with
  each other, are crucial for the understanding of the physics of solar
  eruptions, which directly influences space weather in interplanetary
  space. However, the inference of the 3D coronal vector magnetic fields
  from observations is not straightforward due to the complex nature of
  the emission process (resonance scattering through Hanle and Zeeman
  effects) and line-of-sight (LOS) integration through the optically
  thin corona. Recent progresses in spectropolarimetric measurements
  of the polarized spectra of magnetically sensitive corona emission
  lines and their interpretation, and the development of tomographic
  inversion techniques now provides a viable path toward quantitative
  characterization of the 3-dimensional coronal temperature, density,
  and magnetic field structures. <P />Tomographic inversion relies on
  observations of the object under study from multiple sight lines. For
  earth-bound observers, tomographic inversion of the static temperature,
  density, and magnetic fields structures can be realized using pseudo
  tomographic observations due to the rotation of the sun. However, to
  resolve the temporal evolution of the structures of the solar atmosphere
  before, during, and after solar eruptions, a space mission consisting of
  multiple spacecraft deployed in deep space circumsolar orbits is needed
  to observe the sun from many sight lines simultaneously. This paper
  describes recent progresses in tomographic inversion techniques, and an
  instrument development effort to develop compact and high-performance
  instrumentation that will enable the deployment of a deep-space
  tomographic solar magnetism mission in the near future.

---------------------------------------------------------
Title: Optical Alignment of DL-NIRSP Spectrograph
Authors: Jaeggli, Sarah A.; Anan, Tetsu; Kramar, Maxim; Lin, Haosheng
2019AAS...23410612J    Altcode:
  The Diffraction-Limited Near-Infrared Spectropolarimeter (DL-NIRSP)
  will be delivered as part of the first light instrumentation for the
  Daniel K. Inouye Solar Telescope (DKIST) and is currently undergoing
  lab integration at the University of Hawai'i Institute for Astronomy's
  Advanced Technology Research Center on Maui. An off-axis hyperbolic
  mirror, with a focal length of 1250 mm, is used as both collimator
  and camera in the spectrograph, and makes this system particularly
  difficult to align. The optical axis, or vertex, of the parent surface
  is located approximately 260 mm from the center of the off-axis
  section of the mirror, but there is no direct physical or optical
  reference for the location and orientation of the optical axis. We
  have made use of vendor data and a coordinate measuring machine (CMM)
  arm to transfer coordinates from the back and perimeter surfaces of
  the mirror to locate the optical axis focus and place the other optical
  components in reference to this mechanical model. In coordination, we
  have conducted tests of the optical quality at various points during
  the alignment to ensure that the mechanical tolerances maintain the
  optical quality of the system so that the instrument will be able to
  achieve excellent spectral resolution limited by the spectrograph slit
  width (λ/Δλ 250,000), and preserve the diffraction limited spatial
  resolution provided by the telescope and feed optics (0.06" at 1 μm).

---------------------------------------------------------
Title: Retrieving 3D coronal magnetic field from ground and space
    based spectropolarimetric observations
Authors: Kramar, Maxim; Lin, Haosheng
2019AAS...23430213K    Altcode:
  Solar coronal magnetic fields play a key role in the energetics and
  dynamics of coronal heating, solar wind, solar flares, coronal mass
  ejections (CME), filament eruptions, and determine space weather
  processes. Therefore, precise knowledge of the 3D magnetic field
  and thermodynamic structures of the corona is essential for the
  heliophysics community's effort to understand the physics of the
  solar wind and solar eruptive phenomena. With the recent advancement
  of scalar and vector tomographic inversion techniques (Kramar et al.,
  2016), it is now possible to directly derive the 3D coronal magnetic,
  temperature, and electron density structures using synoptic Fe XIII
  1075 nm coronal emission line (CEL) linear polarization data of the
  Coronal Multichannel Polarimeter (CoMP, Tomczyk et al., 2008), and UV
  coronal images from STEREO mission. This is a major milestone in our
  effort to establish the capabilities to directly observe 3D magnetic
  and thermodynamic structures of the corona. <P />Although the vector
  tomography based on linear polarization (LP) data can be used to probe
  certain coronal field configuration (Kramar et al. 2013), linear
  polarization data alone does not allow us to uniquely reconstruct
  all possible field configurations in general. In the near future,
  the arrival of DKIST will provide the multi-CEL full-Stokes data more
  accurate determination of the static corona using the rotation of
  the Sun to emulate tomographic observations. <P />On the longer term,
  observational determination of spatially and temporally resolved B(r;
  t), T(r; t), and n(r; t) will require the deployment of a Space Coronal
  Magnetometry Mission (SCMM) with a fleet of spacecraft observing the
  Sun from many non-redundant circumsolar orbits simultaneously. <P
  />We will discuss how the use of full Stokes polarization data and
  multiple observing geometry from and out of the ecliptic plane will
  improve the accuracy of coronal magnetic field reconstruction.

---------------------------------------------------------
Title: COSMO Science
Authors: Gibson, Sarah; Tomczyk, Steven; Burkepile, Joan; Casini,
   Roberto; Deluca, Ed; de Toma, Giuliana; deWijn, Alfred; Fan, Yuhong;
   Golub, Leon; Judge, Philip; Landi, Enrico; Lin, Haosheng; McIntosh,
   Scott; Reeves, Kathy; Seaton, Dan; Zhang, Jie
2019shin.confE..32G    Altcode:
  Space-weather forecast capability is held back by our current
  lack of basic scientific understanding of CME magnetic evolution,
  and the coronal magnetism that structures and drives the solar
  wind. Comprehensive observations of the global magnetothermal
  environment of the solar atmosphere are needed for progress. When fully
  implemented, the COSMO suite of synoptic ground-based telescopes will
  provide the community with comprehensive and simultaneous measurements
  of magnetism, temperature, density and plasma flows and waves from the
  photosphere through the chromosphere and out into the corona. We will
  discuss how these observations will uniquely address a set of science
  objectives that are central to the field of solar and space physics:
  in particular, to understand the storage and release of magnetic energy,
  to understand CME dynamics and consequences for shocks, to determine the
  role of waves in solar atmospheric heating and solar wind acceleration,
  to understand how the coronal magnetic field relates to the solar
  dynamo, and to constrain and improve space-weather forecast models.

---------------------------------------------------------
Title: Measuring the Magnetic Free Energy in pre-CME Corona by the
    Vector Tomographic Reconstruction of 3D Coronal Magnetic Fields
Authors: Kramar, Maxim; Lin, Haosheng
2019shin.confE.198K    Altcode:
  The ejecta of Coronal Mass Ejections (CMEs) carry
  approximately between 10**28 to 10**32 erg of kinetic energy
  (https://cdaw.gsfc.nasa.gov/CME_list/). Magnetic free energy contained
  in non-potential magnetic fields in solar active regions is believed
  to be the energy source powering these energetic eruptions. This
  hypothesis can be tested by direct measurement of the total energy
  content, including thermodynamic and magnetic free energy, contained
  in the pre- and post-CME active regions. Recent advancements of the
  vector tomographic reconstruction technique (Kramar et al. 2016), and
  capability for synoptic observation of global coronal emission lines
  (CELs) linear polarization (CoMP instrument, Tomczyk et al. 2008)
  have allowed, for the first time, direct observational inference of
  the quasi-static 3D magnetic field structure of the solar corona. We
  describe measurements of the magnetic free energy contained in pre-CME
  corona derived from tomographically reconstructed coronal magnetic
  field, and compare these measurements to the kinetic energy of CMEs
  obtained by independent measurements of the mass and velocity of the
  CMEs. <P />Rotational tomography with a single sight line from the
  Earth limits the observational cadence of the coronal magnetic fields
  to approximately two weeks (in some cases it can be reduced to about a
  week). Future space mission idea that can provide information on how
  the coronal magnetic fields evolve with temporal cadence appropriate
  for the study of energetic solar eruptions will be presented also.

---------------------------------------------------------
Title: Photometric and Spectroscopic Properties of Type Ia Supernova
    2018oh with Early Excess Emission from the Kepler 2 Observations
Authors: Li, W.; Wang, X.; Vinkó, J.; Mo, J.; Hosseinzadeh, G.; Sand,
   D. J.; Zhang, J.; Lin, H.; PTSS/TNTS; Zhang, T.; Wang, L.; Zhang, J.;
   Chen, Z.; Xiang, D.; Rui, L.; Huang, F.; Li, X.; Zhang, X.; Li, L.;
   Baron, E.; Derkacy, J. M.; Zhao, X.; Sai, H.; Zhang, K.; Wang, L.; LCO;
   Howell, D. A.; McCully, C.; Arcavi, I.; Valenti, S.; Hiramatsu, D.;
   Burke, J.; KEGS; Rest, A.; Garnavich, P.; Tucker, B. E.; Narayan, G.;
   Shaya, E.; Margheim, S.; Zenteno, A.; Villar, A.; UCSC; Dimitriadis,
   G.; Foley, R. J.; Pan, Y. -C.; Coulter, D. A.; Fox, O. D.; Jha,
   S. W.; Jones, D. O.; Kasen, D. N.; Kilpatrick, C. D.; Piro, A. L.;
   Riess, A. G.; Rojas-Bravo, C.; ASAS-SN; Shappee, B. J.; Holoien,
   T. W. -S.; Stanek, K. Z.; Drout, M. R.; Auchettl, K.; Kochanek,
   C. S.; Brown, J. S.; Bose, S.; Bersier, D.; Brimacombe, J.; Chen,
   P.; Dong, S.; Holmbo, S.; Muñoz, J. A.; Mutel, R. L.; Post, R. S.;
   Prieto, J. L.; Shields, J.; Tallon, D.; Thompson, T. A.; Vallely,
   P. J.; Villanueva, S., Jr.; Pan-STARRS; Smartt, S. J.; Smith, K. W.;
   Chambers, K. C.; Flewelling, H. A.; Huber, M. E.; Magnier, E. A.;
   Waters, C. Z.; Schultz, A. S. B.; Bulger, J.; Lowe, T. B.; Willman,
   M.; Konkoly/Texas; Sárneczky, K.; Pál, A.; Wheeler, J. C.; Bódi,
   A.; Bognár, Zs.; Csák, B.; Cseh, B.; Csörnyei, G.; Hanyecz, O.;
   Ignácz, B.; Kalup, Cs.; Könyves-Tóth, R.; Kriskovics, L.; Ordasi,
   A.; Rajmon, I.; Sódor, A.; Szabó, R.; Szakáts, R.; Zsidi, G.;
   Arizona, University of; Milne, P.; Andrews, J. E.; Smith, N.; Bilinski,
   C.; Swift; Brown, P. J.; ePESSTO; Nordin, J.; Williams, S. C.; Galbany,
   L.; Palmerio, J.; Hook, I. M.; Inserra, C.; Maguire, K.; Cartier,
   Régis; Razza, A.; Gutiérrez, C. P.; North Carolina, University of;
   Hermes, J. J.; Reding, J. S.; Kaiser, B. C.; ATLAS; Tonry, J. L.;
   Heinze, A. N.; Denneau, L.; Weiland, H.; Stalder, B.; K2 Mission Team;
   Barentsen, G.; Dotson, J.; Barclay, T.; Gully-Santiago, M.; Hedges,
   C.; Cody, A. M.; Howell, S.; Kepler Spacecraft Team; Coughlin, J.;
   Van Cleve, J. E.; Cardoso, J. Vinícius de Miranda; Larson, K. A.;
   McCalmont-Everton, K. M.; Peterson, C. A.; Ross, S. E.; Reedy, L. H.;
   Osborne, D.; McGinn, C.; Kohnert, L.; Migliorini, L.; Wheaton, A.;
   Spencer, B.; Labonde, C.; Castillo, G.; Beerman, G.; Steward, K.;
   Hanley, M.; Larsen, R.; Gangopadhyay, R.; Kloetzel, R.; Weschler,
   T.; Nystrom, V.; Moffatt, J.; Redick, M.; Griest, K.; Packard, M.;
   Muszynski, M.; Kampmeier, J.; Bjella, R.; Flynn, S.; Elsaesser, B.
2019ApJ...870...12L    Altcode: 2018arXiv181110056L
  Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically
  confirmed Type Ia supernova (SN Ia) observed in the Kepler
  field. The Kepler data revealed an excess emission in its early
  light curve, allowing us to place interesting constraints on its
  progenitor system. Here we present extensive optical, ultraviolet,
  and near-infrared photometry, as well as dense sampling of optical
  spectra, for this object. SN 2018oh is relatively normal in its
  photometric evolution, with a rise time of 18.3 ± 0.3 days and Δm
  <SUB>15</SUB>(B) = 0.96 ± 0.03 mag, but it seems to have bluer B -
  V colors. We construct the “UVOIR” bolometric light curve having
  a peak luminosity of 1.49 × 10<SUP>43</SUP> erg s<SUP>-1</SUP>,
  from which we derive a nickel mass as 0.55 ± 0.04 M <SUB>⊙</SUB>
  by fitting radiation diffusion models powered by centrally located
  <SUP>56</SUP>Ni. Note that the moment when nickel-powered luminosity
  starts to emerge is +3.85 days after the first light in the Kepler
  data, suggesting other origins of the early-time emission, e.g.,
  mixing of <SUP>56</SUP>Ni to outer layers of the ejecta or interaction
  between the ejecta and nearby circumstellar material or a nondegenerate
  companion star. The spectral evolution of SN 2018oh is similar to that
  of a normal SN Ia but is characterized by prominent and persistent
  carbon absorption features. The C II features can be detected from the
  early phases to about 3 weeks after the maximum light, representing the
  latest detection of carbon ever recorded in an SN Ia. This indicates
  that a considerable amount of unburned carbon exists in the ejecta of
  SN 2018oh and may mix into deeper layers.

---------------------------------------------------------
Title: K2 Observations of SN 2018oh Reveal a Two-component Rising
    Light Curve for a Type Ia Supernova
Authors: Dimitriadis, G.; Foley, R. J.; Rest, A.; Kasen, D.; Piro,
   A. L.; Polin, A.; Jones, D. O.; Villar, A.; Narayan, G.; Coulter,
   D. A.; Kilpatrick, C. D.; Pan, Y. -C.; Rojas-Bravo, C.; Fox, O. D.;
   Jha, S. W.; Nugent, P. E.; Riess, A. G.; Scolnic, D.; Drout, M. R.;
   K2 Mission Team; Barentsen, G.; Dotson, J.; Gully-Santiago, M.; Hedges,
   C.; Cody, A. M.; Barclay, T.; Howell, S.; KEGS; Garnavich, P.; Tucker,
   B. E.; Shaya, E.; Mushotzky, R.; Olling, R. P.; Margheim, S.; Zenteno,
   A.; Kepler spacecraft Team; Coughlin, J.; Van Cleve, J. E.; Cardoso,
   J. Vinícius de Miranda; Larson, K. A.; McCalmont-Everton, K. M.;
   Peterson, C. A.; Ross, S. E.; Reedy, L. H.; Osborne, D.; McGinn,
   C.; Kohnert, L.; Migliorini, L.; Wheaton, A.; Spencer, B.; Labonde,
   C.; Castillo, G.; Beerman, G.; Steward, K.; Hanley, M.; Larsen, R.;
   Gangopadhyay, R.; Kloetzel, R.; Weschler, T.; Nystrom, V.; Moffatt,
   J.; Redick, M.; Griest, K.; Packard, M.; Muszynski, M.; Kampmeier,
   J.; Bjella, R.; Flynn, S.; Elsaesser, B.; Pan-STARRS; Chambers,
   K. C.; Flewelling, H. A.; Huber, M. E.; Magnier, E. A.; Waters,
   C. Z.; Schultz, A. S. B.; Bulger, J.; Lowe, T. B.; Willman, M.;
   Smartt, S. J.; Smith, K. W.; DECam; Points, S.; Strampelli, G. M.;
   ASAS-SN; Brimacombe, J.; Chen, P.; Muñoz, J. A.; Mutel, R. L.;
   Shields, J.; Vallely, P. J.; Villanueva, S., Jr.; PTSS/TNTS; Li,
   W.; Wang, X.; Zhang, J.; Lin, H.; Mo, J.; Zhao, X.; Sai, H.; Zhang,
   X.; Zhang, K.; Zhang, T.; Wang, L.; Zhang, J.; Baron, E.; DerKacy,
   J. M.; Li, L.; Chen, Z.; Xiang, D.; Rui, L.; Wang, L.; Huang, F.;
   Li, X.; Cumbres Observatory, Las; Hosseinzadeh, G.; Howell, D. A.;
   Arcavi, I.; Hiramatsu, D.; Burke, J.; Valenti, S.; ATLAS; Tonry,
   J. L.; Denneau, L.; Heinze, A. N.; Weiland, H.; Stalder, B.; Konkoly;
   Vinkó, J.; Sárneczky, K.; Pál, A.; Bódi, A.; Bognár, Zs.; Csák,
   B.; Cseh, B.; Csörnyei, G.; Hanyecz, O.; Ignácz, B.; Kalup, Cs.;
   Könyves-Tóth, R.; Kriskovics, L.; Ordasi, A.; Rajmon, I.; Sódor,
   A.; Szabó, R.; Szakáts, R.; Zsidi, G.; ePESSTO; Williams, S. C.;
   Nordin, J.; Cartier, R.; Frohmaier, C.; Galbany, L.; Gutiérrez,
   C. P.; Hook, I.; Inserra, C.; Smith, M.; Arizona, University of;
   Sand, D. J.; Andrews, J. E.; Smith, N.; Bilinski, C.
2019ApJ...870L...1D    Altcode: 2018arXiv181110061D
  We present an exquisite 30 minute cadence Kepler (K2) light curve of
  the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks
  before explosion, covering the moment of explosion and the subsequent
  rise, and continuing past peak brightness. These data are supplemented
  by multi-color Panoramic Survey Telescope (Pan-STARRS1) and Rapid
  Response System 1 and Cerro Tololo Inter-American Observatory 4 m
  Dark Energy Camera (CTIO 4-m DECam) observations obtained within hours
  of explosion. The K2 light curve has an unusual two-component shape,
  where the flux rises with a steep linear gradient for the first few
  days, followed by a quadratic rise as seen for typical supernovae
  (SNe) Ia. This “flux excess” relative to canonical SN Ia behavior
  is confirmed in our i-band light curve, and furthermore, SN 2018oh is
  especially blue during the early epochs. The flux excess peaks 2.14 ±
  0.04 days after explosion, has a FWHM of 3.12 ± 0.04 days, a blackbody
  temperature of T=17,{500}<SUB>-9,000</SUB><SUP>+11,500</SUP> K, a peak
  luminosity of 4.3+/- 0.2× {10}<SUP>37</SUP> {erg} {{{s}}}<SUP>-1</SUP>,
  and a total integrated energy of 1.27+/- 0.01× {10}<SUP>43</SUP>
  {erg}. We compare SN 2018oh to several models that may provide
  additional heating at early times, including collision with a companion
  and a shallow concentration of radioactive nickel. While all of these
  models generally reproduce the early K2 light curve shape, we slightly
  favor a companion interaction, at a distance of ∼2× {10}<SUP>12</SUP>
  {cm} based on our early color measurements, although the exact distance
  depends on the uncertain viewing angle. Additional confirmation of a
  companion interaction in future modeling and observations of SN 2018oh
  would provide strong support for a single-degenerate progenitor system.

---------------------------------------------------------
Title: Status of the Daniel K. Inouye Solar Telescope: unraveling
    the mysteries the Sun.
Authors: Rimmele, Thomas R.; Martinez Pillet, Valentin; Goode, Philip
   R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini,
   Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich;
   Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt,
   Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka,
   Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin,
   Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team
2018AAS...23231601R    Altcode:
  The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under
  construction on Haleakala, Maui will be the world’s largest solar
  telescope. Designed to meet the needs of critical high resolution and
  high sensitivity spectral and polarimetric observations of the sun,
  this facility will perform key observations of our nearest star that
  matters most to humankind. DKIST’s superb resolution and sensitivity
  will enable astronomers to address many of the fundamental problems
  in solar and stellar astrophysics, including the origin of stellar
  magnetism, the mechanisms of coronal heating and drivers of the
  solar wind, flares, coronal mass ejections and variability in solar
  and stellar output. DKIST will also address basic research aspects of
  Space Weather and help improve predictive capabilities. In combination
  with synoptic observations and theoretical modeling DKIST will unravel
  the many remaining mysteries of the Sun.The construction of DKIST is
  progressing on schedule with 80% of the facility complete. Operations
  are scheduled to begin early 2020. DKIST will replace the NSO
  facilities on Kitt Peak and Sac Peak with a national facility with
  worldwide unique capabilities. The design allows DKIST to operate as
  a coronagraph. Taking advantage of its large aperture and infrared
  polarimeters DKIST will be capable to routinely measure the currently
  illusive coronal magnetic fields. The state-of-the-art adaptive optics
  system provides diffraction limited imaging and the ability to resolve
  features approximately 20 km on the Sun. Achieving this resolution
  is critical for the ability to observe magnetic structures at their
  intrinsic, fundamental scales. Five instruments will be available at
  the start of operations, four of which will provide highly sensitive
  measurements of solar magnetic fields throughout the solar atmosphere
  - from the photosphere to the corona. The data from these instruments
  will be distributed to the world wide community via the NSO/DKIST data
  center located in Boulder. We present examples of science objectives
  and provide an overview of the facility and project status, including
  the ongoing efforts of the community to develop the critical science
  plan for the first 2-3 years of operations.

---------------------------------------------------------
Title: Infrared Imaging Spectroscopy Using Massively Multiplexed
    Slit-Based Techniques and Sub-Field Motion Correction
Authors: Schad, Thomas; Lin, Haosheng
2017SoPh..292..158S    Altcode: 2018arXiv180905132S
  Targeting dynamic spatially extended phenomena in the upper
  solar atmosphere, a new instrument concept has been developed
  and demonstrated at the Dunn Solar Telescope in New Mexico, USA,
  which provides wide-field, rapid-scanning, high-resolution imaging
  spectroscopy of the neutral helium λ 10830 spectral triplet. The
  instrument combines a narrowband imaging channel with a novel
  cospatial grating-based spectrograph with 17 parallel long slits
  that are simultaneously imaged on a single HgCdTe detector. Over a
  175<SUP>″</SUP>×125<SUP>″</SUP> field of view, a temporal cadence
  of 8.5 s is achieved between successive maps that critically sample the
  diffraction limit of the Dunn Solar Telescope at 1083 nm (1.22 λ /D
  =0.36<SUP>″</SUP>) and provide a resolving power (R =λ /δ λ ) up
  to ≈25 ,000 with a 1 nm bandwidth (i.e.275 kms−<SUP>1</SUP> Doppler
  coverage). Capitalizing on the strict simultaneity of the narrowband
  channel relative to each spectral image (acquired at a rate of 9.53
  Hz), this work demonstrates that sub-field image motion introduced by
  atmospheric seeing may be corrected post-facto in each mapped spectral
  data cube. This instrument furnishes essential infrared spectral imaging
  capabilities for current investigations while pioneering techniques
  for high-resolution wide-field time-domain solar astronomy.

---------------------------------------------------------
Title: A gravitational-wave standard siren measurement of the
    Hubble constant
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe,
   A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi,
   V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz,
   J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani,
   G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.;
   Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.;
   Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.;
   de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.;
   Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore,
   L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di
   Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.;
   Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange,
   J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen,
   M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon,
   A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.;
   Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas,
   R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.;
   Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña;
   Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.;
   Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan,
   S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.;
   Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer,
   J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.;
   Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain,
   K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.;
   Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.;
   Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.;
   Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.;
   Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang,
   G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels,
   P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb,
   S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki,
   D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.;
   Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin,
   M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.;
   Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.;
   Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.;
   Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore,
   B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska,
   J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.;
   Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos,
   M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.;
   Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler,
   R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner,
   A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong,
   W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl,
   R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen,
   D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson,
   T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl,
   M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako,
   M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira,
   F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams,
   P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.;
   Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.;
   Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco;
   Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da
   Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.;
   Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga,
   E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.;
   Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.;
   Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn,
   K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.;
   March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando,
   R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.;
   Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith,
   M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.;
   Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller,
   J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart,
   D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi,
   Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis;
   Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.;
   Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.;
   Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner,
   J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen,
   B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi,
   E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema,
   K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.;
   Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.;
   Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.;
   Rebolo, R.; Serra-Ricart, M.
2017Natur.551...85A    Altcode: 2017arXiv171005835A
  On 17 August 2017, the Advanced LIGO and Virgo detectors observed the
  gravitational-wave event GW170817—a strong signal from the merger
  of a binary neutron-star system. Less than two seconds after the
  merger, a γ-ray burst (GRB 170817A) was detected within a region
  of the sky consistent with the LIGO-Virgo-derived location of the
  gravitational-wave source. This sky region was subsequently observed
  by optical astronomy facilities, resulting in the identification of
  an optical transient signal within about ten arcseconds of the galaxy
  NGC 4993. This detection of GW170817 in both gravitational waves and
  electromagnetic waves represents the first ‘multi-messenger’
  astronomical observation. Such observations enable GW170817 to be
  used as a ‘standard siren’ (meaning that the absolute distance
  to the source can be determined directly from the gravitational-wave
  measurements) to measure the Hubble constant. This quantity represents
  the local expansion rate of the Universe, sets the overall scale of
  the Universe and is of fundamental importance to cosmology. Here
  we report a measurement of the Hubble constant that combines the
  distance to the source inferred purely from the gravitational-wave
  signal with the recession velocity inferred from measurements of
  the redshift using the electromagnetic data. In contrast to previous
  measurements, ours does not require the use of a cosmic ‘distance
  ladder’: the gravitational-wave analysis can be used to estimate
  the luminosity distance out to cosmological scales directly, without
  the use of intermediate astronomical distance measurements. We
  determine the Hubble constant to be about 70 kilometres per second
  per megaparsec. This value is consistent with existing measurements,
  while being completely independent of them. Additional standard siren
  measurements from future gravitational-wave sources will enable the
  Hubble constant to be constrained to high precision.

---------------------------------------------------------
Title: Multi-messenger Observations of a Binary Neutron Star Merger
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri,
   R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.;
   Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.;
   Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya,
   G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.;
   Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.;
   De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi,
   C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker,
   C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.;
   Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel,
   S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.;
   Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov,
   B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch,
   R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña
   Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.;
   Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh,
   P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland,
   D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.;
   Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff,
   M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi,
   A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.;
   Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery,
   M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall,
   L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.;
   Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell,
   J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration;
   Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.;
   Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles,
   M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen,
   R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.;
   Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro,
   M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno,
   C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.;
   Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain,
   E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.;
   Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev,
   R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.;
   Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.;
   Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.;
   Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser,
   J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.;
   Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.;
   Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de
   André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.;
   De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With,
   M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.;
   Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.;
   Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.;
   Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.;
   Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.;
   Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt,
   A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren,
   A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing,
   K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman,
   K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber,
   M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski,
   P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani,
   A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher,
   T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.;
   Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.;
   Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.;
   Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.;
   Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak,
   M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.;
   Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer,
   R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki,
   S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha,
   A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper,
   J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.;
   Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea,
   I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.;
   Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg,
   S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.;
   Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.;
   Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.;
   Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar,
   J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav,
   S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.;
   Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.;
   Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.;
   Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky,
   N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.;
   Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams,
   D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg,
   K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.;
   Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan,
   G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride
   Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks,
   D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik,
   Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration;
   Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao,
   X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen,
   Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du,
   Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.;
   Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia,
   S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li,
   C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li,
   Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.;
   Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.;
   Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.;
   Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.;
   Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang,
   Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.;
   Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang,
   C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.;
   Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang,
   Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.;
   Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu,
   Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André,
   M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas,
   T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.;
   Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.;
   Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr,
   J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella,
   M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.;
   Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis,
   G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic,
   D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.;
   Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.;
   Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz,
   R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.;
   Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon,
   C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler,
   M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.;
   Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre,
   D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.;
   Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael,
   T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.;
   Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa,
   V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa,
   A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti,
   M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti,
   M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.;
   Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.;
   Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.;
   Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.;
   de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall,
   C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall,
   F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.;
   Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.;
   Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration;
   Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani,
   L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma,
   I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo,
   F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.;
   Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti,
   F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.;
   Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico,
   F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia,
   M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley,
   R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.;
   Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.;
   Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.;
   Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.;
   Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot,
   E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook,
   E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout,
   M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman,
   J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley,
   W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.;
   Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.;
   Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.;
   Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.;
   Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny,
   B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol,
   K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke,
   D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander,
   F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.;
   Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.;
   Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.;
   Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson,
   M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.;
   Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon,
   R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol,
   R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.;
   Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell,
   M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins,
   A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel,
   M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.;
   Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.;
   Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration;
   Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.;
   Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti,
   S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo,
   P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola,
   L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti,
   A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli,
   L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.;
   Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta,
   A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti,
   N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera,
   M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.;
   Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria,
   T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu,
   S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.;
   Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu,
   L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini,
   Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin,
   D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau,
   M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.;
   Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.;
   Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma,
   K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz,
   D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao,
J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA:
   GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini,
   L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.;
   Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang,
   J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.;
   Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla,
   N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke,
   W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano,
   F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.;
   Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec,
   S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei,
   S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.;
   Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill,
   J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.;
   Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti,
   E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.;
   Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.;
   Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.;
   Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer,
   O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.;
   Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.;
   Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo,
   L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello,
   G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison,
   J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch,
   C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array,
ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon,
R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi,
   I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.;
   Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las
   Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller,
   A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.;
   Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken,
   C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.;
   Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.;
   Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.;
   Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li,
   X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.;
   Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff,
   J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program,
   Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.;
   Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner,
   J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen,
   B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun,
   S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.;
   Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas,
   T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers,
   R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.;
   Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.;
   Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato,
   H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.;
   Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov,
   D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo,
   R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER
   Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.;
   Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa,
   H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim,
   J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi,
   K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata,
   K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata,
   F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito,
   Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi,
   J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.;
   Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi,
   M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.;
   Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.;
   Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.;
   Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.;
   Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.;
   Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.;
   Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou,
   G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.;
   Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim,
   N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.;
   Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.;
   Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.;
   Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.;
   Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.;
   Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.;
   Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH;
   JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers,
   K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.;
   Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman,
   M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.;
   Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai,
   H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima,
   K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.;
   Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki,
   R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita,
   S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.;
   Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka,
   K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team;
   Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier,
   R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.;
   Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee,
   S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.;
   Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo,
   J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt,
   S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra,
   C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith,
   K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan,
   D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.;
   Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla,
   M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia,
   A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.;
   Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.;
   González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz,
   A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.;
   Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.;
   Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence,
   A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.;
   O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.;
   Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.;
   Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice,
   S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.;
   Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen,
   B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron,
   O.; pre="(">ePESSTO, <author; Chen, T. -W.; Krühler, T.; Schady,
   P.; Wiseman, P.; Greiner, J.; Rau, A.; Schweyer, T.; Klose, S.;
   Nicuesa Guelbenzu, A.; GROND; Palliyaguru, N. T.; Tech University,
   Texas; Shara, M. M.; Williams, T.; Vaisanen, P.; Potter, S. B.; Romero
   Colmenero, E.; Crawford, S.; Buckley, D. A. H.; Mao, J.; SALT Group;
   Díaz, M. C.; Macri, L. M.; García Lambas, D.; Mendes de Oliveira,
   C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell,
   W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz,
   M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Chavushyan, V.; Coelho,
   P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; Domínguez
   Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.;
   Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.;
   Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Melia,
   R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones,
   C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.;
   Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.;
Torres-Flores, S.; Tornatore, M.; Zadrożny, A.; Castillo, M.; TOROS:
   Transient Robotic Observatory of South Collaboration; Castro-Tirado,
   A. J.; Tello, J. C.; Hu, Y. -D.; Zhang, B. -B.; Cunniffe, R.;
   Castellón, A.; Hiriart, D.; Caballero-García, M. D.; Jelínek,
   M.; Kubánek, P.; Pérez del Pulgar, C.; Park, I. H.; Jeong, S.;
   Castro Cerón, J. M.; Pandey, S. B.; Yock, P. C.; Querel, R.; Fan,
   Y.; Wang, C.; BOOTES Collaboration; Beardsley, A.; Brown, I. S.;
   Crosse, B.; Emrich, D.; Franzen, T.; Gaensler, B. M.; Horsley,
   L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.;
   Sokolowski, M.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.;
Wayth, R.; Williams, A.; Wu, C.; Murchison Widefield Array, MWA:;
   Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Yamaoka, K.; Takahashi,
   I.; Asaoka, Y.; Ozawa, S.; Torii, S.; Shimizu, Y.; Tamura, T.;
   Ishizaki, W.; Cherry, M. L.; Ricciarini, S.; Penacchioni, A. V.;
   Marrocchesi, P. S.; CALET Collaboration; Pozanenko, A. S.; Volnova,
   A. A.; Mazaeva, E. D.; Minaev, P. Yu.; Krugov, M. A.; Kusakin, A. V.;
   Reva, I. V.; Moskvitin, A. S.; Rumyantsev, V. V.; Inasaridze, R.;
   Klunko, E. V.; Tungalag, N.; Schmalz, S. E.; Burhonov, O.; IKI-GW
   Follow-up Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.;
   Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert,
   P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus,
   J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher,
   M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.;
   Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.;
   Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.;
   Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon,
   B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt,
   P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson,
   K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J. -P.;
   Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.;
   Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.;
   Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.;
   Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.;
   Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.;
   Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.;
   Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.;
   Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt,
   I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Kerszberg,
   D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov,
   D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.;
   Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J. -P.;
   Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.;
   Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Malyshev,
   D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.;
   Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.;
   Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach,
   T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.;
   Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski,
   M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur,
   N. W.; Pelletier, G.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.;
   Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph,
   H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth,
   R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger,
   F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.;
   Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.;
   Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer,
   S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon,
   I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob,
   M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch,
   I.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.;
   Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard,
   C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt,
   D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis,
   G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin,
   F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.;
   Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann,
   P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.;
   Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn,
   J.; Żywucka, N.; H. E. S. S. Collaboration; Fender, R. P.; Broderick,
   J. W.; Rowlinson, A.; Wijers, R. A. M. J.; Stewart, A. J.; ter Veen,
   S.; Shulevski, A.; LOFAR Collaboration; Kavic, M.; Simonetti, J. H.;
   League, C.; Tsai, J.; Obenberger, K. S.; Nathaniel, K.; Taylor,
   G. B.; Dowell, J. D.; Liebling, S. L.; Estes, J. A.; Lippert, M.;
Sharma, I.; Vincent, P.; Farella, B.; Wavelength Array, LWA: Long;
   Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.;
   Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.;
   Barber, A. S.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno,
   E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.;
   Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova,
   S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.;
   De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.;
   Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth,
   R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack,
   H.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.;
   Gonzõlez Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias,
   Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.;
   Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann,
   S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.;
   Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García,
   R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.;
   Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.;
   Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.;
   Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo,
   R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière,
   C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar,
   H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.;
   Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Tibolla, O.;
   Tollefson, K.; Torres, I.; Ukwatta, T. N.; Weisgarber, T.; Westerhoff,
   S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.;
   Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aab, A.; Abreu,
   P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte,
   I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi,
   G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene,
   N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.;
   Barbato, F.; Barreira Luz, R. J.; Becker, K. H.; Bellido, J. A.; Berat,
   C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess,
   S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi,
   C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.;
   Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink,
   S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio,
   A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi,
   G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay,
   R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica,
   L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.;
   Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.;
   Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de
   Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.;
   De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny,
   O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.;
   Dorosti, Q.; Dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.;
   Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.;
   Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.;
   Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.;
   Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.;
   García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.;
   Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup,
   G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi,
   A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes,
   G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison,
   T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann,
   P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.;
   Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.;
   Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili,
   M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer,
   B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.;
   Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.;
   Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd,
   D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira,
   M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti,
   D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.;
   Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.;
   Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez,
   H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys,
   S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.;
   Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal,
   S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.;
   Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino,
   G.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa,
   R.; Naranjo, I.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol,
   M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.;
   Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka,
   M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.;
   Pech, M.; Pedreira, F.; Pȩkala, J.; Peña-Rodriguez, J.; Pereira,
   L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok,
   J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.;
   Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel,
   E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.;
   Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.;
   Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo,
   J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl,
   P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.;
   Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos,
   E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer,
   M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten,
   O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.;
   Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard,
   R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.;
   Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.;
   Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich,
   A.; Suarez, F.; Suarez-Durán, M.; Sudholz, T.; Suomijärvi, T.;
   Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.;
   Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.;
   Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.;
   Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño,
   I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.;
   van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.;
   Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha,
   J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.;
   Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.;
   Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler,
   B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.;
   Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello,
   F.; Pierre Auger Collaboration; Kim, S.; Schulze, S.; Bauer, F. E.;
   Corral-Santana, J. M.; de Gregorio-Monsalvo, I.; González-López,
   J.; Hartmann, D. H.; Ishwara-Chandra, C. H.; Martín, S.; Mehner,
   A.; Misra, K.; Michałowski, M. J.; Resmi, L.; ALMA Collaboration;
   Paragi, Z.; Agudo, I.; An, T.; Beswick, R.; Casadio, C.; Frey, S.;
   Jonker, P.; Kettenis, M.; Marcote, B.; Moldon, J.; Szomoru, A.;
   van Langevelde, H. J.; Yang, J.; Euro VLBI Team; Cwiek, A.; Cwiok,
   M.; Czyrkowski, H.; Dabrowski, R.; Kasprowicz, G.; Mankiewicz, L.;
   Nawrocki, K.; Opiela, R.; Piotrowski, L. W.; Wrochna, G.; Zaremba,
   M.; Żarnecki, A. F.; Pi of Sky Collaboration; Haggard, D.; Nynka,
   M.; Ruan, J. J.; Chandra Team at McGill University; Bland, P. A.;
   Booler, T.; Devillepoix, H. A. R.; de Gois, J. S.; Hancock, P. J.;
   Howie, R. M.; Paxman, J.; Sansom, E. K.; Towner, M. C.; Desert
Fireball Network, DFN:; Tonry, J.; Coughlin, M.; Stubbs, C. W.;
   Denneau, L.; Heinze, A.; Stalder, B.; Weiland, H.; ATLAS; Eatough,
   R. P.; Kramer, M.; Kraus, A.; Time Resolution Universe Survey, High;
   Troja, E.; Piro, L.; Becerra González, J.; Butler, N. R.; Fox, O. D.;
   Khandrika, H. G.; Kutyrev, A.; Lee, W. H.; Ricci, R.; Ryan, R. E.,
   Jr.; Sánchez-Ramírez, R.; Veilleux, S.; Watson, A. M.; Wieringa,
   M. H.; Burgess, J. M.; van Eerten, H.; Fontes, C. J.; Fryer, C. L.;
   Korobkin, O.; Wollaeger, R. T.; RIMAS; RATIR; Camilo, F.; Foley,
   A. R.; Goedhart, S.; Makhathini, S.; Oozeer, N.; Smirnov, O. M.;
   Fender, R. P.; Woudt, P. A.; South Africa/MeerKAT, SKA
2017ApJ...848L..12A    Altcode: 2017arXiv171005833L
  On 2017 August 17 a binary neutron star coalescence candidate (later
  designated GW170817) with merger time 12:41:04 UTC was observed
  through gravitational waves by the Advanced LIGO and Advanced Virgo
  detectors. The Fermi Gamma-ray Burst Monitor independently detected a
  gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with
  respect to the merger time. From the gravitational-wave signal, the
  source was initially localized to a sky region of 31 deg<SUP>2</SUP>
  at a luminosity distance of {40}<SUB>-8</SUB><SUP>+8</SUP> Mpc and
  with component masses consistent with neutron stars. The component
  masses were later measured to be in the range 0.86 to 2.26 {M}<SUB>⊙
  </SUB>. An extensive observing campaign was launched across the
  electromagnetic spectrum leading to the discovery of a bright optical
  transient (SSS17a, now with the IAU identification of AT 2017gfo) in
  NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
  One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
  optical transient was independently detected by multiple teams
  within an hour. Subsequent observations targeted the object and its
  environment. Early ultraviolet observations revealed a blue transient
  that faded within 48 hours. Optical and infrared observations showed
  a redward evolution over ∼10 days. Following early non-detections,
  X-ray and radio emission were discovered at the transient's position ∼
  9 and ∼ 16 days, respectively, after the merger. Both the X-ray and
  radio emission likely arise from a physical process that is distinct
  from the one that generates the UV/optical/near-infrared emission. No
  ultra-high-energy gamma-rays and no neutrino candidates consistent with
  the source were found in follow-up searches. These observations support
  the hypothesis that GW170817 was produced by the merger of two neutron
  stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A)
  and a kilonova/macronova powered by the radioactive decay of r-process
  nuclei synthesized in the ejecta. <P />Any correspondence should be
  addressed to .

---------------------------------------------------------
Title: Critical Infrared Science with the Daniel K. Inouye Solar
    Telescope
Authors: Schad, Thomas A.; Fehlmann, Andre; Jaeggli, Sarah A.; Kuhn,
   Jeffrey Richard; Lin, Haosheng; Penn, Matthew J.; Rimmele, Thomas R.;
   Woeger, Friedrich
2017SPD....4811703S    Altcode:
  Critical science planning for early operations of the Daniel K. Inouye
  Solar Telescope is underway. With its large aperture, all-reflective
  telescope design, and advanced instrumentation, DKIST provides
  unprecedented access to the important infrared (IR) solar spectrum
  between 1 and 5 microns. Breakthrough IR capabilities in coronal
  polarimetry will sense the coronal magnetic field routinely for the
  first time. The increased Zeeman resolution near the photospheric
  opacity minimum will provide our deepest and most sensitive measurement
  of quiet sun and active region magnetic fields to date. High-sensitivity
  He I triplet polarimetry will dynamically probe the chromospheric
  magnetic field in fibrils, spicules, and filaments, while observations
  of molecular CO transitions will characterize the coolest regions
  of the solar atmosphere. When combined with the longer timescales
  of good atmospheric seeing compared with the visible, DKIST infrared
  diagnostics are expected to be mainstays of solar physics in the DKIST
  era. This paper will summarize the critical science areas addressed
  by DKIST infrared instrumentation and invite the community to further
  contribute to critical infrared science planning.

---------------------------------------------------------
Title: An Update on the Diffraction-Limited Near Infrared
    Spectropolarimeter for the Daniel K. Inouye Solar Telescope
Authors: Jaeggli, Sarah A.; Lin, Haosheng; Onaka, Peter; McGregor,
   Helen; Yamada, Hubert
2017SPD....4811704J    Altcode:
  DL-NIRSP is an integral field imaging spectropolarimeter for
  photospheric, chromospheric, and coronal magnetic field studies
  which is currently under development by the University of Hawaii’s
  Institute for Astronomy as part of the first light instrument suite for
  DKIST. DL-NIRSP pairs a multi-slit fiber-optic image slicer with narrow
  bandpass isolation filters and large format detectors to achieve very
  high cadence observations in three simultaneous wavelength channels
  in the Visible-IR. Planned diagnostics at first light include Fe XI
  789.2 nm, Ca II 854.2 nm, Fe XIII 1074.7 nm, Si I/He I 1083.0 nm, Si
  X 1430.0 nm, and Fe I 1565.0 nm. More spectral lines will be added in
  the future. As the last stop in the DKIST light distribution system,
  DL-NIRSP will receive an AO corrected beam and will be able to operate
  simultaneously with the other visible light instruments. We provide an
  update on the current challenges and rewards yet to come with DL-NIRSP.

---------------------------------------------------------
Title: Vector Magnetic Field Measurements along a Cooled Stereo-imaged
    Coronal Loop
Authors: Schad, T. A.; Penn, M. J.; Lin, H.; Judge, P. G.
2016ApJ...833....5S    Altcode: 2016arXiv161005332S
  The variation of the vector magnetic field along structures in
  the solar corona remains unmeasured. Using a unique combination of
  spectropolarimetry and stereoscopy, we infer and compare the vector
  magnetic field structure and three-dimensional morphology of an
  individuated coronal loop structure undergoing a thermal instability. We
  analyze spectropolarimetric data of the He I λ10830 triplet
  (1s2s{}<SUP>3</SUP>{S}<SUB>1</SUB>-1s2p{}<SUP>3</SUP>{P}<SUB>{2,1,0</SUB>})
  obtained at the Dunn Solar Telescope with the Facility Infrared
  Spectropolarimeter on 2011 September 19. Cool coronal loops are
  identified by their prominent drainage signatures in the He I data
  (redshifts up to 185 km s<SUP>-1</SUP>). Extinction of EUV background
  radiation along these loops is observed by both the Atmospheric Imaging
  Assembly on board the Solar Dynamics Observatory and the Extreme
  Ultraviolet Imager on board spacecraft A of the Solar Terrestrial
  Relations Observatory, and is used to stereoscopically triangulate
  the loop geometry up to heights of 70 Mm (0.1R <SUB>Sun</SUB>) above
  the solar surface. The He I polarized spectra along this loop exhibit
  signatures indicative of atomic-level polarization, as well as magnetic
  signatures through the Hanle and Zeeman effects. Spectropolarimetric
  inversions indicate that the magnetic field is generally oriented
  along the coronal loop axis, and provide the height dependence of the
  magnetic field intensity. The technique we demonstrate is a powerful
  one that may help better understand the thermodynamics of coronal
  fine-structure magnetism.

---------------------------------------------------------
Title: Daniel K. Inouye Solar Telescope: High-resolution observing
    of the dynamic Sun
Authors: Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.;
   Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.;
   Wöger, F.; DKIST Team
2016AN....337.1064T    Altcode:
  The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly
  known as the Advanced Technology Solar Telescope (ATST) is currently
  under construction on Haleakalā (Maui, Hawai'i) projected to
  start operations in 2019. At the time of completion, DKIST will be
  the largest ground-based solar telescope providing unprecedented
  resolution and photon collecting power. The DKIST will be equipped
  with a set of first-light facility-class instruments offering unique
  imaging, spectroscopic and spectropolarimetric observing opportunities
  covering the visible to infrared wavelength range. This first-light
  instrumentation suite will include: a Visible Broadband Imager (VBI) for
  high-spatial and -temporal resolution imaging of the solar atmosphere; a
  Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line
  spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter
  (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed
  Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP)
  for two-dimensional high-spatial resolution spectropolarimetry
  (simultaneous spatial and spectral information); and a Cryogenic Near
  Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field
  measurements and on-disk observations of, e.g., the CO lines at 4.7
  μm. We will provide an overview of the DKIST's unique capabilities
  with strong focus on the first-light instrumentation suite, highlight
  some of the additional properties supporting observations of transient
  and dynamic solar phenomena, and touch on some operational strategies
  and the DKIST critical science plan.

---------------------------------------------------------
Title: Construction status of the Daniel K. Inouye solar telescope
Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark;
   Martinez Pillet, Valentin; Casini, Roberto; Berukoff, Steve; Craig,
   Simon C.; Elmore, David; Ferayorni, Andrew; Goodrich, Bret D.;
   Hubbard, Robert P.; Harrington, David; Hegwer, Steve; Jeffers, Paul;
   Johansson, Erik M.; Kuhn, Jeff; Lin, Haosheng; Marshall, Heather;
   Mathioudakis, Mihalis; McBride, William R.; McVeigh, William; Phelps,
   LeEllen; Schmidt, Wolfgang; Shimko, Steve; Sueoka, Stacey; Tritschler,
   Alexandra; Williams, Timothy R.; Wöger, Friedrich
2016SPIE.9906E..1BM    Altcode:
  We provide an update on the construction status of the Daniel
  K. Inouye Solar Telescope. This 4-m diameter facility is designed to
  enable detection and spatial/temporal resolution of the predicted,
  fundamental astrophysical processes driving solar magnetism at
  their intrinsic scales throughout the solar atmosphere. These data
  will drive key research on solar magnetism and its influence on
  solar winds, flares, coronal mass ejections and solar irradiance
  variability. The facility is developed to support a broad wavelength
  range (0.35 to 28 microns) and will employ state-of-the-art adaptive
  optics systems to provide diffraction limited imaging, resolving
  features approximately 20 km on the Sun. At the start of operations,
  there will be five instruments initially deployed: Visible Broadband
  Imager (VBI; National Solar Observatory), Visible SpectroPolarimeter
  (ViSP; NCAR High Altitude Observatory), Visible Tunable Filter (VTF
  (a Fabry-Perot tunable spectropolarimeter); Kiepenheuer Institute for
  Solarphysics), Diffraction Limited NIR Spectropolarimeter (DL-NIRSP;
  University of Hawaii, Institute for Astronomy) and the Cryogenic NIR
  Spectropolarimeter (Cryo-NIRSP; University of Hawaii, Institute for
  Astronomy). As of mid-2016, the project construction is in its 4th
  year of site construction and 7th year overall. Major milestones in
  the off-site development include the conclusion of the polishing of
  the M1 mirror by University of Arizona, College of Optical Sciences,
  the delivery of the Top End Optical Assembly (L3), the acceptance of
  the Deformable Mirror System (Xinetics); all optical systems have been
  contracted and are either accepted or in fabrication. The Enclosure
  and Telescope Mount Assembly passed through their factory acceptance
  in 2014 and 2015, respectively. The enclosure site construction
  is currently concluding while the Telescope Mount Assembly site
  erection is underway. The facility buildings (Utility and Support
  and Operations) have been completed with ongoing work on the thermal
  systems to support the challenging imaging requirements needed for the
  solar research. Finally, we present the construction phase performance
  (schedule, budget) with projections for the start of early operations.

---------------------------------------------------------
Title: Scientific objectives and capabilities of the Coronal Solar
    Magnetism Observatory
Authors: Tomczyk, S.; Landi, E.; Burkepile, J. T.; Casini, R.; DeLuca,
   E. E.; Fan, Y.; Gibson, S. E.; Lin, H.; McIntosh, S. W.; Solomon,
   S. C.; Toma, G.; Wijn, A. G.; Zhang, J.
2016JGRA..121.7470T    Altcode:
  Magnetic influences increase in importance in the solar atmosphere
  from the photosphere out into the corona, yet our ability to routinely
  measure magnetic fields in the outer solar atmosphere is lacking. We
  describe the scientific objectives and capabilities of the COronal Solar
  Magnetism Observatory (COSMO), a proposed synoptic facility designed
  to measure magnetic fields and plasma properties in the large-scale
  solar atmosphere. COSMO comprises a suite of three instruments chosen
  to enable the study of the solar atmosphere as a coupled system: (1)
  a coronagraph with a 1.5 m aperture to measure the magnetic field,
  temperature, density, and dynamics of the corona; (2) an instrument
  for diagnostics of chromospheric and prominence magnetic fields and
  plasma properties; and (3) a white light K-coronagraph to measure
  the density structure and dynamics of the corona and coronal mass
  ejections. COSMO will provide a unique combination of magnetic field,
  density, temperature, and velocity observations in the corona and
  chromosphere that have the potential to transform our understanding
  of fundamental physical processes in the solar atmosphere and their
  role in the origins of solar variability and space weather.

---------------------------------------------------------
Title: Supplement: “Localization and Broadband Follow-up of the
    Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO
   Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.;
   Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee,
   W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla,
   T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.;
   Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.;
   Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.;
   Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock,
   R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.;
   da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor,
   Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.;
   Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley,
   R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer,
   C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.;
   Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.;
   Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.;
   Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.;
   Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.;
   Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT
   Collaboration; Zadko Collaboration; Algerian National Observatory,
   Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela,
   T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral,
   J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares,
   M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration
2016ApJS..225....8A    Altcode: 2016arXiv160407864A
  This Supplement provides supporting material for Abbott et
  al. (2016a). We briefly summarize past electromagnetic (EM) follow-up
  efforts as well as the organization and policy of the current EM
  follow-up program. We compare the four probability sky maps produced
  for the gravitational-wave transient GW150914, and provide additional
  details of the EM follow-up observations that were performed in the
  different bands.

---------------------------------------------------------
Title: Localization and Broadband Follow-up of the Gravitational-wave
    Transient GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma,
   I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo
   Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong,
   S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart,
   D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.;
   Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott,
   T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.;
   Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.;
   Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander,
   F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.;
   D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich,
   J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.;
   Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher,
   B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.;
   Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen,
   D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James,
   D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.;
   Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin,
   N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.;
   di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot,
   Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.;
   Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech,
   R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.;
   Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration
2016ApJ...826L..13A    Altcode: 2016arXiv160208492A
  A gravitational-wave (GW) transient was identified in data recorded
  by the Advanced Laser Interferometer Gravitational-wave Observatory
  (LIGO) detectors on 2015 September 14. The event, initially designated
  G184098 and later given the name GW150914, is described in detail
  elsewhere. By prior arrangement, preliminary estimates of the time,
  significance, and sky location of the event were shared with 63 teams of
  observers covering radio, optical, near-infrared, X-ray, and gamma-ray
  wavelengths with ground- and space-based facilities. In this Letter we
  describe the low-latency analysis of the GW data and present the sky
  localization of the first observed compact binary merger. We summarize
  the follow-up observations reported by 25 teams via private Gamma-ray
  Coordinates Network circulars, giving an overview of the participating
  facilities, the GW sky localization coverage, the timeline, and depth
  of the observations. As this event turned out to be a binary black hole
  merger, there is little expectation of a detectable electromagnetic
  (EM) signature. Nevertheless, this first broadband campaign to search
  for a counterpart of an Advanced LIGO source represents a milestone and
  highlights the broad capabilities of the transient astronomy community
  and the observing strategies that have been developed to pursue neutron
  star binary merger events. Detailed investigations of the EM data and
  results of the EM follow-up campaign are being disseminated in papers
  by the individual teams.

---------------------------------------------------------
Title: Construction Status and Early Science with the Daniel K. Inouye
    Solar Telescope
Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Warner, Mark;
   Martinez Pillet, Valentin; Craig, Simon; Woeger, Friedrich; Tritschler,
   Alexandra; Berukoff, Steven J.; Casini, Roberto; Goode, Philip R.;
   Knoelker, Michael; Kuhn, Jeffrey Richard; Lin, Haosheng; Mathioudakis,
   Mihalis; Reardon, Kevin P.; Rosner, Robert; Schmidt, Wolfgang
2016SPD....4720101M    Altcode:
  The 4-m Daniel K. Inouye Solar Telescope (DKIST) is in its seventh
  year of overall development and its fourth year of site construction
  on the summit of Haleakala, Maui. The Site Facilities (Utility
  Building and Support &amp; Operations Building) are in place with
  ongoing construction of the Telescope Mount Assembly within. Off-site
  the fabrication of the component systems is completing with early
  integration testing and verification starting.Once complete this
  facility will provide the highest sensitivity and resolution for study
  of solar magnetism and the drivers of key processes impacting Earth
  (solar wind, flares, coronal mass ejections, and variability in solar
  output). The DKIST will be equipped initially with a battery of first
  light instruments which cover a spectral range from the UV (380 nm)
  to the near IR (5000 nm), and capable of providing both imaging and
  spectro-polarimetric measurements throughout the solar atmosphere
  (photosphere, chromosphere, and corona); these instruments are being
  developed by the National Solar Observatory (Visible Broadband Imager),
  High Altitude Observatory (Visible Spectro-Polarimeter), Kiepenheuer
  Institute (Visible Tunable Filter) and the University of Hawaii
  (Cryogenic Near-Infrared Spectro-Polarimeter and the Diffraction-Limited
  Near-Infrared Spectro-Polarimeter). Further, a United Kingdom consortium
  led by Queen's University Belfast is driving the development of high
  speed cameras essential for capturing the highly dynamic processes
  measured by these instruments. Finally, a state-of-the-art adaptive
  optics system will support diffraction limited imaging capable of
  resolving features approximately 20 km in scale on the Sun.We present
  the overall status of the construction phase along with the current
  challenges as well as a review of the planned science testing and the
  transition into early science operations.

---------------------------------------------------------
Title: mxCSM: A 100-slit, 6-wavelength wide-field coronal
    spectropolarimeter for the study of the dynamics and the magnetic
    fields of the solar corona
Authors: Lin, Haosheng
2016FrASS...3....9L    Altcode:
  remendous progress has been made in the field of observational
  coronal magnetometry in the first decade of the 21st century. With
  the successful construction of the Coronal Multichannel Magnetometer
  (CoMP) instrument, observations of the linear polarization of the
  coronal emission lines (CELs), which carry information about the
  azimuthal direction of the coronal magnetic fields, are now routinely
  available. However, reliable and regular measurements of the circular
  polarization signals of the CELs remain illusive. The CEL circular
  polarization signals allow us to infer the magnetic field strength in
  the corona, and is critically important of our understanding of the
  solar corona. Current telescopes and instrument can only measure the
  coronal magnetic field strength over a small field of view. Furthermore,
  the observations require very long integration time that preclude
  the study of dynamic events even when only a small field of view is
  required. This paper describes a new instrument concept that employees
  large-scale multiplexing technology to enhance the efficiency of current
  coronal spectropolarimeter by more than two orders of magnitude. This
  will allow for the instrument to increase of the integration time
  at each spatial location by the same factor, while also achieving a
  large field of view coverage. We will present the conceptual design
  of a 100-slit coronal spectropolarimeter that can observe six coronal
  emission lines simultaneously. Instruments based on this concept will
  allow us to study the evolution of the coronal magnetic field even
  with coronagraphs with modest aperture.

---------------------------------------------------------
Title: Direct Observation of Solar Coronal Magnetic Fields by Vector
    Tomography of the Coronal Emission Line Polarizations
Authors: Kramar, M.; Lin, H.; Tomczyk, S.
2016ApJ...819L..36K    Altcode: 2015arXiv150207200K
  We present the first direct “observation” of the global-scale,
  3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112
  using vector tomographic inversion techniques. The vector tomographic
  inversion uses measurements of the Fe xiii 10747 Å Hanle effect
  polarization signals by the Coronal Multichannel Polarimeter (CoMP)
  and 3D coronal density and temperature derived from scalar tomographic
  inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme
  Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity
  images as inputs to derive a coronal magnetic field model that best
  reproduces the observed polarization signals. While independent
  verifications of the vector tomography results cannot be performed,
  we compared the tomography inverted coronal magnetic fields with those
  constructed by magnetohydrodynamic (MHD) simulations based on observed
  photospheric magnetic fields of CR 2112 and 2113. We found that the
  MHD model for CR 2112 is qualitatively consistent with the tomography
  inverted result for most of the reconstruction domain except for several
  regions. Particularly, for one of the most noticeable regions, we found
  that the MHD simulation for CR 2113 predicted a model that more closely
  resembles the vector tomography inverted magnetic fields. In another
  case, our tomographic reconstruction predicted an open magnetic field at
  a region where a coronal hole can be seen directly from a STEREO-B/EUVI
  image. We discuss the utilities and limitations of the tomographic
  inversion technique, and present ideas for future developments.

---------------------------------------------------------
Title: Constraints on the richness-mass relation and the optical-SZE
    positional offset distribution for SZE-selected clusters
Authors: Saro, A.; Bocquet, S.; Rozo, E.; Benson, B. A.; Mohr,
   J.; Rykoff, E. S.; Soares-Santos, M.; Bleem, L.; Dodelson, S.;
   Melchior, P.; Sobreira, F.; Upadhyay, V.; Weller, J.; Abbott, T.;
   Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.;
   Bayliss, M.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brodwin,
   M.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J. E.;
   Capasso, R.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Chiu,
   I.; Covarrubias, R.; Crawford, T. M.; Crocce, M.; D'Andrea, C. B.;
   da Costa, L. N.; DePoy, D. L.; Desai, S.; de Haan, T.; Diehl, H. T.;
   Dietrich, J. P.; Doel, P.; Cunha, C. E.; Eifler, T. F.; Evrard, A. E.;
   Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.;
   Gangkofner, C.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.;
   Gupta, N.; Hennig, C.; Holzapfel, W. L.; Honscheid, K.; Jain, B.;
   James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lin, H.;
   Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, Paul; McDonald,
   M.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.;
   Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.;
   Schubnell, M.; Sevilla, I.; Smith, R. C.; Stalder, B.; Stark, A. A.;
   Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler,
   J.; Thomas, D.; Tucker, D.; Vikram, V.; von der Linden, A.; Walker,
   A. R.; Wechsler, R. H.; Wester, W.; Zenteno, A.; Ziegler, K. E.
2015MNRAS.454.2305S    Altcode: 2015arXiv150607814S
  We cross-match galaxy cluster candidates selected via their
  Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg<SUP>2</SUP> of
  the South Pole Telescope 2500d SPT-SZ survey with optically identified
  clusters selected from the Dark Energy Survey science verification
  data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of
  the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding
  algorithm that also returns a richness estimate for each cluster. We
  model the richness λ-mass relation with the following function
  &lt;ln λ|M<SUB>500</SUB>&gt; ∝ B<SUB>λ</SUB>ln M<SUB>500</SUB> +
  C<SUB>λ</SUB>ln E(z) and use SPT-SZ cluster masses and RM richnesses
  λ to constrain the parameters. We find B_λ = 1.14^{+0.21}_{-0.18}
  and C_λ =0.73^{+0.77}_{-0.75}. The associated scatter in mass at fixed
  richness is σ _{ln M|λ } = 0.18^{+0.08}_{-0.05} at a characteristic
  richness λ = 70. We demonstrate that our model provides an adequate
  description of the matched sample, showing that the fraction of
  SPT-SZ-selected clusters with RM counterparts is consistent with
  expectations and that the fraction of RM-selected clusters with
  SPT-SZ counterparts is in mild tension with expectation. We model the
  optical-SZE cluster positional offset distribution with the sum of two
  Gaussians, showing that it is consistent with a dominant, centrally
  peaked population and a subdominant population characterized by larger
  offsets. We also cross-match the RM catalogue with SPT-SZ candidates
  below the official catalogue threshold significance ξ = 4.5, using
  the RM catalogue to provide optical confirmation and redshifts for 15
  additional clusters with ξ ∈ [4, 4.5].

---------------------------------------------------------
Title: 3D Observation of the Global Coronal Magnetic Field by Vector
    Tomography using the Coronal Emission Linear Polarization Data.
Authors: Kramar, Maxim; Lin, Haosheng; Tomczyk, Steven
2015IAUGA..2257404K    Altcode:
  Measurement of the coronal magnetic field is a crucial ingredient
  in understanding the nature of solar coronal phenomena at all
  scales. However, due to the low density and opacity of the solar
  atmosphere, the coronal emission measurements are result of a
  line-of-sight (LOS) integration through a nonuniform temperature,
  density and magnetic field distribution. Therefore, except in a few
  special cases, a direct inference of the 3D coronal magnetic field
  structure from polarization data is in general not possible. Tomography
  methods allow to resolve the LOS problem.We will present the
  global-scale, 3D coronal vector magnetic fields obtained by a vector
  tomographic inversion technique.The Vector tomographic inversion uses
  measurements of the Fe XIII 10747 A Hanle effect linear polarization
  signals by the Coronal Multichannel Polarimeter (CoMP) as inputs to
  derive a coronal magnetic field model that best reproduces the observed
  polarization signals. The 3D electron density and temperature, needed
  as additional input, have been reconstructed by scalar field tomography
  method based on STEREO/EUVI data. We will present the 3D coronal vector
  magnetic field, electron density and temperature resulted from these
  inversions.While independent verifications of the vector tomography
  results cannot be performed, we compared the tomography inverted coronal
  magnetic fields with those constructed by MagnetoHydroDynamic (MHD)
  simulation based on observed photospheric magnetic fields and with 3D
  coronal density structures obtained by scalar field tomography based
  on coronal observations. We will discuss the utilities and limitations
  of the inversion technique, and present ideas for future developments.

---------------------------------------------------------
Title: He I Vector Magnetic Field Maps of a Sunspot and Its
    Superpenumbral Fine-Structure
Authors: Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A.
2015SoPh..290.1607S    Altcode: 2015arXiv150505567S; 2015SoPh..tmp...60S
  Advanced inversions of high-resolution spectropolarimetric observations
  of the He I triplet at 1083 nm are used to generate unique maps of
  the chromospheric magnetic field vector across a sunspot and its
  superpenumbral canopy. The observations were acquired by the Facility
  Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST)
  on 29 January 2012. Multiple atmospheric models are employed in the
  inversions because superpenumbral Stokes profiles are dominated by
  atomic-level polarization, while sunspot profiles are Zeeman-dominated,
  but also exhibit signatures that might be induced by symmetry-breaking
  effects of the radiation field incident on the chromospheric
  material. We derive the equilibrium magnetic structure of a sunspot in
  the chromosphere and furthermore show that the superpenumbral magnetic
  field does not appear to be finely structured, unlike the observed
  intensity structure. This suggests that fibrils are not concentrations
  of magnetic flux, but are instead distinguished by individualized
  thermalization. We also directly compare our inverted values with a
  current-free extrapolation of the chromospheric field. With improved
  measurements in the future, the average shear angle between the inferred
  magnetic field and the potential field may offer a means to quantify
  the non-potentiality of the chromospheric magnetic field to study the
  onset of explosive solar phenomena.

---------------------------------------------------------
Title: DKIST: Observing the Sun at High Resolution
Authors: Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.;
   Craig, S. C.; Elmore, D. F.; Hubbard, R. P.; Kuhn, J. R.; Lin, H.;
   McMullin, J. P.; Reardon, K. P.; Schmidt, W.; Warner, M.; Woger, F.
2015csss...18..933T    Altcode:
  The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly
  known as the Advanced Technology Solar Telescope (ATST) and currently
  under construction on Haleakalā (Maui, Hawai'i) will be the largest
  solar ground-based telescope and leading resource for studying the
  dynamic Sun and its phenomena at high spatial, spectral and temporal
  resolution. Accurate and sensitive polarimetric observations at
  high-spatial resolution throughout the solar atmosphere including the
  corona is a high priority and a major science driver. As such the DKIST
  will offer a combination of state-of-the-art instruments with imaging
  and/or spectropolarimetric capabilities covering a broad wavelength
  range. This first-light instrumentation suite will include: a Visible
  Broadband Imager (VBI) for high-spatial and -temporal resolution
  imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP)
  for sensitive and accurate multi-line spectropolarimetry; a double
  Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial
  resolution spectropolarimetry; a fiber-fed 2D Diffraction-Limited Near
  Infra-Red Spectro-Polarimeter (DL-NIRSP); and a Cryogenic Near Infra-Red
  Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements
  and on-disk observations of e.g. the CO lines at 4.7 microns. We
  will provide a brief overview of the DKIST's unique capabilities to
  perform spectroscopic and spectropolarimetric measurements of the solar
  atmosphere using its first-light instrumentation suite, the status of
  the construction project, and how facility and data access is provided
  to the US and international community.

---------------------------------------------------------
Title: The Coronal Solar Magnetism Observatory (COSMO)
Authors: Tomczyk, S.; Landi, E.; Lin, H.; Zhang, J.
2014AGUFMSH53B4212T    Altcode:
  Measurements of coronal and chromospheric magnetic fields are arguably
  the most important observables required in our understanding of the
  emergence of magnetic flux into the solar atmosphere and the processes
  responsible for the production of solar activity, coronal heating
  and coronal dynamics. However, routine observations of the strength
  and orientation of coronal and chromospheric magnetic fields are
  not currently available. COSMO is a proposed ground-based suite of
  instruments designed for routine study of coronal and chromospheric
  magnetic fields and their environment. We will present an overview
  of the COSMO and show recent progress in development of the COSMO
  observatory.

---------------------------------------------------------
Title: Polarization properties of a birefringent fiber optic image
    slicer for diffraction-limited dual-beam spectropolarimetry
Authors: Schad, Thomas; Lin, Haosheng; Ichimoto, Kiyoshi; Katsukawa,
   Yukio
2014SPIE.9147E..6ES    Altcode:
  The birefringent fiber optic image slicer design, or BiFOIS,
  adapts integral field spectroscopy methods to the special needs of
  high-sensitivity, spatially-resolved spectropolarimetry. In solar
  astronomy these methods are of particular importance, as dynamic
  magnetism lies at the heart of various multi-scaled phenomena in the
  solar atmosphere. While integral field units (IFU) based on fiber
  optics have been in continual development for some time, standard
  stock multimode fibers do not typically preserve polarization. The
  importance of a birefringent fiber optic IFU design stems from the
  need for dual-beam spatio-temporal polarimetric modulation to correct
  for spurious polarization signals induced either by platform jitter or
  atmospheric seeing. Here we characterize the polarization response of a
  second generation BiFOIS IFU designed for solar spectropolarimetry. The
  unit provides 60 × 64 spatial imaging pixels in a densely-packed,
  high filling factor configuration. Particular attention is placed on
  the spatial uniformity of the IFU polarization response. Calibrated
  first-light solar observations are also presented to demonstrate the
  performance of the device in a real application.

---------------------------------------------------------
Title: Construction status of the Daniel K. Inouye Solar Telescope
Authors: McMullin, Joseph P.; Rimmele, Thomas R.; Martínez Pillet,
   Valentin; Berger, Thomas E.; Casini, Roberto; Craig, Simon C.; Elmore,
   David F.; Goodrich, Bret D.; Hegwer, Steve L.; Hubbard, Robert P.;
   Johansson, Erik M.; Kuhn, Jeffrey R.; Lin, Haosheng; McVeigh, William;
   Schmidt, Wolfgang; Shimko, Steve; Tritschler, Alexandra; Warner,
   Mark; Wöger, Friedrich
2014SPIE.9145E..25M    Altcode:
  The Daniel K. Inouye Solar Telescope (DKIST, renamed in December 2013
  from the Advanced Technology Solar Telescope) will be the largest
  solar facility built when it begins operations in 2019. Designed
  and developed to meet the needs of critical high resolution and high
  sensitivity spectral and polarimetric observations of the Sun, the
  observatory will enable key research for the study of solar magnetism
  and its influence on the solar wind, flares, coronal mass ejections
  and solar irradiance variations. The 4-meter class facility will
  operate over a broad wavelength range (0.38 to 28 microns, initially
  0.38 to 5 microns), using a state-of-the-art adaptive optics system to
  provide diffraction-limited imaging and the ability to resolve features
  approximately 25 km on the Sun. Five first-light instruments will be
  available at the start of operations: Visible Broadband Imager (VBI;
  National Solar Observatory), Visible SpectroPolarimeter (ViSP; NCAR High
  Altitude Observatory), Visible Tunable Filter (VTF; Kiepenheuer Institut
  für Sonnenphysik), Diffraction Limited Near InfraRed SpectroPolarimeter
  (DL-NIRSP; University of Hawai'i, Institute for Astronomy) and the
  Cryogenic Near InfraRed SpectroPolarimeter (Cryo-NIRSP; University of
  Hawai'i, Institute for Astronomy). As of mid-2014, the key subsystems
  have been designed and fabrication is well underway, including the
  site construction, which began in December 2012. We provide an update
  on the development of the facilities both on site at the Haleakalā
  Observatories on Maui and the development of components around the
  world. We present the overall construction and integration schedule
  leading to the handover to operations in mid 2019. In addition, we
  outline the evolving challenges being met by the project, spanning the
  full spectrum of issues covering technical, fiscal, and geographical,
  that are specific to this project, though with clear counterparts to
  other large astronomical construction projects.

---------------------------------------------------------
Title: mxSPEC: a massively multiplexed full-disk spectroheliograph
    for solar physics research
Authors: Lin, Haosheng
2014SPIE.9147E..12L    Altcode:
  The Massively Multiplexed Spectrograph (mxSPEC) is a new instrument
  concept that takes advantage of modern high-speed large-format focal
  plane arrays (FPAs) and high efficiency bandpass isolation filters to
  multiplex spectra from many slices of the telescope field simultaneously
  onto the FPAs within a single grating spectrograph. This design greatly
  reduces the time required to scan a large telescope field, and with
  current technologies can achieve more than a factor of 50 or more
  improvement of the system efficiency over a conventional long-slit
  spectrograph. Furthermore, several spectral lines can be observed
  at the same time with proper selection of the diffraction grating,
  further improving the efficiency of this design to more than two
  orders of magnitude over conventional single-slit, single-wavelength
  instrument. This paper describes an experimental, proof-of-concept,
  40-slit full-disk spectrograph that demonstrates the feasibility
  of this new instrument concept and its potential for solar physics
  research including helioseismology, dynamic solar events, and
  global scale magnetic field observation of the solar disk and the
  corona. We also present the preliminary design of a 4-line, 55-slit
  spectroheliograph that can serve as the template for the instruments
  of the next generation synoptic solar observatory.

---------------------------------------------------------
Title: The Daniel K. Inouye Solar Telescope first light instruments
    and critical science plan
Authors: Elmore, David F.; Rimmele, Thomas; Casini, Roberto; Hegwer,
   Steve; Kuhn, Jeff; Lin, Haosheng; McMullin, Joseph P.; Reardon, Kevin;
   Schmidt, Wolfgang; Tritschler, Alexandra; Wöger, Friedrich
2014SPIE.9147E..07E    Altcode:
  The Daniel K. Inouye Solar Telescope is a 4-meter-class all-reflecting
  telescope under construction on Haleakalā mountain on the island of
  Maui, Hawai'i. When fully operational in 2019 it will be the world's
  largest solar telescope with wavelength coverage of 380 nm to 28 microns
  and advanced Adaptive Optics enabling the highest spatial resolution
  measurements of the solar atmosphere yet achieved. We review the
  first-generation DKIST instrument designs, select critical science
  program topics, and the operations and data handling and processing
  strategies to accomplish them.

---------------------------------------------------------
Title: Tools for 3D Spectropolarimetry - A Birefringent Fiber Optic
    Image Slicer
Authors: Schad, Thomas A.; Lin, Haosheng
2014AAS...22412358S    Altcode:
  Image-slicing technology benefits astronomical spectropolarimetry by
  transposing a three-dimensional informational set--two spatial and one
  spectral dimension--into a format more amenable to simultaneous coverage
  by conventional spectrographs. To probe, for example, the magnetism
  of the fine-scaled, dynamic chromosphere, methods beyond slit-based
  spectropolarimetry are essential. Fiber optic integral field units
  (IFUs) present one promising solution. The importance of a birefringent
  fiber-optic IFU design stems from the need of spatio-temporal modulation
  to correct for spurious polarization signals induced either by platform
  jitter or atmospheric seeing. Standard stock fibers do not typically
  preserve polarization. Here we characterize the polarization response of
  a close-packed IFU based on rectangular optical fibers, currently under
  development for the Diffraction-Limited Near-IR Spectropolarimeter,
  a facility instrument of the Advanced Technology Solar Telescope. Solar
  observations utilizing this device will be presented.

---------------------------------------------------------
Title: 3D Coronal Magnetic Field Reconstruction based on infrared
    polarimetric observations
Authors: Kramar, Maxim; Lin, Haosheng; Tomczyk, Steven
2014shin.confE.102K    Altcode:
  Measurement of the coronal magnetic field is a crucial ingredient in
  understanding the nature of solar coronal phenomena at all scales. A
  significant progress has been recently achieved here with deployment
  of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude
  Observatory (HAO). The instrument provides polarization measurements of
  Fe xiii 10747 A forbidden line emission. The observed polarization are
  the result of a line-of-sight (LOS) integration through a nonuniform
  temperature, density and magnetic field distribution. In order resolve
  the LOS problem and utilize this type of data, the vector tomography
  method has been developed for 3D reconstruction of the coronal magnetic
  field. The 3D electron density and temperature, needed as additional
  input, have been reconstructed by tomography method based on STEREO/EUVI
  data. We will present the 3D coronal density, temperature and magnetic
  field resulted from these inversions.

---------------------------------------------------------
Title: From static to dynamic mapping of chromospheric magnetism -
    FIRS and SPIES
Authors: Schad, Thomas A.; Lin, Haosheng
2014AAS...22430204S    Altcode:
  Advancements in theoretical forward modeling and observational
  techniques now allow the mapping of the chromospheric magnetic field
  vector in some regions. We report on full maps of the chromospheric
  magnetic field vector across a sunspot and its superpenumbra within
  NOAA AR 11408. These maps are derived from full Stokes observations of
  the He I triplet at 1083 nm, which show both Zeeman and atomic-level
  polarization signatures. Yet, due to the long time to acquire these
  observations with the slit-based Facility Infrared Spectropolarimeter
  (FIRS), our measurements primarily probe long-lived chromospheric
  structures, albeit at very high polarization sensitivity. The fast
  temporal scales remain difficult to probe with conventional slit-based
  spectropolarimeters. Alternatively, SPIES is an instrument based on a
  birefringent fiber optic IFU, designed to multiplex a two-dimensional
  spatial field with high spectral resolution spectropolarimetry, and is
  an ideal tool for probing small-scale, dynamic magnetic features. We
  will present movies of the dynamic chromosphere acquired from SPIES
  across a sunspot and its fine-scaled superpenumbra.

---------------------------------------------------------
Title: Pan-STARRS 1 Observations of the Unusual Active Centaur
    P/2011 S1(Gibbs)
Authors: Lin, H. W.; Chen, Y. T.; Lacerda, P.; Ip, W. H.; Holman,
   M.; Protopapas, P.; Chen, W. P.; Burgett, W. S.; Chambers, K. C.;
   Flewelling, H.; Huber, M. E.; Jedicke, R.; Kaiser, N.; Magnier, E. A.;
   Metcalfe, N.; Price, P. A.
2014AJ....147..114L    Altcode: 2014arXiv1402.6403L
  P/2011 S1 (Gibbs) is an outer solar system comet or active Centaur
  with a similar orbit to that of the famous 29P/Schwassmann-Wachmann
  1. P/2011 S1 (Gibbs) has been observed by the Pan-STARRS 1 (PS1)
  sky survey from 2010 to 2012. The resulting data allow us to perform
  multi-color studies of the nucleus and coma of the comet. Analysis of
  PS1 images reveals that P/2011 S1 (Gibbs) has a small nucleus &lt;4
  km radius, with colors g <SUB> P1</SUB> - r <SUB> P1</SUB> = 0.5 ±
  0.02, r <SUB> P1</SUB> - i <SUB> P1</SUB> = 0.12 ± 0.02, and i <SUB>
  P1</SUB> - z <SUB> P1</SUB> = 0.46 ± 0.03. The comet remained active
  from 2010 to 2012, with a model-dependent mass-loss rate of ~100 kg
  s<SUP>-1</SUP>. The mass-loss rate per unit surface area of P/2011
  S1 (Gibbs) is as high as that of 29P/Schwassmann-Wachmann 1, making
  it one of the most active Centaurs. The mass-loss rate also varies
  with time from ~40 kg s<SUP>-1</SUP> to 150 kg s<SUP>-1</SUP>. Due
  to its rather circular orbit, we propose that P/2011 S1 (Gibbs)
  has 29P/Schwassmann-Wachmann 1-like outbursts that control the
  outgassing rate. The results indicate that it may have a similar
  surface composition to that of 29P/Schwassmann-Wachmann 1. Our numerical
  simulations show that the future orbital evolution of P/2011 S1 (Gibbs)
  is more similar to that of the main population of Centaurs than to
  that of 29P/Schwassmann-Wachmann 1. The results also demonstrate that
  P/2011 S1 (Gibbs) is dynamically unstable and can only remain near
  its current orbit for roughly a thousand years.

---------------------------------------------------------
Title: Prominence Science with ATST Instrumentation
Authors: Rimmele, Thomas; Berger, Thomas; Casini, Roberto; Elmore,
   David; Kuhn, Jeff; Lin, Haosheng; Schmidt, Wolfgang; Wöger, Friedrich
2014IAUS..300..362R    Altcode:
  The 4m Advance Technology Solar Telescope (ATST) is under construction
  on Maui, HI. With its unprecedented resolution and photon collecting
  power ATST will be an ideal tool for studying prominences and filaments
  and their role in producing Coronal Mass Ejections that drive Space
  Weather. The ATST facility will provide a set of first light instruments
  that enable imaging and spectroscopy of the dynamic filament and
  prominence structure at 8 times the resolution of Hinode. Polarimeters
  allow high precision chromospheric and coronal magnetometry at visible
  and infrared (IR) wavelengths. This paper summarizes the capabilities
  of the ATST first-light instrumentation with focus on prominence and
  filament science.

---------------------------------------------------------
Title: Vector Tomography for the Coronal Magnetic Field. II. Hanle
    Effect Measurements
Authors: Kramar, M.; Inhester, B.; Lin, H.; Davila, J.
2013ApJ...775...25K    Altcode:
  In this paper, we investigate the feasibility of saturated coronal
  Hanle effect vector tomography or the application of vector tomographic
  inversion techniques to reconstruct the three-dimensional magnetic field
  configuration of the solar corona using linear polarization measurements
  of coronal emission lines. We applied Hanle effect vector tomographic
  inversion to artificial data produced from analytical coronal magnetic
  field models with equatorial and meridional currents and global coronal
  magnetic field models constructed by extrapolation of real photospheric
  magnetic field measurements. We tested tomographic inversion with
  only Stokes Q, U, electron density, and temperature inputs to simulate
  observations over large limb distances where the Stokes I parameters
  are difficult to obtain with ground-based coronagraphs. We synthesized
  the coronal linear polarization maps by inputting realistic noise
  appropriate for ground-based observations over a period of two weeks
  into the inversion algorithm. We found that our Hanle effect vector
  tomographic inversion can partially recover the coronal field with a
  poloidal field configuration, but that it is insensitive to a corona
  with a toroidal field. This result demonstrates that Hanle effect
  vector tomography is an effective tool for studying the solar corona
  and that it is complementary to Zeeman effect vector tomography for
  the reconstruction of the coronal magnetic field.

---------------------------------------------------------
Title: Coronal Magnetic Field Reconstruction based on HAO/CoMP
    observations.
Authors: Kramar, Maxim; Lin, H.; Tomczyk, S.; Davila, J.
2013shin.confE..89K    Altcode:
  The magnetic field is the dominant force source in the solar coronal
  plasma, the one that shapes its structure. Synoptic observations that
  provide a direct information about the magnetic field have been recently
  became available by High Altitude Observatory (HAO) Coronal Multichannel
  Polarimeter (CoMP). The instrument provides linear polarization maps of
  the Fe XIII 10747 A 'forbidden' line. The observed linear polarization
  depends on magnetic field orientation through Hanle effect. These
  observation, supplied with additional photospheric magnetic field
  measurements and UV observations, are used for 3D reconstruction of
  the coronal magnetic field by applying the vector tomography technique.

---------------------------------------------------------
Title: He I Vector Magnetometry of Field-aligned Superpenumbral
    Fibrils
Authors: Schad, T. A.; Penn, M. J.; Lin, H.
2013ApJ...768..111S    Altcode: 2013arXiv1303.4463S
  Atomic-level polarization and Zeeman effect diagnostics in the neutral
  helium triplet at 10830 Å in principle allow full vector magnetometry
  of fine-scaled chromospheric fibrils. We present high-resolution
  spectropolarimetric observations of superpenumbral fibrils in the
  He I triplet with sufficient polarimetric sensitivity to infer
  their full magnetic field geometry. He I observations from the
  Facility Infrared Spectropolarimeter are paired with high-resolution
  observations of the Hα 6563 Å and Ca II 8542 Å spectral lines from
  the Interferometric Bidimensional Spectrometer from the Dunn Solar
  Telescope in New Mexico. Linear and circular polarization signatures
  in the He I triplet are measured and described, as well as analyzed
  with the advanced inversion capability of the "Hanle and Zeeman Light"
  modeling code. Our analysis provides direct evidence for the often
  assumed field alignment of fibril structures. The projected angle of
  the fibrils and the inferred magnetic field geometry align within an
  error of ±10°. We describe changes in the inclination angle of these
  features that reflect their connectivity with the photospheric magnetic
  field. Evidence for an accelerated flow (~40 m s<SUP>-2</SUP>) along
  an individual fibril anchored at its endpoints in the strong sunspot
  and weaker plage in part supports the magnetic siphon flow mechanism's
  role in the inverse Evershed effect. However, the connectivity of the
  outer endpoint of many of the fibrils cannot be established.

---------------------------------------------------------
Title: The Advanced Technology Solar Telescope: Science Drivers and
    Construction Status
Authors: Rimmele, Thomas; Berger, Thomas; McMullin, Joseph; Keil,
   Stephen; Goode, Phil; Knoelker, Michael; Kuhn, Jeff; Rosner, Robert;
   Casini, Roberto; Lin, Haosheng; Woeger, Friedrich; von der Luehe,
   Oskar; Tritschler, Alexandra; Atst Team
2013EGUGA..15.6305R    Altcode:
  The 4-meter Advance Technology Solar Telescope (ATST) currently
  under construction on the 3000 meter peak of Haleakala on Maui,
  Hawaii will be the world's most powerful solar telescope and the
  leading ground-based resource for studying solar magnetism. The
  solar atmosphere is permeated by a 'magnetic carpet' that constantly
  reweaves itself to control solar irradiance and its effects on Earth's
  climate, the solar wind, and space weather phenomena such as flares and
  coronal mass ejections. Precise measurement of solar magnetic fields
  requires a large-aperture solar telescope capable of resolving a few
  tens of kilometers on the solar surface. With its 4 meter aperture,
  the ATST will for the first time resolve magnetic structure at the
  intrinsic scales of plasma convection and turbulence. The ATST's
  ability to perform accurate and precise spectroscopic and polarimetric
  measurements of magnetic fields in all layers of the solar atmosphere,
  including accurate mapping of the elusive coronal magnetic fields,
  will be transformative in advancing our understanding of the magnetic
  solar atmosphere. The ATST will utilize the Sun as an important astro-
  and plasma-physics "laboratory" demonstrating key aspects of omnipresent
  cosmic magnetic fields. The ATST construction effort is led by the US
  National Solar Observatory. State-of-the-art instrumentation will be
  constructed by US and international partner institutions. The technical
  challenges the ATST is facing are numerous and include the design of the
  off-axis main telescope, the development of a high order adaptive optics
  system that delivers a corrected beam to the instrument laboratory,
  effective handling of the solar heat load on optical and structural
  elements, and minimizing scattered light to enable observations
  of the faint corona. The ATST project has transitioned from design
  and development to its construction phase. The project has awarded
  design and fabrication contracts for major telescope subsystems. Site
  construction has commenced following the successful conclusion of
  the site permitting process. Science goals and construction status of
  telescope and instrument systems will be discussed.

---------------------------------------------------------
Title: Reconstruction of the 3D Coronal Magnetic Field by Vector
    Tomography with Infrared Spectropolarimetric Observations from CoMP
Authors: Kramar, M.; Lin, H.; Tomczyk, S.; Davila, J. M.; Inhester, B.
2012AGUFMSH42A..06K    Altcode:
  Magnetic fields determine the static and dynamic properties of the solar
  corona. A significant progress has been achieved in direct measurement
  of the magnetically sensitive coronal emission with deployment of
  the HAO Coronal Multichannel Polarimeter (CoMP). The instrument
  provides polarization measurements of Fe XIII 10747 A forbidden line
  emission. The observed polarization depends on magnetic field through
  the Hanle and Zeeman effects. However, because the coronal measurements
  are integrated over line-of-site (LOS), it is impossible to derive the
  configuration of the coronal magnetic field from a single observation
  (from a single viewing direction). The vector tomography techniques
  based on the infrared polarimetric measurements from several viewing
  directions has been developed in order to resolve the 3D coronal
  magnetic field structure over LOS. Because of the non-linear character
  of the Hanle effect, the reconstruction result based on such data
  is not straightforward and depends on the particular coronal field
  configuration. For several possible cases of coronal magnetic field
  configuration, it has been found that even just Stokes-Q and -U data
  (supplied with 3D coronal density and temperature) can be used in the
  vector tomography to provide a realistic 3D coronal magnetic field. The
  3D coronal density and temperature needed as an supplemental input are
  reconstructed by the scalar field tomography method using ultraviolet
  observations from EUVI/STEREO. We will present the reconstructed 3D
  coronal density, temperature and magnetic field in the range of ∼
  1.3 R<SUB>⊙</SUB> obtained by the scalar and vector tomography.

---------------------------------------------------------
Title: SPIES: the spectropolarimetric imager for the energetic sun
Authors: Lin, Haosheng
2012SPIE.8446E..1DL    Altcode:
  The SpectroPolarimetric Imager for the Energetic Sun (SPIES) is a
  project to develop a new class of spectropolarimetric instrument for
  the study of highly dynamic solar phenomena. Understanding the physics
  of dynamic solar phenomena requires detailed information about the
  magnetic, thermal, and dynamic properties of the solar atmosphere
  at every stage of their evolution. Although these properties can be
  obtained with existing highperformance spectropolarimeters such as
  the SpectroPolarimeter onboard the Hinode space solar observatory or
  the Facility IR Spectropolarimeter of the Dunn Solar Telescope, these
  instruments cannot observe the required field of view with temporal
  resolution that can resolve the dynamic timescale of these energetic
  events. SPIES-2K is an experimental true-imaging spectropolarimeter
  developed under this program to address this deficiency in our
  observing capability. It is based on a fiber-optic integral field
  unit containing 2,048 standard multimode fused silica fibers, and is
  capable of observing a 64 x 32 pixels field simultaneously with high
  spatial and spectral resolution. Moreover, it can obtain the full
  Stokes spectra of the field with a maximum temporal resolution of a
  few seconds. This paper presents the design and characteristics of
  the instrument, as well as preliminary results obtained at Fe I 1565
  nm wavelength. Additionally, this paper also reports on recent studies
  of the polarization maintenance optical fiber ribbon constructed from
  rectangular element fibers for the Birefringence Fiber-Optic Image
  Slicer, and discusses its application to future generation of SPIES
  and other astronomical spectropolarimetry projects.

---------------------------------------------------------
Title: 3D Coronal Magnetic Field reconstructed by Vector Tomography
    Method using CoMP data
Authors: Kramar, Maxim; Lin, H.; Tomczyk, S.; Inhester, B.; Davila, J.
2012shin.confE.141K    Altcode:
  Magnetic fields in the solar corona dominates the gas pressure
  and therefore determine the static and dynamic properties of the
  corona. Direct measurement of the coronal magnetic field is one of
  the most challenging problems in observational solar astronomy and
  recently a significant progress has been achieved here with deployment
  of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument
  provides polarization measurements of Fe XIII 10747 A forbidden line
  emission. The observed polarization depends on magnetic field through
  the Hanle and Zeeman effects. However, because the coronal measurements
  are integrated over line-of-site (LOS), it is impossible to derive the
  configuration of the coronal magnetic field from a single observation
  (from a single viewing direction). The vector tomography techniques
  based on measurements from several viewing directions has the potential
  to resolve the 3D coronal magnetic field structure over LOS. Because
  of the non-linear character of the Hanle effect, the reconstruction
  result based on such data is not straightforward and depends on the
  particular coronal field configuration. Therefore, previously we also
  studied what is the sensitivity of the vector tomographic inversion to
  various coronal magnetic field models. For several possible cases of
  coronal magnetic field configuration, it has been found that even just
  Stokes-Q and -U data (supplied with 3D coronal density and temperature)
  can be used in vector tomography to provide a realistic 3D coronal
  magnetic field configuration. The 3D coronal density and temperature
  needed as an supplemental input are reconstructed by the scalar field
  tomography method using ultraviolet observations from EUVI/STEREO. We
  will present the reconstructed 3D coronal magnetic field in the range
  of ∼1.3 R_⊙ obtained by the vector tomographic technique that has
  been applied to the CoMP data.

---------------------------------------------------------
Title: Multi-height Spectropolarimetry Of Sunspots With Firs And Ibis
Authors: Jaeggli, Sarah A.; Lin, H.; Tritschler, A.
2012AAS...22020606J    Altcode:
  The effects of radiative transfer prevent the characterization of
  the magnetic field at a single geometric height in the photosphere
  of a sunspot. Therefore, a full 3D characterization of the magnetic
  field is necessary to understand many properties of sunspots, such as
  the true state of hydrostatic equilibrium. Many current and proposed
  solar spectropolarimeters are capable of taking near-simultaneous
  observations at multiple wavelengths. Combining these rich datasets
  provides a welcome problem to the community. We present the first joint
  observations of the magnetically sensitive photospheric Fe I lines at
  630 and 1565 nm taken with the Facility Infrared Spectropolarimeter
  (FIRS); and the chromospheric Ca II line at 854 nm taken with the
  Interferometric Bi-Dimensional Spectrometer (IBIS); both instruments
  operated at the Dunn Solar Telescope. These wavelengths allow us to
  probe the magnetic field over a broad range of heights, from the
  bottom of the photosphere to the chromosphere. We investigate the
  magnetic field topologies of several sunspots of different size and
  magnetic complexity.

---------------------------------------------------------
Title: Spies - Spectral Polarimetric Imager For The Energetic Sun
Authors: Lin, Haosheng; Jaeggli, S.
2012AAS...22012306L    Altcode:
  Spectropolarimetric observation with uncompromised spatial, spectral,
  and temporal resolution simulatneously over a substantial 2D field and
  multiple spectral lines is the key to the resolution of many important
  questions in modern solar physics. While 2D imaging spectroscopy
  based on fiber optics integral field unit and image slicer has a long
  history nighttime astronomy, adaptation for solar observation occured
  only recently. This paper will present preliminary results of magnetic
  field observation in the HeI 1083 nm and FeI 1565 nm lines obtained
  with SPIES --- a true imaging spectropolarimeter based on a large format
  (64 x 32 fibers input array) fiber-optic array optimized for the study
  of evolution of magnetic and thermodynamic properties of energetic and
  dynamic phenomena of the sun. We will also discuss considerations for
  the use of fiber-optic array for solar spectropolarimetric applications,
  as well as the design of SPIES.

---------------------------------------------------------
Title: On Molecular Hydrogen Formation and the Magnetohydrostatic
    Equilibrium of Sunspots
Authors: Jaeggli, S. A.; Lin, H.; Uitenbroek, H.
2012ApJ...745..133J    Altcode: 2011arXiv1110.0575J
  We have investigated the problem of sunspot magnetohydrostatic
  equilibrium with comprehensive IR sunspot magnetic field survey
  observations of the highly sensitive Fe I lines at 15650 Å and nearby
  OH lines. We have found that some sunspots show isothermal increases
  in umbral magnetic field strength which cannot be explained by the
  simplified sunspot model with a single-component ideal gas atmosphere
  assumed in previous investigations. Large sunspots universally
  display nonlinear increases in magnetic pressure over temperature,
  while small sunspots and pores display linear behavior. The formation
  of molecules provides a mechanism for isothermal concentration of
  the umbral magnetic field, and we propose that this may explain the
  observed rapid increase in umbral magnetic field strength relative to
  temperature. Existing multi-component sunspot atmospheric models predict
  that a significant amount of molecular hydrogen (H<SUB>2</SUB>) exists
  in the sunspot umbra. The formation of H<SUB>2</SUB> can significantly
  alter the thermodynamic properties of the sunspot atmosphere and
  may play a significant role in sunspot evolution. In addition to the
  survey observations, we have performed detailed chemical equilibrium
  calculations with full consideration of radiative transfer effects
  to establish OH as a proxy for H<SUB>2</SUB>, and demonstrate that a
  significant population of H<SUB>2</SUB> exists in the coolest regions
  of large sunspots.

---------------------------------------------------------
Title: SPIES: Spectropolarimetric Imager for Energetic Sun
Authors: Weis, Andrew; Lin, H.
2012AAS...21914409W    Altcode:
  Solar magnetic fields are responsible for the appearance of the
  solar atmosphere. These magnetic fields are non-uniform, and are
  strongest over sunspots. Magnetic fields are thought to cause energetic
  phenomena such as solar flares and coronal mass ejections, which can
  have damaging consequences in the near-Earth space environment and
  high latitude regions, providing practical in addition to scientific
  reasons to study them. Current instrumentation for observations
  of solar magnetic fields use scanning slit spectrograph or tunable
  filter, which allow us to resolve the time evolution of the fields to
  the scale of minutes or longer. We are constructing a new instrument,
  SPIES, based on a large-format (32 x 64) fiber-optic integral field
  unit (IFU). The fiber-optic IFU allows us to observe over two spatial
  dimensions and one spectral dimension simultaneously rather than in
  steps, thus allowing for resolution of the time evolution to the level
  of seconds. Due to fiber modal noise and small thermal drift of the
  instrument over time, flat-fielding of the intensity spectra from the
  discrete fiber-optic 'slits' becomes time dependent. An observing scheme
  that records time-sensitive flat-fields was devised for SPIES. We will
  present preliminary analysis of the full-Stokes polarization spectra
  of a sunspot obtained with SPIES over a 90 minute time span. This work
  was conducted through a Research Experience for Undergraduates (REU)
  position at the University of Hawai'i's Institute for Astronomy and
  was funded by the NSF.

---------------------------------------------------------
Title: Vector Tomography Inversion for the 3D Coronal Magnetic Field
    Based on CoMP data
Authors: Kramar, M.; Lin, H.; Tomczyk, S.; Inhester, B.; Davila, J. M.
2011AGUFMSH43B1948K    Altcode:
  Magnetic fields in the solar corona dominates the gas pressure
  and therefore determine the static and dynamic properties of the
  corona. Direct measurement of the coronal magnetic field is one of
  the most challenging problems in observational solar astronomy and
  recently a significant progress has been achieved here with deployment
  of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument
  provides polarization measurements of Fe XIII 10747 A forbidden line
  emission. The observed polarization depends on magnetic field through
  the Hanle and Zeeman effects. However, because the coronal measurements
  are integrated over line-of-site (LOS), it is impossible to derive the
  configuration of the coronal magnetic field from a single observation
  (from a single viewing direction). The vector tomography techniques
  based on measurements from several viewing directions has the potential
  to resolve the 3D coronal magnetic field structure over LOS. Because
  of the non-linear character of the Hanle effect, the reconstruction
  result based on such data is not straightforward and depends on the
  particular coronal field configuration. Therefore we study here what is
  the sensitivity of the vector tomographic inversion to sophisticated
  (MHD) coronal magnetic field models. For several important cases of
  magnetic field configuration, it has been found that even just Stokes-Q
  and -U data (supplied with 3D coronal density and temperature) can be
  used in vector tomography to provide a realistic 3D coronal magnetic
  field configuration. This vector tomograpic technique is applied to
  CoMP data.

---------------------------------------------------------
Title: Vector Tomography for the 3D Coronal Magnetic Field with CoMP
Authors: Kramar, Maxim; Lin, Haosheng; Inhester, Bernd; Gibson, Sarah
2011shin.confE..29K    Altcode:
  Magnetic fields in the solar corona dominates the gas pressure
  and therefore determine the static and dynamic properties of the
  corona. Direct measurement of the coronal magnetic field is one of
  the most challenging problems in observational solar astronomy and
  recently a significant progress has been achieved here with deployment
  of the HAO Coronal Multichannel Polarimeter (CoMP). The instrument
  provides polarization measurements of Fe XIII 10747 A forbidden line
  emission. The observed polarization depends on magnetic field through
  the Hanle and Zeeman effects. However, because the coronal measurements
  are integrated over line-of-site (LOS), it is impossible to derive the
  configuration of the coronal magnetic field from a single observation
  (from a single viewing direction). The vector tomography techniques
  based on measurements from several viewing directions has the potential
  to resolve the 3D coronal magnetic field structure over LOS. Because
  of the non-linear character of the Hanle effect, the reconstruction
  result based on such data is not straightforward and depends on the
  particular coronal field configuration. Therefore we study here what
  is the sensitivity of the vector tomographic inversion to sophisticated
  (MHD) coronal magnetic field models. <P />For several important cases of
  magnetic field configuration, it has been found that even just Stokes-Q
  and -U data (supplied with 3D coronal density and temperature) can be
  used in vector tomography to provide a realistic 3D coronal magnetic
  field configuration. Effect of noise in the all input data has been
  also studied. Inclusion of the Stokes-V data into the inversion will
  significantly increase a number of of magnetic field configuration which
  are possible to reconstruct. <P />Particularly, the reconstructions
  may be used to analyze non-potential pre-CME magnetic configurations
  or for improving a potential field model when the field is potential.

---------------------------------------------------------
Title: An Observational Study of the Formation and Evolution of
    Sunspots
Authors: Jaeggli, Sarah A.; Lin, H.; Uitenbroek, H.
2011SPD....42.0302J    Altcode: 2011BAAS..43S.0302J
  It is well known that the thermal-magnetic relation in sunspots can
  be non-linear. Previous investigations ascribe the non-linearity
  of the relation to changing geometrical height of the measurement
  due to radiative transfer effects (Wilson Depression) and the poorly
  determined magnetic field curvature force. However, the very coolest
  regions of some sunspots show a rapid increase in umbral magnetic
  field strength relative to temperature which cannot be explained
  by the simplified sunspot model with single-component ideal gas
  atmosphere which has been previously assumed. This represents a
  fundamental flaw in our understanding of the sunspot equilibrium
  problem. Existing multiple-component sunspot atmospheric models
  predict that a large amount of molecular hydrogen (H2) exists in
  the sunspot umbra. The formation of molecules provides a mechanism
  for isothermal concentration of the umbral magnetic field which may
  explain the observed rapid increase in umbral magnetic field strength
  relative to temperature. We have characterized the equilibrium forces
  in sunspots using simultaneous visible and IR sunspot magnetic field
  survey observations of the highly sensitive Fe I lines at 6302 and
  15650 Angstroms and nearby OH lines which have been conducted with
  the new Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar
  Telescope. We have performed detailed chemical equilibrium calculations
  with full consideration of radiative transfer effects to establish OH
  as a proxy for H2, and demonstrate that a significant population of H2
  exists in the coolest regions of large and more mature sunspots. We
  further point out that the formation of H2 can significantly alter
  the thermodynamic properties of the sunspot atmosphere and may play
  a significant role in sunspot evolution.

---------------------------------------------------------
Title: Vector Tomography Based on Hanle and Zeeman Effects Observed
    from Ecliptic Plane
Authors: Kramar, Maxim; Lin, H.; Gibson, S.
2011SPD....42.1830K    Altcode: 2011BAAS..43S.1830K
  The magnetically sensitive coronal emission lines provide
  information about coronal magnetic field via Hanle and Zeeman
  effects. As the measured emission are integrated over line-of-sight,
  the vector tomography must be used for deriving 3D magnetic field
  configuration. The unique solution for any field configuration exists
  when observations are done from both ecliptic and out of ecliptic
  plane and supplied by photospheric magnetic field measurements. When
  observations are only from the ecliptic plane, the number of field
  configurations which are possible to reconstruct are reduced. We
  study here what types of coronal magnetic field configurations can be
  reconstructed based on Hanle and Zeeman effects provided by CoMP and
  SOLARC instruments. Effect of noise in the data and uncertainty in 3D
  reconstruction of the coronal density and temperature are also studied.

---------------------------------------------------------
Title: Whole Earth Telescope observations of the subdwarf B star
KPD 1930+2752: a rich, short-period pulsator in a close binary
Authors: Reed, M. D.; Harms, S. L.; Poindexter, S.; Zhou, A. -Y.;
   Eggen, J. R.; Morris, M. A.; Quint, A. C.; McDaniel, S.; Baran, A.;
   Dolez, N.; Kawaler, S. D.; Kurtz, D. W.; Moskalik, P.; Riddle, R.;
   Zola, S.; Østensen, R. H.; Solheim, J. -E.; Kepler, S. O.; Costa,
   A. F. M.; Provencal, J. L.; Mullally, F.; Winget, D. W.; Vuckovic, M.;
   Crowe, R.; Terry, D.; Avila, R.; Berkey, B.; Stewart, S.; Bodnarik,
   J.; Bolton, D.; Binder, P. -M.; Sekiguchi, K.; Sullivan, D. J.; Kim,
   S. -L.; Chen, W. -P.; Chen, C. -W.; Lin, H. -C.; Jian, X. -J.; Wu, H.;
   Gou, J. -P.; Liu, Z.; Leibowitz, E.; Lipkin, Y.; Akan, C.; Cakirli,
   O.; Janulis, R.; Pretorius, R.; Ogloza, W.; Stachowski, G.; Paparo,
   M.; Szabo, R.; Csubry, Z.; Zsuffa, D.; Silvotti, R.; Marinoni, S.;
   Bruni, I.; Vauclair, G.; Chevreton, M.; Matthews, J. M.; Cameron,
   C.; Pablo, H.
2011MNRAS.412..371R    Altcode: 2011MNRAS.tmp..184R; 2010arXiv1011.0387R
  KPD 1930+2752 is a short-period pulsating subdwarf B (sdB) star. It is
  also an ellipsoidal variable with a known binary period of 2.3 h. The
  companion is most likely a white dwarf and the total mass of the
  system is close to the Chandresekhar limit. In this paper, we report
  the results of Whole Earth Telescope (WET) photometric observations
  during 2003 and a smaller multisite campaign of 2002. From 355 h of WET
  data, we detect 68 pulsation frequencies and suggest an additional 13
  frequencies within a crowded and complex temporal spectrum between 3065
  and 6343 μHz (periods between 326 and 157 s). We examine pulsation
  properties including phase and amplitude stability in an attempt
  to understand the nature of the pulsation mechanism. We examine a
  stochastic mechanism by comparing amplitude variations with simulated
  stochastic data. We also use the binary nature of KPD 1930+2752 for
  identifying pulsation modes via multiplet structure and a tidally
  induced pulsation geometry. Our results indicate a complicated pulsation
  structure that includes short-period (≈16 h) amplitude variability,
  rotationally split modes, tidally induced modes and some pulsations
  which are geometrically limited on the sdB star.

---------------------------------------------------------
Title: Testing the vector tomography method for 3D reconstruction
    of the coronal magnetic field for different coronal field models
Authors: Kramar, M.; Lin, H.; Inhester, B.
2010AGUFMSH31A1789K    Altcode:
  Magnetic fields in the solar corona dominates the gas pressure
  and therefore determine the static and dynamic properties of the
  corona. Direct measurement of the coronal magnetic field is one of the
  most challenging problems in observational solar astronomy and recently
  had significant progress (Lin et al. 2004; Tomczyk et al. 2008). The
  polarization of infrared Fe XIII 10747 A forbidden line depends on
  magnetic field through the Hanle and Zeeman effects. However, because
  the coronal measurements are integrated over line-of-site (LOS),
  it is impossible to derive the configuration of the coronal magnetic
  field from a single observation (from a single viewing direction). The
  vector tomography techniques based on measurements from several viewing
  directions has the potential to resolve the 3D coronal magnetic
  field structure over LOS. Previously, the potential of the method
  was demonstrated for two basic model field configurations (Kramar et
  al. 2006). Because of the non-linear character of the Hanle effect,
  the reconstruction result based on such data is not straightforward
  and depends on the particular coronal field configuration. Therefore we
  study here what is the sensitivity of the vector tomographic inversion
  to more sophisticated (MHD) coronal magnetic field models.

---------------------------------------------------------
Title: Magnetic Field Measurements at the Photosphere and Coronal Base
Authors: Judge, P. G.; Centeno, R.; Tritschler, A.; Uitenbroek, H.;
   Jaeggli, S.; Lin, H.
2010AGUFMSH31A1783J    Altcode:
  We have obtained vector polarimetric measurements in lines of Fe I
  (630nm), Ca II (854nm) and He I (1083nm) of several active regions
  during 3-14 June 2010. The measurements were made at the Dunn Solar
  Telescope at Sacramento Peak Observatory, using the FIRS and IBIS
  instruments simultaneously. We discuss these and SDO data for NOAA
  11076. The seeing was very good or excellent and the adaptive
  optics system functioned well. In this preliminary analysis we
  compare extrapolations of photospheric fields with the constraints
  available from Stokes polarimetry, including the morphology and
  kinematic properties of fibrils. Connections to the corona will also be
  discussed. The implications for field extrapolations from photospheric
  measurements will be discussed. We will make the reduced data freely
  available on the web for interested researchers.

---------------------------------------------------------
Title: Utilization of redundant polarized solar spectra to infer
    the polarization properties of the new generation of large aperture
    solar telescopes
Authors: Elmore, David F.; Lin, Haosheng; Socas Navarro, Héctor;
   Jaeggli, Sarah A.
2010SPIE.7735E..4EE    Altcode: 2010SPIE.7735E.147E
  Spectro-polarimetry plays an important role in the study of solar
  magnetism and strongly influences the design of the new generation of
  solar telescopes. Calibration of the polarization properties of the
  telescope is a critical requirement needed to use these observations to
  infer solar magnetic fields. However, the large apertures of these new
  telescopes make direct calibration with polarization calibration optics
  placed before all the telescope optical elements impractical. It is
  therefore desirable to be able to infer the polarization properties
  of the telescope optical elements utilizing solar observations
  themselves. Taking advantage of the fact that the un-polarized,
  linearly, and circularly polarized spectra originating from the Sun are
  uncorrelated, we have developed techniques to utilize observations
  of solar spectra with redundant combination of the polarization
  states measured at several different telescope configurations to
  infer the polarization properties of the telescope as a whole and of
  its optical elements. We show results of these techniques applied to
  spectro-plarimetric data obtained at the Dunn Solar Telescope.

---------------------------------------------------------
Title: Magnetic field measurements at the photosphere and coronal base
Authors: Judge, Philip; Centeno, R.; Tritschler, A.; Uitenbroek, H.;
   Jaeggli, S.; Lin, H.
2010shin.confE..56J    Altcode:
  We have obtained vector polarimetric measurements in lines of Fe I
  (630nm), Ca II (854nm) and He I (1083) of several active regions during
  3-14 June 2010. The measurements were made at the Dunn Solar Telescope
  at Sacramento Peak Observatory, using the FIRS and IBIS instruments
  simultaneously. We discuss data for NOAA 11076 observed on 4 June
  2010. The seeing was very good or excellent and the adaptive optics
  system functioned well. In this preliminary analysis we compare linear
  extrapolations of photospheric fields with the constraints available
  from Stokes polarimetry, including the morphology and kinematic
  properties of fibrils. The implications for field extrapolations from
  photospheric measurements will be discussed. We will make the reduced
  data freely available on the web for interested researchers.

---------------------------------------------------------
Title: On the Vector Tomographic Reconstruction for the pre-CME
    Coronal Magnetic Field from Fe XIII 10747 A Emission Line Observations
Authors: Kramar, Maxim; Lin, H.; Inhester, B.; Davila, J.
2010AAS...21630203K    Altcode:
  Magnetic fields are the dominant fields that determine the static and
  dynamic properties of the solar corona. The coronal mass ejections
  (CMEs) involve the release of the magnetic energy stored in the
  magnetic field. Therefore, analyzing the magnetic field could help
  to understand the nature of CMEs. One of the more promising coronal
  magnetic field measurement methods that have been successfully
  demonstrated is the spectropolarimetric observations of the Fe XIII
  10747 A forbidden emission line (Lin, Penn &amp; Tomczyk 2000; Lin, Kuhn
  &amp; Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman
  effects. However, these measurements are integrated over line-of-sight
  (LOS). Therefore it is impossible to determine the configuration of
  the coronal magnetic field from a single observation (single viewing
  direction). <P />Vector tomography based on polarimetric observations
  of the forbidden coronal emission lines can reconstruct the coronal
  magnetic field when the observations are obtained from several viewing
  directions. As the tomography method requires observations from many
  directions, a rigid rotation of the coronal structures during a half of
  solar rotation is assumed. However, many pre-CME magnetic configurations
  evolve more rapidly causing significant reduce in the number of
  available observing directions. Here we study the sensitivity of the
  vector tomographic inversion to possible pre-CME coronal magnetic field
  configurations and the number of available observing directions. We
  show that the vector tomography techniques has the potential to resolve
  the 3D coronal non-potential magnetic field structure.

---------------------------------------------------------
Title: Coronal magnetic fields from the inversion of linear
    polarization measurements
Authors: Liu, Yu; Lin, Haosheng; Kuhn, Jeff
2010IAUS..264...96L    Altcode:
  Real 3-D coronal magnetic field reconstruction is expected to be made
  based on the technologies of IR spectrometry and tomography, in which
  the data from other wavelengths can be used as critical reference. Our
  recent studies focused on this issue are briefly reviewed in this
  paper. Liu &amp; Lin (2008) first evaluated the validity of potential
  field source surface model applied to one of five limb regions in
  the corona by comparing the theoretical polarization maps with SOLARC
  observations in the IR Fe XIII 10747 Å forbidden coronal emission line
  (CEL). The five limb coronal regions were then studied together in
  order to study the spatial relation between the bright EUV features
  on the solar disk and the inferred IR emission sources, which were
  obtained from the inversion of the SOLARC linear polarization (LP)
  measurements (Liu 2009). The inversion for each fiber data in the field
  of view was made by finding the best location where the difference
  between the synthesized and the observed polarizations reaches the
  minimum in the integration path along the line of sight. We found a
  close relationship between the inferred IR emission source locations
  and the EUV strong emission positions.

---------------------------------------------------------
Title: FIRS: a new instrument for photospheric and chromospheric
    studies at the DST.
Authors: Jaeggli, S. A.; Lin, H.; Mickey, D. L.; Kuhn, J. R.; Hegwer,
   S. L.; Rimmele, T. R.; Penn, M. J.
2010MmSAI..81..763J    Altcode:
  The simultaneous observation of select spectral lines at optical and
  infrared wavelengths allows for the determination of the magnetic
  field at several photospheric and chromospheric heights and thus
  the 3D magnetic field gradient in the solar atmosphere. The Facility
  Infrared Spectropolarimeter (FIRS) is a newly completed, multi-slit,
  dual-beam spectropolarimeter installed at the Dunn Solar Telescope
  (DST) at Sacramento Peak (NSO/SP). Separate optics and polarimeters
  simultaneously observe two band-passes at visible and infrared
  wavelengths with a choice of two modes: the Fe I 6302 Å and 15648 Å
  lines in the photosphere; or the Fe I 6302 Å and He I 10830 Å line
  in the photosphere and high chromosphere, respectively. FIRS can also
  operate simultaneously with a white light camera, G-band imager, and
  the Interferometric Bi-dimensional Spectrometer (IBIS) observing the
  mid-chromospheric Ca II 8542 Å line. The instrument uses four parallel
  slits to sample four slices of the solar surface simultaneously to
  achieve fast, diffraction-limited precision imaging spectropolarimetry,
  enabling the study of MHD phenomena with short dynamic time scales.

---------------------------------------------------------
Title: Vector tomographic reconstruction for the coronal magnetic
    field from Fe XIII 10747 A emission line observations
Authors: Kramar, Maxim; Lin, Haosheng; Inhester, Bernd; Davila, Joseph
2010cosp...38.1862K    Altcode: 2010cosp.meet.1862K
  Magnetic fields in the solar corona are the dominant fields that
  determine the static and dy-namic properties of this outermost region
  of the solar atmosphere. It is within this tenuous region that the
  magnetic force dominates the gas pressure. Direct measurement of
  the coronal magnetic field is one of the most challenging problems
  in observational solar astronomy. To date, one of the promising
  measurement methods that have been successfully demonstrated is
  the spectropolarimetric measurement of the Fe XIII 10747 A forbidden
  emission line (Lin, Penn Tomczyk 2000; Lin, Kuhn Coulter 2004; Tomczyk
  et al. 2007) formed due to Hanle and Zeeman effects. However, because
  coronal measurements are integrated over line-of-site (LOS), it is
  impossible to derive the configuration of the coronal magnetic field
  from a single obser-vation (from a single viewing direction). In this
  paper, we study the sensitivity of the vector tomographic inversion to
  possible pre-CME coronal magnetic field configurations and number of
  available observations. We show that the vector tomography techniques
  based on Hanle and/or Zeeman effect observations has the potential to
  resolve the 3D coronal non-potential magnetic field structure.

---------------------------------------------------------
Title: On the reconstructing the coronal magnetic field from Fe XIII
    10747 A emission line observations
Authors: Kramar, M.; Lin, H.; Inhester, B.
2009AGUFMSH41B1662K    Altcode:
  Magnetic fields in the solar corona are the dominant fields that
  determine the static and dynamic properties of this outermost region
  of the solar atmosphere. It is within this tenuous region that the
  magnetic force dominates the gas pressure. Direct measurement of
  the coronal magnetic field is one of the most challenging problems
  in observational solar astronomy. To date, one of the promising
  measurement methods that have been successfully demonstrated is
  the spectropolarimetric measurement of the Fe XIII 10747 A forbidden
  emission line (CEL) (Lin, Penn, Tomczyk 2000; Lin, Kuhn, Coulter 2004;
  Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However,
  because coronal measurements are integrated over line-of-site (LOS), it
  is impossible to derive the configuration of the coronal magnetic field
  from a single observation (from a single viewing direction). Recent
  development in vector tomography techniques based on IR forbidden
  CEL polarization measurements from several viewing direction (Kramar,
  Inhester, Solanki 2006; Kramar, Inhester 2007) has the potential to
  resolve the 3D coronal magnetic field structure. In this paper, we
  will present a study of the effects of instrumental characteristics on
  the results of vector tomographic inversion using simulated data. We
  also investigate the sensitivity of the vector tomographic inversion
  to different coronal magnetic field configuration.

---------------------------------------------------------
Title: New Observation of Failed Filament Eruptions: The Influence
    of Asymmetric Coronal Background Fields on Solar Eruptions
Authors: Liu, Y.; Su, J.; Xu, Z.; Lin, H.; Shibata, K.; Kurokawa, H.
2009ApJ...696L..70L    Altcode:
  Failed filament eruptions not associated with a coronal mass ejection
  (CME) have been observed and reported as evidence for solar coronal
  field confinement on erupting flux ropes. In those events, each
  filament eventually returns to its origin on the solar surface. In
  this Letter, a new observation of two failed filament eruptions is
  reported which indicates that the mass of a confined filament can be
  ejected to places far from the original filament channel. The jetlike
  mass motions in the two failed filament eruptions are thought to be
  due to the asymmetry of the background coronal magnetic fields with
  respect to the locations of the filament channels. The asymmetry of the
  coronal fields is confirmed by an extrapolation based on a potential
  field model. The obvious imbalance between the positive and negative
  magnetic flux (with a ratio of 1:3) in the bipolar active region is
  thought to be the direct cause of the formation of the asymmetric
  coronal fields. We think that the asymmetry of the background fields
  can not only influence the trajectories of ejecta, but also provide
  a relatively stronger confinement for flux rope eruptions than the
  symmetric background fields do.

---------------------------------------------------------
Title: 2006 Whole Earth Telescope Observations of GD358: A New Look
    at the Prototype DBV
Authors: Provencal, J. L.; Montgomery, M. H.; Kanaan, A.; Shipman,
   H. L.; Childers, D.; Baran, A.; Kepler, S. O.; Reed, M.; Zhou, A.;
   Eggen, J.; Watson, T. K.; Winget, D. E.; Thompson, S. E.; Riaz,
   B.; Nitta, A.; Kleinman, S. J.; Crowe, R.; Slivkoff, J.; Sherard,
   P.; Purves, N.; Binder, P.; Knight, R.; Kim, S. -L.; Chen, Wen-Ping;
   Yang, M.; Lin, H. C.; Lin, C. C.; Chen, C. W.; Jiang, X. J.; Sergeev,
   A. V.; Mkrtichian, D.; Andreev, M.; Janulis, R.; Siwak, M.; Zola,
   S.; Koziel, D.; Stachowski, G.; Paparo, M.; Bognar, Zs.; Handler,
   G.; Lorenz, D.; Steininger, B.; Beck, P.; Nagel, T.; Kusterer, D.;
   Hoffman, A.; Reiff, E.; Kowalski, R.; Vauclair, G.; Charpinet, S.;
   Chevreton, M.; Solheim, J. E.; Pakstiene, E.; Fraga, L.; Dalessio, J.
2009ApJ...693..564P    Altcode: 2008arXiv0811.0768P
  We report on the analysis of 436.1 hr of nearly continuous high-speed
  photometry on the pulsating DB white dwarf GD358 acquired with the
  Whole Earth Telescope (WET) during the 2006 international observing
  run, designated XCOV25. The Fourier transform (FT) of the light curve
  contains power between 1000 and 4000 μHz, with the dominant peak at
  1234 μHz. We find 27 independent frequencies distributed in 10 modes,
  as well as numerous combination frequencies. Our discussion focuses
  on a new asteroseismological analysis of GD358, incorporating the 2006
  data set and drawing on 24 years of archival observations. Our results
  reveal that, while the general frequency locations of the identified
  modes are consistent throughout the years, the multiplet structure
  is complex and cannot be interpreted simply as l = 1 modes in the
  limit of slow rotation. The high-k multiplets exhibit significant
  variability in structure, amplitude and frequency. Any identification
  of the m components for the high-k multiplets is highly suspect. The
  k = 9 and 8 modes typically do show triplet structure more consistent
  with theoretical expectations. The frequencies and amplitudes exhibit
  some variability, but much less than the high-k modes. Analysis of the
  k = 9 and 8 multiplet splittings from 1990 to 2008 reveal a long-term
  change in multiplet splittings coinciding with the 1996 sforzando event,
  where GD358 dramatically altered its pulsation characteristics on a
  timescale of hours. We explore potential implications, including the
  possible connections between convection and/or magnetic fields and
  pulsations. We suggest future investigations, including theoretical
  investigations of the relationship between magnetic fields, pulsation,
  growth rates, and convection.

---------------------------------------------------------
Title: Pair Analysis of Field Galaxies from the Red-Sequence Cluster
    Survey
Authors: Hsieh, B. C.; Yee, H. K. C.; Lin, H.; Gladders, M. D.;
   Gilbank, D. G.
2008ApJ...683...33H    Altcode: 2008arXiv0804.1604H
  We study the evolution of the number of close companions of similar
  luminosities per galaxy (N<SUB>c</SUB>) by choosing a volume-limited
  subset of the photometric redshift catalog from the Red-Sequence Cluster
  Survey (RCS-1). The sample contains over 157,000 objects with a moderate
  redshift range of 0.25 &lt;= z&lt;= 0.8 and M<SUB>R<SUB>c</SUB></SUB>
  &lt;= - 20. This is the largest sample used for pair evolution analysis,
  providing data over nine redshift bins with about 17,500 galaxies
  in each. After applying incompleteness and projection corrections,
  N<SUB>c</SUB> shows a clear evolution with redshift. The N<SUB>c</SUB>
  value for the whole sample grows with redshift as (1 + z)<SUP>m</SUP>,
  where m = 2.83 +/- 0.33 in good agreement with N-body simulations
  in a ΛCDM cosmology. We also separate the sample into two different
  absolute magnitude bins: -25 &lt;= M<SUB>R<SUB>c</SUB></SUB> &lt;= -
  21 and -21 &lt; M<SUB>R<SUB>c</SUB></SUB> &lt;= - 20, and find that the
  brighter the absolute magnitude, the smaller the m-value. Furthermore,
  we study the evolution of the pair fraction for different projected
  separation bins and different luminosities. We find that the m-value
  becomes smaller for larger separation, and the pair fraction for the
  fainter luminosity bin has stronger evolution. We derive the major
  merger remnant fraction f<SUB>rem</SUB> = 0.06, which implies that
  about 6% of galaxies with -25 &lt;= M<SUB>R<SUB>c</SUB></SUB> &lt;=
  - 20 have undergone major mergers since z = 0.8.

---------------------------------------------------------
Title: Observational Test of Coronal Magnetic Field
    Models. I. Comparison with Potential Field Model
Authors: Liu, Yu; Lin, Haosheng
2008ApJ...680.1496L    Altcode: 2007arXiv0710.3223L
  Recent advances have made it possible to obtain two-dimensional
  line-of-sight magnetic field maps of the solar corona from
  spectropolarimetric observations of the Fe XIII 1075 nm forbidden
  coronal emission line. Together with the linear polarization
  measurements that map the azimuthal direction of the coronal magnetic
  field projected in the plane of the sky containing Sun center,
  these coronal vector magnetograms allow for direct and quantitative
  observational testing of theoretical coronal magnetic field models. This
  paper presents a study testing the validity of potential-field
  coronal magnetic field models. We constructed a theoretical coronal
  magnetic field model of active region AR 10582 observed by the SOLARC
  coronagraph in 2004 by using a global potential field extrapolation
  of the synoptic map of Carrington Rotation 2014. Synthesized linear
  and circular polarization maps from thin layers of the coronal magnetic
  field model above the active region along the line of sight are compared
  with the observed maps. We found that the observed linear and circular
  polarization signals are consistent with the synthesized ones from
  layers located just above the sunspot of AR 10582 near the plane of
  the sky containing the Sun center.

---------------------------------------------------------
Title: The Facility IR Spectropolarimeter for the Dunn Solar Telescope
Authors: Jaeggli, S. A.; Lin, H.; Mickey, D. L.; Kuhn, J. R.; Hegwer,
   S. L.; Rimmele, T. R.; Penn, M. J.
2008AGUSMSH31A..11J    Altcode:
  The Facility IR Spectropolarimeter(FIRS) is a multi-slit
  spectropolarimeter designed for the Dunn Solar Telescope (DST) at the
  National Solar Observatory on Sacramento Peak (NSO/SP) in New Mexico to
  study magnetism on the solar surface. The instrument samples adjacent
  slices of the solar surface using four parallel slits to achieve high
  cadence, diffraction-limited, precision imaging-spectropolarimetry. Due
  to the versatile, multi-armed design of the spectrograph, up to
  four spectral lines at visible and infrared wavelengths, covering
  four different heights in the solar atmosphere, can be observed
  simultaneously. In this poster-paper we will describe the design,
  capabilities, and performance of the instrument.

---------------------------------------------------------
Title: Developmental Aspects of a Multi-Slit Spectro-Polarimeter
Authors: George, K.; Sankarasubramanian, R.; Bayanna, R.; Lin, H.;
   Venkatakrishnan, P.
2008eic..work..515G    Altcode:
  We report the development aspects of an integral field unit,
  multi-slit spectro-polarimeter (MSSP) optimized for optical to near
  infrared regime, which can be used to derive simultaneous spectral
  and vector magnetic field information at high spatial, spectral and
  temporal resolution of any extended astronomical object like the Sun,
  with limited spectral coverage of few Angstrom. The instrument will be
  first developed and tested in laboratory which in a later stage will
  be used as a focal plane instrument for the Multi Application Solar
  Telescope (MAST). The major technological challenges involved in setting
  up and calibration of the instrument are discussed. The scientific
  motivation for the system is highlighted, with special emphasis on
  science limitations imposed by similar existing instruments elsewhere.

---------------------------------------------------------
Title: The COronal Solar Magnetism Observatory
Authors: Burkepile, J.; Tomczyk, S.; Lin, H.; Zurbuchen, T.; Judge,
   P.; Casini, R.
2007AGUFMSH53A1070B    Altcode:
  Measurements of coronal and chromospheric magnetic fields are
  arguably the most important observables required for advances in
  our understanding of the emergence of magnetic flux into the solar
  atmosphere and the processes responsible for the production of solar
  activity, coronal heating and coronal dynamics. The COronal Solar
  Magnetism Observatory (COSMO) is a proposed ground-based suite of
  instruments designed for routine study of coronal and chromospheric
  magnetic fields and their environment. The facility consists of 3
  instruments: 1) a meter-class aperture coronal magnetometer devoted
  to obtaining the highest quality polarimetric data of forbidden lines
  of Fe XIII 1074.7 and 1079.8 nm.; 2) a chromosphere and prominence
  magnetometer devoted primarily to measurements of lines of helium
  (D3, 1083 nm) and perhaps Halpha, that will provide full disk vector
  magnetic field observations; 3) a white-light polarized-brightness (pB)
  coronagraph that will observe down to 1.05 solar radii at very high
  time cadence (15 seconds) at high signal-to-noise. This new facility
  will be operated by the High Altitude Observatory of the National
  Center for Atmospheric Research (HAO/NCAR) in collaboration with the
  University of Hawaii and the University of Michigan. COSMO will enhance
  the value of existing and new observatories on the ground (SOLIS, ATST,
  and FASR) and in space (SOHO, TRACE, GOES, SOLAR-B, STEREO, SDO) by
  providing unique and crucial observations of the global coronal and
  chromospheric magnetic field and its evolution.

---------------------------------------------------------
Title: Commissioning of the Dual-Beam Imaging Polarimeter for the
    University of Hawaii 88 inch Telescope
Authors: Masiero, Joseph; Hodapp, Klaus; Harrington, Dave; Lin,
   Haosheng
2007PASP..119.1126M    Altcode: 2007arXiv0708.1335M
  In this paper we present the design, calibration method, and initial
  results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument
  is designed to measure the optical polarization properties of point
  sources, in particular, Main Belt asteroids. This instrument interfaces
  between the Tek 2048×2048 camera and the University of Hawaii's 88
  inch telescope and is available for facility use. Using DBIP we are
  able to measure linear polarization with a 1 σ Poisson signal noise of
  0.03% per measurement and a systematic error of order 0.06%+/-0.02%. In
  addition, we discuss measurements of the polarization of the asteroid
  16 Psyche that were taken as part of the instrument commissioning. We
  confirm Psyche's negative polarization of -1.037%+/-0.006% but find
  no significant modulation of the signal with rotation above the 0.05%
  polarization level.

---------------------------------------------------------
Title: Mees Imaging Solar Spectrometer
Authors: Lin, Haosheng; Li, J.; Kuhn, J. R.; Mickey, D.; Habbal,
   S. R.; Jaeggli, S. S.
2007AAS...210.9215L    Altcode: 2007BAAS...39R.210L
  We propose the construction of a new instrument, the Mees Imaging Solar
  Spectrometer (MISS), optimized for spectroscopic study of energetic
  solar events such as filament eruptions and solar flares, and their
  relationship to coronal mass ejections. MISS is a fiber-optics-based
  imaging spectrograph. It will be able to perform simultaneous
  spectroscopic observations of selected spectral lines and continuum
  over an extended field with high spatial and spectral resolution
  and high cadence. It will operate nominally in a low-resolution (20"
  per pixel), full-disk patrol mode, and can be rapidly switched to a
  high-resolution (1" per pixel) region-of-interest mode of observation
  when energetic events are detected. Several spectral lines, from CaII
  H &amp; K to HeI 1083 nm can be recorded in rapid succession. These
  advanced imaging spectroscopic capabilities make it an ideal instrument
  for the study of the rapid change of the physical conditions of the
  solar atmosphere during these energetic events.

---------------------------------------------------------
Title: Coronal Magnetic Field
Authors: Lin, Haosheng
2007AAS...210.5201L    Altcode: 2007BAAS...39..164L
  Centuries after the birth of modern solar astronomy, the Sun's corona
  still keeps many of its secrets: How is it heated to a million-degree
  temperature? How does it harbor the cool and dense prominence gas
  amid the tenuous and hot atmosphere? How does it drive the energetic
  events that eject particles into interplanetary space with speed
  exceeding 1% of the speed of light? We have greatly improved our
  knowledge of the solar corona with decades of space X-ray and EUV
  coronal observations, and many theories and models were put forward to
  address these problems. In our current understanding, magnetic fields
  are undoubtedly the most important fields in the corona, shaping its
  structure and driving its dynamics. It is clear that the resolution
  of these important questions all hinge on a better understanding of
  the organization, evolution, and interaction of the coronal magnetic
  field. However, as the direct measurement of coronal magnetic field
  is a very challenging observational problem, most of our theories and
  models were not experimentally verified. Nevertheless, we have finally
  overcome the experimental difficulties and can now directly measure
  the coronal magnetic field with great accuracy. This new capability
  can now be used to study the static magnetic structure of the corona,
  and offers hope that we will, in the near future, be able to directly
  observe the evolution of the coronal magnetic field of energetic solar
  events. More importantly, it finally allows us to conduct vigorous
  observational tests of our theories and models. In this lecture, I
  will review current research activities related to the observation,
  interpretation, and modeling of the coronal magnetic field, and discuss
  how they can help us resolve some of the long standing mysteries of
  the solar corona.

---------------------------------------------------------
Title: The Coronal Magnetic Field Measurements On April 7, 2004
Authors: Liu, Yu; Lin, H.
2007AAS...210.9105L    Altcode: 2007BAAS...39..204L
  The magnetic field measurements in the corona above two quiet, close
  active regions NOAA 10581 and 10582 at the solar west limb were taken by
  the new coronagraph SOLARC installed on Haleakala. Spatially resolved
  measurements of line-of-sight magnetic field strength and transverse
  magnetic field direction of the solar corona were obtained at the
  wavelength of IR 1074.7 nm. In the two-dimensional coronal magnetogram
  made from the circular polarization, the observations showed a magnetic
  neutral line at a height of about 0.16 solar radii above the solar
  limb. Signatures of the the van Vleck effect were also shown from
  the linear polarization measurements. These new coronal data, for
  the first time, direct observational tests for theoretical coronal
  magnetic field models. In this paper, we present a study comparing
  the observed coronal magnetic field structures with the theoretical
  results derived from the global potential field model. One important
  conclusion in the study is that the SOLARC observations should reveal
  the local coronal structures above strong photospheric field regions,
  since both the observed linear and circular polarization signals are
  found to have a best consistence with the calculated results for a
  100 Mm-thick coronal region along the line of sight above the sunspot
  in NOAA 10582. The usefulness and limitations of the potential field
  extrapolation and various linear and non-linear force-free field
  extrapolation methods, as well as directions for a more sophisticated
  modelling effort involving MHD simulations and forward modeling of
  the polarization signals that take full account of atomic polarization
  and radiative transfer effects will be further studied and discussed.

---------------------------------------------------------
Title: COSMO: The Coronal Solar Magnetism Observatory
Authors: Burkepile, Joan; Tomczyk, S.; Lin, H.; Zurbuchen, T.;
   Casini, R.
2007AAS...210.2519B    Altcode: 2007BAAS...39..134B
  The COronal Solar Magnetism Observatory (COSMO) is a proposed
  ground-based suite of instruments designed to study coronal magnetic
  fields and their environment using the polarization of forbidden
  emission lines in the infrared. Supporting instruments focus on
  prominence and chromospheric magnetometry and imaging and the evolution
  of the electron scattered corona (K-corona). COSMO will address
  one of the least understood problems in Sun-Earth connections: the
  coronal magnetic field using breakthrough techonologies that have been
  successfully demonstrated with proof-of-concept instrumentation. We will
  present information about COSMO and science results from the prototype
  instruments, including the detection of Alfven waves in the corona.

---------------------------------------------------------
Title: The Coronal Solar Magnetic Observatory (COSMO)
Authors: Tomczyk, S.; Zurbuchen, T.; Kuhn, J.; Lin, H.; Judge, P.;
   Burkepile, J.; Casini, R.
2006AGUFMSM12A..03T    Altcode:
  Measurement of magnetic fields in the corona is arguably the most
  important observable required for advances in our understanding of
  the emergence of magnetic flux into the solar atmosphere and the
  processes responsible for the production of solar activity, coronal
  heating and coronal dynamics. We discuss plans for the COronal Solar
  Magnetic Observatory (COSMO), which is a proposed ground-based suite
  of instruments designed to routinely study coronal magnetic fields and
  their environment. The core of the facility includes a meter-class
  coronagraph with instrumentation dedicated to measuring the coronal
  magnetic field using the polarization of forbidden emission lines in
  the infrared. Supporting instruments focus on prominence magnetometry
  and the dynamics of the electron-scattered corona (K-corona) and
  chromosphere. In addition to acquiring routine synoptic observations
  of coronal magnetic fields, the COSMO project will include the
  establishment of a community-based user advisory panel to accept
  observational campaigns submitted by members of the scientific community
  at-large. COSMO will enhance the value of existing and new observatories
  on the ground (SOLIS, ATST, FASR) and in space (SOHO, TRACE, GOES,
  Solar-B, STEREO and SDO) by providing unique and crucial observations
  of the global coronal magnetic field and its evolution and dynamics.

---------------------------------------------------------
Title: Coronal Magnetic Field Measurements and Comparison with
    Theoretical Model
Authors: Liu, Y.; Lin, H.
2006AGUFMSH23B0363L    Altcode:
  Spatially resolved measurements of line-of-sight magnetic field
  strength and transverse magnetic field direction of the solar corona
  were obtained with the new SOLARC coronagraph and an optical fiber
  imaging spectropolarimeter. Observations of the corona above active
  regions NOAA 0581 and 0582 showed a reversal in the direction of the
  line-of-sight component of the coronal magnetic field at a height of
  0.16 solar radii above the solar limb. The linear polarization map
  also showed signatures of the van Vleck effect. These new data allow,
  for the first time, direct observational tests of theoretical coronal
  magnetic field models. In this paper, we present a study comparing
  the observed coronal magnetic field structures with the theoretical
  model derived from potential field extrapolation. The usefulness and
  limitations of potential field extrapolation, as well as directions
  for a more sophisticated modeling effort involving MHD simulations and
  forward modeling of the polarization signals that take full account
  of atomic polarization and radiative transfer effects will be discussed.

---------------------------------------------------------
Title: VisIRIS: a visible/IR imaging spectropolarimeter based on a
    birefringent fiber-optic image slicer
Authors: Lin, HaoSheng; Versteegh, Alex
2006SPIE.6269E..0KL    Altcode: 2006SPIE.6269E..18L
  High-resolution imaging spectropolarimetry in the visible and infrared
  wavelengths is the most effective and accurate observational diagnostic
  tool for many astrophysical problems, but many among them also require
  a spatially resolved two-dimensional field of view. However, it is
  difficult to achieve simultaneous three-dimensional (x, y, and λ)
  coverage using instruments with a conventional design. A conventional
  spectrograph achieves three-dimensional coverage either by scanning a
  tunable filter through the spectral window of interest, or by scanning
  a diffraction-grating-based long-slit spectrograph through the target
  region. Scanning in either spectral or spatial direction unavoidably
  degrades the quality of the data, and is time consuming. This
  paper describes a new visible/IR imaging spectropolarimeter
  design based on a novel birefringent fiber-optic image slicer and
  multiple-slit spectrograph. With this design, simultaneous 3-D imaging
  spectropolarimetry of astronomical objects with a large field of view
  and high spatial and spectral resolution can be achieved.

---------------------------------------------------------
Title: Site testing for the Advanced Technology Solar Telescope
Authors: Hill, F.; Beckers, J.; Brandt, P.; Briggs, J.; Brown, T.;
   Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Horst,
   T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn,
   M.; Radick, R.; Rimmele, T.; Socas-Navarro, H.; Streander, K.
2006SPIE.6267E..1TH    Altcode: 2006SPIE.6267E..59H
  The Advanced Solar Technology Telescope (ATST) is a 4-m solar telescope
  being designed for high spatial, spectral and temporal resolution,
  as well as IR and low-scattered light observations. The overall
  limit of performance of the telescope is strongly influenced by the
  qualities of the site at which it is located. Six sites were tested
  with a seeing monitor and a sky brightness instrument for 1.5 to 2
  years. The sites were Big Bear (California), Haleakala (Hawaii), La
  Palma (Canary Islands, Spain), Panguitch Lake (Utah), Sacramento Peak
  (New Mexico), and San Pedro Martir (Baja California, Mexico). In this
  paper we will describe the methods and results of the site survey,
  which chose Haleakala as the location of the ATST.

---------------------------------------------------------
Title: Using Imaging Infrared Coronal Spectropolarimetry to Measure
    the Near-Sun Plasma
Authors: Kuhn, J.; Lin, H.; Arnaud, J.; Jaeggli, S.
2005AGUFMSH44A..08K    Altcode:
  A moderate aperture ground-based coronagraph and an imaging infrared
  spectropolarimeter have provided our first direct longitudinal coronal
  magnetograms. This talk will describe the advantages and subtleties of
  these techniques for direct coronal magnetometry. We also summarize
  some of the diagnostic potential of current and likely future IR
  spectropolarimetric instruments (like the Advanced Technology Solar
  Telescope) for measuring the properties of the near-solar plasma.

---------------------------------------------------------
Title: Solar Site Survey for the Advanced Technology Solar
    Telescope. I. Analysis of the Seeing Data
Authors: Socas-Navarro, H.; Beckers, J.; Brandt, P.; Briggs, J.;
   Brown, T.; Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer,
   S.; Hill, F.; Horst, T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.;
   Oncley, S.; Penn, M.; Rimmele, T.; Streander, K.
2005PASP..117.1296S    Altcode: 2005astro.ph..8690S
  The site survey for the Advanced Technology Solar Telescope concluded
  recently after more than 2 years of data gathering and analysis. Six
  locations, including lake, island, and continental sites, were
  thoroughly probed for image quality and sky brightness. The present
  paper describes the analysis methodology employed to determine the
  height stratification of the atmospheric turbulence. This information
  is crucial, because daytime seeing is often very different between the
  actual telescope aperture (~30 m) and the ground. Two independent
  inversion codes have been developed to simultaneously analyze
  data from a scintillometer array and a solar differential image
  monitor. We show here the results of applying them to a sample subset
  of data from 2003 May that was used for testing. Both codes retrieve a
  similar seeing stratification through the height range of interest. A
  quantitative comparison between our analysis procedure and actual in
  situ measurements confirms the validity of the inversions. The sample
  data presented in this paper reveal a qualitatively different behavior
  for the lake sites (dominated by high-altitude seeing) and the rest
  (dominated by near-ground turbulence).

---------------------------------------------------------
Title: A Photometric Redshift Galaxy Catalog from the Red-Sequence
    Cluster Survey
Authors: Hsieh, B. C.; Yee, H. K. C.; Lin, H.; Gladders, M. D.
2005ApJS..158..161H    Altcode: 2005astro.ph..2157H
  The Red-Sequence Cluster Survey (RCS) provides a large and deep
  photometric catalog of galaxies in the z<SUP>'</SUP> and R<SUB>c</SUB>
  bands for 90 deg<SUP>2</SUP> of sky, and supplemental V and B data
  have been obtained for 33.6 deg<SUP>2</SUP>. We compile a photometric
  redshift catalog from these four-band data by utilizing the empirical
  quadratic polynomial photometric redshift fitting technique in
  combination with CNOC2 and GOODS/HDF-N redshift data. The training
  set includes 4924 spectral redshifts. The resulting catalog contains
  more than one million galaxies with photometric redshifts &lt;1.5
  and R<SUB>c</SUB>&lt;24, giving an rms scatter σ(Δz)&lt;0.06 within
  the redshift range 0.2&lt;z&lt;0.5 and σ(Δz)&lt;0.11 for galaxies
  at 0.0&lt;z&lt;1.5. We describe the empirical quadratic polynomial
  photometric redshift fitting technique that we use to determine the
  relation between redshift and photometry. A kd-tree algorithm is used
  to divide up our sample to improve the accuracy of our catalog. We
  also present a method for estimating the photometric redshift error
  for individual galaxies. We show that the redshift distribution of
  our sample is in excellent agreement with smaller and much deeper
  photometric and spectroscopic redshift surveys.

---------------------------------------------------------
Title: The ATST Site Survey
Authors: Hill, F.; Beckers, J.; Brandt, P.; Briggs, J. W.; Brown, T.;
   Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Horst,
   T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn, M.;
   Radick, R.; Rimmele, T.; Socas-Navarro, H.; Soltau, D.; Streander, K.
2005AGUSMSP34A..04H    Altcode:
  The Advanced Technology Solar Telescope (ATST) will be the world's
  largest aperture solar telescope, and is being designed for high
  resolution, IR, and coronal research. It must be located at a site that
  maximizes the scientific return of this substantial investment. We
  present the instrumentation, analysis and results of the ATST site
  survey. Two instrumentation sets were deployed at each of six sites to
  measure seeing as a function of height, and sky brightness as a function
  of wavelength and off-limb position. Analysis software was developed
  to estimate the structure function Cn2 as a function of height near
  the ground, and the results were verified by comparison with in-situ
  measurements. Additional software was developed to estimate the sky
  brightness. The statistics of the conditions at the sites were corrected
  for observing habits and the annualized hours of specific observing
  conditions were estimated. These results were used to identify three
  excellent sites suitable to host the ATST: Haleakala, Big Bear and La
  Palma. Among them, Haleakala is proposed as the optimal location of
  the ATST, La Palma and Big Bear being viable alternative sites.

---------------------------------------------------------
Title: First-Light Instrumentation for the Advanced Technology
    Solar Telescope
Authors: Rimmele, T.; Balasubramaniam, K.; Berger, T.; Elmore, D.;
   Gary, A.; Keller, C.; Kuhn, J.; Lin, H.; Mickey, D.; Pevtsov, A.;
   Robinson, B.; Sigwarth, M.; Soccas-Navarro, H.
2005AGUSMSP34A..03R    Altcode:
  The 4m Advanced Technology Solar Telescope (ATST) is the next
  generation ground based solar telescope. In this paper we provide
  an overview of the ATST post-focus instrumentation. The majority of
  ATST instrumentation is located in an instrument Coude lab facility,
  where a rotating platform provides image de-rotation. A high order
  adaptive optics system delivers a corrected beam to the Coude lab
  facility. Alternatively, instruments can be mounted at the Nasmyth
  focus. For example, instruments for observing the faint corona
  preferably will be mounted at Nasmyth where maximum throughput
  is achieved. In addition, the Nasmyth focus has minimum telescope
  polarization and minimum stray light. We give an overview of the
  initial set of first generation instruments: the Visible-Light
  Broadband Imager (VLBI), the Visible Spectro-Polarimeter (ViSP),
  the Near-IR Spectro-Polarimeter (NIRSP), which includes a coronal
  module, and the Visible Tunable Filter. We also discuss the unique and
  efficient approach to the ATST instrumentation, which builds on the use
  of common components such as detector systems, polarimetry packages
  and various opto-mechanical components. For example, the science
  requirement for polarimetric sensitivity (10-5 relative to intensity)
  and accuracy (5'10-4 relative to intensity) place strong constraints
  on the polarization analysis and calibration units. Consequently,
  these systems are provided at the facility level, rather than making
  it part of the requirement for each instrument.

---------------------------------------------------------
Title: Coronal Magnetic Field Measurements
Authors: Lin, H.; Kuhn, J. R.; Coulter, R.
2004ApJ...613L.177L    Altcode:
  A long-standing solar problem has been to measure the coronal magnetic
  field. We believe it determines the coronal structure and dynamics from
  the upper chromosphere out into the heliospheric environment. It is only
  recently that Zeeman splitting observations of infrared coronal emission
  lines have been successfully used to deduce the coronal magnetic flux
  density. Here we extend this technique and report first results from a
  novel coronal magnetometer that uses an off-axis reflecting coronagraph
  and optical fiber-bundle imaging spectropolarimeter. We determine the
  line-of-sight magnetic flux density and transverse field orientation
  in a two-dimensional map with a sensitivity of about 1 G with 20"
  spatial resolution after 70 minutes of integration. These full-Stokes
  spectropolarimetric measurements of the forbidden Fe XIII 1075 nm
  coronal emission line reveal the line-of-sight coronal magnetic field
  100" above an active region to have a flux density of about 4 G.

---------------------------------------------------------
Title: Solar site testing for the Advanced Technology Solar Telescope
Authors: Hill, Frank; Beckers, Jacques; Brandt, Peter; Briggs, John;
   Brown, Timothy; Brown, W.; Collados, Manuel; Denker, Carsten; Fletcher,
   Steven; Hegwer, Steven; Horst, T.; Komsa, Mark; Kuhn, Jeff; Lecinski,
   Alice; Lin, Haosheng; Oncley, Steve; Penn, Matthew; Rimmele, Thomas
   R.; Socas-Navarro, Hector; Streander, Kim
2004SPIE.5489..122H    Altcode:
  The location of the Advanced Technology Solar Telescope (ATST) is a
  critical factor in the overall performance of the telescope. We have
  developed a set of instrumentation to measure daytime seeing, sky
  brightness, cloud cover, water vapor, dust levels, and weather. The
  instruments have been located at six sites for periods of one to two
  years. Here we describe the sites and instrumentation, discuss the
  data reduction, and present some preliminary results. We demonstrate
  that it is possible to estimate seeing as a function of height near the
  ground with an array of scintillometers, and that there is a distinct
  qualitative difference in daytime seeing between sites with or without
  a nearby lake.

---------------------------------------------------------
Title: Instrumentation for the Advanced Technology Solar Telescope
Authors: Rimmele, Thomas R.; Hubbard, Robert P.; Balasubramaniam,
   K. S.; Berger, Tom; Elmore, David; Gary, G. Allen; Jennings, Don;
   Keller, Christoph; Kuhn, Jeff; Lin, Haosheng; Mickey, Don; Moretto,
   Gilberto; Socas-Navarro, Hector; Stenflo, Jan O.; Wang, Haimin
2004SPIE.5492..944R    Altcode:
  The 4-m aperture Advanced Technology Solar Telescope (ATST) is the
  next generation ground based solar telescope. In this paper we provide
  an overview of the ATST post-focus instrumentation. The majority of
  ATST instrumentation is located in an instrument Coude lab facility,
  where a rotating platform provides image de-rotation. A high order
  adaptive optics system delivers a corrected beam to the Coude lab
  facility. Alternatively, instruments can be mounted at Nasmyth or
  a small Gregorian area. For example, instruments for observing the
  faint corona preferably will be mounted at Nasmyth focus where maximum
  throughput is achieved. In addition, the Nasmyth focus has minimum
  telescope polarization and minimum stray light. We describe the set of
  first generation instruments, which include a Visible-Light Broadband
  Imager (VLBI), Visible and Near-Infrared (NIR) Spectropolarimeters,
  Visible and NIR Tunable Filters, a Thermal-Infrared Polarimeter &amp;
  Spectrometer and a UV-Polarimeter. We also discuss unique and efficient
  approaches to the ATST instrumentation, which builds on the use of
  common components such as detector systems, polarimetry packages and
  various opto-mechanical components.

---------------------------------------------------------
Title: The Advanced Technology Solar Telescope Site Survey Sky
    Brightness Monitor
Authors: Lin, Haosheng; Penn, Matthew J.
2004PASP..116..652L    Altcode:
  The Advanced Technology Solar Telescope (ATST) will be a 4 m aperture
  off-axis telescope with advanced high-resolution and low scattered
  light capabilities for the observation of the solar photosphere and
  corona. The site characteristics that are critical to the success of
  the ATST coronal observations are the sky brightness, the precipitable
  water vapor content, and the number and size distributions of the
  dust particles. Therefore, part of the ATST site survey effort is
  to obtain measurements of these atmospheric properties at all the
  potential ATST sites. The ATST site survey Sky Brightness Monitor (SBM)
  is a new instrument specifically developed for this task. The SBM is a
  modified externally occulted coronagraph capable of imaging the solar
  disk and sky simultaneously. The ability to image the Sun and the sky
  simultaneously greatly simplifies the calibration of the sky-brightness
  measurements. The SBM has a very simple optical configuration that makes
  it a compact and low-maintenance instrument. The SBM is sensitive to sky
  brightness below 1×10<SUP>-6</SUP> disk center intensity, with a field
  of view extending from 4 to 8 R<SUB>solar</SUB>. It measures the solar
  disk and sky brightness at three continuum bandpasses located at 450,
  530, and 890 nm. A fourth bandpass is centered at the 940 nm water vapor
  absorption band. With measurements of disk and sky brightness at these
  four wavelengths, site characteristics such as extinctions, aerosol
  content, and precipitable water vapor content can be derived. This
  paper documents the design, specifications, calibration procedures,
  and performance of the SBM.

---------------------------------------------------------
Title: Background-Induced Measurement Errors of the Coronal Intensity,
    Density, Velocity, and Magnetic Field
Authors: Penn, M. J.; Lin, H.; Tomczyk, S.; Elmore, D.; Judge, P.
2004SoPh..222...61P    Altcode:
  The effect of a background signal on the signal-to-noise ratio is
  discussed, with particular application to ground-based observations of
  emission lines in the solar corona with the proposed Advanced Technology
  Solar Telescope. The concepts of effective coronal aperture and
  effective coronal integration time are introduced. Specific expressions
  are developed for the 1σ measurement errors for coronal intensity,
  coronal electron density, coronal velocity, and coronal magnetic field
  measurements using emission lines and including a background.

---------------------------------------------------------
Title: Latest Results from the ATST Site Survey
Authors: Hill, F.; Collados, M.; Navarro, H.; Beckers, J.; Brandt,
   P.; Briggs, J.; Brown, T.; Denker, C.; Hegwer, S.; Horst, T.; Komsa,
   M.; Kuhn, J.; Lin, H.; Oncley, S.; Penn, M.; Rimmele, T.; Soltau,
   D.; Streander, K.
2004AAS...204.6909H    Altcode: 2004BAAS...36..795H
  We present the latest results and current status of the site survey
  portion of the Advanced Technology Solar Telescope (ATST) project. The
  ATST will provide high resolution solar data in the visible and IR. The
  site is a major factor determining the performance of the telescope. The
  most critical site characteristics are the statistics of daytime seeing
  quality and sky clarity. These conditions are being measured by a suite
  of instruments at three sites (Big Bear, Haleakala, La Palma). These
  sites were chosen from a set of six that have been tested starting in
  November 2001. The instrumentation includes a solar differential image
  motion monitor, an array of scintillometers, a miniature coronagraph,
  a dust monitor, and a weather station. The analysis of the data provides
  an estimate of the seeing as a function of height near the ground. We
  will present the latest results of the analysis of the survey data set.

---------------------------------------------------------
Title: Title Requested
Authors: Lin, H.; Kuhn, J. R.; Coulter, R.
2004AAS...204.9807L    Altcode: 2004BAAS...36Q.985L
  A critical problem for understanding the solar corona has been
  to measure its magnetic field that we believe determines its
  structure and dynamics from the upper chromosphere out into the
  heliospheric environment. The direct measurement of this field has
  been a longstanding problem. Only recently have Zeeman splitting
  observations of infrared coronal emission lines (Lin et al. 2000) been
  used to deduce the coronal magnetic flux density. We have extended
  this technique and report here our first results from a novel coronal
  magnetometer that uses an off-axis reflecting coronagraph (SOLARC) and
  optical fiber-bundle imaging spectropolarimeter (OFIS). Our results
  reveal the line-of-sight magnetic flux density with a sensitivity of
  a few gauss with 20 arcsec spatial resolution and approximately 60min
  temporal resolution. These full Stokes spectropolarimetric data of
  the forbidden FeXIII emission line at 1075nm imply a line-of-sight
  coronal magnetic field above an active region with a flux density of
  9G. Although these first results from SOLARC/OFIS have relatively coarse
  resolution, they have potential for solving our coronal "dark energy"
  problem with infrared magnetometry. This research has been supported by
  the Multidisciplinary University Research Initiative (MURI) of the DOD,
  NASA, and the National Science Foundation Atmospheric Research Program.

---------------------------------------------------------
Title: Extinction and Sky Brightness at Two Solar Observatories
Authors: Penn, M. J.; Lin, H.; Schmidt, A. M.; Gerke, J.; Hill, F.
2004SoPh..220..107P    Altcode:
  The Advanced Technology Solar Telescope site survey Sky Brightness
  Monitor simultaneously images the solar disk and the sky to about
  8 solar radii in four wavelengths at 450, 530, 890 and 940 nm. One
  day of data from Mees Solar Observatory on Haleakala and from the
  National Solar Observatory at Sacramento Peak (Sunspot, New Mexico)
  are analyzed. Both sites show strong Rayleigh extinction, but while
  Haleakala shows a larger aerosol component, Sunspot shows a large
  variation in the aerosol component. Overall the Haleakala extinction
  varies as λ<SUP>−2</SUP> whereas the Sunspot extinction changes
  from about λ<SUP>−3.5</SUP> to about λ<SUP>−2</SUP>, suggesting
  an increasing aerosol component during the day. Water vapor absorption
  measurements from both sites are similar, though Sunspot shows larger
  time variations than Haleakala. The instrument-corrected sky brightness
  from both sites show comparable values, and again the Sunspot data show
  more variations. The sky brightness values show a radial dependence
  of sky brightness of r<SUP>−0.1</SUP> at Haleakala, but a dependence
  of r<SUP>−1.0</SUP> at Sunspot. The wavelength variation of the sky
  brightness at Haleakala is relatively constant at λ<SUP>−1.5</SUP>
  but varies at Sunspot from λ<SUP>−1.5</SUP> to λ<SUP>−0.1</SUP>
  again suggesting an increasing aerosol contribution during the day
  at Sunspot. Finally, dust measurements near the ground are compared
  with the extinction wavelength exponent for data taken at Haleakala
  on 24 Feb. 2003. The measurements suggest more large dust particles
  are present near the ground than averaged over the whole air column.

---------------------------------------------------------
Title: Measuring Coronal Magnetic Fields with Coronal Emission
    Line Polarimetry
Authors: Lin, H.
2003AGUFMSH42D..02L    Altcode:
  Magnetic field is the dominating field in the solar corona, responsible
  for the majestic coronal structures and dynamic events. However,
  no direct measurements of the coronal magnetic fields are routinely
  available and we can only infer the coronal magnetic field structures
  from observed intensity images. Although several methods for the
  diagnostics of coronal magnetic fields have been demonstrated,
  measurement of the coronal magnetic fields remains a very challenging
  observational task. This paper reports on a concerted effort at the
  Institute for Astronomy (IfA) to establish routine vector coronal
  magnetic field measurement capabilities using spectropolarimetric
  observation of the near infrared Fe XIII 1074.7 nm coronal emission
  line. The IfA effort includes observations of two-dimensional circular
  polarization maps of the emission line which carry information about
  the coronal magnetic field strength. High resolution observation
  of the linear polarization maps which yield the projected direction
  of the coronal magnetic field in the plane of the sky will also be
  obtained. The latest results from these experiments will be presented.

---------------------------------------------------------
Title: ATST near-IR spectropolarimeter
Authors: Lin, Haosheng
2003SPIE.4853..215L    Altcode:
  The development of new solar IR instrumentation in the past decade
  had opened new windows of opportunity for solar physics research
  which were not accessible before. Many spectral lines in the near-IR
  wavelength range from 1 to 2 microns offer powerful diagnostics for
  the study of solar magnetism in the photosphere, the chromosphere,
  and the corona. Significant progress and breakthroughs were made
  in areas such as the generation of weak background magnetic fields
  by small-scale surface dynamos, the physics of the sunspot, and the
  direct measurement of magnetic fields in the corona. The combination of
  these new IR diagnostics tools, and the unprecedented 4-meter aperture
  and versatile photospheric and coronal capabilities of the Advanced
  Technology Solar Telescope (ATST), will greatly enhance our capability
  to study the Sun. It further promises breakthrough observations that
  can help to resolve many of the long-standing mysteries of solar
  physics. The instruments for the ATST will need to accommodate a
  broad range of science subjects, each with its unique observational
  requirements. This paper examine the near-IR instrumentation required
  to achieve the ATST science goals, and present conceptual designs
  of a near-IR SpectroPolarimeter (NIRSP) aimed at addressing the new
  challenges of observational solar physics brought upon by the ATST.

---------------------------------------------------------
Title: Strategies for prime focus instrumentation in off-axis
    Gregorian systems
Authors: Coulter, Roy; Kuhn, Jeff R.; Lin, Haosheng
2003SPIE.4853..558C    Altcode:
  A new generation of off-axis telescopes has been proposed to address
  a number of high dynamic range problems in astrophysics. These
  systems present unusual problems and opportunities for the instrument
  designer. We will discuss some of the issues that must be resolved
  when placing instrumentation at the prime focus. The heat stop and
  occulter systems for the SOLARC off-axis coronagraph will be used to
  illustrate strategies for solar telescope applications.

---------------------------------------------------------
Title: The SOLARC off-axis coronagraph
Authors: Kuhn, Jeff R.; Coulter, Roy; Lin, Haosheng; Mickey, Donald L.
2003SPIE.4853..318K    Altcode:
  A 0.5m aperture off-axis coronagraphic telescope is described. Its
  fabrication, imaging, and scattered light performance is discussed in
  the context of simple model expectations.

---------------------------------------------------------
Title: Near-infrared chromospheric observatory
Authors: Labonte, Barry; Rust, David M.; Bernasconi, Pietro N.;
   Georgoulis, Manolis K.; Fox, Nicola J.; Kalkofen, Wolfgang; Lin,
   Haosheng
2003SPIE.4853..140L    Altcode:
  NICO, the Near Infrared Chromosphere Observatory, is a platform for
  determining the magnetic structure and fources of heating for the
  solar chromosphere. NICO, a balloon-borne observatory, will use the
  largest solar telescope flying to map the magnetic fields, velocities,
  and heating events of the chromosphere and photosphere in detail. NICO
  will introduce new technologies to solar flight missions, such as
  wavefront sensing for monitoring telescope alignment, real-time
  correlation tracking and high-speed image motion compensation, and
  wide aperture Fabry-Perot etalons for extended spectral scanning.

---------------------------------------------------------
Title: The Near-Infrared Chromosphere Observatory (NICO)
Authors: Rust, D. M.; Bernasconi, P. N.; LaBonte, B. J.; Georgoulis,
   M. K.; Kalkofen, W.; Fox, N. J.; Lin, H.
2002AAS...200.3902R    Altcode: 2002BAAS...34..701R
  NICO is a proposed cost-effective platform for determining the magnetic
  structure and sources of heating for the solar chromosphere. It is a
  balloon-borne observatory that will use the largest solar telescope
  flying and very high data rates to map the magnetic fields, velocities,
  and heating events of the chromosphere and photosphere in unprecedented
  detail. NICO is based on the Flare Genesis Experiment (FGE), which
  has pioneered in the application of technologies important to NASA's
  flight program. NICO will also introduce new technologies, such
  as wavefront sensing for monitoring telescope alignment; real-time
  correlation tracking and high-speed image motion compensation for
  smear-free imaging; and wide aperture Fabry-Perot filters for extended
  spectral scanning. The telescope is a classic Cassegrain design with
  an 80-cm diameter F/1.5 primary mirror made of Ultra-Low-Expansion
  glass. The telescope structure is graphite-epoxy for lightweight,
  temperature-insensitive support. The primary and secondary mirror
  surfaces are coated with silver to reflect more than 97% of the incident
  solar energy. The secondary is made of single-crystal silicon, which
  provides excellent thermal conduction from the mirror surface to its
  mount, with negligible thermal distortion. A third mirror acts as a
  heat dump. It passes the light from a 15-mm diameter aperture in its
  center, corresponding to a 322"-diameter circle on the solar surface,
  while the rest of the solar radiation is reflected back out of the
  front of the telescope. The telescope supplies the selected segment
  of the solar image to a polarization and spectral analysis package
  that operates with an image cadence 1 filtergram/sec. On-board data
  storage is 3.2 Terabytes. Quick-look images will be sent in near real
  time to the ground via the TDRSS communications link.

---------------------------------------------------------
Title: Near Infrared Magnetometry in the Photosphere and Corona
Authors: Lin, H.
2002AAS...200.3404L    Altcode: 2002BAAS...34..690L
  The interplay between the magnetic fields and the highly conductive
  plasma in the atmosphere of the sun generates some of the most
  fascinating and puzzling astronomical phenomena known to the
  mankind. Because of its proximity to the earth, these solar activities
  also have profound effect on life on earth. Therefore, understanding
  solar magnetism is not only an intellectual inquiry of the curious
  minds, it is also an endeavor to better the human life. The near
  infrared wavelength regime between 1 to 2 microns contains many
  spectral lines with powerful diagnostics capability for the study of
  solar magnetic fields. These spectral lines offer enhanced magnetic
  sensitivity in both the photosphere and corona, which not only allows
  us to explore regions of the solar atmosphere not easily accessible by
  other diagnostics, in many cases, it also provides critical measurements
  to distinguish competing models, and therefore, advances our knowledge
  of the sun. While the potential of the near-IR tools for the study
  of solar magnetism was well recognized by the pioneers of the field
  many decades ago, realization of some of their capabilities was
  achieved only recently, due to the advance of the IR array detector
  technology. In this talk, we will first review past achievements and
  the current status of the near-IR solar physics research. Of course,
  the excitement of the field is in the future challenges and progress
  we are going to face and achieve with the Advanced Technology Solar
  Telescope (ATST). Therefore, we will also discuss the scientific goals
  of the ATST and present ideas on how to achieve these goals.

---------------------------------------------------------
Title: A Classical Model for the Damped, Magnetic Dipole Oscillator
Authors: Casini, Roberto; Lin, Haosheng
2002ApJ...571..540C    Altcode:
  We propose a simple classical model for the damped, magnetic dipole
  oscillator based on a circuit analogy. The solution for the dynamical
  equation of the associated magnetic moment is found to be similar
  in form to the well-known solution for the damped, electric dipole
  oscillator, but with the magnetic vector of the incident electromagnetic
  wave as the forcing field, instead of the electric vector. This
  model has been successfully applied to a classical derivation of the
  polarization properties of the forbidden (M1) coronal emission lines.

---------------------------------------------------------
Title: Dynamically Close Galaxy Pairs and Merger Rate Evolution in
    the CNOC2 Redshift Survey
Authors: Patton, D. R.; Pritchet, C. J.; Carlberg, R. G.; Marzke,
   R. O.; Yee, H. K. C.; Hall, P. B.; Lin, H.; Morris, S. L.; Sawicki,
   M.; Shepherd, C. W.; Wirth, G. D.
2002ApJ...565..208P    Altcode: 2001astro.ph..9428P
  We investigate redshift evolution in the galaxy merger and
  accretion rates, using a well-defined sample of 4184 galaxies with
  0.12&lt;=z&lt;=0.55 and R<SUB>C</SUB>&lt;=21.5. We identify 88 galaxies
  in close (5&lt;=r<SUB>p</SUB>&lt;=20 h<SUP>-1</SUP> kpc) dynamical
  (Δv&lt;=500 km s<SUP>-1</SUP>) pairs. These galaxies are used to
  compute global pair statistics, after accounting for selection effects
  resulting from the flux limit, k-corrections, luminosity evolution, and
  spectroscopic incompleteness. We find that the number of companions
  per galaxy (for -21&lt;=M<SUP>k,e</SUP><SUB>B</SUB>&lt;=-18) is
  N<SUB>c</SUB>=0.0321+/-0.0077 at z=0.3. The luminosity in companions,
  per galaxy, is L<SUB>c</SUB>=0.0294+/-0.0084×10<SUP>10</SUP>
  h<SUP>2</SUP> L<SUB>solar</SUB>. We assume that N<SUB>c</SUB>
  is proportional to the galaxy merger rate, while L<SUB>c</SUB>
  is directly related to the mass accretion rate. After increasing
  the maximum pair separation to 50 h<SUP>-1</SUP> kpc and comparing
  with the low-redshift SSRS2 pair sample, we infer evolution in the
  galaxy merger and accretion rates of (1+z)<SUP>2.3+/-0.7</SUP> and
  (1+z)<SUP>2.3+/-0.9</SUP>, respectively. These are the first such
  estimates to be made using only confirmed dynamical pairs. When combined
  with several additional assumptions, this implies that approximately
  15% of present epoch galaxies with -21&lt;=M<SUB>B</SUB>&lt;=-18 have
  undergone a major merger since z=1.

---------------------------------------------------------
Title: Environment and Galaxy Evolution at Intermediate Redshift in
    the CNOC2 Survey
Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.;
   Hall, P. B.; Patton, D. R.; Sawicki, M.; Shepherd, C. W.
2001ApJ...563..736C    Altcode: 2001astro.ph..6506C
  The systematic variation of galaxy colors and types with clustering
  environment could either be the result of local conditions at formation
  or subsequent environmental effects as larger scale structures draw
  together galaxies whose stellar mass is largely in place. Below redshift
  0.7 galaxy luminosities (k-corrected and evolution compensated) are
  relatively invariant, whereas galaxy star formation rates, as reflected
  in their colors, are a “transient” property that have a wide range
  for a given luminosity. The relations between these galaxy properties
  and the clustering properties are key statistics for understanding the
  forces driving late-time galaxy evolution. At z~0.4 the comoving galaxy
  correlation length, r<SUB>0</SUB>, measured in the CNOC2 sample is
  strongly color dependent, rising from 2 h<SUP>-1</SUP> Mpc to nearly
  10 h<SUP>-1</SUP> Mpc as the volume-limited subsamples range from
  blue to red. The luminosity dependence of r<SUB>0</SUB> at z~0.4 is
  weak below L<SUB>*</SUB> in the R band, although there is an upturn at
  high luminosity, where its interpretation depends on separating it from
  the r<SUB>0</SUB>-color relation. In the B band there is a slow, smooth
  increase of r<SUB>0</SUB> with luminosity, at least partially related to
  the color dependence. Study of the evolution of galaxies within groups,
  which create much of the strongly nonlinear correlation signal, allows
  a physical investigation of the source of these relations. The dominant
  effect of the group environment on star formation is seen in the radial
  gradient of the mean galaxy colors, which on the average become redder
  than the field toward the group centers. The color differentiation
  begins around the dynamical radius of virialization of the groups. The
  redder-than-field trend applies to groups with a line-of-sight velocity
  dispersion, σ<SUB>1</SUB>&gt;150 km s<SUP>-1</SUP>. There is an
  indication, somewhat statistically insecure, that the high-luminosity
  galaxies in groups with σ<SUB>1</SUB>&lt;125 km s<SUP>-1</SUP> become
  bluer toward the group center. Monte Carlo orbit integrations initiated
  at the measured positions and velocities show that the rate of galaxy
  merging in the σ<SUB>1</SUB>&gt;150 km s<SUP>-1</SUP> groups is very
  low, whereas for σ<SUB>1</SUB>&lt;150 km s<SUP>-1</SUP> about 25%
  of the galaxies will merge in 0.5 Gyr. We conclude that the higher
  velocity dispersion groups largely act to suppress star formation
  relative to the less clustered field, leading to “embalmed”
  galaxies. On the other hand, the low velocity dispersion groups are
  prime sites of both strong merging and enhanced star formation that
  leads to the formation of some new massive galaxies at intermediate
  redshifts. The tidal fields within the groups appear to be a strong
  candidate for the physical source of the reduction of star formation
  in group galaxies relative to field. Tides operate effectively at all
  velocity dispersions to remove gas-rich companions and low-density gas
  in galactic halos. We find a close resemblance of the color-dependent
  galaxy luminosity function evolution in the field and groups, suggesting
  that the clustering-dependent star formation reduction mechanism is
  important for the evolution of field galaxies as a whole.

---------------------------------------------------------
Title: The Galaxy Correlation Function in the CNOC2 Redshift Survey:
    Dependence on Color, Luminosity, and Redshift
Authors: Shepherd, C. W.; Carlberg, R. G.; Yee, H. K. C.; Morris,
   S. L.; Lin, H.; Sawicki, M.; Hall, P. B.; Patton, D. R.
2001ApJ...560...72S    Altcode: 2001astro.ph..6250S
  We examine how the spatial correlation function of galaxies from the
  Canadian Network for Observational Cosmology Field Galaxy Redshift
  Survey (CNOC2) depends on galaxy color, luminosity, and redshift. The
  projected correlation function w<SUB>p</SUB> is determined for
  volume-limited samples of objects with 0.12&lt;=z&lt;0.51 and
  evolution-compensated R<SUB>C</SUB>-band absolute magnitudes
  M<SUP>0</SUP><SUB>R</SUB>&lt;-20, over the comoving projected
  separation range 0.04 h<SUP>-1</SUP> Mpc&lt;r<SUB>p</SUB>&lt;10
  h<SUP>-1</SUP> Mpc. Our sample consists of 2937 galaxies that are
  classified as being either early- or late-type objects according
  to their spectral energy distribution (SED), as determined from
  UBVR<SUB>C</SUB>I<SUB>C</SUB> photometry. For the sake of simplicity,
  galaxy SEDs are classified independently of redshift: Our classification
  scheme therefore does not take into account the color evolution of
  galaxies. Objects with SEDs corresponding to early-type galaxies
  are found to be more strongly clustered by a factor of ~3 and
  to have a steeper correlation function than those with late-type
  SEDs. Modeling the spatial correlation function, as a function of
  comoving separation r, as ξ(r)=(r/r<SUB>0</SUB>)<SUP>-γ</SUP>, we
  find r<SUB>0</SUB>=5.45+/-0.28 h<SUP>-1</SUP> Mpc and γ=1.91+/-0.06
  for early-type objects, and r<SUB>0</SUB>=3.95+/-0.12 h<SUP>-1</SUP>
  Mpc and γ=1.59+/-0.08 for late-type objects (for Ω<SUB>M</SUB>=0.2,
  Ω<SUB>Λ</SUB>=0). While changing the cutoff between early-
  and late-type SEDs does affect the correlation amplitudes of
  the two samples, the ratio of the amplitudes remains constant to
  within 10%. The redshift dependence of the correlation function
  also depends on SED type. Modeling the redshift dependence of
  the comoving correlation amplitude r<SUP>γ</SUP><SUB>0</SUB> as
  r<SUP>γ</SUP><SUB>0</SUB>(z)~(1+z)<SUP>γ-3-ɛ</SUP>, we find that
  early-type objects have ɛ=-3.9+/-1.0, and late-type objects have
  ɛ=-7.7+/-1.3. Both classes of objects therefore have clustering
  amplitudes, measured in comoving coordinates, which appear to decrease
  rapidly with cosmic time. The excess clustering of galaxies with
  early-type SEDs, relative to late-type objects, is present at all
  redshifts in our sample. In contrast to the early- and late-type SED
  samples, the combined sample undergoes little apparent evolution,
  with ɛ=-2.1+/-1.3, which is consistent with earlier results. The
  apparent increase with redshift of the clustering amplitude in
  the early- and late-type samples is almost certainly caused by
  evolution of the galaxies themselves rather than by evolution of
  the correlation function. If galaxy SEDs have evolved significantly
  since z~0.5, then our method of classifying SEDs may cause us to
  overestimate the true evolution of the clustering amplitude for the
  unevolved counterparts to our early- and late-type samples. However,
  if color evolution is to explain the apparent clustering evolution,
  the color evolution experienced by a galaxy must be correlated with
  the galaxy correlation function. We also investigate the luminosity
  dependence of the correlation function for volume-limited samples with
  0.12&lt;=z&lt;0.40 and M<SUP>0</SUP><SUB>R</SUB>&lt;-19.25. We detect
  a weak luminosity dependence of the correlation amplitude for galaxies
  with early-type SEDs, dlogξ/dM<SUP>0</SUP><SUB>R</SUB>=-0.35+/-0.17,
  but no significant dependence for late-type objects,
  dlogξ/dM<SUP>0</SUP><SUB>R</SUB>=0.02+/-0.16.

---------------------------------------------------------
Title: Galaxy Groups at Intermediate Redshift
Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.;
   Hall, P. B.; Patton, D. R.; Sawicki, M.; Shepherd, C. W.
2001ApJ...552..427C    Altcode: 2000astro.ph..8201C
  Galaxy groups likely to be virialized are identified within
  the CNOC2 intermediate-redshift galaxy survey. The resulting
  groups have a median velocity dispersion, σ<SUB>1</SUB>~=200 km
  s<SUP>-1</SUP>. The virial mass-to-light ratios, using k-corrected
  and evolution-compensated luminosities, have medians in the range of
  150-250 h M<SUB>solar</SUB>/L<SUB>solar</SUB>, depending on group
  definition details. The number-velocity dispersion relation at
  σ<SUB>1</SUB>&gt;~200 km s<SUP>-1</SUP> is in agreement with the
  low-mass extrapolation of the cluster-normalized Press-Schechter
  model. Lower velocity dispersion groups are deficient relative to
  the Press-Schechter model. The two-point group-group autocorrelation
  function has r<SUB>0</SUB>=6.8+/-0.3 h<SUP>-1</SUP> Mpc, which
  is much larger than the correlations of individual galaxies, but
  about as expected from biased clustering. The mean number density
  of galaxies around group centers falls nearly as a power law with
  r<SUP>-2.5</SUP> and has no well-defined core. The projected velocity
  dispersion of galaxies around group centers is either flat or slowly
  rising outward. The combination of a steeper than isothermal density
  profile and the outward rising velocity dispersion implies that
  the mass-to-light ratio of groups rises with radius if the velocity
  ellipsoid is isotropic but could be nearly constant if the galaxy
  orbits are nearly circular. Such strong tangential anisotropy is not
  supported by other evidence. Although the implication of a rising M/L
  must be viewed with caution, it could naturally arise through dynamical
  friction acting on the galaxies in a background of “classical”
  collisionless dark matter.

---------------------------------------------------------
Title: Weak-Lensing Study of Low-Mass Galaxy Groups: Implications
    for Ω<SUB>m</SUB>
Authors: Hoekstra, H.; Franx, M.; Kuijken, K.; Carlberg, R. G.; Yee,
   H. K. C.; Lin, H.; Morris, S. L.; Hall, P. B.; Patton, D. R.; Sawicki,
   M.; Wirth, G. D.
2001ApJ...548L...5H    Altcode: 2000astro.ph.12169H
  We report on the first measurement of the average mass and mass-to-light
  ratio of galaxy groups by analyzing the weak-lensing signal induced by
  these systems. The groups, which have velocity dispersions of 50-400
  km s<SUP>-1</SUP>, have been selected from the Canadian Network for
  Observational Cosmology Field Galaxy Redshift Survey (CNOC2). This
  survey allows the identification of a large number of groups with
  redshifts ranging from z=0.12 to 0.55, ideal for a weak-lensing analysis
  of their mass distribution. For our analysis we use a sample of 50
  groups that are selected on the basis of a careful dynamical analysis of
  group candidates. We detect a signal at the 99% confidence limit. The
  best-fit singular isothermal sphere model yields an Einstein radius
  r<SUB>E</SUB>=0.72"+/-0.29". This corresponds to a velocity dispersion
  of &lt;σ<SUP>2</SUP>&gt;<SUP>1/2</SUP>=274<SUP>+48</SUP><SUB>-
  59</SUB> km s<SUP>-1</SUP> (using photometric redshift distributions
  for the source galaxies), which is in good agreement with the
  dynamical estimate. Under the assumption that the light traces
  the mass, we find an average mass-to-light ratio of 191+/-83 h
  M<SUB>solar</SUB>/L<SUB>Bsolar</SUB> in the rest-frame B band. Unlike
  dynamical estimates, this result is insensitive to problems associated
  with determining group membership. After correction of the observed
  mass-to-light ratio for luminosity evolution to z=0, we find 254+/-110 h
  M<SUB>solar</SUB>/L<SUB>Bsolar</SUB>, lower than what is found for rich
  clusters. We use the observed mass-to-light ratio to estimate the matter
  density of the universe, for which we find Ω<SUB>m</SUB>=0.19+/-0.10
  (Ω<SUB>Λ</SUB>=0), in good agreement with other recent estimates. For
  a closed universe (Ω<SUB>m</SUB>+Ω<SUB>Λ</SUB>=1), we obtain
  Ω<SUB>m</SUB>=0.13+/-0.07. Based on observations made with the William
  Herschel Telescope operated on the island of La Palma by the Isaac
  Newton Group in the Spanish Observatorio del Roque de los Muchachos
  of the Instituto de Astrofisica de Canarias.

---------------------------------------------------------
Title: The Evolution of Population Gradients in Galaxy Clusters:
    The Butcher-Oemler Effect and Cluster Infall
Authors: Ellingson, E.; Lin, H.; Yee, H. K. C.; Carlberg, R. G.
2001ApJ...547..609E    Altcode: 2000astro.ph.10141E
  We present photometric and spectroscopic measurements of the galaxy
  populations in clusters from the CNOC1 sample of rich, X-ray-luminous
  clusters at 0.18&lt;z&lt;0.55. A classical measure of the galaxy
  blue fraction for spectroscopically confirmed cluster members shows
  a significant Butcher-Oemler effect for the sample, but only when
  radii larger than 0.5r<SUB>200</SUB> are considered. We perform a
  principal component analysis of galaxy spectra to divide the total
  cluster light into contributions from stellar populations of different
  ages. Composite radial distributions of different stellar populations
  show strong gradients as a function of clustercentric radius. The
  composite population is dominated by evolved populations in the core,
  and gradually changes at radii greater than the virial radius to one
  which is similar to coeval field galaxies. We do not see evidence at
  any radius within the clusters for an excess of star formation over
  that seen in the coeval field. Within this redshift range, significant
  evolution in the fractional population gradient is seen. Both low-
  and high-redshift clusters have similar populations in the cluster
  cores, but higher redshift clusters have steeper gradients and more
  star-forming galaxies at radii outside of the core region-in effect,
  a restatement of the Butcher-Oemler effect. Luminosity density profiles
  are consistent with a scenario where this phenomenon is due to a decline
  over time in the infall rate of field galaxies into clusters. Depending
  on how long galaxies reside in clusters before their star formation
  rates are diminished, this suggests a decrease in the infall into
  clusters of a factor of ~3 between z&gt;0.8 and z~0.5. We also discuss
  alternative scenarios for the evolution of cluster populations.

---------------------------------------------------------
Title: Data From the Precision Solar Photometric Telescope (Pspt)
    in Hawaii From March 1998 to March 1999
Authors: White, Oran R.; Fox, Peter A.; Meisner, Randy; Rast, Mark
   P.; Yasukawa, Eric; Koon, Darryl; Rice, Crystal; Lin, Haosheng; Kuhn,
   Jeff; Coulter, Roy
2000SSRv...94...75W    Altcode:
  Two Precision Solar Photometric Telescopes (PSPT) designed and built at
  the U.S. National Solar Observatory (NSO) are in operation in Rome and
  Hawaii. A third PSPT is now in operation the NSO at Sunspot, NM. The
  PSPT system records full disk solar images at three wavelengths:
  K line at 393.3 nm and two continua at 409 nm and 607 nm throughout
  the observing day. We currently study properties of limb darkening,
  sunspots, and network in these images with particular emphasis on data
  taken in July and September 1998. During this period, the number of
  observations per month was high enough to show directional properties
  of the radiation field surrounding sunspots. We show examples of our
  PSPT images and describe our study of bright rings around sunspots.

---------------------------------------------------------
Title: Galaxy Clustering Evolution in the CNOC2 High-Luminosity Sample
Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.;
   Hall, P. B.; Patton, D.; Sawicki, M.; Shepherd, C. W.
2000ApJ...542...57C    Altcode: 1999astro.ph.10250C
  The redshift evolution of the galaxy two-point correlation function
  is a fundamental cosmological statistic. To identify similar galaxy
  populations at different redshifts, we select a strict volume-limited
  sample culled from the 6100 cataloged Canadian Network for Observational
  Cosmology field galaxy redshift survey (CNOC2) galaxies. Our
  high-luminosity subsample selects galaxies having k-corrected and
  evolution-compensated R luminosities, M<SUP>k,e</SUP><SUB>R</SUB>,
  above -20 mag (H<SUB>0</SUB>=100 km s<SUP>-1</SUP> Mpc<SUP>-1 </SUP>),
  where M<SUP>k,e</SUP><SUB>*</SUB>(R)~=-20.3 mag. This subsample contains
  about 2300 galaxies distributed between redshifts 0.1 and 0.65 spread
  over a total of 1.55 deg<SUP>2</SUP> of sky. A similarly defined
  low-redshift sample is drawn from the Las Campanas Redshift Survey. We
  find that the comoving two-point correlation function can be described
  as ξ(r|z)=(r<SUB>00</SUB>/r)<SUP>γ</SUP>(1+z)<SUP>-(3+ɛ- γ)</SUP>,
  with r<SUB>00</SUB>=5.03+/-0.08 h<SUP>-1</SUP> Mpc, ɛ=-0.17+/-0.18,
  and γ=1.87+/-0.07 over the z=0.03-0.65 redshift range, for
  Ω<SUB>M</SUB>=0.2 and Λ=0. The measured clustering amplitude and its
  evolution are dependent on the adopted cosmology. The measured evolution
  rates for Ω<SUB>M</SUB>=1 and flat Ω<SUB>M</SUB>=0.2 background
  cosmologies are ɛ=0.80+/-0.22 and ɛ=-0.81+/-0.19, respectively,
  with r<SUB>00</SUB>=5.30+/-0.1 and 4.85+/-0.1 h<SUP>-1</SUP>
  Mpc, respectively. The sensitivity of the derived correlations
  to the evolution corrections and details of the measurements is
  presented. The analytic prediction of biased clustering evolution for
  only the low-density, ΛCDM cosmology is readily consistent with the
  observations, with biased clustering in an open cosmology somewhat
  marginally excluded and a biased Ω<SUB>M</SUB>=1 model predicting
  clustering evolution that is more than 6 standard deviations from the
  measured value.

---------------------------------------------------------
Title: The CNOC2 Field Galaxy Redshift Survey. I. The Survey and
    the Catalog for the Patch CNOC 0223+00
Authors: Yee, H. K. C.; Morris, S. L.; Lin, H.; Carlberg, R. G.; Hall,
   P. B.; Sawicki, Marcin; Patton, D. R.; Wirth, G. D.; Ellingson, E.;
   Shepherd, C. W.
2000ApJS..129..475Y    Altcode: 2000astro.ph..4026Y
  The Canadian Network for Observational Cosmology (CNOC2) Field Galaxy
  Redshift Survey is a spectroscopic/photometric survey of faint galaxies
  over 1.5 deg<SUP>2</SUP> of sky with a nominal spectroscopic limit
  of R<SUB>C</SUB>~21.5 mag. The primary goals of the survey are to
  investigate the evolution of galaxy clustering and galaxy populations
  over the redshift range of ~0.1-0.6. The survey area contains four
  widely separated patches on the sky with a total sample of over 6000
  redshifts, representing a sampling rate of about 45%. In addition,
  five-color photometry (in I<SUB>C</SUB>, R<SUB>C</SUB>, V, B, and U) for
  a complete sample of approximately 40,000 galaxies to R<SUB>C</SUB>~23.0
  mag is also available. We describe the survey and observational
  strategies, multiobject spectroscopy mask design procedure, and data
  reduction techniques for creating the spectroscopic-photometric
  catalogs. We also discuss the derivations of statistical weights,
  including corrections for the effects of limited spectral bandwidth,
  for the redshift sample, which allow it to be used as a complete
  sample. As the initial release of the survey data, we present the full
  data set and some statistics for the patch CNOC 0223+00.

---------------------------------------------------------
Title: Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to
    Redshift 1 from Kinematic Pairs
Authors: Carlberg, R. G.; Cohen, Judith G.; Patton, D. R.; Blandford,
   Roger; Hogg, David W.; Yee, H. K. C.; Morris, S. L.; Lin, H.; Hall,
   Patrick B.; Sawicki, M.; Wirth, Gregory D.; Cowie, Lennox L.; Hu,
   Esther; Songaila, Antoinette
2000ApJ...532L...1C    Altcode: 2000astro.ph..2036C
  The rate of mass accumulation due to galaxy merging depends on the mass,
  density, and velocity distribution of galaxies in the near neighborhood
  of a host galaxy. The fractional luminosity in kinematic pairs
  combines all of these effects in a single estimator that is relatively
  insensitive to population evolution. Here we use a k-corrected and
  evolution-compensated volume-limited sample having an R-band absolute
  magnitude of M<SUP>k,e</SUP><SUB>R</SUB>&lt;=-19.8+5logh mag drawing
  about 300 redshifts from the Caltech Faint Galaxy Redshift Survey and
  3000 from the Canadian Network for Observational Cosmology field galaxy
  survey to measure the rate and redshift evolution of merging. The
  combined sample has an approximately constant comoving number and
  luminosity density from redshift 0.1 to 1.1 (Ω<SUB>M</SUB>=0.2,
  Ω<SUB>Λ</SUB>=0.8) hence, any merger evolution will be dominated by
  correlation and velocity evolution, not density evolution. We identify
  kinematic pairs with projected separations less than either 50 or
  100 h<SUP>-1</SUP> kpc and rest-frame velocity differences of less
  than 1000 km s<SUP>-1</SUP>. The fractional luminosity in pairs is
  modeled as f<SUB>L</SUB>(Δv,r<SUB>p</SUB>,M<SUP>k,e</SUP><SUB>r</SUB>)
  (1+z)<SUP>m<SUB>L</SUB></SUP>, where [f<SUB>L</SUB>,m<SUB>L</SUB>]
  are [0.14+/-0.07,0+/-1.4] and [0.37+/-0.7,0.1+/-0.5] for
  r<SUB>p</SUB>&lt;=50 and 100 h<SUP>-1</SUP> kpc, respectively
  (Ω<SUB>M</SUB>=0.2, Ω<SUB>Λ</SUB>=0.8). The value of m<SUB>L</SUB>
  is about 0.6 larger if Λ=0. To convert these redshift-space
  statistics to a merger rate, we use the data to derive a conversion
  factor to a physical space pair density, a merger probability,
  and a mean in-spiral time. The resulting mass accretion rate
  per galaxy (M<SUB>1</SUB>,M<SUB>2</SUB>&gt;=0.2M<SUB>*</SUB>)
  is 0.02+/-0.01(1+z)<SUP>0.1+/-0.5</SUP>M<SUB>*</SUB>
  Gyr<SUP>-1</SUP>. Present-day high-luminosity galaxies therefore
  have accreted approximately 0.15M<SUB>*</SUB> of their mass over
  the approximately 7 Gyr to redshift 1. Since merging is likely
  only weakly dependent on the host mass, the fractional effect,
  δM/M~=0.15M<SUB>*</SUB>/M, is dramatic for lower mass galaxies
  but is, on the average, effectively perturbative for galaxies above
  1M<SUB>*</SUB>.

---------------------------------------------------------
Title: Probable Detection of a Bright Infrared Coronal Emission Line
    of Si IX near 3.93 Microns
Authors: Kuhn, J. R.; MacQueen, R. M.; Streete, J.; Tansey, G.; Mann,
   I.; Hillebrand, P.; Coulter, R.; Lin, H.; Edmunds, D.; Judge, P.
1999ApJ...521..478K    Altcode:
  We report here the probable detection of an emission line of Si
  IX that was observed from an open C130 aircraft over the Pacific
  Ocean during the 1998 total solar eclipse. Although the IR data
  themselves are inconclusive because of the uncertainty in the precise
  central wavelengths of the narrowband filters during the eclipse,
  the consistency of the measured IR limb excess with simultaneous EUV
  emission measured by SOHO/Coronal Diagnostic Spectrometer and the EUV
  Imager Telescope support our detection claim. This line appears to
  be the brightest IR coronal line yet observed, and its existence may
  significantly improve future prospects for obtaining optical coronal
  magnetic field measurements.

---------------------------------------------------------
Title: The Ω<SUB>M</SUB>-Ω<SUB>Λ</SUB> Dependence of the Apparent
    Cluster Ω
Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.;
   Ellingson, E.; Patton, D.; Sawicki, M.; Shepherd, C. W.
1999ApJ...516..552C    Altcode:
  The Canadian Network for Observational Cosmology cluster data are used
  to constrain the Ω<SUB>M</SUB>-Ω<SUB>Λ</SUB> pair to the region
  Ω<SUB>M</SUB>~=0.24e<SUP>+/-0.3</SUP>(1-0.4Ω<SUB>Λ</SUB>) for
  0&lt;=Ω<SUB>Λ</SUB>&lt;=1. The constraint is based on estimating the
  apparent mass density of the universe, Ω<SUB>e</SUB>(z), as the product
  of cluster mass-to-light ratios, M/L, with the field luminosity density
  at the same redshift. The luminosity density contains a volume element,
  which for measurements at z&gt;0 causes Ω<SUB>e</SUB>(z) to depend on
  both the density parameter Ω<SUB>M</SUB> and the cosmological constant,
  Ω<SUB>Λ</SUB>. The Ω<SUB>Λ</SUB>-dependence of the Ω<SUB>e</SUB>(z)
  measurement is about 25% less than the volume-redshift relation but
  about 50% greater than the luminosity-redshift relation. Most usefully
  this constraint is approximately orthogonal to the luminosity-redshift
  relation in the Ω<SUB>M</SUB>-Ω<SUB>Λ</SUB> plane. The practical
  application to measuring cosmological parameters has the considerable
  benefit that all quantities are used in a differential sense, so
  that common selection effects and galaxy evolution effects will
  cancel. The residual differential galaxy evolution between field,
  and the clustered galaxies can be estimated from the sample data. The
  inferred Ω<SUB>M</SUB> has an inverse correlation with Ω<SUB>Λ</SUB>,
  giving a constraint complementary to both the cosmic microwave
  background and the supernovae distances. Monte Carlo simulations,
  calibrated with observational data, show that 100 clusters spread over
  the 0-1 redshift range, each having M/L values of about 25% accuracy,
  will measure Ω<SUB>Λ</SUB> to about 7% statistical error.

---------------------------------------------------------
Title: Evolution of Galaxy Correlations
Authors: Carlberg, R. G.; Yee, H. K. C.; Morris, S. L.; Lin, H.;
   Sawicki, M.; Wirth, G.; Patton, D.; Shepherd, C. W.; Ellingson, E.;
   Schade, D.; Pritchet, C. J.; Hartwick, F. D. A.
1998wfsc.conf..143C    Altcode:
  The CNOC field galaxy redshift survey, CNOC2, investigates the relations
  between the dramatic evolution of field galaxies and their clustering
  over the redshift range 0 to 0.7. We report preliminary results based
  on two of the sky patches and within the redshift range of 0.12 to
  0.55. The spatial two point correlation functions have a strong colour
  dependence with scale, and a weaker, apparently scale free, luminosity
  dependence. The population most likely to be conserved with redshift
  is the high luminosity galaxies. In particular, we choose galaxies
  with M_r^{k,e} &lt;= -20 mag as our tracer population. We find that
  the evolution of the clustered density in proper co-ordinates at r ls
  10hmpc, rho<SUB>gg</SUB> propto r_0(z)^gamma(1+z)^3, where r_0(z) is
  the proper correlation length, is best described as a "de-clustering",
  propto (1+z)^{0.6 +- 0.4}. Or equivalently, there is a weak growth of
  clustering in co-moving co-ordinates, x_0 propto (1+z)^{-0.3 +- 0.2}.

---------------------------------------------------------
Title: The Luminosity Function of Field Galaxies in the CNOC1
    Redshift Survey
Authors: Lin, H.; Yee, H. K. C.; Carlberg, R. G.; Ellingson, E.
1997ApJ...475..494L    Altcode: 1996astro.ph..8056L
  We have computed the luminosity function for a sample of 389 field
  galaxies from the Canadian Network for Observational Cosmology
  cluster redshift survey (CNOC1) over the redshift range z =
  0.2-0.6. We find Schechter parameters M<SUP>*</SUP><SUB>r</SUB>-5
  log h = -20.8 +/- 0.4 and α = -1.3 +/- 0.2 in rest-frame Gunn r, and
  M<SUP>*</SUP><SUB>B<SUB>AB</SUB></SUB>- 5 log h = -19.6 +/- 0.3 and
  α = -0.9 +/- 0.2 in rest-frame B<SUB>AB</SUB>. We have also split
  our sample at the color of a redshifted but nonevolving Sbc galaxy
  and find distinctly different luminosity functions for red and blue
  galaxies. Red galaxies have a shallow slope α ~ -0.4 and dominate
  the bright end of the luminosity function, while blue galaxies have a
  steep α ~ -1.4 and prevail at the faint end. Comparisons of the CNOC1
  results to analogous intermediate-redshift luminosity functions from the
  Canada-France (CFRS) and Autofib redshift surveys show broad agreement
  among these independent samples, but there are also significant
  differences which will require larger samples to resolve. Also, in
  CNOC1 the red galaxy luminosity density stays about the same over the
  range z = 0.2-0.6, while the blue galaxy luminosity density increases
  steadily with redshift. These results are consistent with the trend
  of the luminosity density versus redshift relations seen in the CFRS,
  although the normalizations of the luminosity densities appear to
  differ for blue galaxies. Comparison to the local luminosity function
  from the Las Campanas redshift survey (LCRS) shows that the luminosity
  density at z ~ 0.1 is only about half that seen at z ~ 0.4. A change in
  the luminosity function shape, particularly at the faint end, appears
  to be required to match the CNOC1 and LCRS luminosity functions, if
  galaxy evolution is the sole cause of the differences seen. However,
  it should be noted that the specific details of the construction of
  different surveys may complicate the comparison of results and so may
  need to be considered carefully.