explanation      blue bibcodes open ADS page with paths to full text
Author name code: mazzotta
ADS astronomy entries on 2022-09-14
author:"Mazzotta, Pasquale" 

---------------------------------------------------------
Title: The Athena X-ray Integral Field Unit: a consolidated design
    for the system requirement review of the preliminary definition phase
Authors: Barret, Didier; Albouys, Vincent; den Herder, Jan-Willem;
   Piro, Luigi; Cappi, Massimo; Huovelin, Juhani; Kelley, Richard;
   Mas-Hesse, J. Miguel; Paltani, Stéphane; Rauw, Gregor; Rozanska,
   Agata; Svoboda, Jiri; Wilms, Joern; Yamasaki, Noriko; Audard, Marc;
   Bandler, Simon; Barbera, Marco; Barcons, Xavier; Bozzo, Enrico;
   Ceballos, Maria Teresa; Charles, Ivan; Costantini, Elisa; Dauser,
   Thomas; Decourchelle, Anne; Duband, Lionel; Duval, Jean-Marc; Fiore,
   Fabrizio; Gatti, Flavio; Goldwurm, Andrea; den Hartog, Roland; Jackson,
   Brian; Jonker, Peter; Kilbourne, Caroline; Korpela, Seppo; Macculi,
   Claudio; Mendez, Mariano; Mitsuda, Kazuhisa; Molendi, Silvano; Pajot,
   François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel
   W.; Prêle, Damien; Ravera, Laurent; Sato, Kosuke; Schaye, Joop;
   Shinozaki, Keisuke; Skup, Konrad; Soucek, Jan; Thibert, Tanguy; Vink,
   Jacco; Webb, Natalie; Chaoul, Laurence; Raulin, Desi; Simionescu,
   Aurora; Torrejon, Jose Miguel; Acero, Fabio; Branduardi-Raymont,
   Graziella; Ettori, Stefano; Finoguenov, Alexis; Grosso, Nicolas;
   Kaastra, Jelle; Mazzotta, Pasquale; Miller, Jon; Miniutti, Giovanni;
   Nicastro, Fabrizio; Sciortino, Salvatore; Yamaguchi, Hiroya; Beaumont,
   Sophie; Cucchetti, Edoardo; D'Andrea, Matteo; Eckart, Megan; Ferrando,
   Philippe; Kammoun, Elias; Lotti, Simone; Mesnager, Jean-Michel;
   Natalucci, Lorenzo; Peille, Philippe; de Plaa, Jelle; Ardellier,
   Florence; Argan, Andrea; Bellouard, Elise; Carron, Jérôme; Cavazzuti,
   Elisabetta; Fiorini, Mauro; Khosropanah, Pourya; Martin, Sylvain;
   Perry, James; Pinsard, Frederic; Pradines, Alice; Rigano, Manuela;
   Roelfsema, Peter; Schwander, Denis; Torrioli, Guido; Ullom, Joel; Vera,
   Isabel; Medinaceli Villegas, Eduardo; Zuchniak, Monika; Brachet, Frank;
   Lo Cicero, Ugo; Doriese, William; Durkin, Malcom; Fioretti, Valentina;
   Geoffray, Hervé; Jacques, Lionel; Kirsch, Christian; Smith, Stephen;
   Adams, Joseph; Gloaguen, Emilie; Hoogeveen, Ruud; van der Hulst, Paul;
   Kiviranta, Mikko; van der Kuur, Jan; Ledot, Aurélien; van Leeuwen,
   Bert-Joost; van Loon, Dennis; Lyautey, Bertrand; Parot, Yann; Sakai,
   Kazuhiro; van Weers, Henk; Abdoelkariem, Shariefa; Adam, Thomas;
   Adami, Christophe; Aicardi, Corinne; Akamatsu, Hiroki; Eleazar Merino
   Alonso, Pablo; Amato, Roberta; André, Jérôme; Angelinelli, Matteo;
   Anon-Cancela, Manuel; Anvar, Shebli; Atienza, Ricardo; Attard, Anthony;
   Auricchio, Natalia; Balado, Ana; Bancel, Florian; Ferrari Barusso,
   Lorenzo; Bernard, Vivian; Berrocal, Alicia; Blin, Sylvie; Bonino,
   Donata; Bonnet, François; Bonny, Patrick; Boorman, Peter; Boreux,
   Charles; Bounab, Ayoub; Boutelier, Martin; Boyce, Kevin; Brienza,
   Daniele; Bruijn, Marcel; Bulgarelli, Andrea; Calarco, Simona; Callanan,
   Paul; Camus, Thierry; Canourgues, Florent; Capobianco, Vito; Cardiel,
   Nicolas; Castellani, Florent; Cheatom, Oscar; Chervenak, James;
   Chiarello, Fabio; Clerc, Nicolas; Clerc, Laurent; Cobo, Beatriz;
   Coeur-Joly, Odile; Coleiro, Alexis; Colonges, Stéphane; Corcione,
   Leonardo; Coriat, Mickael; Coynel, Alexandre; Cuttaia, Francesco;
   D'Ai, Antonino; D'anca, Fabio; Dadina, Mauro; Daniel, Christophe;
   DeNigris, Natalie; Dercksen, Johannes; DiPirro, Michael; Doumayrou,
   Eric; Dubbeldam, Luc; Dupieux, Michel; Dupourqué, Simon; Durand,
   Jean Louis; Eckert, Dominique; Eiriz, Valvanera; Ercolani, Eric;
   Etcheverry, Christophe; Finkbeiner, Fred; Fiocchi, Mariateresa;
   Fossecave, Hervé; Franssen, Philippe; Frericks, Martin; Gabici,
   Stefano; Gant, Florent; Gao, Jian-Rong; Gastaldello, Fabio; Genolet,
   Ludovic; Ghizzardi, Simona; Alcacera Gil, M Angeles; Giovannini, Elisa;
   Godet, Olivier; Gomez-Elvira, Javier; Gonzalez, Manuel; Gonzalez,
   Raoul; Gottardi, Luciano; Granat, Dolorès; Gros, Michel; Guignard,
   Nicolas; Hieltjes, Paul; Hurtado, Adolfo Jesus; Irwin, Kent; Jacquey,
   Christian; Janiuk, Agnieszka; Jaubert, Jean; Jiménez, Maria; Jolly,
   Antoine; Jourdan, Thierry; Julien, Sabine; Kedziora, Bartosz; Korb,
   Andrew; Kreykenbohm, Ingo; König, Ole; Langer, Mathieu; Laudet,
   Philippe; Laurent, Philippe; Laurenza, Monica; Lesrel, Jean; Ligori,
   Sebastiano; Lorenz, Maximilian; Luminari, Alfredo; Maffei, Bruno;
   Maisonnave, Océane; Marelli, Lorenzo; Massonet, Didier; Maussang,
   Irwin; Gonzalo Melchor, Alejandro; Le Mer, Isabelle; Michalski,
   Lea; Millerioux, Jean-Pierre; Mineo, Teresa; Minervini, Gabriele;
   Molin, Alexeï; Monestes, David; Montinaro, Nicola; Mot, Baptiste;
   Murat, David; Nagayoshi, Kenichiro; Nazé, Yaël; Noguès, Loïc;
   Pailot, Damien; Panessa, Francesca; Parodi, Luigi; Petit, Pascal;
   Piconcelli, Enrico; Pinto, Ciro; Encinas Plaza, Jose Miguel;
   Poyatos, David; Prouvé, Thomas; Ptak, Andy; Puccetti, Simonetta;
   Puccio, Elena; Ramon, Pascale; Reina, Manuel; Rioland, Guillaume;
   Rodriguez, Louis; Roig, Anton; Rollet, Bertrand; Roncarelli, Mauro;
   Roudil, Gilles; Rudnicki, Tomasz; Sanisidro, Julien; Sciortino, Luisa;
   Silva, Vitor; Sordet, Michael; Soto-Aguilar, Javier; Spizzi, Pierre;
   Surace, Christian; Fernández Sánchez, Miguel; Taralli, Emanuele;
   Terrasa, Guilhem; Terrier, Régis; Todaro, Michela; Ubertini, Pietro;
   Uslenghi, Michela; Geralt Bij de Vaate, Jan; Vaccaro, Davide; Varisco,
   Salvatore; Varnière, Peggy; Vibert, Laurent; Vidriales, María;
   Villa, Fabrizio; Vodopivec, Boris Martin; Volpe, Angela; de Vries,
   Cor; Wakeham, Nicholas; Walmsley, Gavin; Wise, Michael; de Wit,
   Martin; Woźniak, Grzegorz
2022arXiv220814562B    Altcode:
  The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray
  spectrometer, studied since 2015 for flying in the mid-30s on the
  Athena space X-ray Observatory, a versatile observatory designed to
  address the Hot and Energetic Universe science theme, selected in
  November 2013 by the Survey Science Committee. Based on a large format
  array of Transition Edge Sensors (TES), it aims to provide spatially
  resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up
  to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent
  diameter). The X-IFU entered its System Requirement Review (SRR)
  in June 2022, at about the same time when ESA called for an overall
  X-IFU redesign (including the X-IFU cryostat and the cooling chain),
  due to an unanticipated cost overrun of Athena. In this paper, after
  illustrating the breakthrough capabilities of the X-IFU, we describe
  the instrument as presented at its SRR, browsing through all the
  subsystems and associated requirements. We then show the instrument
  budgets, with a particular emphasis on the anticipated budgets of some
  of its key performance parameters. Finally we briefly discuss on the
  ongoing key technology demonstration activities, the calibration and the
  activities foreseen in the X-IFU Instrument Science Center, and touch
  on communication and outreach activities, the consortium organisation,
  and finally on the life cycle assessment of X-IFU aiming at minimising
  the environmental footprint, associated with the development of the
  instrument. It is expected that thanks to the studies conducted so
  far on X-IFU, along the design-to-cost exercise requested by ESA, the
  X-IFU will maintain flagship capabilities in spatially resolved high
  resolution X-ray spectroscopy, enabling most of the original X-IFU
  related scientific objectives of the Athena mission to be retained
  (abridged).

---------------------------------------------------------
Title: Feedback on radio galaxies: the cases of 3CR 318.1 and
    3CR 196.1
Authors: Jimenez-Gallardo, Ana; Torresi, Eleonora; Forman, William;
   Capetti, Alessandro; Sparks, Bill; Kraft, Ralph; Gilli, Roberto;
   Roettgering, Huub; Liuzzo, Elisabetta; Mazzotta, Pasquale; Harwood,
   Jeremy; Massaro, Francesco; Sani, Eleonora; Mazzucchelli, Chiara;
   Balmaverde, Barbara; Venturi, Giacomo; Prieto, Almudena; Marconi,
   Alessandro; Paggi, Alessandro; Gendron-Marsolais, Marie-Lou;
   Peña-Herazo, Harold; Missaglia, Valentina; Mahatma, Vijay; Baldi,
   Ranieri Diego; Tremblay, Grant; Wilkes, Belinda; Kuraszkiewicz,
   Joanna; Miley, George; Ricci, Federica; Baum, Stefi; O'dea, Chris;
   Lovisari, Lorenzo; van Weeren, Reinout
2022cosp...44.2328J    Altcode:
  Interactions between radio galaxies and their large-scale environments
  are key factors to investigate the feedback processes responsible for
  triggering and fuelling AGN activity. To improve our understanding of
  such interactions, we carried out a multi-frequency analysis based on
  the comparison between soft X-ray observations collected with Chandra
  and optical datasets obtained thanks to VLT/MUSE for two radio galaxies
  harbored in cool core clusters, namely: 3CR 318.1 and 3CR 196.1. These
  sources are perfect examples of how radio galaxy activity can affect the
  intracluster medium (ICM), showing different signatures of AGN feedback,
  cold filaments, and X-ray cavities. 3CR 318.1 presents ionized gas
  filaments associated with X-ray extended emission, while we observe
  ionized gas spatially associated with an X-ray cavity in 3CR 196.1. The
  origin of these ionized gas features remains disputed. Furthermore,
  ionized gas associated with X-ray cavities has typically been seen
  surrounding X-ray cavities in other radio galaxies harbored in galaxy
  clusters, and not directly associated with the cavity, as is the case
  for 3CR 196.1. Finally, I will also show preliminary results on the
  optical-to-X-ray comparison for a selected sample of 3CR sources.

---------------------------------------------------------
Title: Cosmology with the SZ spectrum: Measuring the Universe's
    temperature with galaxy clusters
Authors: Luzzi, Gemma; D'Angelo, Emanuele; Bourdin, Herve; De Luca,
   Federico; Mazzotta, Pasquale; Oppizzi, Filippo; Polenta, Gianluca
2022EPJWC.25700028L    Altcode: 2021arXiv211103427L
  The hot gas in clusters of galaxies creates a distinctive spectral
  distortion in the cosmic microwave background (CMB) via the
  Sunyaev-Zel'dovich (SZ) effect. The spectral signature of the SZ
  can be used to measure the CMB temperature at cluster redshift
  (T<SUB>CMB</SUB>(z)) and to constrain the monopole of the y-type
  spectral distortion of the CMB spectrum. In this work, we start
  showing the measurements of T<SUB>CMB</SUB>(z) for a sample extracted
  from the Second Catalog of galaxy clusters produced by Planck (PSZ2)
  and containing 75 clusters selected from CHEX-MATE. Then we show the
  forecasts for future CMB experiments about the constraints on the
  monopole of the y-type spectral distortion of the CMB spectrum via
  the spectrum of the SZ effect.

---------------------------------------------------------
Title: The Coma Cluster at LOFAR Frequencies. II. The Halo, Relic,
    and a New Accretion Relic
Authors: Bonafede, A.; Brunetti, G.; Rudnick, L.; Vazza, F.;
   Bourdin, H.; Giovannini, G.; Shimwell, T. W.; Zhang, X.; Mazzotta,
   P.; Simionescu, A.; Biava, N.; Bonnassieux, E.; Brienza, M.; Brüggen,
   M.; Rajpurohit, K.; Riseley, C. J.; Stuardi, C.; Feretti, L.; Tasse,
   C.; Botteon, A.; Carretti, E.; Cassano, R.; Cuciti, V.; Gasperin,
   F. de; Gastaldello, F.; Rossetti, M.; Rottgering, H. J. A.; Venturi,
   T.; Weeren, R. J. van
2022ApJ...933..218B    Altcode: 2022arXiv220301958B
  We present LOw Frequency ARray observations of the Coma Cluster field at
  144 MHz. The cluster hosts one of the most famous radio halos, a relic,
  and a low surface brightness bridge. We detect new features that allow
  us to make a step forward in the understanding of particle acceleration
  in clusters. The radio halo extends for more than 2 Mpc, which is the
  largest extent ever reported. To the northeast of the cluster, beyond
  the Coma virial radius, we discover an arc-like radio source that could
  trace particles accelerated by an accretion shock. To the west of the
  halo, coincident with a shock detected in the X-rays, we confirm the
  presence of a radio front, with different spectral properties with
  respect to the rest of the halo. We detect a radial steepening of the
  radio halo spectral index between 144 and 342 MHz, at ~30' from the
  cluster center, that may indicate a non-constant re-acceleration time
  throughout the volume. We also detect a mild steepening of the spectral
  index toward the cluster center. For the first time, a radial change
  in the slope of the radio-X-ray correlation is found, and we show that
  such a change could indicate an increasing fraction of cosmic-ray versus
  thermal energy density in the cluster outskirts. Finally, we investigate
  the origin of the emission between the relic and the source NGC 4789,
  and we argue that NGC 4789 could have crossed the shock originating
  the radio emission visible between its tail and the relic.

---------------------------------------------------------
Title: Pressure profiles of distant Galaxy clusters with Planck-SPT
    data
Authors: Oppizzi, Filippo; De Luca, Federico; Bourdin, Hervé;
   Mazzotta, Pasquale; CHEX-MATE Collaboration
2022EPJWC.25700035O    Altcode: 2021arXiv211102913O
  We present a full set of numerical tools to extract Galaxy Cluster
  pressure profiles from the joint analysis of Planck and South Pole
  Telescope (SPT) observations. Pressure profiles are powerful tracers
  of the thermodynamic properties and the internal structure of the
  clusters. Tracing the pressure over the cosmic times allows one to
  constraints the evolution of the cluster structure and the contribution
  of astrophysical phenomena. SPT and Planck are complementary to
  constrain the cluster structure at various spatial scales. The SPT
  cluster catalogue counts 677 cluster candidates up to redshift 1.7,
  it is a nearly mass-limited sample, an ideal benchmark to test cluster
  evolution. We developed a pipeline to first separate the cluster signal
  from the background and foreground components and then jointly fit a
  parametric profile model on a combination of Planck and SPT data. We
  validate our algorithm on a subsample of six clusters, common to the SPT
  and the CHEX-MATE catalogues, comparing the results with the profiles
  obtained from X-ray observations with XMM-Newton.

---------------------------------------------------------
Title: A Candle in the Wind: A Radio Filament in the Core of the
    A3562 Galaxy Cluster
Authors: Giacintucci, S.; Venturi, T.; Markevitch, M.; Bourdin, H.;
   Mazzotta, P.; Merluzzi, P.; Dallacasa, D.; Bardelli, S.; Sikhosana,
   S. P.; Smirnov, O.; Bernardi, G.
2022ApJ...934...49G    Altcode: 2022arXiv220606176G
  Using a MeerKAT observation of the galaxy cluster A3562 (a member
  of the Shapley supercluster), we have discovered a narrow, long and
  straight, very faint radio filament, which branches out at a straight
  angle from the tail of a radio galaxy located in projection near the
  core of the cluster. The radio filament spans 200 kpc and aligns with
  a sloshing cold front seen in the X-rays, staying inside the front
  in projection. The radio spectral index along the filament appears
  uniform (within large uncertainties) at α ≃ -1.5. We propose that
  the radio galaxy is located outside the cold front but dips its tail
  under the front. The tangential wind that blows there may stretch the
  radio plasma from the radio galaxy into a filamentary structure. Some
  reacceleration is needed in this scenario to keep the radio spectrum
  uniform. Alternatively, the cosmic-ray electrons from that spot in the
  tail can spread along the cluster magnetic field lines, straightened by
  that same tangential flow, via anomalously fast diffusion. Our radio
  filament can provide constraints on this process. We also uncover
  a compact radio source at the brightest cluster galaxy that is 2-3
  orders of magnitude less luminous than those in typical cluster central
  galaxies-probably an example of a brightest cluster galaxy starved of
  accretion fuel by gas sloshing.

---------------------------------------------------------
Title: CHEX-MATE: Morphological analysis of the sample
Authors: Campitiello, Maria Giulia; Ettori, Stefano; Lovisari, Lorenzo;
   Bartalucci, Iacopo; Eckert, Dominique; Rasia, Elena; Rossetti,
   Mariachiara; Gastaldello, Fabio; Pratt, Gabriel W.; Maughan, Ben;
   Pointecouteau, Etienne; Sereno, Mauro; Biffi, Veronica; Borgani,
   Stefano; De Luca, Federico; De Petris, Marco; Gaspari, Massimo;
   Ghizzardi, Simona; Mazzotta, Pasquale; Molendi, Silvano
2022arXiv220511326C    Altcode: 2022arXiv220511326G
  In this work, we performed an analysis of the X-ray morphology of the
  118 CHEX-MATE (Cluster HEritage project with XMM-Newton - Mass Assembly
  and Thermodynamics at the Endpoint of structure formation) galaxy
  clusters, with the aim to provide a classification of their dynamical
  state. To investigate the link between the X-ray appearance and the
  dynamical state, we considered four morphological parameters: the
  surface brightness concentration, the centroid shift, and the second-
  and third-order power ratios. These indicators result to be: strongly
  correlated with each other, powerful in identifying the disturbed and
  relaxed population, characterised by a unimodal distribution and not
  strongly influenced by systematic uncertainties. In order to obtain a
  continuous classification of the CHEX-MATE objects, we combined these
  four parameters in a single quantity, M, which represents the grade of
  relaxation of a system. On the basis of the M value, we identified the
  most extreme systems of the sample, finding 15 very relaxed and 27 very
  disturbed galaxy clusters. From a comparison with previous analysis
  on X-ray selected samples, we confirmed that the Sunyaev-Zeldovich
  (SZ) clusters tend to be more disturbed. Finally, by applying our
  analysis on a simulated sample, we found a general agreement between
  the observed and simulated results, with the only exception of the
  concentration. This latter behaviour, is partially related to the
  presence of particles with high smoothed-particle hydrodynamics density
  in the central regions of the simulated clusters due to the action of
  the idealised isotropic thermal Active Galactic Nuclei (AGN) feedback.

---------------------------------------------------------
Title: Radio footprints of a minor merger in the Shapley Supercluster:
    From supercluster down to galactic scales
Authors: Venturi, T.; Giacintucci, S.; Merluzzi, P.; Bardelli, S.;
   Busarello, G.; Dallacasa, D.; Sikhosana, S. P.; Marvil, J.; Smirnov,
   O.; Bourdin, H.; Mazzotta, P.; Rossetti, M.; Rudnick, L.; Bernardi, G.;
   Brüggen, M.; Carretti, E.; Cassano, R.; Di Gennaro, G.; Gastaldello,
   F.; Kale, R.; Knowles, K.; Koribalski, B. S.; Heywood, I.; Hopkins,
   A. M.; Norris, R. P.; Reiprich, T. H.; Tasse, C.; Vernstrom, T.;
   Zucca, E.; Bester, L. H.; Diego, J. M.; Kanapathippillai, J.
2022A&A...660A..81V    Altcode: 2022arXiv220104887V
  Context. The Shapley Supercluster (⟨z⟩≈0.048) contains several
  tens of gravitationally bound clusters and groups, making it an ideal
  subject for radio studies of cluster mergers. <BR /> Aims: We used new
  high sensitivity radio observations to investigate the less energetic
  events of mass assembly in the Shapley Supercluster from supercluster
  down to galactic scales. <BR /> Methods: We created total intensity
  images of the full region between A3558 and A3562, from ∼230 to
  ∼1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities
  ranging from ∼6 to ∼100 μJy beam<SUP>−1</SUP>. We performed
  a detailed morphological and spectral study of the extended emission
  features, complemented with ESO-VST optical imaging and X-ray data from
  XMM-Newton. <BR /> Results: We report the first GHz frequency detection
  of extremely low brightness intercluster diffuse emission on a ∼1 Mpc
  scale connecting a cluster and a group, namely: A3562 and the group
  SC 1329-313. It is morphologically similar to the X-ray emission in
  the region. We also found (1) a radio tail generated by ram pressure
  stripping in the galaxy SOS 61086 in SC 1329-313; (2) a head-tail
  radio galaxy, whose tail is broken and culminates in a misaligned bar;
  (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we
  confirm the ultra-steep spectrum nature of the radio halo in A3562. <BR
  /> Conclusions: Our study strongly supports the scenario of a flyby
  of SC 1329-313 north of A3562 into the supercluster core. This event
  perturbed the centre of A3562, leaving traces of this interaction in
  the form of turbulence between A3562 and SC 1329-313, at the origin of
  the radio bridge and eventually affecting the evolution of individual
  supercluster galaxies by triggering ram pressure stripping. Our work
  shows that minor mergers can be spectacular and have the potential to
  generate diffuse radio emission that carries important information on
  the formation of large-scale structures in the Universe.

---------------------------------------------------------
Title: The ultra-steep diffuse radio emission observed in the
    cool-core cluster RX J1720.1+2638 with LOFAR at 54 MHz
Authors: Biava, N.; de Gasperin, F.; Bonafede, A.; Edler, H. W.;
   Giacintucci, S.; Mazzotta, P.; Brunetti, G.; Botteon, A.; Brüggen,
   M.; Cassano, R.; Drabent, A.; Edge, A. C.; Enßlin, T.; Gastaldello,
   F.; Riseley, C. J.; Rossetti, M.; Rottgering, H. J. A.; Shimwell,
   T. W.; Tasse, C.; van Weeren, R. J.
2021MNRAS.508.3995B    Altcode: 2021arXiv211001629B; 2021MNRAS.tmp.2533B
  Diffuse radio emission at the centre of galaxy clusters has been
  observed both in merging clusters on scales of Mpc, called giant radio
  haloes, and in relaxed systems with a cool-core on smaller scales,
  named mini haloes. Giant radio haloes and mini haloes are thought to
  be distinct classes of sources. However, recent observations have
  revealed the presence of diffuse radio emission on Mpc scales in
  clusters that do not show strong dynamical activity. RX J1720.1+2638
  is a cool-core cluster, presenting both a bright central mini halo
  and a fainter diffuse, steep-spectrum emission extending beyond the
  cluster core that resembles giant radio halo emission. In this paper,
  we present new observations performed with the LOw Frequency ARray
  Low Band Antennas (LBA) at 54 MHz. These observations, combined
  with data at higher frequencies, allow us to constrain the spectral
  properties of the radio emission. The large-scale emission presents
  an ultrasteep spectrum with $\alpha _{54}^{144}\sim 3.2$. The radio
  emission inside and outside the cluster core have strictly different
  properties, as there is a net change in spectral index and they follow
  different radio-X-ray surface brightness correlations. We argue that the
  large-scale diffuse emission is generated by particles re-acceleration
  after a minor merger. While for the central mini halo, we suggest
  that it could be generated by secondary electrons and positrons from
  hadronic interactions of relativistic nuclei with the dense cool-core
  gas, as an alternative to re-acceleration models.

---------------------------------------------------------
Title: The Cluster HEritage project with XMM-Newton: Mass Assembly and
    Thermodynamics at the Endpoint of structure formation. I. Programme
    overview
Authors: CHEX-MATE Collaboration; Arnaud, M.; Ettori, S.; Pratt,
   G. W.; Rossetti, M.; Eckert, D.; Gastaldello, F.; Gavazzi, R.; Kay,
   S. T.; Lovisari, L.; Maughan, B. J.; Pointecouteau, E.; Sereno, M.;
   Bartalucci, I.; Bonafede, A.; Bourdin, H.; Cassano, R.; Duffy, R. T.;
   Iqbal, A.; Maurogordato, S.; Rasia, E.; Sayers, J.; Andrade-Santos,
   F.; Aussel, H.; Barnes, D. J.; Barrena, R.; Borgani, S.; Burkutean,
   S.; Clerc, N.; Corasaniti, P. -S.; Cuillandre, J. -C.; De Grandi, S.;
   De Petris, M.; Dolag, K.; Donahue, M.; Ferragamo, A.; Gaspari, M.;
   Ghizzardi, S.; Gitti, M.; Haines, C. P.; Jauzac, M.; Johnston-Hollitt,
   M.; Jones, C.; Kéruzoré, F.; Le Brun, A. M. C.; Mayet, F.; Mazzotta,
   P.; Melin, J. -B.; Molendi, S.; Nonino, M.; Okabe, N.; Paltani, S.;
   Perotto, L.; Pires, S.; Radovich, M.; Rubino-Martin, J. -A.; Salvati,
   L.; Saro, A.; Sartoris, B.; Schellenberger, G.; Streblyanska, A.;
   Tarrío, P.; Tozzi, P.; Umetsu, K.; van der Burg, R. F. J.; Vazza,
   F.; Venturi, T.; Yepes, G.; Zarattini, S.
2021A&A...650A.104C    Altcode: 2020arXiv201011972T
  The Cluster HEritage project with XMM-Newton - Mass Assembly and
  Thermodynamics at the Endpoint of structure formation (CHEX-MATE)
  is a three-mega-second Multi-Year Heritage Programme to obtain X-ray
  observations of a minimally-biased, signal-to-noise-limited sample of
  118 galaxy clusters detected by Planck through the Sunyaev-Zeldovich
  effect. The programme, described in detail in this paper, aims to study
  the ultimate products of structure formation in time and mass. It
  is composed of a census of the most recent objects to have formed
  (Tier-1: 0.05 &lt; z &lt; 0.2; 2 × 10<SUP>14</SUP> M<SUB>⊙</SUB>
  &lt; M<SUB>500</SUB> &lt; 9 × 10<SUP>14</SUP> M<SUB>⊙</SUB>),
  together with a sample of the highest mass objects in the Universe
  (Tier-2: z &lt; 0.6; M<SUB>500</SUB> &gt; 7.25 × 10<SUP>14</SUP>
  M<SUB>⊙</SUB>). The programme will yield an accurate vision of the
  statistical properties of the underlying population, measure how the gas
  properties are shaped by collapse into the dark matter halo, uncover
  the provenance of non-gravitational heating, and resolve the major
  uncertainties in mass determination that limit the use of clusters for
  cosmological parameter estimation. We will acquire X-ray exposures of
  uniform depth, designed to obtain individual mass measurements accurate
  to 15 − 20% under the hydrostatic assumption. We present the project
  motivations, describe the programme definition, and detail the ongoing
  multi-wavelength observational (lensing, SZ, radio) and theoretical
  effort that is being deployed in support of the project.

---------------------------------------------------------
Title: Chandra Observations of the Planck Early Sunyaev-Zeldovich
Sample: A Reexamination of Masses and Mass Proxies
Authors: Andrade-Santos, Felipe; Pratt, Gabriel W.; Melin,
   Jean-Baptiste; Arnaud, Monique; Jones, Christine; Forman, William
   R.; Pointecouteau, Etienne; Bartalucci, Iacopo; Vikhlinin, Alexey;
   Murray, Stephen S.; Mazzotta, Pasquale; Borgani, Stefano; Lovisari,
   Lorenzo; van Weeren, Reinout J.; Kraft, Ralph P.; David, Laurence P.;
   Giacintucci, Simona
2021ApJ...914...58A    Altcode: 2021arXiv210307545A
  Using Chandra observations, we derive the Y<SUB>X</SUB> proxy and
  associated total mass measurement, ${M}_{500}^{{Y}_{{\rm{X}}}}$ , for
  147 clusters with z &lt; 0.35 from the Planck early Sunyaev-Zeldovich
  catalog, and for 80 clusters with z &lt; 0.22 from an X-ray flux-limited
  sample. We reextract the Planck Y<SUB>SZ</SUB> measurements and obtain
  the corresponding mass proxy, ${M}_{500}^{\mathrm{SZ}}$ , from the full
  Planck mission maps, minimizing Malmquist bias due to observational
  scatter. The masses reextracted using the more precise X-ray position
  and characteristic size agree with the published PSZ2 values, but
  yield a significant reduction in the scatter (by a factor of two)
  in the ${M}_{500}^{\mathrm{SZ}}$ - ${M}_{500}^{{Y}_{{\rm{X}}}}$
  relation. The slope is 0.93 ± 0.03, and the median ratio,
  ${M}_{500}^{\mathrm{SZ}}/{M}_{500}^{{Y}_{{\rm{X}}}}=0.91\pm
  0.01$ , is within the expectations from known X-ray calibration
  systematics. Y<SUB>SZ</SUB>/Y<SUB>X</SUB> is 0.88 ± 0.02,
  in good agreement with predictions from cluster structure, and
  implying a low level of clumpiness. In agreement with the findings
  of the Planck Collaboration, the slope of the Y<SUB>SZ</SUB>-
  ${D}_{{\rm{A}}}^{-2}{Y}_{{\rm{X}}}$ flux relation is significantly
  less than unity (0.89 ± 0.01). Using extensive simulations, we show
  that this result is not due to selection effects, intrinsic scatter,
  or covariance between quantities. We demonstrate analytically that
  changing the Y<SUB>SZ</SUB>-Y<SUB>X</SUB> relation from apparent flux to
  intrinsic properties results in a best-fit slope that is closer to unity
  and increases the dispersion about the relation. The redistribution
  resulting from this transformation implies that the best-fit parameters
  of the ${M}_{500}^{\mathrm{SZ}}$ - ${M}_{500}^{{Y}_{{\rm{X}}}}$
  relation will be sample-dependent.

---------------------------------------------------------
Title: Raining in MKW 3 s: A Chandra-MUSE Analysis of X-Ray Cold
    Filaments around 3CR 318.1
Authors: Jimenez-Gallardo, A.; Massaro, F.; Balmaverde, B.; Paggi,
   A.; Capetti, A.; Forman, W. R.; Kraft, R. P.; Baldi, R. D.; Mahatma,
   V. H.; Mazzucchelli, C.; Missaglia, V.; Ricci, F.; Venturi, G.; Baum,
   S. A.; Liuzzo, E.; O'Dea, C. P.; Prieto, M. A.; Röttgering, H. J. A.;
   Sani, E.; Sparks, W. B.; Tremblay, G. R.; van Weeren, R. J.; Wilkes,
   B. J.; Harwood, J. J.; Mazzotta, P.; Kuraszkiewicz, J.
2021ApJ...912L..25J    Altcode: 2021arXiv210407677J
  We present the analysis of X-ray and optical observations of gas
  filaments observed in the radio source 3CR 318.1, associated with
  NGC 5920, the brightest cluster galaxy (BCG) of MKW 3 s, a nearby
  cool core galaxy cluster. This work is one of the first X-ray and
  optical analyses of filaments in cool core clusters carried out
  using MUSE observations. We aim at identifying the main excitation
  processes responsible for the emission arising from these filaments. We
  complemented the optical VLT/MUSE observations, tracing the colder gas
  phase, with X-ray Chandra observations of the hotter highly ionized
  gas phase. Using the MUSE observations, we studied the emission
  line intensity ratios along the filaments to constrain the physical
  processes driving the excitation, and, using the Chandra observations,
  we carried out a spectral analysis of the gas along these filaments. We
  found a spatial association between the X-ray and optical morphology
  of these filaments, which are colder and have lower metal abundance
  than the surrounding intracluster medium (ICM), as already seen in
  other BCGs. Comparing with previous results from the literature for
  other BCGs, we propose that the excitation process that is most likely
  responsible for these filaments emission is a combination of star
  formation and shocks, with a likely contribution from self-ionizing,
  cooling ICM. Additionally, we conclude that the filaments most likely
  originated from AGN-driven outflows in the direction of the radio jet.

---------------------------------------------------------
Title: Multiple AGN activity during the BCG assembly of
    XDCPJ0044.0-2033 at z ∼ 1.6
Authors: Travascio, A.; Bongiorno, A.; Tozzi, P.; Fassbender, R.;
   De Gasperin, F.; Cardone, V. F.; Zappacosta, L.; Vietri, G.; Merlin,
   E.; Bischetti, M.; Piconcelli, E.; Duras, F.; Fiore, F.; Menci, N.;
   Mazzotta, P.; Nastasi, A.
2020MNRAS.498.2719T    Altcode: 2020arXiv200811132T
  Undisturbed galaxy clusters are characterized by a massive and large
  elliptical galaxy at their centre, i.e. the brightest cluster galaxy
  (BCG). How these central galaxies form is still debated. According to
  most models, a typical epoch for their assembly is $z$ ∼ 1-2. We have
  performed a detailed multiwavelength analysis of the core of XMM-Newton
  Distant Cluster Project (XDCP) J0044.0-2033 (XDCP0044), one of the
  most massive and densest galaxy clusters currently known at redshift
  $z$ ∼ 1.6, whose central galaxy population shows high star formation
  compared to lower z clusters and an X-ray active galactic nuclei (AGN)
  located close to its centre. SINFONI J-, H-, and KMOS YJ-, H-bands
  spectroscopic data have been analysed, together with deep archival
  HST photometric data in F105W, F140W, and F160W bands, Chandra X-ray,
  radio JVLA data at 1-2 GHz, and ALMA band-6 observations. In the very
  central region of the cluster (∼70 kpc × 70 kpc), two systems of
  interacting galaxies have been identified and studied (Complex A and
  B), with a total of seven confirmed cluster members. These galaxies
  show perturbed morphologies and three of them show signs of AGN
  activity. In particular, two type-1 AGN with typical broad lines have
  been found at the centre of each complex (both of them X-ray obscured
  and highly accreting with $\rm \lambda _{Edd}\sim 0.4-0.6$ ), while a
  type-2 AGN has been discovered in Complex A. The AGN at the centre of
  Complex B is also detected in X-ray, while the other two are spatially
  related to radio emission. The three AGN provide one of the closest AGN
  triple at $z$ &gt; 1 revealed so far with a minimum (maximum) projected
  distance of 10 (40) kpc. The observation of high star formation, merger
  signatures, and nuclear activity in the core of XDCP0044 suggests
  that all these processes are key ingredients in shaping the nascent
  BCG. According to our data, XDCP0044 could form a typical massive
  galaxy of $M_{\star }\sim 10^{12} \, \mathrm{M}_{\odot }$ , hosting
  a black hole of $\rm 2 \times 10^8\!-\!10^9 \, \mathrm{M}_{\odot }$
  , in a time-scale of the order of ∼2.5 Gyr.

---------------------------------------------------------
Title: Extracting the thermal SZ signal from heterogeneous millimeter
    data sets
Authors: Bourdin, H.; Baldi, A. S.; Kozmanyan, A.; Mazzotta, P.
2020EPJWC.22800007B    Altcode:
  Complementarily to X-ray observations, the thermal SZ effect is a
  powerful tool to probe the baryonic content of galaxy clusters from
  their core to their peripheries. While contaminations by astrophysical
  and instrumental backgrounds require us to scan the thermal SZ
  signal across various frequencies, the multi-scale nature of cluster
  morphologies require us to observe such objects at various angular
  resolutions. We developed component separation algorithms that take
  advantage of sparse representations to combine these heterogeneous
  pieces of information, separate the thermal SZ signal from its
  contaminants, detect and map the thermal SZ signal of galaxy clusters
  from nearby to more distant clusters of the Planck catalogue. Spatially
  weighted likelihoods allow us in particular to connect parametric
  fittings of the component Spectral Energy Distribution with wavelet and
  curvelet imaging, but also to combine signals registered with beams of
  various width. Such techniques already allow us to detect sub-structures
  in the peripheries of nearby clusters with Planck, and could be extended
  to observations performed at higher angular resolutions.

---------------------------------------------------------
Title: Optical validation and characterisation of Planck PSZ1
    sources at the Canary Islands observatories. II. Second year of
    ITP13 observations
Authors: Barrena, R.; Ferragamo, A.; Rubiño-Martín, J. A.;
   Streblyanska, A.; Aguado-Barahona, A.; Tramonte, D.; Génova-Santos,
   R. T.; Hempel, A.; Lietzen, H.; Aghanim, N.; Arnaud, M.; Böhringer,
   H.; Chon, G.; Dahle, H.; Douspis, M.; Lasenby, A. N.; Mazzotta, P.;
   Melin, J. B.; Pointecouteau, E.; Pratt, G. W.; Rossetti, M.
2020A&A...638A.146B    Altcode: 2020arXiv200407913B
  We report new galaxy clusters previously unknown included in the
  first Planck Sunyaev-Zeldovich (SZ) sources catalogue, the PSZ1. The
  results presented here were achieved during the second year of a
  two-year observational programme, the ITP13, developed at the Roque
  de los Muchachos Observatory (La Palma, Spain). Using the 2.5 m Isaac
  Newton telescope, the 3.5 m Telescopio Nazionale Galileo, the 4.2 m
  William Herschel telescope and the 10.4 m Gran Telescopio Canarias
  we characterised 75 SZ sources with low SZ significance, SZ S/N &lt;
  5.32. We performed deep optical imaging and spectroscopy in order
  to associate actual galaxy clusters with the SZ Planck source. We
  adopted robust criteria, based on the 2D spatial distribution,
  richness, and velocity dispersions to confirm actual optical
  counterparts up to z &lt; 0.85. The selected systems are confirmed
  only if they are well aligned with respect to the PSZ1 coordinate
  and show high richness and high velocity dispersion. In addition,
  we also inspected the Compton y-maps and SZ significance in order
  to identify unrealistic detections. Following this procedure, we
  identify 26 cluster counterparts associated with the SZ emission,
  which means that only about 35% of the clusters considered in this
  low S/N PSZ1 subsample are validated. Forty-nine SZ sources (∼65%
  of this PSZ1 subset) remain unconfirmed. At the end of the ITP13
  observational programme, we have studied 256 SZ sources with Dec ≥
  -15° (212 of them completely unknown), finding optical counterparts
  for 152 SZ sources. The ITP13 validation programme has allowed us to
  update the PSZ1 purity, which is now more refined, increasing from
  72% to 83% in the low SZ S/N regime. Our results are consistent with
  the predicted purity curve for the full PSZ1 catalogue and with the
  expected fraction of false detections caused by the non-Gaussian noise
  of foreground signals. We find a strong correlation between the number
  of unconfirmed sources and the thermal emission of diffuse galactic
  dust at 857 GHz, thus increasing the fraction of false Planck SZ
  detections at low galactic latitudes.

---------------------------------------------------------
Title: Spectral imaging of X-COP galaxy clusters with the
    Sunyaev-Zel'dovich effect
Authors: Baldi, Anna Silvia; Bourdin, Hervé; Mazzotta, Pasquale
2020EPJWC.22800004B    Altcode: 2019arXiv191103206B
  The Sunyaev-Zel'dovich effect is the ideal probe for investigating the
  outskirts of galaxy clusters. To map this signal, we apply a spectral
  imaging technique which combines parametric component separation
  and sparse representations. Our procedure is an improved version
  of an existing algorithm, which now features a better treatment of
  astrophysical contaminants, and the implementation of a new beam
  deconvolution. We use the most recent frequency maps delivered by
  Planck, and we consider the clusters analysed in the XMM Cluster
  Outskirts Project (X-COP). In particular, we focus on the images of two
  clusters which may be possibly interacting with neighbouring objects,
  namely A2029 and RXCJ1825. We also highlight the advantages of the
  new beam deconvolution method, through a comparison with the original
  version of the imaging algorithm.

---------------------------------------------------------
Title: Spectral imaging of the thermal Sunyaev-Zel'dovich effect in
X-COP galaxy clusters: method and validation
Authors: Baldi, A. S.; Bourdin, H.; Mazzotta, P.; Eckert, D.; Ettori,
   S.; Gaspari, M.; Roncarelli, M.
2019A&A...630A.121B    Altcode: 2019arXiv190610013B
  The imaging of galaxy clusters through the Sunyaev-Zel'dovich effect is
  a valuable tool to probe the thermal pressure of the intra-cluster gas,
  especially in the outermost regions where X-ray observations suffer
  from photon statistics. For the first time, we produce maps of the
  Comptonization parameter by applying a locally parametric algorithm for
  sparse component separation to the latest frequency maps released by
  Planck. The algorithm takes into account properties of real cluster data
  through the two-component modelling of the spectral energy density of
  thermal dust, and the masking of bright point sources. Its robustness
  has been improved in the low signal-to-noise regime, thanks to the
  implementation of a deconvolution of Planck beams in the chi-square
  minimisation of each wavelet coefficient. We applied this procedure to
  twelve low-redshift galaxy clusters detected by Planck with the highest
  signal-to-noise ratio, considered in the XMM Cluster Oustkirts Project
  (X-COP). Our images show the presence of anisotropic features, such
  as small-scale blobs and filamentary substructures that are located in
  the outskirts of a number of clusters in the sample. The significance
  of their detection is established via a bootstrap-based procedure we
  propose here for the first time. In particular, we present a qualitative
  comparison with X-ray data for two interesting systems, namely A2029
  and RXCJ1825. Our results are in agreement with the features detected
  in the outskirts of the clusters in the two bands.

---------------------------------------------------------
Title: Detection of anti-correlation of hot and cold baryons in
    galaxy clusters
Authors: Farahi, Arya; Mulroy, Sarah L.; Evrard, August E.; Smith,
   Graham P.; Finoguenov, Alexis; Bourdin, Hervé; Carlstrom, John E.;
   Haines, Chris P.; Marrone, Daniel P.; Martino, Rossella; Mazzotta,
   Pasquale; O'Donnell, Christine; Okabe, Nobuhiro
2019NatCo..10.2504F    Altcode: 2019arXiv190702502F
  The largest clusters of galaxies in the Universe contain vast amounts of
  dark matter, plus baryonic matter in two principal phases, a majority
  hot gas component and a minority cold stellar phase comprising stars,
  compact objects, and low-temperature gas. Hydrodynamic simulations
  indicate that the highest-mass systems retain the cosmic fraction of
  baryons, a natural consequence of which is anti-correlation between
  the masses of hot gas and stars within dark matter halos of fixed total
  mass. We report observational detection of this anti-correlation based
  on 4 elements of a 9 × 9-element covariance matrix for nine cluster
  properties, measured from multi-wavelength observations of 41 clusters
  from the Local Cluster Substructure Survey. These clusters were selected
  using explicit and quantitative selection rules that were then encoded
  in our hierarchical Bayesian model. Our detection of anti-correlation is
  consistent with predictions from contemporary hydrodynamic cosmological
  simulations that were not tuned to reproduce this signal.

---------------------------------------------------------
Title: LoCuSS: scaling relations between galaxy cluster mass, gas,
    and stellar content
Authors: Mulroy, Sarah L.; Farahi, Arya; Evrard, August E.; Smith,
   Graham P.; Finoguenov, Alexis; O'Donnell, Christine; Marrone, Daniel
   P.; Abdulla, Zubair; Bourdin, Hervé; Carlstrom, John E.; Démoclès,
   Jessica; Haines, Chris P.; Martino, Rossella; Mazzotta, Pasquale;
   McGee, Sean L.; Okabe, Nobuhiro
2019MNRAS.484...60M    Altcode: 2019MNRAS.tmp....5M; 2019arXiv190111276M
  We present a simultaneous analysis of galaxy cluster scaling relations
  between weak-lensing mass and multiple cluster observables, across a
  wide range of wavelengths, that probe both gas and stellar content. Our
  new hierarchical Bayesian model simultaneously considers the selection
  variable alongside all other observables in order to explicitly model
  intrinsic property covariance and account for selection effects. We
  apply this method to a sample of 41 clusters at 0.15 &lt; z &lt;
  0.30, with a well-defined selection criteria based on RASS X-ray
  luminosity, and observations from Chandra/XMM, SZA, Planck, UKIRT,
  SDSS, and Subaru. These clusters have well-constrained weak-lensing
  mass measurements based on Subaru/Suprime-Cam observations, which serve
  as the reference masses in our model. We present 30 scaling relation
  parameters for 10 properties. All relations probing the intracluster
  gas are slightly shallower than self-similar predictions, in moderate
  tension with prior measurements, and the stellar fraction decreases
  with mass. K-band luminosity has the lowest intrinsic scatter with a
  95th percentile of 0.16, while the lowest scatter gas probe is gas
  mass with a fractional intrinsic scatter of 0.16 ± 0.03. We find
  no distinction between the core-excised X-ray or high-resolution
  Sunyaev-Zel'dovich relations of clusters of different central entropy,
  but find with modest significance that higher entropy clusters have
  higher stellar fractions than their lower entropy counterparts. We
  also report posterior mass estimates from our likelihood model.

---------------------------------------------------------
Title: Universal thermodynamic properties of the intracluster medium
    over two decades in radius in the X-COP sample
Authors: Ghirardini, V.; Eckert, D.; Ettori, S.; Pointecouteau, E.;
   Molendi, S.; Gaspari, M.; Rossetti, M.; De Grandi, S.; Roncarelli,
   M.; Bourdin, H.; Mazzotta, P.; Rasia, E.; Vazza, F.
2019A&A...621A..41G    Altcode: 2018arXiv180500042G
  Context. The hot plasma in a galaxy cluster is expected to be heated
  to high temperatures through shocks and adiabatic compression. The
  thermodynamical properties of the gas encode information on the
  processes leading to the thermalization of the gas in the cluster's
  potential well and on non-gravitational processes such as gas cooling,
  AGN feedback, shocks, turbulence, bulk motions, cosmic rays and magnetic
  field. <BR /> Aims: In this work we present the radial profiles of
  the thermodynamic properties of the intracluster medium (ICM) out to
  the virial radius for a sample of 12 galaxy clusters selected from
  the Planck all-sky survey. We determine the universal profiles of gas
  density, temperature, pressure, and entropy over more than two decades
  in radius, from 0.01R<SUB>500</SUB> to 2R<SUB>500</SUB>. <BR /> Methods:
  We exploited X-ray information from XMM-Newton and Sunyaev-Zel'dovich
  constraints from Planck to recover thermodynamic properties out to
  2R<SUB>500</SUB>. We provide average functional forms for the radial
  dependence of the main quantities and quantify the slope and intrinsic
  scatter of the population as a function of radius. <BR /> Results:
  We find that gas density and pressure profiles steepen steadily
  with radius, in excellent agreement with previous observational
  results. Entropy profiles beyond R<SUB>500</SUB> closely follow the
  predictions for the gravitational collapse of structures. The scatter
  in all thermodynamical quantities reaches a minimum in the range [0.2 -
  0.8]R<SUB>500</SUB> and increases outward. Somewhat surprisingly, we
  find that pressure is substantially more scattered than temperature and
  density. <BR /> Conclusions: Our results indicate that once accreting
  substructures are properly excised, the properties of the ICM beyond
  the cooling region (R &gt; 0.3R<SUB>500</SUB>) follow remarkably
  well the predictions of simple gravitational collapse and require few
  non-gravitational corrections.

---------------------------------------------------------
Title: Deriving the Hubble constant using Planck and XMM-Newton
    observations of galaxy clusters
Authors: Kozmanyan, Arpine; Bourdin, Hervé; Mazzotta, Pasquale;
   Rasia, Elena; Sereno, Mauro
2019A&A...621A..34K    Altcode: 2018arXiv180909560K
  The possibility of determining the value of the Hubble constant using
  observations of galaxy clusters in X-ray and microwave wavelengths
  through the Sunyaev Zel'dovich (SZ) effect has long been known. Previous
  measurements have been plagued by relatively large errors in the
  observational data and severe biases induced, for example, by cluster
  triaxiality and clumpiness. The advent of Planck allows us to map the
  Compton parameter y, that is, the amplitude of the SZ effect, with
  unprecedented accuracy at intermediate cluster-centric radii, which in
  turn allows performing a detailed spatially resolved comparison with
  X-ray measurements. Given such higher quality observational data,
  we developed a Bayesian approach that combines informed priors on
  the physics of the intracluster medium obtained from hydrodynamical
  simulations of massive clusters with measurement uncertainties. We
  applied our method to a sample of 61 galaxy clusters with redshifts up
  to z &lt; 0.5 observed with Planck and XMM-Newton and find H<SUB>0</SUB>
  = 67 ± 3 km s<SUP>-1</SUP> Mpc<SUP>-1</SUP>.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Clusters candidates from PSZ1
    catalogue (Barrena+, 2018)
Authors: Barrena, R.; Streblyanska, A.; Ferragamo, A.; Rubino-Martin,
   J. A.; Aguado-Barahona, A.; Tramonte, D.; Genova-Santos, R. T.; Hempel,
   A.; Lietzen, H.; Aghanim, N.; Arnaud, M.; Bohringer, H.; Chon, G.;
   Democles, J.; Dahle, H.; Douspis, M.; Lasenby, A. N.; Mazzotta, P.;
   Melin, J. B.; Pointecouteau, E.; Pratt, G. W.; Rossetti, M.; van der
   Burg, R. F. J.
2018yCat..36160042B    Altcode:
  Our reference cluster sample is PSZ1 (Planck Collaboration XXIX,
  2014A&amp;A...571A..29P, Cat. VIII/91; Planck Collaboration XXXII,
  2015, Cat. J/A+A/581/A14). This catalogue includes 1227 clusters and
  cluster candidates derived from SZ effect detections using all-sky maps
  produced within the first 15.5 months of Planck observations. <P />All
  observations were carried out at Roque de los Muchachos Observatory
  (ORM) on the island of La Palma (Spain) within the framework of the
  International Time Programme ITP13B-15A. The dataset was obtained in
  multiple runs from August 2013 to July 2014, as part of this two-year
  observing programme. <P />(1 data file).

---------------------------------------------------------
Title: Optical validation and characterization of Planck PSZ1
    sources at the Canary Islands observatories. I. First year of ITP13
    observations
Authors: Barrena, R.; Streblyanska, A.; Ferragamo, A.; Rubiño-Martín,
   J. A.; Aguado-Barahona, A.; Tramonte, D.; Génova-Santos, R. T.;
   Hempel, A.; Lietzen, H.; Aghanim, N.; Arnaud, M.; Böhringer, H.; Chon,
   G.; Democles, J.; Dahle, H.; Douspis, M.; Lasenby, A. N.; Mazzotta,
   P.; Melin, J. B.; Pointecouteau, E.; Pratt, G. W.; Rossetti, M.;
   van der Burg, R. F. J.
2018A&A...616A..42B    Altcode: 2018arXiv180305764B
  We have identified new clusters and characterized previously unknown
  Planck Sunyaev-Zeldovich (SZ) sources from the first Planck catalogue of
  SZ sources (PSZ1). The results presented here correspond to an optical
  follow-up observational programme developed during approximately one
  year (2014) at Roque de los Muchachos Observatory, using the 2.5
  m Isaac Newton telescope, the 3.5 m Telescopio Nazionale Galileo,
  the 4.2 m William Herschel telescope and the 10.4 m Gran Telescopio
  Canarias. We have characterized 115 new PSZ1 sources using deep optical
  imaging and spectroscopy. We adopted robust criteria in order to
  consolidate the SZ counterparts by analysing the optical richness, the
  2D galaxy distribution, and velocity dispersions of clusters. Confirmed
  counterparts are considered to be validated if they are rich structures,
  well aligned with the Planck PSZ1 coordinate and show relatively
  high velocity dispersion. Following this classification, we confirm
  53 clusters, which means that 46% of this PSZ1 subsample has been
  validated and characterized with this technique. Sixty-two SZ sources
  (54% of this PSZ1 subset) remain unconfirmed. In addition, we find that
  the fraction of unconfirmed clusters close to the galactic plane (at
  |b| &lt; 25°) is greater than that at higher galactic latitudes (|b|
  &gt; 25°), which indicates contamination produced by radio emission
  of galactic dust and gas clouds on these SZ detections. In fact,
  in the majority of the cases, we detect important galactic cirrus in
  the optical images, mainly in the SZ target located at low galactic
  latitudes, which supports this hypothesis.

---------------------------------------------------------
Title: LoCuSS: The infall of X-ray groups on to massive clusters
Authors: Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.;
   Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.;
   McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018MNRAS.477.4931H    Altcode: 2018MNRAS.tmp..682H; 2017arXiv170904945H; 2018MNRAS.tmp..628H
  Galaxy clusters are expected to form hierarchically in a Λ cold dark
  matter (ΛCDM) universe, growing primarily through mergers with lower
  mass clusters and the continual accretion of group-mass haloes. Galaxy
  clusters assemble late, doubling their masses since z ∼ 0.5, and
  so the outer regions of clusters should be replete with accreting
  group-mass systems. We present an XMM-Newton survey to search for
  X-ray groups in the infall regions of 23 massive galaxy clusters
  (&lt;M<SUB>200</SUB>&gt; ∼ 10<SUP>15 </SUP>M<SUB>⊙</SUB>) at z
  ∼ 0.2, identifying 39 X-ray groups that have been spectroscopically
  confirmed to lie at the cluster redshift. These groups have mass
  estimates in the range 2 × 10<SUP>13</SUP>-7 × 10<SUP>14</SUP>
  M<SUB>⊙</SUB>, and group-to-cluster mass ratios as low as 0.02. The
  comoving number density of X-ray groups in the infall regions is
  ∼25× higher than that seen for isolated X-ray groups from the XXL
  survey. The average mass per cluster contained within these X-ray groups
  is 2.2 × 10<SUP>14 </SUP>M<SUB>⊙</SUB>, or 19 ± 5 per cent of the
  mass within the primary cluster itself. We estimate that ∼10<SUP>15
  </SUP>M<SUB>⊙</SUB> clusters increase their masses by 16 ± 4 per
  cent between z = 0.223 and the present day due to the accretion of
  groups with M<SUB>200</SUB> ≥ 10<SUP>13.2 </SUP>M<SUB>⊙</SUB>. This
  represents about half of the expected mass growth rate of clusters
  at these late epochs. The other half is likely to come from smooth
  accretion of matter not bound within haloes. The mass function of the
  infalling X-ray groups appears significantly top heavy with respect
  to that of `field' X-ray systems, consistent with expectations from
  numerical simulations, and the basic consequences of collapsed massive
  dark matter haloes being biased tracers of the underlying large-scale
  density distribution.

---------------------------------------------------------
Title: The ATHENA X-ray Integral Field Unit (X-IFU)
Authors: Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem;
   Piro, Luigi; Cappi, Massimo; Houvelin, Juhani; Kelley, Richard;
   Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw,
   Gregor; Rozanska, Agata; Wilms, Joern; Bandler, Simon; Barbera, Marco;
   Barcons, Xavier; Bozzo, Enrico; Ceballos, Maria Teresa; Charles,
   Ivan; Costantini, Elisa; Decourchelle, Anne; den Hartog, Roland;
   Duband, Lionel; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio;
   Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline;
   Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr;
   Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt,
   Gabriel W.; Prêle, Damien; Ravera, Laurent; Sato, Kosuke; Schaye,
   Joop; Shinozaki, Keisuke; Thibert, Tanguy; Valenziano, Luca; Valette,
   Véronique; Vink, Jacco; Webb, Natalie; Wise, Michael; Yamasaki,
   Noriko; Douchin, Françoise; Mesnager, Jean-Michel; Pontet, Bernard;
   Pradines, Alice; Branduardi-Raymont, Graziella; Bulbul, Esra; Dadina,
   Mauro; Ettori, Stefano; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk,
   Agnieszka; Kaastra, Jelle; Mazzotta, Pasquale; Miller, Jon; Miniutti,
   Giovanni; Naze, Yael; Nicastro, Fabrizio; Scioritino, Salavtore;
   Simonescu, Aurora; Torrejon, Jose Miguel; Frezouls, Benoit; Geoffray,
   Hervé; Peille, Philippe; Aicardi, Corinne; André, Jérôme; Daniel,
   Christophe; Clénet, Antoine; Etcheverry, Christophe; Gloaguen,
   Emilie; Hervet, Gilles; Jolly, Antoine; Ledot, Aurélien; Paillet,
   Irwin; Schmisser, Roseline; Vella, Bruno; Damery, Jean-Charles;
   Boyce, Kevin; Dipirro, Mike; Lotti, Simone; Schwander, Denis; Smith,
   Stephen; Van Leeuwen, Bert-Joost; van Weers, Henk; Clerc, Nicolas;
   Cobo, Beatriz; Dauser, Thomas; Kirsch, Christian; Cucchetti, Edoardo;
   Eckart, Megan; Ferrando, Philippe; Natalucci, Lorenzo
2018SPIE10699E..1GB    Altcode: 2018arXiv180706092B
  The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray
  spectrometer of the ESA Athena X-ray observatory. Over a field of
  view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2
  to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ∼ 5"
  pixels. The X-IFU is based on a large format array of super-conducting
  molybdenum-gold Transition Edge Sensors cooled at ∼ 90 mK, each
  coupled with an absorber made of gold and bismuth with a pitch of
  249 μm. A cryogenic anti-coincidence detector located underneath
  the prime TES array enables the non X-ray background to be reduced. A
  bath temperature of ∼ 50 mK is obtained by a series of mechanical
  coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers
  which pre-cool a sub Kelvin cooler made of a 3He sorption cooler
  coupled with an Adiabatic Demagnetization Refrigerator. Frequency
  domain multiplexing enables to read out 40 pixels in one single
  channel. A photon interacting with an absorber leads to a current
  pulse, amplified by the readout electronics and whose shape is
  reconstructed on board to recover its energy with high accuracy. The
  defocusing capability offered by the Athena movable mirror assembly
  enables the X-IFU to observe the brightest X-ray sources of the sky
  (up to Crab-like intensities) by spreading the telescope point spread
  function over hundreds of pixels. Thus the X-IFU delivers low pile-up,
  high throughput (&lt; 50%), and typically 10 eV spectral resolution at 1
  Crab intensities, i.e. a factor of 10 or more better than Silicon based
  X-ray detectors. In this paper, the current X-IFU baseline is presented,
  together with an assessment of its anticipated performance in terms of
  spectral resolution, background, and count rate capability. The X-IFU
  baseline configuration will be subject to a preliminary requirement
  review that is scheduled at the end of 2018.

---------------------------------------------------------
Title: Exploring cosmic origins with CORE: Effects of observer
    peculiar motion
Authors: Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.;
   Quartin, M.; de Gasperis, G.; Buzzelli, A.; Vittorio, N.; De Zotti, G.;
   de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille,
   J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.;
   Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.;
   Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo,
   N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.;
   Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.;
   Cai, Z. -Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse,
   S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.;
   Diego, J. -M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney,
   S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.;
   Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.;
   Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.;
   Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.;
   Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.;
   Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.;
   Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.;
   Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese,
   S.; McCarthy, D.; Melchiorri, A.; Melin, J. -B.; Molinari, D.;
   Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.;
   Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin,
   V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J. -A.; Salvati,
   L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.;
   Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.;
   Vielva, P.; Young, K.; Zannoni, M.
2018JCAP...04..021B    Altcode: 2017arXiv170405764B
  We discuss the effects on the cosmic microwave background (CMB), cosmic
  infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to
  the peculiar motion of an observer with respect to the CMB rest frame,
  which induces boosting effects. After a brief review of the current
  observational and theoretical status, we investigate the scientific
  perspectives opened by future CMB space missions, focussing on the
  Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity
  offered by a mission like CORE, together with its high resolution
  over a wide frequency range, will provide a more accurate estimate of
  the CMB dipole. The extension of boosting effects to polarization and
  cross-correlations will enable a more robust determination of purely
  velocity-driven effects that are not degenerate with the intrinsic CMB
  dipole, allowing us to achieve an overall signal-to-noise ratio of 13;
  this improves on the Planck detection and essentially equals that
  of an ideal cosmic-variance-limited experiment up to a multipole
  lsimeq2000. Precise inter-frequency calibration will offer the
  opportunity to constrain or even detect CMB spectral distortions,
  particularly from the cosmological reionization epoch, because of
  the frequency dependence of the dipole spectrum, without resorting to
  precise absolute calibration. The expected improvement with respect
  to COBE-FIRAS in the recovery of distortion parameters (which could
  in principle be a factor of several hundred for an ideal experiment
  with the CORE configuration) ranges from a factor of several up to
  about 50, depending on the quality of foreground removal and relative
  calibration. Even in the case of simeq1 % accuracy in both foreground
  removal and relative calibration at an angular scale of 1<SUP>o</SUP>,
  we find that dipole analyses for a mission like CORE will be able to
  improve the recovery of the CIB spectrum amplitude by a factor simeq
  17 in comparison with current results based on COBE-FIRAS. In addition
  to the scientific potential of a mission like CORE for these analyses,
  synergies with other planned and ongoing projects are also discussed.

---------------------------------------------------------
Title: Exploring cosmic origins with CORE: Cluster science
Authors: Melin, J. -B.; Bonaldi, A.; Remazeilles, M.; Hagstotz,
   S.; Diego, J. M.; Hernández-Monteagudo, C.; Génova-Santos, R. T.;
   Luzzi, G.; Martins, C. J. A. P.; Grandis, S.; Mohr, J. J.; Bartlett,
   J. G.; Delabrouille, J.; Ferraro, S.; Tramonte, D.; Rubiño-Martín,
   J. A.; Macìas-Pérez, J. F.; Achúcarro, A.; Ade, P.; Allison, R.;
   Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo,
   N.; Basak, S.; Basu, K.; Battye, R. A.; Baumann, D.; Bersanelli, M.;
   Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann,
   T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z. -Y.; Calvo,
   M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.;
   Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.;
   Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De
   Petris, M.; De Zotti, G.; Di Valentino, E.; Errard, J.; Feeney, S. M.;
   Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Gerbino,
   M.; González-Nuevo, J.; Greenslade, J.; Hanany, S.; Handley, W.;
   Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.;
   Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.;
   Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Lewis, A.; Liguori,
   M.; Lindholm, V.; Lopez-Caniego, M.; Maffei, B.; Martinez-Gonzalez,
   E.; Masi, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Molinari,
   D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella,
   A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri,
   L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Roman, M.;
   Salvati, L.; Tartari, A.; Tomasi, M.; Trappe, N.; Triqueneaux, S.;
   Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van
   Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Weller, J.; Young,
   K.; Zannoni, M.
2018JCAP...04..019M    Altcode: 2017arXiv170310456M
  We examine the cosmological constraints that can be achieved with
  a galaxy cluster survey with the future CORE space mission. Using
  realistic simulations of the millimeter sky, produced with the latest
  version of the Planck Sky Model, we characterize the CORE cluster
  catalogues as a function of the main mission performance parameters. We
  pay particular attention to telescope size, key to improved angular
  resolution, and discuss the comparison and the complementarity of
  CORE with ambitious future ground-based CMB experiments that could be
  deployed in the next decade. A possible CORE mission concept with a 150
  cm diameter primary mirror can detect of the order of 50,000 clusters
  through the thermal Sunyaev-Zeldovich effect (SZE). The total yield
  increases (decreases) by 25% when increasing (decreasing) the mirror
  diameter by 30 cm. The 150 cm telescope configuration will detect
  the most massive clusters (&gt;10<SUP>14</SUP> M<SUB>solar</SUB>)
  at redshift z&gt;1.5 over the whole sky, although the exact number
  above this redshift is tied to the uncertain evolution of the cluster
  SZE flux-mass relation; assuming self-similar evolution, CORE will
  detect 0~ 50 clusters at redshift z&gt;1.5. This changes to 800 (200)
  when increasing (decreasing) the mirror size by 30 cm. CORE will be
  able to measure individual cluster halo masses through lensing of the
  cosmic microwave background anisotropies with a 1-σ sensitivity of
  4×10<SUP>14</SUP> M<SUB>solar</SUB>, for a 120 cm aperture telescope,
  and 10<SUP>14</SUP> M<SUB>solar</SUB> for a 180 cm one. From the
  ground, we estimate that, for example, a survey with about 150,000
  detectors at the focus of 350 cm telescopes observing 65% of the sky
  would be shallower than CORE and detect about 11,000 clusters, while
  a survey with the same number of detectors observing 25% of sky with
  a 10 m telescope is expected to be deeper and to detect about 70,000
  clusters. When combined with the latter, CORE would reach a limiting
  mass of M<SUB>500</SUB> ~ 2-3 × 10<SUP>13</SUP> M<SUB>solar</SUB>
  and detect 220,000 clusters (5 sigma detection limit). Cosmological
  constraints from CORE cluster counts alone are competitive with other
  scheduled large scale structure surveys in the 2020's for measuring the
  dark energy equation-of-state parameters w<SUB>0</SUB> and w<SUB>a</SUB>
  (σ<SUB>w<SUB>0</SUB></SUB>=0.28, σ<SUB>w<SUB>a</SUB></SUB>=0.31). In
  combination with primary CMB constraints, CORE cluster counts can
  further reduce these error bars on w<SUB>0</SUB> and w<SUB>a</SUB>
  to 0.05 and 0.13 respectively, and constrain the sum of the
  neutrino masses, Σ m<SUB>ν</SUB>, to 39 meV (1 sigma). The wide
  frequency coverage of CORE, 60-600 GHz, will enable measurement of
  the relativistic thermal SZE by stacking clusters. Contamination
  by dust emission from the clusters, however, makes constraining
  the temperature of the intracluster medium difficult. The
  kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the
  foreground-cleaned CMB map. Measurements of T<SUB>CMB</SUB>(z) using
  CORE clusters will establish competitive constraints on the evolution
  of the CMB temperature: (1+z)<SUP>1-β</SUP>, with an uncertainty
  of σ<SUB>β</SUB> lesssim 2.7× 10<SUP>-3</SUP> at low redshift (z
  lesssim 1). The wide frequency coverage also enables clean extraction
  of a map of the diffuse SZE signal over the sky, substantially
  reducing contamination by foregrounds compared to the Planck SZE
  map extraction. Our analysis of the one-dimensional distribution of
  Compton-y values in the simulated map finds an order of magnitude
  improvement in constraints on σ<SUB>8</SUB> over the Planck result,
  demonstrating the potential of this cosmological probe with CORE.

---------------------------------------------------------
Title: Exploring cosmic origins with CORE: Survey requirements and
    mission design
Authors: Delabrouille, J.; de Bernardis, P.; Bouchet, F. R.;
   Achúcarro, A.; Ade, P. A. R.; Allison, R.; Arroja, F.; Artal,
   E.; Ashdown, M.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.;
   Banerji, R.; Barbosa, D.; Bartlett, J.; Bartolo, N.; Basak, S.;
   Baselmans, J. J. A.; Basu, K.; Battistelli, E. S.; Battye, R.;
   Baumann, D.; Benoít, A.; Bersanelli, M.; Bideaud, A.; Biesiada, M.;
   Bilicki, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.;
   Brinckmann, T.; Brown, M. L.; Bucher, M.; Burigana, C.; Buzzelli,
   A.; Cabass, G.; Cai, Z. -Y.; Calvo, M.; Caputo, A.; Carvalho,
   C. -S.; Casas, F. J.; Castellano, G.; Catalano, A.; Challinor, A.;
   Charles, I.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco,
   S.; Colantoni, I.; Contreras, D.; Coppolecchia, A.; Crook, M.;
   D'Alessandro, G.; D'Amico, G.; da Silva, A.; de Avillez, M.; de
   Gasperis, G.; De Petris, M.; de Zotti, G.; Danese, L.; Désert,
   F. -X.; Desjacques, V.; Di Valentino, E.; Dickinson, C.; Diego,
   J. M.; Doyle, S.; Durrer, R.; Dvorkin, C.; Eriksen, H. K.; Errard,
   J.; Feeney, S.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.;
   Franceschet, C.; Fuskeland, U.; Galli, S.; Génova-Santos, R. T.;
   Gerbino, M.; Giusarma, E.; Gomez, A.; González-Nuevo, J.; Grandis,
   S.; Greenslade, J.; Goupy, J.; Hagstotz, S.; Hanany, S.; Handley, W.;
   Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.;
   Hills, M.; Hindmarsh, M.; Hivon, E.; Hoang, D. T.; Hooper, D. C.; Hu,
   B.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Kitching,
   T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lapi,
   A.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.;
   Liguori, M.; Lindholm, V.; Lizarraga, J.; Luzzi, G.; Macìas-P{érez,
   J. F.; Maffei, B.; Mandolesi, N.; Martin, S.; Martinez-Gonzalez, E.;
   Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta,
   P.; McCarthy, D.; Melchiorri, A.; Melin, J. -B.; Mennella, A.; Mohr,
   J.; Molinari, D.; Monfardini, A.; Montier, L.; Natoli, P.; Negrello,
   M.; Notari, A.; Noviello, F.; Oppizzi, F.; O'Sullivan, C.; Pagano, L.;
   Paiella, A.; Pajer, E.; Paoletti, D.; Paradiso, S.; Partridge, R. B.;
   Patanchon, G.; Patil, S. P.; Perdereau, O.; Piacentini, F.; Piat, M.;
   Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Ponthieu, N.; Poulin,
   V.; Prêle, D.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.;
   Ringeval, C.; Roest, D.; Roman, M.; Roukema, B. F.; Rubiño-Martin,
   J. -A.; Salvati, L.; Scott, D.; Serjeant, S.; Signorelli, G.;
   Starobinsky, A. A.; Sunyaev, R.; Tan, C. Y.; Tartari, A.; Tasinato,
   G.; Toffolatti, L.; Tomasi, M.; Torrado, J.; Tramonte, D.; Trappe,
   N.; Triqueneaux, S.; Tristram, M.; Trombetti, T.; Tucci, M.; Tucker,
   C.; Urrestilla, J.; Väliviita, J.; Van de Weygaert, R.; Van Tent,
   B.; Vennin, V.; Verde, L.; Vermeulen, G.; Vielva, P.; Vittorio, N.;
   Voisin, F.; Wallis, C.; Wandelt, B.; Wehus, I. K.; Weller, J.; Young,
   K.; Zannoni, M.
2018JCAP...04..014D    Altcode: 2017arXiv170604516D
  Future observations of cosmic microwave background (CMB) polarisation
  have the potential to answer some of the most fundamental questions
  of modern physics and cosmology, including: what physical process
  gave birth to the Universe we see today? What are the dark matter
  and dark energy that seem to constitute 95% of the energy density of
  the Universe? Do we need extensions to the standard model of particle
  physics and fundamental interactions? Is the ΛCDM cosmological scenario
  correct, or are we missing an essential piece of the puzzle? In this
  paper, we list the requirements for a future CMB polarisation survey
  addressing these scientific objectives, and discuss the design drivers
  of the COREmfive space mission proposed to ESA in answer to the "M5"
  call for a medium-sized mission. The rationale and options, and the
  methodologies used to assess the mission's performance, are of interest
  to other future CMB mission design studies. COREmfive has 19 frequency
  channels, distributed over a broad frequency range, spanning the
  60-600 GHz interval, to control astrophysical foreground emission. The
  angular resolution ranges from 2<SUP>'</SUP> to 18<SUP>'</SUP>,
  and the aggregate CMB sensitivity is about 2 μKṡarcmin. The
  observations are made with a single integrated focal-plane instrument,
  consisting of an array of 2100 cryogenically-cooled, linearly-polarised
  detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The
  mission is designed to minimise all sources of systematic effects,
  which must be controlled so that no more than 10<SUP>-4</SUP> of the
  intensity leaks into polarisation maps, and no more than about 1%
  of E-type polarisation leaks into B-type modes. COREmfive observes
  the sky from a large Lissajous orbit around the Sun-Earth L2 point
  on an orbit that offers stable observing conditions and avoids
  contamination from sidelobe pick-up of stray radiation originating
  from the Sun, Earth, and Moon. The entire sky is observed repeatedly
  during four years of continuous scanning, with a combination of three
  rotations of the spacecraft over different timescales. With about 50%
  of the sky covered every few days, this scan strategy provides the
  mitigation of systematic effects and the internal redundancy that are
  needed to convincingly extract the primordial B-mode signal on large
  angular scales, and check with adequate sensitivity the consistency
  of the observations in several independent data subsets. COREmfive
  is designed as a "near-ultimate" CMB polarisation mission which, for
  optimal complementarity with ground-based observations, will perform
  the observations that are known to be essential to CMB polarisation
  science and cannot be obtained by any other means than a dedicated
  space mission. It will provide well-characterised, highly-redundant
  multi-frequency observations of polarisation at all the scales where
  foreground emission and cosmic variance dominate the final uncertainty
  for obtaining precision CMB science, as well as 2<SUP>'</SUP> angular
  resolution maps of high-frequency foreground emission in the 300-600 GHz
  frequency range, essential for complementarity with future ground-based
  observations with large telescopes that can observe the CMB with the
  same beamsize.

---------------------------------------------------------
Title: Cosmological hydrodynamical simulations of galaxy clusters:
    X-ray scaling relations and their evolution
Authors: Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi,
   V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.;
   Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.
2018MNRAS.474.4089T    Altcode: 2016arXiv160700019T
  We analyse cosmological hydrodynamical simulations of galaxy clusters to
  study the X-ray scaling relations between total masses and observable
  quantities such as X-ray luminosity, gas mass, X-ray temperature, and
  Y<SUB>X</SUB>. Three sets of simulations are performed with an improved
  version of the smoothed particle hydrodynamics GADGET-3 code. These
  consider the following: non-radiative gas, star formation and stellar
  feedback, and the addition of feedback by active galactic nuclei
  (AGN). We select clusters with M<SUB>500</SUB> &gt; 10<SUP>14</SUP>
  M<SUB>⊙</SUB>E(z)<SUP>-1</SUP>, mimicking the typical selection of
  Sunyaev-Zeldovich samples. This permits to have a mass range large
  enough to enable robust fitting of the relations even at z ∼ 2. The
  results of the analysis show a general agreement with observations. The
  values of the slope of the mass-gas mass and mass-temperature relations
  at z = 2 are 10 per cent lower with respect to z = 0 due to the applied
  mass selection, in the former case, and to the effect of early merger
  in the latter. We investigate the impact of the slope variation on
  the study of the evolution of the normalization. We conclude that
  cosmological studies through scaling relations should be limited to the
  redshift range z = 0-1, where we find that the slope, the scatter, and
  the covariance matrix of the relations are stable. The scaling between
  mass and Y<SUB>X</SUB> is confirmed to be the most robust relation,
  being almost independent of the gas physics. At higher redshifts,
  the scaling relations are sensitive to the inclusion of AGNs which
  influences low-mass systems. The detailed study of these objects will
  be crucial to evaluate the AGN effect on the ICM.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Cool-core clusters with Chandra
    obs. (Andrade-Santos+, 2017)
Authors: Andrade-Santos, F.; Jones, C.; Forman, W. R.; Lovisari, L.;
   Vikhlinin, A.; van Weeren, R. J.; Murray, S. S.; Arnaud, M.; Pratt,
   G. W.; Democles, J.; Kraft, R.; Mazzotta, P.; Bohringer, H.; Chon,
   G.; Giacintucci, S.; Clarke, T. E.; Borgani, S.; David, L.; Douspis,
   M.; Pointecouteau, E.; Dahle, H.; Brown, S.; Aghanim, N.; Rasia, E.
2018yCat..18430076A    Altcode:
  The main goal of this work is to compare the fraction of cool-core
  (CC) clusters in X-ray-selected and SZ-selected samples. <P />The
  first catalog of 189 SZ clusters detected by the Planck mission was
  released in early 2011 (Planck Collaboration 2011, VIII/88/esz). A
  Chandra XVP (X-ray Visionary Program--PI: Jones) and HRC Guaranteed
  Time Observations (PI: Murray) combined to form the Chandra-Planck
  Legacy Program for Massive Clusters of Galaxies. For each of the
  164 ESZ Planck clusters at z&lt;=0.35, we obtained Chandra exposures
  sufficient to collect at least 10000 source counts. <P />The X-ray
  sample used here is an extension of the Voevodkin &amp; Vikhlinin
  (2004ApJ...601..610V) sample. This sample contains 100 clusters
  and has an effective redshift depth of z&lt;0.3. All have Chandra
  observations. Of the 100 X-ray-selected clusters, 49 are also in the
  ESZ sample, and 47 are in the HIFLUGCS (Reiprich &amp; Boehringer
  2002ApJ...567..716R) catalog. <P />(2 data files).

---------------------------------------------------------
Title: Planck intermediate results. XV. A study of anomalous microwave
    emission in Galactic clouds (Corrigendum)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Boulanger, F.; Burigana, C.; Cardoso, J. -F.; Casassus,
   S.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang,
   L. -Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Désert, F. -X.; Dickinson, C.; Diego, J. M.;
   Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Forni, O.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Génova-Santos, R. T.; Ghosh, T.; Giard, M.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison,
   D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche,
   J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje,
   P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.;
   Maffei, B.; Maino, D.; Mandolesi, N.; Marshall, D. J.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Nati, F.;
   Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau,
   O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini,
   G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Tibbs, C. T.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Verstraete,
   L.; Vielva, P.; Villa, F.; Wandelt, B. D.; Watson, R.; Wilkinson,
   A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2018A&A...610C...1P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Recovering galaxy cluster gas density profiles with XMM-Newton
    and Chandra
Authors: Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Vikhlinin,
   A.; Pointecouteau, E.; Forman, W. R.; Jones, C.; Mazzotta, P.;
   Andrade-Santos, F.
2017A&A...608A..88B    Altcode: 2017arXiv170906570B
  We examined the reconstruction of galaxy cluster radial density
  profiles obtained from Chandra and XMM-Newton X-ray observations, using
  high quality data for a sample of twelve objects covering a range of
  morphologies and redshifts. By comparing the results obtained from the
  two observatories and by varying key aspects of the analysis procedure,
  we examined the impact of instrumental effects and of differences
  in the methodology used in the recovery of the density profiles. We
  find that the final density profile shape is particularly robust. We
  adapted the photon weighting vignetting correction method developed for
  XMM-Newton for use with Chandra data, and confirm that the resulting
  Chandra profiles are consistent with those corrected a posteriori
  for vignetting effects. Profiles obtained from direct deprojection
  and those derived using parametric models are consistent at the 1%
  level. At radii larger than ~6″, the agreement between Chandra and
  XMM-Newton is better than 1%, confirming an excellent understanding
  of the XMM-Newton PSF. Furthermore, we find no significant energy
  dependence. The impact of the well-known offset between Chandra and
  XMM-Newton gas temperature determinations on the density profiles is
  found to be negligible. However, we find an overall normalisation offset
  in density profiles of the order of ~2.5%, which is linked to absolute
  flux cross-calibration issues. As a final result, the weighted ratios
  of Chandra to XMM-Newton gas masses computed at R<SUB>2500</SUB>
  and R<SUB>500</SUB> are r = 1.03 ± 0.01 and r = 1.03 ± 0.03,
  respectively. Our study confirms that the radial density profiles
  are robustly recovered, and that any differences between Chandra and
  XMM-Newton can be constrained to the ~2.5% level, regardless of the
  exact data analysis details. These encouraging results open the way
  for the true combination of X-ray observations of galaxy clusters,
  fully leveraging the high resolution of Chandra and the high throughput
  of XMM-Newton.

---------------------------------------------------------
Title: Fast weak-lensing simulations with halo model
Authors: Giocoli, Carlo; Di Meo, Sandra; Meneghetti, Massimo; Jullo,
   Eric; de la Torre, Sylvain; Moscardini, Lauro; Baldi, Marco; Mazzotta,
   Pasquale; Metcalf, R. Benton
2017MNRAS.470.3574G    Altcode: 2017arXiv170102739G
  Full ray-tracing maps of gravitational lensing, constructed from N-body
  simulations, represent a fundamental tool to interpret present and
  future weak-lensing data. However, the limitation of computational
  resources and storage capabilities severely restricts the number
  of realizations that can be performed in order to accurately sample
  both the cosmic shear models and covariance matrices. In this paper,
  we present a halo model formalism for weak gravitational lensing that
  alleviates these issues by producing weak-lensing mocks at a reduced
  computational cost. Our model takes as input the halo population within
  a desired light cone and the linear power spectrum of the underlined
  cosmological model. We examine the contribution given by the presence
  of substructures within haloes to the cosmic shear power spectrum and
  quantify it to the percent level. Our method allows us to reconstruct
  high-resolution convergence maps, for any desired source redshifts, of
  light cones that realistically trace the matter density distribution
  in the universe, account for masked area and sample selections. We
  compare our analysis on the same large-scale structures constructed
  using ray-tracing techniques and find very good agreements in both the
  linear and non-linear regimes up to few percent levels. The accuracy
  and speed of our method demonstrate the potential of our halo model
  for weak-lensing statistics and the possibility to generate a large
  sample of convergence maps for different cosmological models as needed
  for the analysis of large galaxy redshift surveys.

---------------------------------------------------------
Title: Pressure Profiles of Distant Galaxy Clusters in the Planck
    Catalogue
Authors: Bourdin, H.; Mazzotta, P.; Kozmanyan, A.; Jones, C.;
   Vikhlinin, A.
2017ApJ...843...72B    Altcode: 2017arXiv170702248B
  Successive releases of Planck data have demonstrated the strength of
  the Sunyaev-Zeldovich (SZ) effect in detecting hot baryons out to the
  galaxy cluster peripheries. To infer the hot gas pressure structure
  from nearby galaxy clusters to more distant objects, we developed a
  parametric method that models the spectral energy distribution and
  spatial anisotropies of both the Galactic thermal dust (GTD) and the
  cosmic microwave background (CMB), which are combined with the cluster
  SZ and dust signals. Taking advantage of the best angular resolution of
  the High Frequency Instrument channels (5 arcmin) and using X-ray priors
  in the innermost cluster regions that are not resolved with Planck,
  this modeling allowed us to analyze a sample of 61 nearby members of
  the Planck Catalogue of SZ sources (0&lt; z&lt; 0.5, \tilde{z}=0.15)
  using the full mission data, as well as to examine a distant sample of
  23 clusters (0.5&lt; z&lt; 1, \tilde{z}=0.56) that have been recently
  followed-up with XMM-Newton and Chandra observations. We find that (I)
  the average shape of the mass-scaled pressure profiles agrees with
  results obtained by the Planck Collaboration in the nearby cluster
  sample, and that (II) no sign of evolution is discernible between
  averaged pressure profiles of the low- and high-redshift cluster
  samples. In line with theoretical predictions for these halo masses
  and redshift ranges, the dispersion of individual profiles relative
  to a self-similar shape stays well below 10% inside r <SUB>500</SUB>
  but increases in the cluster outskirts.

---------------------------------------------------------
Title: The Fraction of Cool-core Clusters in X-Ray versus SZ Samples
    Using Chandra Observations
Authors: Andrade-Santos, Felipe; Jones, Christine; Forman, William R.;
   Lovisari, Lorenzo; Vikhlinin, Alexey; van Weeren, Reinout J.; Murray,
   Stephen S.; Arnaud, Monique; Pratt, Gabriel W.; Démoclès, Jessica;
   Kraft, Ralph; Mazzotta, Pasquale; Böhringer, Hans; Chon, Gayoung;
   Giacintucci, Simona; Clarke, Tracy E.; Borgani, Stefano; David, Larry;
   Douspis, Marian; Pointecouteau, Etienne; Dahle, Håkon; Brown, Shea;
   Aghanim, Nabila; Rasia, Elena
2017ApJ...843...76A    Altcode: 2017arXiv170308690A
  We derive and compare the fractions of cool-core clusters in the Planck
  Early Sunyaev-Zel’dovich sample of 164 clusters with z≤slant 0.35
  and in a flux-limited X-ray sample of 100 clusters with z≤slant 0.30,
  using Chandra observations. We use four metrics to identify cool-core
  clusters: (1) the concentration parameter, which is the ratio of the
  integrated emissivity profile within 0.15 r <SUB>500</SUB> to that
  within r <SUB>500</SUB>; (2) the ratio of the integrated emissivity
  profile within 40 kpc to that within 400 kpc; (3) the cuspiness of
  the gas density profile, which is the negative of the logarithmic
  derivative of the gas density with respect to the radius, measured at
  0.04 r <SUB>500</SUB>; and (4) the central gas density, measured at 0.01
  r <SUB>500</SUB>. We find that the sample of X-ray-selected clusters, as
  characterized by each of these metrics, contains a significantly larger
  fraction of cool-core clusters compared to the sample of SZ-selected
  clusters (44% ± 7% versus 28% ± 4% using the concentration parameter
  in the 0.15-1.0 r <SUB>500</SUB> range, 61% ± 8% versus 36% ± 5% using
  the concentration parameter in the 40-400 kpc range, 64% ± 8% versus
  38% ± 5% using the cuspiness, and 53% ± 7% versus 39 ± 5% using the
  central gas density). Qualitatively, cool-core clusters are more X-ray
  luminous at fixed mass. Hence, our X-ray, flux-limited sample, compared
  to the approximately mass-limited SZ sample, is overrepresented with
  cool-core clusters. We describe a simple quantitative model that uses
  the excess luminosity of cool-core clusters compared to non-cool-core
  clusters at fixed mass to successfully predict the observed fraction
  of cool-core clusters in X-ray-selected samples.

---------------------------------------------------------
Title: Enlighten the structure of the cluster outskirts with SZ and
    X-ray observations
Authors: Mazzotta, P.
2017wprb.confE...5M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Resolving galaxy cluster gas properties at z   1 with
    XMM-Newton and Chandra
Authors: Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.;
   van der Burg, R. F. J.; Mazzotta, P.
2017A&A...598A..61B    Altcode: 2016arXiv161001899B
  Massive, high-redshift, galaxy clusters are useful laboratories to test
  cosmological models and to probe structure formation and evolution,
  but observations are challenging due to cosmological dimming and angular
  distance effects. Here we present a pilot X-ray study of the five most
  massive (M<SUB>500</SUB> &gt; 5 × 10<SUP>14</SUP>M<SUB>⊙</SUB>),
  distant (z ~ 1), clusters detected via the Sunyaev-Zel'Dovich
  effect. We optimally combine XMM-Newton and Chandra X-ray observations
  by leveraging the throughput of XMM-Newton to obtain spatially-resolved
  spectroscopy, and the spatial resolution of Chandra to probe the bright
  inner parts and to detect embedded point sources. Capitalising on the
  excellent agreement in flux-related measurements, we present a new
  method to derive the density profiles, which are constrained in the
  centre by Chandra and in the outskirts by XMM-Newton. We show that the
  Chandra-XMM-Newton combination is fundamental for morphological analysis
  at these redshifts, the Chandra resolution being required to remove
  point source contamination, and the XMM-Newton sensitivity allowing
  higher significance detection of faint substructures. Measuring the
  morphology using images from both instruments, we found that the
  sample is dominated by dynamically disturbed objects. We use the
  combined Chandra-XMM-Newton density profiles and spatially-resolved
  temperature profiles to investigate thermodynamic quantities including
  entropy and pressure. From comparison of the scaled profiles with the
  local REXCESS sample, we find no significant departure from standard
  self-similar evolution, within the dispersion, at any radius, except
  for the entropy beyond 0.7 R<SUB>500</SUB>. The baryon mass fraction
  tends towards the cosmic value, with a weaker dependence on mass
  than that observed in the local Universe. We make a comparison with
  the predictions from numerical simulations. The present pilot study
  demonstrates the utility and feasibility of spatially-resolved analysis
  of individual objects at high-redshift through the combination of
  XMM-Newton and Chandra observations. Observations of a larger sample
  will allow a fuller statistical analysis to be undertaken, in particular
  of the intrinsic scatter in the structural and scaling properties of
  the cluster population.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Planck Sunyaev-Zeldovich sources
    (PSZ2) (Planck+, 2016)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.;
   Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bohringer, H.; Bonaldi,
   A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher,
   M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso,
   J. -F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.;
   Chary, R. -R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements,
   D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Desert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis,
   M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.;
   Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson,
   J.; Feroz, F.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.;
   Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli,
   S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Giraud-Heraud, Y.;
   Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Grainge, K. J. B.;
   Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen,
   F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versille, S.;
   Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones,
   W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Khamitov, I.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.;
   Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez,
   J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli,
   A.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.;
   Mazzotta, P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.;
   Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.;
   Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta,
   F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.;
   Prezeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.;
   Rozo, E.; Rubino-Martin, J. A.; Rumsey, C.; Rusholme, B.; Rykoff,
   E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.;
   Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Shimwell, T. W.; Spence, R. L. D.; Stanford, S. A.; Stern,
   D.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.;
   Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita,
   J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.;
   Wehus, I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.;
   Zonca, A.
2017yCat..35940027P    Altcode:
  Three pipelines are used to detect SZ clusters: two independent
  implementations of the Matched Multi-Filter (MMF1 and MMF3), and
  PowellSnakes (PwS). The main catalogue is constructed as the union of
  the catalogues from the three detection methods. The completeness and
  reliability of the catalogues have been assessed through internal and
  external validation as described in section 4 of the paper. <P />(5
  data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Planck Catalogue of Galactic cold
    clumps (PGCC) (Planck+, 2016)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.;
   Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger,
   F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano,
   A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.;
   Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Desert, F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.;
   Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner,
   F.; Ensslin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.;
   Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.;
   Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.;
   Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorsk,
   I. K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.;
   Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versille,
   S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela,
   M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz,
   M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier,
   F.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.;
   Lubin, P. M.; Macias-Perez, J. F.; Maggio, G.; Maino, D.; Mandolesi,
   N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez,
   E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.;
   Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.;
   Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson,
   T. J.; Pelkonen, V. -M.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.;
   Prezeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier,
   G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.;
   Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.;
   Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi,
   L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen,
   J.; Umana, G.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva,
   P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2017yCat..35940028P    Altcode:
  The Planck Catalogue of Galactic Cold Clumps (PGCC) is a list of
  13188 Galactic sources and 54 sources located in the Small and Large
  Magellanic Clouds. The sources have been identified in Planck data as
  sources colder than their environment. It has been built using the 48
  months Planck data at 857, 545, and 353GHz combined with the 3THz IRAS
  data. <P />(1 data file).

---------------------------------------------------------
Title: Planck intermediate results. XL. The Sunyaev-Zeldovich signal
    from the Virgo cluster
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera,
   L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler,
   R. C.; Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.;
   Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.;
   Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.;
   Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille,
   J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.;
   Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner,
   F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis,
   M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga,
   K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen,
   F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz,
   D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest,
   W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.;
   Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier,
   F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.;
   Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta,
   P.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.;
   Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.;
   Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino,
   V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet,
   S.; Puget, J. -L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.;
   Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.;
   Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.;
   Scott, D.; Soler, J. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Weller,
   J.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...596A.101P    Altcode: 2015arXiv151105156P
  The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the
  sky, both in terms of angular size and total integrated flux. Planck's
  wide angular scale and frequency coverage, together with its high
  sensitivity, enable a detailed study of this big object through the
  SZ effect. Virgo is well resolved by Planck, showing an elongated
  structure that correlates well with the morphology observed from X-rays,
  but extends beyond the observed X-ray signal. We find good agreement
  between the SZ signal (or Compton parameter, y<SUB>c</SUB>) observed
  by Planck and the expected signal inferred from X-ray observations and
  simple analytical models. Owing to its proximity to us, the gas beyond
  the virial radius in Virgo can be studied with unprecedented sensitivity
  by integrating the SZ signal over tens of square degrees. We study the
  signal in the outskirts of Virgo and compare it with analytical models
  and a constrained simulation of the environment of Virgo. Planck data
  suggest that significant amounts of low-density plasma surround Virgo,
  out to twice the virial radius. We find the SZ signal in the outskirts
  of Virgo to be consistent with a simple model that extrapolates the
  inferred pressure at lower radii, while assuming that the temperature
  stays in the keV range beyond the virial radius. The observed signal
  is also consistent with simulations and points to a shallow pressure
  profile in the outskirts of the cluster. This reservoir of gas at large
  radii can be linked with the hottest phase of the elusivewarm/hot
  intergalactic medium. Taking the lack of symmetry of Virgo into
  account, we find that a prolate model is favoured by the combination
  of SZ and X-ray data, in agreement with predictions. Finally, based
  on the combination of the same SZ and X-ray data, we constrain the
  total amount of gas in Virgo. Under the hypothesis that the abundance
  of baryons in Virgo is representative of the cosmic average, we also
  infer a distance for Virgo of approximately 18 Mpc, in good agreement
  with previous estimates.

---------------------------------------------------------
Title: Planck 2015 results. IV. Low Frequency Instrument beams and
    window functions
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown,
   M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.;
   Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.;
   Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Christensen, P. R.;
   Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.;
   Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac,
   X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.;
   Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi,
   E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.;
   Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.;
   Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.;
   Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt,
   S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest,
   W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.;
   Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.;
   Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje,
   P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi,
   N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold,
   P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.;
   Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.;
   Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.;
   Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino,
   V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.;
   Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.;
   Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov,
   V.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.;
   Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...594A...4P    Altcode: 2015arXiv150201584P
  This paper presents the characterization of the in-flight beams,
  the beam window functions, and the associated uncertainties for the
  Planck Low Frequency Instrument (LFI). The structure of the paper
  is similar to that presented in the 2013 Planck release; the main
  differences concern the beam normalization and the delivery of the
  window functions to be used for polarization analysis. The in-flight
  assessment of the LFI main beams relies on measurements performed during
  observations of Jupiter. By stacking data from seven Jupiter transits,
  the main beam profiles are measured down to -25 dB at 30 and 44 GHz,
  and down to -30 dB at 70 GHz. It has been confirmed that the agreement
  between the simulated beams and the measured beams is better than 1%
  at each LFI frequency band (within the 20 dB contour from the peak,
  the rms values are 0.1% at 30 and 70 GHz; 0.2% at 44 GHz). Simulated
  polarized beams are used for the computation of the effective beam
  window functions. The error budget for the window functions is estimated
  from both main beam and sidelobe contributions, and accounts for the
  radiometer band shapes. The total uncertainties in the effective beam
  window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at
  ℓ ≈ 600); and 0.5% at 70 GHz (at ℓ ≈ 1000).

---------------------------------------------------------
Title: Planck 2015 results. II. Low Frequency Instrument data
    processings
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown,
   M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.;
   Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner,
   E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera,
   L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Calabrese, E.; Cardoso, J. -F.; Castex, G.;
   Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo,
   L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.;
   Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli,
   F.; Forni, O.; Frailis, M.; Franceschet, C.; Franceschi, E.; Frejsel,
   A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud,
   Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest,
   W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.;
   Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier,
   F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.;
   Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.;
   McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Morisset, N.;
   Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov,
   D.; Novikov, I.; Oppermann, N.; Paci, F.; Pagano, L.; Paoletti, D.;
   Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini,
   F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.;
   Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.;
   Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov,
   V.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.;
   Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson,
   A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...594A...2P    Altcode: 2015arXiv150201583P
  We present an updated description of the Planck Low Frequency
  Instrument (LFI) data processing pipeline, associated with the 2015
  data release. We point out the places where our results and methods
  have remained unchanged since the 2013 paper and we highlight the
  changes made for the 2015 release, describing the products (especially
  timelines) and the ways in which they were obtained. We demonstrate
  that the pipeline is self-consistent (principally based on simulations)
  and report all null tests. For the first time, we present LFI maps in
  Stokes Q and U polarization. We refer to other related papers where
  more detailed descriptions of the LFI data processing pipeline may be
  found if needed.

---------------------------------------------------------
Title: Planck 2015 results. VI. LFI mapmaking
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown,
   M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.;
   Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.;
   Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. -F.; Catalano,
   A.; Chamballu, A.; Chary, R. -R.; Christensen, P. R.; Colombi, S.;
   Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.;
   Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli,
   F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta,
   S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw,
   E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.;
   Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.;
   Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues,
   J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.;
   McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.;
   Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli,
   P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov,
   I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.;
   Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Pettorino, V.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.;
   Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.;
   Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov,
   V.; Stompor, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.;
   Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...594A...6P    Altcode: 2015arXiv150201585P
  This paper describes the mapmaking procedure applied to Planck Low
  Frequency Instrument (LFI) data. The mapmaking step takes as input
  the calibrated timelines and pointing information. The main products
  are sky maps of I, Q, and U Stokes components. For the first time, we
  present polarization maps at LFI frequencies. The mapmaking algorithm
  is based on a destriping technique, which is enhanced with a noise
  prior. The Galactic region is masked to reduce errors arising from
  bandpass mismatch and high signal gradients. We apply horn-uniform
  radiometer weights to reduce the effects of beam-shape mismatch. The
  algorithm is the same as used for the 2013 release, apart from small
  changes in parameter settings. We validate the procedure through
  simulations. Special emphasis is put on the control of systematics,
  which is particularly important for accurate polarization analysis. We
  also produce low-resolution versions of the maps and corresponding
  noise covariance matrices. These serve as input in later analysis steps
  and parameter estimation. The noise covariance matrices are validated
  through noise Monte Carlo simulations. The residual noise in the map
  products is characterized through analysis of half-ring maps, noise
  covariance matrices, and simulations.

---------------------------------------------------------
Title: Planck 2015 results. XXVIII. The Planck Catalogue of Galactic
    cold clumps
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese,
   E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen,
   P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Dickinson,
   C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.;
   Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.;
   Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.;
   Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta,
   S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw,
   E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.;
   Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.;
   Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence,
   C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli,
   A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.;
   Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen,
   V. -M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli,
   I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.;
   Zonca, A.
2016A&A...594A..28P    Altcode: 2015arXiv150201599P
  We present the Planck Catalogue of Galactic Cold Clumps (PGCC),
  an all-sky catalogue of Galactic cold clump candidates detected by
  Planck. This catalogue is the full version of the Early Cold Core
  (ECC) catalogue, which was made available in 2011 with the Early
  Release Compact Source Catalogue (ERCSC) and which contained 915
  high signal-to-noise sources. It is based on the Planck 48-month
  mission data that are currently being released to the astronomical
  community. The PGCC catalogue is an observational catalogue consisting
  exclusively of Galactic cold sources. The three highest Planck bands
  (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to
  perform a multi-frequency detection of sources colder than their local
  environment. After rejection of possible extragalactic contaminants,
  the PGCC catalogue contains 13188 Galactic sources spread across the
  whole sky, I.e., from the Galactic plane to high latitudes, following
  the spatial distribution of the main molecular cloud complexes. The
  median temperature of PGCC sources lies between 13 and 14.5 K,
  depending on the quality of the flux density measurements, with a
  temperature ranging from 5.8 to 20 K after removing the sources with
  the top 1% highest temperature estimates. Using seven independent
  methods, reliable distance estimates have been obtained for 5574
  sources, which allows us to derive their physical properties such
  as their mass, physical size, mean density, and luminosity.The PGCC
  sources are located mainly in the solar neighbourhood, but also up
  to a distance of 10.5 kpc in the direction of the Galactic centre,
  and range from low-mass cores to large molecular clouds. Because of
  this diversity and because the PGCC catalogue contains sources in very
  different environments, the catalogue is useful for investigating the
  evolution from molecular clouds to cores. Finally, it also includes
  54 additional sources located in the Small and Large Magellanic Clouds.

---------------------------------------------------------
Title: Planck 2015 results. XXVII. The second Planck catalogue of
    Sunyaev-Zeldovich sources
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.;
   Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard,
   J. -P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.;
   Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese,
   E.; Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chary, R. -R.; Chiang, H. C.; Chon, G.; Christensen,
   P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.;
   de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.;
   Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.;
   Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Feroz, F.; Ferragamo,
   A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi,
   E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos,
   R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo,
   J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe,
   A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Keihänen, E.;
   Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby,
   A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues,
   J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio,
   G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta,
   P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.;
   Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta,
   F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.;
   Rozo, E.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Rykoff,
   E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.;
   Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Stern, D.;
   Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev,
   R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.;
   Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van
   Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus,
   I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...594A..27P    Altcode: 2015arXiv150201598P
  We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ)
  sources detected from the 29 month full-mission data. The catalogue
  (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced
  and the deepest systematic all-sky surveyof galaxy clusters. It
  contains 1653 detections, of which 1203 are confirmed clusters with
  identified counterparts in external data sets, and is the first
  SZ-selected cluster survey containing &gt;10<SUP>3</SUP> confirmed
  clusters. We present a detailed analysis of the survey selection
  function in terms of its completeness and statistical reliability,
  placing a lower limit of 83% on the purity. Using simulations, we find
  that the estimates of the SZ strength parameter Y<SUB>5R500</SUB>are
  robust to pressure-profile variation and beam systematics, but accurate
  conversion to Y<SUB>500</SUB> requires the use of prior information
  on the cluster extent. We describe the multi-wavelength search for
  counterparts in ancillary data, which makes use of radio, microwave,
  infra-red, optical, and X-ray data sets, and which places emphasis
  on the robustness of the counterpart match. We discuss the physical
  properties of the new sample and identify a population of low-redshift
  X-ray under-luminous clusters revealed by SZ selection. These objects
  appear in optical and SZ surveys with consistent properties for their
  mass, but are almost absent from ROSAT X-ray selected samples.

---------------------------------------------------------
Title: Planck 2015 results. I. Overview of products and scientific
    results
Authors: Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.;
   Akrami, Y.; Alves, M. I. R.; Argüeso, F.; Arnaud, M.; Arroja, F.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.;
   Battaglia, P.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bertincourt, B.;
   Bielewicz, P.; Bikmaev, I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.;
   Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.;
   Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.;
   Cardoso, J. -F.; Carvalho, P.; Casaponsa, B.; Castex, G.; Catalano,
   A.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chiang, H. C.;
   Chluba, J.; Chon, G.; Christensen, P. R.; Church, S.; Clemens, M.;
   Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis,
   B.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.;
   Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de
   Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout,
   A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.;
   Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye,
   Y.; Farhang, M.; Feeney, S.; Fergusson, J.; Fernandez-Cobos, R.; Feroz,
   F.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.;
   Franceschet, C.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.;
   Galli, S.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Gerbino, M.;
   Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.;
   González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley,
   W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou,
   G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Ilić, S.;
   Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Karakci,
   A.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.;
   Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.;
   Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence,
   C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.;
   León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori,
   M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; Liu,
   H.; López-Caniego, M.; Lubin, P. M.; Ma, Y. -Z.; Macías-Pérez,
   J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli,
   A.; Marchini, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.;
   Marshall, D. J.; Martin, P. G.; Martinelli, M.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McEwen, J. D.; McGehee,
   P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Molinari, D.; Moneti, A.; Montier,
   L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.;
   Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky,
   P.; Nastasi, A.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Olamaie, M.; Oppermann, N.; Orlando, E.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti,
   D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel,
   M.; Peiris, H. V.; Pelkonen, V. -M.; Perdereau, O.; Perotto, L.;
   Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.;
   Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi,
   A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Romelli, E.; Rosset,
   C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rouillé d'Orfeuil, B.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rumsey,
   C.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri,
   M.; Sanghera, H. S.; Santos, D.; Saunders, R. D. E.; Sauvé, A.;
   Savelainen, M.; Savini, G.; Schaefer, B. M.; Schammel, M. P.; Scott,
   D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Shimwell, T. W.;
   Shiraishi, M.; Smith, K.; Souradeep, T.; Spencer, L. D.; Spinelli,
   M.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Strong,
   A. W.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Texier, D.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tramonte,
   D.; Tristram, M.; Troja, A.; Trombetti, T.; Tucci, M.; Tuovinen, J.;
   Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.;
   Vassallo, T.; Vibert, L.; Vidal, M.; Viel, M.; Vielva, P.; Villa, F.;
   Wade, L. A.; Walter, B.; Wandelt, B. D.; Watson, R.; Wehus, I. K.;
   Welikala, N.; Weller, J.; White, M.; White, S. D. M.; Wilkinson, A.;
   Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2016A&A...594A...1P    Altcode: 2015arXiv150201582P
  The European Space Agency's Planck satellite, which is dedicated
  to studying the early Universe and its subsequent evolution, was
  launched on 14 May 2009. It scanned the microwave and submillimetre
  sky continuously between 12 August 2009 and 23 October 2013. In
  February 2015, ESA and the Planck Collaboration released the second
  set of cosmology products based ondata from the entire Planck
  mission, including both temperature and polarization, along with a
  set of scientific and technical papers and a web-based explanatory
  supplement. This paper gives an overview of the main characteristics of
  the data and the data products in the release, as well as the associated
  cosmological and astrophysical science results and papers. The data
  products include maps of the cosmic microwave background (CMB), the
  thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature
  and polarization, catalogues of compact Galactic and extragalactic
  sources (including separate catalogues of Sunyaev-Zeldovich clusters
  and Galactic cold clumps), and extensive simulations of signals and
  noise used in assessing uncertainties and the performance of the
  analysis methods. The likelihood code used to assess cosmological
  models against the Planck data is described, along with a CMB lensing
  likelihood. Scientific results include cosmological parameters derived
  from CMB power spectra, gravitational lensing, and cluster counts,
  as well as constraints on inflation, non-Gaussianity, primordial
  magnetic fields, dark energy, and modified gravity, and new results
  on low-frequency Galactic foregrounds.

---------------------------------------------------------
Title: Shapley Supercluster Survey: ram-pressure stripping versus
    tidal interactions in the Shapley supercluster
Authors: Merluzzi, P.; Busarello, G.; Dopita, M. A.; Haines, C. P.;
   Steinhauser, D.; Bourdin, H.; Mazzotta, P.
2016MNRAS.460.3345M    Altcode: 2016arXiv160506329M
  We present two new examples of galaxies undergoing transformation in the
  Shapley supercluster core. These low-mass (M_{star }∼ 0.4-1× 10^{10}
  M<SUB>⊙</SUB>) galaxies are members of the two clusters SC 1329-313 (z
  ∼ 0.045) and SC 1327-312 (z ∼ 0.049). Integral-field spectroscopy
  complemented by imaging in the ugriK bands and in Hα narrow band
  is used to disentangle the effects of tidal interaction (TI) and
  ram-pressure stripping (RPS). In both galaxies, SOS 61086 and SOS 90630,
  we observe one-sided extraplanar ionized gas extending respectively
  ∼30 and ∼41 kpc in projection from their discs. The galaxies'
  gaseous discs are truncated, and the kinematics of the stellar and gas
  components are decoupled, supporting the RPS scenario. The emission
  of the ionized gas extends in the direction of a possible companion
  for both galaxies suggesting a TI. The overall gas velocity field of
  SOS 61086 is reproduced by ad hoc N-body/hydrodynamical simulations of
  RPS acting almost face-on and starting ∼250 Myr ago, consistent with
  the age of the young stellar populations. A link between the observed
  gas stripping and the cluster-cluster interaction experienced by SC
  1329-313 and A3562 is suggested. Simulations of ram pressure acting
  almost edge-on are able to fully reproduce the gas velocity field of
  SOS 90630, but cannot at the same time reproduce the extended tail of
  outflowing gas. This suggests that an additional disturbance from a
  TI is required. This study adds a piece of evidence that RPS may take
  place in different environments with different impacts and witnesses
  the possible effect of cluster-cluster merger on RPS.

---------------------------------------------------------
Title: The evolution of galaxy groups and clusters
Authors: Mazzotta, Pasquale
2016cosp...41E1271M    Altcode:
  The Athena mission will implement the Hot and Energetic Universe science
  theme which poses the question of How does ordinary matter assemble into
  the large-scale structures we see today?. Groups and Galaxy clusters
  are key laboratories to understand the role of the various physical
  processes governing the baryonic matter from the kilo-parsec scale
  of super-massive black holes to the mega-parsec one of the clusters
  outskirts on assembling and evolving large scale structures. We will
  focus on the study of the galaxy groups and clusters evolution with the
  Athen a mission. We will review the status of current constraints in
  light of the newest results obtained from state of the art cosmological
  simulations and will discuss the perspectives out to the mission launch
  time in 2028.

---------------------------------------------------------
Title: Comparing Cool Cores in the Planck SZ Selected Samples of
    Clusters of Galaxies with Cool Cores in X-ray Selected Cluster Samples
Authors: Jones, Christine; Santos, Felipe A.; Forman, William R.;
   Kraft, Ralph P.; Lovisari, Lorenzo; Arnaud, Monique; Mazzotta,
   Pasquale; Van Weeren, Reinout J.; Churazov, Eugene; Ferrari, Chiara;
   Borgani, Stefano; Chandra-Planck Collaboration
2016AAS...22811004J    Altcode:
  The Planck mission provided a representative sample of clusters of
  galaxies over the entire sky. With completed Chandra observations
  of 165 Planck ESZ and cosmology sample clusters at z&lt;0.35, we can
  now characterize each cluster in terms of its X-ray luminosity, gas
  temperature, gas mass, total mass, gas entropy, gas central cooling
  time, presence of active AGN, gas cavities, radio emission, and cluster
  morphology. In this presentation we compare the percentages of cool
  core and non-cool core clusters in the Planck-selected clusters with the
  percentages in X-ray selected cluster samples. We find a significantly
  smaller percentage of cool core clusters in the Planck sample than in
  X-ray selected cluster samples. We will discuss the primary reasons for
  this smaller percentage of cool-core clusters in the Planck-selected
  cluster sample than in X-ray-selected samples.

---------------------------------------------------------
Title: Discovery of an exceptionally bright giant arc at z = 2.369,
    gravitationally lensed by the Planck cluster PSZ1 G311.65-18.48
Authors: Dahle, H.; Aghanim, N.; Guennou, L.; Hudelot, P.; Kneissl,
   R.; Pointecouteau, E.; Beelen, A.; Bayliss, M.; Douspis, M.; Nesvadba,
   N.; Hempel, A.; Gronke, M.; Burenin, R.; Dole, H.; Harrison, D.;
   Mazzotta, P.; Sunyaev, R.
2016A&A...590L...4D    Altcode:
  As part of an all-sky follow-up of the Planck catalogue of
  Sunyaev-Zeldovich (SZ) cluster candidates detected in the first
  14 months of data, we are observing cluster candidates in the
  southern sky in the optical imaging and spectroscopy through an
  ESO Large Programme. Inspection of ESO New Technology Telescope
  (NTT) R-and z-band imaging data from our programme has revealed an
  unusually large and bright arc in the field of PSZ1 G311.65-18.48. We
  establish the basic photometric and morphological properties of the
  arc and provide conclusive evidence for the gravitational lensing
  nature of this object. Guided by the NTT images, we have obtained
  a long-slit spectrum with IMACS on the Magellan-I Baade Telescope,
  covering a part of the arc and the brightest cluster galaxy of PSZ1
  G311.65-18.48. Our imaging data confirm the presence of a galaxy
  cluster coinciding (within 0.´6) with the position of the Planck
  SZ source. The arc is separated by ~30″ from the brightest cluster
  galaxy, which closely coincides with the center of curvature of the
  arc. A photometric analysis yields integrated (Vega) magnitudes of
  (R,z,J,K<SUB>s</SUB>) = (17.82,17.38,16.75,15.43) for the arc, more
  than one magnitude brighter than any previously known lensed arc at z ~
  2-3. The arc is a vigorously star-forming galaxy at z = 2.369, while the
  Planck SZ cluster lens is at z = 0.443.Even when allowing for lensing
  magnifications as high as μ = 100 still leads to the conclusion that
  the source galaxy is among the intrinsically most luminous normal
  (I.e., non-AGN) galaxies known at z ~ 2-3. <P />FITS files of all
  the reduced images are only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/L4">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/L4</A>

---------------------------------------------------------
Title: Selecting background galaxies in weak-lensing analysis of
    galaxy clusters
Authors: Formicola, I.; Radovich, M.; Meneghetti, M.; Mazzotta, P.;
   Grado, A.; Giocoli, C.
2016MNRAS.458.2776F    Altcode: 2016MNRAS.tmp..285F; 2016arXiv160305690F
  In this paper, we present a new method to select the faint, background
  galaxies used to derive the mass of galaxy clusters by weak lensing. The
  method is based on the simultaneous analysis of the shear signal, that
  should be consistent with zero for the foreground, unlensed galaxies,
  and of the colours of the galaxies: photometric data from the COSMic
  evOlution Survey are used to train the colour selection. In order to
  validate this methodology, we test it against a set of state-of-the-art
  image simulations of mock galaxy clusters in different redshift
  [0.23-0.45] and mass [0.5-1.55 × 10<SUP>15</SUP> M<SUB>⊙</SUB>]
  ranges, mimicking medium-deep multicolour imaging observations
  [e.g. Subaru, Large Binocular Telescope]. The performance of our
  method in terms of contamination by unlensed sources is comparable to a
  selection based on photometric redshifts, which however requires a good
  spectral coverage and is thus much more observationally demanding. The
  application of our method to simulations gives an average ratio between
  estimated and true masses of ∼0.98 ± 0.09. As a further test, we
  finally apply our method to real data, and compare our results with
  other weak-lensing mass estimates in the literature: for this purpose,
  we choose the cluster Abell 2219 (z = 0.228), for which multiband
  (BVRi) data are publicly available.

---------------------------------------------------------
Title: Planck intermediate results. XXXI. Microwave survey of Galactic
    supernova remnants
Authors: Planck Collaboration; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard,
   J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Brogan, C. L.; Burigana, C.; Cardoso,
   J. -F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen,
   P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.;
   Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.;
   Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz,
   D.; Hildebrandt, S. R.; Hobson, M.; Holmes, W. A.; Huffenberger,
   K. M.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence,
   C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Maino, D.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.;
   Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow,
   C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Pasian, F.; Peel, M.;
   Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.;
   Pratt, G. W.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Reich,
   W.; Reinecke, M.; Remazeilles, M.; Renault, C.; Rho, J.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier,
   G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Stolyarov, V.;
   Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi,
   L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...586A.134P    Altcode: 2014arXiv1409.5746P
  The all-sky Planck survey in 9 frequency bands was used to search
  for emission from all 274 known Galactic supernova remnants. Of
  these, 16 were detected in at least two Planck frequencies. The
  radio-through-microwave spectral energy distributions were compiled to
  determine the mechanism for microwave emission. In only one case, IC
  443, is there high-frequency emission clearly from dust associated with
  the supernova remnant. In all cases, the low-frequency emission is from
  synchrotron radiation. As predicted for a population of relativistic
  particles with energy distribution that extends continuously to high
  energies, a single power law is evident for many sources, including the
  Crab and PKS 1209-51/52. A decrease in flux density relative to the
  extrapolation of radio emission is evident in several sources. Their
  spectral energy distributions can be approximated as broken power
  laws, S<SUB>ν</SUB> ∝ ν<SUP>-α</SUP>, with the spectral index,
  α, increasing by 0.5-1 above a break frequency in the range 10-60
  GHz. The break could be due to synchrotron losses.

---------------------------------------------------------
Title: Planck intermediate results. XXXIII. Signature of the magnetic
    field geometry of interstellar filaments in dust polarization maps
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Arzoumanian, D.; Aumont, J.; Baccigalupi, C.;
   Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed,
   K.; Benoit-Lévy, A.; Bernard, J. -P.; Berné, O.; Bersanelli, M.;
   Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese,
   E.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chiang, H. C.;
   Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.;
   Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.;
   Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Elsner,
   F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.;
   Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi,
   E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.;
   Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen,
   F. K.; Hanson, D.; Harrison, D. L.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Juvela, M.; Keskitalo, R.; Kisner, T. S.; Knoche, J.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta,
   P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Oppermann, N.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Perrotta, F.; Pettorino, V.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Puget, J. -L.; Rachen,
   J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi,
   A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti,
   M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.;
   Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.;
   Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi,
   L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano,
   L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.;
   Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...586A.136P    Altcode: 2014arXiv1411.2271P
  Planck observations at 353 GHz provide the first fully sampled maps of
  the polarized dust emission towards interstellar filaments and their
  backgrounds (I.e., the emission observed in the surroundings of the
  filaments). The data allow us to determine the intrinsic polarization
  properties of the filaments and therefore to provide insight into the
  structure of their magnetic field (B). We present the polarization
  maps of three nearby (several parsecs long) star-forming filaments
  of moderate column density (N<SUB>H</SUB> about 10<SUP>22</SUP>
  cm<SUP>-2</SUP>): Musca, B211, and L1506. These three filaments are
  detected above the background in dust total and polarized emission. We
  use the spatial information to separate Stokes I, Q, and U of the
  filaments from those of their backgrounds, an essential step in
  measuring the intrinsic polarization fraction (p) and angle (ψ) of each
  emission component. We find that the polarization angles in the three
  filaments (ψ<SUB>fil</SUB>) are coherent along their lengths and not
  the same as in their backgrounds (ψ<SUB>bg</SUB>). The differences
  between ψ<SUB>fil</SUB> and ψ<SUB>bg</SUB> are 12° and 54° for
  Musca and L1506, respectively, and only 6° in the case of B211. These
  differences forMusca and L1506 are larger than the dispersions of ψ,
  both along the filaments and in their backgrounds. The observed changes
  of ψ are direct evidence of variations of the orientation of the
  plane of the sky (POS) projection of the magnetic field. As in previous
  studies, we find a decrease of several per cent in p with N<SUB>H</SUB>
  from the backgrounds to the crest of the filaments. We show that the
  bulk of the drop in p within the filaments cannot be explained by random
  fluctuations of the orientation of the magnetic field because they
  are too small (σ<SUB>ψ</SUB>&lt; 10°). We recognize the degeneracy
  between the dust alignment efficiency (by, e.g., radiative torques)
  and the structure of the B-field in causing variations in p, but we
  argue that the decrease in p from the backgrounds to the filaments
  results in part from depolarization associated with the 3D structure
  of the B-field: both its orientation in the POS and with respect to
  the POS. We do not resolve the inner structure of the filaments,
  but at the smallest scales accessible with Planck (~0.2 pc), the
  observed changes of ψ and p hold information on the magnetic field
  structure within filaments. They show that both the mean field and
  its fluctuations in the filaments are different from those of their
  backgrounds, which points to a coupling between the matter and the
  B-field in the filament formation process.

---------------------------------------------------------
Title: LoCuSS: Testing hydrostatic equilibrium in galaxy clusters
Authors: Smith, G. P.; Mazzotta, P.; Okabe, N.; Ziparo, F.; Mulroy,
   S. L.; Babul, A.; Finoguenov, A.; McCarthy, I. G.; Lieu, M.; Bahé,
   Y. M.; Bourdin, H.; Evrard, A. E.; Futamase, T.; Haines, C. P.; Jauzac,
   M.; Marrone, D. P.; Martino, R.; May, P. E.; Taylor, J. E.; Umetsu, K.
2016MNRAS.456L..74S    Altcode: 2015arXiv151101919S
  We test the assumption of hydrostatic equilibrium in an X-ray luminosity
  selected sample of 50 galaxy clusters at 0.15 &lt; z &lt; 0.3 from
  the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing
  measurements of M<SUB>500</SUB> control systematic biases to sub-4 per
  cent, and our hydrostatic measurements of the same achieve excellent
  agreement between XMM-Newton and Chandra. The mean ratio of X-ray
  to lensing mass for these 50 clusters is β_X= 0.95± 0.05, and for
  the 44 clusters also detected by Planck, the mean ratio of Planck mass
  estimate to LoCuSS lensing mass is β_P= 0.95± 0.04. Based on a careful
  like-for-like analysis, we find that LoCuSS, the Canadian Cluster
  Comparison Project, and Weighing the Giants agree on β_P ≃ 0.9-0.95
  at 0.15 &lt; z &lt; 0.3. This small level of hydrostatic bias disagrees
  at ∼5σ with the level required to reconcile Planck cosmology results
  from the cosmic microwave background and galaxy cluster counts.

---------------------------------------------------------
Title: Planck intermediate results. XXXII. The relative orientation
    between the magnetic field and structures traced by interstellar dust
Authors: Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.;
   Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.;
   Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner,
   E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.;
   Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chiang,
   H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.;
   Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière,
   K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi,
   E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard,
   M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio,
   A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.;
   Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones,
   W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.;
   Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi,
   R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta,
   P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.;
   Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti,
   D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino,
   V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget,
   J. -L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.;
   Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev,
   R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.;
   Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer,
   H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...586A.135P    Altcode: 2014arXiv1409.6728P
  The role of the magnetic field in the formation of the filamentary
  structures observed in the interstellar medium (ISM) is a debated
  topic owing to the paucity of relevant observations needed to test
  existing models. The Planck all-sky maps of linearly polarized emission
  from dust at 353 GHz provide the required combination of imaging and
  statistics to study the correlation between the structures of the
  Galactic magnetic field and of interstellar matter over the whole
  sky, both in the diffuse ISM and in molecular clouds. The data reveal
  that structures, or ridges, in the intensity map have counterparts
  in the Stokes Q and/or U maps. We focus our study on structures at
  intermediate and high Galactic latitudes, which cover two orders of
  magnitude in column density, from 10<SUP>20</SUP> to 10<SUP>22</SUP>
  cm<SUP>-2</SUP>. We measure the magnetic field orientation on the
  plane ofthe sky from the polarization data, and present an algorithm to
  estimate the orientation of the ridges from the dust intensity map. We
  use analytical models to account for projection effects. Comparing
  polarization angles on and off the structures, we estimate the mean
  ratio between the strengths of the turbulent and mean components of
  the magnetic field to be between 0.6 and 1.0, with a preferred value
  of 0.8. We find that the ridges are usually aligned with the magnetic
  field measured on the structures. This statistical trend becomes
  more striking for increasing polarization fraction and decreasing
  column density. There is no alignment for the highest column density
  ridges. We interpret the increase in alignment with polarization
  fraction as a consequence of projection effects. We present maps to
  show that the decrease in alignment for high column density is not due
  to a loss of correlation between the distribution of matter and the
  geometry of the magnetic field. In molecular complexes, we also observe
  structures perpendicular to the magnetic field, which, statistically,
  cannot be accounted for by projection effects. This first statistical
  study of the relative orientation between the matter structures and
  the magnetic field in the ISM points out that, at the angular scales
  probed by Planck, the field geometry projected on the plane of the
  sky is correlated with the distribution of matter. In the diffuse ISM,
  the structures of matter are usually aligned with the magnetic field,
  while perpendicular structures appear in molecular clouds. We discuss
  our results in the context of models and MHD simulations, which attempt
  to describe the respective roles of turbulence, magnetic field, and
  self-gravity in the formation of structures in the magnetized ISM.

---------------------------------------------------------
Title: Planck intermediate results. XXX. The angular power spectrum
    of polarized dust emission at intermediate and high Galactic latitudes
Authors: Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.;
   Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.;
   Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu,
   A.; Chary, R. -R.; Chiang, H. C.; Christensen, P. R.; Clements,
   D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille,
   J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.;
   Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.;
   Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.;
   Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli,
   S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw,
   E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.;
   Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz,
   D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier,
   G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli,
   A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.;
   Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles,
   M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil,
   B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.;
   Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.;
   Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.;
   Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.;
   White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...586A.133P    Altcode: 2014arXiv1409.5738P
  The polarized thermal emission from diffuse Galactic dust is the
  main foreground present in measurements of the polarization of the
  cosmic microwave background (CMB) at frequencies above 100 GHz. In
  this paper we exploit the uniqueness of the Planck HFI polarization
  data from 100 to 353 GHz to measure the polarized dust angular power
  spectra C<SUB>ℓ</SUB><SUP>EE</SUP> and C<SUB>ℓ</SUB><SUP>BB</SUP>
  over the multipole range 40 &lt;ℓ&lt; 600 well away from the Galactic
  plane. These measurements will bring new insights into interstellar dust
  physics and allow a precise determination of the level of contamination
  for CMB polarization experiments. Despite the non-Gaussian and
  anisotropic nature of Galactic dust, we show that general statistical
  properties of the emission can be characterized accurately over large
  fractions of the sky using angular power spectra. The polarization
  power spectra of the dust are well described by power laws in multipole,
  C<SUB>ℓ</SUB> ∝ ℓ<SUP>α</SUP>, with exponents α<SUP>EE,BB</SUP>
  = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary
  with the average brightness in a way similar to the intensity power
  spectra. The frequency dependence of the dust polarization spectra is
  consistent with modified blackbody emission with β<SUB>d</SUB> = 1.59
  and T<SUB>d</SUB> = 19.6 K down to the lowest Planck HFI frequencies. We
  find a systematic difference between the amplitudes of the Galactic B-
  and E-modes, C<SUB>ℓ</SUB><SUP>BB</SUP>/C<SUB>ℓ</SUB><SUP>EE</SUP> =
  0.5. We verify that these general properties are preserved towards high
  Galactic latitudes with low dust column densities. We show that even
  in the faintest dust-emitting regions there are no "clean" windows in
  the sky where primordial CMB B-mode polarization measurements could be
  made without subtraction of foreground emission. Finally, we investigate
  the level of dust polarization in the specific field recently targeted
  by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data
  to 150 GHz gives a dust power 𝒟<SUB>ℓ</SUB><SUP>BB</SUP> ≡
  ℓ(ℓ+1)C<SUB>ℓ</SUB><SUP>BB</SUP>/(2π) of 1.32 × 10<SUP>-2</SUP>
  μK<SUB>CMB</SUB><SUP>2</SUP> over the multipole range of the primordial
  recombination bump (40 &lt;ℓ&lt; 120); the statistical uncertainty
  is ± 0.29 × 10<SUP>-2</SUP> μK<SUB>CMB</SUB><SUP>2</SUP> and
  there is an additional uncertainty (+0.28, -0.24) × 10<SUP>-2</SUP>
  μK<SUB>CMB</SUB><SUP>2</SUP> from the extrapolation. This level is
  the same magnitude as reported by BICEP2 over this ℓ range, which
  highlights the need for assessment of the polarized dust signal even
  in the cleanest windows of the sky.

---------------------------------------------------------
Title: Planck intermediate results. XXIX. All-sky dust modelling
    with Planck, IRAS, and WISE observations
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.;
   Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill,
   J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.;
   Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chiang,
   H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.;
   de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Ducout,
   A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen,
   H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse,
   A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga,
   K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski,
   K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson,
   D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.;
   Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones,
   W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.;
   Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier,
   F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov,
   D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini,
   R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha,
   G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.;
   Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.;
   Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.;
   Yvon, D.; Zacchei, A.; Zonca, A.
2016A&A...586A.132P    Altcode: 2014arXiv1409.2495P; 2014arXiv1409.2495A
  We present all-sky modelling of the high resolution Planck, IRAS,
  and WISE infrared (IR) observations using the physical dust model
  presented by Draine &amp; Li in 2007 (DL, ApJ, 657, 810). We study the
  performance and results of this model, and discuss implications for
  future dust modelling. The present work extends the DL dust modelling
  carried out on nearby galaxies using Herschel and Spitzer data to
  Galactic dust emission. We employ the DL dust model to generate maps
  of the dust mass surface density Σ<SUB>M<SUB>d</SUB></SUB>, the
  dust optical extinction A<SUB>V</SUB>, and the starlight intensity
  heating the bulk of the dust, parametrized by U<SUB>min</SUB>. The
  DL model reproduces the observed spectral energy distribution (SED)
  satisfactorily over most of the sky, with small deviations in the
  inner Galactic disk and in low ecliptic latitude areas, presumably
  due to zodiacal light contamination. In the Andromeda galaxy (M31),
  the present dust mass estimates agree remarkably well (within 10%)
  with DL estimates based on independent Spitzer and Herschel data. We
  compare the DL optical extinction A<SUB>V</SUB> for the diffuse
  interstellar medium (ISM) with optical estimates for approximately 2
  × 10<SUP>5</SUP> quasi-stellar objects (QSOs) observed inthe Sloan
  Digital Sky Survey (SDSS). The DL A<SUB>V</SUB> estimates are larger
  than those determined towards QSOs by a factor of about 2, which
  depends on U<SUB>min</SUB>. The DL fitting parameter U<SUB>min</SUB>,
  effectively determined by the wavelength where the SED peaks, appears
  to trace variations in the far-IR opacity of the dust grains per unit
  A<SUB>V</SUB>, and not only in the starlight intensity. These results
  show that some of the physical assumptions of the DL model will need
  to be revised. To circumvent the model deficiency, we propose an
  empirical renormalization of the DL A<SUB>V</SUB> estimate, dependent
  of U<SUB>min</SUB>, which compensates for the systematic differences
  found with QSO observations. This renormalization, made to match the
  A<SUB>V</SUB> estimates towards QSOs, also brings into agreement the DL
  A<SUB>V</SUB> estimates with those derived for molecular clouds from the
  near-IR colours of stars in the 2 micron all sky survey (2MASS). The
  DL model and the QSOs data are also used to compress the spectral
  information in the Planck and IRAS observations for the diffuse ISM
  to a family of 20 SEDs normalized per A<SUB>V</SUB>, parameterized by
  U<SUB>min</SUB>, which may be used to test and empirically calibrate
  dust models. The family of SEDs and the maps generated with the DL
  model are made public in the Planck Legacy Archive.

---------------------------------------------------------
Title: Spectral Imaging of Galaxy Clusters with Planck
Authors: Bourdin, H.; Mazzotta, P.; Rasia, E.
2015ApJ...815...92B    Altcode: 2016arXiv160106323B
  The Sunyaev-Zeldovich (SZ) effect is a promising tool for detecting
  the presence of hot gas out to the galaxy cluster peripheries. We
  developed a spectral imaging algorithm dedicated to the SZ observations
  of nearby galaxy clusters with Planck, with the aim of revealing
  gas density anisotropies related to the filamentary accretion of
  materials, or pressure discontinuities induced by the propagation of
  shock fronts. To optimize an unavoidable trade-off between angular
  resolution and precision of the SZ flux measurements, the algorithm
  performs a multi-scale analysis of the SZ maps as well as of other
  extended components, such as the cosmic microwave background (CMB)
  anisotropies and the Galactic thermal dust. The demixing of the SZ
  signal is tackled through kernel-weighted likelihood maximizations. The
  CMB anisotropies are further analyzed through a wavelet analysis,
  while the Galactic foregrounds and SZ maps are analyzed via a curvelet
  analysis that best preserves their anisotropic details. The algorithm
  performance has been tested against mock observations of galaxy
  clusters obtained by simulating the Planck High Frequency Instrument
  and by pointing at a few characteristic positions in the sky. These
  tests suggest that Planck should easily allow us to detect filaments
  in the cluster peripheries and detect large-scale shocks in colliding
  galaxy clusters that feature favorable geometry.

---------------------------------------------------------
Title: A Multi-wavelength Mass Analysis of RCS2 J232727.6-020437,
    A ∼3 × 10<SUP>15</SUP> M<SUB>⊙</SUB> Galaxy Cluster at z = 0.7
Authors: Sharon, K.; Gladders, M. D.; Marrone, D. P.; Hoekstra,
   H.; Rasia, E.; Bourdin, H.; Gifford, D.; Hicks, A. K.; Greer, C.;
   Mroczkowski, T.; Barrientos, L. F.; Bayliss, M.; Carlstrom, J. E.;
   Gilbank, D. G.; Gralla, M.; Hlavacek-Larrondo, J.; Leitch, E.;
   Mazzotta, P.; Miller, C.; Muchovej, S. J. C.; Schrabback, T.; Yee,
   H. K. C.; RCS-Team
2015ApJ...814...21S    Altcode: 2015arXiv150307188S
  We present an initial study of the mass and evolutionary state of a
  massive and distant cluster, RCS2 J232727.6-020437. This cluster, at z
  = 0.6986, is the richest cluster discovered in the RCS2 project. The
  mass measurements presented in this paper are derived from all
  possible mass proxies: X-ray measurements, weak-lensing shear,
  strong lensing, Sunyaev-Zel’dovich effect decrement, the velocity
  distribution of cluster member galaxies, and galaxy richness. While
  each of these observables probe the mass of the cluster at a different
  radius, they all indicate that RCS2 J232727.6-020437 is among the
  most massive clusters at this redshift, with an estimated mass of
  {M}<SUB>200</SUB>∼ 3× {10}<SUP>15</SUP>{h}<SUB>70</SUB><SUP>-1</SUP>
  {M}<SUB>⊙ </SUB>. In this paper, we demonstrate that the various
  observables are all reasonably consistent with each other to within
  their uncertainties. RCS2 J232727.6-020437 appears to be well
  relaxed—with circular and concentric X-ray isophotes, with a cool
  core, and no indication of significant substructure in extensive
  galaxy velocity data. <P />Based on observations obtained with :
  MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the
  Canada-France-Hawaii Telescope (CFHT) which is operated by the National
  Research Council (NRC) of Canada, the Institut National des Science de
  l’Univers of the Centre National de la Recherche Scientifique (CNRS)
  of France, and the University of Hawaii; the NASA/ESA Hubble Space
  Telescope (HST), obtained from the data archive at the Space Telescope
  Institute. STScI is operated by the association of Universities for
  Research in Astronomy, Inc. under the NASA contract NAS 5-2655; the
  6.5 m Magellan telescopes located at Las Campanas Observatory, Chile;

---------------------------------------------------------
Title: Hot coronae around spiral galaxies: Probing the first
    principles of galaxy formation
Authors: Bogdán, Ákos; Forman, William; Volgelsberger, Mark;
   Mazzotta, Pasquale; Kraft, Ralph; Joes, Christine; Churazov, Eugene;
   Bourdin, Hervé
2015xrvw.confE...5B    Altcode:
  The presence of hot gaseous coronae in the dark matter halos
  of massive spiral galaxies is a fundamental prediction of all
  structure formation models. Yet these coronae remained unexplored for
  several decades, thereby posing a serious challenge to observers and
  theorists. Although several X-ray coronae have been detected around
  nearby massive spiral galaxies in the past few years, we still lack
  a comprehensive picture. X-ray Surveyor will provide the much needed
  breakthrough. Specifically, X-ray Surveyor will characterize the hot
  coronae in unprecedented details, explore their evolution as a function
  of redshift, which in turn will constrain the physical processes that
  play an essential role in galaxy formation from the early Universe to
  the present epoch.

---------------------------------------------------------
Title: Planck intermediate results. XXVIII. Interstellar gas and
    dust in the Chamaeleon clouds as seen by Fermi LAT and Planck
Authors: Planck Collaboration; Fermi Collaboration; Ade, P. A. R.;
   Aghanim, N.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.;
   Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner,
   E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese,
   E.; Cardoso, J. -F.; Casandjian, J. M.; Catalano, A.; Chamballu,
   A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Désert, F. -X.; Dickinson, C.; Diego, J. M.;
   Digel, S. W.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout,
   A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen,
   H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse,
   A. A.; Franceschi, E.; Frejsel, A.; Fukui, Y.; Galeotta, S.; Galli,
   S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo,
   J.; Górski, K. M.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.;
   Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.;
   Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.;
   Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.;
   Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.;
   Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta,
   G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault,
   C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri,
   M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Strong,
   A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Tibaldo, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.;
   Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2015A&A...582A..31P    Altcode: 2014arXiv1409.3268P; 2015A&A...582A..31A
  The nearby Chamaeleon clouds have been observed in γ rays by the
  Fermi Large Area Telescope (LAT) and in thermal dust emission by
  Planck and IRAS. Cosmic rays and large dust grains, if smoothly
  mixed with gas, can jointly serve with the H i and <SUP>12</SUP>CO
  radio data to (i) map the hydrogen column densities, N<SUB>H</SUB>,
  in the different gas phases, in particular at the dark neutral medium
  (DNM) transition between the H i-bright and CO-bright media; (ii)
  constrain the CO-to-H<SUB>2</SUB> conversion factor, X<SUB>CO</SUB>;
  and (iii) probe the dust properties per gas nucleon in each phase and
  map their spatial variations across the clouds. We have separated
  clouds at local, intermediate, and Galactic velocities in H i and
  <SUP>12</SUP>CO line emission to model in parallel the γ-ray intensity
  recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz,
  τ<SUB>353</SUB>; the thermal radiance of the large grains; and an
  estimate of the dust extinction, A<SUB>VQ</SUB>, empirically corrected
  for the starlight intensity. The dust and γ-ray models have been
  coupled to account for the DNM gas. The consistent γ-ray emissivity
  spectra recorded in the different phases confirm that the GeV-TeV
  cosmic rays probed by the LAT uniformly permeate all gas phases up to
  the <SUP>12</SUP>CO cores. The dust and cosmic rays both reveal large
  amounts of DNM gas, with comparable spatial distributions and twice
  as much mass as in the CO-bright clouds. We give constraints on the H
  i-DNM-CO transitions for five separate clouds. CO-dark H<SUB>2</SUB>
  dominates the molecular columns up to A<SUB>V</SUB> ≃ 0.9 and its
  mass often exceeds the one-third of the molecular mass expected by
  theory. The corrected A<SUB>VQ</SUB> extinction largely provides the
  best fit to the total gas traced by the γ rays. Nevertheless, we
  find evidence for a marked rise in A<SUB>VQ</SUB>/N<SUB>H</SUB> with
  increasing N<SUB>H</SUB> and molecular fraction, and with decreasing
  dust temperature. The rise in τ<SUB>353</SUB>/N<SUB>H</SUB> is even
  steeper. We observe variations of lesser amplitude and orderliness
  for the specific power of the grains, except for a coherent decline
  by half in the CO cores. This combined information suggests grain
  evolution. We provide average values for the dust properties per
  gas nucleon in the different phases. The γ rays and dust radiance
  yield consistent X<SUB>CO</SUB> estimates near 0.7 × 10<SUP>20</SUP>
  cm<SUP>-2</SUP> K<SUP>-1</SUP> km<SUP>-1</SUP> s. The A<SUB>VQ</SUB> and
  τ<SUB>353</SUB> tracers yield biased values because of the large rise
  in grain opacity in the CO clouds. These results clarify a recurrent
  disparity in the γ-ray versus dust calibration of X<SUB>CO</SUB>,
  but they confirm the factor of 2 difference found between the
  X<SUB>CO</SUB> estimates in nearby clouds and in the neighbouring
  spiral arms. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424955/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XXV. The Andromeda galaxy as
    seen by Planck
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Bendo,
   G. J.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. -F.;
   Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.;
   Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.;
   Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.;
   Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel,
   A.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw,
   E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso,
   A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé,
   S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huffenberger, K. M.; Hurier, G.; Israel, F. P.; Jaffe, A. H.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Madden, S.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Peel, M.;
   Perdereau, O.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier,
   G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.;
   Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2015A&A...582A..28P    Altcode: 2014arXiv1407.5452P; 2014arXiv1407.5452A
  The Andromeda galaxy (M 31) is one of a few galaxies that has
  sufficient angular size on the sky to be resolved by the Planck
  satellite. Planck has detected M 31 in all of its frequency bands, and
  has mapped out the dust emission with the High Frequency Instrument,
  clearly resolving multiple spiralarms and sub-features. We examine the
  morphology of this long-wavelength dust emission as seen by Planck,
  including a study of its outermost spiral arms, and investigate the
  dust heating mechanism across M 31. We find that dust dominating
  the longer wavelength emission (≳0.3 mm) is heated by the diffuse
  stellar population (as traced by 3.6 μm emission), with the dust
  dominating the shorter wavelength emission heated by a mix of the
  old stellar population and star-forming regions (as traced by 24 μm
  emission). We also fit spectral energy distributions for individual
  5' pixels and quantify the dust properties across the galaxy, taking
  into account these different heating mechanisms, finding that there
  is a linear decrease in temperature with galactocentric distance for
  dust heated by the old stellar population, as would be expected, with
  temperatures ranging from around 22 K in the nucleus to 14 K outside
  of the 10 kpc ring. Finally, we measure the integrated spectrum of
  the whole galaxy, which we find to be well-fitted with a global dust
  temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11
  (assuming a single modified blackbody), and a significant amount of
  free-free emission at intermediate frequencies of 20-60 GHz, which
  corresponds to a star formation rate of around 0.12 M<SUB>⊙</SUB>
  yr<SUP>-1</SUP>. We find a 2.3σ detection of the presence of spinning
  dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in
  line with expectations from our Galaxy.

---------------------------------------------------------
Title: Planck intermediate results. XXVI. Optical identification
    and redshifts of Planck clusters with the RTT150 telescope
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed,
   K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Butler, R. C.;
   Calabrese, E.; Carvalho, P.; Catalano, A.; Chamballu, A.; Chiang,
   H. C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.;
   Colombo, L. P. L.; Comis, B.; Couchot, F.; Curto, A.; Cuttaia, F.;
   Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.;
   de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.;
   Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner,
   F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.;
   Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.;
   Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard,
   M.; Gilfanov, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo,
   J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz,
   M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.;
   Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.;
   Mazzotta, P.; Melin, J. -B.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.;
   Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini,
   F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.;
   Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott,
   D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade,
   L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2015A&A...582A..29P    Altcode: 2014arXiv1407.6663P
  We present the results of approximately three years of observations
  of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5
  m telescope (RTT150), as a part of the optical follow-up programme
  undertaken by the Planck collaboration. During this time period
  approximately 20% of all dark and grey clear time available at
  the telescope was devoted to observations of Planck objects. Some
  observations of distant clusters were also done at the 6 m Bolshoi
  Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory
  of the Russian Academy of Sciences. In total, deep, direct images of
  more than one hundred fields were obtained in multiple filters. We
  identified 47 previously unknown galaxy clusters, 41 of which are
  included in the Planck catalogue of SZ sources. The redshifts of
  65 Planck clusters were measured spectroscopically and 14 more were
  measured photometrically. We discuss the details of cluster optical
  identifications and redshift measurements. We also present new
  spectroscopic redshifts for 39 Planck clusters that were not included
  in the Planck SZ source catalogue and are published here for the
  first time.

---------------------------------------------------------
Title: Planck intermediate results. XXVII. High-redshift infrared
    galaxy overdensity candidates and lensed sources discovered by Planck
    and confirmed by Herschel-SPIRE
Authors: Planck Collaboration; Aghanim, N.; Altieri, B.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beelen, A.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bethermin, M.;
   Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Boulanger, F.; Burigana, C.; Calabrese, E.; Canameras, R.; Cardoso,
   J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chiang, H. C.;
   Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Crill,
   B. P.; Curto, A.; Danese, L.; Dassas, K.; Davies, R. D.; Davis, R. J.;
   de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego,
   J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.;
   Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Falgarone, E.;
   Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi,
   E.; Frejsel, A.; Frye, B.; Galeotta, S.; Galli, S.; Ganga, K.; Giard,
   M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.;
   Gruppuso, A.; Guéry, D.; Hansen, F. K.; Hanson, D.; Harrison, D. L.;
   Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier,
   G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.;
   Le Floc'h, E.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; MacKenzie, T.; Maffei, B.; Mandolesi, N.; Maris, M.; Martin,
   P. G.; Martinache, C.; Martínez-González, E.; Masi, S.; Matarrese,
   S.; Mazzotta, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Novikov, D.;
   Novikov, I.; Omont, A.; Pagano, L.; Pajot, F.; Pasian, F.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat,
   M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.;
   Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha,
   G.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.;
   Scott, D.; Spencer, L. D.; Stolyarov, V.; Sunyaev, R.; Sutton, D.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.;
   Valtchanov, I.; Van Tent, B.; Vieira, J. D.; Vielva, P.; Wade, L. A.;
   Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Zacchei, A.; Zonca, A.
2015A&A...582A..30P    Altcode: 2015arXiv150308773P
  We have used the Planck all-sky submillimetre and millimetre maps
  to search for rare sources distinguished by extreme brightness, a
  few hundred millijanskies, and their potential for being situated at
  high redshift. These "cold" Planck sources, selected using the High
  Frequency Instrument (HFI) directly from the maps and from the Planck
  Catalogue of Compact Sources (PCCS), all satisfy the criterion of having
  their rest-frame far-infrared peak redshifted to the frequency range
  353-857 GHz. This colour-selection favours galaxies in the redshift
  range z = 2-4, which we consider as cold peaks in the cosmic infrared
  background. With a 4.´5 beam at the four highest frequencies, our
  sample is expected to include overdensities of galaxies in groups or
  clusters, lensed galaxies, and chance line-of-sight projections. We
  perform a dedicated Herschel-SPIRE follow-up of 234 such Planck
  targets, finding a significant excess of red 350 and 500μm sources, in
  comparison to reference SPIRE fields. About 94% of the SPIRE sources in
  the Planck fields are consistent with being overdensities of galaxies
  peaking at 350μm, with 3% peaking at 500μm, and none peaking at
  250μm. About 3% are candidate lensed systems, all 12 of which have
  secure spectroscopic confirmations, placing them at redshifts z&gt;
  2.2. Only four targets are Galactic cirrus, yielding a success rate
  in our search strategy for identifying extragalactic sources within
  the Planck beam of better than 98%. The galaxy overdensities are
  detected with high significance, half of the sample showing statistical
  significance above 10σ. The SPIRE photometric redshifts of galaxies
  in overdensities suggest a peak at z ≃ 2, assuming a single common
  dust temperature for the sources of T<SUB>d</SUB> = 35 K. Under this
  assumption, we derive an infrared (IR) luminosity for each SPIRE
  source of about 4 × 10<SUP>12</SUP>L<SUB>⊙</SUB>, yielding star
  formation rates of typically 700 M<SUB>⊙</SUB> yr<SUP>-1</SUP>. If
  the observed overdensities are actual gravitationally-bound structures,
  the total IR luminosity of all their SPIRE-detected sources peaks at
  4 × 10<SUP>13</SUP>L<SUB>⊙</SUB>, leading to total star formation
  rates of perhaps 7 × 10<SUP>3</SUP>M<SUB>⊙</SUB> yr<SUP>-1</SUP>
  per overdensity. Taken together, these sources show the signatures
  of high-z (z&gt; 2) protoclusters of intensively star-forming
  galaxies. All these observations confirm the uniqueness of our
  sample compared to reference samples and demonstrate the ability
  of the all-skyPlanck-HFI cold sources to select populations of
  cosmological and astrophysical interest for structure formation
  studies. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424790/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Evolution of Entropy Profiles in Simulated Clusters
Authors: Rasia, Elena; Troung, Nhut; Borgani, Stefano; Planelles,
   Susana; Biffi, Veronica; Murante, Giuseppe; Mazzotta, Pasquale;
   Bourdin, Herve
2015eheu.conf...18R    Altcode:
  Our new set of simulations reproduce the observed dichotomy betweencool
  core and non-cool core clusters. The objects, simulated with an improved
  hydrodynamical scheme and a new BH feedback prescription, areconsisten
  with their observation regarding the entropy, temperature,gas density,
  metallicity profiles. In this presentation we will focus on the entropy
  profiles and its evolution. Forecasts for Athena'sobservations will
  be drawn.

---------------------------------------------------------
Title: Planck 2013 results. XXXII. The updated Planck catalogue of
    Sunyaev-Zeldovich sources
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.;
   Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.;
   Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu,
   A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.; Chon,
   G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.;
   Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de
   Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Démoclès, J.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho,
   I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta,
   S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.;
   Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N.,
   E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel,
   A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.;
   Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.;
   Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.;
   Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish,
   C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.;
   Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba,
   N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne,
   S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto,
   L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.;
   Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer,
   L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.;
   Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2015A&A...581A..14P    Altcode: 2015arXiv150200543P
  We update the all-sky Planck catalogue of 1227 clusters and cluster
  candidates (PSZ1) published in March 2013, derived from detections
  of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of
  Planck satellite observations. As an addendum, we deliver an updated
  version of the PSZ1 catalogue, reporting the further confirmation of
  86 Planck-discovered clusters. In total, the PSZ1 now contains 947
  confirmed clusters, of which 214 were confirmed as newly discovered
  clusters through follow-up observations undertaken by the Planck
  Collaboration. The updated PSZ1 contains redshifts for 913 systems, of
  which 736 (~ 80.6%) are spectroscopic, and associated mass estimates
  derived from the Y<SUB>z</SUB> mass proxy. We also provide a new
  SZ quality flag for the remaining 280 candidates. This flag was
  derived from a novel artificial neural-network classification
  of the SZ signal. Based on this assessment, the purity of the
  updated PSZ1 catalogue is estimated to be 94%. In this release, we
  provide the full updated catalogue and an additional readme file
  with further information on the Planck SZ detections. <P />The
  catalogue is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Updated Planck catalogue PSZ1
    (Planck+, 2015)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli,
   M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bohringer,
   H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges,
   M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso,
   J. -F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.;
   Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.; Chon, G.;
   Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi,
   S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Democles, J.; Desert, F. -X.;
   Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore,
   O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enslin, T. A.; Eriksen,
   H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.;
   Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.;
   Ganga, K.; Genova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov,
   M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K. M.; Grainge,
   K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N. E.; Gruppuso, A.;
   Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versille,
   S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo,
   R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.;
   Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle,
   A.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego,
   M.; Lubin, P. M.; Macias-Perez, J. F.; MacTavish, C. J.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.;
   Melin, J. -B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen,
   K.; Mitra, S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield,
   C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon,
   G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.;
   Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa,
   L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorce, I.; Rocha, G.;
   Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.;
   Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.;
   Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Shimwel, T. W.; Spencer, L. D.; Starck, J. -L.; Stolyarov,
   V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte,
   D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2015yCat..35810014P    Altcode:
  The updated Planck catalogue of SZ sources is available
  at PLA (http://www.sciops.esa.int/index.php?page=
  Planck<SUB>Legacy</SUB>Archive&amp;project=planck) and the SZ cluster
  database (http://szcluster-db.ias.u-psud.fr). The updated PSZ1 gathers
  in a single table all the entries of the delivered catalogue mainly
  based on the Planck data and the entries of the external validation
  information based on ancillary data (Appendices B and C of Planck
  Collaboration et al. (2014A&amp;A...571A..29P, Cat. VIII/91),
  respectively). It also contains additional entries. <P />The updated
  catalogue contains, when available, cluster external identifications8
  and consolidated redshifts. We added two new entries: the redshift
  type and the bibliographic reference. <P />(2 data files).

---------------------------------------------------------
Title: Planck intermediate results. XXIV. Constraints on variations
    in fundamental constants
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Chamballu, A.;
   Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.;
   Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Diego, J. M.; Dole, H.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen,
   H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.;
   Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson,
   D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe,
   A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kneissl, R.;
   Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J. -M.; Lasenby,
   A.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.;
   Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella,
   A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.;
   Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.;
   Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa,
   L.; Pratt, G. W.; Prunet, S.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha,
   G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.;
   Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J. -P.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.
2015A&A...580A..22P    Altcode: 2014arXiv1406.7482A
  Any variation in the fundamental physical constants, more particularly
  in the fine structure constant, α, or in the mass of the electron,
  m<SUB>e</SUB>, affects the recombination history of the Universe
  and cause an imprint on the cosmic microwave background angular
  power spectra. We show that the Planck data allow one to improve the
  constraint on the time variation of the fine structure constant at
  redshift z ~ 10<SUP>3</SUP> by about a factor of 5 compared to WMAP
  data, as well as to break the degeneracy with the Hubble constant,
  H<SUB>0</SUB>. In addition to α, we can set a constraint on the
  variation in the mass of the electron, m<SUB>e</SUB>, and in the
  simultaneous variation of the two constants. We examine in detail
  the degeneracies between fundamental constants and the cosmological
  parameters, in order to compare the limits obtained from Planck and
  WMAP and to determine the constraining power gained by including other
  cosmological probes. We conclude that independent time variations
  of the fine structure constant and of the mass of the electron are
  constrained by Planck to Δα/α = (3.6 ± 3.7) × 10<SUP>-3</SUP>
  and Δm<SUB>e</SUB>/m<SUB>e</SUB> = (4 ± 11) × 10<SUP>-3</SUP> at the
  68% confidence level. We also investigate the possibility of a spatial
  variation of the fine structure constant. The relative amplitude of a
  dipolar spatial variation in α (corresponding to a gradient across
  our Hubble volume) is constrained to be δα/α = (-2.4 ± 3.7) ×
  10<SUP>-2</SUP>. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424496/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XXIII. Galactic plane emission
    components derived from Planck with ancillary data
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.;
   Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed,
   K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bobin, J.; Bonaldi, A.; Bond, J. R.; Bouchet, F. R.; Boulanger, F.;
   Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chiang,
   H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Cuttaia, F.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de
   Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.;
   Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Ghosh, T.; Giard,
   M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.;
   Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe,
   A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.;
   Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence,
   C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino,
   D.; Mandolesi, N.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.;
   Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Pearson, T. J.; Peel, M.; Perdereau, O.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.;
   Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa,
   L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach,
   W. T.; Rebolo, R.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini,
   G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Strong, A. W.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco,
   D.; Terenzi, L.; Tibbs, C. T.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis,
   J.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.;
   Yvon, D.; Zacchei, A.; Zonca, A.
2015A&A...580A..13P    Altcode: 2014arXiv1406.5093P
  Planck data when combined with ancillary data provide a unique
  opportunity to separate the diffuse emission components of the inner
  Galaxy. The purpose of the paper is to elucidate the morphology of the
  various emission components in the strong star-formation region lying
  inside the solar radius and to clarify the relationship between the
  various components. The region of the Galactic plane covered is l =
  300° → 0° → 60° wherestar-formation is highest and the emission
  is strong enough to make meaningful component separation. The latitude
  widths in this longitude range lie between 1° and 2°, which correspond
  to FWHM z-widths of 100-200 pc at a typical distance of 6 kpc. The
  four emission components studied here are synchrotron, free-free,
  anomalous microwave emission (AME), and thermal (vibrational) dust
  emission. These components are identified by constructing spectral
  energy distributions (SEDs) at positions along the Galactic plane using
  the wide frequency coverage of Planck (28.4-857 GHz) in combination
  with low-frequency radio data at 0.408-2.3 GHz plus WMAP data at 23-94
  GHz, along with far-infrared (FIR) data from COBE-DIRBE and IRAS. The
  free-free component is determined from radio recombination line (RRL)
  data. AME is found to be comparable in brightness to the free-free
  emission on the Galactic plane in the frequency range 20-40 GHz with a
  width in latitude similar to that of the thermal dust; it comprises 45
  ± 1% of the total 28.4 GHz emission in the longitude range l = 300°
  → 0° → 60°. The free-free component is the narrowest, reflecting
  the fact that it is produced by current star-formation as traced by
  the narrow distribution of OB stars. It is the dominant emission on
  the plane between 60 and 100 GHz. RRLs from this ionized gas are used
  to assess its distance, leading to a free-free z-width of FWHM ≈ 100
  pc. The narrow synchrotron component has a low-frequency brightness
  spectral index β<SUB>synch</SUB> ≈ -2.7 that is similar to the broad
  synchrotron component indicating that they are both populated by the
  cosmic ray electrons of the same spectral index. The width of this
  narrow synchrotron component is significantly larger than that of the
  other three components, suggesting that it is generated in an assembly
  of older supernova remnants that have expanded to sizes of order 150
  pc in 3 × 10<SUP>5</SUP> yr; pulsars of a similar age have a similar
  spread in latitude. The thermal dust is identified in the SEDs with
  average parameters of T<SUB>dust</SUB> = 20.4 ± 0.4 K, β<SUB>FIR</SUB>
  = 1.94 ± 0.03 (&gt; 353 GHz), and β<SUB>mm</SUB> = 1.67 ± 0.02 (&lt;
  353 GHz). The latitude distributions of gamma-rays, CO, and the emission
  in high-frequency Planck bands have similar widths, showing that they
  are all indicators of the total gaseous matter on the plane in the
  inner Galaxy. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424434/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: A weak lensing analysis of the PLCK G100.2-30.4 cluster
Authors: Radovich, M.; Formicola, I.; Meneghetti, M.; Bartalucci,
   I.; Bourdin, H.; Mazzotta, P.; Moscardini, L.; Ettori, S.; Arnaud,
   M.; Pratt, G. W.; Aghanim, N.; Dahle, H.; Douspis, M.; Pointecouteau,
   E.; Grado, A.
2015A&A...579A...7R    Altcode: 2015arXiv150502887R
  We present a mass estimate of the Planck-discovered cluster PLCK
  G100.2-30.4, derived from a weak lensing analysis of deep Subaru griz
  images. We perform a careful selection of the background galaxies using
  the multi-band imaging data, and undertake the weak lensing analysis
  on the deep (1 h) r -band image. The shape measurement is based on the
  Kaiser-Squires-Broadhurst algorithm; we adopt the PSFex software to
  model the point spread function (PSF) across the field and correct for
  this in the shape measurement. The weak lensing analysis is validated
  through extensive image simulations. We compare the resulting weak
  lensing mass profile and total mass estimate to those obtained from our
  re-analysis of XMM-Newton observations, derived under the hypothesis
  of hydrostatic equilibrium. The total integrated mass profiles agree
  remarkably well, within 1σ across their common radial range. A mass
  M<SUB>500</SUB> ~ 7 × 10<SUP>14</SUP>M<SUB>⊙</SUB> is derived for
  the cluster from our weak lensing analysis. Comparing this value to that
  obtained from our reanalysis of XMM-Newton data, we obtain a bias factor
  of (1-b) = 0.8 ± 0.1. This is compatible within 1σ with the value of
  (1-b) obtained in Planck 2015 from the calibration of the bias factor
  using newly available weak lensing reconstructed masses. <P />Based
  on data collected at Subaru Telescope (University of Tokyo).

---------------------------------------------------------
Title: Planck intermediate results. XXII. Frequency dependence of
    thermal emission from Galactic dust in intensity and polarization
Authors: Planck Collaboration; Ade, P. A. R.; Alves, M. I. R.; Aniano,
   G.; Armitage-Caplan, C.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.;
   Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed,
   K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.;
   Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chiang,
   H. C.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.;
   de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.;
   Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.;
   Dunkley, J.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.;
   Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.;
   Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.;
   Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt,
   S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Jaffe,
   A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov,
   D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot,
   F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Piacentini, F.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Popa, L.; Pratt, G. W.; Rachen, J. P.; Reach, W. T.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Savini, G.; Scott, D.;
   Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wandelt, B. D.;
   Zacchei, A.; Zonca, A.
2015A&A...576A.107P    Altcode: 2014arXiv1405.0874P
  Planck has mapped the intensity and polarization of the sky at microwave
  frequencies with unprecedented sensitivity. We use these data to
  characterize the frequency dependence of dust emission. We make use
  of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and
  cross-correlate them with the Planck and WMAP data at 12 frequencies
  from 23 to 353 GHz, over circular patches with 10° radius. The
  cross-correlation analysis is performed for both intensity and
  polarization data in a consistent manner. The results are corrected for
  the chance correlation between the templates and the anisotropies of the
  cosmic microwave background. We use a mask that focuses our analysis on
  the diffuse interstellar medium at intermediate Galactic latitudes. We
  determine the spectral indices of dust emission in intensity and
  polarization between 100 and 353 GHz, for each sky patch. Both indices
  are found to be remarkably constant over the sky. The mean values,
  1.59 ± 0.02 for polarization and 1.51 ± 0.01 for intensity, for a
  mean dust temperature of 19.6 K, are close, but significantly different
  (3.6σ). We determine the mean spectral energy distribution (SED) of
  the microwave emission, correlated with the 353 GHz dust templates,
  by averaging the results of the correlation over all sky patches. We
  find that the mean SED increases for decreasing frequencies at ν&lt; 60
  GHz for both intensity and polarization. The rise of the polarization
  SED towards low frequencies may be accounted for by a synchrotron
  component correlated with dust, with no need for any polarization of
  the anomalous microwave emission. We use a spectral model to separate
  the synchrotron and dust polarization and to characterize the spectral
  dependence of the dust polarization fraction. The polarization
  fraction (p) of the dust emission decreases by (21 ± 6)% from 353
  to 70 GHz. We discuss this result within the context of existing dust
  models. The decrease in p could indicate differences in polarization
  efficiency among components of interstellar dust (e.g., carbon
  versus silicate grains). Our observational results provide inputs to
  quantify and optimize the separation between Galactic and cosmological
  polarization. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424088/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XIX. An overview of the polarized
    thermal emission from Galactic dust
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina,
   D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian,
   D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.;
   Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano,
   A.; Chamballu, A.; Chary, R. -R.; Chiang, H. C.; Christensen, P. R.;
   Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais,
   A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone,
   E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse,
   A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.;
   Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.;
   Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.;
   Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.;
   Mennella, A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.;
   Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.;
   Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.;
   Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon,
   D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.;
   Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset,
   C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.;
   Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.
2015A&A...576A.104P    Altcode: 2014arXiv1405.0871P
  This paper presents an overview of the polarized sky as seen by
  Planck HFI at 353 GHz, which is the most sensitive Planck channel for
  dust polarization. We construct and analyse maps of dust polarization
  fraction and polarization angle at 1° resolution, taking into account
  noise bias and possible systematic effects. The sensitivity of the
  Planck HFI polarization measurements allows for the first time a
  mapping of Galactic dust polarized emission on large scales, including
  low column density regions. We find that the maximum observed dust
  polarization fraction is high (p<SUB>max</SUB> = 19.8%), in particular
  in some regions of moderate hydrogen column density (N<SUB>H</SUB>
  &lt; 2 × 10<SUP>21</SUP> cm<SUP>-2</SUP>). The polarization fraction
  displays a large scatter at N<SUB>H</SUB> below a few 10<SUP>21</SUP>
  cm<SUP>-2</SUP>. There is a general decrease in the dust polarization
  fraction with increasing column density above N<SUB>H</SUB> ≃ 1
  × 10<SUP>21</SUP> cm<SUP>-2</SUP> and in particular a sharp drop
  above N<SUB>H</SUB> ≃ 1.5 × 10<SUP>22</SUP> cm<SUP>-2</SUP>. We
  characterize the spatial structure of the polarization angle using
  the angle dispersion function. We find that the polarization angle
  is ordered over extended areas of several square degrees, separated
  by filamentary structures of high angle dispersion function. These
  appear as interfaces where the sky projection of the magnetic field
  changes abruptly without variations in the column density. The
  polarization fraction is found to be anti-correlated with the
  dispersion of polarization angles. These results suggest that, at the
  resolution of 1°, depolarization is due mainly to fluctuations in
  the magnetic field orientation along the line of sight, rather than
  to the loss of grain alignment in shielded regions. We also compare
  the polarization of thermal dust emission with that of synchrotron
  measured with Planck, low-frequency radio data, and Faraday rotation
  measurements toward extragalactic sources. These components bear
  resemblance along the Galactic plane and in some regions such as
  the Fan and North Polar Spur regions. The poor match observed in
  other regions shows, however, that dust, cosmic-ray electrons,
  and thermal electrons generally sample different parts of the line
  of sight. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424082/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XX. Comparison of polarized
    thermal emission from Galactic dust with simulations of MHD turbulence
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina,
   D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.;
   Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.;
   Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.;
   Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger,
   F.; Bracco, A.; Burigana, C.; Cardoso, J. -F.; Catalano, A.;
   Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.;
   Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille,
   J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis,
   M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.;
   Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.;
   Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga,
   K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen,
   F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre,
   J. -M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.;
   Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Pelkonen, V. -M.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset,
   C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.;
   Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Wade, L. A.; Wandelt, B. D.; Zonca, A.
2015A&A...576A.105P    Altcode: 2014arXiv1405.0872P
  Polarized emission observed by Planck HFI at 353 GHz towards a
  sample of nearby fields is presented, focusing on the statistics of
  polarization fractions p and angles ψ. The polarization fractions
  and column densities in these nearby fields are representative of
  the range of values obtained over the whole sky. We find that: (i)
  the largest polarization fractions are reached in the most diffuse
  fields; (ii) the maximum polarization fraction p<SUB>max</SUB>
  decreases with column density N<SUB>H</SUB> in the more opaque fields
  with N<SUB>H</SUB>&gt; 10<SUP>21</SUP> cm<SUP>-2</SUP>; and (iii) the
  polarization fraction along a given line of sight is correlated with the
  local spatial coherence of the polarization angle. These observations
  are compared to polarized emission maps computed in simulations of
  anisotropic magnetohydrodynamical turbulence in which we assume a
  uniform intrinsic polarization fraction of the dust grains. We find
  that an estimate of this parameter may be recovered from the maximum
  polarization fraction p<SUB>max</SUB> in diffuse regions where the
  magnetic field is ordered on large scales and perpendicular to the
  line of sight. This emphasizes the impact of anisotropies of the
  magnetic field on the emerging polarization signal. The decrease
  of the maximum polarization fraction with column density in nearby
  molecular clouds is well reproduced in the simulations, indicating
  that it is essentially due to the turbulent structure of the magnetic
  field: an accumulation of variously polarized structures along the
  line of sight leads to such an anti-correlation. In the simulations,
  polarization fractions are also found to anti-correlate with the angle
  dispersion function 𝒮. However, the dispersion of the polarization
  angle for a given polarization fraction is found to be larger in
  the simulations than in the observations, suggesting a shortcoming
  in the physical content of these numerical models. In summary, we
  find that the turbulent structure of the magnetic field is able to
  reproduce the main statistical properties of the dust polarization as
  observed in a variety of nearby clouds, dense cores excluded, and that
  the large-scale field orientation with respect to the line of sight
  plays a major role in the quantitative analysis of these statistical
  properties. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424086/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XXI. Comparison of polarized
    thermal emission from Galactic dust at 353 GHz with interstellar
    polarization in the visible
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina,
   D.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Battaner, E.; Beichman, C.; Benabed, K.; Benoit-Lévy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.;
   Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.;
   Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chiang,
   H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone,
   E.; Fanciullo, L.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse,
   A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio,
   A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou,
   G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson,
   M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin,
   F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.;
   Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.
2015A&A...576A.106P    Altcode: 2014arXiv1405.0873P
  The Planck survey provides unprecedented full-sky coverage of the
  submillimetre polarized emission from Galactic dust. In addition to the
  information on the direction of the Galactic magnetic field, this also
  brings new constraints on the properties of dust. The dust grains that
  emit the radiation seen by Planck in the submillimetre also extinguish
  and polarize starlight in the visible. Comparison of the polarization
  of the emission and of the interstellar polarization on selected
  lines of sight probed by stars provides unique new diagnostics of the
  emission and light scattering properties of dust, and therefore of the
  important dust model parameters, composition, size, and shape. Using
  ancillary catalogues of interstellar polarization and extinction of
  starlight, we obtain the degree of polarization, p<SUB>V</SUB>, and
  the optical depth in the V band to the star, τ<SUB>V</SUB>. Toward
  these stars we measure the submillimetre polarized intensity,
  P<SUB>S</SUB>, and total intensity, I<SUB>S</SUB>, in the Planck 353
  GHz channel. We compare the column density measure in the visible,
  E(B - V), with that inferred from the Planck product map of the
  submillimetre dust optical depth and compare the polarization direction
  (position angle) in the visible with that in the submillimetre. For
  those lines of sight through the diffuse interstellar medium with
  comparable values of the estimated column density and polarization
  directions close to orthogonal, we correlate properties in the
  submillimetre and visible to find two ratios, R<SUB>S /V</SUB> =
  (P<SUB>S</SUB>/I<SUB>S</SUB>) / (p<SUB>V</SUB>/τ<SUB>V</SUB>) and
  R<SUB>P/p</SUB> = P<SUB>S</SUB>/p<SUB>V</SUB>, the latter focusing
  directly on the polarization properties of the aligned grain population
  alone.We find R<SUB>S /V</SUB> = 4.2, with statistical and systematic
  uncertainties 0.2 and 0.3, respectively, and R<SUB>P/p</SUB> = 5.4 MJy
  sr<SUP>-1</SUP>, with uncertainties 0.2 and 0.3 MJy sr<SUP>-1</SUP>,
  respectively. Our estimate of R<SUB>S /V</SUB> is compatible with
  predictions based on a range of polarizing dust models that have
  been developed for the diffuse interstellar medium. This estimate
  provides new empirical validation of many of the common underlying
  assumptions of the models, but is not yet very discriminating among
  them. However, our estimate of R<SUB>P/p</SUB> is not compatible with
  predictions, which are too low by a factor of about 2.5. This more
  discriminating diagnostic, R<SUB>P/p</SUB>, indicates that changes to
  the optical properties in the models of the aligned grain population are
  required. These new diagnostics, together with the spectral dependence
  in the submillimetre from Planck,will be important for constraining
  and understanding the full complexity of the grain models, and for
  interpreting the Planck thermal dust polarization and refinement
  of the separation of this contamination of the cosmic microwave
  background. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201424087/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. XVIII. The millimetre and
    sub-millimetre emission from planetary nebulae
Authors: Planck Collaboration; Arnaud, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner,
   E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli,
   M.; Bielewicz, P.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Buemi, C. S.; Burigana, C.; Cardoso, J. -F.; Casassus, S.;
   Catalano, A.; Cerrigone, L.; Chamballu, A.; Chiang, H. C.; Colombi,
   S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de
   Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli,
   S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard,
   M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.;
   Hansen, F. K.; Harrison, D. L.; Hildebrandt, S. R.; Hivon, E.; Holmes,
   W. A.; Hora, J. L.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.;
   Leto, P.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Martin,
   P. G.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov,
   D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti,
   D.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.;
   Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa,
   L.; Pratt, G. W.; Procopio, P.; Prunet, S.; Puget, J. -L.; Rachen,
   J. P.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer,
   L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Trigilio,
   C.; Tristram, M.; Trombetti, T.; Tucci, M.; Umana, G.; Valiviita,
   J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.;
   Zacchei, A.; Zijlstra, A.; Zonca, A.
2015A&A...573A...6P    Altcode: 2014arXiv1403.4723P
  Late stages of stellar evolution are characterized by copious mass-loss
  events whose signature is the formation of circumstellar envelopes
  (CSE). Planck multi-frequency measurements have provided relevant
  information on a sample of Galactic planetary nebulae (PNe) in the
  important and relatively unexplored observational band between 30 and
  857 GHz. Planck enables the assembly of comprehensive PNe spectral
  energy distributions (SEDs) from radio to far-IR frequencies. Modelling
  the derived SEDs provides us with information on physical properties
  of CSEs and the mass content of both main components: ionized gas,
  traced by the free-free emission at cm-mm waves; and thermal dust,
  traced by the millimetre and far-IR emission. In particular, the amount
  of ionized gas and dust has been derived here. Such quantities have
  also been estimated for the very young PN CRL 618, where the strong
  variability observed in its radio and millimetre emission has previously
  prevented constructing its SED. A morphological study of the Helix
  Nebula was also performed. Planck maps reveal, for the first time,
  the spatial distribution of the dust inside the envelope, allowing us
  to identify different components, the most interesting of which is a
  very extended component (up to 1 pc) that may be related to a region
  where the slow expanding envelope is interacting with the surrounding
  interstellar medium.

---------------------------------------------------------
Title: Shapley Supercluster Survey: Galaxy evolution from filaments
    to cluster cores
Authors: Merluzzi, P.; Busarello, G.; Haines, C. P.; Mercurio, A.;
   Okabe, N.; Pimbblet, K. J.; Dopita, M. A.; Grado, A.; Limatola,
   L.; Bourdin, H.; Mazzotta, P.; Capaccioli, M.; Napolitano, N. R.;
   Schipani, P.
2015MNRAS.446..803M    Altcode: 2014arXiv1407.4628M
  We present an overview of a multiwavelength survey of the Shapley
  Supercluster (SSC; z ∼ 0.05) covering a contiguous area of 260
  h^{-2}_{70} Mpc<SUP>2</SUP> including the supercluster core. The project
  main aim is to quantify the influence of cluster-scale mass assembly
  on galaxy evolution in one of the most massive structures in the local
  Universe. The Shapley Supercluster Survey (ShaSS) includes nine Abell
  clusters (A3552, A3554, A3556, A3558, A3559, A3560, A3562, AS0724,
  AS0726) and two poor clusters (SC1327-312, SC1329-313) showing evidence
  of cluster-cluster interactions. Optical (ugri) and near-infrared (K)
  imaging acquired with VLT Survey Telescope and Visible and Infrared
  Survey Telescope for Astronomy allow us to study the galaxy population
  down to m<SUP>⋆</SUP> + 6 at the supercluster redshift. A dedicated
  spectroscopic survey with AAOmega on the Anglo-Australian Telescope
  provides a magnitude-limited sample of supercluster members with 80
  per cent completeness at ∼m<SUP>⋆</SUP> + 3. We derive the galaxy
  density across the whole area, demonstrating that all structures within
  this area are embedded in a single network of clusters, groups and
  filaments. The stellar mass density in the core of the SSC is always
  higher than 9 × 10<SUP>9</SUP> M<SUB>⊙</SUB> Mpc<SUP>-3</SUP>,
  which is ∼40× the cosmic stellar mass density for galaxies in the
  local Universe. We find a new filamentary structure (∼7 Mpc long
  in projection) connecting the SSC core to the cluster A3559, as well
  as previously unidentified density peaks. We perform a weak-lensing
  analysis of the central 1 deg<SUP>2</SUP> field of the survey obtaining
  for the central cluster A3558 a mass of M_{500}=7.63_{-3.40}^{+3.88}×
  10^{14} M_{⊙}, in agreement with X-ray based estimates.

---------------------------------------------------------
Title: Planck 2013 results. IV. Low Frequency Instrument beams and
    window functions
Authors: Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.;
   Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso,
   J. -F.; Catalano, A.; Chamballu, A.; Chiang, L. -Y.; Christensen,
   P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.;
   Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de
   Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson,
   C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta,
   S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.;
   Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche,
   J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi,
   M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen,
   H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.;
   Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos,
   D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.;
   Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.;
   Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade,
   L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.
2014A&A...571A...4P    Altcode: 2013arXiv1303.5065P
  This paper presents the characterization of the in-flight beams,
  the beam window functions, and the associated uncertainties for the
  Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is
  necessary for determining the transfer function to go from the observed
  to the actual sky anisotropy power spectrum. The main beam distortions
  affect the beam window function, complicating the reconstruction of
  the anisotropy power spectrum at high multipoles, whereas the sidelobes
  affect the low and intermediate multipoles. The in-flight assessment of
  the LFI main beams relies on the measurements performed during Jupiter
  observations. By stacking the datafrom multiple Jupiter transits,
  the main beam profiles are measured down to -20 dB at 30 and 44 GHz,
  and down to -25 dB at 70 GHz. The main beam solid angles are determined
  to better than 0.2% at each LFI frequency band. The Planck pre-launch
  optical model is conveniently tuned to characterize the main beams
  independently of any noise effects. This approach provides an optical
  model whose beams fully reproduce the measurements in the main beam
  region, but also allows a description of the beams at power levels
  lower than can be achieved by the Jupiter measurements themselves. The
  agreement between the simulated beams and the measured beams is better
  than 1% at each LFI frequency band. The simulated beams are used for the
  computation of the window functions for the effective beams. The error
  budget for the window functions is estimated from both main beam and
  sidelobe contributions, and accounts for the radiometer bandshapes. The
  total uncertainties in the effective beam window functions are: 2%
  and 1.2% at 30 and 44 GHz, respectively (at ℓ ≈ 600), and 0.7%
  at 70 GHz (at ℓ ≈ 1000).

---------------------------------------------------------
Title: Planck 2013 results. III. LFI systematic uncertainties
Authors: Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.;
   Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.;
   Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.;
   Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.;
   Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Chamballu,
   A.; Chiang, L. -Y.; Christensen, P. R.; Church, S.; Colombi, S.;
   Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Dick, J.; Dickinson, C.; Diego,
   J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga,
   K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.;
   Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche,
   J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri,
   A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.;
   Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen,
   H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci,
   F.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian,
   F.; Patanchon, G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto,
   L.; Perrotta, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.;
   Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.;
   Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi,
   S.; Riller, T.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck,
   J. -L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Watson, R.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A...3P    Altcode: 2013arXiv1303.5064P
  We present the current estimate of instrumental and systematic effect
  uncertainties for the Planck-Low Frequency Instrument relevant to
  the first release of the Planck cosmological results. We give an
  overview of the main effects and of the tools and methods applied to
  assess residuals in maps and power spectra. We also present an overall
  budget of known systematic effect uncertainties, which are dominated
  by sidelobe straylight pick-up and imperfect calibration. However,
  even these two effects are at least two orders of magnitude weaker
  than the cosmic microwave background fluctuations as measured in
  terms of the angular temperature power spectrum. A residual signal
  above the noise level is present in the multipole range ℓ &lt; 20,
  most notably at 30 GHz, and is probably caused by residual Galactic
  straylight contamination. Current analysis aims to further reduce the
  level of spurious signals in the data and to improve the systematic
  effects modelling, in particular with respect to straylight and
  calibration uncertainties.

---------------------------------------------------------
Title: Planck 2013 results. VI. High Frequency Instrument data
    processing
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner,
   E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.;
   Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.;
   Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.; Christensen,
   P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.;
   Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré,
   O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin,
   T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse,
   A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino,
   G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.;
   Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé,
   S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt,
   S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.;
   Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues,
   J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei,
   B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri,
   A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen,
   H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux,
   F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé,
   A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck,
   J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco,
   D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.;
   Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A...6P    Altcode: 2013arXiv1303.5067P
  Wedescribe the processing of the 531 billion raw data samples from
  the High Frequency Instrument (HFI), which we performed to produce
  six temperature maps from the first 473 days of Planck-HFI survey
  data. These maps provide an accurate rendition of the sky emission at
  100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging
  from 9.´7 to 4.´6. The detector noise per (effective) beam solid
  angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI
  frequency channels (100-353GHz) and 13 and 14 kJy sr<SUP>-1</SUP>
  in the 545 and 857 GHz channels. Relative to the 143 GHz channel,
  these two high frequency channels are calibrated to within 5% and the
  353 GHz channel to the percent level. The 100 and 217 GHz channels,
  which together with the 143 GHz channel determine the high-multipole
  part of the CMB power spectrum (50 &lt;ℓ &lt; 2500), are calibrated
  relative to 143 GHz to better than 0.2%.

---------------------------------------------------------
Title: Planck 2013 results. IX. HFI spectral response
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard,
   J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond,
   J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.;
   Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Challinor,
   A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang,
   L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.;
   Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.;
   Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de
   Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.;
   Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues,
   J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky,
   P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen,
   H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne,
   S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen,
   J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.;
   Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala,
   R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2014A&A...571A...9P    Altcode: 2013arXiv1303.5070P
  The Planck High Frequency Instrument (HFI) spectral response was
  determined through a series of ground based tests conducted with the
  HFI focal plane in a cryogenic environment prior to launch. The main
  goal of the spectral transmission tests was to measure the relative
  spectral response (includingthe level of out-of-band signal rejection)
  of all HFI detectors to a known source of electromagnetic radiation
  individually. This was determined by measuring the interferometric
  output of a continuously scanned Fourier transform spectrometer with
  all HFI detectors. As there is no on-board spectrometer within HFI,
  the ground-based spectral response experiments provide the definitive
  data set for the relative spectral calibration of the HFI. Knowledge of
  the relative variations in the spectral response between HFI detectors
  allows for a more thorough analysis of the HFI data. The spectral
  response of the HFI is used in Planck data analysis and component
  separation, this includes extraction of CO emission observed within
  Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to
  polarization leakage. The HFI spectral response data have also been used
  to provide unit conversion and colour correction analysis tools. While
  previous papers describe the pre-flight experiments conducted on the
  Planck HFI, this paper focusses on the analysis of the pre-flight
  spectral response measurements and the derivation of data products,
  e.g. band-average spectra, unit conversion coefficients, and colour
  correction coefficients, all with related uncertainties. Verifications
  of the HFI spectral response data are provided through comparisons
  with photometric HFI flight data. This validation includes use of HFI
  zodiacal emission observations to demonstrate out-of-band spectral
  signal rejection better than 10<SUP>8</SUP>. The accuracy of the HFI
  relative spectral response data is verified through comparison with
  complementary flight-data based unit conversion coefficients and colour
  correction coefficients. These coefficients include those based upon
  HFI observations of CO, dust, and Sunyaev-Zeldovich emission. General
  agreement is observed between the ground-based spectral characterization
  of HFI and corresponding in-flight observations, within the quoted
  uncertainty of each; explanations are provided for any discrepancies.

---------------------------------------------------------
Title: Planck 2013 results. VII. HFI time response and beams
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard,
   J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond,
   J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.;
   Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Challinor,
   A.; Chamballu, A.; Chary, R. -R.; Chiang, H. C.; Chiang, L. -Y.;
   Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Diego, J. M.;
   Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac,
   X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.;
   Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta,
   S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson,
   J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.;
   Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.;
   Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta,
   G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri,
   M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.;
   Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala,
   R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber,
   J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci,
   M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2014A&A...571A...7P    Altcode: 2013arXiv1303.5068P
  This paper characterizes the effective beams, the effective beam window
  functions and the associated errors for the Planck High Frequency
  Instrument (HFI) detectors. The effective beam is theangular response
  including the effect of the optics, detectors, data processing and the
  scan strategy. The window function is the representation of this beam in
  the harmonic domain which is required to recover an unbiased measurement
  of the cosmic microwave background angular power spectrum. The HFI is
  a scanning instrument and its effective beams are the convolution of:
  a) the optical response of the telescope and feeds; b) the processing
  of the time-ordered data and deconvolution of the bolometric and
  electronic transfer function; and c) the merging of several surveys to
  produce maps. The time response transfer functions are measured using
  observations of Jupiter and Saturn and by minimizing survey difference
  residuals. The scanning beam is the post-deconvolution angular response
  of the instrument, and is characterized with observations of Mars. The
  main beam solid angles are determined to better than 0.5% at each HFI
  frequency band. Observations of Jupiter and Saturn limit near sidelobes
  (within 5°) to about 0.1% of the total solid angle. Time response
  residuals remain as long tails in the scanning beams, but contribute
  less than 0.1% of the total solid angle. The bias and uncertainty in
  the beam products are estimated using ensembles of simulated planet
  observations that include the impact of instrumental noise and known
  systematic effects. The correlation structure of these ensembles is
  well-described by five error eigenmodes that are sub-dominant to sample
  variance and instrumental noise in the harmonic domain. A suite of
  consistency tests provide confidence that the error model represents a
  sufficient description of the data. The total error in the effective
  beam window functions is below 1% at 100 GHz up to multipole ℓ ~
  1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.

---------------------------------------------------------
Title: Planck 2013 results. VIII. HFI photometric calibration and
    mapmaking
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard,
   J. -P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bobin, J.;
   Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.;
   Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano,
   A.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang,
   H. C.; Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements,
   D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.;
   Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen,
   F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby,
   A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.;
   Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Maurin, L.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Moreno, R.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.;
   Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge,
   B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto,
   L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget,
   J. -L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard,
   E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.;
   Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A...8P    Altcode: 2013arXiv1303.5069P
  This paper describes the methods used to produce photometrically
  calibrated maps from the Planck High Frequency Instrument (HFI) cleaned,
  time-ordered information. HFI observes the sky over a broad range
  of frequencies, from 100 to 857 GHz. To obtain the best calibration
  accuracy over such a large range, two different photometric calibration
  schemes have to be used. The 545 and 857 GHz data are calibrated by
  comparing flux-density measurements of Uranus and Neptune with models
  of their atmospheric emission. The lower frequencies (below 353 GHz)
  are calibrated using the solar dipole. A component of this anisotropy
  is time-variable, owing to the orbital motion of the satellite in
  the solar system. Photometric calibration is thus tightly linked
  to mapmaking, which also addresses low-frequency noise removal. By
  comparing observations taken more than one year apart in the same
  configuration, we have identified apparent gain variations with
  time. These variations are induced by non-linearities in the read-out
  electronics chain. We have developed an effective correction to limit
  their effect on calibration. We present several methods to estimate
  the precision of the photometric calibration. We distinguish relative
  uncertainties (between detectors, or between frequencies) and absolute
  uncertainties. Absolute uncertainties lie in the range from 0.54% to 10%
  from 100 to 857 GHz. We describe the pipeline used to produce the maps
  from the HFI timelines, based on the photometric calibration parameters,
  and the scheme used to set the zero level of the maps a posteriori. We
  also discuss the cross-calibration between HFI and the SPIRE instrument
  on board Herschel. Finally we summarize the basic characteristics of
  the set of HFI maps included in the 2013 Planck data release.

---------------------------------------------------------
Title: Planck 2013 results. II. Low Frequency Instrument data
    processing
Authors: Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.;
   Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.;
   Chamballu, A.; Chen, X.; Chiang, L. -Y.; Christensen, P. R.; Church,
   S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Cruz, M.; Curto, A.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.;
   Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.;
   Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.;
   Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen,
   E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.;
   Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi,
   N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta,
   P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.;
   Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.;
   Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon,
   G.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller,
   T.; Robbers, G.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.;
   Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Santos,
   D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.;
   Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.;
   Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade,
   L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, S. D. M.;
   Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A...2P    Altcode: 2013arXiv1303.5063P
  We describe the data processing pipeline of the Planck Low Frequency
  Instrument (LFI) data processing centre (DPC) to create and characterize
  full-sky maps based on the first 15.5 months of operations at 30, 44,
  and 70 GHz. In particular, we discuss the various steps involved in
  reducing the data, from telemetry packets through to the production
  of cleaned, calibrated timelines and calibrated frequency maps. Data
  are continuously calibrated using the modulation induced on the
  mean temperature of the cosmic microwave background radiation by the
  proper motion of the spacecraft. Sky signals other than the dipole are
  removed by an iterative procedure based on simultaneous fitting of
  calibration parameters and sky maps. Noise properties are estimated
  from time-ordered data after the sky signal has been removed, using
  a generalized least squares map-making algorithm. A destriping code
  (Madam) is employed to combine radiometric data and pointing information
  into sky maps, minimizing the variance of correlated noise. Noise
  covariance matrices, required to compute statistical uncertainties on
  LFI and Planck products, are also produced. Main beams are estimated
  down to the ≈- 20 dB level using Jupiter transits, which are also
  used for the geometrical calibration of the focal plane.

---------------------------------------------------------
Title: Mapping the Particle Acceleration in the Cool Core of the
    Galaxy Cluster RX J1720.1+2638
Authors: Giacintucci, S.; Markevitch, M.; Brunetti, G.; ZuHone, J. A.;
   Venturi, T.; Mazzotta, P.; Bourdin, H.
2014ApJ...795...73G    Altcode: 2014arXiv1403.2820G
  We present new deep, high-resolution radio images of the diffuse
  minihalo in the cool core of the galaxy cluster RX J1720.1+2638. The
  images have been obtained with the Giant Metrewave Radio Telescope
  at 317, 617, and 1280 MHz and with the Very Large Array at 1.5, 4.9,
  and 8.4 GHz, with angular resolutions ranging from 1” to 10”. This
  represents the best radio spectral and imaging data set for any
  minihalo. Most of the radio flux of the minihalo arises from a bright
  central component with a maximum radius of ~80 kpc. A fainter tail of
  emission extends out from the central component to form a spiral-shaped
  structure with a length of ~230 kpc, seen at frequencies 1.5 GHz and
  below. We find indication of a possible steepening of the total radio
  spectrum of the minihalo at high frequencies. Furthermore, a spectral
  index image shows that the spectrum of the diffuse emission steepens
  with increasing distance along the tail. A striking spatial correlation
  is observed between the minihalo emission and two cold fronts visible in
  the Chandra X-ray image of this cool core. These cold fronts confine the
  minihalo, as also seen in numerical simulations of minihalo formation
  by sloshing-induced turbulence. All these observations favor the
  hypothesis that the radio-emitting electrons in cluster cool cores
  are produced by turbulent re-acceleration.

---------------------------------------------------------
Title: Planck 2013 results. V. LFI calibration
Authors: Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.;
   Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.;
   Chamballu, A.; Chen, X.; Chiang, L. -Y.; Christensen, P. R.; Church,
   S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.;
   Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.;
   Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, F.; Pagano, L.;
   Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon,
   G.; Pearson, D.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha,
   G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.;
   Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.;
   Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.;
   Stompor, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.;
   Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A...5P    Altcode: 2013arXiv1303.5066P
  We discuss the methods employed to photometrically calibrate the data
  acquired by the Low Frequency Instrument on Planck. Our calibration is
  based on a combination of the orbital dipole plus the solar dipole,
  caused respectively by the motion of the Planck spacecraft with
  respect to the Sun and by motion of the solar system with respect to
  the cosmic microwave background (CMB) rest frame. The latter provides
  a signal of a few mK with the same spectrum as the CMB anisotropies
  and is visible throughout the mission. In this data releasewe rely
  on the characterization of the solar dipole as measured by WMAP. We
  also present preliminary results (at 44 GHz only) on the study of
  the Orbital Dipole, which agree with the WMAP value of the solar
  system speed within our uncertainties. We compute the calibration
  constant for each radiometer roughly once per hour, in order to keep
  track of changes in the detectors' gain. Since non-idealities in the
  optical response of the beams proved to be important, we implemented
  a fast convolution algorithm which considers the full beam response
  in estimating the signal generated by the dipole. Moreover, in order
  to further reduce the impact of residual systematics due to sidelobes,
  we estimated time variations in the calibration constant of the 30 GHz
  radiometers (the ones with the largest sidelobes) using the signal of
  an internal reference load at 4 K instead of the CMB dipole. We have
  estimated the accuracy of the LFI calibration following two strategies:
  (1) we have run a set of simulations to assess the impact of statistical
  errors and systematic effects in the instrument and in the calibration
  procedure; and (2) we have performed a number of internal consistency
  checks on the data and on the brightness temperature of Jupiter. Errors
  in the calibration of this Planck/LFI data release are expected to be
  about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz. Both these preliminary
  results at low and high ℓ are consistent with WMAP results within
  uncertainties and comparison of power spectra indicates good consistency
  in the absolute calibration with HFI (0.3%) and a 1.4σ discrepancy
  with WMAP (0.9%).

---------------------------------------------------------
Title: Planck 2013 results. XXXI. Consistency of the Planck data
Authors: Planck Collaboration; Ade, P. A. R.; Arnaud, M.; Ashdown, M.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner,
   E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.;
   Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.;
   Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang,
   H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis,
   M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard,
   M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.;
   Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt,
   S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest,
   W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.;
   Keihänen, E.; Keskitalo, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.;
   Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi,
   N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.;
   Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.;
   Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa,
   L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reinecke,
   M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.;
   Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Scott, D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.;
   Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.;
   Wehus, I. K.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..31P    Altcode: 2015arXiv150803375P
  The Planck design and scanning strategy provide many levels of
  redundancy that can be exploited to provide tests of internal
  consistency. One of the most important is the comparison of the 70
  GHz (amplifier) and 100 GHz (bolometer) channels. Based on different
  instrument technologies, with feeds located differently in the focal
  plane, analysed independently by different teams using different
  software, and near the minimum of diffuse foreground emission, these
  channels are in effect two different experiments. The 143 GHz channel
  has the lowest noise level on Planck, and is near the minimum of
  unresolved foreground emission. In this paper, we analyse the level
  of consistency achieved in the 2013 Planck data. We concentrate on
  comparisons between the 70, 100, and 143 GHz channel maps and power
  spectra, particularly over the angular scales of the first and second
  acoustic peaks, on maps masked for diffuse Galactic emission and for
  strong unresolved sources. Difference maps covering angular scales
  from 8° to 15' are consistent with noise, and show no evidence of
  cosmic microwave background structure. Including small but important
  corrections for unresolved-source residuals, we demonstrate agreement
  (measured by deviation of the ratio from unity) between 70 and
  100 GHz power spectra averaged over 70 ≤ ℓ ≤ 390 at the 0.8%
  level, and agreement between 143 and 100 GHz power spectra of 0.4%
  over the same ℓ range. These values are within and consistent
  with the overall uncertainties in calibration given in the Planck
  2013 results. We also present results based on the 2013 likelihood
  analysis showing consistency at the 0.35% between the 100, 143, and
  217 GHz power spectra. We analyse calibration procedures and beams to
  determine what fraction of these differences can be accounted for by
  known approximations or systematicerrors that could be controlled even
  better in the future, reducing uncertainties still further. Several
  possible small improvements are described. Subsequent analysis of the
  beams quantifies the importance of asymmetry in the near sidelobes,
  which was not fully accounted for initially, affecting the 70/100
  ratio. Correcting for this, the 70, 100, and 143 GHz power spectra agree
  to 0.4% over the first two acoustic peaks. The likelihood analysis that
  produced the 2013 cosmological parameters incorporated uncertainties
  larger than this. We show explicitly that correction of the missing
  near sidelobe power in the HFI channels would result in shifts in the
  posterior distributions of parameters of less than 0.3σ except for
  A<SUB>s</SUB>, the amplitude of the primordial curvature perturbations
  at 0.05 Mpc<SUP>-1</SUP>, which changes by about 1σ. We extend these
  comparisons to include the sky maps from the complete nine-year mission
  of the Wilkinson Microwave Anisotropy Probe (WMAP), and find a roughly
  2% difference between the Planck and WMAP power spectra in the region
  of the first acoustic peak.

---------------------------------------------------------
Title: Planck 2013 results. X. HFI energetic particle effects:
    characterization, removal, and simulation
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner,
   E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.;
   Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang,
   H. C.; Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.;
   Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.;
   de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.;
   Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard,
   M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson,
   D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.;
   Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.;
   Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.;
   Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon,
   G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller,
   T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme,
   B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.;
   Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.;
   Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.;
   Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.;
   Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..10P    Altcode: 2013arXiv1303.5071P
  We describe the detection, interpretation, and removal of the signal
  resulting from interactions of high energy particles with the Planck
  High Frequency Instrument (HFI). There are two types of interactions:
  heating of the 0.1 K bolometer plate; and glitches in each detector time
  stream. The transientresponses to detector glitch shapes are not simple
  single-pole exponential decays and fall into three families. The glitch
  shape for each family has been characterized empirically in flight data
  and these shapes have been used to remove glitches from the detector
  time streams. The spectrum of the count rate per unit energy is computed
  for each family and a correspondence is made to the location on the
  detector of the particle hit. Most of the detected glitches are from
  Galactic protons incident on the die frame supporting the micro-machined
  bolometric detectors. In the Planck orbit at L2, the particle flux is
  around 5 cm<SUP>-2</SUP> s<SUP>-1</SUP> and is dominated by protons
  incident on the spacecraft with energy &gt;39 MeV, at a rate of
  typically one event per second per detector. Different categories
  of glitches have different signatures in the time stream. Two of the
  glitch types have a low amplitude component that decays over nearly 1
  s. This component produces excess noise if not properly removed from
  the time-ordered data. We have used a glitch detection and subtraction
  method based on the joint fit of population templates. The application
  of this novel glitch subtraction method removes excess noise from the
  time streams. Using realistic simulations, we find that this method
  does not introduce signal bias into the Planck data.

---------------------------------------------------------
Title: Planck 2013 results. XIV. Zodiacal emission
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.;
   Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger,
   F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso,
   J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang,
   H. C.; Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements,
   D. L.; Colley, J. -M.; Colombi, S.; Colombo, L. P. L.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.;
   Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.;
   Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs,
   R. J.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold,
   P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; O'Sullivan,
   C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta,
   G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Seiffert, M. D.; Shellard, E. P. S.; Smoot, G. F.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita,
   J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..14P    Altcode: 2013arXiv1303.5074P
  The Planck satellite provides a set of all-sky maps at nine
  frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and diffuse
  interplanetary dust emission (IPD) are all observed. The IPD can be
  separated from Galactic and other emissions because Planck views a
  given point on the celestial sphere multiple times, through different
  columns of IPD. We use the Planck data to investigate the behaviour of
  zodiacal emission over the whole sky at sub-millimetre and millimetre
  wavelengths. We fit the Planck data to find the emissivities of
  the various components of the COBE zodiacal model - a diffuse cloud,
  three asteroidal dust bands, a circumsolar ring, and an Earth-trailing
  feature. The emissivity of the diffuse cloud decreases with increasing
  wavelength, as expected from earlier analyses. The emissivities of
  the dust bands, however, decrease less rapidly, indicating that the
  properties of the grains in the bands are different from those in
  the diffuse cloud. We fit the small amount of Galactic emission seen
  through the telescope's far sidelobes, and place limits on possible
  contamination of the cosmic microwave background (CMB) results from
  both zodiacal and far-sidelobe emission. When necessary, the results
  are used in the Planck pipeline to make maps with zodiacal emission
  and far sidelobes removed. We show that the zodiacal correction to the
  CMB maps is small compared to the Planck CMB temperature power spectrum
  and give a list of flux densities for small solar system bodies.

---------------------------------------------------------
Title: Planck 2013 results. XXX. Cosmic infrared background
    measurements and implications for star formation
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.;
   Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher,
   M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.;
   Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang,
   L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.;
   Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.;
   Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.;
   Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi,
   E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou,
   G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.;
   Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz,
   M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.;
   Lamarre, J. -M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence,
   C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen,
   J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.;
   Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck,
   J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita,
   J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel,
   B.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..30P    Altcode: 2013arXiv1309.0382P
  We present new measurements of cosmic infrared background (CIB)
  anisotropies using Planck. Combining HFI data with IRAS, the angular
  auto- and cross-frequency power spectrum is measured from 143 to 3000
  GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas
  used to compute the CIB power spectrum and bispectrum are about 2240
  and 4400 deg<SUP>2</SUP>, respectively. After careful removal of the
  contaminants (cosmic microwave background anisotropies, Galactic dust,
  and Sunyaev-Zeldovich emission), and a complete study of systematics,
  the CIB power spectrum is measured with unprecedented signal to noise
  ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due
  to the clustering of dusty, star-forming galaxies is measured from
  ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6,
  19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches
  are developed for modelling CIB power spectrum anisotropies. The
  first approach takes advantage of the unique measurements by Planck
  at large angular scales, and models only the linear part of the
  power spectrum, with a mean bias of dark matter haloes hosting dusty
  galaxies at a given redshift weighted by their contribution to the
  emissivities. The second approach is based on a model that associates
  star-forming galaxies with dark matter haloes and their subhaloes,
  using a parametrized relation between the dust-processed infrared
  luminosity and (sub-)halo mass. The two approaches simultaneously fit
  all auto- and cross-power spectra very well. We find that the star
  formation history is well constrained up to redshifts around 2, and
  agrees with recent estimates of the obscured star-formation density
  using Spitzer and Herschel. However, at higher redshift, the accuracy
  of the star formation history measurement is strongly degraded by the
  uncertainty in the spectral energy distribution of CIB galaxies. We
  also find that the mean halo mass which is most efficient at hosting
  star formation is log (M<SUB>eff</SUB>/M<SUB>⊙</SUB>) = 12.6 and
  that CIB galaxies have warmer temperatures as redshift increases. The
  CIB bispectrum is steeper than that expected from the power spectrum,
  although well fitted by a power law; this gives some information about
  the contribution of massive haloes to the CIB bispectrum. Finally,
  we show that the same halo occupation distribution can fit all power
  spectra simultaneously. The precise measurements enabled by Planck pose
  new challenges for the modelling of CIB anisotropies, indicating the
  power of using CIB anisotropies to understand the process of galaxy
  formation.

---------------------------------------------------------
Title: Planck 2013 results. XII. Diffuse component separation
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock,
   J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler,
   R. C.; Cardoso, J. -F.; Castex, G.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.;
   Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.;
   de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dobler, G.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni,
   O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga,
   K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen,
   F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé,
   S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huey, G.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell,
   J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy,
   J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M. -A.; Molinari, D.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano,
   L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.;
   Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.;
   Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Salerno, E.; Sandri, M.; Santos, D.; Savini, G.; Schiavon, F.;
   Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck,
   J. -L.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco,
   D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.;
   Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio,
   N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Xia,
   J. -Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..12P    Altcode: 2013arXiv1303.5072P
  Planck has produced detailed all-sky observations over nine frequency
  bands between 30 and 857 GHz. These observations allow robust
  reconstruction of the primordial cosmic microwave background (CMB)
  temperature fluctuations over nearly the full sky, as well as new
  constraints on Galactic foregrounds, including thermal dust and line
  emission from molecular carbon monoxide (CO). This paper describes
  the component separation framework adopted by Planck for many
  cosmological analyses, including CMB power spectrum determination
  and likelihood construction on large angular scales, studies of
  primordial non-Gaussianity and statistical isotropy, the integrated
  Sachs-Wolfe effect, gravitational lensing, and searches for topological
  defects. We test four foreground-cleaned CMB maps derived using
  qualitatively different component separation algorithms. The quality
  of our reconstructions is evaluated through detailed simulations
  and internal comparisons, and shown through various tests to be
  internally consistent and robust for CMB power spectrum and cosmological
  parameter estimation up to ℓ = 2000. The parameter constraints on
  ΛCDM cosmologies derived from these maps are consistent with those
  presented in the cross-spectrum based Planck likelihood analysis. We
  choose two of the CMB maps for specific scientific goals. We also
  present maps and frequency spectra of the Galactic low-frequency, CO,
  and thermal dust emission. The component maps are found to provide a
  faithful representation of the sky, as evaluated by simulations, with
  the largest bias seen in the CO component at 3%. For the low-frequency
  component, the spectral index varies widely over the sky, ranging from
  about β = -4 to - 2. Considering both morphology and prior knowledge
  of the low frequencycomponents, the index map allows us to associate
  a steep spectral index (β&lt; -3.2) with strong anomalous microwave
  emission, corresponding to a spinning dust spectrum peaking below
  20 GHz, a flat index of β&gt; -2.3 with strong free-free emission,
  and intermediate values with synchrotron emission.

---------------------------------------------------------
Title: Planck 2013 results. XXV. Searches for cosmic strings and
    other topological defects
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chiang, L. -Y.; Chiang, H. C.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.;
   de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.;
   Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe, A. H.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.;
   Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.;
   Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Räth, C.;
   Rebolo, R.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.;
   Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..25P    Altcode: 2013arXiv1303.5085P
  Planck data have been used to provide stringent new constraints on
  cosmic strings and other defects. We describe forecasts of the CMB
  power spectrum induced by cosmic strings, calculating these from network
  models and simulations using line-of-sight Boltzmann solvers. We have
  studied Nambu-Goto cosmic strings, as well as field theory strings
  for which radiative effects are important, thus spanning the range
  of theoretical uncertainty in the underlying strings models. We have
  added the angular power spectrum from strings to that for a simple
  adiabatic model, with the extra fraction defined as f<SUB>10</SUB>
  at multipole ℓ = 10. This parameter has been added to the standard
  six parameter fit using COSMOMC with flat priors. For the Nambu-Goto
  string model, we have obtained a constraint on the string tension of
  Gμ/c<SUP>2</SUP> &lt; 1.5 × 10<SUP>-7</SUP> and f<SUB>10</SUB> &lt;
  0.015 at 95% confidence that can be improved to Gμ/c<SUP>2</SUP> &lt;
  1.3 × 10<SUP>-7</SUP> and f<SUB>10</SUB> &lt; 0.010 on inclusion
  of high-ℓ CMB data. For the Abelian-Higgs field theory model we
  find, Gμ<SUB>AH</SUB>/c<SUP>2</SUP>&lt; 3.2 × 10<SUP>-7</SUP>
  and f<SUB>10</SUB> &lt; 0.028. The marginalised likelihoods for
  f<SUB>10</SUB> and in the f<SUB>10</SUB>-Ω<SUB>b</SUB>h<SUP>2</SUP>
  plane are also presented. We have additionally obtained comparable
  constraints on f<SUB>10</SUB> for models with semilocal strings and
  global textures. In terms of the effective defect energy scale these are
  somewhat weaker at Gμ/c<SUP>2</SUP> &lt; 1.1 × 10<SUP>-6</SUP>. We
  have made complementarity searches for the specific non-Gaussian
  signatures of cosmic strings, calibrating with all-sky Planck resolution
  CMB maps generated from networks of post-recombination strings. We
  have validated our non-Gaussian searches using these simulated maps
  in a Planck-realistic context, estimating sensitivities of up to
  ΔGμ/c<SUP>2</SUP> ≈ 4 × 10<SUP>-7</SUP>. We have obtained upper
  limits on the string tension at 95% confidence of Gμ/c<SUP>2</SUP>
  &lt; 9.0 × 10<SUP>-7</SUP> with modal bispectrum estimation and
  Gμ/c<SUP>2</SUP> &lt; 7.8 × 10<SUP>-7</SUP> for real space searches
  with Minkowski functionals. These are conservative upper bounds because
  only post-recombination string contributions have been included in
  the non-Gaussian analysis.

---------------------------------------------------------
Title: Planck 2013 results. XXI. Power spectrum and high-order
    statistics of the Planck all-sky Compton parameter map
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.;
   Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.;
   Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Carvalho,
   P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.;
   Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais,
   A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.;
   de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.;
   Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.;
   Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.;
   Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.;
   Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.;
   Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van
   Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..21P    Altcode: 2013arXiv1303.5081P
  We have constructed the first all-sky map of the thermal
  Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored
  component separation algorithms to the 100 to 857 GHz frequency channel
  maps from the Planck survey. This map shows an obvious galaxy cluster
  tSZ signal that is well matched with blindly detected clusters in the
  Planck SZ catalogue. To characterize the signal in the tSZ map we
  have computed its angular power spectrum. At large angular scales
  (ℓ &lt; 60), the major foreground contaminant is the diffuse
  thermal dust emission. At small angular scales (ℓ &gt; 500) the
  clustered cosmic infrared background and residual point sources are
  the major contaminants. These foregrounds are carefully modelled and
  subtracted. We thus measure the tSZ power spectrum over angular scales
  0.17° ≲ θ ≲ 3.0° that were previously unexplored. The measured
  tSZ power spectrum is consistent with that expected from the Planck
  catalogue of SZ sources, with clear evidence of additional signal from
  unresolved clusters and, potentially, diffuse warm baryons. Marginalized
  band-powers of the Planck tSZ power spectrum and the best-fit model
  are given. The non-Gaussianity of the Compton parameter map is further
  characterized by computing its 1D probability distribution function
  and its bispectrum. The measured tSZ power spectrum and high order
  statistics are used to place constraints on σ<SUB>8</SUB>.

---------------------------------------------------------
Title: Planck 2013 results. XV. CMB power spectra and likelihood
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock,
   J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler,
   R. C.; Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré,
   O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.;
   Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.;
   Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli,
   S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw,
   E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.;
   Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.;
   Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy,
   J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.;
   Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese,
   S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.;
   Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea,
   M.; Mitra, S.; Miville-Deschênes, M. -A.; Molinari, D.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.;
   Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.;
   Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.;
   Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu,
   N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme,
   L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor,
   R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet,
   J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.;
   White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..15P    Altcode: 2013arXiv1303.5075P
  This paper presents the Planck 2013 likelihood, a complete statistical
  description of the two-point correlation function of the CMB temperature
  fluctuations that accounts for all known relevant uncertainties,
  both instrumental and astrophysical in nature. We use this likelihood
  to derive our best estimate of the CMB angular power spectrum from
  Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ
  ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic
  variance. Uncertainties in small-scale foreground modelling and
  instrumental noise dominate the error budget at higher ℓs. For ℓ
  &lt; 50, our likelihood exploits all Planck frequency channels from 30
  to 353 GHz, separating the cosmological CMB signal from diffuse Galactic
  foregrounds through a physically motivated Bayesian component separation
  technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood
  approximation based on a fine-grained set of angular cross-spectra
  derived from multiple detector combinations between the 100, 143, and
  217 GHz frequency channels, marginalising over power spectrum foreground
  templates. We validate our likelihood through an extensive suite of
  consistency tests, and assess the impact of residual foreground and
  instrumental uncertainties on the final cosmological parameters. We
  find good internal agreement among the high-ℓ cross-spectra with
  residuals below a few μK<SUP>2</SUP> at ℓ ≲ 1000, in agreement
  with estimated calibration uncertainties. We compare our results with
  foreground-cleaned CMB maps derived from all Planck frequencies, as
  well as with cross-spectra derived from the 70 GHz Planck map, and
  find broad agreement in terms of spectrum residuals and cosmological
  parameters. We further show that the best-fit ΛCDM cosmology is in
  excellent agreement with preliminary PlanckEE and TE polarisation
  spectra. We find that the standard ΛCDM cosmology is well constrained
  by Planck from the measurements at ℓ ≲ 1500. One specific example
  is the spectral index of scalar perturbations, for which we report a
  5.4σ deviation from scale invariance, n<SUB>s</SUB> = 1. Increasing
  the multipole range beyond ℓ ≃ 1500 does not increase our accuracy
  for the ΛCDM parameters, but instead allows us to study extensions
  beyond the standard model. We find no indication of significant
  departures from the ΛCDM framework. Finally, we report a tension
  between the Planck best-fit ΛCDM model and the low-ℓ spectrum in
  the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical
  significance of 2.5-3σ. Without a theoretically motivated model for
  this power deficit, we do not elaborate further on its cosmological
  implications, but note that this is our most puzzling finding in an
  otherwise remarkably consistent data set.

---------------------------------------------------------
Title: Planck 2013 results. XVIII. The gravitational lensing-infrared
    background correlation
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bethermin, M.;
   Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.;
   Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor,
   A.; Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen,
   P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.;
   Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Diego, J. M.;
   Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson,
   D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe,
   T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.;
   Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby,
   A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares,
   J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.;
   Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon,
   G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck,
   J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..18P    Altcode: 2013arXiv1303.5078P
  The multi-frequency capability of the Planck satellite provides
  information both on the integrated history of star formation (via the
  cosmic infrared background, or CIB) and on the distribution of dark
  matter (via the lensing effect on the cosmic microwave background,
  or CMB). The conjunction of these two unique probes allows us to
  measure directly the connection between dark and luminous matter
  in the high redshift (1 ≤ z ≤ 3) Universe. We use a three-point
  statistic optimized to detect the correlation between these two tracers,
  using lens reconstructions at 100, 143, and 217 GHz, together with CIB
  measurements at 100-857 GHz. Following a thorough discussion of possible
  contaminants and a suite of consistency tests, we report the first
  detection of the correlation between the CIB and CMB lensing. The well
  matched redshift distribution of these two signals leads to a detection
  significance with a peak value of 42/19σ (statistical/statistical
  + systematics) at 545 GHz and a correlation as high as 80% across
  these two tracers. Our full set of multi-frequency measurements
  (both CIB auto- and CIB-lensing cross-spectra) are consistent with
  a simple halo-based model, with a characteristic mass scale for the
  halos hosting CIB sources of log<SUB>10</SUB>(M/M<SUB>⊙</SUB>)
  = 10.5 ± 0.6. Leveraging the frequency dependence of our signal,
  we isolate the high redshift contribution to the CIB, and constrain
  the star formation rate (SFR) density at z ≥ 1. We measure directly
  the SFR density with around 2σ significance for three redshift bins
  between z = 1 and 7, thus opening a new window into the study of the
  formation of stars at early times.

---------------------------------------------------------
Title: Planck 2013 results. XXIV. Constraints on primordial
    non-Gaussianity
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de
   Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Diego,
   J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.;
   Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.;
   Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens,
   A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis,
   A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier,
   G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos,
   D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.;
   Smith, K.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor,
   R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.;
   Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis,
   J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..24P    Altcode: 2013arXiv1303.5084P
  The Planck nominal mission cosmic microwave background (CMB) maps yield
  unprecedented constraints on primordial non-Gaussianity (NG). Using
  three optimal bispectrum estimators, separable template-fitting
  (KSW), binned, and modal, we obtain consistent values for the
  primordial local, equilateral, and orthogonal bispectrum amplitudes,
  quoting as our final result f<SUB>NL</SUB><SUP>local</SUP>
  = 2.7 ± 5.8, f<SUB>NL</SUB><SUP>equil</SUP> = -42 ±
  75, and f<SUB>NL</SUB><SUP>orth</SUP> = -25 ± 39 (68% CL
  statistical). Non-Gaussianity is detected in the data; using
  skew-C<SUB>ℓ</SUB> statistics we find a nonzero bispectrum from
  residual point sources, and the integrated-Sachs-Wolfe-lensing
  bispectrum at a level expected in the ΛCDM scenario. The results are
  based on comprehensive cross-validation of these estimators on Gaussian
  and non-Gaussian simulations, are stable across component separation
  techniques, pass an extensive suite of tests, and are confirmed by
  skew-C<SUB>ℓ</SUB>, wavelet bispectrum and Minkowski functional
  estimators. Beyond estimates of individual shape amplitudes, we present
  model-independent, three-dimensional reconstructions of the Planck CMB
  bispectrum and thus derive constraints on early-Universe scenarios
  that generate primordial NG, including general single-field models
  of inflation, excited initial states (non-Bunch-Davies vacua), and
  directionally-dependent vector models. We provide an initial survey of
  scale-dependent feature and resonance models. These results bound both
  general single-field and multi-field model parameter ranges, such as the
  speed of sound, c<SUB>s</SUB> ≥ 0.02 (95% CL), in an effective field
  theory parametrization, and the curvaton decay fraction r<SUB>D</SUB>
  ≥ 0.15 (95% CL). The Planck data significantly limit the viable
  parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the
  four-point function in the local model τ<SUB>NL</SUB>&lt; 2800 (95%
  CL). Taken together, these constraints represent the highest precision
  tests to date of physical mechanisms for the origin of cosmic structure.

---------------------------------------------------------
Title: Planck 2013 results. XXVI. Background geometry and topology
    of the Universe
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock,
   J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso,
   J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.;
   Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Diego, J. M.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin,
   T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino,
   G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson,
   D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy,
   C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.;
   Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.;
   Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..26P    Altcode: 2013arXiv1303.5086P
  The new cosmic microwave background (CMB) temperature maps from
  Planck provide the highest-quality full-sky view of the surface of
  last scattering available to date. This allows us to detect possible
  departures from the standard model of a globally homogeneous and
  isotropic cosmology on the largest scales. We search for correlations
  induced by a possible non-trivial topology with a fundamental domain
  intersecting, or nearly intersecting, the last scattering surface
  (at comoving distance χ<SUB>rec</SUB>), both via a direct search
  for matched circular patterns at the intersections and by an optimal
  likelihood search for specific topologies. For the latter we consider
  flat spaces with cubic toroidal (T3), equal-sided chimney (T2)
  and slab (T1) topologies, three multi-connected spaces of constant
  positive curvature (dodecahedral, truncated cube and octahedral)
  and two compact negative-curvature spaces. These searches yield no
  detection of the compact topology with the scale below the diameter
  of the last scattering surface. For most compact topologies studied
  the likelihood maximized over the orientation of the space relative
  to the observed map shows some preference for multi-connected models
  just larger than the diameter of the last scattering surface. Since
  this effect is also present in simulated realizations of isotropic
  maps, we interpret it as the inevitable alignment of mild anisotropic
  correlations with chance features in a single sky realization; such
  a feature can also be present, in milder form, when the likelihood
  is marginalized over orientations. Thus marginalized, the limits
  on the radius ℛ<SUB>i</SUB> of the largest sphere inscribed in
  topological domain (at log-likelihood-ratio Δln ℒ &gt; -5 relative
  to a simply-connected flat Planck best-fit model) are: in a flat
  Universe, ℛ<SUB>i</SUB>&gt; 0.92χ<SUB>rec</SUB> for the T3 cubic
  torus; ℛ<SUB>i</SUB>&gt; 0.71χ<SUB>rec</SUB> for the T2 chimney;
  ℛ<SUB>i</SUB>&gt; 0.50χ<SUB>rec</SUB> for the T1 slab; and in a
  positively curved Universe, ℛ<SUB>i</SUB>&gt; 1.03χ<SUB>rec</SUB>
  for the dodecahedral space; ℛ<SUB>i</SUB>&gt; 1.0χ<SUB>rec</SUB> for
  the truncated cube; and ℛ<SUB>i</SUB>&gt; 0.89χ<SUB>rec</SUB> for the
  octahedral space. The limit for a wider class of topologies, i.e., those
  predicting matching pairs of back-to-back circles, among them tori and
  the three spherical cases listed above, coming from the matched-circles
  search, is ℛ<SUB>i</SUB>&gt; 0.94χ<SUB>rec</SUB> at 99% confidence
  level. Similar limits apply to a wide, although not exhaustive, range
  of topologies. We also perform a Bayesian search for an anisotropic
  global Bianchi VII<SUB>h</SUB> geometry. In the non-physical setting
  where the Bianchi cosmology is decoupled from the standard cosmology,
  Planck data favour the inclusion of a Bianchi component with a Bayes
  factor of at least 1.5 units of log-evidence. Indeed, the Bianchi
  pattern is quite efficient at accounting for some of the large-scale
  anomalies found in Planck data. However, the cosmological parameters
  that generate this pattern are in strong disagreement with those found
  from CMB anisotropy data alone. In the physically motivated setting
  where the Bianchi parameters are coupled and fitted simultaneously with
  the standard cosmological parameters, we find no evidence for a Bianchi
  VII<SUB>h</SUB> cosmology and constrain the vorticity of such models to
  (ω/H)<SUB>0</SUB>&lt; 8.1 × 10<SUP>-10</SUP> (95% confidence level).

---------------------------------------------------------
Title: Planck 2013 results. XXII. Constraints on inflation
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill,
   J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler,
   R. C.; Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson,
   C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.;
   Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.;
   Ganga, K.; Gauthier, C.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio,
   A.; Gruppuso, A.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Lesgourgues,
   J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.;
   Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano,
   L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge,
   B.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto,
   L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu,
   N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev,
   R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tréguer-Goudineau, J.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.;
   Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014A&A...571A..22P    Altcode: 2013arXiv1303.5082P
  We analyse the implications of the Planck data for cosmic inflation. The
  Planck nominal mission temperature anisotropy measurements, combined
  with the WMAP large-angle polarization, constrain the scalar spectral
  index to be n<SUB>s</SUB> = 0.9603 ± 0.0073, ruling out exact scale
  invariance at over 5σ.Planck establishes an upper bound on the
  tensor-to-scalar ratio of r&lt; 0.11 (95% CL). The Planck data thus
  shrink the space of allowed standard inflationary models, preferring
  potentials with V”&lt; 0. Exponential potential models, the simplest
  hybrid inflationary models, and monomial potential models of degree
  n ≥ 2 do not provide a good fit to the data. Planck does not find
  statistically significant running of the scalar spectral index,
  obtaining dn<SUB>s</SUB>/ dlnk = - 0.0134 ± 0.0090. We verify these
  conclusions through a numerical analysis, which makes no slow-roll
  approximation, and carry out a Bayesian parameter estimation
  and model-selection analysis for a number of inflationary models
  including monomial, natural, and hilltop potentials. For each model,
  we present the Planck constraints on the parameters of the potential
  and explore several possibilities for the post-inflationary entropy
  generation epoch, thus obtaining nontrivial data-driven constraints. We
  also present a direct reconstruction of the observable range of the
  inflaton potential. Unless a quartic term is allowed in the potential,
  we find results consistent with second-order slow-roll predictions. We
  also investigate whether the primordial power spectrum contains any
  features. We find that models with a parameterized oscillatory feature
  improve the fit by Δχ<SUP>2</SUP><SUB>eff</SUB> ≈ 10; however,
  Bayesian evidence does not prefer these models. We constrain several
  single-field inflation models with generalized Lagrangians by combining
  power spectrum data with Planck bounds on f<SUB>NL</SUB>. Planck
  constrains with unprecedented accuracy the amplitude and possible
  correlation (with the adiabatic mode) of non-decaying isocurvature
  fluctuations. The fractional primordial contributions of cold dark
  matter (CDM) isocurvature modes of the types expected in the curvaton
  and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL),
  respectively. In models with arbitrarily correlated CDM or neutrino
  isocurvature modes, an anticorrelated isocurvature component can
  improve the χ<SUP>2</SUP><SUB>eff</SUB> by approximately 4 as a
  result of slightly lowering the theoretical prediction for the ℓ
  ≲ 40 multipoles relative to the higher multipoles. Nonetheless,
  the data are consistent with adiabatic initial conditions.

---------------------------------------------------------
Title: Planck 2013 results. XIX. The integrated Sachs-Wolfe effect
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson,
   C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.;
   Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen,
   H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.;
   Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos,
   R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.;
   Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huffenberger, K. M.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche,
   J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Langer, M.; Lasenby, A.;
   Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.;
   Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.;
   Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold,
   P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano,
   L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon,
   G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon,
   F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev,
   R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A. -S.; Sygnet,
   J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.;
   Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, M.; Xia, J. -Q.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..19P    Altcode: 2013arXiv1303.5079P
  Based on cosmic microwave background (CMB) maps from the 2013
  Planck Mission data release, this paper presents the detection of
  the integrated Sachs-Wolfe (ISW) effect, that is, the correlation
  between the CMB and large-scale evolving gravitational potentials. The
  significance of detection ranges from 2 to 4σ, depending on which
  method is used. We investigated three separate approaches, which
  essentially cover all previous studies, and also break new ground. (i)
  We correlated the CMB with the Planck reconstructed gravitational
  lensing potential (for the first time). This detection was made
  using the lensing-induced bispectrum between the low-ℓ and high-ℓ
  temperature anisotropies; the correlation between lensing and the ISW
  effect has a significance close to 2.5σ. (ii) We cross-correlated
  with tracers of large-scale structure, which yielded a significance of
  about 3σ, based on a combination of radio (NVSS) and optical (SDSS)
  data. (iii) We used aperture photometry on stacked CMB fields at the
  locations of known large-scale structures, which yielded and confirms
  a 4σ signal, over a broader spectral range, when using a previously
  explored catalogue, but shows strong discrepancies in amplitude and
  scale when compared with expectations. More recent catalogues give
  more moderate results that range from negligible to 2.5σ at most,
  but have a more consistent scale and amplitude, the latter being still
  slightly higher than what is expected from numerical simulations
  within ΛCMD. Where they can be compared, these measurements are
  compatible with previous work using data from WMAP, where these
  scales have been mapped to the limits of cosmic variance. Planck's
  broader frequency coverage allows for better foreground cleaning and
  confirms that the signal is achromatic, which makes it preferable
  for ISW detection. As a final step we used tracers of large-scale
  structure to filter the CMB data, from which we present maps of the
  ISW temperature perturbation. These results provide complementary and
  independent evidence for the existence of a dark energy component that
  governs the currently accelerated expansion of the Universe.

---------------------------------------------------------
Title: Planck 2013 results. XXIX. The Planck catalogue of
    Sunyaev-Zeldovich sources
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.;
   Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.;
   Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu,
   A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.; Chon,
   G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais,
   A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Démoclès,
   J.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Eisenhardt, P. R. M.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.;
   Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard,
   M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.;
   Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela,
   M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.;
   Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.;
   Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.;
   Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi,
   D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nesvadba,
   N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne,
   S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto,
   L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.;
   Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer,
   L. D.; Stanford, S. A.; Starck, J. -L.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.;
   Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.;
   Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..29P    Altcode: 2013arXiv1303.5089P
  We describe the all-sky Planck catalogue of clusters and cluster
  candidates derived from Sunyaev-Zeldovich (SZ) effect detections using
  the first 15.5 months of Planck satellite observations. The catalogue
  contains 1227 entries, making it over six times the size of the Planck
  Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It
  contains 861 confirmed clusters, of which 178 have been confirmed as
  clusters, mostly through follow-up observations, and a further 683
  are previously-known clusters. The remaining 366 have the status of
  cluster candidates, and we divide them into three classes according to
  the quality of evidence that they are likely to be true clusters. The
  Planck SZ catalogue is the deepest all-sky cluster catalogue, with
  redshifts up to about one, and spans the broadest cluster mass range
  from (0.1 to 1.6) × 10<SUP>15</SUP> M<SUB>⊙</SUB>. Confirmation
  of cluster candidates through comparison with existing surveys or
  cluster catalogues is extensively described, as is the statistical
  characterization of the catalogue in terms of completeness and
  statistical reliability. The outputs of the validation process are
  provided as additional information. This gives, in particular, an
  ensemble of 813 cluster redshifts, and for all these Planck clusters we
  also include a mass estimated from a newly-proposed SZ-mass proxy. A
  refined measure of the SZ Compton parameter for the clusters with
  X-ray counter-parts is provided, as is an X-ray flux for all the
  Planck clusters not previously detected in X-ray surveys. <P />The
  catalogue of SZ sources is available at Planck Legacy Archive and <A
  href="http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&amp;project=planck">http://www.sciops.esa.int/index.php?page=Planck_Legacy_Archive&amp;project=planck</A>

---------------------------------------------------------
Title: Planck 2013 results. XXIII. Isotropy and statistics of the CMB
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.;
   Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu,
   A.; Chary, R. -R.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.;
   Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.;
   Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout,
   A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen,
   H. K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard,
   M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hansen,
   M.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.;
   Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci,
   D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes,
   M. -A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock,
   D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.;
   Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan,
   D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen,
   J. P.; Racine, B.; Räth, C.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubiño-Martín,
   J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.;
   Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala,
   R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A. -S.; Sygnet,
   J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.;
   White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..23P    Altcode: 2013arXiv1303.5083P
  The two fundamental assumptions of the standard cosmological model -
  that the initial fluctuations are statistically isotropic and Gaussian
  - are rigorously tested using maps of the cosmic microwave background
  (CMB) anisotropy from the Planck satellite. The detailed results are
  based on studies of four independent estimates of the CMB that are
  compared to simulations using a fiducial ΛCDM model and incorporating
  essential aspects of the Planck measurement process. Deviations from
  isotropy have been found and demonstrated to be robust against component
  separation algorithm, mask choice, and frequency dependence. Many of
  these anomalies were previously observed in the WMAP data, and are
  now confirmed at similar levels of significance (about 3σ). However,
  we find little evidence of non-Gaussianity, with the exception of a
  few statistical signatures that seem to be associated with specific
  anomalies. In particular, we find that the quadrupole-octopole alignment
  is also connected to a low observed variance in the CMB signal. A
  power asymmetry is now found to persist on scales corresponding
  to about ℓ = 600 and can be described in the low-ℓ regime by a
  phenomenological dipole modulation model. However, any primordial power
  asymmetry is strongly scale-dependent and does not extend toarbitrarily
  small angular scales. Finally, it is plausible that some of these
  features may be reflected in the angular power spectrum of the data,
  which shows a deficit of power on similar scales. Indeed, when the
  power spectra of two hemispheres defined by a preferred direction
  are considered separately, one shows evidence of a deficit in power,
  while its opposite contains oscillations between odd and even modes
  that may be related to the parity violation and phase correlations
  also detected in the data. Although these analyses represent a step
  forward in building an understanding of the anomalies, a satisfactory
  explanation based on physically motivated models is still lacking.

---------------------------------------------------------
Title: Planck 2013 results. XIII. Galactic CO emission
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.;
   Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.; Christensen,
   P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.;
   Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Dempsey, J. T.;
   Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.;
   Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson,
   D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson,
   M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.;
   Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence,
   C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.;
   Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Moore,
   T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy,
   J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.;
   Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas,
   H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci,
   M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..13P    Altcode: 2013arXiv1303.5073T; 2013arXiv1303.5073P
  Rotational transition lines of CO play a major role in molecular radio
  astronomy as a mass tracer and in particular in the study of star
  formation and Galactic structure. Although a wealth of data exists for
  the Galactic plane and some well-known molecular clouds, there is no
  available high sensitivity all-sky survey of CO emission to date. Such
  all-sky surveys can be constructed using the Planck HFI data because
  the three lowest CO rotational transition lines at 115, 230 and 345
  GHz significantly contribute to the signal of the 100, 217 and 353
  GHz HFI channels, respectively. Two different component separation
  methods are used to extract the CO maps from Planck HFI data. The maps
  obtained are then compared to one another and to existing external CO
  surveys. From these quality checks the best CO maps, in terms of signal
  to noise ratio and/or residual contamination by other emission, are
  selected. Three different sets of velocity-integrated CO emission maps
  are produced with different trade-offs between signal-to-noise, angular
  resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1,
  and J = 3 → 2 rotational transitions are presented and described in
  detail. They are shown to be fully compatible with previous surveys
  of parts of the Galactic plane as well as with undersampled surveys of
  the high latitude sky. The Planck HFI velocity-integrated CO maps for
  the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions
  provide an unprecedented all-sky CO view of the Galaxy. These maps
  are also of great interest to monitor potential CO contamination of
  the Planck studies of the cosmological microwave background.

---------------------------------------------------------
Title: Planck 2013 results. XVI. Cosmological parameters
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock,
   J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese,
   E.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Challinor, A.;
   Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y.;
   Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.;
   Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.;
   Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta,
   S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann,
   J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest,
   W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy,
   J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.;
   Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta,
   P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.;
   Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.;
   Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne,
   S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.;
   Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.;
   Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor,
   R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2014A&A...571A..16P    Altcode: 2013arXiv1303.5076P
  This paper presents the first cosmological results based on Planck
  measurements of the cosmic microwave background (CMB) temperature
  and lensing-potential power spectra. We find that the Planck spectra
  at high multipoles (ℓ ≳ 40) are extremely well described by
  the standard spatially-flat six-parameter ΛCDM cosmology with a
  power-law spectrum of adiabatic scalar perturbations. Within the
  context of this cosmology, the Planck data determine the cosmological
  parameters to high precision: the angular size of the sound horizon at
  recombination, the physical densities of baryons and cold dark matter,
  and the scalar spectral index are estimated to be θ<SUB>∗</SUB> =
  (1.04147 ± 0.00062) × 10<SUP>-2</SUP>, Ω<SUB>b</SUB>h<SUP>2</SUP>
  = 0.02205 ± 0.00028, Ω<SUB>c</SUB>h<SUP>2</SUP> = 0.1199 ± 0.0027,
  and n<SUB>s</SUB> = 0.9603 ± 0.0073, respectively(note that in this
  abstract we quote 68% errors on measured parameters and 95% upper
  limits on other parameters). For this cosmology, we find a low value of
  the Hubble constant, H<SUB>0</SUB> = (67.3 ± 1.2) km s<SUP>-1</SUP>
  Mpc<SUP>-1</SUP>, and a high value of the matter density parameter,
  Ω<SUB>m</SUB> = 0.315 ± 0.017. These values are in tension with recent
  direct measurements of H<SUB>0</SUB> and the magnitude-redshift relation
  for Type Ia supernovae, but are in excellent agreement with geometrical
  constraints from baryon acoustic oscillation (BAO) surveys. Including
  curvature, we find that the Universe is consistent with spatial
  flatness to percent level precision using Planck CMB data alone. We
  use high-resolution CMB data together with Planck to provide greater
  control on extragalactic foreground components in an investigation of
  extensions to the six-parameter ΛCDM model. We present selected results
  from a large grid of cosmological models, using a range of additional
  astrophysical data sets in addition to Planck and high-resolution CMB
  data. None of these models are favoured over the standard six-parameter
  ΛCDM cosmology. The deviation of the scalar spectral index from
  unity isinsensitive to the addition of tensor modes and to changes
  in the matter content of the Universe. We find an upper limit of
  r<SUB>0.002</SUB>&lt; 0.11 on the tensor-to-scalar ratio. There is no
  evidence for additional neutrino-like relativistic particles beyond the
  three families of neutrinos in the standard model. Using BAO and CMB
  data, we find N<SUB>eff</SUB> = 3.30 ± 0.27 for the effective number
  of relativistic degrees of freedom, and an upper limit of 0.23 eV for
  the sum of neutrino masses. Our results are in excellent agreement with
  big bang nucleosynthesis and the standard value of N<SUB>eff</SUB> =
  3.046. We find no evidence for dynamical dark energy; using BAO and CMB
  data, the dark energy equation of state parameter is constrained to be
  w = -1.13<SUB>-0.10</SUB><SUP>+0.13</SUP>. We also use the Planck data
  to set limits on a possible variation of the fine-structure constant,
  dark matter annihilation and primordial magnetic fields. Despite the
  success of the six-parameter ΛCDM model in describing the Planck data
  at high multipoles, we note that this cosmology does not provide a
  good fit to the temperature power spectrum at low multipoles. The
  unusual shape of the spectrum in the multipole range 20 ≲ ℓ
  ≲ 40 was seen previously in the WMAP data and is a real feature
  of the primordial CMB anisotropies. The poor fit to the spectrum at
  low multipoles is not of decisive significance, but is an "anomaly"
  in an otherwise self-consistent analysis of the Planck temperature data.

---------------------------------------------------------
Title: Planck 2013 results. XVII. Gravitational lensing by large-scale
    structure
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock,
   J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso,
   J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.;
   Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.;
   Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley,
   J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson,
   J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela,
   M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche,
   J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.;
   Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle,
   M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi,
   M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano,
   L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon,
   G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Pullen, A. R.; Rachen, J. P.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.;
   Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.;
   Smith, K.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor,
   R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..17P    Altcode: 2013arXiv1303.5077P
  On the arcminute angular scales probed by Planck, the cosmic
  microwave background (CMB) anisotropies are gently perturbed by
  gravitational lensing. Here we present a detailed study of this
  effect, detecting lensing independently in the 100, 143, and 217
  GHz frequency bands with an overall significance of greater than
  25σ. We use thetemperature-gradient correlations induced by lensing
  to reconstruct a (noisy) map of the CMB lensing potential, which
  provides an integrated measure of the mass distribution back to the
  CMB last-scattering surface. Our lensing potential map is significantly
  correlated with other tracers of mass, a fact which we demonstrate using
  several representative tracers of large-scale structure. We estimate
  the power spectrum of the lensing potential, finding generally good
  agreement with expectations from the best-fitting ΛCDM model for the
  Planck temperature power spectrum, showing that this measurement at z =
  1100 correctly predicts the properties of the lower-redshift, later-time
  structures which source the lensing potential. When combined with the
  temperature power spectrum, our measurement provides degeneracy-breaking
  power for parameter constraints; it improves CMB-alone constraints
  on curvature by a factor of two and also partly breaks the degeneracy
  between the amplitude of the primordial perturbation power spectrum and
  the optical depth to reionization, allowing a measurement of the optical
  depth to reionization which is independent of large-scale polarization
  data. Discarding scale information, our measurement corresponds to a 4%
  constraint on the amplitude of the lensing potential power spectrum,
  or a 2% constraint on the root-mean-squared amplitude of matter
  fluctuations at z ~ 2.

---------------------------------------------------------
Title: Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich
    cluster counts
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.;
   Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena,
   R.; Bartlett, J. G.; Battaner, E.; Battye, R.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; Böhringer,
   H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin,
   H.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.;
   Butler, R. C.; Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Challinor,
   A.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.; Chiang, H. C.; Chon,
   G.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.;
   Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille,
   J.; Delouis, J. -M.; Démoclès, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis,
   M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.;
   Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.;
   Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy,
   J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liddle, A.;
   Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss,
   A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Roman, M.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini,
   G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.;
   Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev,
   R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.;
   Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Weller, J.; White, M.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..20P    Altcode: 2013arXiv1303.5080P
  We present constraints on cosmological parameters using number counts
  as a function of redshift for a sub-sample of 189 galaxy clusters
  from the Planck SZ (PSZ) catalogue. The PSZ is selected through the
  signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample
  used here has a signal-to-noise threshold of seven, with each object
  confirmed as a cluster and all but one with a redshift estimate. We
  discuss the completeness of the sample and our construction of a
  likelihood analysis. Using a relation between mass M and SZ signal
  Y calibrated to X-ray measurements, we derive constraints on the
  power spectrum amplitude σ<SUB>8</SUB> and matter density parameter
  Ω<SUB>m</SUB> in a flat ΛCDM model. We test the robustness of our
  estimates and find that possible biases in the Y-M relation and the
  halo mass function are larger than the statistical uncertainties from
  the cluster sample. Assuming the X-ray determined mass to be biased
  low relative to the true mass by between zero and 30%, motivated by
  comparison of the observed mass scaling relations to those from a set
  of numerical simulations, we find that σ<SUB>8</SUB> = 0.75 ± 0.03,
  Ω<SUB>m</SUB> = 0.29 ± 0.02, and σ<SUB>8</SUB>(Ω<SUB>m</SUB>/
  0.27)<SUP>0.3</SUP> = 0.764 ± 0.025. The value of σ<SUB>8</SUB>
  is degenerate with the mass bias; if the latter is fixed to a
  value of 20% (the central value from numerical simulations) we find
  σ<SUB>8</SUB>(Ω<SUB>m</SUB>/0.27)<SUP>0.3</SUP> = 0.78 ± 0.01 and
  a tighter one-dimensional range σ<SUB>8</SUB> = 0.77 ± 0.02. We find
  that the larger values of σ<SUB>8</SUB> and Ω<SUB>m</SUB> preferred
  by Planck’s measurements of the primary CMB anisotropies can be
  accommodated by a mass bias of about 40%. Alternatively, consistency
  with the primary CMB constraints can be achieved by inclusion of
  processes that suppress power on small scales relative to the ΛCDM
  model, such as a component of massive neutrinos. We place our results
  in the context of other determinations of cosmologicalparameters,
  and discuss issues that need to be resolved in order to make further
  progress in this field.

---------------------------------------------------------
Title: Planck 2013 results. XI. All-sky model of thermal dust emission
Authors: Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.;
   Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Ashdown,
   M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.;
   Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary,
   R. -R.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.; Church, S.;
   Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia,
   F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré,
   O.; Douspis, M.; Draine, B. T.; Dupac, X.; Efstathiou, G.; Enßlin,
   T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis,
   M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh,
   T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.;
   Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jewell, J.; Joncas, G.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi,
   R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi,
   S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee,
   P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci,
   F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.;
   Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.;
   Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.;
   Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.;
   Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita,
   J.; Van Tent, B.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio,
   N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; Ysard, N.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2014A&A...571A..11P    Altcode: 2013arXiv1312.1300P; 2013arXiv1312.1300A
  This paper presents an all-sky model of dust emission from the Planck
  353, 545, and 857 GHz, and IRAS 100 μm data. Using a modified blackbody
  fit to the data we present all-sky maps of the dust optical depth,
  temperature, and spectral index over the 353-3000 GHz range. This model
  is a good representation of the IRAS and Planck data at 5' between
  353 and 3000 GHz (850 and 100 μm). It shows variations of the order
  of 30% compared with the widely-used model of Finkbeiner, Davis, and
  Schlegel. The Planck data allow us to estimate the dust temperature
  uniformly over the whole sky, down to an angular resolution of 5',
  providing an improved estimate of the dust optical depth compared to
  previous all-sky dust model, especially in high-contrast molecular
  regions where the dust temperature varies strongly at small scales
  in response to dust evolution, extinction, and/or local production
  of heating photons. An increase of the dust opacity at 353 GHz,
  τ<SUB>353</SUB>/N<SUB>H</SUB>, from the diffuse to the denser
  interstellar medium (ISM) is reported. It is associated with a
  decrease in the observed dust temperature, T<SUB>obs</SUB>, that
  could be due at least in part to the increased dust opacity. We also
  report an excess of dust emission at H i column densities lower than
  10<SUP>20</SUP> cm<SUP>-2</SUP> that could be the signature of dust in
  the warm ionized medium. In the diffuse ISM at high Galactic latitude,
  we report an anticorrelation between τ<SUB>353</SUB>/N<SUB>H</SUB>
  and T<SUB>obs</SUB> while the dust specific luminosity, i.e., the
  total dust emission integrated over frequency (the radiance) per
  hydrogen atom, stays about constant, confirming one of the Planck Early
  Results obtained on selected fields. This effect is compatible with
  the view that, in the diffuse ISM, T<SUB>obs</SUB> responds to spatial
  variations of the dust opacity, due to variations of dust properties,
  in addition to (small) variations of the radiation field strength. The
  implication is that in the diffuse high-latitude ISM τ<SUB>353</SUB>
  is not as reliable a tracer of dust column density as we conclude
  it is in molecular clouds where the correlation of τ<SUB>353</SUB>
  with dust extinction estimated using colour excess measurements on
  stars is strong. To estimate Galactic E(B - V) in extragalactic fields
  at high latitude we develop a new method based on the thermal dust
  radiance, instead of the dust optical depth, calibrated to E(B - V)
  using reddening measurements of quasars deduced from Sloan Digital
  Sky Survey data.

---------------------------------------------------------
Title: Planck 2013 results. XXVIII. The Planck Catalogue of Compact
    Sources
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso,
   F.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela,
   F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Battaner, E.; Beelen, A.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Carvalho, P.; Catalano, A.;
   Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang,
   L. -Y.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy,
   C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese,
   S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.;
   Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne,
   S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini,
   R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson,
   T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard,
   E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor,
   R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.;
   Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Walter,
   B.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...571A..28P    Altcode: 2013arXiv1303.5088P
  The Planck Catalogue of Compact Sources (PCCS) is the catalogue
  of sources detected in the first 15 months of Planck operations,
  the “nominal” mission. It consists of nine single-frequency
  catalogues of compact sources, both Galactic and extragalactic,
  detected over the entire sky. The PCCS covers the frequency range
  30-857 GHz with higher sensitivity (it is 90% complete at 180 mJy in
  the best channel) and better angular resolution (from 32.88' to 4.33')
  than previous all-sky surveys in this frequency band. By construction
  its reliability is &gt;80% and more than 65% of the sources have been
  detected in at least two contiguous Planck channels. In this paper we
  present the construction and validation of the PCCS, its contents and
  its statistical characterization.

---------------------------------------------------------
Title: Planck 2013 results. XXVII. Doppler boosting of the CMB:
    Eppur si muove
Authors: Planck Collaboration; Aghanim, N.; Armitage-Caplan, C.;
   Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.;
   Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bridges, M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano,
   A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot,
   F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard,
   M.; Giardino, G.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison,
   D. L.; Helou, G.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Huffenberger, K. M.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Lewis,
   A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.;
   Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.;
   Massardi, M.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri,
   A.; Mendes, L.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Osborne, S.; Oxborrow, C. A.; Pagano, L.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perrotta,
   F.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.;
   Prézeau, G.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Reinecke,
   M.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Rubiño-Martín, J. A.; Rusholme, B.; Santos, D.; Savini, G.; Scott,
   D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Sunyaev,
   R.; Sureau, F.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   White, M.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014A&A...571A..27P    Altcode: 2013arXiv1303.5087P
  Our velocity relative to the rest frame of the cosmic microwave
  background (CMB) generates a dipole temperature anisotropy on the
  sky which has been well measured for more than 30 years, and has
  an accepted amplitude of v/c = 1.23 × 10<SUP>-3</SUP>, or v =
  369. In addition to this signal generated by Doppler boosting of
  the CMB monopole, our motion also modulates and aberrates the CMB
  temperature fluctuations (as well as every other source of radiation at
  cosmological distances). This is an order 10<SUP>-3</SUP> effect applied
  to fluctuations which are already one part in roughly 10<SUP>5</SUP>,
  so it is quite small. Nevertheless, it becomes detectable with the
  all-sky coverage, high angular resolution, and low noise levels of
  the Planck satellite. Here we report a first measurement of this
  velocity signature using the aberration and modulation effects on
  the CMB temperature anisotropies, finding a component in the known
  dipole direction, (l,b) = (264°,48°), of 384 km s<SUP>-1</SUP> ±
  78 km s<SUP>-1</SUP> (stat.) ± 115 km s<SUP>-1</SUP> (syst.). This
  is a significant confirmation of the expected velocity. <P />"And yet
  it moves", the phrase popularly attributed to Galileo Galilei after
  being forced to recant his view that the Earth goes around the Sun.

---------------------------------------------------------
Title: Planck 2013 results. I. Overview of products and scientific
    results
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday,
   A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.;
   Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; Benoît,
   A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bertincourt,
   B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin,
   J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond,
   J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.;
   Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.;
   Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso,
   J. -F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.;
   Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.;
   Chiang, L. -Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.;
   Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet,
   C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto,
   A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette,
   T.; Delabrouille, J.; Delouis, J. -M.; Démoclès, J.; Désert,
   F. -X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.;
   Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac,
   X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.;
   Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson,
   J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.;
   Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.;
   Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos,
   J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; Génova-Santos,
   R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard,
   D.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski,
   K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.;
   Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.;
   Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-Versillé,
   S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest,
   W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe,
   A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.;
   Kalberla, P.; Kangaslahti, P.; Keihänen, E.; Kerp, J.; Keskitalo,
   R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.;
   Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Langer, M.; Lasenby,
   A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le
   Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.;
   Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori,
   M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego,
   M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.;
   Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.;
   Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.;
   McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.;
   Melchiorri, A.; Melin, J. -B.; Mendes, L.; Menegoni, E.; Mennella,
   A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra,
   S.; Miville-Deschênes, M. -A.; Molinari, D.; Moneti, A.; Montier, L.;
   Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba,
   N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.;
   Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.;
   Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.;
   Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.;
   Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.;
   Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Pullen, A. R.; Rachen, J. P.;
   Racine, B.; Rahlin, A.; Räth, C.; Reach, W. T.; Rebolo, R.; Reinecke,
   M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi,
   S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha,
   G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Salerno,
   E.; Sandri, M.; Sanselme, L.; Santos, D.; Savelainen, M.; Savini, G.;
   Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Serra, P.;
   Shellard, E. P. S.; Smith, K.; Smoot, G. F.; Souradeep, T.; Spencer,
   L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi,
   L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Tristram,
   M.; Tucci, M.; Tuovinen, J.; Türler, M.; Tuttlebee, M.; Umana, G.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vibert, L.;
   Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Watson, C.; Watson, R.; Wehus, I. K.; Welikala, N.; Weller, J.;
   White, M.; White, S. D. M.; Wilkinson, A.; Winkel, B.; Xia, J. -Q.;
   Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014A&A...571A...1P    Altcode: 2013arXiv1303.5062P
  The European Space Agency's Planck satellite, dedicated to studying the
  early Universe and its subsequent evolution, was launched 14 May 2009
  and has been scanning the microwave and submillimetre sky continuously
  since 12 August 2009. In March 2013, ESA and the Planck Collaboration
  released the initial cosmology products based on the first 15.5 months
  of Planck data, along with a set of scientific and technical papers
  and a web-based explanatory supplement. This paper gives an overview
  of the mission and its performance, the processing, analysis, and
  characteristics of the data, the scientific results, and the science
  data products and papers in the release. The science products include
  maps of the cosmic microwave background (CMB) and diffuse extragalactic
  foregrounds, a catalogue of compact Galactic and extragalactic
  sources, and a list of sources detected through the Sunyaev-Zeldovich
  effect. The likelihood code used to assess cosmological models against
  the Planck data and a lensing likelihood are described. Scientific
  results include robust support for the standard six-parameter ΛCDM
  model of cosmology and improved measurements of its parameters,
  including a highly significant deviation from scale invariance of
  the primordial power spectrum. The Planck values for these parameters
  and others derived from them are significantly different from those
  previously determined. Several large-scale anomalies in the temperature
  distribution of the CMB, first detected by WMAP, are confirmed with
  higher confidence. Planck sets new limits on the number and mass of
  neutrinos, and has measured gravitational lensing of CMB anisotropies at
  greater than 25σ. Planck finds no evidence for non-Gaussianity in the
  CMB. Planck's results agree well with results from the measurements of
  baryon acoustic oscillations. Planck finds a lower Hubble constant than
  found in some more local measures. Some tension is also present between
  the amplitude of matter fluctuations (σ<SUB>8</SUB>) derived from CMB
  data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP
  power spectra are offset from each other by an average level of about 2%
  around the first acoustic peak. Analysis of Planck polarization data
  is not yet mature, therefore polarization results are not released,
  although the robust detection of E-mode polarization around CMB hot
  and cold spots is shown graphically.

---------------------------------------------------------
Title: LoCuSS: hydrostatic mass measurements of the high-L<SUB>X</SUB>
    cluster sample - cross-calibration of Chandra and XMM-Newton
Authors: Martino, Rossella; Mazzotta, Pasquale; Bourdin, Hervé;
   Smith, Graham P.; Bartalucci, Iacopo; Marrone, Daniel P.; Finoguenov,
   Alexis; Okabe, Nobuhiro
2014MNRAS.443.2342M    Altcode: 2014arXiv1406.6831M
  We present a consistent analysis of Chandra and XMM-Newton observations
  of an approximately mass-selected sample of 50 galaxy clusters at 0.15
  &lt; z &lt; 0.3 - the `LoCuSS high-L<SUB>X</SUB> sample'. We apply
  the same analysis methods to data from both satellites, including
  newly developed analytic background models that predict the spatial
  variation of the Chandra and XMM-Newton backgrounds to &lt;2 and &lt;5
  per cent precision, respectively. To verify the cross-calibration of
  Chandra- and XMM-Newton-based cluster mass measurements, we derive
  the mass profiles of the 21 clusters that have been observed with both
  satellites, extracting surface brightness and temperature profiles from
  identical regions of the respective data sets. We obtain consistent
  results for the gas and total hydrostatic cluster masses: the average
  ratio of Chandra- to XMM-Newton-based measurements of M<SUB>gas</SUB>
  and M<SUB>X</SUB> at r<SUB>500</SUB> are 0.99 ± 0.02 and 1.02 ± 0.05,
  respectively, with an intrinsic scatter of ∼3 per cent for gas masses
  and ∼8 per cent for hydrostatic masses. Comparison of our hydrostatic
  mass measurements at r<SUB>500</SUB> with the latest Local Cluster
  Substructure Survey (LoCuSS) weak-lensing results indicate that the
  data are consistent with non-thermal pressure support at this radius
  of ∼7 per cent. We also investigate the scaling relation between our
  hydrostatic cluster masses and published integrated Compton parameter
  Y<SUB>sph</SUB> measurements from the Sunyaev-Zel'dovich Array. We
  measure a scatter in mass at fixed Y<SUB>sph</SUB> of ∼16 per cent at
  Δ = 500, which is consistent with theoretical predictions of ∼10-15
  per cent scatter.

---------------------------------------------------------
Title: Temperature Structure of the Intracluster Medium from
    Smoothed-particle Hydrodynamics and Adaptive-mesh Refinement
    Simulations
Authors: Rasia, Elena; Lau, Erwin T.; Borgani, Stefano; Nagai, Daisuke;
   Dolag, Klaus; Avestruz, Camille; Granato, Gian Luigi; Mazzotta,
   Pasquale; Murante, Giuseppe; Nelson, Kaylea; Ragone-Figueroa, Cinthia
2014ApJ...791...96R    Altcode: 2014arXiv1406.4410R
  Analyses of cosmological hydrodynamic simulations of galaxy clusters
  suggest that X-ray masses can be underestimated by 10%-30%. The largest
  bias originates from both violation of hydrostatic equilibrium (HE)
  and an additional temperature bias caused by inhomogeneities in the
  X-ray-emitting intracluster medium (ICM). To elucidate this large
  dispersion among theoretical predictions, we evaluate the degree
  of temperature structures in cluster sets simulated either with
  smoothed-particle hydrodynamics (SPH) or adaptive-mesh refinement (AMR)
  codes. We find that the SPH simulations produce larger temperature
  variations connected to the persistence of both substructures
  and their stripped cold gas. This difference is more evident in
  nonradiative simulations, whereas it is reduced in the presence of
  radiative cooling. We also find that the temperature variation in
  radiative cluster simulations is generally in agreement with that
  observed in the central regions of clusters. Around R <SUB>500</SUB>
  the temperature inhomogeneities of the SPH simulations can generate
  twice the typical HE mass bias of the AMR sample. We emphasize that
  a detailed understanding of the physical processes responsible for
  the complex thermal structure in ICM requires improved resolution and
  high-sensitivity observations in order to extend the analysis to higher
  temperature systems and larger cluster-centric radii.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Anomalous microwave emission in
    Galactic clouds (Planck+, 2014)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;
   Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy,
   A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana,
   C.; Cardoso, J. -F.; Casassus, S.; Catalano, A.; Chamballu, A.; Chen,
   X.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.; Clements,
   D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F. -X.;
   Dickinson, C.; Diego, J. M.; Donzelli, S.; Dore, O.; Dupac, X.;
   Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Franceschi,
   E.; Galeotta, S.; Ganga, K.; Genova-Santos, R. T.; Ghosh, T.; Giard,
   M.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gregorio, A.; Gruppuso, A.;
   Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernandez-Monteagudo, C.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Jaffe,
   A. H.; Jaffe, T. R.; Jones, W. C.; Keihaenen, E.; Keskitalo, R.;
   Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Laehteenmaeki,
   A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.;
   Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.;
   Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marshall,
   D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.;
   Nati, F.; Natoli, P.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini,
   R.; Paoletti, D.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau,
   O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Savini,
   G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Tibbs, C. T.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Verstraete,
   L.; Vielva, P.; Villa, F.; Wandelt, B. D.; Watson, R.; Wilkinson,
   A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2014yCat..35650103P    Altcode: 2014yCat..35659103P
  Anomalous microwave emission (AME) is believed to be due to electric
  dipole radiation from small spinning dust grains. The aim of this
  paper is a statistical study of the basic properties of AME regions
  and the environment in which they emit. We used WMAP and Planck maps,
  combined with ancillary radio and IR data, to construct a sample of 98
  candidate AME sources, assembling SEDs for each source using aperture
  photometry on 1°-smoothed maps from 0.408GHz up to 3000GHz. <P />Each
  spectrum is fitted with a simple model of free-free, synchrotron
  (where necessary), cosmic microwave background (CMB), thermal dust,
  and spinning dust components. We find that 42 of the 98 sources have
  significant (&gt;5σ) excess emission at frequencies between 20 and
  60GHz. An analysis of the potential contribution of optically thick
  free-free emission from ultra-compact HII regions, using IR colour
  criteria, reduces the significant AME sample to 27 regions. The spectrum
  of the AME is consistent with model spectra of spinning dust. Peak
  frequencies are in the range 20-35GHz except for the California nebula
  (NGC1499), which appears to have a high spinning dust peak frequency of
  (50+/-17)GHz. The AME regions tend to be more spatially extended than
  regions with little or no AME. The AME intensity is strongly correlated
  with the sub-millimetre/IR flux densities and comparable to previous AME
  detections in the literature. AME emissivity, defined as the ratio of
  AME to dust optical depth, varies by an order of magnitude for the AME
  regions. The AME regions tend to be associated with cooler dust in the
  range 14-20K and an average emissivity index, β<SUB>d</SUB>, of +1.8,
  while the non-AME regions are typically warmer, at 20-27K. In agreement
  with previous studies, the AME emissivity appears to decrease with
  increasing column density. This supports the idea of AME originating
  from small grains that are known to be depleted in dense regions,
  probably due to coagulation onto larger grains. We also find a
  correlation between the AME emissivity (and to a lesser degree the
  spinning dust peak frequency) and the intensity of the interstellar
  radiation field, G<SUB>0</SUB>. Modelling of this trend suggests
  that both radiative and collisional excitation are important for the
  spinning dust emission. The most significant AME regions tend to have
  relatively less ionized gas (free-free emission), although this could
  be a selection effect. The infrared excess, a measure of the heating of
  dust associated with HII regions, is typically &gt;4 for AME sources,
  indicating that the dust is not primarily heated by hot OB stars. The
  AME regions are associated with known dark nebulae and have higher
  12μm/25μm ratios. The emerging picture is that the bulk of the AME is
  coming from the polycyclic aromatic hydrocarbons and small dust grains
  from the colder neutral interstellar medium phase. <P />(1 data file).

---------------------------------------------------------
Title: Planck intermediate results. XVI. Profile likelihoods for
    cosmological parameters
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro,
   R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.;
   Bond, J. R.; Bouchet, F. R.; Burigana, C.; Cardoso, J. -F.; Catalano,
   A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli,
   S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.;
   Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.;
   Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.;
   Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liddle, A.; Liguori, M.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow,
   C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski∗, S.; Pointecouteau,
   E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.;
   Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Savelainen, M.; Savini, G.; Spencer, L. D.; Spinelli, M.; Starck,
   J. -L.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; White, M.;
   Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...566A..54P    Altcode: 2013arXiv1311.1657P
  We explore the 2013 Planck likelihood function with a high-precision
  multi-dimensional minimizer (Minuit). This allows a refinement of
  the ΛCDM best-fit solution with respect to previously-released
  results, and the construction of frequentist confidence intervals
  using profile likelihoods. The agreement with the cosmological
  results from the Bayesian framework is excellent, demonstrating the
  robustness of the Planck results to the statistical methodology. We
  investigate the inclusion of neutrino masses, where more significant
  differences may appear due to the non-Gaussian nature of the posterior
  mass distribution. By applying the Feldman-Cousins prescription,
  we again obtain results very similar to those of the Bayesian
  methodology. However, the profile-likelihood analysis of the cosmic
  microwave background (CMB) combination (Planck+WP+highL) reveals a
  minimum well within the unphysical negative-mass region. We show that
  inclusion of the Planck CMB-lensing information regularizes this issue,
  and provide a robust frequentist upper limit ∑ m<SUB>ν</SUB> ≤
  0.26 eV (95% confidence) from the CMB+lensing+BAO data combination.

---------------------------------------------------------
Title: Chandra ACIS-I particle background: an analytical model
Authors: Bartalucci, I.; Mazzotta, P.; Bourdin, H.; Vikhlinin, A.
2014A&A...566A..25B    Altcode: 2014arXiv1404.3587B
  <BR /> Aims: Imaging and spectroscopy of X-ray extended sources
  require a proper characterisation of a spatially unresolved background
  signal. This background includes sky and instrumental components,
  each of which are characterised by its proper spatial and spectral
  behaviour. While the X-ray sky background has been extensively studied
  in previous work, here we analyse and model the instrumental background
  of the ACIS-I detector on board the Chandra X-ray observatory in very
  faint mode. <BR /> Methods: Caused by interaction of highly energetic
  particles with the detector, the ACIS-I instrumental background
  is spectrally characterised by the superimposition of several
  fluorescence emission lines onto a continuum. To isolate its flux from
  any sky component, we fitted an analytical model of the continuum to
  observations performed in very faint mode with the detector in the
  stowed position shielded from the sky, and gathered over the eight-year
  period starting in 2001. The remaining emission lines were fitted
  to blank-sky observations of the same period. We found 11 emission
  lines. Analysing the spatial variation of the amplitude, energy and
  width of these lines has further allowed us to infer that three lines
  of these are presumably due to an energy correction artefact produced
  in the frame store. <BR /> Results: We provide an analytical model
  that predicts the instrumental background with a precision of 2% in
  the continuum and 5% in the lines. We use this model to measure the
  flux of the unresolved cosmic X-ray background in the Chandra deep
  field south. We obtain a flux of 10.2<SUP>+0.5</SUP><SUB>-0.4</SUB> ×
  10<SUP>-13</SUP> erg cm<SUP>-2</SUP> deg<SUP>-2</SUP> s<SUP>-1</SUP>
  for the [1-2] keV band and (3.8 ± 0.2) × 10<SUP>-12</SUP> erg
  cm<SUP>-2</SUP> deg<SUP>-2</SUP> s<SUP>-1</SUP> for the [2-8] keV band.

---------------------------------------------------------
Title: Planck intermediate results. XVII. Emission of dust in the
    diffuse interstellar medium from the far-infrared to microwave
    frequencies
Authors: Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim,
   N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont,
   J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.;
   Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J. -F.; Catalano,
   A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Cuttaia, F.;
   Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dole,
   H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.;
   Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison,
   D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe,
   A. H.; Jaffe, T. R.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela,
   M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle,
   M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio,
   M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow,
   C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta,
   G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Spencer,
   L. D.; Starck, J. -L.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita,
   J.; Van Tent, B.; Verstraete, L.; Vielva, P.; Villa, F.; Wade, L. A.;
   Wandelt, B. D.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...566A..55P    Altcode: 2013arXiv1312.5446P
  The dust-Hi correlation is used to characterize the emission properties
  of dust in the diffuse interstellar medium (ISM) from far infrared
  wavelengths to microwave frequencies. The field of this investigation
  encompasses the part of the southern sky best suited to study the
  cosmic infrared and microwave backgrounds. We cross-correlate sky maps
  from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the
  diffuse infrared background experiment (DIRBE), at 17 frequencies from
  23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of
  neutral atomic hydrogen, over a contiguous area of 7500 deg<SUP>2</SUP>
  centred on the southern Galactic pole. We present a general methodology
  to study the dust-Hi correlation over the sky, including simulations
  to quantify uncertainties. Our analysis yields four specific
  results. (1) We map the temperature, submillimetre emissivity, and
  opacity of the dust per H-atom. The dust temperature is observed to
  be anti-correlated with the dust emissivity and opacity. We interpret
  this result as evidence of dust evolution within the diffuse ISM. The
  mean dust opacity is measured to be (7.1 ± 0.6) × 10<SUP>-27</SUP>
  cm<SUP>2</SUP> H<SUP>-1</SUP> × (ν/ 353 GHz)<SUP>1.53 ± 0.03</SUP>
  for 100 ≤ ν ≤ 353 GHz. This is a reference value to estimate
  hydrogen column densities from dust emission at submillimetre and
  millimetre wavelengths. (2) We map the spectral index β<SUB>mm</SUB>
  of dust emission at millimetre wavelengths (defined here as ν ≤
  353 GHz), and find it to be remarkably constant at β<SUB>mm</SUB>
  = 1.51 ± 0.13. We compare it with the far infrared spectral index
  β<SUB>FIR</SUB> derived from greybody fits at higher frequencies,
  and find a systematic difference, β<SUB>mm</SUB> - β<SUB>FIR</SUB>
  = - 0.15, which suggests that the dust spectral energy distribution
  (SED) flattens at ν ≤ 353 GHz. (3) We present spectral fits of
  the microwave emission correlated with Hi from 23 to 353 GHz, which
  separate dust and anomalous microwave emission (AME). We show that the
  flattening of the dust SED can be accounted for with an additional
  component with a blackbody spectrum. This additional component,
  which accounts for (26 ± 6)% of the dust emission at 100 GHz, could
  represent magnetic dipole emission. Alternatively, it could account
  for an increasing contribution of carbon dust, or a flattening of the
  emissivity of amorphous silicates, at millimetre wavelengths. These
  interpretations make different predictions for the dust polarization
  SED. (4) We analyse the residuals of the dust-Hi correlation. We
  identify a Galactic contribution to these residuals, which we model
  with variations of the dust emissivity on angular scales smaller than
  that of our correlation analysis. This model of the residuals is used
  to quantify uncertainties of the CIB power spectrum in a companion
  Planck paper. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201323270/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Discovery of large-scale diffuse radio emission and of a new
    galaxy cluster in the surroundings of MACS J0520.7-1328
Authors: Macario, G.; Intema, H. T.; Ferrari, C.; Bourdin,
   H.; Giacintucci, S.; Venturi, T.; Mazzotta, P.; Bartalucci, I.;
   Johnston-Hollitt, M.; Cassano, R.; Dallacasa, D.; Pratt, G. W.; Kale,
   R.; Brown, S.
2014A&A...565A..13M    Altcode: 2014arXiv1402.4436M
  We report the discovery of large-scale diffuse radio emission south-east
  of the galaxy cluster <ASTROBJ>MACS J0520.7-1328</ASTROBJ>, detected
  through high-sensitivity Giant Metrewave Radio Telescope 323 MHz
  observations. This emission is dominated by an elongated diffuse
  radio source and surrounded by other features of lower surface
  brightness. Patches of these faint sources are marginally detected
  in a 1.4 GHz image obtained through a re-analysis of archival
  NVSS data. Interestingly, the elongated radio source coincides
  with a previously unclassified extended X-ray source. We perform a
  multi-wavelength analysis based on archival infrared, optical, and X-ray
  Chandra data. We find that this source is a low-temperature (~3.6 keV)
  cluster of galaxies, with indications of a disturbed dynamical state,
  located at a redshift that is consistent with the one of the main
  galaxy cluster <ASTROBJ>MACS J0520.7-132</ASTROBJ> (z = 0.336). We
  suggest that the diffuse radio emission is associated to non-thermal
  components in the intracluster and intergalactic medium in and around
  the newly detected cluster. We are planning deeper multi-wavelength
  and multi-frequency radio observations to accurately investigate the
  dynamical scenario of the two clusters and to address the nature of
  the complex radio emission more precisely.

---------------------------------------------------------
Title: Planck intermediate results. XV. A study of anomalous microwave
    emission in Galactic clouds
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.;
   Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz,
   P.; Bobin, J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Boulanger, F.; Burigana, C.; Cardoso, J. -F.; Casassus,
   S.; Catalano, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang,
   L. -Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo,
   L. P. L.; Couchot, F.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Désert, F. -X.; Dickinson; , C.; Diego, J. M.;
   Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Forni, O.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Génova-Santos, R. T.; Ghosh, T.; Giard, M.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison,
   D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.;
   Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche,
   J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje,
   P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.;
   Maffei, B.; Maino, D.; Mandolesi, N.; Marshall, D. J.; Martin, P. G.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Nati, F.;
   Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau,
   O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini,
   G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.;
   Tibbs, C. T.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.;
   Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Verstraete,
   L.; Vielva, P.; Villa, F.; Wandelt, B. D.; Watson, R.; Wilkinson,
   A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...565A.103P    Altcode: 2013arXiv1309.1357P
  Anomalous microwave emission (AME) is believed to be due to electric
  dipole radiation from small spinning dust grains. The aim of this paper
  is a statistical study of the basic properties of AME regions and the
  environment in which they emit. We used WMAP and Planck maps, combined
  with ancillary radio and IR data, to construct a sample of 98 candidate
  AME sources, assembling SEDs for each source using aperture photometry
  on 1°-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is
  fitted with a simple model of free-free, synchrotron (where necessary),
  cosmic microwave background (CMB), thermal dust, and spinning dust
  components. We find that 42 of the 98 sources have significant
  (&gt;5σ) excess emission at frequencies between 20 and 60 GHz. An
  analysis of the potential contribution of optically thick free-free
  emission from ultra-compact H ii regions, using IR colour criteria,
  reduces the significant AME sample to 27 regions. The spectrum of the
  AME is consistent with model spectra of spinning dust. Peak frequencies
  are in the range 20-35 GHz except for the California nebula (NGC 1499),
  which appears to have a high spinning dust peak frequency of (50 ± 17)
  GHz. The AME regions tend to be more spatially extended than regions
  with little or no AME. The AME intensity is strongly correlated with
  the sub-millimetre/IR flux densities and comparable to previous AME
  detections in the literature. AME emissivity, defined as the ratio of
  AME to dust optical depth, varies by an order of magnitude for the
  AME regions. The AME regions tend to be associated with cooler dust
  in the range 14-20 K and an average emissivity index, β<SUB>d</SUB>,
  of +1.8, while the non-AME regions are typically warmer, at 20-27
  K. In agreement with previous studies, the AME emissivity appears to
  decrease with increasing column density. This supports the idea of AME
  originating from small grains that are known to be depleted in dense
  regions, probably due to coagulation onto larger grains. We also find
  a correlation between the AME emissivity (and to a lesser degree the
  spinning dust peak frequency) and the intensity of the interstellar
  radiation field, G<SUB>0</SUB>. Modelling of this trend suggests
  that both radiative and collisional excitation are important for the
  spinning dust emission. The most significant AME regions tend to have
  relatively less ionized gas (free-free emission), although this could
  be a selection effect. The infrared excess, a measure of the heating of
  dust associated with H ii regions, is typically &gt;4 for AME sources,
  indicating that the dust is not primarily heated by hot OB stars. The
  AME regions are associated with known dark nebulae and have higher 12
  μm/25 μm ratios. The emerging picture is that the bulk of the AME
  is coming from the polycyclic aromatic hydrocarbons and small dust
  grains from the colder neutral interstellar medium phase.

---------------------------------------------------------
Title: Planck intermediate results. XIV. Dust emission at millimetre
    wavelengths in the Galactic plane
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont,
   J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett,
   J. G.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. -P.;
   Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.;
   Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.; Clements, D. L.;
   Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.;
   Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Ghosh, T.; Giard, M.; Giardino, G.; González-Nuevo, J.; Górski,
   K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Jaffe, A. H.; Jones,
   W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.;
   Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin,
   P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta,
   P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon,
   D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset,
   C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.;
   Scott, D.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Sureau,
   F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.;
   Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Verstraete,
   L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   Yvon, D.; Zacchei, A.; Zonca, A.
2014A&A...564A..45P    Altcode: 2013arXiv1307.6815P
  We use Planck HFI data combined with ancillary radio data to study the
  emissivity index of the interstellar dust emission in the frequency
  range 100-353 GHz, or 3-0.8 mm, in the Galactic plane. We analyse the
  region l = 20°-44° and |b| ≤ 4° where the free-free emission can
  be estimated from radio recombination line data. We fit the spectra
  at each sky pixel with a modified blackbody model and two opacity
  spectral indices, β<SUB>mm</SUB> and β<SUB>FIR</SUB>, below and
  above 353 GHz, respectively. We find that β<SUB>mm</SUB> is smaller
  than β<SUB>FIR</SUB>, and we detect a correlation between this
  low frequency power-law index and the dust optical depth at 353 GHz,
  τ<SUB>353</SUB>. The opacity spectral index β<SUB>mm</SUB> increases
  from about 1.54 in the more diffuse regions of the Galactic disk, |b|
  = 3°-4° and τ<SUB>353</SUB> ~ 5 × 10<SUP>-5</SUP>, to about 1.66
  in the densest regions with an optical depth of more than one order of
  magnitude higher. We associate this correlation with an evolution of
  the dust emissivity related to the fraction of molecular gas along the
  line of sight. This translates into β<SUB>mm</SUB> ~ 1.54 for a medium
  that is mostly atomic and β<SUB>mm</SUB> ~ 1.66 when the medium is
  dominated by molecular gas. We find that both the two-level system model
  and magnetic dipole emission by ferromagnetic particles can explain
  the results. These results improve our understanding of the physics
  of interstellar dust and lead towards a complete model of the dust
  spectrum of the Milky Way from far-infrared to millimetre wavelengths.

---------------------------------------------------------
Title: New Detections of Radio Minihalos in Cool Cores of Galaxy
    Clusters
Authors: Giacintucci, Simona; Markevitch, Maxim; Venturi, Tiziana;
   Clarke, Tracy E.; Cassano, Rossella; Mazzotta, Pasquale
2014ApJ...781....9G    Altcode: 2013arXiv1311.5248G
  Cool cores of some galaxy clusters exhibit faint radio
  "minihalos." Their origin is unclear, and their study has been limited
  by their small number. We undertook a systematic search for minihalos
  in a large sample of X-ray luminous clusters with high-quality radio
  data. In this article, we report four new minihalos (A 478, ZwCl 3146,
  RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed
  archival Very Large Array observations. The radio luminosities of
  our minihalos and candidates are in the range of 10<SUP>23-25</SUP>
  W Hz<SUP>-1</SUP> at 1.4 GHz, which is consistent with these types of
  radio sources. Their sizes (40-160 kpc in radius) are somewhat smaller
  than those of previously known minihalos. We combine our new detections
  with previously known minihalos, obtaining a total sample of 21 objects,
  and briefly compare the cluster radio properties to the average X-ray
  temperature and the total masses estimated from Planck. We find that
  nearly all clusters hosting minihalos are hot and massive. Beyond that,
  there is no clear correlation between the minihalo radio power and
  cluster temperature or mass (in contrast with the giant radio halos
  found in cluster mergers, whose radio luminosity correlates with the
  cluster mass). Chandra X-ray images indicate gas sloshing in the cool
  cores of most of our clusters, with minihalos contained within the
  sloshing regions in many of them. This supports the hypothesis that
  radio-emitting electrons are reaccelerated by sloshing. Advection of
  relativistic electrons by the sloshing gas may also play a role in
  the formation of the less extended minihalos.

---------------------------------------------------------
Title: Recent Results from the Local Cluster Substructure Survey
Authors: Smith, G.; Okabe, N.; Scott, K.; Mulroy, S.; May, P.; Martino,
   R.; Babul, A.; Egami, E.; Finoguenov, A.; Haines, C.; Marrone,
   D.; Mazzotta, P.; Richard, J.; Takada, M.; Umetsu, K.; Ziparo, F.;
   McCarthy, I.; Le Brun, A.; Bahé, Y.
2014egcc.confE...7S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Planck intermediate results. XIII. Constraints on peculiar
    velocities
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.;
   Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin,
   J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J. -F.;
   Catalano, A.; Chamballu, A.; Chiang, L. -Y.; Chon, G.; Christensen,
   P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.;
   Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis, R. J.;
   de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille,
   J.; Démoclès, J.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli,
   S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Frommert, M.;
   Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino,
   G.; Gonzáalez-Nuevo, J.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.;
   Harrison, D.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt,
   S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.;
   Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jasche, J.; Jones, W. C.;
   Juvela, M.; Keihánen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.;
   Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.;
   Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Macías-Pérez, J. F.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Maris,
   M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.;
   Mazzotta, P.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.;
   Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Osborne, S.; Pagano, L.; Paoletti, D.; Perdereau, O.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt,
   G. W.; Prunet, S.; Puget, J. -L.; Puisieux, S.; Rachen, J. P.; Rebolo,
   R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Roman,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.;
   Scott, D.; Spencer, L.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent,
   B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Welikala, N.;
   Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2014A&A...561A..97P    Altcode: 2013arXiv1303.5090T; 2013arXiv1303.5090P
  Using Planck data combined with the Meta Catalogue of X-ray detected
  Clusters of galaxies (MCXC), we address the study of peculiar motions
  by searching for evidence of the kinetic Sunyaev-Zeldovich effect
  (kSZ). By implementing various filters designed to extract the kSZ
  generated at the positions of the clusters, we obtain consistent
  constraints on the radial peculiar velocity average, root mean square
  (rms), and local bulk flow amplitude at different depths. For the whole
  cluster sample of average redshift 0.18, the measured average radial
  peculiar velocity with respect to the cosmic microwave background (CMB)
  radiation at that redshift, i.e., the kSZ monopole, amounts to 72 ±
  60 km s<SUP>-1</SUP>. This constitutes less than 1% of the relative
  Hubble velocity of the cluster sample with respect to our local CMB
  frame. While the linear ΛCDM prediction for the typical cluster radial
  velocity rms at z = 0.15 is close to 230 km s<SUP>-1</SUP>, the upper
  limit imposed by Planck data on the cluster subsample corresponds to
  800 km s<SUP>-1</SUP> at 95% confidence level, i.e., about three times
  higher. Planck data also set strong constraints on the local bulk
  flow in volumes centred on the Local Group. There is no detection
  of bulk flow as measured in any comoving sphere extending to the
  maximum redshift covered by the cluster sample. A blind search for bulk
  flows in this sample has an upper limit of 254 km s<SUP>-1</SUP> (95%
  confidence level) dominated by CMB confusion and instrumental noise,
  indicating that the Universe is largely homogeneous on Gpc scales. In
  this context, in conjunction with supernova observations, Planck is able
  to rule out a large class of inhomogeneous void models as alternatives
  to dark energy or modified gravity. The Planck constraints on peculiar
  velocities and bulk flows are thus consistent with the ΛCDM scenario.

---------------------------------------------------------
Title: Erratum: Planck intermediate results (Corrigendum). V. Pressure
    profiles of galaxy clusters from the Sunyaev-Zeldovich effect
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;
   Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia,
   R.; Bikmaev, I.; Bobin, J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.;
   Borgani, S.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.;
   Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Carvalho,
   P.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chiang,
   L. -Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements,
   D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Comis,
   B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.;
   Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi,
   E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel,
   A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hurier, G.;
   Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.;
   Leonardi, R.; Liddle, A.; Lilje, P. B.; López-Caniego, M.; Luzzi, G.;
   Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau,
   F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.;
   Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.;
   Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen,
   H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti,
   R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.;
   Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.;
   Starck, J. -L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Welikala, N.; White, S. D. M.; White, M.; Yvon, D.; Zacchei,
   A.; Zonca, A.
2013A&A...558C...2P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: On the Discrepancy between Theoretical and X-Ray
    Concentration-Mass Relations for Galaxy Clusters
Authors: Rasia, E.; Borgani, S.; Ettori, S.; Mazzotta, P.; Meneghetti,
   M.
2013ApJ...776...39R    Altcode: 2013arXiv1301.7476R
  In the past 15 years, the concentration-mass relation has been
  investigated diffusely in theoretical studies. On the other hand, only
  recently has this relation been derived from X-ray observations. When
  that happened, the results caused a certain level of concern: the X-ray
  normalizations and slopes were found significantly dissimilar from
  those predicted by theory. We analyzed 52 galaxy clusters and groups,
  simulated with different descriptions of the physical processes that
  affect the baryonic component, with the purpose of determining whether
  these discrepancies are real or induced by biases in the computation
  of the concentration parameter or in the determination of the selection
  function of the cluster sample for which the analysis is carried out. In
  particular, we investigate how the simulated concentration-mass relation
  depends (1) on the radial range used to derive the concentration; (2)
  on the presence of baryons in the simulations, and on the effect of
  star formation and feedback from supernovae and active galactic nuclei
  (AGNs). Finally, we evaluate (3) how the results differ when adopting an
  X-ray approach for the analysis and (4) how the selection function based
  on X-ray luminosity can impact the results. All effects studied go in
  the direction of alleviating the discrepancy between observations and
  simulations, although with different significance: while the choice of
  the radial range to fit the profiles and the inclusion of the baryonic
  component play only a minor role, the X-ray approach to reconstruct
  the mass profiles and the selection of the cluster sample have a strong
  impact on the resulting concentration-mass relation. Extending the fit
  to the most central regions or reducing the fitting radius from the
  virial boundary to the typical X-ray external radius causes an increase
  of the normalization in radiative simulations by 5%-10%. In the second
  case, we measure a slope that is up to twice steeper than that derived
  by using the typical theoretical radial range. Radiative simulations
  including only supernova feedback produce 30% higher concentrations
  than the dark matter case. Such a difference is largely reduced when
  including the effect of AGN feedback. The concentration-mass relation
  derived from the X-ray synthetic catalog is significantly steeper due
  to the combination of several different effects, such as environment,
  dynamical state and dynamical history of the clusters, bias in mass
  and temperature measurements, and their dependence on the radius and
  on the mass of the system. Finally, selecting clusters according to
  their X-ray luminosity produces a net increase in both normalization
  and slope of the relation, since at fixed mass, the most luminous
  clusters are also the most concentrated.

---------------------------------------------------------
Title: Is the Sunyaev-Zeldovich effect responsible for the observed
    steepening in the spectrum of the Coma radio halo?
Authors: Brunetti, G.; Rudnick, L.; Cassano, R.; Mazzotta, P.; Donnert,
   J.; Dolag, K.
2013A&A...558A..52B    Altcode: 2013arXiv1309.1820B
  <BR /> Aims: The radio halo in the Coma cluster is unique in that its
  spectrum has been measured over almost two decades in frequency. The
  current radio data show a steepening of the spectrum at higher
  frequencies, which has implications for models of the radio halo
  origin. There is an on-going debate on the possibility that the observed
  steepening of the spectrum and the apparent shrinking of the halo-size
  at higher frequencies is not intrinsic to the emitted radiation, but is
  instead caused by the Sunyaev-Zeldovich (SZ) effect. <BR /> Methods:
  Recently, the Planck satellite obtained unprecedented measurements
  of the SZ signal and its spatial distribution in the Coma cluster,
  allowing a conclusive testing of this hypothesis. Using the Planck
  results, we calculated the modification of the radio halo spectrum by
  the SZ effect in three different ways. With the first two methods we
  measured the SZ-decrement by adopting self-consistently the aperture
  radii used for flux measurements of the radio halo at the different
  frequencies. First we adopted the global compilation of data-points
  from Thierbach et al. (2003, A&amp;A, 397, 53) and a reference aperture
  radius consistent with those used by various authors. Second we used
  the available brightness profiles of the halo at different frequencies
  to derive the spectrum of the halo within two fixed apertures,
  corresponding to the size of the halo measured at 2.675 and at 4.85
  GHz, and derived the SZ-decrement using these apertures. As a third
  method we used the quasi-linear correlation between the y-signal
  and the radio-halo brightness at 330 MHz discovered by the Planck
  collaboration to derive the modification of the synchrotron spectrum
  by the SZ-decrement in a way that is almost independent of the adopted
  aperture radius. <BR /> Results: We found that the spectral modification
  induced by the SZ-decrement is negligible and results in values 4-5
  times smaller than those necessary to explain the observed steepening
  at higher frequencies. We also show that, if a spectral steepening is
  absent from the emitted spectrum, future deep observations at 5 GHz
  with single dishes are expected to measure a halo flux in a 40 arcmin
  aperture-radius that would be ~7-8 times higher than currently seen,
  thus providing a complementary test to our findings. <BR /> Conclusions:
  We conclude that according to the current radio data the emitted
  synchrotron spectrum of the radio halo steepens at higher frequencies,
  implying a break or cut-off in the spectrum of the emitting electrons
  at energies of a few GeV.

---------------------------------------------------------
Title: Planck intermediate results. XI. The gas content of dark
matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally
    brightest galaxies
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.;
   Battaner, E.; Benabed, K.; Bernard, J. -P.; Bersanelli, M.; Bikmaev,
   I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill,
   J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Butler,
   R. C.; Cabella, P.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.;
   Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.;
   Colombi, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.;
   Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; de Bernardis,
   P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Démoclès, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.;
   Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.;
   Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert,
   M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.;
   Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche,
   J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje,
   P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Luzzi, G.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.;
   Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.; Mendes, L.;
   Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.;
   Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Pajot,
   F.; Paoletti, D.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman,
   M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.;
   Sandri, M.; Savini, G.; Scott, D.; Spencer, L.; Starck, J. -L.;
   Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wang,
   W.; Welikala, N.; Weller, J.; White, S. D. M.; White, M.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2013A&A...557A..52P    Altcode: 2012arXiv1212.4131P; 2013A&A...557A..52.
  We present the scaling relation between Sunyaev-Zeldovich (SZ)
  signal and stellar mass for almost 260,000 locally brightest galaxies
  (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are
  predominantly the central galaxies of their dark matter halos. We
  calibrate the stellar-to-halo mass conversion using realistic
  mock catalogues based on the Millennium Simulation. Applying a
  multi-frequency matched filter to the Planck data for each LBG, and
  averaging the results in bins of stellar mass, we measure the mean SZ
  signal down to M<SUB>∗</SUB> ~ 2 × 10<SUP>11</SUP> M<SUB>⊙</SUB>,
  with a clear indication of signal at even lower stellar mass. We derive
  the scaling relation between SZ signal and halo mass by assigning halo
  properties from our mock catalogues to the real LBGs and simulating
  the Planck observation process. This relation shows no evidence for
  deviation from a power law over a halo mass range extending from rich
  clusters down to M<SUB>500</SUB> ~ 2 × 10<SUP>13</SUP> M<SUB>⊙</SUB>,
  and there is a clear indication of signal down to M<SUB>500</SUB> ~
  4 × 10<SUP>12</SUP> M<SUB>⊙</SUB>. Planck's SZdetections in such
  low-mass halos imply that about a quarter of all baryons have now
  been seen in the form of hot halo gas, and that this gas must be less
  concentrated than the dark matter in such halos in order to remain
  consistent with X-ray observations. At the high-mass end, the measured
  SZ signal is 20% lower than found from observations of X-ray clusters,
  a difference consistent with the magnitude of Malmquist bias effects
  that were previously estimated for the X-ray sample.

---------------------------------------------------------
Title: Planck intermediate results. XII: Diffuse Galactic components
    in the Gould Belt system
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves,
   M. I. R.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont,
   J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.;
   Bartlett, J. G.; Battaner, E.; Bedini, L.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler,
   R. C.; Cabella, P.; Cardoso, J. -F.; Chen, X.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.;
   Coulais, A.; Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Dickinson, C.;
   Diego, J. M.; Dobler, G.; Dole, H.; Donzelli, S.; Doré, O.; Douspis,
   M.; Dupac, X.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Ghosh,
   T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison,
   D.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson,
   M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.;
   Jaffe, T. R.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.;
   Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Leach, S.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.;
   Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Melchiorri,
   A.; Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.;
   Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Pajot,
   F.; Paladini, R.; Paoletti, D.; Peel, M.; Perotto, L.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt,
   G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo,
   R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.;
   Sandri, M.; Savini, G.; Scott, D.; Spencer, L.; Stolyarov, V.;
   Sudiwala, R.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Tibbs, C. T.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Valenziano, L.; Van Tent, B.; Varis, J.; Vielva, P.; Villa,
   F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2013A&A...557A..53P    Altcode: 2013arXiv1301.5839P; 2013A&A...557A..53.
  We perform an analysis of the diffuse low-frequency Galactic components
  in the southern part of the Gould Belt system (130° ≤ l ≤ 230° and
  -50° ≤ b ≤ -10°). Strong ultra-violet flux coming from the Gould
  Belt super-association is responsible for bright diffuse foregrounds
  that we observe from our position inside the system and that can help
  us improve our knowledge of the Galactic emission. Free-free emission
  and anomalous microwave emission (AME) are the dominant components at
  low frequencies (ν &lt; 40 GHz), while synchrotron emission is very
  smooth and faint. We separated diffuse free-free emission and AME from
  synchrotron emission and thermal dust emission by using Planck data,
  complemented by ancillary data, using the correlated component analysis
  (CCA) component-separation method and we compared our results with the
  results of cross-correlation of foreground templates with the frequency
  maps. We estimated the electron temperature T<SUB>e</SUB> from Hα and
  free-free emission using two methods (temperature-temperature plot
  and cross-correlation) and obtained T<SUB>e</SUB> ranging from 3100
  to 5200K for an effective fraction of absorbing dust along the line
  of sight of 30% (f<SUB>d</SUB> = 0.3). We estimated the frequency
  spectrum of the diffuse AME and recovered a peak frequency (in flux
  density units) of 25.5 ± 1.5 GHz. We verified the reliability of this
  result with realistic simulations that include biases in the spectral
  model for the AME and in the free-free template. By combining physical
  models for vibrational and rotational dust emission and adding the
  constraints from the thermal dust spectrum from Planck and IRAS,
  we are able to present a good description of the AME frequency
  spectrum for plausible values of the local density and radiation
  field. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Hot X-Ray Coronae around Massive Spiral Galaxies: A Unique
    Probe of Structure Formation Models
Authors: Bogdán, Ákos; Forman, William R.; Vogelsberger, Mark;
   Bourdin, Hervé; Sijacki, Debora; Mazzotta, Pasquale; Kraft, Ralph P.;
   Jones, Christine; Gilfanov, Marat; Churazov, Eugene; David, Laurence P.
2013ApJ...772...97B    Altcode: 2012arXiv1212.0541B
  Luminous X-ray gas coronae in the dark matter halos of massive spiral
  galaxies are a fundamental prediction of structure formation models,
  yet only a few such coronae have been detected so far. In this paper,
  we study the hot X-ray coronae beyond the optical disks of two "normal"
  massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray
  observations, hot gaseous emission is detected to ~60 kpc—well
  beyond their optical radii. The hot gas has a best-fit temperature
  of kT ~ 0.6 keV and an abundance of ~0.1 Solar, and exhibits a
  fairly uniform distribution, suggesting that the quasi-static gas
  resides in hydrostatic equilibrium in the potential well of the
  galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r
  <SUB>200</SUB> region (r <SUB>200</SUB> is the virial radius) is ~6
  × 10<SUP>40</SUP> erg s<SUP>-1</SUP> for both galaxies. The baryon
  mass fractions of NGC 1961 and NGC 6753 are f <SUB>b, NGC 1961</SUB>
  ~ 0.11 and f <SUB>b, NGC 6753</SUB> ~ 0.09, which values fall short of
  the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753
  offer an excellent basis to probe structure formation simulations. To
  this end, the observations are confronted with the moving mesh code
  AREPO and the smoothed particle hydrodynamics code GADGET. Although
  neither model gives a perfect description, the observed luminosities,
  gas masses, and abundances favor the AREPO code. Moreover, the shape
  and the normalization of the observed density profiles are better
  reproduced by AREPO within ~0.5r <SUB>200</SUB>. However, neither
  model incorporates efficient feedback from supermassive black holes or
  supernovae, which could alter the simulated properties of the X-ray
  coronae. With the further advance of numerical models, the present
  observations will be essential in constraining the feedback effects
  in structure formation simulations.

---------------------------------------------------------
Title: X-Ray Analysis of Simulated Clusters
Authors: Rasia, E.; Borgani, S.; Dolag, K.; Ettori, S.; Mazzotta,
   P.; Meneghetti, M.
2013tcec.confE...5R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Hot and Energetic Universe: The evolution of galaxy groups
    and clusters
Authors: Pointecouteau, E.; Reiprich, T. H.; Adami, C.; Arnaud, M.;
   Biffi, V.; Borgani, S.; Borm, K.; Bourdin, H.; Brueggen, M.; Bulbul,
   E.; Clerc, N.; Croston, J. H.; Dolag, K.; Ettori, S.; Finoguenov, A.;
   Kaastra, J.; Lovisari, L.; Maughan, B.; Mazzotta, P.; Pacaud, F.;
   de Plaa, J.; Pratt, G. W.; Ramos-Ceja, M.; Rasia, E.; Sanders, J.;
   Zhang, Y. -Y.; Allen, S.; Boehringer, H.; Brunetti, G.; Elbaz, D.;
   Fassbender, R.; Hoekstra, H.; Hildebrandt, H.; Lamer, G.; Marrone, D.;
   Mohr, J.; Molendi, S.; Nevalainen, J.; Ohashi, T.; Ota, N.; Pierre,
   M.; Romer, K.; Schindler, S.; Schrabback, T.; Schwope, A.; Smith,
   R.; Springel, V.; von der Linden, A.
2013arXiv1306.2319P    Altcode:
  Major astrophysical questions related to the formation and evolution
  of structures, and more specifically of galaxy groups and clusters,
  will still be open in the coming decade and beyond: what is the
  interplay of galaxy, supermassive black hole, and intergalactic gas
  evolution in the most massive objects in the Universe - galaxy groups
  and clusters? What are the processes driving the evolution of chemical
  enrichment of the hot diffuse gas in large-scale structures? How and
  when did the first galaxy groups in the Universe, massive enough to
  bind more than 10^7 K gas, form? Focussing on the period when groups and
  clusters assembled (0.5&lt;z&lt;2.5), we show that, due to the continuum
  and line emission of this hot intergalactic gas at X-ray wavelengths,
  Athena+, combining high sensitivity with excellent spectral and spatial
  resolution, will deliver breakthrough observations in view of the
  aforementioned issues. Indeed, the physical and chemical properties
  of the hot intra-cluster gas, and their evolution across time, are a
  key to understand the co-evolution of galaxy and supermassive black
  hole within their environments.

---------------------------------------------------------
Title: The Hot and Energetic Universe: A White Paper presenting the
    science theme motivating the Athena+ mission
Authors: Nandra, Kirpal; Barret, Didier; Barcons, Xavier; Fabian,
   Andy; den Herder, Jan-Willem; Piro, Luigi; Watson, Mike; Adami,
   Christophe; Aird, James; Afonso, Jose Manuel; Alexander, Dave;
   Argiroffi, Costanza; Amati, Lorenzo; Arnaud, Monique; Atteia, Jean-Luc;
   Audard, Marc; Badenes, Carles; Ballet, Jean; Ballo, Lucia; Bamba,
   Aya; Bhardwaj, Anil; Stefano Battistelli, Elia; Becker, Werner;
   De Becker, Michaël; Behar, Ehud; Bianchi, Stefano; Biffi, Veronica;
   Bîrzan, Laura; Bocchino, Fabrizio; Bogdanov, Slavko; Boirin, Laurence;
   Boller, Thomas; Borgani, Stefano; Borm, Katharina; Bouché, Nicolas;
   Bourdin, Hervé; Bower, Richard; Braito, Valentina; Branchini, Enzo;
   Branduardi-Raymont, Graziella; Bregman, Joel; Brenneman, Laura;
   Brightman, Murray; Brüggen, Marcus; Buchner, Johannes; Bulbul,
   Esra; Brusa, Marcella; Bursa, Michal; Caccianiga, Alessandro;
   Cackett, Ed; Campana, Sergio; Cappelluti, Nico; Cappi, Massimo;
   Carrera, Francisco; Ceballos, Maite; Christensen, Finn; Chu, You-Hua;
   Churazov, Eugene; Clerc, Nicolas; Corbel, Stephane; Corral, Amalia;
   Comastri, Andrea; Costantini, Elisa; Croston, Judith; Dadina, Mauro;
   D'Ai, Antonino; Decourchelle, Anne; Della Ceca, Roberto; Dennerl,
   Konrad; Dolag, Klaus; Done, Chris; Dovciak, Michal; Drake, Jeremy;
   Eckert, Dominique; Edge, Alastair; Ettori, Stefano; Ezoe, Yuichiro;
   Feigelson, Eric; Fender, Rob; Feruglio, Chiara; Finoguenov, Alexis;
   Fiore, Fabrizio; Galeazzi, Massimiliano; Gallagher, Sarah; Gandhi,
   Poshak; Gaspari, Massimo; Gastaldello, Fabio; Georgakakis, Antonis;
   Georgantopoulos, Ioannis; Gilfanov, Marat; Gitti, Myriam; Gladstone,
   Randy; Goosmann, Rene; Gosset, Eric; Grosso, Nicolas; Guedel, Manuel;
   Guerrero, Martin; Haberl, Frank; Hardcastle, Martin; Heinz, Sebastian;
   Alonso Herrero, Almudena; Hervé, Anthony; Holmstrom, Mats; Iwasawa,
   Kazushi; Jonker, Peter; Kaastra, Jelle; Kara, Erin; Karas, Vladimir;
   Kastner, Joel; King, Andrew; Kosenko, Daria; Koutroumpa, Dimita; Kraft,
   Ralph; Kreykenbohm, Ingo; Lallement, Rosine; Lanzuisi, Giorgio; Lee,
   J.; Lemoine-Goumard, Marianne; Lobban, Andrew; Lodato, Giuseppe;
   Lovisari, Lorenzo; Lotti, Simone; McCharthy, Ian; McNamara, Brian;
   Maggio, Antonio; Maiolino, Roberto; De Marco, Barbara; de Martino,
   Domitilla; Mateos, Silvia; Matt, Giorgio; Maughan, Ben; Mazzotta,
   Pasquale; Mendez, Mariano; Merloni, Andrea; Micela, Giuseppina; Miceli,
   Marco; Mignani, Robert; Miller, Jon; Miniutti, Giovanni; Molendi,
   Silvano; Montez, Rodolfo; Moretti, Alberto; Motch, Christian; Nazé,
   Yaël; Nevalainen, Jukka; Nicastro, Fabrizio; Nulsen, Paul; Ohashi,
   Takaya; O'Brien, Paul; Osborne, Julian; Oskinova, Lida; Pacaud,
   Florian; Paerels, Frederik; Page, Mat; Papadakis, Iossif; Pareschi,
   Giovanni; Petre, Robert; Petrucci, Pierre-Olivier; Piconcelli, Enrico;
   Pillitteri, Ignazio; Pinto, C.; de Plaa, Jelle; Pointecouteau, Etienne;
   Ponman, Trevor; Ponti, Gabriele; Porquet, Delphine; Pounds, Ken; Pratt,
   Gabriel; Predehl, Peter; Proga, Daniel; Psaltis, Dimitrios; Rafferty,
   David; Ramos-Ceja, Miriam; Ranalli, Piero; Rasia, Elena; Rau, Arne;
   Rauw, Gregor; Rea, Nanda; Read, Andy; Reeves, James; Reiprich, Thomas;
   Renaud, Matthieu; Reynolds, Chris; Risaliti, Guido; Rodriguez, Jerome;
   Rodriguez Hidalgo, Paola; Roncarelli, Mauro; Rosario, David; Rossetti,
   Mariachiara; Rozanska, Agata; Rovilos, Emmanouil; Salvaterra, Ruben;
   Salvato, Mara; Di Salvo, Tiziana; Sanders, Jeremy; Sanz-Forcada, Jorge;
   Schawinski, Kevin; Schaye, Joop; Schwope, Axel; Sciortino, Salvatore;
   Severgnini, Paola; Shankar, Francesco; Sijacki, Debora; Sim, Stuart;
   Schmid, Christian; Smith, Randall; Steiner, Andrew; Stelzer, Beate;
   Stewart, Gordon; Strohmayer, Tod; Strüder, Lothar; Sun, Ming; Takei,
   Yoh; Tatischeff, V.; Tiengo, Andreas; Tombesi, Francesco; Trinchieri,
   Ginevra; Tsuru, T. G.; Ud-Doula, Asif; Ursino, Eugenio; Valencic,
   Lynne; Vanzella, Eros; Vaughan, Simon; Vignali, Cristian; Vink,
   Jacco; Vito, Fabio; Volonteri, Marta; Wang, Daniel; Webb, Natalie;
   Willingale, Richard; Wilms, Joern; Wise, Michael; Worrall, Diana;
   Young, Andrew; Zampieri, Luca; In't Zand, Jean; Zane, Silvia; Zezas,
   Andreas; Zhang, Yuying; Zhuravleva, Irina
2013arXiv1306.2307N    Altcode:
  This White Paper, submitted to the recent ESA call for science
  themes to define its future large missions, advocates the need for a
  transformational leap in our understanding of two key questions in
  astrophysics: 1) How does ordinary matter assemble into the large
  scale structures that we see today? 2) How do black holes grow and
  shape the Universe? Hot gas in clusters, groups and the intergalactic
  medium dominates the baryonic content of the local Universe. To
  understand the astrophysical processes responsible for the formation
  and assembly of these large structures, it is necessary to measure
  their physical properties and evolution. This requires spatially
  resolved X-ray spectroscopy with a factor 10 increase in both telescope
  throughput and spatial resolving power compared to currently planned
  facilities. Feedback from supermassive black holes is an essential
  ingredient in this process and in most galaxy evolution models, but
  it is not well understood. X-ray observations can uniquely reveal
  the mechanisms launching winds close to black holes and determine the
  coupling of the energy and matter flows on larger scales. Due to the
  effects of feedback, a complete understanding of galaxy evolution
  requires knowledge of the obscured growth of supermassive black
  holes through cosmic time, out to the redshifts where the first
  galaxies form. X-ray emission is the most reliable way to reveal
  accreting black holes, but deep survey speed must improve by a factor
  ~100 over current facilities to perform a full census into the early
  Universe. The Advanced Telescope for High Energy Astrophysics (Athena+)
  mission provides the necessary performance (e.g. angular resolution,
  spectral resolution, survey grasp) to address these questions and
  revolutionize our understanding of the Hot and Energetic Universe. These
  capabilities will also provide a powerful observatory to be used in
  all areas of astrophysics.

---------------------------------------------------------
Title: Planck intermediate results. IX. Detection of the Galactic
    haze with Planck
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella,
   P.; Cardoso, J. -F.; Catalano, A.; Cayón, L.; Chary, R. -R.; Chiang,
   L. -Y.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.;
   Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; D'Arcangelo,
   O.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de
   Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dobler, G.;
   Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard,
   M.; Giardino, G.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.;
   Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.;
   Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.;
   Huffenberger, K. M.; Jaffe, T. R.; Jagemann, T.; Jewell, J.; Jones,
   W. C.; Juvela, M.; Keihänen, E.; Knoche, J.; Knox, L.; Kunz, M.;
   Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri,
   A.; Mendes, L.; Mennella, A.; Mitra, S.; Moneti, A.; Montier, L.;
   Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.;
   Pearson, T. J.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini,
   G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Spencer, L.; Stivoli,
   F.; Sudiwala, R.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Türler,
   M.; Umana, G.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa,
   F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2013A&A...554A.139P    Altcode: 2012arXiv1208.5483P
  Using precise full-sky observations from Planck, and applying several
  methods of component separation, we identify and characterise the
  emission from the Galactic "haze" at microwave wavelengths. The
  haze is a distinct component of diffuse Galactic emission, roughly
  centered on the Galactic centre, and extends to | b | ~ 35-50° in
  Galactic latitude and | l | ~ 15-20° in longitude. By combining the
  Planck data with observations from the Wilkinson Microwave Anisotropy
  Probe, we were able to determine the spectrum of this emission to high
  accuracy, unhindered by the strong systematic biases present in previous
  analyses. The derived spectrum is consistent with power-law emission
  with a spectral index of -2.56 ± 0.05, thus excluding free-free
  emission as the source and instead favouring hard-spectrum synchrotron
  radiation from an electron population with a spectrum (number density
  per energy) dN/dE ∝ E<SUP>-2.1</SUP>. At Galactic latitudes | b | &lt;
  30°, the microwave haze morphology is consistent with that of the Fermi
  gamma-ray "haze" or "bubbles", while at b ~ -50° we have identified an
  edge in the microwave haze that is spatially coincident with the edge
  in the gamma-ray bubbles. Taken together, this indicates that we have
  a multi-wavelength view of a distinct component of our Galaxy. Given
  both the very hard spectrum and the extended nature of the emission,
  it is highly unlikely that the haze electrons result from supernova
  shocks in the Galactic disk. Instead, a new astrophysical mechanism
  for cosmic-ray acceleration in the inner Galaxy is implied.

---------------------------------------------------------
Title: Planck intermediate results. X. Physics of the hot gas in
    the Coma cluster
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bikmaev, I.;
   Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bourdin, H.; Brown, M. L.; Brown, S. D.; Burenin, R.; Burigana, C.;
   Cabella, P.; Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Cayón, L.;
   Chiang, L. -Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements,
   D. L.; Colafrancesco, S.; Colombo, L. P. L.; Coulais, A.; Crill,
   B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davis,
   R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Dickinson,
   C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.;
   Dörl, U.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.;
   Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard,
   M.; Gilfanov, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.;
   Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson,
   M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.;
   Hurier, G.; Jaffe, T. R.; Jagemann, T.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Khamitov, I.; Kneissl, R.; Knoche, J.; Knox, L.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.;
   Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris,
   M.; Marleau, F.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Melchiorri, A.;
   Melin, J. -B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy,
   J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.;
   Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli,
   E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta,
   G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rudnick,
   L.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott,
   D.; Smoot, G. F.; Stivoli, F.; Sudiwala, R.; Sunyaev, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; Türler,
   M.; Umana, G.; Valenziano, L.; Van Tent, B.; Varis, J.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zaroubi, S.; Zonca, A.
2013A&A...554A.140P    Altcode: 2012arXiv1208.3611P
  We present an analysis of Planck satellite data on the Coma
  cluster observed via the Sunyaev-Zeldovich effect. Thanks to its
  great sensitivity, Planck is able, for the first time, to detect
  SZ emission up to r ≈ 3 × R<SUB>500</SUB>. We test previously
  proposed spherically symmetric models for the pressure distribution
  in clusters against the azimuthally averaged data. In particular,
  we find that the Arnaud et al. (2010, A&amp;A, 517, A92) "universal"
  pressure profile does not fit Coma, and that their pressure profile
  for merging systems provides a reasonable fit to the data only at r
  &lt; R<SUB>500</SUB>; by r = 2 × R<SUB>500</SUB> it underestimates
  the observed y profile by a factor of ≃2. This may indicate that at
  these larger radii either: i) the cluster SZ emission is contaminated
  by unresolved SZ sources along the line of sight; or ii) the pressure
  profile of Coma is higher at r &gt; R<SUB>500</SUB> than the mean
  pressure profile predicted by the simulations used to constrain the
  models. The Planck image shows significant local steepening of the
  y profile in two regions about half a degree to the west and to the
  south-east of the cluster centre. These features are consistent with
  the presence of shock fronts at these radii, and indeed the western
  feature was previously noticed in the ROSAT PSPC mosaic as well as
  in the radio. Using Plancky profiles extracted from corresponding
  sectors we find pressure jumps of 4.9<SUB>-0.2</SUB><SUP>+0.4</SUP>
  and 5.0<SUB>-0.1</SUB><SUP>+1.3</SUP> in the west and south-east,
  respectively. Assuming Rankine-Hugoniot pressure jump conditions,
  we deduce that the shock waves should propagate with Mach number
  M<SUB>w</SUB> = 2.03<SUB>-0.04</SUB><SUP>+0.09</SUP> and M<SUB>se</SUB>
  = 2.05<SUB>-0.02</SUB><SUP>+0.25</SUP> in the west and south-east,
  respectively. Finally, we find that the y and radio-synchrotron
  signals are quasi-linearly correlated on Mpc scales, with small
  intrinsic scatter. This implies either that the energy density of
  cosmic-ray electrons is relatively constant throughout the cluster,
  or that the magnetic fields fall off much more slowly with radius than
  previously thought.

---------------------------------------------------------
Title: The pre-launch Planck Sky Model: a model of sky emission at
    submillimetre to centimetre wavelengths
Authors: Delabrouille, J.; Betoule, M.; Melin, J. -B.;
   Miville-Deschênes, M. -A.; Gonzalez-Nuevo, J.; Le Jeune, M.; Castex,
   G.; de Zotti, G.; Basak, S.; Ashdown, M.; Aumont, J.; Baccigalupi,
   C.; Banday, A. J.; Bernard, J. -P.; Bouchet, F. R.; Clements, D. L.;
   da Silva, A.; Dickinson, C.; Dodu, F.; Dolag, K.; Elsner, F.; Fauvet,
   L.; Faÿ, G.; Giardino, G.; Leach, S.; Lesgourgues, J.; Liguori, M.;
   Macías-Pérez, J. F.; Massardi, M.; Matarrese, S.; Mazzotta, P.;
   Montier, L.; Mottet, S.; Paladini, R.; Partridge, B.; Piffaretti,
   R.; Prezeau, G.; Prunet, S.; Ricciardi, S.; Roman, M.; Schaefer, B.;
   Toffolatti, L.
2013A&A...553A..96D    Altcode: 2012arXiv1207.3675D
  We present the Planck Sky Model (PSM), a parametric model for generating
  all-sky, few arcminute resolution maps of sky emission at submillimetre
  to centimetre wavelengths, in both intensity and polarisation. Several
  options are implemented to model the cosmic microwave background,
  Galactic diffuse emission (synchrotron, free-free, thermal and spinning
  dust, CO lines), Galactic H ii regions, extragalactic radio sources,
  dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from
  clusters of galaxies. Each component is simulated by means of educated
  interpolations/extrapolations of data sets available at the time of
  the launch of the Planck mission, complemented by state-of-the-art
  models of the emission. Distinctive features of the simulations
  are spatially varying spectral properties of synchrotron and dust;
  different spectral parameters for each point source; modelling of
  the clustering properties of extragalactic sources and of the power
  spectrum of fluctuations in the cosmic infrared background. The PSM
  enables the production of random realisations of the sky emission,
  constrained to match observational data within their uncertainties. It
  is implemented in a software package that is regularly updated with
  incoming information from observations. The model is expected to serve
  as a useful tool for optimising planned microwave and sub-millimetre
  surveys and testing data processing and analysis pipelines. It is,
  in particular, used to develop and validate data analysis pipelines
  within the Planck collaboration. A version of the software that can
  be used for simulating the observations for a variety of experiments
  is made available on a dedicated website.

---------------------------------------------------------
Title: X-Ray c-M Relation: Theory &amp; Observations
Authors: Rasia, E.; Mazzotta, P.; Borgani, S.; Ettori, S.; Meneghetti,
   M.
2013sncl.confE..15R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Lensing Analysis of Simulated Galaxy Clusters
Authors: Meneghetti, M.; Rasia, E.; Giocoli, C.; Vega, J.; Ettori,
   S.; Mazzotta, P.; Borgani, S.; Killedar, M.; Carrasco, M.; Coe, D.;
   Merten, J.; Melchior, P.
2013sncl.confE..51M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Planck Results on the Coma Cluster
Authors: Mazzotta, P.
2013sncl.confE..97M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Observations of Radio Minihalos in Sloshing Cool Cores
Authors: Giacintucci, S.; Markevitch, M.; Clarke, T.; Venturi, T.;
   Brunetti, G.; Cassano, R.; Mazzotta, P.; ZuHone, J.; Kale, R.
2013sncl.confE..38G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Planck intermediate results. III. The relation between galaxy
    cluster mass and Sunyaev-Zeldovich signal
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi,
   C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.;
   Battaner, E.; Battye, R.; Benabed, K.; Bernard, J. -P.; Bersanelli,
   M.; Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.;
   Borgani, S.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.;
   Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cabella, P.;
   Cardoso, J. -F.; Carvalho, P.; Chamballu, A.; Chiang, L. -Y.; Chon,
   G.; Clements, D. L.; Colafrancesco, S.; Coulais, A.; Cuttaia, F.;
   Da Silva, A.; Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.;
   Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert,
   M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.;
   Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Huffenberger, K. M.; Hurier, G.; Jagemann, T.; Juvela, M.; Keihänen,
   E.; Khamitov, I.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Luzzi, G.; Macías-Pérez,
   J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall,
   D. J.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mitra, S.; Miville-Deschênes, M. -A.; Montier, L.; Morgante,
   G.; Munshi, D.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.;
   Osborne, S.; Pajot, F.; Paoletti, D.; Partridge, B.; Pearson, T. J.;
   Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.;
   Piffaretti, R.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu,
   N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.;
   Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott,
   D.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev,
   R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano,
   L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.;
   Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2013A&A...550A.129P    Altcode: 2012arXiv1204.2743P; 2013A&A...550A.129A
  We examine the relation between the galaxy cluster mass M and
  Sunyaev-Zeldovich (SZ) effect signal D<SUB>A</SUB><SUP>2</SUP>
  Y<SUB>500</SUB> for a sample of 19 objects for which weak lensing (WL)
  mass measurements obtained from Subaru Telescope data are available in
  the literature. Hydrostatic X-ray masses are derived from XMM-Newton
  archive data, and the SZ effect signal is measured from Planck all-sky
  survey data. We find an M<SUB>WL</SUB> - D<SUB>A</SUB><SUP>2</SUP>
  Y<SUB>500</SUB> relation that is consistent in slope and normalisation
  with previous determinations using weak lensing masses; however,
  there is a normalisation offset with respect to previous measures
  based on hydrostatic X-ray mass-proxy relations. We verify
  that our SZ effect measurements are in excellent agreement with
  previous determinations from Planck data. For the present sample,
  the hydrostatic X-ray masses at R<SUB>500</SUB> are on average ~ 20
  percent larger than the corresponding weak lensing masses, which is
  contrary to expectations. We show that the mass discrepancy is driven
  by a difference in mass concentration as measured by the two methods
  and, for the present sample, that the mass discrepancy and difference
  in mass concentration are especially large for disturbed systems. The
  mass discrepancy is also linked to the offset in centres used by the
  X-ray and weak lensing analyses, which again is most important in
  disturbed systems. We outline several approaches that are needed to
  help achieve convergence in cluster mass measurement with X-ray and
  weak lensing observations. <P />Appendices are available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. II. Comparison of
    Sunyaev-Zeldovich measurements from Planck and from the Arcminute
    Microkelvin Imager for 11 galaxy clusters
Authors: Planck Collaboration; AMI Collaboration; Ade, P. A. R.;
   Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.;
   Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Battye, R.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.;
   Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Bucher, M.; Burenin, R.;
   Burigana, C.; Butler, R. C.; Cabella, P.; Carvalho, P.; Catalano, A.;
   Cayón, L.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.; Chon, G.;
   Clements, D. L.; Colafrancesco, S.; Colombi, S.; Coulais, A.; Crill,
   B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davies, R. D.; Davis,
   R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Dickinson, C.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Finelli,
   F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski,
   K. M.; Grainge, K. J. B.; Gregorio, A.; Gruppuso, A.; Hansen,
   F. K.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jagemann,
   T.; Juvela, M.; Keihänen, E.; Khamitov, I.; Kneissl, R.; Knoche, J.;
   Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby,
   A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle,
   A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Luzzi,
   G.; Macías-Pérez, J. F.; MacTavish, C. J.; Maino, D.; Mandolesi,
   N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta,
   P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.;
   Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.; Montier, L.;
   Morgante, G.; Munshi, D.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen,
   H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Osborne,
   S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson,
   T. J.; Perdereau, O.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.;
   Pierpaoli, E.; Platania, P.; Pointecouteau, E.; Polenta, G.; Popa, L.;
   Poutanen, T.; Pratt, G. W.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.;
   Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli,
   I.; Rocha, G.; Rodríguez-Gonzálvez, C.; Rosset, C.; Rossetti, M.;
   Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Saunders,
   R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Shimwell, T. W.;
   Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Sudiwala,
   R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio,
   N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2013A&A...550A.128P    Altcode: 2012arXiv1204.1318P; 2013A&A...550A.128A
  A comparison is presented of Sunyaev-Zeldovich measurements for
  11 galaxy clusters as obtained by Planck and by the ground-based
  interferometer, the Arcminute Microkelvin Imager. Assuming a universal
  spherically-symmetric Generalised Navarro, Frenk and White (GNFW)
  model for the cluster gas pressure profile, we jointly constrain the
  integrated Compton-Y parameter (Y<SUB>500</SUB>) and the scale radius
  (θ<SUB>500</SUB>) of each cluster. Our resulting constraints in
  the Y<SUB>500</SUB> - θ<SUB>500</SUB> 2D parameter space derived
  from the two instruments overlap significantly for eight of the
  clusters, although, overall, there is a tendency for AMI to find the
  Sunyaev-Zeldovich signal to be smaller in angular size and fainter
  than Planck. Significant discrepancies exist for the three remaining
  clusters in the sample, namely A1413, A1914, and the newly-discovered
  Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis
  of both the Planck and AMI data is demonstrated through the use of
  detailed simulations, which also discount confusion from residual
  point (radio) sources and from diffuse astrophysical foregrounds
  as possible explanations for the discrepancies found. For a subset
  of our cluster sample, we have investigated the dependence of our
  results on the assumed pressure profile by repeating the analysis
  adopting the best-fitting GNFW profile shape which best matches X-ray
  observations. Adopting the best-fitting profile shape from the X-ray
  data does not, in general, resolve the discrepancies found in this
  subset of five clusters. Though based on a small sample, our results
  suggest that the adopted GNFW model may not be sufficiently flexible
  to describe clusters universally.

---------------------------------------------------------
Title: Planck intermediate results. IV. The XMM-Newton validation
    programme for new Planck galaxy clusters
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bikmaev, I.; Böhringer, H.;
   Bonaldi, A.; Bond, J. R.; Borgani, S.; Borrill, J.; Bouchet, F. R.;
   Brown, M. L.; Burigana, C.; Butler, R. C.; Cabella, P.; Carvalho,
   P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R. -R.; Chiang,
   L. -Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco,
   S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.;
   Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.;
   Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.;
   Ganga, K.; Génova-Santos, R. T.; Giraud-Héraud, Y.; González-Nuevo,
   J.; González-Riestra, R.; Górski, K. M.; Gregorio, A.; Gruppuso,
   A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger,
   K. M.; Hurier, G.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela,
   M.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Luzzi, G.; Macías-Pérez,
   J. F.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.;
   Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.;
   Melin, J. -B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky,
   P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.;
   Osborne, S.; Pajot, F.; Paoletti, D.; Perdereau, O.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski,
   S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Rocha, G.; Rosset, C.; Rossetti, M.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott,
   D.; Smoot, G. F.; Stanford, A.; Stivoli, F.; Sudiwala, R.; Sunyaev,
   R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano,
   L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Welikala, N.; Weller, J.; White, S. D. M.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2013A&A...550A.130P    Altcode: 2012arXiv1205.3376P; 2013A&A...550A.130A
  We present the final results from the XMM-Newton validation follow-up of
  new Planck galaxy cluster candidates. We observed 15 new candidates,
  detected with signal-to-noise ratios between 4.0 and 6.1 in the
  15.5-month nominal Planck survey. The candidates were selected using
  ancillary data flags derived from the ROSAT All Sky Survey (RASS)
  and Digitized Sky Survey all-sky maps, with the aim of pushing into
  the low SZ flux, high-z regime and testing RASS flags as indicators
  of candidate reliability. Fourteen new clusters were detected by
  XMM-Newton, ten single clusters and two double systems. Redshifts from
  X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters
  at z &gt; 0.5. Estimated masses (M<SUB>500</SUB>) range from 2.5 ×
  10<SUP>14</SUP> to 8 × 10<SUP>14</SUP> M<SUB>⊙</SUB>. We discuss
  our results in the context of the full XMM-Newton validation programme,
  in which 51 new clusters have been detected. This includes four double
  and two triple systems, some of which are chance projections on the
  sky of clusters at different redshifts. We find thatassociation with
  a source from the RASS-Bright Source Catalogue is a robust indicator
  of the reliability of a candidate, whereas association with a source
  from the RASS-Faint Source Catalogue does not guarantee that the SZ
  candidate is a bona fide cluster. Nevertheless, most Planck clusters
  appear in RASS maps, with a significance greater than 2σ being
  a good indication that the candidate is a real cluster. Candidate
  validation from association with SDSS galaxy overdensity at z &gt;
  0.5 is also discussed. The full sample gives a Planck sensitivity
  threshold of Y<SUB>500</SUB> ~ 4 × 10<SUP>-4</SUP> arcmin<SUP>2</SUP>,
  with indication for Malmquist bias in the Y<SUB>X</SUB>-Y<SUB>500</SUB>
  relation below this threshold. The corresponding mass threshold depends
  on redshift. Systems with M<SUB>500</SUB> &gt; 5 × 10<SUP>14</SUP>
  M<SUB>⊙</SUB> at z &gt; 0.5 are easily detectable with Planck. The
  newly-detected clusters follow the Y<SUB>X</SUB>-Y<SUB>500</SUB>
  relation derived from X-ray selected samples. Compared to X-ray selected
  clusters, the new SZ clusters have a lower X-ray luminosity on average
  for their mass. There is no indication of departure from standard
  self-similar evolution in the X-ray versus SZ scaling properties. In
  particular, there is no significant evolution of the Y<SUB>X</SUB> /
  Y<SUB>500</SUB> ratio.

---------------------------------------------------------
Title: Planck intermediate results. VII. Statistical properties of
    infrared and radio extragalactic sources from the Planck Early Release
    Compact Source Catalogue at frequencies between 100 and 857 GHz
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.;
   Argüeso, F.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont,
   J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.;
   Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli,
   M.; Bethermin, M.; Bhatia, R.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Catalano,
   A.; Cayón, L.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.;
   Colombo, L. P. L.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese,
   L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.;
   Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.;
   Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin,
   T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Hobson, M.; Holmes, W. A.; Jaffe, T. R.; Jaffe, A. H.; Jagemann,
   T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Knox, L.; Kunz, M.; Kurinsky, N.; Kurki-Suonio,
   H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.;
   Lawrence, C. R.; Leonardi, R.; Lilje, P. B.; López-Caniego, M.;
   Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall,
   D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese,
   S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschènes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati,
   F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Paoletti, D.;
   Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach,
   W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller,
   T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.; Savini,
   G.; Scott, D.; Smoot, G. F.; Starck, J. -L.; Sudiwala, R.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Van
   Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2013A&A...550A.133P    Altcode: 2012arXiv1207.4706P; 2013A&A...550A.133A
  We make use of the Planck all-sky survey to derive number counts and
  spectral indices of extragalactic sources - infrared and radio sources -
  from the Planck Early Release Compact Source Catalogue (ERCSC) at 100
  to 857 GHz (3 mm to 350 μm). Three zones (deep, medium and shallow)
  of approximately homogeneous coverage are used to permit a clean and
  controlled correction for incompleteness, which was explicitly not done
  for the ERCSC, as it was aimed at providing lists of sources to be
  followed up. Our sample, prior to the 80% completeness cut, contains
  between 217 sources at 100 GHz and 1058 sources at 857 GHz over about
  12 800 to 16 550 deg<SUP>2</SUP> (31 to 40% of the sky). After the
  80% completeness cut, between 122 and 452 and sources remain, with
  flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so
  defined can be used for statistical analysis. Using the multi-frequency
  coverage of the Planck High Frequency Instrument, all the sources
  have been classified as either dust-dominated (infrared galaxies) or
  synchrotron-dominated (radio galaxies) on the basis of their spectral
  energy distributions (SED). Our sample is thus complete, flux-limited
  and color-selected to differentiate between the two populations. We
  find an approximately equal number of synchrotron and dusty sources
  between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower)
  frequencies, the number is dominated by dusty (synchrotron) sources,
  as expected. For most of the sources, the spectral indices are also
  derived. We provide for the first time counts of bright sources from 353
  to 857 GHz and the contributions from dusty and synchrotron sources at
  all HFI frequencies in the key spectral range where these spectra are
  crossing. The observed counts are in the Euclidean regime. The number
  counts are compared to previously published data (from earlier Planck
  results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking
  into account both radio or infrared galaxies, and covering a large range
  of flux densities. We derive the multi-frequency Euclidean level - the
  plateau in the normalised differential counts at high flux-density -
  and compare it to WMAP, Spitzer and IRAS results. The submillimetre
  number counts are not well reproduced by current evolution models
  of dusty galaxies, whereas the millimetre part appears reasonably
  well fitted by the most recent model for synchrotron-dominated
  sources. Finally we provide estimates of the local luminosity density
  of dusty galaxies, providing the first such measurements at 545
  and 857 GHz. <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org">http://www.aanda.org</A>Corresponding
  author: herve.dole@ias.u-psud.fr

---------------------------------------------------------
Title: Planck intermediate results. VI. The dynamical structure of
    PLCKG214.6+37.0, a Planck discovered triple system of galaxy clusters
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;
   Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.;
   Bhatia, R.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana,
   C.; Cabella, P.; Cardoso, J. -F.; Castex, G.; Catalano, A.; Cayón,
   L.; Chamballu, A.; Chiang, L. -Y.; Chon, G.; Christensen, P. R.;
   Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.;
   Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.;
   Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis,
   G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.;
   Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.;
   Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov,
   M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio,
   A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Heinämäki, P.; Hempel,
   A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hurier, G.;
   Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.;
   Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi,
   R.; Lilje, P. B.; López-Caniego, M.; Luzzi, G.; Macías-Pérez,
   J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall,
   D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese,
   S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.; Mendes,
   L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.;
   Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.;
   Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paoletti, D.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.;
   Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen,
   T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo,
   R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller,
   T.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.;
   Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott,
   D.; Smoot, G. F.; Starck, J. -L.; Sudiwala, R.; Sunyaev, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; Valenziano,
   L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Welikala, N.; Yvon, D.; Zacchei, A.; Zaroubi, S.;
   Zonca, A.
2013A&A...550A.132P    Altcode: 2012arXiv1207.4009P; 2013A&A...550A.132A
  The survey of galaxy clusters performed by Planck through the
  Sunyaev-Zeldovich effect has already discovered many interesting
  objects, thanks to its full sky coverage. One of the SZ candidates
  detected inthe early months of the mission near to the signal-to-noise
  threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to
  be a triple system of galaxy clusters. We present the results
  from a deep XMM-Newton re-observation of PLCKG214.6+37.0, part
  of a multi-wavelength programme to investigate Planck discovered
  superclusters. The characterisation of the physical properties of the
  three components has allowed us to build a template model to extract
  the total SZ signal of this system with Planck data. We have partly
  reconciled the discrepancy between the expected SZ signal derived from
  X-rays and the observed one, which are now consistent within 1.2σ. We
  measured the redshift of the three components with the iron lines in
  the X-ray spectrum, and confirm that the three clumps are likely part
  of the same supercluster structure. The analysis of the dynamical
  state of the three components, as well as the absence of detectable
  excess X-ray emission, suggests that we are witnessing the formation
  of a massive cluster at an early phase of interaction.

---------------------------------------------------------
Title: Shock Heating of the Merging Galaxy Cluster A521
Authors: Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.;
   Brunetti, G.
2013ApJ...764...82B    Altcode: 2013arXiv1302.0696B
  A521 is an interacting galaxy cluster located at z = 0.247, hosting a
  low-frequency radio halo connected to an eastern radio relic. Previous
  Chandra observations hinted at the presence of an X-ray brightness edge
  at the position of the relic, which may be a shock front. We analyze a
  deep observation of A521 recently performed with XMM-Newton in order to
  probe the cluster structure up to the outermost regions covered by the
  radio emission. The cluster atmosphere exhibits various brightness and
  temperature anisotropies. In particular, two cluster cores appear to
  be separated by two cold fronts. We find two shock fronts, one that was
  suggested by Chandra and that is propagating to the east, and another to
  the southwestern cluster outskirt. The two main interacting clusters
  appear to be separated by a shock-heated region, which exhibits a
  spatial correlation with the radio halo. The outer edge of the radio
  relic coincides spatially with a shock front, suggesting that this
  shock is responsible for the generation of cosmic-ray electrons in the
  relic. The propagation direction and Mach number of the shock front
  derived from the gas density jump, M = 2.4 ± 0.2, are consistent with
  expectations from the radio spectral index, under the assumption of
  Fermi I acceleration mechanism.

---------------------------------------------------------
Title: Planck intermediate results. V. Pressure profiles of galaxy
    clusters from the Sunyaev-Zeldovich effect
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;
   Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia,
   R.; Bikmaev, I.; Bobin, J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.;
   Borgani, S.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.;
   Burenin, R.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Carvalho,
   P.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.; Chiang,
   L. -Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements,
   D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Comis,
   B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.;
   Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi,
   E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel,
   A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hurier, G.;
   Jaffe, T. R.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juvela, M.;
   Keihänen, E.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.;
   Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.;
   Leonardi, R.; Liddle, A.; Lilje, P. B.; López-Caniego, M.; Luzzi, G.;
   Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau,
   F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. -B.;
   Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.;
   Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen,
   H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.;
   Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti,
   R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.;
   Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Smoot, G. F.;
   Starck, J. -L.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski,
   A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Van Tent, B.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Welikala, N.; White, S. D. M.; White, M.; Yvon, D.; Zacchei,
   A.; Zonca, A.
2013A&A...550A.131P    Altcode: 2013A&A...550A.131A; 2012arXiv1207.4061P
  Taking advantage of the all-sky coverage and broadfrequency range
  of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and
  pressure profiles of 62 nearby massive clusters detected at high
  significance in the 14-month nominal survey. Careful reconstruction of
  the SZ signal indicates that most clusters are individually detected
  at least out to R<SUB>500</SUB>. By stacking the radial profiles,
  we have statistically detected the radial SZ signal out to 3 ×
  R<SUB>500</SUB>, i.e., at a density contrast of about 50-100, though
  the dispersion about the mean profile dominates the statistical
  errors across the whole radial range. Our measurement is fully
  consistent with previous Planck results on integrated SZ fluxes,
  further strengthening the agreement between SZ and X-ray measurements
  inside R<SUB>500</SUB>. Correcting for the effects of the Planck
  beam, we have calculated the corresponding pressure profiles. This
  new constraint from SZ measurements is consistent with the X-ray
  constraints from XMM-Newton in the region in which the profiles overlap
  (i.e., [0.1-1] R<SUB>500</SUB>), and is in fairly good agreement with
  theoretical predictions within the expected dispersion. At larger
  radii the average pressure profile is slightly flatter than most
  predictions from numerical simulations. Combining the SZ and X-ray
  observed profiles into a joint fit to a generalised pressure profile
  gives best-fit parameters [P<SUB>0</SUB>,c<SUB>500</SUB>,γ,α,β ]
  = [6.41,1.81,0.31,1.33,4.13 ] . Using a reasonable hypothesis for
  the gas temperature in the cluster outskirts we reconstruct from
  our stacked pressure profile the gas mass fraction profile out to 3
  R<SUB>500</SUB>. Within the temperature driven uncertainties, our Planck
  constraints are compatible with the cosmic baryon fraction and expected
  gas fraction in halos. <P />Appendices are available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck intermediate results. VIII. Filaments between
    interacting clusters
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.;
   Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, J. G. Bartlett E.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.;
   Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Cabella, P.;
   Cardoso, J. -F.; Castex, G.; Catalano, A.; Cayón, L.; Chamballu, A.;
   Chary, R. -R.; Chiang, L. -Y.; Chon, G.; Christensen, P. R.; Clements,
   D. L.; Colafrancesco, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.;
   Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis,
   P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.;
   Désert, F. -X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.;
   Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin,
   T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.;
   Frailis, M.; Franceschi, E.; Frommert, M.; Ganga, K.; Génova-Santos,
   T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison,
   D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jagemann,
   T.; Jones, W. C.; Juvela, M.; Khamitov, I.; Kisner, T. S.; Kneissl,
   R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.;
   Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi,
   R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Luzzi, G.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi,
   N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei,
   S.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschènes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Osborne, S.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.;
   Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.;
   Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.;
   Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott,
   D.; Smoot, G. F.; Starck, J. -L.; Sudiwala, R.; Sunyaev, R.; Sutton,
   D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano,
   L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Welikala, N.; White, S. D. M.; Yvon, D.; Zacchei,
   A.; Zonca, A.
2013A&A...550A.134P    Altcode: 2013A&A...550A.134A; 2012arXiv1208.5911P
  Context. About half of the baryons of the Universe are expected to
  be in the form of filaments of hot and low-density intergalactic
  medium. Most of these baryons remain undetected even by the most
  advanced X-ray observatories, which are limited in sensitivity to
  the diffuse low-density medium. <BR /> Aims: The Planck satellite
  has provided hundreds of detections of the hot gas in clusters of
  galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an
  ideal instrument for studying extended low-density media through
  the tSZ effect. In this paper we use the Planck data to search for
  signatures of a fraction of these missing baryons between pairs of
  galaxy clusters. <BR /> Methods: Cluster pairs are good candidates for
  searching for the hotter and denser phase of the intergalactic medium
  (which is more easily observed through the SZ effect). Using an X-ray
  catalogue of clusters and the Planck data, we selected physical pairs of
  clusters as candidates. Using the Planck data, we constructed a local
  map of the tSZ effect centred on each pair of galaxy clusters. ROSAT
  data were used to construct X-ray maps of these pairs. After modelling
  and subtracting the tSZ effect and X-ray emission for each cluster in
  the pair, we studied the residuals on both the SZ and X-ray maps. <BR
  /> Results: For the merging cluster pair A399-A401 we observe a
  significant tSZ effect signal in the intercluster region beyond the
  virial radii of the clusters. A joint X-ray SZ analysis allows us to
  constrain the temperature and density of this intercluster medium. We
  obtain a temperature of kT = 7.1 ± 0.9 keV (consistent with previous
  estimates) and a baryon density of (3.7 ± 0.2) × 10<SUP>-4</SUP>
  cm<SUP>-3</SUP>. <BR /> Conclusions: The Planck satellite mission has
  provided the first SZ detection of the hot and diffuse intercluster gas.

---------------------------------------------------------
Title: Testing Galaxy Formation Models: Characterizing Extended Hot
    X-ray Coronae Around Massive Spiral Galaxies
Authors: Bogdan, Akos; Forman, W. R.; Bourdin, H.; Crain, R. A.;
   Sijacki, D.; Vogelsberger, M.; Kraft, R. P.; Jones, C.; David, L. P.;
   Churazov, E.; Gilfanov, M.; Mazzotta, P.
2013AAS...22131306B    Altcode:
  The presence of hot gaseous coronae in the dark matter halos of massive
  galaxies is a basic prediction of galaxy formation models. Theoretical
  models predict copious X-ray emission at large radii around massive
  spiral galaxies. We have studied two galaxies, NGC1961 and NGC6753,
  that are optically luminous and massive, with moderate star formation
  rates, and that can be probed to sufficiently large radii. For these
  two galaxies we detect emission with sufficient counts to measure
  X-ray gas temperatures and gas abundances. Hence, for the first time,
  we are able to characterize the properties - X-ray luminosity, gas
  temperature, elemental abundance, gas density, and gas mass - of hot
  coronae in normal spiral galaxies.

---------------------------------------------------------
Title: Observational Evidences of a Clear Connection Between Radio
    Mini-Halos and Core Gas Sloshing in Clusters of Galaxies
Authors: Mazzotta, Pasquale
2013cfgc.confE...8M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A comparison of algorithms for the construction of SZ cluster
    catalogues
Authors: Melin, J. -B.; Aghanim, N.; Bartelmann, M.; Bartlett, J. G.;
   Betoule, M.; Bobin, J.; Carvalho, P.; Chon, G.; Delabrouille, J.;
   Diego, J. M.; Harrison, D. L.; Herranz, D.; Hobson, M.; Kneissl, R.;
   Lasenby, A. N.; Le Jeune, M.; Lopez-Caniego, M.; Mazzotta, P.; Rocha,
   G. M.; Schaefer, B. M.; Starck, J. -L.; Waizmann, J. C.; Yvon, D.
2012A&A...548A..51M    Altcode: 2012arXiv1210.1416M
  We evaluate the construction methodology of an all-sky catalogue
  of galaxy clusters detected through the Sunyaev-Zel'dovich (SZ)
  effect. We perform an extensive comparison of twelve algorithms applied
  to the same detailed simulations of the millimeter and submillimeter
  sky based on a Planck-like case. We present the results of this "SZ
  Challenge" in terms of catalogue completeness, purity, astrometric
  and photometric reconstruction. Our results provide a comparison of
  a representative sample of SZ detection algorithms and highlight
  important issues in their application. In our study case, we show
  that the exact expected number of clusters remains uncertain (about
  a thousand cluster candidates at |b| &gt; 20 deg with 90% purity) and
  that it depends on the SZ model and on the detailed sky simulations,
  and on algorithmic implementation of the detection methods. We also
  estimate the astrometric precision of the cluster candidates which
  is found of the order of ~2 arcmin on average, and the photometric
  uncertainty of about 30%, depending on flux.

---------------------------------------------------------
Title: ORIGIN: metal creation and evolution from the cosmic dawn
Authors: den Herder, Jan-Willem; Piro, Luigi; Ohashi, Takaya;
   Kouveliotou, Chryssa; Hartmann, Dieter H.; Kaastra, Jelle S.; Amati,
   L.; Andersen, M. I.; Arnaud, M.; Attéia, J. -L.; Bandler, S.;
   Barbera, M.; Barcons, X.; Barthelmy, S.; Basa, S.; Basso, S.; Boer,
   M.; Branchini, E.; Branduardi-Raymont, G.; Borgani, S.; Boyarsky, A.;
   Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Butler, N.; Campana,
   S.; Caroli, E.; Ceballos, M.; Christensen, F.; Churazov, E.; Comastri,
   A.; Colasanti, L.; Cole, R.; Content, R.; Corsi, A.; Costantini, E.;
   Conconi, P.; Cusumano, G.; de Plaa, J.; De Rosa, A.; Del Santo, M.;
   Di Cosimo, S.; De Pasquale, M.; Doriese, R.; Ettori, S.; Evans, P.;
   Ezoe, Y.; Ferrari, L.; Finger, H.; Figueroa-Feliciano, T.; Friedrich,
   P.; Fujimoto, R.; Furuzawa, A.; Fynbo, J.; Gatti, F.; Galeazzi, M.;
   Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Gilfanov, M.;
   Giommi, P.; Girardi, M.; Grindlay, J.; Cocchi, M.; Godet, O.; Guedel,
   M.; Haardt, F.; den Hartog, R.; Hepburn, I.; Hermsen, W.; Hjorth, J.;
   Hoekstra, H.; Holland, A.; Hornstrup, A.; van der Horst, A.; Hoshino,
   A.; in't Zand, J.; Irwin, K.; Ishisaki, Y.; Jonker, P.; Kitayama, T.;
   Kawahara, H.; Kawai, N.; Kelley, R.; Kilbourne, C.; de Korte, P.;
   Kusenko, A.; Kuvvetli, I.; Labanti, M.; Macculi, C.; Maiolino, R.;
   Hesse, M. Mas; Matsushita, K.; Mazzotta, P.; McCammon, D.; Méndez,
   M.; Mignani, R.; Mineo, T.; Mitsuda, K.; Mushotzky, R.; Molendi, S.;
   Moscardini, L.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne,
   J.; Paerels, F.; Page, M.; Paltani, S.; Pedersen, K.; Perinati, E.;
   Ponman, T.; Pointecouteau, E.; Predehl, P.; Porter, S.; Rasmussen, A.;
   Rauw, G.; Röttgering, H.; Roncarelli, M.; Rosati, P.; Quadrini, E.;
   Ruchayskiy, O.; Salvaterra, R.; Sasaki, S.; Sato, K.; Savaglio, S.;
   Schaye, J.; Sciortino, S.; Shaposhnikov, M.; Sharples, R.; Shinozaki,
   K.; Spiga, D.; Sunyaev, R.; Suto, Y.; Takei, Y.; Tanvir, N.; Tashiro,
   M.; Tamura, T.; Tawara, Y.; Troja, E.; Tsujimoto, M.; Tsuru, T.;
   Ubertini, P.; Ullom, J.; Ursino, E.; Verbunt, F.; van de Voort, F.;
   Viel, M.; Wachter, S.; Watson, D.; Weisskopf, M.; Werner, N.; White,
   N.; Willingale, R.; Wijers, R.; Yamasaki, N.; Yoshikawa, K.; Zane, S.
2012ExA....34..519D    Altcode: 2011ExA...tmp...50D; 2011arXiv1104.2048D; 2011ExA...tmp...20D;
   2011ExA...tmp...30D
  ORIGIN is a proposal for the M3 mission call of ESA aimed at the study
  of metal creation from the epoch of cosmic dawn. Using high-spectral
  resolution in the soft X-ray band, ORIGIN will be able to identify
  the physical conditions of all abundant elements between C and Ni to
  red-shifts of z = 10, and beyond. The mission will answer questions
  such as: When were the first metals created? How does the cosmic metal
  content evolve? Where do most of the metals reside in the Universe? What
  is the role of metals in structure formation and evolution? To reach
  out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to
  study their local environments in their host galaxies. This requires
  the capability to slew the satellite in less than a minute to the
  GRB location. By studying the chemical composition and properties
  of clusters of galaxies we can extend the range of exploration to
  lower redshifts ( z ∼0.2). For this task we need a high-resolution
  spectral imaging instrument with a large field of view. Using the
  same instrument, we can also study the so far only partially detected
  baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense
  part of the WHIM will be studied using absorption lines at low redshift
  in the spectra for GRBs. The ORIGIN mission includes a Transient Event
  Detector (coded mask with a sensitivity of 0.4 photon/cm<SUP>2</SUP>/s
  in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over
  a five year mission, of which ∼65 GRBs have a redshift &gt;7. The
  Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV,
  a field of view of 30 arcmin and large effective area below 1 keV
  has the sensitivity to study clusters up to a significant fraction
  of the virial radius and to map the denser parts of the WHIM (factor
  30 higher than achievable with current instruments). The payload is
  complemented by a Burst InfraRed Telescope to enable onboard red-shift
  determination of GRBs (hence securing proper follow up of high-z bursts)
  and also probes the mildly ionized state of the gas. Fast repointing is
  achieved by a dedicated Controlled Momentum Gyro and a low background
  is achieved by the selected low Earth orbit.

---------------------------------------------------------
Title: X-ray concentration-mass relation: theory and observations
Authors: Rasia, Elena; Meneghetti, Massimo; Mazzotta; Ettori, Stefano;
   Borgani, Stefano
2012hcxa.confE..53R    Altcode:
  The concentration-mass relation represents a valuable tool to constrain
  cosmological parameters such as matter density and sigma_8. In the
  last few years, X-ray data led to the conclusion that the observed
  relation has higher normalization and slope than those predicted
  by dark matter only simulations. In this work, we explore whether
  this disagreement is real or artificially due to an unfair comparison
  between the two approaches. To this purpose, we consider ~50 clusters
  simulated by progressively increasing the simulation complexity:
  (i) dark-matter only, (ii) non-radiative hydrodynamics, (iii) adding
  cooling, star-formation and feedback by Supernovae, (iv) adding
  feedback by AGN. We produced X-ray synthetic catalogues to derive the
  concentration-mass relation following an observational approach. We find
  that even if cooling has the effect of steepening the concentration-
  mass relation with respect to the DM-only simulations, the introduction
  of AGN makes this difference small. A larger variation is expected when
  reducing the radial range over which density profiles are fitted to a
  NFW profile. In particular if the external radius is about half R500
  the slope can double its value. Therefore, observations, suffering from
  background contamination, are more inclined to detect a steeper c-M
  relations. Finally, we analyze the effect of X-ray selection function
  using an X-ray synthetic catalogue. We conclude by indicating the best
  strategy to follow to conduct a fair theory-observation comparison
  and to lead an observational campaign.

---------------------------------------------------------
Title: PSM: Planck Sky Model
Authors: Ashdown, Mark; Aumont, Jonathan; Baccigalupi, Carlo; Banday,
   Anthony; Basak, Soumen; Bernard, Jean-Philippe; Betoule, Marc; Bouchet,
   François; Castex, Guillaume; Clements, Dave; Da Silva, Antonio;
   De Zotti, Gianfranco; Delabrouille, Jacques; Dickinson, Clive; Dodu,
   Fabrice; Dolag, Klaus; Elsner, Franz; Fauvet, Lauranne; Faÿ, Gilles;
   Giardino, Giovanna; Gonzalez-Nuevo, Joaquin; le Jeune, Maude; Leach,
   Samuel; Lesgourgues, Julien; Liguori, Michele; Macias, Juan; Massardi,
   Marcella; Matarrese, Sabino; Mazzotta, Pasquale; Melin, Jean-Baptiste;
   Miville-Deschênes, Marc-Antoine; Montier, Ludovic; Mottet, Sylvain;
   Paladini, Roberta; Partridge, Bruce; Piffaretti, Rocco; Prézeau,
   Gary; Prunet, Simon; Ricciardi, Sara; Roman, Matthieu; Schaefer,
   Bjorn; Toffolatti, Luigi
2012ascl.soft08005A    Altcode:
  The Planck Sky Model (PSM) is a global representation of the
  multi-component sky at frequencies ranging from a few GHz to a few
  THz. It summarizes in a synthetic way as much of our present knowledge
  as possible of the GHz sky. PSM is a complete and versatile set of
  programs and data that can be used for the simulation or the prediction
  of sky emission in the frequency range of typical CMB experiments, and
  in particular of the Planck sky mission. It was originally developed
  as part of the activities of Planck component separation Working Group
  (or "Working Group 2" - WG2), and of the ADAMIS team at APC. <P />PSM
  gives users the opportunity to investigate the model in some depth:
  look at its parameters, visualize its predictions for all individual
  components in various formats, simulate sky emission compatible with
  a given parameter set, and observe the modeled sky with a synthetic
  instrument. In particular, it makes possible the simulation of sky
  emission maps as could be plausibly observed by Planck or other CMB
  experiments that can be used as inputs for the development and testing
  of data processing and analysis techniques.

---------------------------------------------------------
Title: LoCuSS: The Sunyaev-Zel'dovich Effect and Weak-lensing Mass
    Scaling Relation
Authors: Marrone, Daniel P.; Smith, Graham P.; Okabe, Nobuhiro;
   Bonamente, Massimiliano; Carlstrom, John E.; Culverhouse, Thomas L.;
   Gralla, Megan; Greer, Christopher H.; Hasler, Nicole; Hawkins, David;
   Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.;
   Martino, Rossella; Mazzotta, Pasquale; Miller, Amber; Mroczkowski,
   Tony; Muchovej, Stephen; Plagge, Thomas; Pryke, Clem; Sanderson,
   Alastair J. R.; Takada, Masahiro; Woody, David; Zhang, Yuying
2012ApJ...754..119M    Altcode: 2011arXiv1107.5115M
  We present the first weak-lensing-based scaling relation between galaxy
  cluster mass, M <SUB>WL</SUB>, and integrated Compton parameter Y
  <SUB>sph</SUB>. Observations of 18 galaxy clusters at z ~= 0.2 were
  obtained with the Subaru 8.2 m telescope and the Sunyaev-Zel'dovich
  Array. The M <SUB>WL</SUB>-Y <SUB>sph</SUB> scaling relations,
  measured at Δ = 500, 1000, and 2500 ρ<SUB> c </SUB>, are consistent
  in slope and normalization with previous results derived under the
  assumption of hydrostatic equilibrium (HSE). We find an intrinsic
  scatter in M <SUB>WL</SUB> at fixed Y <SUB>sph</SUB> of 20%, larger
  than both previous measurements of M <SUB>HSE</SUB>-Y <SUB>sph</SUB>
  scatter as well as the scatter in true mass at fixed Y <SUB>sph</SUB>
  found in simulations. Moreover, the scatter in our lensing-based
  scaling relations is morphology dependent, with 30%-40% larger M
  <SUB>WL</SUB> for undisturbed compared to disturbed clusters at
  the same Y <SUB>sph</SUB> at r <SUB> 500</SUB>. Further examination
  suggests that the segregation may be explained by the inability of
  our spherical lens models to faithfully describe the three-dimensional
  structure of the clusters, in particular, the structure along the line
  of sight. We find that the ellipticity of the brightest cluster galaxy,
  a proxy for halo orientation, correlates well with the offset in mass
  from the mean scaling relation, which supports this picture. This
  provides empirical evidence that line-of-sight projection effects are
  an important systematic uncertainty in lensing-based scaling relations.

---------------------------------------------------------
Title: Planck intermediate results. I. Further validation of new
    Planck clusters with XMM-Newton
Authors: Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed,
   K.; Bernard, J. -P.; Bersanelli, M.; Böhringer, H.; Bonaldi, A.;
   Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.;
   Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J. -F.; Carvalho,
   P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R. -R.; Chiang,
   L. -Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco,
   S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.;
   Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti,
   G.; Delabrouille, J.; Démoclès, J.; Désert, F. -X.; Diego, J. M.;
   Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.;
   Forni, O.; Fosalba, P.; Frailis, M.; Fromenteau, S.; Galeotta, S.;
   Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.;
   González-Riestra, R.; Górski, K. M.; Gregorio, A.; Gruppuso, A.;
   Hansen, F. K.; Harrison, D.; Hempel, A.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hornstrup, A.; Huffenberger,
   K. M.; Hurier, G.; Jagemann, T.; Jasche, J.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.;
   Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Liddle, A.;
   Lilje, P. B.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.;
   Maino, D.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin,
   J. -B.; Mendes, L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky,
   P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Osborne, S.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perrotta, F.; Piacentini,
   F.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.;
   Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.;
   Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.;
   Starck, J. -L.; Stivoli, F.; Sunyaev, R.; Sutton, D.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram,
   M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio,
   N.; Wandelt, B. D.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei,
   A.; Zonca, A.
2012A&A...543A.102P    Altcode: 2011arXiv1112.5595T; 2011arXiv1112.5595P
  We present further results from the ongoing XMM-Newton validation
  follow-up of Planck cluster candidates, detailing X-ray observations of
  eleven candidates detected at a signal-to-noise ratio of 4.5 &lt; S/N
  &lt; 5.3 in the same 10-month survey maps used in the construction of
  the Early SZ sample. The sample was selected in order to test internal
  SZ quality flags, and the pertinence of these flags is discussed
  in light of the validation results. Ten of the candidates are found
  to be bona fide clusters lying below the RASS flux limit. Redshift
  estimates are available for all confirmed systems via X-ray Fe-line
  spectroscopy. They lie in the redshift range 0.19 &lt; z &lt; 0.94,
  demonstrating Planck’s capability to detect clusters up to high z. The
  X-ray properties of the new clusters appear to be similar to previous
  new detections by Planck at lower z and higher SZ flux: the majority
  are X-ray underluminous for their mass, estimated using Y<SUB>X</SUB>
  as mass proxy, and many have a disturbed morphology. We find tentative
  indication for Malmquist bias in the Y<SUB>SZ</SUB>-Y<SUB>X</SUB>
  relation, with a turnover at Y<SUB>SZ</SUB> ~ 4 × 10<SUP>-4</SUP>
  arcmin<SUP>2</SUP>. We present additional new optical redshift
  determinations with ENO and ESO telescopes of candidates previously
  confirmed with XMM-Newton. The X-ray and optical redshifts for a
  total of 20 clusters are found to be in excellent agreement. We also
  show that useful lower limits can be put on cluster redshifts using
  X-ray data only via the use of the Y<SUB>X</SUB> vs. Y<SUB>SZ</SUB>
  and X-ray flux F<SUB>X</SUB> vs. Y<SUB>SZ</SUB> relations.

---------------------------------------------------------
Title: Lensing and x-ray mass estimates of clusters (simulations)
Authors: Rasia, E.; Meneghetti, M.; Martino, R.; Borgani, S.; Bonafede,
   A.; Dolag, K.; Ettori, S.; Fabjan, D.; Giocoli, C.; Mazzotta, P.;
   Merten, J.; Radovich, M.; Tornatore, L.
2012NJPh...14e5018R    Altcode: 2012arXiv1201.1569R
  We present a comparison between weak-lensing and x-ray mass estimates
  of a sample of numerically simulated clusters. The sample consists of
  the 20 most massive objects at redshift z = 0.25 and M<SUB>vir</SUB>
  &gt; 5 × 10<SUP>14</SUP>M<SUB>⊙</SUB> h<SUP>-1</SUP>. They
  were found in a cosmological simulation of volume 1 h<SUP>-3</SUP>
  Gpc<SUP>3</SUP>, evolved in the framework of a WMAP-7 normalized
  cosmology. Each cluster has been resimulated at higher resolution and
  with more complex gas physics. We processed it through Skylens and
  X-MAS to generate optical and x-ray mock observations along three
  orthogonal projections. The final sample consists of 60 cluster
  realizations. The optical simulations include lensing effects on
  background sources. Standard observational tools and methods of analysis
  are used to recover the mass profiles of each cluster projection from
  the mock catalogue. The resulting mass profiles from lensing and x-ray
  are individually compared to the input mass distributions. Given the
  size of our sample, we could also investigate the dependence of the
  results on cluster morphology, environment, temperature inhomogeneity
  and mass. We confirm previous results showing that lensing masses
  obtained from the fit of the cluster tangential shear profiles with
  Navarro-Frenk-White functionals are biased low by ∼5-10% with a
  large scatter (∼10-25%). We show that scatter could be reduced
  by optimally selecting clusters either having regular morphology or
  living in substructure-poor environment. The x-ray masses are biased
  low by a large amount (∼25-35%), evidencing the presence of both
  non-thermal sources of pressure in the intra-cluster medium (ICM)
  and temperature inhomogeneity, but they show a significantly lower
  scatter than weak-lensing-derived masses. The x-ray mass bias grows
  from the inner to the outer regions of the clusters. We find that both
  biases are weakly correlated with the third-order power ratio, while a
  stronger correlation exists with the centroid shift. Finally, the x-ray
  bias is strongly connected with temperature inhomogeneities. Comparison
  with a previous analysis of simulations leads to the conclusion that
  the values of x-ray mass bias from simulations are still uncertain,
  showing dependences on the ICM physical treatment and, possibly,
  on the hydrodynamical scheme adopted.

---------------------------------------------------------
Title: Planck Intermediate Paper: Physics Of The Hot Gas In The
    Coma Cluster
Authors: Mazzotta, Pasquale; Planck Collaboration
2012AAS...22050705M    Altcode:
  We present the data analysis of the Coma Cluster observed via
  Sunyaev-Zeldovich effect with the Planck satellite. <P />Being a low
  redshift massive hot clusters, its angular size is so extended that
  Planck can resolve it spatially. Thanks to its great sensitivity,
  Planck is capable, for the first time, to detect SZ emission up
  to r 3-4 t R500. This allow us to study the pressure distribution
  of the Intracluster Medium to the outermost cluster regions, not
  yet achieved by any other instrument. We test the validity of some
  pressure models proposed to described the pressure distribution
  in clusters. In particular we find that the Arnuad et al. pressure
  profile for merging systems provides a good fit of the data only at
  r&lt;R500: at larger radii it seems to underestimate the observed
  profile up to 20%. This may either indicate that at these larger radii
  i) the cluster profile is contaminated by unresolved SZ sources along
  the line of sight ii) the pressure profile of Coma is higher than the
  mean pressure profile predicted by simulations. Very interestingly the
  Planck image shows two abrupt variations of the y signal located at
  approx 33 arcmin to the west and to the south east with respect to the
  cluster center. Using Planck y profiles extracted from corresponding
  sectors we verified that both abrupt variations are compatible with
  the presence of discontinuities of in the underlying density profile
  and we find pressure jumps of 4.5 and 4.9 in the west and south east,
  respectively. <P />Finally, we find that the y and radio-synchrotron
  signals are quasi-linearly correlated on Mpc-scales with very small
  intrinsic scatter. This implies either that the energy density of
  cosmic-ray electrons is relatively constant throughout the cluster,
  or that the magnetic fields fall off much slower with radius than
  previously thought.

---------------------------------------------------------
Title: NIKA: A High-Resolution Millimetre Camera for the IRAM 30m
    Telescope
Authors: Desert, F. Xavier; Mazzotta, P.; NIKA, C.
2012AAS...22013204D    Altcode:
  A consortium of European laboratories lead by Alain Benoit
  (CNRS-Institut Néel, Grenoble) is building a new continuum dual-band
  camera for the IRAM 30m telescope. It will map the sky simultaneously
  at 150 and 230 GHz (2 and 1.3 mm), with an angular resolution of 15 and
  10 arcseconds and a field-of-view of 6.5 arcminutes in diameter. It
  is based on new Kinetic Inductance Detector arrays (1000 pixels at
  2 mm, 3000 at 1.3 mm) cooled to 100 mK. It will provide in 2015 a
  high-resolution ground-based follow-up of the numerous clusters of
  galaxies detected with the SZ effect by the Planck satellite and ACT
  at the same frequency (150 GHz). A prototype camera is already being
  tested that provides a sensitivity for the y compton parameter of
  about 1E-5 (1 sigma, 1 hour, 1 beam).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Planck early results. VIII. ESZ
    sample. (Planck+, 2011)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Bennett, K.; Benoit, A.; Bernard, J. -P.; Bersanelli,
   M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.;
   Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso,
   J. -F.; Carr, R.; Casale, M.; Catalano, A.; Cayon, L.; Challinor, A.;
   Chamballu, A.; Charra, J.; Chary, R. -R.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese,
   L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille,
   J.; Delouis, J. -M.; Desert, F. -X.; Dick, J.; Dickinson, C.; Dolag,
   K.; Dole, H.; Donzelli, S.; Dore, O.; Doerl, U.; Douspis, M.; Dupac,
   X.; Efstathiou, G.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Foley,
   S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.;
   Gaier, T. C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.;
   Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Gonzalez,
   J.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.;
   Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.;
   Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti,
   P.; Keihaenen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox,
   L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; Laehteenmaeki,
   A.; Lamarre, J. -M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.;
   Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lowe, S.; Lubin,
   P. M.; Macias-Perez, J. F.; Maciaszek, T.; Mactavish, C. J.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martinez-Gonzalez,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin,
   J. -B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra,
   S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Morisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne,
   S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge,
   B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson,
   T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Prezeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Reix, J. -M.; Renault, C.; Ricciardi, S.; Riller,
   T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubino-Martin, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.;
   Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.;
   Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J. -L.;
   Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti,
   L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.; Tapiador, D.; Tauber,
   J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti,
   L.; Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Tuerler,
   M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis,
   J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson,
   A.; Yvon, D.; Zacchei, A.; Zonca, A.
2012yCat..35360008P    Altcode: 2012yCat..35369008P
  We present the first all-sky sample of galaxy clusters detected
  blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ)
  effect from its six highest frequencies. This early SZ (ESZ) sample
  is comprised of 189 candidates, which have a high signal-to-noise
  ratio ranging from 6 to 29. Its high reliability (purity above 95%)
  is further ensured by an extensive validation process based on Planck
  internal quality assessments and by external cross-identification
  and follow-up observations. Planck provides the first measured SZ
  signal for about 80% of the 169 previously-known ESZ clusters. Planck
  furthermore releases 30 new cluster candidates, amongst which 20 meet
  the ESZ signal-to-noise selection criterion. At the submission date,
  twelve of the 20 ESZ candidates were confirmed as new clusters, with
  eleven confirmed using XMM-Newton snapshot observations, most of them
  with disturbed morphologies and low luminosities. The ESZ clusters
  are mostly at moderate redshifts (86% with z below 0.3) and span more
  than a decade in mass, up to the rarest and most massive clusters with
  masses above 1x10<SUP>15</SUP>M<SUB>⊙</SUB>. <P />(1 data file).

---------------------------------------------------------
Title: Unveiling the Most Massive Clusters at z&gt;0.5 with Planck
    and XMM-Newton
Authors: Mazzotta, Pasquale
2012adap.prop..131M    Altcode:
  With this proposal, we request support for an approved XMM-Newton
  AO-11 (PI M. Arnaud, Co-I of this proposal) Large Programs that aim
  to study the physical properties of a sample of 33 massive (M_500&gt;5
  10e14 solar mass) clusters of galaxies blindly detected by Planck and
  confirmed to-day to be in the redshift range 0.5&lt;z&lt;1. Using for
  the first time a statistically significant sample in this high-mass,
  high-redshift regime, we will study the fundamental scalings between
  YSZ, YX, and M500, and the pressure and entropy profiles. To reach
  this purpose we requested the observation of 25 systems that, to date,
  did not have sufficient X-ray exposure or no X-ray data at all. The
  XMM Newton Observing Time Allocation Committee awarded us to observe
  all the proposed targets for a total exposure time of 595 ks. Based
  on other work carried out as part of Planck catalog validation,
  we know that all the clusters in the sample are hot (kT &gt;5keV),
  high mass objects with complex morphologies and density profiles far
  shallower than those of X-ray-selected cluster samples in the same
  mass range. Our study will help addressing fundamental questions
  in the field like the structure formation in the Universe and the
  physics of the intracluster medium. In particular, we will be able
  to constraining, for the first time, the SZ-X-ray-Optical scaling
  relations of a unique and statistically significant sample of cluster
  of galaxies in the high mass high z (0.5&lt;z&lt;1) regime. Beside
  being an important probe of the physics of the gas gravitational
  collapse, we will also precisely quantify how new SZ-selected clusters
  differ from X-ray selected clusters so that we can better assess the
  implication on the use of the clusters of galaxies as tools for precise
  cosmology studies. Furthermore, it will be of large legacy value for the
  cosmological exploitation of the full Planck cluster sample that will
  be made available to the scientific community in the next few years.

---------------------------------------------------------
Title: Planck early results. VIII. The all-sky early Sunyaev-Zeldovich
    cluster sample
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.;
   Battye, R.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli,
   M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Brown, M. L.; Bucher, M.; Burigana, C.; Cabella, P.;
   Cantalupo, C. M.; Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Cayón,
   L.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.;
   Chiang, C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements,
   D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.;
   Crill, B. P.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; Davis,
   R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.;
   Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl,
   U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Eisenhardt, P.; Enßlin,
   T. A.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Fosalba,
   P.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga,
   K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.;
   Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Heinämäki, P.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Hurier, G.;
   Hurley-Walker, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio,
   H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Li, C.; Liddle,
   A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.;
   Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.;
   Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Osborne, S.;
   Pajot, F.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.;
   Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.;
   Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.;
   Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Saar, E.; Sandri,
   M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schaefer, B. M.;
   Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Stanford, A.;
   Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sunyaev, R.; Sutton, D.; Sygnet, J. -F.; Taburet, N.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Tristram,
   M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.; Villa,
   F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Weller, J.; White,
   S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A...8P    Altcode: 2011arXiv1101.2024P; 2011A&A...536A...8A
  We present the first all-sky sample of galaxy clusters detected blindly
  by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from
  its six highest frequencies. This early SZ (ESZ) sample is comprised
  of 189 candidates, which have a high signal-to-noise ratio ranging
  from 6 to 29. Its high reliability (purity above 95%) is further
  ensured by an extensive validation process based on Planck internal
  quality assessments and by external cross-identification and follow-up
  observations. Planck provides the first measured SZ signal for about 80%
  of the 169 previously-known ESZ clusters. Planck furthermore releases 30
  new cluster candidates, amongst which 20 meet the ESZ signal-to-noise
  selection criterion. At the submission date, twelve of the 20 ESZ
  candidates were confirmed as new clusters, with eleven confirmed
  using XMM-Newton snapshot observations, most of them with disturbed
  morphologies and low luminosities. The ESZ clusters are mostly at
  moderate redshifts (86% with z below 0.3) and span more than a decade in
  mass, up to the rarest and most massive clusters with masses above 1 ×
  10<SUP>15</SUP> M<SUB>⊙</SUB>. <P />Corresponding author: M. Douspis,
  e-mail: marian.douspis@ias.u-psud.frAppendix is available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck early results. XII. Cluster Sunyaev-Zeldovich optical
    scaling relations
Authors: Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.;
   Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.;
   Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Bucher,
   M.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Cayón,
   L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.; Chiang, C.; Chon,
   G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco,
   S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.;
   da Silva, A.; Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.;
   de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré,
   O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones,
   W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.;
   Leonardi, R.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.;
   Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.;
   Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt,
   G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rebolo, R.; Reinecke,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.;
   Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.;
   Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.;
   Sunyaev, R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Valenziano,
   L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.;
   White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..12P    Altcode: 2011A&A...536A..12A; 2011arXiv1101.2027P
  We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling
  relation (Y<SUB>500</SUB> - N<SUB>200</SUB>) for the MaxBCG cluster
  catalogue. Employing a multi-frequency matched filter on the Planck
  sky maps, we measure the SZ signal for each cluster by adapting the
  filter according to weak-lensing calibrated mass-richness relations
  (N<SUB>200</SUB> - M<SUB>500</SUB>). We bin our individual measurements
  and detect the SZ signal down to the lowest richness systems
  (N<SUB>200</SUB> = 10) with high significance, achieving a detection
  of the SZ signal in systems with mass as low as M<SUB>500</SUB> ≈
  5 × 10<SUP>13</SUP> M<SUB>⊙</SUB>. The observed Y<SUB>500</SUB> -
  N<SUB>200</SUB> relation is well modeled by a power law over the full
  richness range. It has a lower normalisation at given N<SUB>200</SUB>
  than predicted based on X-ray models and published mass-richness
  relations. An X-ray subsample, however, does conform to the predicted
  scaling, and model predictions do reproduce the relation between
  our measured bin-average SZ signal and measured bin-average X-ray
  luminosities. At fixed richness, we find an intrinsic dispersion in the
  Y<SUB>500</SUB> - N<SUB>200</SUB> relation of 60% rising to of order
  100% at low richness. Thanks to its all-sky coverage, Planck provides
  observations for more than 13000 MaxBCG clusters and an unprecedented
  SZ/optical data set, extending the list of known cluster scaling laws
  to include SZ-optical properties. The data set offers essential clues
  for models of galaxy formation. Moreover, the lower normalisation of
  the SZ-mass relation implied by the observed SZ-richness scaling has
  important consequences for cluster physics and cosmological studies
  with SZ clusters. <P />Corresponding author: J. G. Bartlett, e-mail:
  bartlett@apc.univ-paris7.fr

---------------------------------------------------------
Title: Planck early results. I. The Planck mission
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Bennett, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.;
   Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.; Butler, R. C.;
   Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso, J. -F.; Carr,
   R.; Casale, M.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu,
   A.; Charra, J.; Chary, R. -R.; Chiang, L. -Y.; Chiang, C.; Christensen,
   P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill,
   B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese, L.; D'Arcangelo,
   O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Bruin, J.; de
   Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Dick, J.; Dickinson, C.; Dolag, K.; Dole,
   H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Foley,
   S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.;
   Gaier, T. C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.;
   Giard, M.; Giardino, G.; Gienger, G.; Giraud-Héraud, Y.; González,
   J.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison,
   D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Jaffe, A. H.; Jagemann, T.; Jones, W. C.; Juillet, J. J.;
   Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kisner,
   T. S.; Kneissl, R.; Knox, L.; Krassenburg, M.; Kurki-Suonio, H.;
   Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lange, A. E.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy,
   J. P.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.;
   Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.;
   Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Massardi, M.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGehee, P.;
   Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Mevi, C.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M. -A.;
   Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.;
   Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   O'Dwyer, I. J.; Ortiz, I.; Osborne, S.; Osuna, P.; Oxborrow, C. A.;
   Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Passvogel, T.;
   Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski,
   S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa,
   L.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen,
   J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Reix, J. -M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno,
   E.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.;
   Seiffert, M. D.; Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.;
   Starck, J. -L.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor,
   R.; Stringhetti, L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.;
   Tapiador, D.; Tauber, J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.;
   Texier, D.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Tristram, M.;
   Tuovinen, J.; Türler, M.; Tuttlebee, M.; Umana, G.; Valenziano, L.;
   Valiviita, J.; Varis, J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio,
   N.; Wade, L. A.; Wandelt, B. D.; Watson, C.; White, S. D. M.; White,
   M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A...1P    Altcode: 2011A&A...536A...1A; 2011arXiv1101.2022P
  The European Space Agency's Planck satellite was launched on 14 May
  2009, and has been surveying the sky stably and continuously since
  13 August 2009. Its performance is well in line with expectations,
  and it will continue to gather scientific data until the end of its
  cryogenic lifetime. We give an overview of the history of Planck in
  its first year of operations, and describe some of the key performance
  aspects of the satellite. This paper is part of a package submitted
  in conjunction with Planck's Early Release Compact Source Catalogue,
  the first data product based on Planck to be released publicly. The
  package describes the scientific performance of the Planck payload,
  and presents results on a variety of astrophysical topics related to
  the sources included in the Catalogue, as well as selected topics on
  diffuse emission. <P />Corresponding author: J. A. Tauber, e-mail:
  jtauber@rssd.esa.int

---------------------------------------------------------
Title: Planck early results. XIII. Statistical properties of
    extragalactic radio sources in the Planck Early Release Compact
    Source Catalogue
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso,
   F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.;
   Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed,
   K.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera,
   L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.;
   Cabella, P.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Cayón, L.;
   Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.;
   Couchot, F.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.;
   Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison,
   D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.;
   Lähteenmäki, A.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leach, S.; Leahy, J. P.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle,
   M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Magliocchetti, M.; Maino, D.; Mandolesi, N.; Mann, R.; Maris,
   M.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot,
   F.; Paladini, R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson,
   T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sajina, A.; Sandri, M.;
   Scott, D.; Seiffert, M. D.; Serjeant, S.; Shellard, P.; Smoot, G. F.;
   Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Türler, M.; Umana, G.;
   Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade,
   L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..13P    Altcode: 2011arXiv1101.2044P; 2011A&A...536A..13A
  The data reported in Planck's Early Release Compact Source Catalogue
  (ERCSC) are exploited to measure the number counts (dN/dS) of
  extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to
  the full-sky nature of the catalogue, this measurement extends to the
  rarest and brightest sources in the sky. At lower frequencies (30, 44,
  and 70 GHz) our counts are in very good agreement with estimates based
  on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat
  shallower at 44 GHz. Planck's source counts at 143 and 217 GHz join
  smoothly with the fainter ones provided by the SPT and ACT surveys over
  small fractions of the sky. An analysis of source spectra, exploiting
  Planck's uniquely broad spectral coverage, finds clear evidence of a
  steepening of the mean spectral index above about 70 GHz. This implies
  that, at these frequencies, the contamination of the CMB power spectrum
  by radio sources below the detection limit is significantly lower than
  previously estimated. <P />Corresponding author: J. González-Nuevo,
  e-mail: gnuevo@sissa.it

---------------------------------------------------------
Title: Planck early results. XIV. ERCSC validation and extreme
    radio sources
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Angelakis,
   E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.;
   Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed,
   K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bonaldi,
   A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.;
   Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso, J. -F.; Catalano,
   A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen,
   X.; Chiang, L. -Y.; Christensen, P. R.; Clements, D. L.; Colombi,
   S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis,
   M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni,
   O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga,
   K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Huynh, M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.;
   Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach,
   S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Linden-Vørnle,
   M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.;
   Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.;
   Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Mingaliev, M.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.;
   Nieppola, E.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.;
   Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Partridge, B.;
   Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski,
   S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.;
   Sajina, A.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.;
   Sievers, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J. -L.; Stivoli,
   F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J. -F.; Tammi, J.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre,
   J. -P.; Tristram, M.; Tuovinen, J.; Türler, M.; Turunen, M.; Umana,
   G.; Ungerechts, H.; Valenziano, L.; Varis, J.; Vielva, P.; Villa,
   F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon,
   D.; Zacchei, A.; Zensus, J. A.; Zonca, A.
2011A&A...536A..14P    Altcode: 2011arXiv1101.1721P; 2011A&A...536A..14A
  Planck's all-sky surveys at 30-857 GHz provide an unprecedented
  opportunity to follow the radio spectra of a large sample of
  extragalactic sources to frequencies 2-20 times higher than allowed
  by past, large-area, ground-based surveys. We combine the results
  of the Planck Early Release Compact Source Catalog (ERCSC) with
  quasi-simultaneous ground-based observations as well as archival
  data at frequencies below or overlapping Planck frequency bands,
  to validate the astrometry and photometry of the ERCSC radio sources
  and study the spectral features shown in this new frequency window
  opened by Planck. The ERCSC source positions and flux density scales
  are found to be consistent with the ground-based observations. We
  present and discuss the spectral energy distributions of a sample of
  "extreme" radio sources, to illustrate the richness of the ERCSC for
  the study of extragalactic radio sources. Variability is found to play
  a role in the unusual spectral features of some of these sources. <P
  />Corresponding author: B. Partridge, e-mail: bpartrid@haverford.edu

---------------------------------------------------------
Title: Planck early results. XI. Calibration of the local galaxy
    cluster Sunyaev-Zeldovich scaling relations
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartelmann, M.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.;
   Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Bucher, M.; Burigana, C.;
   Cabella, P.; Cardoso, J. -F.; Catalano, A.; Cayón, L.; Challinor,
   A.; Chamballu, A.; Chiang, L. -Y.; Chiang, C.; Chon, G.; Christensen,
   P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombi,
   S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; da Silva,
   A.; Dahle, H.; Danese, L.; de Bernardis, P.; de Gasperis, G.;
   de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.;
   Désert, F. -X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré, O.;
   Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lanoux, J.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi,
   R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt,
   G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.;
   Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.;
   Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.;
   Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.;
   Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J. -L.;
   Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.;
   Tristram, M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.;
   White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..11P    Altcode: 2011arXiv1101.2026P; 2011A&A...536A..11A
  We present precise Sunyaev-Zeldovich (SZ) effect measurements
  in the direction of 62 nearby galaxy clusters (z &lt; 0.5)
  detected at high signal-to-noise in the first Planck all-sky data
  set. The sample spans approximately a decade in total mass, 2 ×
  10<SUP>14</SUP> M<SUB>⊙</SUB> &lt; M<SUB>500</SUB> &lt; 2 ×
  10<SUP>15</SUP> M<SUB>⊙</SUB>, where M<SUB>500</SUB> is the mass
  corresponding to a total density contrast of 500. Combining these
  high quality Planck measurements with deep XMM-Newton X-ray data,
  we investigate the relations between D<SUB>A</SUB><SUP>2</SUP>
  Y<SUB>500</SUB>, the integrated Compton parameter due to the SZ
  effect, and the X-ray-derived gas mass M<SUB>g,500</SUB>, temperature
  T<SUB>X</SUB>, luminosity L<SUB>X,500</SUB>, SZ signal analogue
  Y<SUB>X,500</SUB> = M<SUB>g,500</SUB> × T<SUB>X</SUB>, and total mass
  M<SUB>500</SUB>. After correction for the effect of selection bias on
  the scaling relations, we find results that are in excellent agreement
  with both X-ray predictions and recently-published ground-based data
  derived from smaller samples. The present data yield an exceptionally
  robust, high-quality local reference, and illustrate Planck's unique
  capabilities for all-sky statistical studies of galaxy clusters. <P
  />Corresponding author: G. W. Pratt, e-mail: gabriel.pratt@cea.fr

---------------------------------------------------------
Title: Planck early results. XXIV. Dust in the diffuse interstellar
    medium and the Galactic halo
Authors: Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim,
   N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner,
   E.; Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.;
   Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.;
   Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana,
   C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J. -F.; Catalano, A.;
   Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.;
   Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino,
   G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou,
   G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela,
   M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox,
   L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy,
   C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino,
   D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin,
   P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne,
   S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro
   Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.;
   Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.;
   Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano,
   L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..24P    Altcode: 2011A&A...536A..24A; 2011arXiv1101.2036P
  This paper presents the first results from a comparison of Planck dust
  maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm)
  and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of
  Hi in 14 fields covering more than 800 deg<SUP>2</SUP> at high Galactic
  latitude. The main goal of this study is to estimate the far-infrared
  to sub-millimeter (submm) emissivity of dust in the diffuse local
  interstellar medium (ISM) and in the intermediate-velocity (IVC)
  and high-velocity clouds (HVC) of the Galactic halo. Galactic dust
  emission for fields with average Hi column density lower than 2
  × 10<SUP>20</SUP> cm<SUP>-2</SUP> is well correlated with 21-cm
  emission because in such diffuse areas the hydrogen is predominantly
  in the neutral atomic phase. The residual emission in these fields,
  once the Hi-correlated emission is removed, is consistent with the
  expected statistical properties of the cosmic infrared background
  fluctuations. The brighter fields in our sample, with an average Hi
  column density greater than 2 × 10<SUP>20</SUP> cm<SUP>-2</SUP>,
  show significant excess dust emission compared to the Hi column
  density. Regions of excess lie in organized structures that suggest
  the presence of hydrogen in molecular form, though they are not always
  correlated with CO emission. In the higher Hi column density fields
  the excess emission at 857 GHz is about 40% of that coming from the
  Hi, but over all the high latitude fields surveyed the molecular mass
  faction is about 10%. Dust emission from IVCs is detected with high
  significance by this correlation analysis. Its spectral properties
  are consistent with, compared to the local ISM values, significantly
  hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom,
  and a relative abundance of very small grains to large grains about four
  times higher. These results are compatible with expectations for clouds
  that are part of the Galactic fountain in which there is dust shattering
  and fragmentation. Correlated dust emission in HVCs is not detected;
  the average of the 99.9% confidence upper limits to the emissivity
  is 0.15 times the local ISM value at 857 and 3000GHz, in accordance
  with gas phase evidence for lower metallicity and depletion in these
  clouds. Unexpected anti-correlated variations of the dust temperature
  and emission cross-section per H atom are identified in the local
  ISM and IVCs, a trend that continues into molecular environments. This
  suggests that dust growth through aggregation, seen in molecular clouds,
  is active much earlier in the cloud condensation and star formation
  processes. <P />Corresponding author: M.-A. Miville-Deschênes, e-mail:
  mamd@ias.u-psud.fr

---------------------------------------------------------
Title: Planck early results. XXIII. The first all-sky survey of
    Galactic cold clumps
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.;
   Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger,
   F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso,
   J. -F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary,
   R. -R.; Chiang, L. -Y.; Christensen, P. R.; Clements, D. L.; Colombi,
   S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis,
   G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.;
   Désert, F. -X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.;
   Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.;
   Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé,
   S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.;
   Joncas, G.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.;
   Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach,
   S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei,
   B.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.;
   Martínez-González, E.; Marton, G.; Masi, S.; Matarrese, S.; Matthai,
   F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.;
   Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.;
   Paladini, R.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen,
   V. -M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.;
   Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J. -L.;
   Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Toth,
   V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.;
   Yvon, D.; Zacchei, A.; Zahorecz, S.; Zonca, A.
2011A&A...536A..23P    Altcode: 2011A&A...536A..23A; 2011arXiv1101.2035P
  We present the statistical properties of the Cold Clump Catalogue of
  Planck Objects (C3PO), the first all-sky catalogue of cold objects, in
  terms of their spatial distribution, dust temperature, distance, mass,
  and morphology. We have combined Planck and IRAS data to extract 10342
  cold sources that stand out against a warmer environment. The sources
  are distributed over the whole sky, including in the Galactic plane,
  despite the confusion, and up to high latitudes (&gt;30°). We find a
  strong spatial correlation of these sources with ancillary data tracing
  Galactic molecular structures and infrared dark clouds where the latter
  have been catalogued. These cold clumps are not isolated but clustered
  in groups. Dust temperature and emissivity spectral index values are
  derived from their spectral energy distributions using both Planck and
  IRAS data. The temperatures range from 7K to 19K, with a distribution
  peaking around 13K. The data are inconsistent with a constant value
  of the associated spectral index β over the whole temperature range:
  β varies from 1.4 to 2.8, with a mean value around 2.1. Distances
  are obtained for approximately one third of the objects. Most of the
  detections lie within 2kpc of the Sun, but more distant sources are
  also detected, out to 7kpc. The mass estimates inferred from dust
  emission range from 0.4 M<SUB>⊙</SUB> to 2.4 × 10<SUP>5</SUP>
  M<SUB>⊙</SUB>. Their physical properties show that these cold
  sources trace a broad range of objects, from low-mass dense cores to
  giant molecular clouds, hence the "cold clump" terminology. This first
  statistical analysis of the C3PO reveals at least two colder populations
  of special interest with temperatures in the range 7 to 12K: cores that
  mostly lie close to the Sun; and massive cold clumps located in the
  inner Galaxy. We also describe the statistics of the early cold core
  (ECC) sample that is a subset of the C3PO, containing only the 915 most
  reliable detections. The ECC is delivered as a part of the Planck Early
  Release Compact Source Catalogue (ERCSC). <P />Corresponding author:
  L. Montier, e-mail: Ludovic.Montier@irap.omp.eu

---------------------------------------------------------
Title: Planck early results. XXI. Properties of the interstellar
    medium in the Galactic plane
Authors: Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim,
   N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia,
   R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet,
   F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso,
   J. -F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.;
   Chiang, L. -Y.; Chiang, C.; Christensen, P. R.; Colombi, S.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese,
   L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis,
   G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.;
   Désert, F. -X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.;
   Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.;
   Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso,
   A.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe, A. H.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leach, S.; Leonardi, R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish,
   C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall,
   D. J.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes,
   L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti, A.; Montier,
   L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reich, W.;
   Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos,
   D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.;
   Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.;
   Torre, J. -P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.;
   Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt,
   B. D.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..21P    Altcode: 2011arXiv1101.2032P; 2011A&A...536A..21A
  Planck has observed the entire sky from 30 GHz to 857GHz. The observed
  foreground emission contains contributions from different phases of
  the interstellar medium (ISM). We have separated the observed Galactic
  emission into the different gaseous components (atomic, molecular and
  ionised) in each of a number of Galactocentric rings. This technique
  provides the necessary information to study dust properties (emissivity,
  temperature, etc.), as well as other emission mechanisms as a function
  of Galactic radius. Templates are created for various Galactocentric
  radii using velocity information from atomic (neutral hydrogen)
  and molecular (<SUP>12</SUP>CO) observations. The ionised template
  is assumed to be traced by free-free emission as observed by WMAP,
  while 408 MHz emission is used to trace the synchrotron component. Gas
  emission not traced by the above templates, namely "dark gas", as
  evidenced using Planck data, is included as an additional template, the
  first time such a component has been used in this way. These templates
  are then correlated with each of the Planck frequency bands, as well
  as with higher frequency data from IRAS and DIRBE along with radio
  data at 1.4 GHz. The emission per column density of the gas templates
  allows us to create distinct spectral energy distributions (SEDs) per
  Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to
  25 THz (12μm). The resulting SEDs allow us to explore the contribution
  of various emission mechanisms to the Planck signal. Apart from the
  thermal dust and free-free emission, we have probed the Galaxy for
  anomalous (e.g., spinning) dust as well as synchrotron emission. We
  find the dust opacity in the solar neighbourhood, τ/N<SUB>H</SUB>
  = 0.92 ± 0.05 × 10<SUP>-25</SUP> cm<SUP>2</SUP> at 250 μm, with
  no significant variation with Galactic radius, even though the dust
  temperature is seen to vary from over 25 K to under 14 K. Furthermore,
  we show that anomalous dust emission is present in the atomic,
  molecular and dark gas phases throughout the Galactic disk. Anomalous
  emission is not clearly detected in the ionised phase, as free-free
  emission is seen to dominate. The derived dust propeties associated
  with the dark gas phase are derived but do not allow us to reveal the
  nature of this phase. For all environments, the anomalous emission
  is consistent with rotation from polycyclic aromatic hydrocarbons
  (PAHs) and, according to our simple model, accounts for (25 ± 5)%
  (statistical) of the total emission at 30 GHz. <P />Corresponding
  author: D. J. Marshall, e-mail: douglas.marshall@irap.omp.eu

---------------------------------------------------------
Title: Planck early results. XXV. Thermal dust in nearby molecular
    clouds
Authors: Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim,
   N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.;
   Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J. -F.;
   Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.;
   Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson,
   C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli,
   F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet,
   V.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, A.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi,
   R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.;
   Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.;
   Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.;
   Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.;
   Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J. -L.; Stivoli,
   F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Tristram,
   M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Verstraete, L.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2011A&A...536A..25P    Altcode: 2011A&A...536A..25A; 2011arXiv1101.2037P
  Planck allows unbiased mapping of Galactic sub-millimetre and millimetre
  emission from the most diffuse regions to the densest parts of molecular
  clouds. We present an early analysis of the Taurus molecular complex,
  on line-of-sight-averaged data and without component separation. The
  emission spectrum measured by Planck and IRAS can be fitted pixel by
  pixel using a single modified blackbody. Some systematic residuals
  are detected at 353 GHz and 143 GHz, with amplitudes around -7%
  and +13%, respectively, indicating that the measured spectra are
  likely more complex than a simple modified blackbody. Significant
  positive residuals are also detected in the molecular regions and in
  the 217 GHz and 100 GHz bands, mainly caused by the contribution of
  the J = 2 → 1 and J = 1 → 0 <SUP>12</SUP>CO and <SUP>13</SUP>CO
  emission lines. We derive maps of the dust temperature T, the dust
  spectral emissivity index β, and the dust optical depth at 250 μm
  τ<SUB>250</SUB>. The temperature map illustrates the cooling of the
  dust particles in thermal equilibrium with the incident radiation
  field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense
  parts. The distribution of spectral indices is centred at 1.78, with a
  standard deviation of 0.08 and a systematic error of 0.07. We detect a
  significant T - β anti-correlation. The dust optical depth map reveals
  the spatial distribution of the column density of the molecular complex
  from the densest molecular regions to the faint diffuse regions. We use
  near-infrared extinction and Hi data at 21-cm to perform a quantitative
  analysis of the spatial variations of the measured dust optical
  depth at 250 μm per hydrogen atom τ<SUB>250</SUB>/N<SUB>H</SUB>. We
  report an increase of τ<SUB>250</SUB>/N<SUB>H</SUB> by a factor of
  about 2 between the atomic phase and the molecular phase, which has a
  strong impact on the equilibrium temperature of the dust particles. <P
  />Corresponding author: A. Abergel, e-mail: alain.abergel@ias.u-psud.fr

---------------------------------------------------------
Title: Planck early results. XXVI. Detection with Planck and
    confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally
    X-ray luminous and massive galaxy cluster at z ~ 1
Authors: Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.;
   Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Böhringer,
   H.; Bonaldi, A.; Bond, J. R.; Borgani, S.; Borrill, J.; Bouchet,
   F. R.; Brown, M. L.; Burigana, C.; Cabella, P.; Cantalupo, C. M.;
   Cappellini, B.; Carvalho, P.; Catalano, A.; Cayón, L.; Chiang, L. -Y.;
   Chiang, C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements,
   D. L.; Colafrancesco, S.; Colombi, S.; Crill, B. P.; Cuttaia, F.; da
   Silva, A.; Dahle, H.; Danese, L.; 'Arcangelo, O. D.; Davis, R. J.;
   de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Démoclès, J.; Désert, F. -X.; Dickinson, C.;
   Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac,
   X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.;
   Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.;
   Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Heinämäki,
   P.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson,
   M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.;
   Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lawrence, C. R.;
   Le Jeune, M.; Leach, S.; Leonardi, R.; Leroy, C.; Liddle, A.; Lilje,
   P. B.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; Maino,
   D.; Mandolesi, N.; Marleau, F.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin,
   J. -B.; Mendes, L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.;
   Natoli, P.; Nevalainen, J.; Nørgaard-Nielsen, H. U.; Noviello, F.;
   Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paladini, R.;
   Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto,
   L.; Perrotta, F.; Piacentini, F.; Pierpaoli, E.; Piffaretti, R.;
   Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.;
   Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi,
   S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rubiño-Martín, J. A.;
   Saar, E.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot,
   G. F.; Starck, J. -L.; Sutton, D.; Sygnet, J. -F.; Tauber, J. A.;
   Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Türler, M.;
   Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Weller, J.; White, S. D. M.; White, M.; Yvon, D.;
   Zacchei, A.; Zonca, A.
2011A&A...536A..26P    Altcode: 2011A&A...536A..26A; 2011arXiv1106.1376P
  We present first results on PLCKG266.6-27.3, a galaxy cluster
  candidate detected at a signal-to-noise ratio of 5 in the Planck
  All Sky survey. An XMM-Newton validation observation has allowed
  us to confirm that the candidate isa bona fide galaxy cluster. With
  these X-ray data we measure an accurate redshift, z = 0.94 ± 0.02,
  and estimate the cluster mass to be M<SUB>500</SUB> = (7.8 ± 0.8)
  × 10<SUP>14</SUP> M<SUB>⊙</SUB>. PLCKG266.6-27.3 is an exceptional
  system: its luminosity of L<SUB>X</SUB> [0.5-2.0 keV] = (1.4 ± 0.05)
  × 10<SUP>45</SUP> erg s<SUP>-1</SUP> equals that of the two most
  luminous known clusters in the z &gt; 0.5 universe, and it is one of
  the most massive clusters at z ~ 1. Moreover, unlike the majority
  of high-redshift clusters, PLCKG266.6-27.3 appears to be highly
  relaxed. This observation confirms Planck's capability of detecting
  high-redshift, high-mass clusters, and opens the way to the systematic
  study of population evolution in the exponential tail of the mass
  function. <P />Corresponding author: M. Arnaud, monique.arnaud@cea.fr

---------------------------------------------------------
Title: Planck early results. II. The thermal performance of Planck
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.;
   Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhandari, P.; Bhatia, R.;
   Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borders, J.; Borrill, J.;
   Bouchet, F. R.; Bowman, B.; Bradshaw, T.; Bréelle, E.; Bucher, M.;
   Burigana, C.; Butler, R. C.; Cabella, P.; Camus, P.; Cantalupo, C. M.;
   Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Cayón, L.; Challinor,
   A.; Chamballu, A.; Chambelland, J. P.; Charra, J.; Charra, M.; Chiang,
   L. -Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Collaudin,
   B.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Crook, M.;
   Cuttaia, F.; Damasio, C.; Danese, L.; Davies, R. D.; Davis, R. J.;
   de Bernardis, P.; de Gasperis, G.; de Rosa, A.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dolag, K.; Donzelli, S.; Doré, O.;
   Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Eriksen, H. K.; Filliard, C.; Finelli, F.; Foley, S.; Forni, O.;
   Fosalba, P.; Fourmond, J. -J.; Frailis, M.; Franceschi, E.; Galeotta,
   S.; Ganga, K.; Gavila, E.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Guyot, G.; Harrison, D.; Helou, G.; Henrot-Versillé,
   S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon,
   E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Hoyland,
   R. J.; Huffenberger, K. M.; Israelsson, U.; Jaffe, A. H.; Jones, W. C.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lami, P.;
   Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leach,
   S.; Lee, R.; Leonardi, R.; Leroy, C.; Lilje, P. B.; López-Caniego,
   M.; Lubin, P. M.; Macías-Pérez, J. F.; Maciaszek, T.; MacTavish,
   C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot,
   F.; Mendes, L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Mora, J.; Morgante, G.; Morisset, N.; Mortlock,
   D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nash, A.; Natoli, P.;
   Netterfield, C. B.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne,
   S.; Pajot, F.; Pasian, F.; Patanchon, G.; Pearson, D.; Perdereau, O.;
   Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski,
   S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.;
   Poutanen, T.; Prézeau, G.; Prina, M.; Prunet, S.; Puget, J. -L.;
   Rachen, J. P.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer,
   B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck,
   J. -L.; Stassi, P.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala,
   R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Valenziano,
   L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Watson, C.; White, S. D. M.; Wilkinson, A.; Wilson,
   P.; Yvon, D.; Zacchei, A.; Zhang, B.; Zonca, A.
2011A&A...536A...2P    Altcode: 2011arXiv1101.2023P; 2011A&A...536A...2A
  The performance of the Planck instruments in space is enabled by their
  low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved
  through a combination of passive radiative cooling and three active
  mechanical coolers. The scientific requirement for very broad frequency
  coverage led to two detector technologies with widely different
  temperature and cooling needs. Active coolers could satisfy these needs;
  a helium cryostat, as used by previous cryogenic space missions (IRAS,
  COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided
  by three V-groove radiators and a large telescope baffle. The active
  coolers are a hydrogen sorption cooler (&lt;20 K), a <SUP>4</SUP>He
  Joule-Thomson cooler (4.7 K), and a <SUP>3</SUP>He-<SUP>4</SUP>He
  dilution cooler (1.4 K and 0.1 K). The flight system was at ambient
  temperature at launch and cooled in space to operating conditions. The
  HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after
  launch. The solar panel always faces the Sun, shadowing the rest of
  Planck, andoperates at a mean temperature of 384 K. At the other end
  of the spacecraft, the telescope baffle operates at 42.3 K and the
  telescope primary mirror operates at 35.9 K. The temperatures of key
  parts of the instruments are stabilized by both active and passive
  methods. Temperature fluctuations are driven by changes in the distance
  from the Sun, sorption cooler cycling and fluctuations in gas-liquid
  flow, and fluctuations in cosmic ray flux on the dilution and bolometer
  plates. These fluctuations do not compromise the science data.

---------------------------------------------------------
Title: Planck early results. XIX. All-sky temperature and dust
    optical depth from Planck and IRAS. Constraints on the "dark gas"
    in our Galaxy
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.;
   Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.;
   Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.;
   Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Cuttaia, F.; Dame, T. M.; Danese, L.;
   Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de
   Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert,
   F. -X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl,
   U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen,
   H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis,
   M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.;
   Gratton, S.; Gregorio, A.; Grenier, I. A.; Gruppuso, A.; Hansen,
   F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.;
   Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.;
   Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.;
   Mandolesi, N.; Mann, R.; Maris, M.; Martin, P.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee,
   P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.;
   Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Onishi, T.; Osborne, S.; Pajot, F.;
   Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.;
   Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau,
   G.; Prunet, S.; Puget, J. -L.; Reach, W. T.; Reinecke, M.; Renault,
   C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset,
   C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.;
   Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Stompor, R.;
   Sudiwala, R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Umana,
   G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..19P    Altcode: 2011A&A...536A..19A; 2011arXiv1101.2029P
  An all sky map of the apparent temperature and optical depth of
  thermal dust emission is constructed using the Planck-HFI (350μm
  to 2 mm) andIRAS(100μm) data. The optical depth maps are correlated
  with tracers of the atomic (Hi) and molecular gas traced by CO. The
  correlation with the column density of observed gas is linear in
  the lowest column density regions at high Galactic latitudes. At
  high N<SUB>H</SUB>, the correlation is consistent with that of the
  lowest N<SUB>H</SUB>, for a given choice of the CO-to-H<SUB>2</SUB>
  conversion factor. In the intermediate N<SUB>H</SUB> range, a departure
  from linearity is observed, with the dust optical depth in excess
  of the correlation. This excess emission is attributed to thermal
  emission by dust associated with a dark gas phase, undetected in the
  available Hi and CO surveys. The 2D spatial distribution of the dark
  gas in the solar neighbourhood (|b<SUB>II</SUB>| &gt; 10°) is shown
  to extend around known molecular regions traced by CO. The average
  dust emissivity in the Hi phase in the solar neighbourhood is found to
  be τ<SUB>D</SUB>/N<SUB>H</SUB><SUP>tot</SUP> = 5.2×10<SUP>-26</SUP>
  cm<SUP>2</SUP> at 857 GHz. It follows roughly a power law distribution
  with a spectral index β = 1.8 all the way down to 3 mm, although
  the SED flattens slightly in the millimetre. Taking into account the
  spectral shape of the dust optical depth, the emissivity is consistent
  with previous values derived fromFIRAS measurements at high latitudes
  within 10%. The threshold for the existence of the dark gas is
  found at N<SUB>H</SUB><SUP>tot</SUP> = (8.0±0.58)×10<SUP>20</SUP>
  H cm<SUP>-2</SUP> (A<SUB>V</SUB> = 0.4mag). Assuming the same high
  frequency emissivity for the dust in the atomic and the molecular phases
  leads to an average X<SUB>CO</SUB> = (2.54 ± 0.13) × 10<SUP>20</SUP>
  H<SUB>2</SUB> cm<SUP>-2</SUP>/(K km s<SUP>-1</SUP>). The mass of dark
  gas is found to be 28% of the atomic gas and 118% of the CO emitting
  gas in the solar neighbourhood. The Galactic latitude distribution
  shows that its mass fraction is relatively constant down to a few
  degrees from the Galactic plane. A possible explanation for the dark
  gas lies in a dark molecular phase, where H<SUB>2</SUB> survives
  photodissociation but CO does not. The observed transition for the
  onsetof this phase in the solar neighbourhood (A<SUB>V</SUB> = 0.4mag)
  appears consistent with recent theoretical predictions. It is also
  possible that up to half of the dark gas could be in atomic form, due
  to optical depth effects in the Hi measurements. <P />Corresponding
  author: J.-P. Bernard, e-mail: Jean-Philippe.Bernard@cesr.fr

---------------------------------------------------------
Title: Planck early results. XX. New light on anomalous microwave
    emission from spinning dust grains
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.;
   Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger,
   F.; Bucher, M.; Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso,
   J. -F.; Casassus, S.; Catalano, A.; Cayón, L.; Challinor, A.;
   Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Dickinson, C.;
   Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis,
   M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen,
   F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe,
   A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs,
   R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Lilje, P. B.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.;
   Mann, R.; Maris, M.; Marshall, D. J.; Martínez-González, E.;
   Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.;
   Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini,
   R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel,
   M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.;
   Puget, J. -L.; Reach, W. T.; Rebolo, R.; Reich, W.; Reinecke, M.;
   Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.;
   Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.;
   Shellard, P.; Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov,
   V.; Stompor, R.; Sudiwala, R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi,
   L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen,
   J.; Umana, G.; Valenziano, L.; Varis, J.; Verstraete, L.; Vielva,
   P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson,
   R.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..20P    Altcode: 2011arXiv1101.2031P; 2011A&A...536A..20A
  Anomalous microwave emission (AME) has been observed by numerous
  experiments in the frequency range ~10-60 GHz. Using Planck maps and
  multi-frequency ancillary data, we have constructed spectra for two
  known AME regions: the Perseus and ρ Ophiuchi molecular clouds. The
  spectra are well fitted by a combination of free-free radiation, cosmic
  microwave background, thermal dust, and electric dipole radiation from
  small spinning dust grains. The spinning dust spectra are the most
  precisely measured to date, and show the high frequency side clearly
  for the first time. The spectra have a peak in the range 20-40 GHz and
  are detected at high significances of 17.1σ for Perseus and 8.4σ for
  ρ Ophiuchi. In Perseus, spinning dust in the dense molecular gas can
  account for most of the AME; the low density atomic gas appears to
  play a minor role. In ρ Ophiuchi, the ~30 GHz peak is dominated by
  dense molecular gas, but there is an indication of an extended tail
  at frequencies 50-100 GHz, which can be accounted for by irradiated
  low density atomic gas. The dust parameters are consistent with those
  derived from other measurements. We have also searched the Planck map
  at 28.5 GHz for candidate AME regions, by subtracting a simple model
  of the synchrotron, free-free, and thermal dust. We present spectra
  for two of the candidates; S140 and S235 are bright Hii regions that
  show evidence for AME, and are well fitted by spinning dust models. <P
  />Corresponding author: C. Dickinson, Clive.Dickinson@manchester.ac.uk

---------------------------------------------------------
Title: Planck early results. XV. Spectral energy distributions and
    radio continuum spectra of northern extragalactic radio sources
Authors: Planck Collaboration; Aatrokoski, J.; Ade, P. A. R.;
   Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Berdyugin, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.;
   Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.;
   Bucher, M.; Burigana, C.; Burrows, D. N.; Cabella, P.; Capalbi, M.;
   Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Cavazzuti, E.; Cayón,
   L.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.;
   Couchot, F.; Coulais, A.; Cutini, S.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa,
   A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Dickinson, C.;
   Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Gargano, F.;
   Gasparrini, D.; Gehrels, N.; Giard, M.; Giardino, G.; Giglietto, N.;
   Giommi, P.; Giordano, F.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.;
   King, O.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.;
   Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach,
   S.; Leonardi, R.; León-Tavares, J.; Linden-Vørnle, M.; Lindfors, E.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.;
   Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.;
   Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Max-Moerbeck, W.;
   Mazziotta, M. N.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella,
   A.; Michelson, P. F.; Mingaliev, M.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Monte, C.; Montier, L.; Morgante, G.; Mortlock,
   D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.;
   Netterfield, C. B.; Nieppola, E.; Nilsson, K.; Nørgaard-Nielsen,
   H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.;
   Osborne, S.; Pajot, F.; Partridge, B.; Pasian, F.; Patanchon, G.;
   Pavlidou, V.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perri, M.;
   Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau,
   G.; Procopio, P.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Rainò,
   S.; Reach, W. T.; Readhead, A.; Rebolo, R.; Reeves, R.; Reinecke, M.;
   Reinthal, R.; Renault, C.; Ricciardi, S.; Richards, J.; Riller, T.;
   Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubiño-Martín, J. A.; Rusholme, B.; Saarinen, J.; Sandri, M.;
   Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; Sillanpää,
   A.; Smoot, G. F.; Sotnikova, Y.; Starck, J. -L.; Stevenson, M.;
   Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J. -F.; Takalo, L.;
   Tammi, J.; Tauber, J. A.; Terenzi, L.; Thompson, D. J.; Toffolatti,
   L.; Tomasi, M.; Tornikoski, M.; Torre, J. -P.; Tosti, G.; Tramacere,
   A.; Tristram, M.; Tuovinen, J.; Türler, M.; Turunen, M.; Umana, G.;
   Ungerechts, H.; Valenziano, L.; Valtaoja, E.; Varis, J.; Verrecchia,
   F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wu, J.;
   Yvon, D.; Zacchei, A.; Zensus, J. A.; Zhou, X.; Zonca, A.
2011A&A...536A..15P    Altcode: 2011A&A...536A..15A; 2011arXiv1101.2047P
  Spectral energy distributions (SEDs) and radio continuum spectra are
  presented for a northern sample of 104 extragalactic radio sources,
  based on the Planck Early Release Compact Source Catalogue (ERCSC)
  and simultaneous multifrequency data. The nine Planck frequencies, from
  30 to 857 GHz, are complemented by a set of simultaneous observations
  ranging from radio to gamma-rays. This is the first extensive frequency
  coverage in the radio and millimetre domains for an essentially
  complete sample of extragalactic radio sources, and it shows how the
  individual shocks, each in their own phase of development, shape the
  radio spectra as they move in the relativistic jet. The SEDs presented
  in this paper were fitted with second and third degree polynomials to
  estimate the frequencies of the synchrotron and inverse Compton (IC)
  peaks, and the spectral indices of low and high frequency radio data,
  including the Planck ERCSC data, were calculated. SED modelling methods
  are discussed, with an emphasis on proper, physical modelling of the
  synchrotron bump using multiple components. Planck ERCSC data also
  suggest that the original accelerated electron energy spectrum could
  be much harder than commonly thought, with power-law indexaround 1.5
  instead of the canonical 2.5. The implications of this are discussed
  for the acceleration mechanisms effective in blazar shocks. Furthermore
  in many cases the Planck data indicate that gamma-ray emission must
  originate in the same shocks that produce the radio emission. <P
  />Tables 1 and 4, Figs. 18-121 are available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Planck early results. XVI. The Planck view of nearby galaxies
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana,
   C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Cayón, L.; Challinor,
   A.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.; Christensen, P. R.;
   Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.;
   Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis,
   P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Dole, H.; Donzelli,
   S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.;
   Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud,
   Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé,
   S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki,
   A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Leach, S.; Leonardi, R.; Linden-Vørnle, M.; López-Caniego, M.; Lubin,
   P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Madden, S.; Maffei, B.;
   Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri,
   A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M. -A.; Moneti,
   A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy,
   A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen,
   H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot,
   F.; Partridge, B.; Pasian, F.; Patanchon, G.; Peel, M.; Perdereau, O.;
   Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau,
   G.; Prunet, S.; Puget, J. -L.; Reach, W. T.; Rebolo, R.; Reinecke,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sandri, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.;
   Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.;
   Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Türler, M.; Umana,
   G.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.;
   Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..16P    Altcode: 2011arXiv1101.2045P; 2011A&A...536A..16A
  The all-sky coverage of the Planck Early Release Compact Source
  Catalogue (ERCSC) provides an unsurpassed survey of galaxies at
  submillimetre (submm) wavelengths, representing a major improvement in
  the numbers of galaxies detected, as well as the range of far-IR/submm
  wavelengths over which they have been observed. We here present the
  first results on the properties of nearby galaxies using these data. We
  match the ERCSC catalogue to IRAS-detected galaxies in the Imperial
  IRAS Faint Source Redshift Catalogue (IIFSCz), so that we can measure
  the spectral energy distributions (SEDs) of these objects from 60 to
  850μm. This produces a list of 1717 galaxies with reliable associations
  between Planck and IRAS, from which we select a subset of 468 for
  SED studies, namely those with strong detections in the three highest
  frequency Planck bands and no evidence of cirrus contamination. The SEDs
  are fitted using parametric dust models to determine the range of dust
  temperatures and emissivities. We find evidence for colder dust than
  has previously been found in external galaxies, with T &lt; 20K. Such
  cold temperatures are found using both the standard single temperature
  dust model with variable emissivity β, or a two dust temperature model
  with β fixed at 2. We also compare our results to studies of distant
  submm galaxies (SMGs) which have been claimed to contain cooler dust
  than their local counterparts. We find that including our sample of
  468 galaxies significantly reduces the distinction between the two
  populations. Fits to SEDs of selected objects using more sophisticated
  templates derived from radiative transfer models confirm the presence of
  the colder dust found through parametric fitting. We thus conclude that
  cold (T &lt; 20K) dust is a significant and largely unexplored component
  of many nearby galaxies. <P />Corresponding author: D. L. Clements,
  e-mail: d.clements@imperial.ac.uk

---------------------------------------------------------
Title: Planck early results. X. Statistical analysis of
    Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters
Authors: Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.;
   Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.;
   Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Bucher, M.;
   Burigana, C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Cayón, L.;
   Challinor, A.; Chamballu, A.; Chary, R. -R.; Chiang, L. -Y.; Chiang,
   C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.;
   Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.;
   Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; de Bernardis, P.;
   de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré,
   O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest,
   W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.;
   Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby,
   A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann,
   R.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.;
   Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin,
   J. -B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi,
   D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.;
   Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.;
   Osborne, S.; Pajot, F.; Pasian, F.; Patanchon, G.; Perdereau, O.;
   Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.;
   Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.;
   Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín,
   J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Schaefer, B. M.; Scott,
   D.; Seiffert, M. D.; Smoot, G. F.; Starck, J. -L.; Stivoli, F.;
   Stolyarov, V.; Sunyaev, R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.;
   Toffolatti, L.; Tomasi, M.; Tristram, M.; Tuovinen, J.; Valenziano,
   L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.;
   White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..10P    Altcode: 2011arXiv1101.2043P; 2011A&A...536A..10A
  All-sky data from the Planck survey and the Meta-Catalogue of X-ray
  detected Clusters of galaxies (MCXC) are combined to investigate
  the relationship between the thermal Sunyaev-Zeldovich (SZ) signal
  and X-ray luminosity. The sample comprises ~1600 X-ray clusters with
  redshifts up to ~1 and spans a wide range in X-ray luminosity. The SZ
  signal is extracted for each object individually, and the statistical
  significance of the measurement is maximised by averaging the SZ
  signal in bins of X-ray luminosity, total mass, or redshift. The
  SZ signal is detected at very high significance over more than
  two decades in X-ray luminosity (10<SUP>43</SUP>erg s<SUP>-1</SUP>
  ≲ L<SUB>500</SUB>E(z)<SUP>-7/3</SUP> ≲ 2 × 10<SUP>45</SUP>erg
  s<SUP>-1</SUP>). The relation between intrinsic SZ signal and X-ray
  luminosity is investigated and the measured SZ signal is compared to
  values predicted from X-ray data. Planck measurements and X-ray based
  predictions are found to be in excellent agreement over the whole
  explored luminosity range. No significant deviation from standard
  evolution of the scaling relations is detected. For the first time
  the intrinsic scatter in the scaling relation between SZ signal and
  X-ray luminosity is measured and found to be consistent with the one
  in the luminosity - mass relation from X-ray studies. There is no
  evidence of any deficit in SZ signal strength in Planck data relative
  to expectations from the X-ray properties of clusters, underlining
  the robustness and consistency of our overall view of intra-cluster
  medium properties. <P />Corresponding author: R. Piffaretti, e-mail:
  rocco.piffaretti@cea.fr

---------------------------------------------------------
Title: Planck early results. VII. The Early Release Compact Source
    Catalogue
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera,
   L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana,
   C.; Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.;
   Cardoso, J. -F.; Carvalho, P.; Catalano, A.; Cayón, L.; Challinor,
   A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y.; Chiang, C.;
   Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais,
   A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis,
   P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.;
   Désert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.;
   Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou,
   G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Fosalba,
   P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.;
   Gregorio, A.; Gruppuso, A.; Haissinski, J.; Hansen, F. K.; Harrison,
   D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.;
   Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Huynh,
   M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache,
   G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares,
   J.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.;
   Maggio, G.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau,
   F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi,
   M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold,
   P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov,
   D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.;
   Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Piffaretti,
   R.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.;
   Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sajina, A.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.;
   Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J. -L.;
   Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.;
   Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi,
   M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Türler, M.; Umana,
   G.; Valenziano, L.; Valiviita, J.; Varis, J.; Vielva, P.; Villa, F.;
   Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wilkinson,
   A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A...7P    Altcode: 2011A&A...536A...7A; 2011arXiv1101.2041P
  A brief description of the methodology of construction, contents and
  usage of the Planck Early Release Compact Source Catalogue (ERCSC),
  including the Early Cold Cores (ECC) and the Early Sunyaev-Zeldovich
  (ESZ) cluster catalogue is provided. The catalogue is based on data
  that consist of mapping the entire sky once and 60% of the sky a
  second time by Planck, thereby comprising the first high sensitivity
  radio/submillimetre observations of the entire sky. Four source
  detection algorithms were run as part of the ERCSC pipeline. A
  Monte-Carlo algorithm based on the injection and extraction
  of artificial sources into the Planck maps was implemented to
  select reliable sources among all extracted candidates such that
  the cumulative reliability of the catalogue is ≥90%. There is
  no requirement on completeness for the ERCSC. As a result of the
  Monte-Carlo assessment of reliability of sources from the different
  techniques, an implementation of the PowellSnakes source extraction
  technique was used at the five frequencies between 30 and 143GHz while
  the SExtractor technique was used between 217 and 857GHz. The 10σ
  photometric flux density limit of the catalogue at |b| &gt; 30° is
  0.49, 1.0, 0.67, 0.5, 0.33, 0.28, 0.25, 0.47 and 0.82 Jy at each of
  the nine frequencies between 30 and 857GHz. Sources which are up to a
  factor of ~2 fainter than this limit, and which are present in "clean"
  regions of the Galaxy where the sky background due to emission from
  the interstellar medium is low, are included in the ERCSC if they meet
  the high reliability criterion. The Planck ERCSC sources have known
  associations to stars with dust shells, stellar cores, radio galaxies,
  blazars, infrared luminous galaxies and Galactic interstellar medium
  features. A significant fraction of unclassified sources are also
  present in the catalogs. In addition, two early release catalogs that
  contain 915 cold molecular cloud core candidates and 189 SZ cluster
  candidates that have been generated using multifrequency algorithms are
  presented. The entire source list, with more than 15000 unique sources,
  is ripe for follow-up characterisation with Herschel, ATCA, VLA, SOFIA,
  ALMA and other ground-based observing facilities. <P />Corresponding
  author: R.-R. Chary, e-mail: rchary@caltech.edu

---------------------------------------------------------
Title: Planck early results. XVII. Origin of the submillimetre excess
    dust emission in the Magellanic Clouds
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bot, C.; Bouchet, F. R.; Boulanger, F.;
   Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.;
   Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.;
   Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti,
   G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson,
   C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.;
   Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.;
   Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison,
   D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt,
   S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland,
   R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.;
   Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.;
   Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre,
   J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.;
   Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.;
   Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Madden, S.;
   Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold,
   P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes,
   M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi,
   D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield,
   C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov,
   I.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.;
   Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta,
   F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.;
   Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.;
   Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri,
   M.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck,
   J. -L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J. -F.;
   Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.;
   Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.;
   Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.;
   Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..17P    Altcode: 2011A&A...536A..17A; 2011arXiv1101.2046P
  The integrated spectral energy distributions (SED) of the Large
  Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear
  significantly flatter than expected from dust models based on their
  far-infrared and radio emission. The still unexplained origin of this
  millimetre excess is investigated here using the Planck data. The
  integrated SED of the two galaxies before subtraction of the foreground
  (Milky Way) and background (CMB fluctuations) emission are in good
  agreement with previous determinations, confirming the presence of the
  millimetre excess. In the context of this preliminary analysis we do not
  propose a full multi-component fitting of the data, but instead subtract
  contributions unrelated to the galaxies and to dust emission. The
  background CMB contribution is subtracted using an internal linear
  combination (ILC) method performed locally around the galaxies. The
  foreground emission from the Milky Way is subtracted as a Galactic Hi
  template, and the dust emissivity is derived in a region surrounding the
  two galaxies and dominated by Milky Way emission. After subtraction, the
  remaining emission of both galaxies correlates closely with the atomic
  and molecular gas emission of the LMC and SMC. The millimetre excess
  in the LMC can be explained by CMB fluctuations, but a significant
  excess is still present in the SMC SED. The Planck and IRAS-IRIS
  data at 100 μm are combined to produce thermal dust temperature and
  optical depth maps of the two galaxies. The LMC temperature map shows
  the presence of a warm inner arm already found with the Spitzer data,
  but which also shows the existence of a previously unidentified cold
  outer arm. Several cold regions are found along this arm, some of
  which are associated with known molecular clouds. The dust optical
  depth maps are used to constrain the thermal dust emissivity power-law
  index (β). The average spectral index is found to be consistent with
  β = 1.5 and β = 1.2 below 500μm for the LMC and SMC respectively,
  significantly flatter than the values observed in the Milky Way. Also,
  there is evidence in the SMC of a further flattening of the SED in the
  sub-mm, unlike for the LMC where the SED remains consistent with β =
  1.5. The spatial distribution of the millimetre dustexcess in the SMC
  follows the gas and thermal dust distribution. Different models are
  explored in order to fit the dust emission in the SMC. It is concluded
  that the millimetre excess is unlikely to be caused by very cold dust
  emission and that it could be due to a combination of spinning dust
  emission and thermal dust emission by more amorphous dust grains than
  those present in our Galaxy. <P />Corresponding author: J.-P. Bernard,
  e-mail: jean-philippe.bernard@cesr.fr

---------------------------------------------------------
Title: Planck early results. XVIII. The power spectrum of cosmic
    infrared background anisotropies
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday,
   A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.;
   Benoît, A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Blagrave,
   K.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J. -F.;
   Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.;
   Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot,
   F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies,
   R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.;
   de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.;
   Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.;
   Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni,
   O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga,
   K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo,
   J.; Górski, K. M.; Grain, J.; Gratton, S.; Gregorio, A.; Gruppuso,
   A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.;
   Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes,
   W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.;
   Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.;
   Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.;
   Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi,
   R.; Leroy, C.; Lilje, P. B.; Linden-Vørnle, M.; Lockman, F. J.;
   López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish,
   C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.;
   Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai,
   F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.;
   Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov,
   I.; O'Dwyer, I. J.; Oliver, S.; Osborne, S.; Pajot, F.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.;
   Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme,
   B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.;
   Shellard, P.; Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov,
   V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.; Tauber,
   J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J. -P.;
   Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.;
   Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.;
   Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..18P    Altcode: 2011arXiv1101.2028P; 2011A&A...536A..18A
  Using Planck maps of six regions of low Galactic dust emission with
  a total area of about 140 deg<SUP>2</SUP>, we determine the angular
  power spectra of cosmic infrared background (CIB) anisotropies from
  multipole ℓ = 200 to ℓ = 2000 at 217, 353, 545 and 857 GHz. We use
  21-cm observations of Hi as a tracer of thermal dust emission to reduce
  the already low level of Galactic dust emission and use the 143 GHz
  Planck maps in these fields to clean out cosmic microwave background
  anisotropies. Both of these cleaning processes are necessary to avoid
  significant contamination of the CIB signal. We measure correlated CIB
  structure across frequencies. As expected, the correlation decreases
  with increasing frequency separation, because the contribution
  of high-redshift galaxies to CIB anisotropies increases with
  wavelengths. We find no significant difference between the frequency
  spectrum of the CIB anisotropies and the CIB mean, with ΔI / I = 15%
  from 217 to 857 GHz. In terms of clustering properties, the Planck
  data alone rule out the linear scale- and redshift-independent bias
  model. Non-linear corrections are significant. Consequently, we develop
  an alternative model that couples a dusty galaxy, parametric evolution
  model with a simple halo-model approach. It provides an excellent fit
  to the measured anisotropy angular power spectra and suggests that a
  different halo occupation distribution is required at each frequency,
  which is consistent with our expectation that each frequency is
  dominated by contributions from different redshifts. In our best-fit
  model, half of the anisotropy power at ℓ = 2000 comes from redshifts z
  &lt; 0.8 at 857 GHz and z &lt; 1.5 at 545 GHz, while about 90% come from
  redshifts z &gt; 2 at 353 and 217 GHz, respectively. <P />Corresponding
  author: G. Lagache, e-mail: guilaine.lagache@ias.u-psud.fr

---------------------------------------------------------
Title: Planck early results. XXII. The submillimetre properties of
    a sample of Galactic cold clumps
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.;
   Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.;
   Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher,
   M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J. -F.;
   Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L. -Y.;
   Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais,
   A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis,
   P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.;
   Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Doi, Y.; Donzelli,
   S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.;
   Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.;
   Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.;
   Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton,
   S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou,
   G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen,
   E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox,
   L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.;
   Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.;
   Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez,
   J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann,
   R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González,
   E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee,
   P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra,
   S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante,
   G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.;
   Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V. -M.; Perdereau,
   O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski,
   S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.;
   Prézeau, G.; Prunet, S.; Puget, J. -L.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli,
   I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.;
   Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert,
   M. D.; Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.;
   Sudiwala, R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti,
   L.; Tomasi, M.; Torre, J. -P.; Toth, V.; Tristram, M.; Tuovinen, J.;
   Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade,
   L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A..22P    Altcode: 2011arXiv1101.2034P; 2011A&A...536A..22A
  We perform a detailed investigation of sources from the Cold Cores
  Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability
  of the detections, validate the separation between warm and cold
  dust emission components, provide the first glimpse at the nature,
  internal morphology and physical characterictics of the Planck-detected
  sources. We focus on a sub-sample of ten sources from the C3PO list,
  selected to sample different environments, from high latitude cirrus to
  nearby (150pc) and remote (2kpc) molecular complexes. We present Planck
  surface brightness maps and derive the dust temperature, emissivity
  spectral index, and column densities of the fields. With the help
  of higher resolution Herschel and AKARI continuum observations and
  molecular line data, we investigate the morphology of the sources and
  the properties of the substructures at scales below the Planck beam
  size. The cold clumps detected by Planck are found to be located on
  large-scale filamentary (or cometary) structures that extend up to
  20pc in the remote sources. The thickness of these filaments ranges
  between 0.3 and 3pc, for column densities N<SUB>H<SUB>2</SUB></SUB> ~
  0.1 to 1.6 × 10<SUP>22</SUP> cm<SUP>-2</SUP>, and with linear mass
  density covering a broad range, between 15 and 400 M<SUB>⊙</SUB>
  pc<SUP>-1</SUP>. The dust temperatures are low (between 10 and 15K) and
  the Planck cold clumps correspond to local minima of the line-of-sight
  averaged dust temperature in these fields. These low temperatures are
  confirmed when AKARI and Herschel data are added to the spectral energy
  distributions. Herschel data reveal a wealth of substructure within
  the Planck cold clumps. In all cases (except two sources harbouring
  young stellar objects), the substructures are found to be colder,
  with temperatures as low as 7K. Molecular line observations provide
  gas column densities which are consistent with those inferred from
  the dust. The linewidths are all supra-thermal, providing large
  virial linear mass densities in the range 10 to 300 M<SUB>⊙</SUB>
  pc<SUP>-1</SUP>, comparable within factors of a few, to the gas linear
  mass densities. The analysis of this small set of cold clumps already
  probes a broad variety of structures in the C3PO sample, probably
  associated with different evolutionary stages, from cold and starless
  clumps, to young protostellar objects still embedded in their cold
  surrounding cloud. Because of the all-sky coverage and its sensitivity,
  Planck is able to detect and locate the coldest spots in massive
  elongated structures that may be the long-searched for progenitors of
  stellar clusters. <P />Appendix A is available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>Corresponding
  author: I. Ristorcelli, e-mail: isabelle.ristorcelli@irap.omp.eu

---------------------------------------------------------
Title: Planck early results. IX. XMM-Newton follow-up for validation
    of Planck cluster candidates
Authors: Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.;
   Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.;
   Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît,
   A.; Bernard, J. -P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi,
   A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Bucher, M.;
   Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J. -F.; Carvalho,
   P.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang,
   L. -Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.;
   Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.;
   Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; de Bernardis, P.;
   de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré,
   O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.;
   Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi,
   E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.;
   Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.;
   González-Riestra, R.; Górski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Harrison, D.; Heinämäki, P.; Henrot-Versillé, S.;
   Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.;
   Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger,
   K. M.; Hurier, G.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo,
   R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache,
   G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.;
   Le Jeune, M.; Leach, S.; Leonardi, R.; Liddle, A.; Linden-Vørnle,
   M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.;
   Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.;
   Mazzotta, P.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Mennella,
   A.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.;
   Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Pasian, F.;
   Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini,
   F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.;
   Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt,
   G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rebolo, R.; Reinecke,
   M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha,
   G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Saar, E.;
   Sandri, M.; Santos, D.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.;
   Smoot, G. F.; Starck, J. -L.; Stivoli, F.; Stolyarov, V.; Sunyaev,
   R.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.;
   Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Valenziano,
   L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.;
   White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2011A&A...536A...9P    Altcode: 2011A&A...536A...9A; 2011arXiv1101.2025P
  We present the XMM-Newton follow-up for confirmation of Planck cluster
  candidates. Twenty-five candidates have been observed to date using
  snapshot (~10ks) exposures, ten as part of a pilot programme to
  sample a low range of signal-to-noise ratios (4 &lt; S/N &lt; 6),
  and a further 15 in a programme to observe a sample of S/N &gt; 5
  candidates. The sensitivity and spatial resolution of XMM-Newton allows
  unambiguous discrimination between clusters and false candidates. The
  4 false candidates have S/N ≤ 4.1. A total of 21 candidates are
  confirmed as extended X-ray sources. Seventeen are single clusters,
  the majority of which are found to have highly irregular and disturbed
  morphologies (about ~70%). The remaining four sources are multiple
  systems, including the unexpected discovery of a supercluster at z =
  0.45. For 20 sources we are able to derive a redshift estimate from
  the X-ray Fe K line (albeit of variable quality). The new clusters
  span the redshift range 0.09 ≲ z ≲ 0.54, with a median redshift
  of z ~ 0.37. A first determination is made of their X-ray properties
  including the characteristic size, which is used to improve the
  estimate of the SZ Compton parameter, Y<SUB>500</SUB>. The follow-up
  validation programme has helped to optimise the Planck candidate
  selection process. It has also provided a preview of the X-ray
  properties of these newly-discovered clusters, allowing comparison
  with their SZ properties, and to the X-ray and SZ properties of
  known clusters observed in the Planck survey. Our results suggest
  that Planck may have started to reveal a non-negligible population
  of massive dynamically perturbed objects that is under-represented in
  X-ray surveys. However, despite their particular properties, these new
  clusters appear to follow the Y<SUB>500</SUB>-Y<SUB>X</SUB> relation
  established for X-ray selected objects, where Y<SUB>X</SUB> is the
  product of the gas mass and temperature. <P />Corresponding author:
  E. Pointecouteau, e-mail: etienne.pointecouteau@irap.omp.eu

---------------------------------------------------------
Title: Subaru Weak-lensing Study of A2163: Bimodal Mass Structure
Authors: Okabe, N.; Bourdin, H.; Mazzotta, P.; Maurogordato, S.
2011ApJ...741..116O    Altcode: 2011arXiv1107.0004O
  We present a weak-lensing analysis of the merging cluster A2163 using
  Subaru/Suprime-Cam and CFHT/Mega-Cam data and discuss the dynamics of
  this cluster merger, based on complementary weak-lensing, X-ray, and
  optical spectroscopic data sets. From two-dimensional multi-component
  weak-lensing analysis, we reveal that the cluster mass distribution is
  well described by three main components including the two-component
  main cluster A2163-A with mass ratio 1:8, and its cluster satellite
  A2163-B. The bimodal mass distribution in A2163-A is similar to the
  galaxy density distribution, but appears as spatially segregated
  from the brightest X-ray emitting gas region. We discuss the possible
  origins of this gas-dark-matter offset and suggest the gas core of the
  A2163-A subcluster has been stripped away by ram pressure from its dark
  matter component. The survival of this gas core from the tidal forces
  exerted by the main cluster lets us infer a subcluster accretion with
  a non-zero impact parameter. Dominated by the most massive component
  of A2163-A, the mass distribution of A2163 is well described by a
  universal Navarro-Frenk-White profile as shown by a one-dimensional
  tangential shear analysis, while the singular-isothermal sphere
  profile is strongly ruled out. Comparing this cluster mass profile with
  profiles derived assuming intracluster medium hydrostatic equilibrium
  (H.E.) in two opposite regions of the cluster atmosphere has allowed
  us to confirm the prediction of a departure from H.E. in the eastern
  cluster side, presumably due to shock heating. Yielding a cluster mass
  estimate of M <SUB>500</SUB> = 11.18<SUP>+1.64</SUP> <SUB> - 1.46</SUB>
  × 10<SUP>14</SUP> h <SUP>-1</SUP> M <SUB>⊙</SUB>, our mass profile
  confirms the exceptionally high mass of A2163, consistent with previous
  analyses relying on the cluster dynamical analysis and Y <SUB>X</SUB>
  mass proxy. <P />This work is based in part on data collected at
  Subaru Telescope and obtained from the SMOKA, which is operated by
  the Astronomy Data Center, National Astronomical Observatory of Japan.

---------------------------------------------------------
Title: Discovery of the correspondence between intra-cluster
    radio emission and a high pressure region detected through the
    Sunyaev-Zel'dovich effect
Authors: Ferrari, C.; Intema, H. T.; Orrù, E.; Govoni, F.; Murgia,
   M.; Mason, B.; Bourdin, H.; Asad, K. M.; Mazzotta, P.; Wise, M. W.;
   Mroczkowski, T.; Croston, J. H.
2011A&A...534L..12F    Altcode: 2011arXiv1107.5945F
  We analyzed new 237 MHz and 614 MHz GMRT data of the most X-ray luminous
  galaxy cluster, RX J1347-1145. Our radio results are compared with
  the MUSTANG 90 GHz Sunyaev-Zel'dovich effect map and with re-processed
  Chandra and XMM-Newton archival data of this cluster. We point out for
  the first time in an unambiguous way the correspondence between a radio
  excess in a diffuse intra-cluster radio source and a hot region detected
  through both Sunyaev-Zel'dovich effect and X-ray observations. Our
  result indicates that electron re-acceleration in the excess emission
  of the radio mini-halo at the center of RX J1347-1145 is most likely
  related to a shock front propagating into the intra-cluster medium.

---------------------------------------------------------
Title: a Detailed Chandra/hst Study of the First z approx 1 Cluster
    Blindly Discovered in the Planck all Sky Survey
Authors: Mazzotta, Pasquale
2011hst..prop12757M    Altcode:
  PLCKG266.6-27.3 is the first Planck blindly discovered cluster of
  galaxies at z=1. Consistent with expectations for high z Planck-detected
  clusters, a 10ks XMM observation confirms that it is an exceptional
  system: with its L500=15 10^44 ergs^-1, T500=11.6pm1.4keV, and
  M500=7.8pm1.0 10^14 M it is the most luminous cluster known at z
  &gt; 0.5 and one of the most {if not the most} massive cluster at
  redshift z&gt;1. Furthermore, unlike other high redshift clusters,
  PLCKG266.6-27.3 is likely to be a relaxed system so potentially ideal
  to make accurate hydrostatic mass measurements. We propose a joint
  Chandra-HST observation of PLCKG266.6-27.3 to confirm the relaxed
  dynamical status and, for the first time, to compare weak lensing and
  hydrostatic measurements in a z=1 cluster.

---------------------------------------------------------
Title: a Detailed Chandra/hst Study of the First z approx 1 Cluster
    Blindly Discovered in the Planck all Sky Survey
Authors: Mazzotta, Pasquale
2011cxo..prop.3451M    Altcode:
  PLCKG266.6-27.3 is the first Planck blindly discovered cluster of
  galaxies at z=1. Consistent with expectations for high z Planck-detected
  clusters, a 10ks XMM observation confirms that it is an exceptional
  system: with its L500=15 10^44 ergs^-1, T500=11.6pm1.4keV, and
  M500=7.8pm1.0 10^14 M it is the most luminous cluster known at z
  &gt; 0.5 and one of the most (if not the most) massive cluster at
  redshift z&gt;1. Furthermore, unlike other high redshift clusters,
  PLCKG266.6-27.3 is likely to be a relaxed system so potentially ideal
  to make accurate hydrostatic mass measurements. We propose a joint
  Chandra-HST observation of PLCKG266.6-27.3 to confirm the relaxed
  dynamical status and, for the first time, to compare weak lensing and
  hydrostatic measurements in a z=1 cluster.

---------------------------------------------------------
Title: Chandra Archival Study of Planck Clusters
Authors: Mazzotta, Pasquale
2011cxo..prop.4242M    Altcode:
  This archive proposal is linked to the X-ray Visionary Project number
  13800087, The Chandra-Planck Cluster Legacy, whose primary scientific
  goals is to characterize the massive clusters in the local (z &lt;
  0.5) Universe found through the Planck SZ analysis. To be completed,
  the project requires Chandra observations for all the 189 clusters in
  the Planck ESZ sample. With this archive proposal we request funding
  to perform the analysis of the 109 Cluster already available into
  the archive.

---------------------------------------------------------
Title: A Combined Low-radio Frequency/X-ray Study of Galaxy
    Groups. I. Giant Metrewave Radio Telescope Observations at 235 MHz
    AND 610 MHz
Authors: Giacintucci, Simona; O'Sullivan, Ewan; Vrtilek, Jan; David,
   Laurence P.; Raychaudhury, Somak; Venturi, Tiziana; Athreya, Ramana M.;
   Clarke, Tracy E.; Murgia, Matteo; Mazzotta, Pasquale; Gitti, Myriam;
   Ponman, Trevor; Ishwara-Chandra, C. H.; Jones, Christine; Forman,
   William R.
2011ApJ...732...95G    Altcode: 2011arXiv1103.1364G
  We present new Giant Metrewave Radio Telescope observations at 235
  MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations
  are part of an extended project, presented here and in future papers,
  which combines low-frequency radio and X-ray data to investigate
  the interaction between central active galactic nuclei (AGNs) and
  the intra-group medium (IGM). The radio images show a very diverse
  population of group-central radio sources, varying widely in size,
  power, morphology, and spectral index. Comparison of the radio images
  with Chandra and XMM-Newton X-ray images shows that groups with
  significant substructure in the X-ray band and marginal radio emission
  at gsim1 GHz host low-frequency radio structures that correlate with
  substructures in IGM. Radio-filled X-ray cavities, the most evident form
  of AGN/IGM interaction in our sample, are found in half of the systems
  and are typically associated with small, low-, or mid-power double radio
  sources. Two systems, NGC5044 and NGC4636, possess multiple cavities,
  which are isotropically distributed around the group center, possibly
  due to group weather. In other systems the radio/X-ray correlations
  are less evident. However, the AGN/IGM interaction can manifest itself
  through the effects of the high-pressure medium on the morphology,
  spectral properties, and evolution of the radio-emitting plasma. In
  particular, the IGM can confine fading radio lobes in old/dying
  radio galaxies and prevent them from dissipating quickly. Evidence
  for radio emission produced by former outbursts that co-exist with
  current activity is found in six groups of the sample.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Massive galaxy clusters lensing
    analyse (Richard+, 2010)
Authors: Richard, J.; Smith, G. P.; Kneib, J. -P.; Ellis, R. S.;
   Sanderson, A. J. R.; Pei, L.; Targett, T. A.; Sand, D. J.; Swinbank,
   A. M.; Dannerbauer, H.; Mazzotta, P.; Limousin, M.; Egami, E.; Jullo,
   E.; Hamilton-Morris, V.; Moran, S. M.
2011yCat..74040325R    Altcode:
  High-resolution imaging data taken with the Advanced Camera for Surveys
  (ACS) or Wide Field Planetary Camera 2 (WFPC2) instrument on HST
  are available for each selected cluster in one or two bands, either
  through our dedicated LoCuSS programme (GO-DD 11312, PI: G.P. Smith)
  or from the archive. <P />J- and KS-band data were obtained between
  2003 March and 2007 April on the following near-infrared instruments:
  Wide Infrared Camera (WIRC) on the Palomar-200-inch telescope, Infrared
  Side Port Imager (ISPI) on the CTIO Blanco 4-m telescope and Florida
  Infrared Imaging Multi-Object Spectrograph (FLAMINGOS) on the Kitt Peak
  (KPNO) 4-m telescope. <P />We used the LRIS on the Keck-I telescope
  to perform long-slit and multislit observations of the clusters. The
  spectroscopic data used in the current paper are the outcome of six
  different observing runs between 2004 and 2008. <P />(1 data file).

---------------------------------------------------------
Title: The stellar and hot gas content of low-mass galaxy clusters
Authors: Balogh, Michael L.; Mazzotta, Pasquale; Bower, Richard G.;
   Eke, Vince; Bourdin, Hervé; Lu, Ting; Theuns, Tom
2011MNRAS.412..947B    Altcode: 2010arXiv1011.0602B; 2010MNRAS.tmp.1842B
  We analyse the stellar and hot gas content of 18 nearby, low-mass
  galaxy clusters, detected in redshift space and selected to have a
  dynamical mass 3 × 10<SUP>14</SUP> &lt; M/M<SUB>⊙</SUB> &lt; 6 ×
  10<SUP>14</SUP> (h= 0.7), as measured from the 2dF Galaxy Redshift
  Survey. We combine X-ray measurements from both Chandra and XMM with
  ground-based near-infrared observations from CTIO, Anglo-Australian
  Telescope and Canada-France-Hawaii Telescope to compare the mass in hot
  gas and stars to the dynamical mass and state of the clusters. Only 13
  of the clusters are detected in X-ray emission, and for these systems we
  find that a range of 7-20 per cent of their baryonic mass, and &lt;3 per
  cent of their dynamical mass, is detected in starlight, similar to what
  is observed in more massive clusters. In contrast, the five undetected
  clusters are underluminous in X-ray emission, by up to a factor of
  10, given their stellar mass. Although the velocity distribution of
  cluster members in these systems is indistinguishable from a Gaussian,
  all show subtle signs of being unrelaxed: either they lack a central,
  dominant galaxy, or the bright galaxy distribution is less concentrated
  and/or more elongated than the rest of the sample. Thus we conclude that
  low-mass clusters and groups selected from the velocity distribution of
  their galaxies exhibit a dichotomy in their hot gas properties. Either
  they are detected in X-ray, in which case they generally lie on the
  usual scaling relations, or they are completely undetected in X-ray
  emission. The non-detections may be partly related to the apparently
  young dynamical state of the clusters, but it remains a distinct
  possibility that some of these systems are exceptionally devoid of
  hot emitting gas as the result of its expulsion or rarefaction.

---------------------------------------------------------
Title: Scaling Relation in Two Situations of Extreme Mergers
Authors: Rasia, E.; Mazzotta, P.; Evrard, A.; Markevitch, M.; Dolag,
   K.; Meneghetti, M.
2011ApJ...729...45R    Altcode: 2010arXiv1012.4027R
  Clusters of galaxies are known to be dynamically active systems, yet
  X-ray studies of the low-redshift population exhibit tight scaling
  laws. In this work, we extend previous studies of this apparent paradox
  using numerical simulations of two extreme merger cases, one is a high
  Mach number (above 2.5) satellite merger similar to the "bullet cluster"
  and the other is a merger of nearly equal-mass progenitors. Creating
  X-ray images densely sampled in time, we construct T <SUB>X</SUB>,
  M <SUB>gas</SUB>, and Y <SUB>X</SUB> measures within R <SUB>500</SUB>
  and compare to the calibrations of Kravtsov et al. We find that these
  extreme merger cases respect the scaling relations, for both intrinsic
  measures and for measures derived from appropriately masked, synthetic
  Chandra X-ray images. The masking procedure plays a critical role in
  the X-ray temperature calculation, while it is irrelevant in the X-ray
  gas mass derivation. Miscentering up to 100 kpc does not influence the
  result. The observationally determined radius R <SUB>500</SUB> might
  conduce to systematic shifts in M <SUB>gas</SUB> and Y <SUB>X</SUB>,
  which increases the total mass scatter.

---------------------------------------------------------
Title: A2163: Merger events in the hottest Abell galaxy
    cluster. II. Subcluster accretion with galaxy-gas separation
Authors: Bourdin, H.; Arnaud, M.; Mazzotta, P.; Pratt, G. W.;
   Sauvageot, J. -L.; Martino, R.; Maurogordato, S.; Cappi, A.; Ferrari,
   C.; Benoist, C.
2011A&A...527A..21B    Altcode: 2010arXiv1011.3154B
  Located at z = 0.203, A2163 is a rich galaxy cluster with an
  intra-cluster medium (ICM) that exhibits extraordinary properties,
  including an exceptionally high X-ray luminosity, average temperature,
  and a powerful and extended radio halo. The irregular and complex
  morphology of its gas and galaxy structure suggests that this cluster
  has recently undergone major merger events that involve two or more
  cluster components. In this paper, we study the gas structure and
  dynamics by means of spectral-imaging analysis of X-ray data obtained
  from XMM-Newton and Chandra observations. From the evidence of a cold
  front, we infer the westward motion of a cool core across the E-W
  elongated atmosphere of the main cluster A2163-A. Located close to a
  galaxy over-density, this gas "bullet" appears to have been spatially
  separated from its galaxy (and presumably dark matter component) as a
  result of high-velocity accretion. From gas brightness and temperature
  profile analysis performed in two opposite regions of the main cluster,
  we show that the ICM has been adiabatically compressed behind the
  crossing "bullet" possibly because of shock heating, leading to a
  strong departure of the ICM from hydrostatic equilibrium in this
  region. Assuming that the mass estimated from the Y<SUB>X</SUB>
  proxy best indicates the overall mass of the system and that the
  western cluster sector is in approximate hydrostatic equilibrium
  before subcluster accretion, we infer a merger scenario between two
  subunits of mass ratio 1:4, leading to a present total system mass of
  M<SUB>500</SUB> ≃ 1.9 × 10<SUP>15</SUP> M<SUB>⊙</SUB>. Additional
  analysis of the spatially-separated northern subcluster A2163-B does
  not show any evidence of strong interaction with the main cluster
  A2163-A, leading us to infer that the physical distance separating the
  northern subcluster and the main component is longer than the projected
  separation of these components. The exceptional properties of A2163
  present various similarities with those of 1E0657-56, the so-called
  "bullet-cluster". These similarities are likely to be related to a
  comparable merger scenario.

---------------------------------------------------------
Title: Overview of the Planck Cluster SZ Results
Authors: Mazzotta, Pasquale
2011gcca.progE...6M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Study of the M shock wave propagation in RXJ1314.4-2515
Authors: Mazzotta, P.; Bourdin, H.; Giacintucci, S.; Markevitch, M.;
   Venturi, T.
2011MmSAI..82..495M    Altcode:
  We present the analysis of XMM-Newton observations of the merging
  cluster of galaxies RXJ1314.4-2515. The cluster is known to host a small
  radio halo at its center and two Mpc-size relics in the outskirts,
  one to the east and one to the west. The XMM-Newton observation
  reveals the presence of a shock underlying the western relic. The
  outer border of the relic is remarkably coincident with the shock
  front. This provides important support to the shock (re)acceleration
  models as likely mechanisms behind the formation of the radio relics
  in clusters. Very interestingly the shock, which seems to propagate
  with a Mach number of 2.5, also shows an M-like shape with the nose
  of the front slightly tilted inward which is likely produced by the
  material infalling along the filament.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Planck Early Release Compact
    Source Catalogue (Planck, 2011)
Authors: Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud,
   M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi,
   A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.;
   Benabed, K.; Bennett, K.; Benoit, A.; Bernard, J. -P.; Bersanelli,
   M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.;
   Bouchet, F. R.; Bradshaw, T.; Bremer, M.; Bucher, M.; Burigana, C.;
   Butler, R. C.; Cabella, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso,
   J. -F.; Carr, R.; Casale, M.; Catalano, A.; Cayon, L.; Challinor, A.;
   Chamballu, A.; Charra, J.; Chary, R. -R.; Chiang, L. -Y.; Chiang,
   C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.;
   Coulais, A.; Crill, B. P.; Crone, G.; Crook, M.; Cuttaia, F.; Danese,
   L.; D'Arcangelo, O.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de
   Bruin, J.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille,
   J.; Delouis, J. -M.; Desert, F. -X.; Dick, J.; Dickinson, C.; Dolag,
   K.; Dole, H.; Donzelli, S.; Dore, O.; Doerl, U.; Douspis, M.; Dupac,
   X.; Efstathiou, G.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Foley,
   S.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Freschi, M.;
   Gaier, T. C.; Galeotta, S.; Gallegos, J.; Gandolfo, B.; Ganga, K.;
   Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.; Gonzalez,
   J.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.;
   Gruppuso, A.; Guyot, G.; Haissinski, J.; Hansen, F. K.; Harrison, D.;
   Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.;
   Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup,
   A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.;
   Jagemann, T.; Jones, W. C.; Juillet, J. J.; Juvela, M.; Kangaslahti,
   P.; Keihaenen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox,
   L.; Krassenburg, M.; Kurki-Suonio, H.; Lagache, G.; Laehteenmaeki,
   A.; Lamarre, J. -M.; Lange, A. E.; Lasenby, A.; Laureijs, R. J.;
   Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leroy, C.;
   Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lowe, S.; Lubin,
   P. M.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei,
   B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martinez-Gonzalez,
   E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.;
   McDonald, A.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin,
   J. -B.; Mendes, L.; Mennella, A.; Mevi, C.; Miniscalco, R.; Mitra,
   S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.;
   sMorisset, N.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.;
   Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello,
   F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Ortiz, I.; Osborne,
   S.; Osuna, P.; Oxborrow, C. A.; Pajot, F.; Paladini, R.; Partridge,
   B.; Pasian, F.; Passvogel, T.; Patanchon, G.; Pearson, D.; Pearson,
   T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat,
   M.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau,
   E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Prezeau, G.;
   Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.;
   Reinecke, M.; Reix, J. -M.; Renault, C.; Ricciardi, S.; Riller,
   T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson,
   M.; Rubino-Martin, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.;
   Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.;
   Shellard, P.; Simonetto, A.; Smoot, G. F.; Sozzi, C.; Starck, J. -L.;
   Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Stringhetti,
   L.; Sudiwala, R.; Sunyaev, R.; Sygnet, J. -F.; Tapiador, D.; Tauber,
   J. A.; Tavagnacco, D.; Taylor, D.; Terenzi, L.; Texier, D.; Toffolatti,
   L.; Tomasi, M.; Torre, J. -P.; Tristram, M.; Tuovinen, J.; Tuerler,
   M.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Varis,
   J.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.;
   Wandelt, B. D.; Watson, C.; White, S. D. M.; White, M.; Wilkinson,
   A.; Yvon, D.; Zacchei, A.; Zonca, A.
2011yCat.8088....0P    Altcode:
  Planck is a European Space Agency (ESA) mission, with significant
  contributions from the U.S. National Aeronautics and Space Agency
  (NASA). It is the third generation of space-based cosmic microwave
  background experiments, after the Cosmic Background Explorer (COBE) and
  the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on
  14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following
  a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit
  checkout, Planck initiated the First Light Survey on 13 August
  2009. Since then, Planck has been continuously measuring the intensity
  of the sky over a range of frequencies from 30 to 857GHz (wavelengths
  of 1cm to 350μm) with spatial resolutions ranging from about 33'
  to 5' respectively. The Low Frequency Instrument (LFI) on Planck
  provides temperature and polarization information using radiometers
  which operate between 30 and 70GHz. The High Frequency Instrument
  (HFI) uses pairs of polarization-sensitive bolometers at each of four
  frequencies between 100 and 353GHz but does not measure polarization
  information in the two upper HFI bands at 545 and 857GHz. The lowest
  frequencies overlap with WMAP, and the highest frequencies extend far
  into the submillimeter in order to improve separation between Galactic
  foregrounds and the cosmic microwave background (CMB). By extending
  to wavelengths longer than those at which the Infrared Astronomical
  Satellite (IRAS) operated, Planck is providing an unprecedented window
  into dust emission at far-infrared and submillimeter wavelengths. <P
  />The Planck Early Release Compact Source Catalogue (ERCSC) is a list
  of all high reliability sources, both Galactic and extragalactic,
  derived from the first sky coverage. The data that went into this
  early release comprise all observations undertaken between 13 August
  2009 and 6 June 2010, corresponding to Planck operational days
  91-389. Since the Planck scan strategy results in the entire sky
  being observed every 6 months, the data considered in this release
  correspond to more than the first sky coverage. The source lists have
  reliability goals of &gt;90% across the entire sky and &gt;95% at high
  Galactic latitude. The goals on photometric accuracy are 30% while the
  positional accuracy goal translates to a positional root mean square
  (RMS) uncertainty that is less than 1/5 of the beam full width at half
  maximum (FWHM). <P />Detailed explanations about the mission and the
  catalogs included here can be found in the "Explanatory supplement"
  (file "ercsc4_3.pdf"). Skymaps of the sources can be found in the
  "skymaps" subdirectory; postage stamps of the sources in the ECC (Early
  Cold Cores) catalog and in the different filters are located in the
  "stamps" subdirectory. <P />The "Byte-by-byte Description" below contain
  column names standardized according to the conventions used at CDS;
  the original column names, as defined in the FITS files, are listed,
  enclosed within parentheses, at the end of the explanations. <P />(16
  data files).

---------------------------------------------------------
Title: Planck pre-launch status: The Planck mission
Authors: Tauber, J. A.; Mandolesi, N.; Puget, J. -L.; Banos, T.;
   Bersanelli, M.; Bouchet, F. R.; Butler, R. C.; Charra, J.; Crone, G.;
   Dodsworth, J.; Efstathiou, G.; Gispert, R.; Guyot, G.; Gregorio, A.;
   Juillet, J. J.; Lamarre, J. -M.; Laureijs, R. J.; Lawrence, C. R.;
   Nørgaard-Nielsen, H. U.; Passvogel, T.; Reix, J. M.; Texier, D.;
   Vibert, L.; Zacchei, A.; Ade, P. A. R.; Aghanim, N.; Aja, B.; Alippi,
   E.; Aloy, L.; Armand, P.; Arnaud, M.; Arondel, A.; Arreola-Villanueva,
   A.; Artal, E.; Artina, E.; Arts, A.; Ashdown, M.; Aumont, J.; Azzaro,
   M.; Bacchetta, A.; Baccigalupi, C.; Baker, M.; Balasini, M.; Balbi, A.;
   Banday, A. J.; Barbier, G.; Barreiro, R. B.; Bartelmann, M.; Battaglia,
   P.; Battaner, E.; Benabed, K.; Beney, J. -L.; Beneyton, R.; Bennett,
   K.; Benoit, A.; Bernard, J. -P.; Bhandari, P.; Bhatia, R.; Biggi,
   M.; Biggins, R.; Billig, G.; Blanc, Y.; Blavot, H.; Bock, J. J.;
   Bonaldi, A.; Bond, R.; Bonis, J.; Borders, J.; Borrill, J.; Boschini,
   L.; Boulanger, F.; Bouvier, J.; Bouzit, M.; Bowman, R.; Bréelle, E.;
   Bradshaw, T.; Braghin, M.; Bremer, M.; Brienza, D.; Broszkiewicz, D.;
   Burigana, C.; Burkhalter, M.; Cabella, P.; Cafferty, T.; Cairola, M.;
   Caminade, S.; Camus, P.; Cantalupo, C. M.; Cappellini, B.; Cardoso,
   J. -F.; Carr, R.; Catalano, A.; Cayón, L.; Cesa, M.; Chaigneau, M.;
   Challinor, A.; Chamballu, A.; Chambelland, J. P.; Charra, M.; Chiang,
   L. -Y.; Chlewicki, G.; Christensen, P. R.; Church, S.; Ciancietta,
   E.; Cibrario, M.; Cizeron, R.; Clements, D.; Collaudin, B.; Colley,
   J. -M.; Colombi, S.; Colombo, A.; Colombo, F.; Corre, O.; Couchot, F.;
   Cougrand, B.; Coulais, A.; Couzin, P.; Crane, B.; Crill, B.; Crook,
   M.; Crumb, D.; Cuttaia, F.; Dörl, U.; da Silva, P.; Daddato, R.;
   Damasio, C.; Danese, L.; D'Aquino, G.; D'Arcangelo, O.; Dassas, K.;
   Davies, R. D.; Davies, W.; Davis, R. J.; de Bernardis, P.; de Chambure,
   D.; de Gasperis, G.; de La Fuente, M. L.; de Paco, P.; de Rosa, A.;
   de Troia, G.; de Zotti, G.; Dehamme, M.; Delabrouille, J.; Delouis,
   J. -M.; Désert, F. -X.; di Girolamo, G.; Dickinson, C.; Doelling,
   E.; Dolag, K.; Domken, I.; Douspis, M.; Doyle, D.; Du, S.; Dubruel,
   D.; Dufour, C.; Dumesnil, C.; Dupac, X.; Duret, P.; Eder, C.; Elfving,
   A.; Enßlin, T. A.; Eng, P.; English, K.; Eriksen, H. K.; Estaria, P.;
   Falvella, M. C.; Ferrari, F.; Finelli, F.; Fishman, A.; Fogliani, S.;
   Foley, S.; Fonseca, A.; Forma, G.; Forni, O.; Fosalba, P.; Fourmond,
   J. -J.; Frailis, M.; Franceschet, C.; Franceschi, E.; François, S.;
   Frerking, M.; Gómez-Reñasco, M. F.; Górski, K. M.; Gaier, T. C.;
   Galeotta, S.; Ganga, K.; García Lázaro, J.; Garnica, A.; Gaspard, M.;
   Gavila, E.; Giard, M.; Giardino, G.; Gienger, G.; Giraud-Heraud, Y.;
   Glorian, J. -M.; Griffin, M.; Gruppuso, A.; Guglielmi, L.; Guichon,
   D.; Guillaume, B.; Guillouet, P.; Haissinski, J.; Hansen, F. K.;
   Hardy, J.; Harrison, D.; Hazell, A.; Hechler, M.; Heckenauer, V.;
   Heinzer, D.; Hell, R.; Henrot-Versillé, S.; Hernández-Monteagudo,
   C.; Herranz, D.; Herreros, J. M.; Hervier, V.; Heske, A.; Heurtel,
   A.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Hollert,
   D.; Holmes, W.; Hornstrup, A.; Hovest, W.; Hoyland, R. J.; Huey, G.;
   Huffenberger, K. M.; Hughes, N.; Israelsson, U.; Jackson, B.; Jaffe,
   A.; Jaffe, T. R.; Jagemann, T.; Jessen, N. C.; Jewell, J.; Jones, W.;
   Juvela, M.; Kaplan, J.; Karlman, P.; Keck, F.; Keihänen, E.; King,
   M.; Kisner, T. S.; Kletzkine, P.; Kneissl, R.; Knoche, J.; Knox,
   L.; Koch, T.; Krassenburg, M.; Kurki-Suonio, H.; Lähteenmäki, A.;
   Lagache, G.; Lagorio, E.; Lami, P.; Lande, J.; Lange, A.; Langlet,
   F.; Lapini, R.; Lapolla, M.; Lasenby, A.; Le Jeune, M.; Leahy, J. P.;
   Lefebvre, M.; Legrand, F.; Le Meur, G.; Leonardi, R.; Leriche, B.;
   Leroy, C.; Leutenegger, P.; Levin, S. M.; Lilje, P. B.; Lindensmith,
   C.; Linden-Vørnle, M.; Loc, A.; Longval, Y.; Lubin, P. M.; Luchik,
   T.; Luthold, I.; Macias-Perez, J. F.; Maciaszek, T.; MacTavish, C.;
   Madden, S.; Maffei, B.; Magneville, C.; Maino, D.; Mambretti, A.;
   Mansoux, B.; Marchioro, D.; Maris, M.; Marliani, F.; Marrucho, J. -C.;
   Martí-Canales, J.; Martínez-González, E.; Martín-Polegre, A.;
   Martin, P.; Marty, C.; Marty, W.; Masi, S.; Massardi, M.; Matarrese,
   S.; Matthai, F.; Mazzotta, P.; McDonald, A.; McGrath, P.; Mediavilla,
   A.; Meinhold, P. R.; Mélin, J. -B.; Melot, F.; Mendes, L.; Mennella,
   A.; Mervier, C.; Meslier, L.; Miccolis, M.; Miville-Deschenes, M. -A.;
   Moneti, A.; Montet, D.; Montier, L.; Mora, J.; Morgante, G.; Morigi,
   G.; Morinaud, G.; Morisset, N.; Mortlock, D.; Mottet, S.; Mulder, J.;
   Munshi, D.; Murphy, A.; Murphy, P.; Musi, P.; Narbonne, J.; Naselsky,
   P.; Nash, A.; Nati, F.; Natoli, P.; Netterfield, B.; Newell, J.;
   Nexon, M.; Nicolas, C.; Nielsen, P. H.; Ninane, N.; Noviello, F.;
   Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Oldeman, P.; Olivier, P.;
   Ouchet, L.; Oxborrow, C. A.; Pérez-Cuevas, L.; Pagan, L.; Paine,
   C.; Pajot, F.; Paladini, R.; Pancher, F.; Panh, J.; Parks, G.;
   Parnaudeau, P.; Partridge, B.; Parvin, B.; Pascual, J. P.; Pasian,
   F.; Pearson, D. P.; Pearson, T.; Pecora, M.; Perdereau, O.; Perotto,
   L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piersanti,
   O.; Plaige, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.;
   Polenta, G.; Ponthieu, N.; Popa, L.; Poulleau, G.; Poutanen, T.;
   Prézeau, G.; Pradell, L.; Prina, M.; Prunet, S.; Rachen, J. P.;
   Rambaud, D.; Rame, F.; Rasmussen, I.; Rautakoski, J.; Reach, W. T.;
   Rebolo, R.; Reinecke, M.; Reiter, J.; Renault, C.; Ricciardi, S.;
   Rideau, P.; Riller, T.; Ristorcelli, I.; Riti, J. B.; Rocha, G.;
   Roche, Y.; Pons, R.; Rohlfs, R.; Romero, D.; Roose, S.; Rosset, C.;
   Rouberol, S.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusconi, P.;
   Rusholme, B.; Salama, M.; Salerno, E.; Sandri, M.; Santos, D.; Sanz,
   J. L.; Sauter, L.; Sauvage, F.; Savini, G.; Schmelzel, M.; Schnorhk,
   A.; Schwarz, W.; Scott, D.; Seiffert, M. D.; Shellard, P.; Shih, C.;
   Sias, M.; Silk, J. I.; Silvestri, R.; Sippel, R.; Smoot, G. F.; Starck,
   J. -L.; Stassi, P.; Sternberg, J.; Stivoli, F.; Stolyarov, V.; Stompor,
   R.; Stringhetti, L.; Strommen, D.; Stute, T.; Sudiwala, R.; Sugimura,
   R.; Sunyaev, R.; Sygnet, J. -F.; Türler, M.; Taddei, E.; Tallon,
   J.; Tamiatto, C.; Taurigna, M.; Taylor, D.; Terenzi, L.; Thuerey,
   S.; Tillis, J.; Tofani, G.; Toffolatti, L.; Tommasi, E.; Tomasi,
   M.; Tonazzini, E.; Torre, J. -P.; Tosti, S.; Touze, F.; Tristram,
   M.; Tuovinen, J.; Tuttlebee, M.; Umana, G.; Valenziano, L.; Vallée,
   D.; van der Vlis, M.; van Leeuwen, F.; Vanel, J. -C.; van-Tent, B.;
   Varis, J.; Vassallo, E.; Vescovi, C.; Vezzu, F.; Vibert, D.; Vielva,
   P.; Vierra, J.; Villa, F.; Vittorio, N.; Vuerli, C.; Wade, L. A.;
   Walker, A. R.; Wandelt, B. D.; Watson, C.; Werner, D.; White, M.;
   White, S. D. M.; Wilkinson, A.; Wilson, P.; Woodcraft, A.; Yoffo, B.;
   Yun, M.; Yurchenko, V.; Yvon, D.; Zhang, B.; Zimmermann, O.; Zonca,
   A.; Zorita, D.
2010A&A...520A...1T    Altcode:
  The European Space Agency's Planck satellite, launched on 14 May
  2009, is the third-generation space experiment in the field of cosmic
  microwave background (CMB) research. It will image the anisotropies of
  the CMB over the whole sky, with unprecedented sensitivity ({{Δ T}over
  T} 2 × 10<SUP>-6</SUP>) and angular resolution ( 5 arcmin). Planck
  will provide a major source of information relevant to many fundamental
  cosmological problems and will test current theories of the early
  evolution of the Universe and the origin of structure. It will also
  address a wide range of areas of astrophysical research related to the
  Milky Way as well as external galaxies and clusters of galaxies. The
  ability of Planck to measure polarization across a wide frequency range
  (30-350 GHz), with high precision and accuracy, and over the whole
  sky, will provide unique insight, not only into specific cosmological
  questions, but also into the properties of the interstellar medium. This
  paper is part of a series which describes the technical capabilities of
  the Planck scientific payload. It is based on the knowledge gathered
  during the on-ground calibration campaigns of the major subsystems,
  principally its telescope and its two scientific instruments, and
  of tests at fully integrated satellite level. It represents the best
  estimate before launch of the technical performance that the satellite
  and its payload will achieve in flight. In this paper, we summarise the
  main elements of the payload performance, which is described in detail
  in the accompanying papers. In addition, we describe the satellite
  performance elements which are most relevant for science, and provide
  an overview of the plans for scientific operations and data analysis.

---------------------------------------------------------
Title: Weighing simulated galaxy clusters using lensing and X-ray
Authors: Meneghetti, M.; Rasia, E.; Merten, J.; Bellagamba, F.;
   Ettori, S.; Mazzotta, P.; Dolag, K.; Marri, S.
2010A&A...514A..93M    Altcode: 2009arXiv0912.1343M
  Context. Among the methods employed to measure the mass of galaxy
  clusters, the techniques based on lensing and X-ray analyses are
  perhaps the most widely used; however, the comparison between these
  mass estimates is often difficult and, in several clusters, the
  results apparently inconsistent. <BR /> Aims: We aim at investigating
  potential biases in lensing and X-ray methods to measure the cluster
  mass profiles. <BR /> Methods: We performed realistic simulations of
  lensing and X-ray observations that were subsequently analyzed using
  observational techniques. The resulting mass estimates were compared
  with the input models. Three clusters obtained from state-of-the-art
  hydrodynamical simulations, each of which projected along three
  independent lines-of-sight, were used for this analysis. <BR />
  Results: We find that strong lensing models can be trusted over
  a limited region around the cluster core. Extrapolating the strong
  lensing mass models to outside the Einstein ring can lead to significant
  biases in the mass estimates, if the BCG is not modeled properly, for
  example. Weak-lensing mass measurements can be strongly affected by
  substructures, depending on the method implemented to convert the shear
  into a mass estimate. Using nonparametric methods which combine weak
  and strong lensing data, the projected masses within R<SUB>200</SUB>
  can be constrained with a precision of ~10%. Deprojection of lensing
  masses increases the scatter around the true masses by more than a
  factor of two because of cluster triaxiality. X-ray mass measurements
  have much smaller scatter (about a factor of two less than the lensing
  masses), but they are generally biased toward low values between 5
  and 10%. This bias is entirely ascribable to bulk motions in the gas
  of our simulated clusters. Using the lensing and the X-ray masses as
  proxies for the true and the hydrostatic equilibrium masses of the
  simulated clusters and by averaging over the cluster sample, we are
  able to measure the lack of hydrostatic equilibrium in the systems we
  have investigated. <BR /> Conclusions: Although the comparison between
  lensing and X-ray masses may be difficult in individual systems due to
  triaxiality and substructures, using a large number of clusters with
  both lensing and X-ray observations may lead to important information
  about their gas physics and allow use of lensing masses to calibrate
  the X-ray scaling relations.

---------------------------------------------------------
Title: LoCuSS: first results from strong-lensing analysis of 20
    massive galaxy clusters at z = 0.2
Authors: Richard, Johan; Smith, Graham P.; Kneib, Jean-Paul; Ellis,
   Richard S.; Sanderson, A. J. R.; Pei, L.; Targett, T. A.; Sand, D. J.;
   Swinbank, A. M.; Dannerbauer, H.; Mazzotta, P.; Limousin, M.; Egami,
   E.; Jullo, E.; Hamilton-Morris, V.; Moran, S. M.
2010MNRAS.404..325R    Altcode: 2010MNRAS.tmp..313R; 2009arXiv0911.3302R
  We present a statistical analysis of a sample of 20 strong
  lensing clusters drawn from the Local Cluster Substructure Survey,
  based on high-resolution Hubble Space Telescope imaging of the
  cluster cores and follow-up spectroscopic observations using the
  Keck-I telescope. We use detailed parametrized models of the mass
  distribution in the cluster cores, to measure the total cluster mass
  and fraction of that mass associated with substructures within R &lt;=
  250kpc. These measurements are compared with the distribution of
  baryons in the cores, as traced by the old stellar populations and
  the X-ray emitting intracluster medium. Our main results include:
  (i) the distribution of Einstein radii is lognormal, with a peak
  and 1σ width of &lt;log<SUB>10</SUB>θ<SUB>E</SUB>(z = 2)&gt; =
  1.16 +/- 0.28; (ii) we detect an X-ray/lensing mass discrepancy of
  &lt;M<SUB>SL</SUB>/M<SUB>X</SUB>&gt; = 1.3 at 3σ significance -
  clusters with larger substructure fractions displaying greater mass
  discrepancies, and thus greater departures from hydrostatic equilibrium
  and (iii) cluster substructure fraction is also correlated with the
  slope of the gas density profile on small scales, implying a connection
  between cluster-cluster mergers and gas cooling. Overall our results are
  consistent with the view that cluster-cluster mergers play a prominent
  role in shaping the properties of cluster cores, in particular causing
  departures from hydrostatic equilibrium, and possibly disturbing cool
  cores. Our results do not support recent claims that large Einstein
  radius clusters present a challenge to the cold dark matter paradigm.

---------------------------------------------------------
Title: LoCuSS: A Comparison of Cluster Mass Measurements from
    XMM-Newton and Subaru—Testing Deviation from Hydrostatic Equilibrium
    and Non-thermal Pressure Support
Authors: Zhang, Yu-Ying; Okabe, Nobuhiro; Finoguenov, Alexis; Smith,
   Graham P.; Piffaretti, Rocco; Valdarnini, Riccardo; Babul, Arif;
   Evrard, August E.; Mazzotta, Pasquale; Sanderson, Alastair J. R.;
   Marrone, Daniel P.
2010ApJ...711.1033Z    Altcode: 2010arXiv1001.0780Z
  We compare X-ray hydrostatic and weak-lensing mass estimates for a
  sample of 12 clusters that have been observed with both XMM-Newton and
  Subaru. At an over-density of Δ = 500, we obtain 1 - M <SUP>X</SUP>/M
  <SUP>WL</SUP> = 0.01 ± 0.07 for the whole sample. We also divided the
  sample into undisturbed and disturbed sub-samples based on quantitative
  X-ray morphologies using asymmetry and fluctuation parameters, obtaining
  1 - M <SUP>X</SUP>/M <SUP>WL</SUP> = 0.09 ± 0.06 and -0.06 ± 0.12
  for the undisturbed and disturbed clusters, respectively. In addition
  to non-thermal pressure support, there may be a competing effect
  associated with adiabatic compression and/or shock heating which leads
  to overestimate of X-ray hydrostatic masses for disturbed clusters,
  for example, in the famous merging cluster A1914. Despite the modest
  statistical significance of the mass discrepancy, on average, in the
  undisturbed clusters, we detect a clear trend of improving agreement
  between M <SUP>X</SUP> and M <SUP>WL</SUP> as a function of increasing
  over-density, M^X/M^WL=(0.908 ± 0.004)+(0.187 ± 0.010) \cdot log_{10}
  (Δ /500). We also examine the gas mass fractions, f <SUB>gas</SUB> =
  M <SUP>gas</SUP>/M <SUP>WL</SUP>, finding that they are an increasing
  function of cluster radius, with no dependence on dynamical state,
  in agreement with predictions from numerical simulations. Overall,
  our results demonstrate that XMM-Newton and Subaru are a powerful
  combination for calibrating systematic uncertainties in cluster mass
  measurements. <P />This work is based on observations made with the
  XMM-Newton, an ESA science mission with instruments and contributions
  directly funded by ESA member states and the USA (NASA), and data
  collected at Subaru Telescope and obtained from the SMOKA, which is
  operated by the Astronomy Data Center, National Astronomical Observatory
  of Japan.

---------------------------------------------------------
Title: Testing the radio halo-cluster merger scenario. The case of
    RXC J2003.5-2323
Authors: Giacintucci, S.; Venturi, T.; Brunetti, G.; Dallacasa, D.;
   Mazzotta, P.; Cassano, R.; Bardelli, S.; Zucca, E.
2009A&A...505...45G    Altcode: 2009arXiv0905.3479G
  Aims: We present a combined radio, X-ray, and optical study of
  the galaxy cluster RXC J2003.5-2323. The cluster hosts one of the
  largest, most powerful, and distant giant radio halos known to date,
  suggesting that it may be undergoing a strong merger. The aim of
  our multiwavelength study is to investigate the radio-halo cluster
  merger scenario. <BR />Methods: We studied the radio properties of
  the giant radio halo in RXC J2003.5-2323 by means of new radio data
  obtained at 1.4 GHz with the Very Large Array, and at 240 MHz with
  the Giant Metrewave Radio Telescope, in combination with previously
  published GMRT data at 610 MHz. The dynamical state of the cluster was
  investigated by means of X-ray Chandra observations and optical ESO-NTT
  observations. <BR />Results: Our study confirms that RXC J2003.5-2323
  is an unrelaxed cluster. The unusual filamentary and clumpy morphology
  of the radio halo could be due to a combination of the filamentary
  structure of the magnetic field and turbulence in the inital stage of
  a cluster merger.

---------------------------------------------------------
Title: Energy injection in AWM4: a cool corona, a strong radio source,
    and missing X-ray cavities
Authors: Giacintucci, Simona; O'Sullivan, E.; Vrtilek, J.; David,
   L.; Raychaudhury, S.; Mazzotta, P.; Venturi, T.
2009cfdd.confE.108G    Altcode:
  We will present the results of the combined X-ray/radio analysis
  of the group/poor cluster of galaxies AWM4, using a new 80 ksec
  Chandra observation and low frequency GMRT radio data, taken as part
  of a larger project of an in-depth study of the AGN feedback in the
  group environment. Previous XMM-Newton observations showed AWM4 to
  be isothermal, with its powerful central radio galaxy the most likely
  source of heating. However, with only small lobes detected at 1.4GHz
  and with no indications of cavities or shocks associated with the
  AGN, the question of the coupling between jets and intra-group gas
  remained unresolved. Deep, low frequency GMRT radio observations have
  revealed the full extent of the radio jets and lobes and allowed us to
  determine their age, orientation, energy and physical parameters. Our
  new Chandra data reveals the small-scale galactic corona fueling the
  AGN and explains why this long, energetic outburst has not quenched
  cooling in the core. While some weak X-ray features associated with
  the jets and lobes are detected, we do not detect the clear cavities
  seen in many other similar systems, bringing us back to the question of
  the nature of the interaction between the jets and the IGM. We discuss
  possible interpretations, including entrainment or mixing of thermal gas
  into the jets and lobes, contributions from non-thermal emission, and
  dynamical motions of the BCG within the group. AWM4 provides a strong
  example of the benefits of a combined X-ray/multi-band radio approach
  to the study of AGN feedback, and emphasizes the power of Chandra's
  superb spatial resolution to search for the small-scale features which
  are key to our understanding of the mechanisms of this process.

---------------------------------------------------------
Title: EDGE: Explorer of diffuse emission and gamma-ray burst
    explosions
Authors: Piro, L.; den Herder, J. W.; Ohashi, T.; Amati, L.; Atteia,
   J. L.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.;
   Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.;
   Briggs, M.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Campana,
   S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri,
   A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusumano,
   G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari,
   L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi,
   M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.;
   Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.;
   Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in't Zand, J.;
   Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de
   Korte, P. A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu,
   R.; Macculi, C.; Makishima, K.; Matt, G.; Mazzotta, P.; McCammon,
   D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.;
   Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien,
   P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.;
   Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.;
   Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra,
   R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmitt, J.; Sciortino, S.;
   Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri,
   G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.;
   Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.;
   Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N.
2009ExA....23...67P    Altcode: 2008ExA...tmp....9P
  How structures of various scales formed and evolved from the early
  Universe up to present time is a fundamental question of astrophysical
  cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the
  baryons from the early generations of massive stars by Gamma-Ray Burst
  (GRB) explosions, through the period of galaxy cluster formation,
  down to the very low redshift Universe, when between a third and
  one half of the baryons are expected to reside in cosmic filaments
  undergoing gravitational collapse by dark matter (the so-called warm
  hot intragalactic medium). In addition EDGE, with its unprecedented
  capabilities, will provide key results in many important fields. These
  scientific goals are feasible with a medium class mission using existing
  technology combined with innovative instrumental and observational
  capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with
  a high spectral resolution. This enables the study of their star-forming
  and host galaxy environments and the use of GRBs as back lights of large
  scale cosmological structures; (b) observing and surveying extended
  sources (galaxy clusters, WHIM) with high sensitivity using two wide
  field of view X-ray telescopes (one with a high angular resolution
  and the other with a high spectral resolution). The mission concept
  includes four main instruments: a Wide-field Spectrometer (0.1-2.2 eV)
  with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager
  (0.3-6 keV) with high angular resolution (HPD = 15”) constant over
  the full 1.4 degree field of view, and a Wide Field Monitor (8-200 keV)
  with a FOV of ¼ of the sky, which will trigger the fast repointing to
  the GRB. Extension of its energy response up to 1 MeV will be achieved
  with a GRB detector with no imaging capability. This mission is proposed
  to ESA as part of the Cosmic Vision call. We will outline the science
  drivers and describe in more detail the payload of this mission.

---------------------------------------------------------
Title: Relics and Halos at intermediate redshift: testing the
    merging paradigm
Authors: Mazzotta, Pasquale
2008xmm..prop...44M    Altcode:
  In A0-6 we proposed to observe the galaxy cluster RXCJ1314.4-2515 which
  was approved in priority A. Unfortunately the observation is affected
  by strong flares for 69% of the time. We propose to re-observe it to
  compensate for the time loss. RXCJ1314.4-2515 was selected from an
  extensive radio observational campaign aimed to search for radio halos
  and relics in galaxy clusters in the redshift range 0.2div0.4 at 610
  MHz. RXCJ1314.4-2515 is exceptional as it is the unique case known to
  date of a cluster hosting both a radio halo and a double relic. The
  detailed study of the dynamics of this cluster will help us to test
  the merging paradigm and the physical properties of the ICM related
  to the relics and halo formation.

---------------------------------------------------------
Title: A Giant Metrewave Radio Telescope Multifrequency Radio Study
    of the Isothermal Core of the Poor Galaxy Cluster AWM 4
Authors: Giacintucci, Simona; Vrtilek, Jan M.; Murgia, Matteo;
   Raychaudhury, Somak; O'Sullivan, Ewan J.; Venturi, Tiziana; David,
   Laurence P.; Mazzotta, Pasquale; Clarke, Tracy E.; Athreya, Ramana M.
2008ApJ...682..186G    Altcode: 2008arXiv0804.1906G
  We present a detailed radio morphological study and spectral analysis
  of the wide-angle tail radio source 4C +24.36 associated with the
  dominant galaxy in the relaxed galaxy cluster AWM 4. Our study is
  based on new high-sensitivity GMRT observations at 235, 327, and 610
  MHz and on literature and archival data at other frequencies. We find
  that the source major axis is likely oriented at a small angle with
  respect to the plane of the sky. The wide-angle tail morphology can
  be reasonably explained by adopting a simple hydrodynamical model in
  which both ram pressure (driven by the motion of the host galaxy) and
  buoyancy forces contribute to bend the radio structure. The spectral
  index progressively steepens along the source major axis from α ~ 0.3
  in the region close to the radio nucleus to beyond 1.5 in the lobes. The
  results of the analysis of the spectral index image allow us to derive
  an estimate of the radiative age of the source of ~160 Myr. The cluster
  X-ray-emitting gas has a relaxed morphology and short cooling time,
  but its temperature profile is isothermal out to at least 160 kpc from
  the center. Therefore, we seek evidence of energy ejection from the
  central AGN to prevent catastrophic cooling. We find that the energy
  injected by 4C +24.36 in the form of synchrotron luminosity during its
  lifetime is far less than the energy required to maintain the high gas
  temperature in the core. We also find that it is not possible for the
  central source to eject the requisite energy in the intracluster gas
  in terms of the enthalpy of buoyant bubbles of relativistic fluid,
  without creating discernible large cavities in the existing X-ray
  XMM-Newton observations.

---------------------------------------------------------
Title: Do Radio Core-Halos and Cold Fronts in Non-Major-Merging
    Clusters Originate from the Same Gas Sloshing?
Authors: Mazzotta, Pasquale; Giacintucci, Simona
2008ApJ...675L...9M    Altcode: 2008arXiv0801.1905M
  We show an interesting correlation between the surface brightness
  and temperature structure of the relaxed clusters RX J1720.1+2638
  and MS 1455.0+2232, hosting a pair of cold fronts, and their central
  core-halo radio source. We discuss the possibility that the origin
  of this diffuse radio emission may be strictly connected with the gas
  sloshing mechanism suggested to explain the formation of cold fronts
  in non-major-merging clusters. We show that the radiative lifetime of
  the relativistic electrons is much shorter than the timescale on which
  they can be transported from the central galaxy up to the radius of
  the outermost cold front. This strongly indicates that the observed
  diffuse radio emission is likely produced by electrons reaccelerated
  via some kind of turbulence generated within the cluster volume limited
  by the cold fronts during the gas sloshing.

---------------------------------------------------------
Title: Temperature structure of the intergalactic medium within
    seven nearby and bright clusters of galaxies observed with XMM-Newton
Authors: Bourdin, H.; Mazzotta, P.
2008A&A...479..307B    Altcode: 2008arXiv0802.1866B
  Aims:Using a newly developed algorithm, we map, to the highest
  angular resolution allowed by the data, the temperature structure
  of the intra-cluster medium (ICM) within a nearly complete X-ray
  flux limited sample of galaxy clusters in the redshift range between
  {z}=0.045 and {z}=0.096. Our sample contains seven bright clusters
  of galaxies observed with XMM-Newton: Abell 399, Abell 401, Abell
  478, Abell 1795, Abell 2029, Abell 2065, Abell 2256. <BR />Methods:
  We use a multi-scale spectral mapping algorithm especially designed
  to map spectroscopic observables from X-ray extended emission of the
  ICM. By means of a wavelet analysis, this algorithm couples spatially
  resolved spectroscopy with a structure detection approach. Derived
  from a former algorithm using Haar wavelets, our algorithm is now
  implemented with B-spline wavelets in order to perform a more regular
  analysis of the signal. Compared to other adaptive algorithms, our
  method has the advantage of analysing spatially the gas temperature
  structure itself, instead of being primarily driven by the geometry
  of gas brightness. <BR />Results: For the four clusters in our
  sample that are major mergers, we find a rather complex thermal
  structure with strong thermal variations consistent with their
  dynamics. For two of them, A2065 and A2256, we perform a 3-d analysis
  of cold front-like features evidenced from the gas temperature and
  brightness maps. Furthermore, we detect a significant non-radial
  thermal structure outside the cool core region of the other 3 more
  “regular” clusters, with relative amplitudes of about about 10%
  and typical sizes ranging between 2 and 3 arcmin. We investigate
  possible implications of this thermal structure on the mass estimates,
  by extracting the surface brightness and temperature profiles from
  complementary sectors in the “regular” clusters A1795 and A2029,
  corresponding to hottest and coldest regions in the maps. For A2029,
  the temperature and surface brightness gradients seem to compensate
  each other, leading to a consistent mass profile. For A1795, however,
  the temperature structure leads to a significant mass discrepancy in
  the innermost cluster region. The third “regular” cluster, A478,
  is located in a particular sky region characterised by strong variations
  of neutral hydrogen column density, Nh, even on angular scales smaller
  than the cluster itself. For this cluster, we derive a spectroscopic
  Nh map and investigate the origin of Nh structure by discussing its
  correlation with galactic emission of dust in the infrared.

---------------------------------------------------------
Title: X-MAS2: Study Systematics on the ICM Metallicity Measurements
Authors: Rasia, E.; Mazzotta, P.; Bourdin, H.; Borgani, S.; Tornatore,
   L.; Ettori, S.; Dolag, K.; Moscardini, L.
2008ApJ...674..728R    Altcode: 2007arXiv0707.2614R
  X-ray measurements of the intracluster medium metallicity are
  becoming more and more frequent due to the availability of powerful
  X-ray telescopes with excellent spatial and spectral resolutions. The
  information that can be extracted from measurements of the α-elements,
  such as oxygen, magnesium, and silicon, with respect to the iron
  abundance is extremely important to a better understanding of stellar
  formation and its evolutionary history. In this paper we investigate
  possible source of bias or systematic effects connected to the plasma
  physics when recovering metal abundances from X-ray spectra. To do
  this, we analyze six simulated galaxy clusters processed through the
  new version of our X-Ray Map Simulator (X-MAS), which allows us to
  create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the
  spectroscopic results inferred from the X-ray spectra to the expected
  values directly obtained from the original simulation, we find that
  (1) the iron is recovered with high accuracy for both hot (T &gt;
  3 keV) and cold (T &lt; 2 keV) systems; at intermediate temperatures,
  however, we find a systematic overestimate, which depends inversely on
  the number counts; (2) oxygen is well recovered in cold clusters, while
  in hot systems the X-ray measurement may overestimate the true value
  by a up to a factor of 2-3; (3) being a weak line, the measurement of
  magnesium is always difficult; despite this, for cold systems (i.e.,
  with T &lt; 2 keV) we do not find any systematic behavior, while for
  very hot systems (i.e., with T &gt; 5 keV) the spectroscopic measurement
  may strongly overestimate the true value by up to a factor of 4; and
  (4) silicon is well recovered for all the clusters in our sample. We
  investigate in detail the nature of the systematic effects and biases
  found in performing XSPEC simulations. We conclude that they are
  mainly connected with the multitemperature nature of the projected
  observed spectra and to the intrinsic limitation of the XMM-Newton
  EPIC spectral resolution, which does not always allow disentangling
  the emission lines produced by different elements.

---------------------------------------------------------
Title: Radio morphology and spectral analysis of cD galaxies in rich
    and poor galaxy clusters
Authors: Giacintucci, S.; Venturi, T.; Murgia, M.; Dallacasa, D.;
   Athreya, R.; Bardelli, S.; Mazzotta, P.; Saikia, D. J.
2007A&A...476...99G    Altcode: 2007arXiv0708.4330G
  Aims:We present a radio morphological study and spectral analysis of
  a sample of 13 cD galaxies in rich and poor clusters of galaxies. <BR
  />Methods: Our study is based on new high sensitivity Giant Metrewave
  Radio Telescope (GMRT) observations at 1.28 GHz, 610 MHz and 235 MHz,
  and on archival data. From a statistical sample of cluster cD galaxies
  we selected those sources with little information available in the
  literature and promising for the detection of aged radio emission. As
  well as the high sensitivity images for all 13 radio galaxies,
  we present also a detailed spectral analysis for 7 of them. <BR
  />Results: We found a variety of morphologies and linear sizes, as
  typical for radio galaxies in the radio power range sampled here (low
  to intermediate power radio galaxies). The spectral analysis shows
  that 10/13 radio galaxies have a steep radio spectrum, with spectral
  index α ≥ 1. In general, the radiative ages and growth velocities
  are consistent with previous findings that the evolution of radio
  galaxies at cluster centres is affected by the dense external medium
  (i.e. low growth velocities and old ages). We suggest that the dominant
  galaxies in A 2622 and MKW 03s are dying radio sources, which at present
  are not fed by nuclear activity. On the other hand, the spectacular
  source at the centre of A 2372 might be a very interesting example of
  a restarted radio galaxy. For this source we estimated a life cycle
  of the order of 10<SUP>6</SUP> yr.

---------------------------------------------------------
Title: The importance of merging activity for the kinetic polarization
    of the Sunyaev-Zel'dovich signal from galaxy clusters
Authors: Maturi, M.; Moscardini, L.; Mazzotta, P.; Dolag, K.;
   Tormen, G.
2007A&A...475...71M    Altcode: 2007arXiv0706.0830M
  Context: The polarization sensitivity of upcoming millimetric
  observatories will open new possibilities for studying the properties
  of galaxy clusters and for using them as powerful cosmological
  probes. For this reason it is necessary to investigate in detail
  the characteristics of the polarization signals produced by their
  highly ionized intra-cluster medium (ICM). This work is focused on
  the polarization effect induced by the ICM bulk motion, the so-called
  kpSZ signal, which has an amplitude proportional to the optical depth
  and to the square of the tangential velocity. <BR />Aims: We study
  how this polarization signal is affected by the internal dynamics of
  galaxy clusters and its dependence on the physical modelling adopted
  to describe the baryonic component. <BR />Methods: This is done by
  producing realistic kpSZ maps starting from the outputs of two different
  sets of high-resolution hydrodynamical N-body simulations. The first
  set (17 objects) follows only non-radiative hydrodynamics, while for
  each of 9 objects of the second set we implement four different kinds
  of physical processes. <BR />Results: Our results shows that the kpSZ
  signal is a very sensitive probe of the dynamical status of galaxy
  clusters. We find that major merger events can amplify the signal up
  to one order of magnitude with respect to relaxed clusters, reaching
  amplitudes up to about 100 nK. This result implies that the internal ICM
  dynamics must be taken into account when evaluating this signal because
  simplicistic models, based on spherical rigid bodies, may provide wrong
  estimates. In particular, the selection of sufficient relaxed clusters
  seems to be fundamental to obtain a robust measurement of the intrinsic
  quadrupole of the cosmic microwave background through polarization. We
  find that the dependence on the physical modelling of the baryonic
  component is relevant only in the very inner regions of clusters.

---------------------------------------------------------
Title: Relics and Halos at intermediate redshift: testing the
    merging paradigm
Authors: Mazzotta, Pasquale
2007xmm..prop...36M    Altcode:
  In A0-6 we proposed to observe the galaxy cluster RXCJ1314.4-2515 which
  was approved in priority A. Unfortunately the observation is affected
  by strong flares for 69% of the time. We propose to re-observe it to
  compensate for the time loss. RXCJ1314.4-2515 was selected from an
  extensive radio observational campaign aimed to search for radio halos
  and relics in galaxy clusters in the redshift range 0.2div0.4 at 610
  MHz. RXCJ1314.4-2515 is exceptional as it is the unique case known to
  date of a cluster hosting both a radio halo and a double relic. The
  detailed study of the dynamics of this cluster will help us to test
  the merging paradigm and the physical properties of the ICM related
  to the relics and halo formation.

---------------------------------------------------------
Title: A Chandra Archival Study of the Temperature and Metal Abundance
    Profiles in Hot Galaxy Clusters at 0.1 &lt;~ z &lt;~ 0.3
Authors: Baldi, A.; Ettori, S.; Mazzotta, P.; Tozzi, P.; Borgani, S.
2007ApJ...666..835B    Altcode: 2007arXiv0705.3865B
  We present an analysis of the temperature and metallicity profiles
  of 12 galaxy clusters in the redshift range 0.1-0.3 selected from
  the Chandra archive with at least ~20,000 net ACIS counts and
  kT&gt;6 keV. We divide the sample between seven cooling-core (CC)
  and five non-cooling-core (NCC) clusters according to their central
  cooling time. We find that single power laws can properly describe
  both the temperature and metallicity profiles at radii larger than
  0.1r<SUB>180</SUB> in both CC and NCC systems, with NCC objects showing
  steeper profiles outward. A significant deviation is present only in the
  inner 0.1r<SUB>180</SUB>. We perform a comparison of our sample with the
  De Grandi &amp; Molendi BeppoSAX sample of local CC and NCC clusters,
  finding a complete agreement in the CC cluster profile and a marginally
  higher value (at ~1 σ) in the inner regions of the NCC clusters. The
  slope of the power law describing kT(r) within 0.1r<SUB>180</SUB>
  correlates strongly with the ratio between the cooling time and the
  age of the universe at the cluster redshift, with a slope &gt;0 and
  τ<SUB>c</SUB>/τ<SUB>age</SUB>&lt;~0.6 in CC systems.

---------------------------------------------------------
Title: The Local Cluster Substructure Survey (LoCuSS): Exploring
    K-band Light as a Probe of Cluster Mass and Substructure
Authors: Egami, Eiichi; Marshall, Phil; Mazzotta, Pasquale; Evrard,
   August; Carlstrom, John; Smith, Graham P.; Kneib, Jean-Paul;
   Finoguenov, Alexis; Futamase, Toshifumi; Taylor, James
2007noao.prop..451E    Altcode:
  LoCuSS is a systematic multi-wavelength survey of 100 X-ray
  luminous galaxy clusters at z~eq0.2. A key goal is to construct
  robust cluster mass-observable scaling relations for cosmological and
  astrophysical applications. For example the mass-temperature and mass-
  SZE relations are pivotal to cluster-based dark energy measurements. We
  are using gravitational lensing to measure cluster mass and thus to
  test explicitly assumptions about how baryons trace the total cluster
  mass. Here, we propose to obtain NIR imaging of LoCuSS clusters to probe
  their evolved stellar populations. These data will allow a detailed
  investigation of how the the integrated cluster K-band luminosity and
  substructure within K-band light maps correlate with the total cluster
  mass and substructure obtained from lensing. In addition to exploring
  the mass-L_K scaling relation for possible cosmological application,
  we will calibrate NIR data as an inexpensive probe of cluster mass and
  substructure to aide the interpretation of ongoing and future surveys
  for high-redshift clusters.

---------------------------------------------------------
Title: A Joint Spitzer/Lensing Survey - Exploring the Connection
    Between Hierarchical Assembly and Starburst Activity in Galaxy
    Clusters at z=0.2
Authors: Smith, Graham; Babul, Arif; Carlstrom, John; Egami, Eiichi;
   Ellis, Richard; Evrard, Gus; Finoguenov, Alexis; Futamase, Toshifumi;
   Kneib, Jean-Paul; Marshall, Phil; Mazzotta, Pasquale; Ponman, Trevor;
   Takada, Masahiro; Taylor, James
2007sptz.prop40872S    Altcode:
  We propose to conduct a wide-field Spitzer/MIPS 24um survey of 32
  X-ray luminous galaxy clusters at z~0.2. These 32 are drawn from
  the 100 clusters under intense multi-wavelength study as part of
  the Local Cluster Substructure Survey (LoCuSS). All 32 have high
  quality wide-field weak lensing data from Subaru, supplemented by HST
  imaging of the cluster cores. Our primary science goal is to achieve
  a definitive survey of starburst activity in local clusters and to
  correlate the amount of obscured activity with dynamical state of the
  clusters. The combination of the proposed 25'x25' MIPS 24um maps and
  our detailed lensing-based mass maps will be uniquely powerful for
  that purpose. The superb sensitivity of MIPS will allow us to detect
  LIRGs in the virialised region of each cluster in just ~1.2 hours
  per cluster; the structural analysis of the lensing mass maps will
  diagnose the amount and location of recent hierarchical infall into the
  clusters. We will therefore be able to quantify precisely the amount
  of obscured star formation in local clusters and to delineate how that
  activity relates to hierarchical assembly. Our results will therefore
  have a major impact on efforts to understand whether infalling spiral
  galaxies transform into S0 galaxies by gradual fading or via an intense
  starburst phase. For this huge statistical survey (several orders of
  magnitude larger than the state of the art), we request a modest 36
  hours of observing time.

---------------------------------------------------------
Title: The Local Cluster Substructure Survey (LoCuSS): Exploring
    K-band light as a probe of cluster mass and substructure
Authors: Egami, Eiichi; Marshall, Phil; Mazzotta, Pasquale; Evrard,
   August; Carlstrom, John; Smith, Graham P.; Kneib, Jean-Paul;
   Finoguenov, Alexis; Futamase, Toshifumi; Taylor, James
2007noao.prop..428E    Altcode:
  LoCuSS is a systematic multi-wavelength survey of 100 X-ray
  luminous galaxy clusters at z~eq0.2. A key goal is to construct
  robust cluster mass-observable scaling relations for cosmological and
  astrophysical applications. For example the mass-temperature and mass-
  SZE relations are pivotal to cluster-based dark energy measurements. We
  are using gravitational lensing to measure cluster mass and thus to
  test explicitly assumptions about how baryons trace the total cluster
  mass. Here, we propose to obtain NIR imaging of LoCuSS clusters to probe
  their evolved stellar populations. These data will allow a detailed
  investigation of how the the integrated cluster K-band luminosity and
  substructure within K-band light maps correlate with the total cluster
  mass and substructure obtained from lensing. In addition to exploring
  the mass-L_K scaling relation for possible cosmological application,
  we will calibrate NIR data as an inexpensive probe of cluster mass and
  substructure to aide the interpretation of ongoing and future surveys
  for high-redshift clusters.

---------------------------------------------------------
Title: High Sensitivity Low Frequency Radio Observations of cD
    Galaxies
Authors: Giacintucci, S.; Venturi, T.; Bardelli, S.; Dallacasa, D.;
   Mazzotta, P.; Saikia, D. J.
2007hvcg.conf..130G    Altcode: 2006astro.ph.12530G
  We present the GMRT 235 MHz images of three radio galaxies and 610 MHz
  images of two sources belonging to a complete sample of cD galaxies in
  rich and poor galaxy clusters. The analysis of the spectral properties
  confirms the presence of aged radio emission in two of the presented
  sources.

---------------------------------------------------------
Title: Observing Metallicity in Simulated Clusters with X-MAS2
Authors: Rasia, E.; Mazzotta, P.; Bourdin, H.; Ettori, S.; Borgani,
   S.; Dolag, K.; Moscardini, L.; Sauvageot, J. L.; Tornatore, L.
2007hvcg.conf..365R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Relics and Halos at intermediate redshift: testing the
    merging paradigm
Authors: Mazzotta, Pasquale
2006xmm..prop...57M    Altcode:
  Within the framework of an extensive radio observational campaign aimed
  to search for radio halos and relics in galaxy clusters in the redshift
  range 0.2-0.4 at 610 MHz, we propose to observe one cluster of our
  sample which is exceptional in the radio band and therefore extremely
  promising for testing the merging paradigm. RXCJ1314.4-2515 is the
  unique case known to date of galaxy cluster hosting both a radio halo
  and a double relic. Our goal is to reconstruct the detailed dynamics
  of this cluster and to test the physical properties of the ICM related
  to the relics and halo formation.

---------------------------------------------------------
Title: Systematics in the X-ray cluster mass estimators
Authors: Rasia, E.; Ettori, S.; Moscardini, L.; Mazzotta, P.; Borgani,
   S.; Dolag, K.; Tormen, G.; Cheng, L. M.; Diaferio, A.
2006MNRAS.369.2013R    Altcode: 2006astro.ph..2434R; 2006MNRAS.tmp..610R
  We examine the systematics affecting the X-ray mass estimators
  applied to a set of five galaxy clusters resolved at high resolution
  in hydrodynamic simulations, including cooling, star formation and
  feedback processes. These simulated objects are processed through the
  X-ray Map Simulator, X-MAS, to provide Chandra-like long exposures
  that are analysed to reconstruct the gas temperature, density and mass
  profiles used as input. These clusters have different dynamic state:
  we consider a hot cluster with temperature T = 11.4keV, a perturbed
  cluster with T = 3.9keV, a merging object with T = 3.6keV, and two
  relaxed systems with T = 3.3keV and T = 2.7keV, respectively. These
  systems are located at z = 0.175 so that their emission fits within
  the Chandra ACIS-S3 chip between 0.6 and 1.2 R<SUB>500</SUB>. <P
  />We find that the mass profile obtained via a direct application
  of the hydrostatic equilibrium (HE) equation is dependent upon the
  measured temperature profile. An irregular radial distribution of the
  temperature values, with associated large errors, induces a significant
  scatter on the reconstructed mass measurements. At R<SUB>2500</SUB>,
  the actual mass is recovered within 1σ, although we notice this
  estimator shows high statistical errors due to high level of Chandra
  background. Instead, the poorness of the β-model in describing the gas
  density profile makes the evaluated masses to be underestimated by ~40
  per cent with respect to the true mass, both with an isothermal and a
  polytropic temperature profile. We also test ways to recover the mass
  by adopting an analytic mass model, such as those proposed by Nvarro,
  Frenk &amp; White and Rasia, Tormen &amp; Moscardini, and fitting the
  temperature profile expected from the HE equation to the observed
  one. We conclude that the methods of the HE equation and those of
  the analytic fits provide a more robust mass estimation than the ones
  based on the β-model. In the present work, the main limitation for
  a precise mass reconstruction is to ascribe to the relatively high
  level of the background chosen to reproduce the Chandra one. After
  artificially reducing the total background by a factor of 100, we
  find that the estimated mass significantly underestimates the true
  mass profiles. This is manly due (i) to the neglected contribution of
  the gas bulk motions to the total energy budget and (ii) to the bias
  towards lower values of the X-ray temperature measurements because of
  the complex thermal structure of the emitting plasma.

---------------------------------------------------------
Title: ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving
    COsmos
Authors: Piro, Luigi; Amati, Lorenzo; Barbera, Marco; Borgani,
   Stefano; Bazzano, Angela; Branchini, Enzo; Brunetti, G.; Campana,
   Sergio; Caroli, Ezio; Cocchi, Massimo; Colafrancesco, Sergio;
   Colasanti, Luca; Corsi, Alessandra; Costa, Enrico; Cusumano,
   Giancarlo; Del Santo, Melania; Den Herder, Jan-Willem; De Rosa,
   Alessandra; Di Cocco, Guido; Ettori, Stefano; Feroci, Marco; Fiore,
   Fabrizio; Fusco-Femiano, Roberto; Galeazzi, Massimiliano; Galli,
   Alessandra; Gatti, Flavio; Gendre, Bruce; Guzzo, Luigi; Hermsen, Wim;
   in't Zand, Jean; Kaastra, Jelle; La Rosa, Giovanni; Labanti, Claudio;
   Marisaldi, Mario; Mazzotta, Pasquale; Mineo, Teresa; Molendi, Silvano;
   Moscardini, Lauro; Natalucci, Lorenzo; Nicastro, Fabrizio; Pareschi,
   Giovanni; Pian, Elena; Quadrini, E.; Roncarelli, Mauro; Shaye, Jaap;
   Tagliaferri, Gianpiero; Tozzi, Paolo; Ubertini, Pietro; Ursino,
   Eugenio; Viel, Matteo
2006SPIE.6266E..0KP    Altcode: 2006SPIE.6266E..16P
  We present a mission designed to address two main themes of the
  ESA Cosmic Vision Programme: the Evolution of the Universe and its
  Violent phenomena. ESTREMO/WFXRT is based on innovative instrumental
  and observational approaches, out of the mainstream of observatories
  of progressively increasing area, i.e.: Observing with fast reaction
  transient sources, like GRB, at their brightest levels, thus allowing
  high resolution spectroscopy. Observing and surveying through a
  X-ray telescope with a wide field of view and with high sensitivity
  extended sources, like cluster and Warm Hot Intragalactic Medium
  (WHIM). ESTREMO/WFXRT will rely on two cosmological probes: GRB and
  large scale X-ray structures. This will allow measurements of the dark
  energy, of the missing baryon mass in the local universe, thought
  to be mostly residing in outskirts of clusters and in hot filaments
  (WHIM) accreting onto dark matter structures, the detection of first
  objects in the dark Universe, the history of metal formation. The
  key asset of ESTREMO/WFXRT with regard to the study of Violent
  Universe is the capability to observe the most extreme objects of
  the Universe during their bursting phases. The large flux achieved
  in this phase allows unprecedented measurements with high resolution
  spectroscopy. The mission is based on a wide field X-ray/hard X-ray
  monitor, covering &gt;1/4 of the sky, to localize transients; fast
  (min) autonomous follow-up with X-ray telescope (2000 cm<SUP>2</SUP>)
  equipped with high resolution spectroscopy transition edge (TES)
  microcalorimeters (2eV resolution below 2 keV) and with a wide field
  (1°) for imaging with 10" resolution (CCD) extended faint structures
  and for cluster surveys. A low background is achieved by a 600 km
  equatorial orbit. The performances of the mission on GRB and their
  use as cosmological beacons are presented and discussed.

---------------------------------------------------------
Title: Evidence of gas heating by the central AGN in MKW 3s
Authors: Giacintucci, S.; Mazzotta, P.; Brunetti, G.; Venturi, T.;
   Bardelli, S.
2006AN....327..573G    Altcode:
  We present the results of radio observations of the galaxy cluster
  MKW 3s carried out at 1.28 GHz and 610 MHz with the Giant Metrewave
  Radio Telescope (GMRT). The Chandra observations of MKW 3s revealed
  that this cluster is characterized by a complex X-ray structure hosting
  both a X-ray filament and a X-ray cavity. The temperature structure of
  the cluster core is even more complex, with the presence of extended
  regions of gas heated above the radially averaged gas temperature at any
  radius. The magnetic field derived from the radio observations is ∼ 2
  μG and provides radiative ages of the order of ∼ 2 × 10<SUP>8</SUP>
  yrs. Thanks to this estimate of the magnetic field strength and the
  comparison between the radio structure and the Chandra data, we found
  clear evidence for a close connection between the radio activity of
  the central AGN and the heated gas regions in this cluster.

---------------------------------------------------------
Title: Bias on Estimates of X-ray Cluster Mass
Authors: Rasia, E.; Ettori, S.; Moscardini, L.; Mazzotta, P.; Borgani,
   S.; Dolag, K.; Tormen, G.; Cheng, L. M.; Diaferio, A.
2006EAS....20..295R    Altcode:
  We examine the systematics affecting the X-ray mass estimators applied
  to Chandra-like long exposures images of five simulated clusters.

---------------------------------------------------------
Title: X-ray Properties of a Mass-Selected Group Catalog
Authors: Mazzotta, P.; Bower, R.; Balogh, M.; Ponman, T.; Theuns,
   T.; Edge, A.; Eke, V.; Bohringer, H.; Collins, C.; Colless, M.
2006cosp...36..647M    Altcode: 2006cosp.meet..647M
  The observed X-ray luminosities of groups are inconsistent with a model
  in which the intragroup medium is shock-heated during the collapse It
  is thought that a combination of pre-heating gas cooling and energy
  injection removes low entropy gas reducing the system s X-ray luminosity
  However the extent of this process is uncertain because the previous
  selection of group catalogs has been based on X-ray emission We have
  constructed a complete mass-selected catalog of 18 groups from the
  2dFGRS that we proposed for observation with Chandra and XMM-Newton
  To date twelve these groups have been observed and here we present
  some preliminary results

---------------------------------------------------------
Title: Temperature structure of the intra-cluster medium within
    relaxed clusters of galaxies
Authors: Bourdin, H.; Mazzotta, P.
2006EAS....20..267B    Altcode:
  Using a wavelet algorithm, we have mapped the temperature structure of
  the three relaxed clusters of galaxies Abell 478, Abell 1795 and Abell
  2029. The findings of significant non-radial thermal structures outside
  the core region of two of these clusters question the validity limits
  of the elliptical symmetry hypothesis required for deriving cluster
  mass profiles from gas brightness and temperature profiles measurements.

---------------------------------------------------------
Title: Temperature structure of the intra-cluster medium within
    a sample of nearby and bright clusters of galaxies observed with
    XMM-Newton.
Authors: Bourdin, H.; Mazzotta, P.
2005sf2a.conf..705B    Altcode:
  Using a wavelet algorithm especially designed for that purpose, we
  have mapped, to the highest angular resolution allowed by the data,
  the temperature structure of the intra-cluster medium within eight
  bright and extended clusters of galaxies observed with XMM-Newton: A399,
  A401, A478, A1795, A2029, A2065, A2256, A2255. This set is an almost
  complete X-ray flux limited cluster sample, which includes merging and
  relaxed clusters. Being major mergers, we find that 5 out of 8 cluster
  show a rather complex thermal structure consistent with their merger
  dynamics. More surprisingly significant non-radial thermal structures
  are also observed outside the core region of two of the remaining
  “relaxed" clusters. These findings question the validity limits of
  the elliptical symmetry hypothesis required for deriving cluster mass
  profiles from gas brightness and temperature profiles measurements.

---------------------------------------------------------
Title: An Archival Study of the Metal Distribution and X-ray Scaling
    Relations in Galaxy Clusters at 0.1&lt; z &lt;0.7
Authors: Mazzotta, Pasquale
2005cxo..prop.4058M    Altcode:
  This proposal aims at exploiting the archived observations of galaxy
  clusters in the redshift range 0.1&lt;z&lt;0.7, in order to address
  a number of open issues: 1) tracing the evolution of the metal
  abundances in the ICM and its dependence upon the gas temperature;
  2) establishing the evolution of the cluster scaling relations; 3)
  studying the implications of the cluster metal budget through realistic
  X-ray observations of the products of N-body simulations obtained via
  our software "X-ray MAp Simulator". With this proposal we intend to
  analyze in a systematic and robust way a final sample of 115 clusters
  (out of which 63 in the proposed sample) to achieve the strongest
  constraints reachable nowadays on the thermodynamical and chemical
  history of the Intra Cluster Medium.

---------------------------------------------------------
Title: A full-sky prediction of the Sunyaev-Zeldovich effect from
    diffuse hot gas in the local universe and the upper limit from the
    WMAP data
Authors: Hansen, F. K.; Branchini, E.; Mazzotta, P.; Cabella, P.;
   Dolag, K.
2005MNRAS.361..753H    Altcode: 2005astro.ph..2227H; 2005MNRAS.tmp..601H
  We use the Point Source Catalogue Redshift Survey galaxy redshift
  catalogue combined with constrained simulations based on the IRAS 1.2-Jy
  galaxy density field to estimate the contribution of hot gas in the
  local universe to the Sunyaev-Zeldovich (SZ) effect on a large scale. We
  produce a full-sky HEALPIX map predicting the SZ effect from clusters
  as well as diffuse hot gas within 80h<SUP>-1</SUP>Mpc. Performing
  cross-correlation tests between this map and the WMAP data in pixel,
  harmonic and wavelet space we can put an upper limit on the effect. We
  conclude that the SZ effect from diffuse gas in the local universe
  cannot be detected in current cosmic microwave background (CMB) data
  and is not a large-scale contaminating factor (l &lt; 60) in studies
  of CMB angular anisotropies. We derive an upper limit for the mean
  temperature decrement of ΔT &lt; 0.33μK at the 2σ confidence level
  for the 61-GHz frequency channel. However, for future high-sensitivity
  experiments observing at a wider range of frequencies, the predicted
  large-scale SZ effect could be of importance.

---------------------------------------------------------
Title: Tracing the warm-hot intergalactic medium in the local Universe
Authors: Viel, M.; Branchini, E.; Cen, R.; Ostriker, J. P.; Matarrese,
   S.; Mazzotta, P.; Tully, B.
2005MNRAS.360.1110V    Altcode: 2004astro.ph.12566V; 2005MNRAS.tmp..478V
  We present a simple method for tracing the spatial distribution and
  predicting the physical properties of the Warm-Hot Intergalactic Medium
  (WHIM), from the map of galaxy light in the Local Universe. Under
  the assumption that biasing is local and monotonic we map the ~2
  h<SUP>-1</SUP> Mpc smoothed density field of galaxy light into the
  mass-density field, from which we infer the spatial distribution of
  the WHIM in the Local Supercluster. Taking into account the scatter
  in the WHIM density-temperature and density-metallicity relation,
  extracted from the z= 0 outputs of high-resolution and large-box-size
  hydrodynamical cosmological simulations, we are able to quantify the
  probability of detecting WHIM signatures in the form of absorption
  features in the X-ray spectra, along arbitrary directions in the
  sky. To illustrate the usefulness of this semi-analytical method we
  focus on the WHIM properties in the Virgo cluster region.

---------------------------------------------------------
Title: A Hubble Space Telescope lensing survey of X-ray luminous
    galaxy clusters - IV. Mass, structure and thermodynamics of cluster
    cores at z= 0.2
Authors: Smith, Graham P.; Kneib, Jean-Paul; Smail, Ian; Mazzotta,
   Pasquale; Ebeling, Harald; Czoske, Oliver
2005MNRAS.359..417S    Altcode: 2005MNRAS.tmp..313S; 2004astro.ph..3588S
  We present a comprehensive space-based study of 10 X-ray luminous galaxy
  clusters (L<SUB>X</SUB>&gt;= 8 × 10<SUP>44</SUP> erg s<SUP>-1</SUP>,
  0.1-2.4 keV) at z= 0.2. Hubble Space Telescope (HST) observations
  reveal numerous gravitationally lensed arcs for which we present four
  new spectroscopic redshifts, bringing the total to 13 confirmed arcs
  in this cluster sample. The confirmed arcs reside in just half of
  the clusters; we thus obtain a firm lower limit on the fraction of
  clusters with a central projected mass density exceeding the critical
  density required for strong lensing of 50 per cent. We combine the
  multiple-image systems with the weakly sheared background galaxies
  to model the total mass distribution in the cluster cores (R&lt;=
  500 kpc). These models are complemented by high-resolution X-ray data
  from Chandra and used to develop quantitative criteria to classify
  the clusters as relaxed or unrelaxed. Formally, (30 +/- 20) per cent
  of the clusters form a relatively homogeneous subsample of relaxed
  clusters; the remaining (70 +/- 20) per cent are unrelaxed and are a
  much more diverse population. Most of the clusters therefore appear
  to be experiencing a cluster-cluster merger or relaxing after such an
  event. We also study the normalization and scatter of scaling relations
  between the cluster mass, the X-ray luminosity and the temperature. The
  scatter in these relations is dominated by the unrelaxed clusters and
  is typically σ~= 0.4. Most notably, we detect two to three times more
  scatter in the mass-temperature relation than theoretical simulations
  and models predict. The observed scatter is also asymmetric - the
  unrelaxed clusters are systematically 40 per cent hotter than the
  relaxed clusters at 2.5σ significance. This structural segregation
  should be a major concern for experiments designed to constrain
  cosmological parameters using galaxy clusters. Overall our results are
  consistent with a scenario of cluster-cluster merger-induced boosts
  to cluster X-ray luminosities and temperatures.

---------------------------------------------------------
Title: Predictions for high-frequency radio surveys of extragalactic
    sources
Authors: de Zotti, G.; Ricci, R.; Mesa, D.; Silva, L.; Mazzotta, P.;
   Toffolatti, L.; González-Nuevo, J.
2005A&A...431..893D    Altcode: 2004astro.ph.10709D
  We present detailed predictions of the contributions of the various
  source populations to the counts at frequencies of tens of GHz. New
  evolutionary models are worked out for flat-spectrum radio quasars,
  BL Lac objects, and steep-spectrum sources. Source populations
  characterized by spectra peaking at high radio frequencies, such as
  extreme GPS sources, ADAF/ADIOS sources and early phases of γ-ray burst
  afterglows are also dealt with. The counts of different populations
  of star-forming galaxies (normal spirals, starbursts, high-z galaxies
  detected by SCUBA and MAMBO surveys, interpreted as proto-spheroidal
  galaxies) are estimated taking into account both synchrotron and
  free-free emission, and dust re-radiation. Our analysis is completed
  by updated counts of Sunyaev-Zeldovich effects in clusters of galaxies
  and by a preliminary estimate of galactic-scale Sunyaev-Zeldovich
  signals associated to proto-galactic plasma.

---------------------------------------------------------
Title: Mismatch between X-Ray and Emission-weighted Temperatures in
Galaxy Clusters: Cosmological Implications
Authors: Rasia, E.; Mazzotta, P.; Borgani, S.; Moscardini, L.; Dolag,
   K.; Tormen, G.; Diaferio, A.; Murante, G.
2005ApJ...618L...1R    Altcode: 2004astro.ph..9650R
  The thermal properties of hydrodynamical simulations of galaxy
  clusters are usually compared to observations by relying on
  the emission-weighted temperature T<SUB>ew</SUB> instead of on
  the spectroscopic X-ray temperature T<SUB>spec</SUB>, which is
  obtained by actual observational data. In a recent paper, Mazzotta
  et al. show that if the intracluster medium is thermally complex,
  T<SUB>ew</SUB> fails at reproducing T<SUB>spec</SUB>. They propose
  a new formula, the spectroscopic-like temperature, T<SUB>sl</SUB>,
  which approximates T<SUB>spec</SUB> better than a few percent. By
  analyzing a set of hydrodynamical simulations of galaxy clusters, we
  find that T<SUB>sl</SUB> is lower than T<SUB>ew</SUB> by 20%-30%. As a
  consequence, the normalization of the M-T<SUB>sl</SUB> relation from the
  simulations is larger than the observed one by about 50%. If masses in
  simulated clusters are estimated by following the same assumptions of
  hydrostatic equilibrium and β-model gas density profile, as is often
  done for observed clusters, then the M-T relation decreases by about 40%
  and significantly reduces its scatter. On the basis of this result, we
  conclude that using the observed M-T relation to infer the amplitude of
  the power spectrum from the X-ray temperature function could bias low
  σ<SUB>8</SUB> by 10%-20%. This may alleviate the tension between the
  value of σ<SUB>8</SUB> inferred from the cluster number density and
  those from the cosmic microwave background and large-scale structure.

---------------------------------------------------------
Title: Spectroscopic-Like Temperature of Clusters of Galaxies and
    Cosmological Implications
Authors: Mazzotta, P.; Rasia, E.; Borgani, S.; Moscardini, L.; Dolag,
   K.; Tormen, G.
2004astro.ph.12536M    Altcode:
  The thermal properties of hydrodynamical simulations of galaxy
  clusters are usually compared to observations by relying on the
  emission-weighted temperature T_ew, instead of on the spectroscopic
  X-ray temperature T_spec, which is obtained by actual observational
  data. Here we show that, if the intra-cluster medium is thermally
  complex, T_ew fails at reproducing T_spec. We propose a new formula,
  the spectroscopic-like temperature, T_sl, which approximates T_spec
  better than a few per cent. By analyzing a set of hydrodynamical
  simulations of galaxy clusters, we also find that T_sl is lower than
  T_ew by 20-30 per cent. As a consequence, the normalization of the
  M-T relation from the simulations is larger than the observed one by
  about 50 per cent. If masses in simulated clusters are estimated by
  following the same assumptions of hydrostatic equilibrium and beta-model
  gas density profile, as often done for observed clusters, then the M-T
  relation decreases by about 40 per cent, and significantly reduces its
  scatter. Based on this result, we conclude that using the observed M-T
  relation to infer the amplitude of the power spectrum from the X--ray
  temperature function could bias low sigma_8 by 10-20 per cent. This
  may alleviate the tension between the value of sigma_8 inferred from
  the cluster number density and those from cosmic microwave background
  and large scale structure.

---------------------------------------------------------
Title: Heated Intracluster Gas and Radio Connections: The Singular
    Case of MKW 3S
Authors: Mazzotta, Pasquale; Brunetti, Gianfranco; Giacintucci,
   Simona; Venturi, Tiziana; Bardelli, Sandro
2004JKAS...37..381M    Altcode: 2004astro.ph.11708M
  Similarly to other cluster of galaxies previously classified as cooling
  flow systems, the Chandra observation of MKW3s reveals that this object
  has a complex X-ray structure hosting both a X-ray cavity and a X-ray
  filament. Unlike the other clusters, however, the temperature map of
  the core of MKW3s shows the presence of extended regions of gas heated
  above the radially averaged gas temperature at any radius. As the
  cluster does not show evidences for ongoing major mergers Mazzotta et
  al. suggest a connection between the heated gas and the activity of the
  central AGN. Nevertheless, due to the lack of high quality radio maps,
  this interpretation was controversial. In this paper we present the
  results of two new radio observations of MKW3s at 1.28GHz and 604MHz
  obtained at the GMRT. Together with the Chandra observation and a
  separate VLA observation at 327MHz from Young, we show unequivocal
  evidences for a close connection between the heated gas region and
  the AGN activity and we briefly summarize possible implications.

---------------------------------------------------------
Title: Quenching cluster cooling flows with recurrent hot plasma
    bubbles
Authors: Dalla Vecchia, Claudio; Bower, Richard G.; Theuns, Tom;
   Balogh, Michael L.; Mazzotta, Pasquale; Frenk, Carlos S.
2004MNRAS.355..995D    Altcode: 2004MNRAS.tmp..507D; 2004astro.ph..2441V; 2004astro.ph..2441D
  The observed cooling rate of hot gas in clusters is much lower than
  that inferred from the gas density profiles. This suggests that the
  gas is being heated by some source. We use an adaptive-mesh refinement
  code (FLASH) to simulate the effect of multiple, randomly positioned,
  injections of thermal energy within 50 kpc of the centre of an initially
  isothermal cluster with mass M<SUB>200</SUB>= 3 × 10<SUP>14</SUP>
  M<SUB>solar</SUB> and kT= 3.1 keV. We have performed eight simulations
  with spherical bubbles of energy generated every 10<SUP>8</SUP> yr, over
  a total of 1.5Gyr. Each bubble is created by injecting thermal energy
  steadily for 10<SUP>7</SUP> yr; the total energy of each bubble lies in
  the range (0.1-3)×10<SUP>60</SUP>erg, depending on the simulation. We
  find that 2 × 10<SUP>60</SUP>erg per bubble (corresponding to an
  average power of 6.3 × 10<SUP>44</SUP>ergs<SUP>-1</SUP>) effectively
  balances energy loss in the cluster and prevents the accumulation of gas
  below kT= 1 keV from exceeding the observational limits. This injection
  rate is comparable to the radiated luminosity of the cluster, and the
  required energy and periodic time-scale of events are consistent with
  observations of bubbles produced by central active galactic nuclei in
  clusters. The effectiveness of this process depends primarily on the
  total amount of injected energy and the initial location of the bubbles,
  but is relatively insensitive to the exact duty cycle of events.

---------------------------------------------------------
Title: Comparing the temperatures of galaxy clusters from
    hydrodynamical N-body simulations to Chandra and XMM-Newton
    observations
Authors: Mazzotta, P.; Rasia, E.; Moscardini, L.; Tormen, G.
2004MNRAS.354...10M    Altcode: 2004astro.ph..4425M; 2004MNRAS.tmp..320M
  Theoretical studies of the physical processes guiding the formation
  and evolution of galaxies and galaxy clusters in the X-ray region
  are mainly based on the results of numerical hydrodynamical N-body
  simulations, which in turn are often directly compared with X-ray
  observations. Although trivial in principle, these comparisons are
  not always simple. We demonstrate that the projected spectroscopic
  temperature of thermally complex clusters obtained from X-ray
  observations is always lower than the emission-weighed temperature,
  which is widely used in the analysis of numerical simulations. We
  show that this temperature bias is mainly related to the fact that
  the emission-weighted temperature does not reflect the actual spectral
  properties of the observed source. This has important implications for
  the study of thermal structures in clusters, especially when strong
  temperature gradients, such as shock fronts, are present. Because of
  this bias, in real observations shock fronts appear much weaker than
  what is predicted by emission-weighted temperature maps, and may not
  even be detected. This may explain why, although numerical simulations
  predict that shock fronts are a quite common feature in clusters
  of galaxies, to date there are very few observations of objects in
  which they are clearly seen. To fix this problem we propose a new
  formula, the spectroscopic-like temperature function, and show that,
  for temperatures higher than 3 keV, it approximates the spectroscopic
  temperature to better than a few per cent, making simulations more
  directly comparable to observations.

---------------------------------------------------------
Title: X-ray Properties of a Mass-Selected Group Catalog
Authors: Mazzotta, Pasquale
2004cxo..prop.1783M    Altcode:
  The observed X-ray luminosities of groups are inconsistent with
  pure shock-heated gas model. It is thought that a combination of
  pre-heating, gas cooling and energy injection act to remove low
  entropy gas. However, the extent of these processes is uncertain
  because the previous selection of group catalogs have been based on
  X-ray emission. We have constructed a complete, mass-selected catalog
  of 18 groups from the 2dFGRS. X-ray observations of this sample would
  for the first time provide accurate determinations of the entropy in
  a mass-selected sample. This project was highly ranked by last year
  Chandra and XMM tacs. In return twelve groups have been accepted for
  observation. Here we propose the observation of the remaining 6 groups
  to complete the sample.

---------------------------------------------------------
Title: Comparing the temperatures of galaxy clusters from hydro-N-body
    simulations to Chandra and XMM-Newton observations
Authors: Mazzotta, P.; Rasia, E.; Moscardini, L.; Tormen, G.
2004astro.ph..9618M    Altcode:
  Theoretical studies of the physical processes in clusters of galaxies
  are mainly based on the results of numerical simulations, which in turn
  are often directly compared to X-ray observations. Although trivial
  in principle, these comparisons are not always simple. We show that
  the projected spectroscopic temperature of clusters obtained from X-ray
  observations is always lower than the emission-weighed temperature. This
  bias is related to the fact that the emission-weighted temperature does
  not reflect the actual spectral properties of the observed source. This
  has implications for the study of thermal structures in clusters,
  especially when strong temperature gradients, like shock fronts, are
  present. In real observations shock fronts appear much weaker than
  what is predicted by emission-weighted temperature maps. We propose a
  new formula, the spectroscopic-like temperature function that better
  approximates the spectroscopic temperature, making simulations more
  directly comparable to observations

---------------------------------------------------------
Title: The faint X-ray source population near 3C 295
Authors: D'Elia, V.; Fiore, F.; Elvis, M.; Cappi, M.; Mathur, S.;
   Mazzotta, P.; Falco, E.; Cocchia, F.
2004A&A...422...11D    Altcode: 2004astro.ph..3401D
  We present a statistical analysis of the Chandra observation of the
  source field around the 3C 295 galaxy cluster (z=0.46) to search for
  clustering of X-ray sources. We applied three different methods of
  analysis, all suggesting a strong clustering in the field on scales
  of a few arcmin. In particular 1) the log N-log S computed separately
  for the four ACIS-I chips reveals that there is a significant (3.2
  σ in the 0.5-2 keV, 3.3 σ in the 2-10 keV and 4.0 σ in the 0.5-10
  keV band) excess of sources to the North-North East and a void to
  the South of the central cluster; 2) the two point, two-dimensional
  Kolmogorov-Smirnov (KS) test, shows the probability that the sources
  are uniformly distributed is only a few percent; 3) a strong spatial
  correlation emerges from the study of the angular correlation function
  of the field: the angular correlation function (ACF) shows a clear
  signal on scales of 0.5/5 arcmin, correlation angle in the 0.5-7 keV
  band θ<SUB>0</SUB>=8.5<SUP>+6.5</SUP><SUB>-4.5</SUB>, 90% confidence
  limit (assuming a power law ACF with slope γ=1.8). This correlation
  angle is 2 times higher than that of a sample of 8 ACIS-I field at the
  2.5 σ confidence level. The above scales translate to 0.2/2 Mpc at
  the cluster redshift, higher than the typical cluster core radius, and
  more similar to the size of a “filament” of the large scale structure.

---------------------------------------------------------
Title: Simulating Chandra observations of galaxy clusters
Authors: Rasia, E.; Gardini, A.; Mazzotta, P.; Tormen, G.; de Grandi,
   S.; Moscardini, L.
2004ogci.conf..313R    Altcode: 2004IAUCo.195..313R
  The direct comparison of observations to numerical hydro-N-body
  simulations, although simple in principle, is not always trivial
  because of possible artificial effects produced by the instrument
  response and by instrumental and sky background. To overcome this
  problem we build the software package X-MAS (X-ray MAp Simulator)
  devoted to simulate X-ray observations of galaxy clusters obtained
  from hydro-N-body simulations.

---------------------------------------------------------
Title: The faint X-ray source population near 3C 295
Authors: D'Elia, V.; Fiore, F.; Elvis, M.; Cappi, M.; Mathur, S.;
   Mazzotta, P.; Falco, E.; Cocchia, F.
2004ogci.conf...39D    Altcode: 2004IAUCo.195...39D
  We present a statistical analysis of the Chandra observation of the
  source field around the 3C 295 galaxy cluster (z=0.46). Three different
  methods of analysis, namely a chip by chip LogN-LogS, a two-dimentional
  Kolmogorov-Smirnov (KS) test, and the angular correlation function
  (ACF) show a strong overdensity of sources in the North-East of the
  field, that may indicate a filament of the large scale structure of
  the universe towards 3C 295.

---------------------------------------------------------
Title: X-ray sources overdensity around the 3C 295 galaxy cluster
Authors: D'Elia, V.; Fiore, F.; Elvis, M.; Cappi, M.; Mathur, S.;
   Mazzotta, P.; Falco, E.
2004NuPhS.132...54D    Altcode: 2003astro.ph.10744D
  We present a statistical analysis of the Chandra observation of the
  source field around the 3C 295 galaxy cluster (z=0.46). The logN-logS
  of this field is in good agreement with that computed for the Chandra
  Deep Field South in this work and in previous ones. Nevertheless,
  the logN-logS computed separately for the four ACIS-I chips reveals
  that there is a significant excess of sources to the North-North East
  and a void to the South of the central cluster. Such an asymmetric
  distribution is confirmed by the two-dimensional Kolmogorov-Smirnov
  test, which excludes (P~3%) a uniform distribution. In addition,
  a strong spatial correlation emerges from the study of the angular
  correlation function of the field: the angular correlation function
  is above that expected for X-ray sources on a few arcmin scales. In
  synthesis, the present analysis may indicate a filament of the large
  scale structure of the Universe toward 3C 295. This kind of study may
  open-up a new way to map (with high efficiency) high-density peaks of
  large scale structures at high redshift.

---------------------------------------------------------
Title: The Faint X-ray Source Population Near the 3C 295 cluster
Authors: D'Elia, V.; Fiore, F.; Elvis, M.; Cappi, M.; Mathur, S.;
   Mazzotta, P.; Falco, E.; Cocchia, F.
2004astro.ph..6080D    Altcode:
  We present a statistical analysis of the Chandra observation of the
  source field around the 3C 295 galaxy cluster (z=0.46). Three different
  methods of analysis, namely a chip by chip logN-logS, a two dimentional
  Kolmogorov-Smirnov (KS) test, and the angular correlation function
  (ACF) show a strong overdensity of sources in the North-East of the
  field, that may indicate a filament of the large scale structure of
  the Universe toward 3C 295.

---------------------------------------------------------
Title: Simulating Chandra observations of galaxy clusters
Authors: Gardini, A.; Rasia, E.; Mazzotta, P.; Tormen, G.; De Grandi,
   S.; Moscardini, L.
2004MNRAS.351..505G    Altcode: 2003astro.ph.10844G
  Although trivial in principle, direct comparison of galaxy clusters
  X-ray observations to numerical hydro-N-body simulations is not
  always simple, because of many possible artefacts introduced by
  the instrument response, sky background and instrumental noise. To
  address these problems, we constructed the software package X-MAS
  (X-ray Map Simulator), a tool devoted to simulate X-ray observations
  of galaxy clusters obtained from hydro-N-body simulations. One of
  the main features of X-MAS is the ability to generate event files
  following the same standards used for real observations. This implies
  that its simulated observations can be analysed in the same way as
  - and with the same tools of - real observations. In this paper we
  present how the X-MAS package works, and discuss its application to
  the simulation of Chandra ACIS-S3 observations. Using the results of
  high-resolution hydro-N-body simulations, we generate fake Chandra
  observations of a number of simulated clusters. We then compare some
  of the main physical properties of the input data to those derived
  from the simulated observations after performing a standard imaging
  and spectral analysis. We find that, because of the sky background,
  the lower surface brightness spatial substructures, which can be
  easily identified in the simulations, are no longer detected in the
  simulated observations. We also show that, when a cluster has a complex
  (i.e. not isothermal) thermal structure along the line of sight, then
  the projected spectroscopic temperature obtained from the observation
  is significantly lower than the emission-weighed value inferred directly
  from hydrodynamical simulation. This implies that much attention should
  be paid in the theoretical interpretation of observed temperatures.

---------------------------------------------------------
Title: Massive Galaxy Clusters - New Insights from Hubble and Chandra
Authors: Smith, G. P.; Kneib, J. -P.; Smail, I.; Mazzotta, P.; Ebeling,
   H.; Czoske, O.
2003AAS...203.3001S    Altcode: 2003BAAS...35.1252S
  Massive galaxy clusters contain vast quantities of luminous and
  non-luminous material, including dark matter, X-ray emitting plasma
  and stars. The high projected matter densities reached in these deep
  (and rare) potential wells render them powerful gravitational lenses,
  causing the appearance of more distant galaxies to be magnified and
  distorted. The superb image quality of Hubble Space Telescope (HST)
  observations offers uniquely precise constraints on the distribution of
  matter in these spectacular systems. I will present new results from a
  systematic survey of ten X-ray luminous clusters at z=0.2. Our sensitive
  high-resolution HST imaging of the cluster cores is essential to detect
  and measure reliably the lensing signal in this objectively selected
  cluster sample. I use a sophisticated ray-tracing code to interpret
  this signal, and thus to measure the mass and structure of the cluster
  cores. Analysis of archival Chandra observations of the same clusters
  complements the lensing analysis and allows us to relate the details
  of the total cluster matter distribution to the thermodynamics of the
  intra-cluster medium. In summary, we find that 70% of X-ray luminuos
  clusters at z=0.2 are dynamically immature and have likely experienced
  infall from the field in the previous 2-3Gyr. The normalization of the
  mass-temperature relation for the immature clusters is 30% hotter than
  for the mature clusters. I will briefly discuss the implications of
  these results for large-scale structure, including the normalization
  of the matter power spectrum and the evolution of massive clusters.

---------------------------------------------------------
Title: Kinetic Sunyaev-Zel'dovich Effect and Cosmic Microwave
    Background Polarization from Subsonic Bulk Motions of Dense Gas
    Clouds in Galaxy Cluster Cores
Authors: Diego, J. M.; Mazzotta, P.; Silk, J.
2003ApJ...597L...1D    Altcode: 2003astro.ph..9181D
  Recent Chandra observations have revealed the presence of cold fronts
  in many clusters of galaxies. The cold fronts are believed to be
  produced by the bulk motions of massive, dense, cold gas clouds with
  respect to the hotter, more rarefied ambient gas at velocities that
  can be as high as the speed of sound. This phenomenon may produce a
  significant contamination of both the kinetic Sunyaev-Zel'dovich (SZ)
  effect and the cosmic microwave background (CMB) polarization pattern
  observed in the direction of a cluster. We estimate the contributions
  to the kinetic SZ effect and to the CMB polarization toward galaxy
  clusters produced by the bulk motions of the gas in the inner parts of
  galaxy clusters. The observed cold fronts probe the absolute velocities
  of the gas motion, while the induced polarization and the kinetic SZ
  effect probe the transverse and the radial components, respectively. We
  show that these signals may be easily detected with sensitive future
  experiments, opening an exciting new window for studies of galaxy
  cluster internal dynamics and eventually facilitating reconstruction
  of the intrinsic cluster polarization of the CMB and the associated
  measure of the local CMB quadrupole.

---------------------------------------------------------
Title: X-Ray Sources Overdensity Around 3C 295
Authors: D'Elia, V.; Fiore, F.; Elvis, M.; Cappi, M.; Mathur, S.;
   Mazzotta, P.; Falco, E.
2003astro.ph.10506D    Altcode:
  We present a statistical analysis of the Chandra observation of
  the source field around the 3C 295 galaxy cluster ($z=0.46$). Three
  different methods of analysis, namely a chip by chip logN-logS, a two
  dimentional Kolmogorov-Smirnov (KS) test, and the angular correlation
  function (ACF) show a strong overdensity of sources in the North-East
  of the field, that may indicate a filament of the large scale structure
  of the Universe toward 3C 295.

---------------------------------------------------------
Title: A Chandra Study of the Complex Structure in the Core of
    2A 0335+096
Authors: Mazzotta, P.; Edge, A. C.; Markevitch, M.
2003ApJ...596..190M    Altcode: 2003astro.ph..3314M
  We present a Chandra observation of the central (r&lt;200 kpc) region of
  the cluster of galaxies 2A 0335+096, rich in interesting phenomena. On
  large scales (r&gt;40 kpc), the X-ray surface brightness is symmetric
  and slightly elliptical. The cluster has a cool, dense core; the
  radial temperature gradient varies with position angle. The radial
  metallicity profile shows a pronounced central drop and an off-center
  peak. Similarly to many clusters with dense cores, 2A 0335+096 hosts a
  cold front at r~40 kpc south of the center. The gas pressure across
  the front is discontinuous by a factor A<SUB>P</SUB>=1.6+/-0.3,
  indicating that the cool core is moving with respect to the ambient
  gas with a Mach number M~0.75+/-0.2. The central dense region inside
  the cold front shows an unusual X-ray morphology, which consists of
  a number of X-ray blobs and/or filaments on scales &gt;~3 kpc, along
  with two prominent X-ray cavities. The X-ray blobs are not correlated
  with either the optical line emission (Hα+[N II]), member galaxies,
  or radio emission. The deprojected temperature of the dense blobs is
  consistent with that of the less dense ambient gas, so these gas phases
  do not appear to be in thermal pressure equilibrium. An interesting
  possibility is a significant, unseen nonthermal pressure component in
  the interblob gas, possibly arising from the activity of the central
  active galactic nucleus (AGN). We discuss two models for the origin
  of the gas blobs-hydrodynamic instabilities caused by the observed
  motion of the gas core and “bubbling” of the core caused by multiple
  outbursts of the central AGN.

---------------------------------------------------------
Title: Detecting X-ray filaments in the low-redshift Universe with
    XEUS and Constellation-X
Authors: Viel, M.; Branchini, E.; Cen, R.; Matarrese, S.; Mazzotta,
   P.; Ostriker, J. P.
2003MNRAS.341..792V    Altcode: 2002astro.ph.10497V
  We propose a possible way to detect baryons at low redshifts from
  the analysis of X-ray absorption spectra of bright AGN pairs. A simple
  semi-analytical model to simulate the spectra is presented. We model the
  diffuse warm-hot intergalactic medium (WHIM) component, responsible for
  the X-ray absorption, using inputs from high-resolution hydrodynamical
  simulations and analytical prescriptions. We show that the number
  of OVII absorbers per unit redshift with column density larger than
  10<SUP>13.5</SUP> cm<SUP>-2</SUP>- corresponding to an equivalent
  width of ~1 km s<SUP>-1</SUP>- that will possibly be detectable by
  XEUS, is &gt;~30 per unit redshift. Constellation-X will detect ~6
  OVII absorptions per unit redshift with an equivalent width of 10
  km s<SUP>-1</SUP>. Our results show that, in a ΛCDM universe, the
  characteristic size of these absorbers at z~ 0.1 is ~1 h<SUP>-1</SUP>
  Mpc. The filamentary structure of WHIM can be probed by finding
  coincident absorption lines in the spectra of background AGN pairs. We
  estimate that at least 20 AGN pairs at separation &lt;~20 arcmin are
  needed to detect this filamentary structure at the 3σ level. Assuming
  observations of distant sources using XEUS for exposure times of 500
  ks, we find that the minimum source flux to probe the filamentary
  structure is ~2 × 10<SUP>-12</SUP> erg cm<SUP>-2</SUP> s<SUP>-1</SUP>
  in the 0.1-2.4 keV energy band. Thus, most pairs of these extragalactic
  X-ray bright sources have already been identified in the ROSAT All-Sky
  Survey. Re-observation of these objects by future missions could be
  a powerful way to search for baryons in the low-redshift Universe.

---------------------------------------------------------
Title: Chandra Temperature Map of A754 and Constraints on Thermal
    Conduction
Authors: Markevitch, M.; Mazzotta, P.; Vikhlinin, A.; Burke, D.;
   Butt, Y.; David, L.; Donnelly, H.; Forman, W. R.; Harris, D.; Kim,
   D. -W.; Virani, S.; Vrtilek, J.
2003ApJ...586L..19M    Altcode: 2003astro.ph..1367M
  We use Chandra data to derive a detailed gas temperature map of
  the nearby, hot, merging galaxy cluster A754. Combined with the
  X-ray and optical images, the map reveals a more complex merger
  geometry than previously thought, possibly involving more than two
  subclusters or a cool gas cloud sloshing independently from its former
  host subcluster. In the cluster central region, we detect spatial
  variations of the gas temperature on all linear scales, from 100 kpc
  (the map resolution) and up, which likely remain from a merger shock
  passage. These variations are used to derive an upper limit on effective
  thermal conductivity on a 100 kpc scale, which is at least an order of
  magnitude lower than the Spitzer value. This constraint pertains to the
  bulk of the intracluster gas, as compared to the previously reported
  estimates for cold fronts (which are rather peculiar sites). If the
  conductivity in a tangled magnetic field is at the recently predicted
  higher values (i.e., about 1/5 Spitzer), the observed suppression
  can be achieved, for example, if the intracluster gas consists of
  magnetically isolated domains.

---------------------------------------------------------
Title: XMM-Newton Proposal 02017516
Authors: Mazzotta, Pasquale
2003xmm..prop...94M    Altcode:
  The observed X-ray luminosities of groups are inconsistent with
  a model in which the intragroup medium is shock-heated during the
  collapse. It is thought that a combination of pre-heating, gas cooling
  and energy injection removes low entropy gas, reducing the system's
  X-ray luminosity. However, the extent of this process is uncertain
  because the previous selection of group catalogs has been based on
  X-ray emission. We have constructed a complete, mass-selected catalog
  of groups from the 2dFGRS. X-ray observations of this sample would
  for the first time provide accurate determinations of the entropy in
  a mass-selected sample. These observations are of key importance for
  understanding the thermal history of the intragroup medium and the
  interplay between X-ray cooling and galaxy formation.

---------------------------------------------------------
Title: Study of a Cold Front in a Massive Cooling Flow Cluster of
    Galaxies with Strong Lensing
Authors: Mazzotta, Pasquale
2002cxo..prop.1311M    Altcode: 2002chan.prop.1282M; 2002cxo..prop.1282M
  Using the data contained in the Chandra archive we discovered a cold
  front in the atmosphere of the cluster of galaxies MS1455.0+2232. The
  importance of this finding is related to the fact that: i) it represents
  the biggest edge observed so far; ii) it lies in one of the most
  massive cooling flow clusters known; iii) the optical image of the
  cluster hosts a lensed arc inside the cold front sector. Moreover the
  X-ray and the lensig estimates show a discrepancy of a factor 1.8. It
  has been argued that cold fronts may both influence the development
  of cooling flows as well as to induce a mass bias that could explain
  point iii) above. We propose a deep Chandra follow-up of MS1455.0+2232
  that will shade light on the above issues.

---------------------------------------------------------
Title: Chandra Observation of a 300 Kiloparsec Hydrodynamic
    Instability in the Intergalactic Medium of the Merging Cluster of
    Galaxies A3667
Authors: Mazzotta, Pasquale; Fusco-Femiano, Roberto; Vikhlinin, Alexey
2002ApJ...569L..31M    Altcode: 2002astro.ph..1423M
  We present results from the combination of two Chandra pointings of
  the central region of the cluster of galaxies A3667. From the data
  analysis of the first pointing, Vikhlinin, Markevitch, and Murray
  reported the discovery of a prominent cold front that is interpreted
  as the boundary of a cool gas cloud moving through the hotter ambient
  gas. They discussed the role of the magnetic fields in maintaining the
  apparent dynamical stability of the cold front over a wide sector at the
  forward edge of the moving cloud and in suppressing transport processes
  across the front. In this Letter, we identify two new features in the
  X-ray image of A3667: (1) a 300 kpc arclike filamentary X-ray excess
  extending from the cold gas cloud border into the hotter ambient gas and
  (2) a similar arclike filamentary X-ray depression that develops inside
  the gas cloud. Both features are located beyond the sector identified
  by the cold front and are oriented in a direction perpendicular to the
  direction of motion. The temperature map suggests that the temperature
  of the filamentary excess is consistent with that inside the gas cloud,
  while the temperature of the depression is consistent with that of the
  ambient gas. We suggest that the observed features represent the first
  evidence for the development of a large-scale hydrodynamic instability
  in the cluster atmosphere resulting from a major merger. This result
  confirms previous claims for the presence of a moving cold gas cloud
  in the hotter ambient gas. Moreover, it shows that, although the gas
  mixing is suppressed at the leading edge of the subcluster as a result
  its magnetic structure, strong turbulent mixing occurs at larger angles
  toward the direction of motion. We show that this mixing process may
  favor the deposition of a nonnegligible quantity of thermal energy
  right in the cluster center, affecting the development of the central
  cooling flow.

---------------------------------------------------------
Title: Evidence for a Heated Gas Bubble inside the “Cooling Flow”
    Region of MKW 3s
Authors: Mazzotta, P.; Kaastra, J. S.; Paerels, F. B.; Ferrigno, C.;
   Colafrancesco, S.; Mewe, R.; Forman, W. R.
2002ApJ...567L..37M    Altcode: 2001astro.ph..7557M
  We report on the deep Chandra observation of the central r=200
  kpc region of the cluster of galaxies MKW 3s, which was previously
  identified as a moderate cooling flow cluster. The Chandra image
  reveals two striking features-a 100 kpc long and 21 kpc wide filament,
  extending from the center to the southwest, and a nearly circular, 50
  kpc diameter depression 90 kpc south of the X-ray peak. The temperature
  map shows that the filamentary structure is colder while the surface
  brightness depression is hotter than the average cluster temperature
  at any radius. The hot and the cold regions indicate that both cooling
  and heating processes are taking place in the center of MKW 3s. We
  argue that the surface brightness depression is produced by a heated,
  low-density gas bubble along the line of sight. We suggest that the
  heated bubble is produced by short-lived nuclear outbursts from the
  central galaxy.

---------------------------------------------------------
Title: Development of Hydrodynamic Instability in the Intergalactic
    Medium of the Merging Cluster of Galaxies A3667
Authors: Mazzotta, Pasquale; Vikhlinin, Alexey; Fusco-Femiano, Roberto;
   Markevich, Maxim
2002astro.ph..2324M    Altcode:
  A3667, a spectacular merger cluster, was observed by Chandra twice. In
  this paper we review the main results of the analysis of these
  observations. In particular we show evidence for the presence in the
  cluster of a 300 kpc Kelvin-Helmholtz hydrodynamic instability. We
  discuss the development of such instability and the structure of the
  intracluster magnetic filed in light of a self-consistent cluster
  dynamical model.

---------------------------------------------------------
Title: Chandra Observations of Cold Fronts in Clusters of Galaxies
Authors: Mazzotta, P.; Markevitch, M.; Vikhlinin, A.; Forman, W. R.
2002ASPC..257..173M    Altcode: 2002hzcm.conf..173M; 2001astro.ph..9420M
  High-resolution Chandra images of several clusters of galaxies
  reveal sharp, edge-like discontinuities in their gas density. The
  gas temperature is higher in front of the edge where the density is
  low, corresponding to approximately continuous pressure across the
  edge. This new phenomenon was called “cold fronts”, to contrast it
  to shock fronts that should look similar in X-ray images but where the
  temperature should jump in the opposite direction. The first cold fronts
  were discovered in merging clusters, where they appear to delineate
  the boundaries of dense cool subcluster remnants moving through and
  being stripped by the surrounding shock-heated gas. Later, Chandra
  revealed cold fronts in the central regions of several apparently
  relaxed clusters. To explain the gas bulk motion in these clusters,
  we propose either a peculiar cluster formation history that resulted
  in an oscillating core, or gas sloshing (without the involvement of
  the underlying dark matter peak) caused by past subcluster infall or
  central AGN activity. We review these observations and discuss their
  implications for the X-ray cluster mass estimates.

---------------------------------------------------------
Title: Nonhydrostatic Gas in the Core of the Relaxed Galaxy Cluster
    A1795
Authors: Markevitch, M.; Vikhlinin, A.; Mazzotta, P.
2001ApJ...562L.153M    Altcode: 2001astro.ph..8520M
  Chandra data on A1795 reveal a mild edge-shaped discontinuity in the
  gas density and temperature in the southern sector of the cluster at
  r=60 h<SUP>-1</SUP> kpc. The gas inside the edge is 1.3-1.5 times
  denser and cooler than outside, while the pressure is continuous,
  indicating that this is a “cold front,” the surface of contact between
  two moving gases. The continuity of the pressure indicates that the
  current relative velocity of the gases is near zero, making the edge
  appear to be in hydrostatic equilibrium. However, a total mass profile,
  derived from the data in this sector under the equilibrium assumption,
  exhibits an unphysical jump by a factor of 2, with the mass inside
  the edge being lower. We propose that the cooler gas is “sloshing”
  in the cluster gravitational potential well and is now near the
  point of maximum displacement, where it has zero velocity but nonzero
  centripetal acceleration. The distribution of this nonhydrostatic gas
  should reflect the reduced gravity force in the accelerating reference
  frame, resulting in the apparent mass discontinuity. Assuming that the
  gas outside the edge is hydrostatic, the acceleration of the moving gas
  can be estimated from the mass jump, a~800 h km s<SUP>-1</SUP> (10<SUP>
  8</SUP> yr)<SUP>-1</SUP>. The gravitational potential energy of this
  gas that is available for dissipation is about half of its current
  thermal energy. The length of the cool filament extending from the cD
  galaxy (Fabian et al.) may give the amplitude of the gas sloshing,
  30-40 h<SUP>-1</SUP> kpc. Such gas bulk motion might be caused by a
  disturbance of the central gravitational potential by past subcluster
  infall.

---------------------------------------------------------
Title: 1WGA J1226.9+3332: A High-Redshift Cluster Discovered by
    Chandra
Authors: Cagnoni, I.; Elvis, M.; Kim, D. -W.; Mazzotta, P.; Huang,
   J. -S.; Celotti, A.
2001ApJ...560...86C    Altcode: 2001astro.ph..6066C
  We report the detection of 1WGA J1226.9+3332 as an arcminute-scale
  extended X-ray source with the Chandra X-Ray Observatory. The
  Chandra observation and R- and K-band imaging strongly support
  the identification of 1WGA 1226.9+3332 as a high-redshift
  cluster of galaxies, most probably at z=0.85+/-0.15, with an
  inferred temperature kT=10<SUP>+4</SUP><SUB>-3</SUB> keV, and
  an unabsorbed luminosity (in a r=120<SUP>”</SUP> aperture)
  of 1.3<SUP>+0.16</SUP><SUB>-0.14</SUB>×10<SUP>45</SUP> ergs
  s<SUP>-1</SUP> (0.5-10 keV). This indication of redshift is also
  supported by the K- and R-band imaging and is in agreement with the
  spectroscopic redshift of 0.89 found by Ebeling and coworkers. The
  surface brightness profile is consistent with a β model with
  β=0.770+/-0.025, r<SUB>c</SUB>=18.1"+/-0.9" (corresponding to 101+/-5
  kpc at z=0.89), and S(0)=1.02+/-0.08 counts arcsec<SUP>-2</SUP>. 1WGA
  J1226.9+3332 was selected as an extreme X-ray-loud source with
  F<SUB>X</SUB>/F<SUB>V</SUB>&gt;60 this selection method, thanks to the
  large area sampled, seems to be a highly efficient method for finding
  luminous, high-z clusters of galaxies.

---------------------------------------------------------
Title: RXJ1720.1+2638: a Nearly Relaxed Cluster with a Fast Moving
    Core?
Authors: Mazzotta, Pasquale
2001cxo..prop.1000M    Altcode: 2001cxo..prop..992M; 2001chan.prop..992M
  Observed with previous X-ray missions, RXJ1720.1+2638 looks like the
  prototype of a "relaxed cluster of galaxies". The cluster appears
  azimuthally symmetric and the X-ray brightness peak coincides with
  the cluster central galaxy. Thanks to its unprecedented spatial
  resolution, the Chandra observation of this cluster shows a far more
  complex structure. In particular it shows two X-ray features, on the
  opposite sides of the X-ray peak, that strongly indicate motion of the
  cluster core. Because of the low exposure of the previous observation
  several issues relative to the cluster formation and evolution are
  answered. We propose a 52ks ASCI-I observation to study the details
  of the dual structure in the gravitational potential of this cluster.

---------------------------------------------------------
Title: Chandra Observation of MS 1455.0+2232: cold fronts in a
    massive cooling flow cluster?
Authors: Mazzotta, P.; Markevitch, M.; Forman, W. R.; Jones, C.;
   Vikhlinin, A.; VanSpeybroeck, L.
2001astro.ph..8476M    Altcode:
  We present the Chandra observation of the cluster of galaxies MS
  1455.0+2232. From previous ASCA and ROSAT observations, this cluster
  was identified as a “relaxed” cluster that hosts one of the most
  massive cooling flows detected. With higher angular resolution, the
  Chandra X-ray image shows the presence of two surface brightness edges
  on opposite sides of the X-ray peak: the first at 190 kpc to the north
  and the second at 450 kpc to the south. Even though the low exposure of
  this observation limits our ability to constrain the temperature jump
  across both edges, we show that the northern edge is likely to be a
  “cold front” similar to others observed recently by Chandra in the
  clusters A2142, A3667, RX J1720.1+2638, and A2256. The observed cold
  front is most likely produced by the motion, from south to north,
  of a group-size dark matter halo. The most natural explanation for
  the presence of this observed moving subclump is that MS 1455.0+2232
  is a merger cluster in the very last stage before it becomes fully
  relaxed. This scenario, however, appears to be unlikely as the cluster
  shows no further sign of ongoing merger. Moreover, it is not clear if
  a massive cooling flow could have survived this kind of merger. We
  propose an alternative scenario in which, as for RX J1720.1+2638,
  MS 1455.0+2232 is the result of the hierarchical collapse of two
  co-located density perturbations, the first a group-scale perturbation
  collapse followed by a second cluster-scale perturbation collapse
  that surrounded, but did not destroy, the first. We suggest that a
  cooling flow may have begun inside the already collapsed group-scale
  perturbation and may have been later amplified by the gas compression
  induced by the infall of the overlying main cluster mass.

---------------------------------------------------------
Title: Chandra Observation of RX J1720.1+2638: a Nearly Relaxed
    Cluster with a Fast-moving Core?
Authors: Mazzotta, P.; Markevitch, M.; Vikhlinin, A.; Forman, W. R.;
   David, L. P.; van Speybroeck, L.
2001ApJ...555..205M    Altcode: 2001astro.ph..2291M
  We have analyzed the Chandra observation of the distant (z=0.164)
  galaxy cluster RX J1720.1+2638, in which we find sharp features in
  the X-ray surface brightness on opposite sides of the X-ray peak:
  an edge at about 250h<SUP>-1</SUP><SUB>50</SUB> kpc to the southeast
  and a plateau at about 130h<SUP>-1</SUP><SUB>50</SUB> kpc to the
  northwest. The surface brightness edge and the plateau can be modeled
  as a gas density discontinuity (jump) and a slope change (break). The
  temperature profiles suggest that the jump and the break are the
  boundaries of a central, group-size (d~380h<SUP>-1</SUP><SUB>50</SUB>
  kpc), dense, cold (T~4 keV) gas cloud, embedded in a diffuse hot
  (T~10 keV) intracluster medium. The density jump and the temperature
  change across the discontinuity are similar to the “cold fronts”
  discovered by Chandra in A2142 and A3667 and suggest subsonic motion
  of this central gas cloud with respect to the cluster itself. The most
  natural explanation is that we are observing a merger in the very last
  stage before the cluster becomes fully relaxed. However, the data are
  also consistent with an alternative scenario in which RX J1720.1+2638
  is the result of the collapse of two co-located density perturbations,
  the first a group-scale perturbation collapse followed by a second
  cluster-scale perturbation collapse that surrounded, but did not
  destroy, the first one. We also show that, because of the core motion,
  the total mass inside the cluster core, derived under the assumption of
  hydrostatic equilibrium, may underestimate the true cluster mass. If
  widespread, such motion may partially explain the discrepancy between
  X-ray and the strong-lensing mass determinations found in some clusters.

---------------------------------------------------------
Title: Temperature and total mass profiles of the A3571 cluster
    of galaxies
Authors: Nevalainen, J.; Kaastra, J.; Parmar, A. N.; Markevitch, M.;
   Oosterbroek, T.; Colafrancesco, S.; Mazzotta, P.
2001A&A...369..459N    Altcode: 2001astro.ph..1412N
  We present BeppoSAX results of a spatially resolved spectral
  analysis of A3571, a relaxed nearby cluster of galaxies. In the
  central 2' (130 h<SUB>50</SUB><SUP>-1</SUP> kpc) radius the metal
  abundance is 0.49 +/- 0.08 solar and the absorption (1.13 +/- 0.28)
  10<SUP>21</SUP> atom cm<SUP>-2</SUP>, whereas elsewhere within an 8'
  (520 h<SUB>50</SUB><SUP>-1</SUP> kpc) radius the abundance is 0.32
  +/- 0.05 solar and the absorption consistent with the galactic value
  of 4.4 10<SUP>20</SUP> atom cm<SUP>-2</SUP>. The significant central
  metal abundance enhancement is consistent with the supernova enrichment
  scenario. The excess absorption may be attributed to the cooling flow,
  whose mass flow rate is 80 +/- 40 M<SUB>sun</SUB> yr<SUP>-1</SUP>
  from our spectral fit. The BeppoSAX and ASCA radial temperature
  profiles agree over the entire overlapping radial range r &lt; 25' =
  1.6 h<SUB>50</SUB><SUP>-1</SUP> Mpc. The combined BeppoSAX and ASCA
  temperature profile exhibits a constant value out to a radius of ~ 10'
  (650 h<SUB>50</SUB><SUP>-1</SUP> kpc) and a significant decrease (T ~
  r<SUP>-0.55</SUP>, corresponding to gamma =1.28) at larger radii. These
  temperature data are used to derive the total mass profile. The best
  fit NFW dark matter density model results in a temperature profile
  that is not convectively stable, but the model is acceptable within
  the uncertainties of the data. The temperature profile is acceptably
  modeled with a “core” model for the dark matter density, consisting
  of a core radius with a constant slope at larger radii. With this model
  the total mass and formal 90% confidence errors within the virial radius
  r<SUB>178</SUB> (2.5 h<SUB>50</SUB><SUP>-1</SUP> Mpc) are 9.1[+3.6,-1.5]
  10<SUP>14</SUP> h<SUB>50</SUB><SUP>-1</SUP> M<SUB>sun</SUB>, by a
  factor of 1.4 smaller than the isothermal value. The gas mass fraction
  increases with radius, reaching f<SUB>gas</SUB>(r<SUB>178</SUB>) =
  0.26[+-0.05,-0.10] x h<SUB>50</SUB><SUP>-3/2</SUP>. Assuming that
  the measured gas mass fraction is the lower limit to the primordial
  baryonic fraction gives Omega <SUB>m</SUB> &lt; 0.4 at 90% confidence.

---------------------------------------------------------
Title: Chandra Study of an Overdensity of X-Ray Sources around Two
    Distant (Z~0.5) Clusters
Authors: Cappi, M.; Mazzotta, P.; Elvis, M.; Burke, D. J.; Comastri,
   A.; Fiore, F.; Forman, W.; Fruscione, A.; Green, P.; Harris, D.;
   Hooper, E. J.; Jones, C.; Kaastra, J. S.; Kellogg, E.; Murray,
   S.; McNamara, B.; Nicastro, F.; Ponman, T. J.; Schlegel, E. M.;
   Siemiginowska, A.; Tananbaum, H.; Vikhlinin, A.; Virani, S.; Wilkes, B.
2001ApJ...548..624C    Altcode: 2000astro.ph..9199C
  We present results from a Chandra X-Ray Observatory study of the
  field X-ray source populations in four different observations:
  two high-redshift (z~0.5) clusters of galaxies 3C 295 and
  RX J003033.2+261819; and two noncluster fields with similar
  exposure time. Surprisingly, the 0.5-2 keV source surface
  densities (~900-1200 sources deg<SUP>-2</SUP> at a flux limit of
  1.5×10<SUP>-15</SUP> ergs cm<SUP>-2</SUP> s<SUP>-1</SUP>) measured in
  an ~8<SUP>'</SUP>×8<SUP>'</SUP> area surrounding each cluster exceed
  by a factor of ~2 the value expected on the basis of the ROSAT and
  Chandra logN-logS, with a significance of ~2 σ each, or ~3.5 σ when
  the two fields are combined (i.e., a probability to be a statistical
  fluctuation of &lt;1% and &lt;0.04%, respectively). The same analysis
  performed on the noncluster fields and on the outer chips of the cluster
  fields does not show evidence of such an excess. In both cluster fields,
  the summed 0.5-10 keV spectrum of the detected objects is well fitted
  by a power law with Γ~1.7 similar to active galactic nuclei (AGNs)
  and shows no sign of intrinsic absorption. The few (~10 of 35) optical
  identifications available to date confirm that most of them are, as
  expected, AGNs, but the number of redshifts available is too small to
  allow conclusions on their nature. We discuss possible interpretations
  of the overdensity in terms of a statistical variation of cosmic
  background sources; a concentration of AGNs and/or powerful starburst
  galaxies associated with the clusters; and gravitational lensing of
  background QSOs by the galaxy clusters. All explanations, however,
  are difficult to reconcile with the large number of excess sources
  detected. Deeper X-ray observations and more redshifts measurements
  are clearly required to settle the issue.

---------------------------------------------------------
Title: Clusters of galaxies among ROSAT blank field sources
Authors: Cagnoni, I.; Elvis, M.; Kim, D. -W.; Mazzotta, P.; Huang,
   J. -S.; Celotti, A.
2001cghr.confE..27C    Altcode: 2001astro.ph..5430C
  We present here an efficient method for selecting high luminosity and
  massive high redshift clusters of galaxies, crucially important tools in
  cosmology. By selecting bright and extremely X-ray loud (high F(X)/F(V))
  sources, we were able to identify 2 high redshift (z=0.45 and z=0.89)
  clusters so far and we have evidence for at least one more candidate
  at 0.4&lt;z&lt;1.1 out of a total of 16 selected sources.

---------------------------------------------------------
Title: Chandra study of a concentration of X-ray sources around two
    distant (z ~ 0.5) clusters
Authors: Cappi, M.; Mazzotta, P.; Burke, D. J.; Comastri, A.;
   David, L.; Elvis, M.; Fiore, F.; Forman, W.; Fruscione, A.; Green,
   P.; Harris, D.; Hooper, E.; Jones, C.; Kaastra, J. S.; Kellogg, E.;
   Murray, S.; McNamara, B.; Nicastro, F.; Ponman, T. J.; Schlegel, E. M.;
   Siemiginowska, A.; Tananbaum, H.; Vikhlinin, A.; Virani, S.; Wilkes, B.
2001MmSAI..72..207C    Altcode:
  We present preliminary results from a Chandra X-ray Observatory
  study of the field X-ray source populations in 3 different fields:
  two include the two medium-redshift (z~0.5) clusters of galaxies 3C
  295 and RXJ003033.2+261819, and the third is a non-cluster field with
  similar exposure time. Surprisingly, the 0.5 - 2 keV source surface
  densities (~900 - 1200 sources deg<SUP>-2</SUP> at a flux limit of
  1.5×10<SUP>-15</SUP> erg cm<SUP>-2</SUP> s<SUP>-1</SUP>) measured in
  an ~8'×8' area surrounding each cluster exceed by a factor of ~2 the
  value expected on the basis of the ROSAT logN-logS, with a significance
  of ~2σ each. The same analysis performed on the non-cluster field and
  on the outer chips of the cluster fields does not show evidence of such
  an excess. In both cluster fields, the summed 0.5 - 10 keV spectrum
  of the detected objects is well fitted by a power-law with Γ ~ 1.7
  similar to AGNs and shows no sign of intrinsic absorption. The few
  (~20%) optical identifications available to date confirm that most
  of them are, as expected, AGNs but the number of redshifts available
  is too small to allow conclusions. If associated with the clusters
  (as supported by their apparent concentrations around the clusters),
  their X-ray luminosities (~10<SUP>42-43</SUP> erg s<SUP>-1</SUP> on
  average) are typical of Seyfert-like galaxies. Optical classification
  of more sources are clearly required to settle the issue.

---------------------------------------------------------
Title: Temperature Structure of Four Merging Clusters Obtained
    with Chandra
Authors: Markevitch, M.; Vikhlinin, A.; Mazzotta, P.; VanSpeybroeck, L.
2000astro.ph.12215M    Altcode:
  We present preliminary Chandra results on z=0.2 clusters A665, A2163
  and A2218, and a z=0.05 cluster A754. For A754, A665 and A2163, we have
  derived first high-resolution projected gas temperature maps. All three
  show strong spatial temperature variations in the inner r&lt;0.5-1
  Mpc regions, indicating ongoing mergers. The maps reveal a probable
  shock in front of a moving cluster core in A665, a rather complicated
  temperature distribution in the center of A2163, and possibly a merger
  of three subclusters in A754. At greater off-center distances, radial
  profiles for A2163 and A2218 show a temperature decline, in agreement
  with earlier ASCA results.

---------------------------------------------------------
Title: Chandra Observation of RXJ1720.1+2638: Study of a Cluster
    Core Moving in its Own Environment
Authors: Mazzotta, P.; van Speybroeck, L.; David, L. P.; Forman,
   W. R.; Markevitch, M.; Vikhlinin, A.
2000HEAD....5.4404M    Altcode: 2000BAAS...32.1651M
  We have analyzed the Chandra observation of the distant (z=0.164) galaxy
  cluster RXJ1720.1+2638 in which we find a sharp edge and plateau in
  the X-ray surface brightness at about 250 h<SUB>50</SUB><SUP>-1</SUP>
  kpc and 130 h<SUB>50</SUB><SUP>-1</SUP> kpc from the X-ray peak
  respectively. These features are consistent with a density discontinuity
  and a density break, on angular scales &lt;= 10<SUP>”</SUP>. The
  temperature profiles suggest that the edge and the break are the
  boundaries of a central, group-size (d≈ 380h<SUB>50</SUB><SUP>-1</SUP>
  kpc), dense, cold thermally isolated (T≈ 4 keV) gas cloud, embedded
  in a more diffuse hot (T≈ 10 keV) ambient intracluster. The density
  jump and the temperature change across the discontinuity are similar
  to the edge discovered by Chandra in A2142 and A3667, and suggest a
  subsonic motion of this central gas cloud with respect to the cluster
  itself. As for A2142 and A3667, the most natural explanation for
  this cluster is that we are observing a merger cluster. However the
  cluster appears to be relaxed just outside the two density features,
  thus we suggest that the merger is in the very last stage before
  the cluster become fully relaxed. We show that the gas inside the
  central cloud is not in hydrostatic equilibrium and, thus, the X-ray
  cluster mass determination on scales smaller than gas cloud size may
  be substantially influenced. The dimension of the moving cloud is
  comparable to the cluster core and to the Einstein ring. If, as we
  suspect, RXJ1720.1+2638 is not a “special” cluster and the core-size
  gas cloud motion phenomenon is present in many other clusters, then
  it may partially explain the discrepancy between X-ray and the strong
  lensing mass determination found in some systems. P.M. is supported
  by ESA fellowship.

---------------------------------------------------------
Title: Chandra Observation of Abell 2142: Survival of Dense Subcluster
    Cores in a Merger
Authors: Markevitch, M.; Ponman, T. J.; Nulsen, P. E. J.; Bautz, M. W.;
   Burke, D. J.; David, L. P.; Davis, D.; Donnelly, R. H.; Forman, W. R.;
   Jones, C.; Kaastra, J.; Kellogg, E.; Kim, D. -W.; Kolodziejczak, J.;
   Mazzotta, P.; Pagliaro, A.; Patel, S.; Van Speybroeck, L.; Vikhlinin,
   A.; Vrtilek, J.; Wise, M.; Zhao, P.
2000ApJ...541..542M    Altcode: 2000astro.ph..1269M
  We use Chandra data to map the gas temperature in the central region
  of the merging cluster A2142. The cluster is markedly nonisothermal;
  it appears that the central cooling flow has been disturbed but
  not destroyed by a merger. The X-ray image exhibits two sharp,
  bow-shaped, shocklike surface brightness edges or gas density
  discontinuities. However, temperature and pressure profiles across
  these edges indicate that these are not shock fronts. The pressure is
  reasonably continuous across these edges, while the entropy jumps in
  the opposite sense to that in a shock (i.e., the denser side of the
  edge has lower temperature, and hence lower entropy). Most plausibly,
  these edges delineate the dense subcluster cores that have survived
  a merger and ram pressure stripping by the surrounding shock-heated gas.

---------------------------------------------------------
Title: An X-ray and optical study of the cluster A33
Authors: Colafrancesco, S.; Mullis, C. R.; Wolter, A.; Gioia, I. M.;
   Maccacaro, T.; Antonelli, A.; Fiore, F.; Kaastra, J.; Mewe, R.;
   Rephaeli, Y.; Fusco-Femiano, R.; Antonuccio-Delogu, V.; Matteucci,
   F.; Mazzotta, P.
2000A&AS..144..187C    Altcode: 2000astro.ph..2224C
  We report the first detailed X-ray and optical observations of the
  medium-distant cluster A33 obtained with the Beppo-SAX satellite and
  with the UH 2.2 m and Keck II telescopes at Mauna Kea. The information
  deduced from X-ray and optical imaging and spectroscopic data allowed us
  to identify the X-ray source 1SAXJ0027.2-1930 as the X-ray counterpart
  of the A33 cluster. The faint, F_{2-10 keV} ~ 2.4 10<SUP>-13</SUP>
  erg s<SUP>-1</SUP> cm<SUP>-2</SUP>, X-ray source 1SAXJ0027.2-1930, ~
  2 arcmin away from the optical position of the cluster as given in the
  Abell catalogue, is identified with the central region of A33. Based
  on six cluster galaxy redshifts, we determine the redshift of A33,
  z=0.2409; this is lower than the value derived by \cite[Leir &amp;
  Van Den Bergh (1977)]{lei77}. The source X-ray luminosity, L_{2-10
  keV} = 7.7 10<SUP>43</SUP> erg s<SUP>-1</SUP> cm<SUP>-2</SUP>,
  and intracluster gas temperature, T = 2.9 keV, make this cluster
  interesting for cosmological studies of the cluster L_X-T relation at
  intermediate redshifts. Two other X-ray sources in the A33 field are
  identified. An AGN at z=0.2274, and an M-type star, whose emissions
  are blended to form an extended X-ray emission ~ 4 arcmin north of
  the A33 cluster. A third possibly point-like X-ray source detected ~
  3 arcmin north-west of A33 lies close to a spiral galaxy at z=0.2863
  and to an elliptical galaxy at the same redshift as the cluster.

---------------------------------------------------------
Title: Chandra X-Ray Detection of the Radio Hot Spots of 3C 295
Authors: Harris, D. E.; Nulsen, P. E. J.; Ponman, T. J.; Bautz,
   M.; Cameron, R. A.; David, L. P.; Donnelly, R. H.; Forman, W. R.;
   Grego, L.; Hardcastle, M. J.; Henry, J. P.; Jones, C.; Leahy, J. P.;
   Markevitch, M.; Martel, A. R.; McNamara, B. R.; Mazzotta, P.; Tucker,
   W.; Virani, S. N.; Vrtilek, J.
2000ApJ...530L..81H    Altcode: 1999astro.ph.11381H
  An observation of the radio galaxy 3C 295 during the calibration phase
  of the Chandra X-Ray Observatory reveals X-ray emission from the core of
  the galaxy, from each of the two prominent radio hot spots, and from the
  previously known cluster gas. We discuss the possible emission processes
  for the hot spots and argue that a synchrotron self-Compton (SSC)
  model is preferred for most or all of the observed X-ray emission. SSC
  models with near-equipartition fields thus explain the X-ray emission
  from the hot spots in the two highest surface brightness FR II radio
  galaxies, Cygnus A and 3C 295. This lends weight to the assumption of
  equipartition and suggests that relativistic protons do not dominate
  the particle energy density.

---------------------------------------------------------
Title: Chandra X-ray Detection of the Radio Hotspots of 3C 295
Authors: Harris, D. E.; Cameron, R. A.; David, L. P.; Donnelly, R. H.;
   Forman, W. R.; Grego, L.; Jones, C.; Markevitch, M.; McNamara, B. R.;
   Mazzotta, P.; Nulsen, P.; Ponman, T. J.; Tucker, W.; Virani, S. N.;
   Vrtilek, J.; Leahy, J. P.; Martel, A. R.; Bautz, M.; Hardcastle, M.;
   Henry, P.
1999AAS...195.2004H    Altcode: 1999BAAS...31.1403H
  An observation of 3C 295 during the calibration phase reveals X-ray
  emission from the previously known cluster gas, the core of the
  galaxy, and from each of the two prominent radio hotspots. We discuss
  the possible emission processes for the hotspots and argue that a
  synchrotron self-Compton model is preferred for part or all of the
  observed X-ray emission.

---------------------------------------------------------
Title: The Planck Surveyor mission: astrophysical prospects
Authors: de Zotti, Gianfranco; Toffolatti, Luigi; Argüeso, Francisco;
   Davies, Rodney D.; Mazzotta, Pasquale; Partridge, R. Bruce; Smoot,
   George F.; Vittorio, Nicola
1999AIPC..476..204D    Altcode: 1999astro.ph..2103D; 1999tkc..conf..204D
  Although the Planck Surveyor mission is optimized to map the cosmic
  microwave background anisotropies, it will also provide extremely
  valuable information on astrophysical phenomena. We review our present
  understanding of Galactic and extragalactic foregrounds relevant to
  the mission and discuss on one side, Planck's impact on the study of
  their properties and, on the other side, to what extent foreground
  contamination may affect Planck's ability to accurately determine
  cosmological parameters. Planck's multifrequency surveys will be unique
  in their coverage of large areas of the sky (actually, of the full sky);
  this will extend by two or more orders of magnitude the flux density
  interval over which mm/sub-mm counts of extragalactic sources can be
  determined by instruments already available (like SCUBA) or planned for
  the next decade (like the LSA-MMA or the space mission FIRST), which
  go much deeper but over very limited areas. Planck will thus provide
  essential complementary information on the epoch-dependent luminosity
  functions. Bright radio sources will be studied over a poorly explored
  frequency range where spectral signatures, essential to understand the
  physical processes that are going on, show up. The Sunyaev-Zeldovich
  effect, with its extremely rich information content, will be observed
  in the direction of a large number of rich clusters of Galaxies. Thanks
  again to its all sky coverage, Planck will provide unique information
  on the structure and on the emission properties of the interstellar
  medium in the Galaxy. At the same time, the foregrounds are unlikely
  to substantially limit Planck's ability to measure the cosmological
  signals. Even measurements of polarization of the primordial Cosmic
  Microwave background fluctuations appear to be feasible.

---------------------------------------------------------
Title: X-ray spectra from hot thin plasmas: first results from a new,
    updated plasma code
Authors: Mazzotta, P.; Mazzitelli, P.; Colafrancesco, S.; Vittorio, N.
1999NuPhS..69..585M    Altcode:
  We present in this paper new and updated calculations of the ionization
  equilibrium for all the elements from He to Ni. Moreover, we discuss
  some preliminary results on the application of such calculations to
  a new spectral code for the X-ray continuum and line emission from
  hot plasmas.

---------------------------------------------------------
Title: Evolution of distant X-ray clusters of galaxies: the BeppoSAX
    data
Authors: Colafrancesco, S.; Antonelli, A.; Mazzotta, P.; Vittorio, N.
1999NuPhS..69..573C    Altcode:
  We present the results of the Beppo-SAX observations of two distant
  z~0.3 galaxy clusters: A348 and A33. We outline the main results of
  the data analysis and discuss the cosmological relevance of these new
  data for the evolution of the Inter Galactic Medium (IGM) in distant
  clusters of galaxies.

---------------------------------------------------------
Title: A New Ionization Balance for Optically Thin Plasmas: the
    Implication for the Calculated X Ray Spectrum.
Authors: Mazzotta, P.; Mazzitelli, G.
1998tx19.confE.525M    Altcode:
  The next coming X ray mission will allow us to measure the
  emission of the astrophysical X-ray sources with high energy
  resolution. Nevertheless to determine the relevant physical parameters
  describing the plasmas we need to compare observed data with a t This
  year we developed a new ionization balance code. This code as been
  already included in the spectral code SPEX. In this paper we show how
  the result of the standard analysis of AXAF or XMM spectra could be
  affected by the use of different ionization b

---------------------------------------------------------
Title: Ionization balance for optically thin plasmas: Rate
    coefficients for all atoms and ions of the elements H to NI
Authors: Mazzotta, P.; Mazzitelli, G.; Colafrancesco, S.; Vittorio, N.
1998A&AS..133..403M    Altcode: 1998astro.ph..6391M
  We present in this paper new and updated calculations of the ionization
  equilibrium for all the elements from H to Ni. We collected for these
  elements all the data available in the literature for the ionization
  and radiative plus dielectronic recombination rates. In particular,
  the dielectronic rates have been fitted with a single formula and
  the related coefficients are tabulated. Our results are compared with
  previous works. Tables 1 and 2 are available only in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: VizieR Online Data Catalog: Ionization balance for optically
    thin plasmas (Mazzotta+ 1998)
Authors: Mazzotta, P.; Mazzitelli, G.; Colafrancesco, S.; Vittorio, N.
1998yCat..41330403M    Altcode:
  Fitting coefficients for dielectronic recombination rates of formula
  (7) of the paper are detailed in two tables. (2 data files).

---------------------------------------------------------
Title: The T - L Correlation for Distant Galaxy Clusters
Authors: Colafrancesco, S.; Mazzotta, P.; Vittorio, N.
1998lsst.conf..159C    Altcode:
  In this paper we discuss the constrains that high-quality observations
  of clusters at $z \sim 0.3$ can pose on the evolution of their intra
  cluster (IC) gas and on the overall cosmological parameters.

---------------------------------------------------------
Title: Ionization Balance for Optically Thin Plasmas: Rate
    Coefficients for all Atoms and Ions of the Elements H to Ni and
    implication for the calculated X-ray spectrum
Authors: Mazzotta, Pasquale; Mazzitelli, Giuseppe
1998sxmm.confE..33M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Is the Cluster Temperature Function a Reliable Test for
    Ω<SUB>0</SUB>?
Authors: Colafrancesco, Sergio; Mazzotta, Pasquale; Vittorio, Nicola
1997ApJ...488..566C    Altcode: 1997astro.ph..5167C
  We discuss the evolution of the cluster temperature function (TF)
  in different scenarios for structure formation. We use the commonly
  adopted procedure of fitting the model parameters to the local TF
  data to find the best-fit values and, most of all, the associated
  statistical errors. These errors yield an uncertainty in the prediction
  of the TF evolution. We conclude that, at the moment, observations
  of cluster temperatures at z &lt;~ 0.5 could provide only a weak test
  for Ω<SUB>0</SUB>.

---------------------------------------------------------
Title: Intracluster Comptonization of the Cosmic Microwave Background:
    Mean Spectral Distortion and Cluster Number Counts
Authors: Colafrancesco, S.; Mazzotta, P.; Rephaeli, Y.; Vittorio, N.
1997ApJ...479....1C    Altcode: 1997astro.ph..3121C
  The mean sky-averaged Comptonization parameter, ȳ, describing the
  scattering of the cosmic microwave background (CMB) by hot gas in
  clusters of galaxies, is calculated in an array of flat and open
  cosmological and dark matter models. The models are globally normalized
  to fit cluster X-ray data, and intracluster gas is assumed to have
  evolved in a manner consistent with current observations. We predict
  values of ȳ lower than the COBE/FIRAS upper limit. The corresponding
  values of the overall optical thickness to Compton scattering are
  &lt;~10<SUP>-4</SUP> for relevant parameter values. Of more practical
  importance are number counts of clusters across which a net flux
  (with respect to the CMB) higher than some limiting value can be
  detected. Such number counts are specifically predicted for the
  COBRAS/SAMBA and BOOMERANG missions.

---------------------------------------------------------
Title: Evolution of clusters of galaxies.
Authors: Colafrancesco, S.; Vittorio, N.; Mazzotta, P.
1997mba..conf..395C    Altcode: 1997mba..proc..395C
  In this paper the authors discuss theoretical predictions for the local
  abundance of galaxy clusters and their evolution. They also discuss
  the constraints set by two different databases: the X-ray luminosity
  function and the temperature function.

---------------------------------------------------------
Title: Intracluster comptonization of the CMB in CDM cosmologies.
Authors: Vittorio, N.; Colafrancesco, S.; Mazzotta, P.; Rephaeli, Y.
1997mba..conf..401V    Altcode: 1997mba..proc..401V
  The authors present calculations of the mean sky-averaged Comptonization
  parameter describing the scattering of the CMB by hot gas in clusters
  of galaxies, in an array of flat and open CDM cosmologies. The models
  are globally normalized to fit cluster X-ray data, and the intracluster
  gas is assumed to have evolved in a manner consistent with current
  observations. The authors also discuss the rms temperature fluctuations
  induced by a population of evolving clusters. Finally, they predict
  the number counts of clusters across which a net flux (with respect to
  the CMB) higher than some limiting value can be detected. Such number
  counts are specifically predicted for the COBRAS/SAMBA mission.

---------------------------------------------------------
Title: Cosmic Microwave Background Anisotropy Induced by Gas in
    Clusters of Galaxies
Authors: Colafrancesco, S.; Mazzotta, P.; Rephaeli, Y.; Vittorio, N.
1994ApJ...433..454C    Altcode:
  The spectral change induced by Compton scattering of the cosmic
  microwave background radiation off hot electron gas in clusters of
  galaxies is an important component of the anisotropy on arcminute
  scales. The level and spatial characteristics of this anisotropy are
  explored in detail in the context of flat cold (taking 0.8 and 1 for the
  index of the density fluctuation power spectrum) and mixed dark matter
  models. Properties of intracluster gas and its evolution are directly
  modeled based on X-ray measurements, with an implied decrease in the gas
  mass fraction with increasing redshift. Our calculations yield levels
  of rms temperature anisotropy, ({DELTA}T/T)_rms_, ~a few 10^-6^ for
  a wide range of angular scales and in the context of realistic models
  for the intracluster gas evolution and spatial distribution. This is
  the minimum level of anisotropy expected on sub-degree angular scales
  if the universe underwent a phase of late reheating.