explanation      blue bibcodes open ADS page with paths to full text
Author name code: moore-ron
ADS astronomy entries on 2022-09-14
author:"Moore, Ronald L." OR author:"Moore, Ron" NOT =author:"Moore, R.C." NOT =author:"Moore, R.D."  -title:"IceCube" -title:"neutrino" -title:"neutron star" 

---------------------------------------------------------
Title: Density of GeV muons in air showers measured with IceTop
Authors: Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.;
   Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alves, A. A.; Amin, N. M.;
   Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C.; Ashida, Y.;
   Axani, S.; Bai, X.; Balagopal V., A.; Barwick, S. W.; Bastian, B.;
   Basu, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker
   Tjus, J.; Beise, J.; Bellenghi, C.; Benda, S.; BenZvi, S.; Berley,
   D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Böser, S.;
   Botner, O.; Böttcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.;
   Brinson, B.; Bron, S.; Brostean-Kaiser, J.; Browne, S.; Burgman, A.;
   Burley, R. T.; Busse, R. S.; Campana, M. A.; Carnie-Bronca, E. G.;
   Chen, C.; Chen, Z.; Chirkin, D.; Choi, K.; Clark, B. A.; Clark, K.;
   Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.;
   Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq,
   C.; DeLaunay, J. J.; Delgado López, D.; Dembinski, H.; Deoskar, K.;
   Desai, A.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With,
   M.; DeYoung, T.; Diaz, A.; Díaz-Vélez, J. C.; Dittmer, M.; Dujmovic,
   H.; Dunkman, M.; DuVernois, M. A.; Ehrhardt, T.; Eller, P.; Engel, R.;
   Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.;
   Fedynitch, A.; Feigl, N.; Fiedlschuster, S.; Fienberg, A. T.; Finley,
   C.; Fischer, L.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.;
   Fürst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.;
   Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.;
   Glüsenkamp, T.; Gonzalez, J. G.; Goswami, S.; Grant, D.; Grégoire,
   T.; Griswold, S.; Günther, C.; Gutjahr, P.; Haack, C.; Hallgren,
   A.; Halliday, R.; Halve, L.; Halzen, F.; Ha Minh, M.; Hanson, K.;
   Hardin, J.; Harnisch, A. A.; Haungs, A.; Hebecker, D.; Helbing, K.;
   Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill,
   C.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang,
   F.; Huber, M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.;
   Hymon, K.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze,
   G. S.; Jeong, M.; Jin, M.; Jones, B. J. P.; Kang, D.; Kang, W.; Kang,
   X.; Kappes, A.; Kappesser, D.; Kardum, L.; Karg, T.; Karl, M.; Karle,
   A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish,
   A.; Kin, K.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Koirala, R.;
   Kolanoski, H.; Kontrimas, T.; Köpke, L.; Kopper, C.; Kopper, S.;
   Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets,
   T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi,
   J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Lee, J. W.; Leonard,
   K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q. R.; Liubarska, M.;
   Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig,
   A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K. B. M.;
   Makino, Y.; Mancina, S.; Mariş, I. C.; Martinez-Soler, I.; Maruyama,
   R.; McCarthy, S.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Mechbal, S.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.;
   Mockler, D.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Naab,
   R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyên, L. V.; Niederhausen,
   H.; Nisa, M. U.; Nowicki, S. C.; Obertacke Pollmann, A.; Oehler, M.;
   Oeyen, B.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D. V.;
   Park, N.; Parker, G. K.; Paudel, E. N.; Paul, L.; Pérez de los Heros,
   C.; Peters, L.; Peterson, J.; Philippen, S.; Pieper, S.; Pittermann,
   M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez,
   M.; Pries, B.; Przybylski, G. T.; Raab, C.; Rack-Helleis, J.; Raissi,
   A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rechav, Z.; Rehman, A.;
   Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.;
   Rhode, W.; Richman, M.; Riedel, B.; Roberts, E. J.; Robertson, S.;
   Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.;
   Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S. E.;
   Sandrock, A.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schaufel, M.; Schieler, H.; Schindler, S.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L.; Schwefer, G.;
   Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Shimizu, N.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.;
   Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G. M.;
   Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein,
   R.; Stettner, J.; Stezelberger, T.; Stürwald, T.; Stuttard, T.;
   Sullivan, G. W.; Taboada, I.; Ter-Antonyan, S.; Thwaites, J.; Tilav,
   S.; Tischbein, F.; Tollefson, K.; Tönnis, C.; Toscano, S.; Tosi, D.;
   Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte,
   R.; Turley, C. F.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta,
   M. A.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.;
   Vannerom, D.; van Santen, J.; Veitch-Michaelis, J.; Verpoest, S.;
   Walck, C.; Wang, W.; Watson, T. B.; Weaver, C.; Weigel, P.; Weindl,
   A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch,
   M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D. R.; Wolf, M.; Wrede,
   G.; Wulff, J.; Xu, X. W.; Yanez, J. P.; Yildizci, E.; Yoshida, S.;
   Yu, S.; Yuan, T.; Zhang, Z.; Zhelnin, P.; IceCube Collaboration
2022PhRvD.106c2010A    Altcode: 2022arXiv220112635A
  We present a measurement of the density of GeV muons in near-vertical
  air showers using three years of data recorded by the IceTop array
  at the South Pole. Depending on the shower size, the muon densities
  have been measured at lateral distances between 200 and 1000 m. From
  these lateral distributions, we derive the muon densities as functions
  of energy at reference distances of 600 and 800 m for primary energies
  between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon
  densities are determined using, as a baseline, the hadronic interaction
  model Sibyll 2.1 together with various composition models. The
  measurements are consistent with the predicted muon densities within
  these baseline interaction and composition models. The measured muon
  densities have also been compared to simulations using the post-LHC
  models EPOS-LHC and QGSJet-II.04. The result of this comparison is
  that the post-LHC models together with any given composition model
  yield higher muon densities than observed. This is in contrast to
  the observations above 1 EeV where all model simulations yield for
  any mass composition lower muon densities than the measured ones. The
  post-LHC models in general feature higher muon densities so that the
  agreement with experimental data at the highest energies is improved
  but the muon densities are not correct in the energy range between
  2.5 and about 100 PeV.

---------------------------------------------------------
Title: Genesis and Coronal-jet-generating Eruption of a Solar
    Minifilament Captured by IRIS Slit-raster Spectra
Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Moore, Ronald L.;
   Sterling, Alphonse C.; De Pontieu, Bart
2022arXiv220900059P    Altcode:
  We present the first IRIS Mg II slit-raster spectra that fully capture
  the genesis and coronal-jet-generating eruption of a central-disk solar
  minifilament. The minifilament arose in a negative-magnetic-polarity
  coronal hole. The Mg II spectroheliograms verify that the minifilament
  plasma temperature is chromospheric. The Mg II spectra show that
  the erupting minifilament's plasma has blueshifted upflow in the
  jet spire's onset and simultaneous redshifted downflow at the
  location of the compact jet bright point (JBP). From the Mg II
  spectra together with AIA EUV images and HMI magnetograms, we find:
  (i) the minifilament forms above a flux cancelation neutral line
  at an edge of a negative-polarity network flux clump; (ii) during
  the minifilament's fast-eruption onset and jet-spire onset, the
  JBP begins brightening over the flux-cancelation neutral line. From
  IRIS2 inversion of the Mg II spectra, the JBP's Mg II bright plasma
  has electron density, temperature, and downward (red-shift) Doppler
  speed of 1012 cm^-3, 6000 K, and 10 kms, respectively, and the growing
  spire shows clockwise spin. We speculate: (i) during the slow rise
  of the erupting minifilament-carrying twisted flux rope, the top of
  the erupting flux-rope loop, by writhing, makes its field direction
  opposite that of encountered ambient far-reaching field; (ii) the
  erupting kink then can reconnect with the far-reaching field to make
  the spire and reconnect internally to make the JBP. We conclude that
  this coronal jet is normal in that magnetic flux cancelation builds a
  minifilament-carrying twisted flux rope and triggers the JBP-generating
  and jet-spire-generating eruption of the flux rope.

---------------------------------------------------------
Title: Decaying Oblique Orbits as a Hypothesis for the Origin of
    Nearly Horizontal Impact Craters — A Survey of Some Candidate
    Paterae on Mars
Authors: Moore, R. B.
2022LPICo2702.2011M    Altcode:
  Factors influencing the occurrence of nearly horizontal impact craters
  are discussed hypothetically and tested by tabulating a set of 13
  such craters on Mars over 20 km long. It is observed that these have
  headings >35deg from the equatorial plane.

---------------------------------------------------------
Title: Bipolar Ephemeral Active Regions, Magnetic Flux Cancellation,
    and Solar Magnetic Explosions
Authors: Moore, Ronald L.; Panesar, Navdeep K.; Sterling, Alphonse C.;
   Tiwari, Sanjiv K.
2022ApJ...933...12M    Altcode: 2022arXiv220313287M
  We examine the cradle-to-grave magnetic evolution of 10 bipolar
  ephemeral active regions (BEARs) in solar coronal holes, especially
  aspects of the magnetic evolution leading to each of 43 obvious
  microflare events. The data are from the Solar Dynamics Observatory: 211
  Å coronal EUV images and line-of-sight photospheric magnetograms. We
  find evidence that (1) each microflare event is a magnetic explosion
  that results in a miniature flare arcade astride the polarity
  inversion line (PIL) of the explosive lobe of the BEAR's anemone
  magnetic field; (2) relative to the BEAR's emerged flux-rope Ω loop,
  the anemone's explosive lobe can be an inside lobe, an outside lobe,
  or an inside-and-outside lobe; (3) 5 events are confined explosions,
  20 events are mostly confined explosions, and 18 events are blowout
  explosions, which are miniatures of the magnetic explosions that
  make coronal mass ejections (CMEs); (4) contrary to the expectation
  of Moore et al., none of the 18 blowout events explode from inside
  the BEAR's Ω loop during the Ω loop's emergence; and (5) before
  and during each of the 43 microflare events, there is magnetic flux
  cancellation at the PIL of the anemone's explosive lobe. From finding
  evident flux cancellation at the underlying PIL before and during all
  43 microflare events-together with BEARs evidently being miniatures of
  all larger solar bipolar active regions-we expect that in essentially
  the same way, flux cancellation in sunspot active regions prepares
  and triggers the magnetic explosions for many major flares and CMEs.

---------------------------------------------------------
Title: Dilution of Boundary Layer Cloud Condensation Nucleus
    Concentrations by Free Tropospheric Entrainment During Marine Cold
    Air Outbreaks
Authors: Tornow, F.; Ackerman, A. S.; Fridlind, A. M.; Cairns, B.;
   Crosbie, E. C.; Kirschler, S.; Moore, R. H.; Painemal, D.; Robinson,
   C. E.; Seethala, C.; Shook, M. A.; Voigt, C.; Winstead, E. L.; Ziemba,
   L. D.; Zuidema, P.; Sorooshian, A.
2022GeoRL..4998444T    Altcode:
  Recent aircraft measurements over the northwest Atlantic enable
  an investigation of how entrainment from the free troposphere
  (FT) impacts cloud condensation nucleus (CCN) concentrations in
  the marine boundary layer (MBL) during cold-air outbreaks (CAOs),
  motivated by the role of CCN in mediating transitions from closed to
  open-cell regimes. Observations compiled over eight flights indicate
  predominantly far lesser CCN concentrations in the FT than in the
  MBL. For one flight, a fetch-dependent MBL-mean CCN budget is compiled
  from estimates of sea-surface fluxes, entrainment of FT air, and
  hydrometeor collision-coalescence, based on in-situ and remote-sensing
  measurements. Results indicate a dominant role of FT entrainment in
  reducing MBL CCN concentrations, consistent with satellite-observed
  trends in droplet number concentration upwind of CAO cloud-regime
  transitions over the northwest Atlantic. Relatively scant CCN may
  widely be associated with FT dry intrusions, and should accelerate
  cloud-regime transitions where underlying MBL air is CCN-rich, thereby
  reducing regional albedo.

---------------------------------------------------------
Title: Homologous Compact Major Blowout-eruption Solar Flares and
    their Production of Broad CMEs
Authors: Sahu, Suraj; Joshi, Bhuwan; Sterling, Alphonse C.; Mitra,
   Prabir K.; Moore, Ronald L.
2022ApJ...930...41S    Altcode: 2022arXiv220303954S
  We analyze the formation mechanism of three homologous broad coronal
  mass ejections (CMEs) resulting from a series of solar blowout-eruption
  flares with successively increasing intensities (M2.0, M2.6, and
  X1.0). The flares originated from NOAA Active Region 12017 during
  2014 March 28-29 within an interval of ≍24 hr. Coronal magnetic
  field modeling based on nonlinear force-free field extrapolation
  helps to identify low-lying closed bipolar loops within the flaring
  region enclosing magnetic flux ropes. We obtain a double flux rope
  system under closed bipolar fields for all the events. The sequential
  eruption of the flux ropes led to homologous flares, each followed by a
  CME. Each of the three CMEs formed from the eruptions gradually attained
  a large angular width, after expanding from the compact eruption-source
  site. We find these eruptions and CMEs to be consistent with the
  "magnetic-arch-blowout" scenario: each compact-flare blowout eruption
  was seated in one foot of a far-reaching magnetic arch, exploded up
  the encasing leg of the arch, and blew out the arch to make a broad CME.

---------------------------------------------------------
Title: Towards Equitable, Diverse, and Inclusive science
collaborations: The Multimessenger Diversity Network
Authors: Bechtol, E.; IceCube; Abbasi, R.; Ackermann, M.; Adams, J.;
   Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior,
   A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton,
   G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V.,
   A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur,
   S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.;
   Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson,
   D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg,
   M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.;
   Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser,
   J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.;
   Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark,
   K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin,
   P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De
   Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.;
   Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.;
   DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.;
   Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.;
   Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan,
   K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov,
   K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman,
   E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster,
   E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.;
   Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami,
   S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther,
   C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.;
   Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.;
   Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.;
   Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.;
   Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In,
   S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.;
   Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.;
   Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.;
   Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk,
   J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.;
   Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich,
   M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.;
   Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.;
   Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto,
   M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.;
   Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama,
   R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.;
   Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.;
   Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu,
   X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.;
   Bechtol, K.; BenZvi, S.; Bleve, C.; Castro, D.; Cenko, B.; Corlies,
   L.; Furniss, A.; Hui, C. M.; Kaplan, D. L.; Key, J. S.; Madsen, J.;
   McNally, F.; McLaughlin, M.; Mukherjee, R.; Ojha, R.; Sanders, J.;
   Santander, M.; Schlieder, J.; Shoemaker, D. H.; Vigeland, S.
2022icrc.confE1383B    Altcode: 2022PoS...395E1383B; 2021arXiv210712179B
  The Multimessenger Diversity Network (MDN), formed in 2018, extends
  the basic principle of multimessenger astronomy -- that working
  collaboratively with different approaches enhances understanding and
  enables previously impossible discoveries -- to equity, diversity,
  and inclusion (EDI) in science research collaborations. With
  support from the National Science Foundation INCLUDES program, the
  MDN focuses on increasing EDI by sharing knowledge, experiences,
  training, and resources among representatives from multimessenger
  science collaborations. Representatives to the MDN become engagement
  leads in their collaboration, extending the reach of the community of
  practice. An overview of the MDN structure, lessons learned, and how
  to join are presented.

---------------------------------------------------------
Title: Completing Aganta Kairos: Capturing Metaphysical Time on the
    Seventh Continent
Authors: Madsen, J.; Mulot, L.; IceCube; Abbasi, R.; Ackermann, M.;
   Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.;
   Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson,
   T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.;
   Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu,
   V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus,
   J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson,
   D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg,
   M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.;
   Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser,
   J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.;
   Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark,
   K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin,
   P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De
   Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.;
   Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.;
   DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.;
   Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.;
   Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan,
   K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov,
   K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman,
   E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster,
   E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.;
   Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami,
   S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther,
   C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.;
   Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.;
   Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.;
   Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.;
   Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In,
   S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.;
   Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.;
   Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.;
   Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk,
   J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.;
   Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich,
   M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.;
   Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.;
   Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto,
   M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.;
   Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama,
   R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.;
   Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.;
   Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE1381M    Altcode: 2022PoS...395E1381M; 2021arXiv210801687M
  We present an overview of the art project Aganta Kairos (To Fish the
  Metaphysical Time). This project celebrates the neutrino, the ghost
  particle, which scientists consider a cosmic messenger and the artist
  regards as a link between people who care about their relationship
  to the cosmos and question their origins. The artwork is based on
  a performance of celebration and seeks to build a human community
  that encompasses different knowledge domains and interpretations
  of the universe. This intersection of knowledge is realized during
  the performance of placing a plaque, held with witnesses, and during
  subsequent exhibitions. Images, sounds, videos, and sculpture testify
  to the diversity of approaches to questioning our origins, ranging
  from traditional western science to ancient shamanism. The sites
  were selected for their global coverage and, for the South Pole,
  Mediterranean, and Lake Baikal, their connection to ongoing neutrino
  experiments. In December 2020, a plaque was installed at the South Pole
  IceCube Laboratory, the seventh and final site. We provide examples
  of images and links to additional images and videos.

---------------------------------------------------------
Title: P-ONE second pathfinder mission: STRAW-b
Authors: Rea, I. C.; Holzapfel, K.; Baron, A.; Bailly, N.; Bedard, J.;
   Bohmer, M.; Bosma, J.; Brussow, D.; Cheng, J.; Clark, K.; Croteau,
   B.; Danninger, M.; Deis, N.; Ens, M.; Fox, R.; Fruck, C.; Gartner,
   A.; Gernhäuser, R.; Grant, D.; He, H.; Henningsen, F.; Hotte, R.;
   Jenkyns, R.; Johnson, H.; Katil, A.; Kopper, C.; Krauss, C.; Kulin,
   I.; Leismüller, K.; Leys, S.; Lin, T. T. Y.; Macoun, P.; McElroy,
   T.; Meighen-Berger, S.; Michel, J.; Moore, R.; Morley, M.; Papp, L.;
   Pirenne, B.; Qiu, T.; Rankin, M.; Rea, I. C.; Resconi, E.; Round,
   A.; Ruskey, A.; Rutley, R.; Spannfellner, C.; Stacho, J.; Timmerman,
   R.; Tomlin, M.; Tradewell, M.; Traxler, M.; Uganecz, M.; Wagner, S.;
   Zheng, Y.; Yanez, J. P.; De Leo, F.
2022icrc.confE1092R    Altcode: 2022PoS...395E1092R
  No abstract at ADS

---------------------------------------------------------
Title: Simulation Study of the Observed Radio Emission of Air Showers
    by the IceTop Surface Extension
Authors: Coleman, A.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar,
   J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.;
   Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles,
   C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.;
   Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty,
   J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.;
   Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.;
   Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.;
   Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.;
   Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman,
   A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.;
   Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Collin, G.;
   Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen,
   C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.;
   De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.;
   De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.;
   Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.;
   Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson,
   P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.;
   Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.;
   Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.;
   Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.;
   Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez,
   J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.;
   Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen,
   F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs,
   A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.;
   Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.;
   Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In,
   S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.;
   Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.;
   Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.;
   Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk,
   J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.;
   Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich,
   M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.;
   Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.;
   Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto,
   M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.;
   Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama,
   R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.;
   Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.;
   Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.317C    Altcode: 2021arXiv210709666C; 2022PoS...395E.317C
  Multi-detector observations of individual air showers are critical to
  make significant progress to precisely determine cosmic-ray quantities
  such as mass and energy of individual events and thus bring us a step
  forward in answering the open questions in cosmic-ray physics. An
  enhancement of IceTop, the surface array of the IceCube Neutrino
  Observatory, is currently underway and includes adding antennas and
  scintillators to the existing array of ice-Cherenkov tanks. The
  radio component will improve the characterization of the primary
  particles by providing an estimation of X$_\text{max}$ and a direct
  sampling of the electromagnetic cascade, both important for per-event
  mass classification. A prototype station has been operated at the
  South Pole and has observed showers, simultaneously, with the tanks,
  scintillator panels, and antennas. The observed radio signals of these
  events are unique as they are measured in the 70 to 350\,MHz band,
  higher than many other cosmic-ray experiments. We present a comparison
  of the detected events with the waveforms from CoREAS simulations,
  convoluted with the end-to-end electronics response, as a verification
  of the analysis chain. Using the detector response and the measurements
  of the prototype station as input, we update a Monte-Carlo-based study
  on the potential of the enhanced surface array for the hybrid detection
  of air showers by scintillators and radio antennas.

---------------------------------------------------------
Title: Concept Study of a Radio Array Embedded in a Deep Gen2-like
    Optical Array.
Authors: Bishop, A.; Hokanson-Fasig, B.; Karle, A.; Lu, L.;
   IceCube-Gen2; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.;
   Ahlers, M.; Ahrens, M.; Alispach, C. M.; Allison, P.; Alves Junior,
   A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.;
   Arguelles, C.; Arlen, T.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V.,
   A.; Barbano, A. M.; Bartos, I.; Barwick, S. W.; Bastian, B.; Basu, V.;
   Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.;
   Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.;
   Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bohmer,
   M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.;
   Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser,
   J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.;
   Carnie-Bronca, E.; Cataldo, M.; Chen, C.; Chirkin, D.; Choi, K.;
   Clark, B.; Clark, K.; Clark, R.; Classen, L.; Coleman, A.; Collin,
   G.; Connolly, A.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen,
   D. F.; Cross, R.; Dappen, C.; Dave, P.; Deaconu, C.; De Clercq, C.;
   De Kockere, S.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder,
   S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With,
   M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer,
   M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt,
   T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.;
   Fan, K. L.; Farrag, K.; Fazely, A. R.; Fiedlschuster, S.; Fienberg,
   A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak,
   A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher,
   J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gartner, A.; Gerhardt,
   L.; Gernhaeuser, R.; Ghadimi, A.; Giri, P.; Glaser, C.; Glauch, T.;
   Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant,
   D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.;
   Hallgren, A.; Halliday, R.; Hallmann, S.; Halve, L.; Halzen, F.; Minh,
   M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haugen, J.; Haungs,
   A.; Hauser, S.; Hebecker, D.; Heinen, D.; Helbing, K.; Hendricks, B.;
   Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill,
   C.; Hill, G. C.; Hoffman, K.; Hoffmann, B.; Hoffmann, R.; Hoinka, T.;
   Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Huege,
   T.; Hughes, K.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.;
   Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.;
   Jones, B.; Kalekin, O.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.;
   Kappesser, D.; Karg, T.; Karl, M.; Katori, T.; Katz, U.; Kauer, M.;
   Keivani, A.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin,
   K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski,
   H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.;
   Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Krauss, C.;
   Kravchenko, I.; Krebs, R.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas
   Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.;
   Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu,
   Q.; Liubarska, M.; Lohfink, E.; LoSecco, J.; Lozano Mariscal, C. J.;
   Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen,
   J.; Mahn, K.; Makino, Y.; Mancina, S.; Mandalia, S.; Maris, I. C.;
   Marka, S.; Marka, Z.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally,
   F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger,
   S.; Meyers, Z.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.;
   Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.;
   Nelles, A.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.;
   Nygren, D.; Oberla, E.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; Omeliukh, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Papp, L.;
   Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros,
   C.; Peters, L.; Petersen, T.; Peterson, J.; Philippen, S.; Pieloth,
   D.; Pieper, S.; Pinfold, J.; Pittermann, M.; Pizzuto, A.; Plaisier,
   I.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Pyras, L.; Raab, C.; Raissi, A.;
   Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.;
   Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman,
   M.; Riedel, B.; Riegel, M.; Roberts, E.; Robertson, S.; Roellinghoff,
   G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.;
   Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.;
   Sandstrom, P.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder,
   P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.;
   Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine,
   S.; Shaevitz, M. H.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek,
   B.; Smith, D.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin,
   D.; Soldner-Rembold, S.; Southall, D.; Spannfellner, C.; Spiczak, G.;
   Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.;
   Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard,
   T.; Sullivan, G. W.; Taboada, I.; Taketa, A.; Tanaka, H.; Tenholt, F.;
   Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova,
   L.; Tönnis, C.; Torres, J.; Toscano, S.; Tosi, D.; Trettin, A.;
   Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.;
   Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila,
   N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen,
   J.; Veberic, D.; Verpoest, S.; Vieregg, A. G.; Vraeghe, M.; Walck,
   C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weinstock,
   L. S.; Weiss, M.; Weldert, J.; Welling, C.; Wendt, C.; Werthebach, J.;
   Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wissel, S.;
   Wolf, M.; Woschnagg, K.; Wrede, G.; Wren, S.; Wulff, J.; Xu, X.; Xu,
   Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.; Zierke, S.
2022icrc.confE1182B    Altcode: 2021arXiv210800283B; 2022PoS...395E1182B
  The IceCube Neutrino Observatory has discovered a diffuse astrophysical
  flux up to 10 PeV and is now planning a large extension with
  IceCube-Gen2, including an optical array and a large radio array at
  shallow depth [1]. Neutrino searches for energies >100 PeV are best
  done with such shallow radio detectors like the Askaryan Radio Array
  (ARA) or similar (buried as deep as 200 meters below the surface)
  as they are cheaper to deploy. This poster explores the potential
  of opportunistically burying radio antennas within the planned
  IceCube-Gen2 detector volume (between 1350 meters and 2600 meters below
  the surface). A hybrid detection of events in optical and radio could
  substantially improve the uncertainty of neutrino cascade direction
  as radio signals do not scatter in ice. We show the first results
  of simulating neutrinos from an astrophysical and a cosmogenic flux
  interacting with 9760 ARA-style vertically polarized radio antennas
  distributed evenly across 122 strings.

---------------------------------------------------------
Title: Development of a scintillation and radio hybrid detector
    array at the South Pole
Authors: Oehler, M.; Turcotte, R.; Abbasi, R.; Ackermann, M.; Adams,
   J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves
   Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.;
   Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal
   V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.;
   Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus,
   J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson,
   D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg,
   M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.;
   Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser,
   J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.;
   Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark,
   K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin,
   P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De
   Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.;
   Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.;
   DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.;
   Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.;
   Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan,
   K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov,
   K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman,
   E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster,
   E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.;
   Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami,
   S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther,
   C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.;
   Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.;
   Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman,
   K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang,
   F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.;
   In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong,
   M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser,
   D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann,
   M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.;
   Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.;
   Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.;
   Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.;
   Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber,
   F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.;
   Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal,
   C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma,
   W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.;
   Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.;
   Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.;
   Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab,
   R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen,
   H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turley, C.;
   Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila,
   N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen,
   J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.;
   Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach,
   J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf,
   M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.;
   Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.225O    Altcode: 2022PoS...395E.225O; 2021arXiv210709983O
  At the IceCube Neutrino Observatory, a Surface Array Enhancement is
  planned, consisting of 32 hybrid stations, placed within the current
  IceTop footprint. This surface enhancement will considerably increase
  the detection sensitivity to cosmic rays in the 100 TeV to 1 EeV primary
  energy range, measure the effects of snow accumulation on the existing
  IceTop tanks and serve as R&D for the possible future large-scale
  surface array of IceCube-Gen2. Each station has one central hybrid DAQ,
  which reads out 8 scintillation detectors and 3 radio antennas. The
  radio antenna SKALA-2 is used in this array due to its low-noise,
  high amplification and sensitivity in the 70-350 MHz frequency
  band. Every scintillation detector has an active area of 1.5 m$^2$
  organic plastic scintillators connected by wavelength-shifting fibers,
  which are connected to a silicon photomultiplier. The signals from the
  scintillation detectors are integrated and digitized by a local custom
  electronics board and transferred to the central DAQ. When triggered
  by the scintillation detectors, the filtered and amplified analog
  waveforms from the radio antennas are read out and digitized by the
  central DAQ. A full prototype station has been developed and built
  and was installed at the South Pole in January 2020. It is planned
  to install the full array by 2026. In this contribution the hardware
  design of the array as well as the installation plans will be presented.

---------------------------------------------------------
Title: Another Look at Erupting Minifilaments at the Base of Solar
    X-Ray Polar Coronal "Standard" and "Blowout" Jets
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K.
2022ApJ...927..127S    Altcode: 2022arXiv220112314S
  We examine 21 solar polar coronal jets that we identify in soft X-ray
  images obtained from the Hinode/X-ray telescope (XRT). We identify 11 of
  these as blowout jets and four as standard jets (with six uncertain),
  based on their X-ray-spire widths being respectively wide or narrow
  (compared to the jet's base) in the XRT images. From corresponding
  extreme ultraviolet (EUV) images from the Solar Dynamics Observatory's
  (SDO) Atmospheric Imaging Assembly (AIA), essentially all (at least
  20 of 21) of the jets are made by minifilament eruptions, consistent
  with other recent studies. Here, we examine the detailed nature of the
  erupting minifilaments (EMFs) in the jet bases. Wide-spire ("blowout")
  jets often have ejective EMFs, but sometimes they instead have an
  EMF that is mostly confined to the jet's base rather than ejected. We
  also demonstrate that narrow-spire ("standard") jets can have either
  a confined EMF, or a partially confined EMF where some of the cool
  minifilament leaks into the jet's spire. Regarding EMF visibility:
  we find that in some cases the minifilament is apparent in as few as
  one of the four EUV channels we examined, being essentially invisible
  in the other channels; thus, it is necessary to examine images from
  multiple EUV channels before concluding that a jet does not have an
  EMF at its base. The sizes of the EMFs, measured projected against the
  sky and early in their eruption, is 14″ ± 7″, which is within a
  factor of 2 of other measured sizes of coronal-jet EMFs.

---------------------------------------------------------
Title: Discrimination of Muons for Mass Composition Studies of
    Inclined Air Showers Detected with IceTop
Authors: Balagopal V., A.; IceCube; Abbasi, R.; Ackermann, M.; Adams,
   J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior,
   A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.;
   Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Barbano, A. M.; Barwick,
   S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.;
   Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.;
   Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner,
   O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.;
   Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse,
   R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.;
   Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad,
   J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.;
   Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.;
   De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.;
   De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.;
   Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.;
   Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson,
   P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.;
   Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.;
   Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.;
   Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.;
   Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez,
   J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.;
   Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen,
   F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs,
   A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.;
   Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.;
   Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In,
   S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.;
   Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.;
   Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.;
   Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk,
   J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.;
   Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich,
   M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.;
   Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.;
   Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto,
   M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.;
   Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama,
   R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.;
   Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.;
   Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.212B    Altcode: 2021arXiv210711293B; 2022PoS...395E.212B
  IceTop, the surface array of IceCube, measures air showers from cosmic
  rays within the energy range of 1 PeV to a few EeV and a zenith angle
  range of up to $\approx$ 36$^\circ$. This detector array can also
  measure air showers arriving at larger zenith angles at energies above
  20 PeV. Air showers from lighter primaries arriving at the array will
  produce fewer muons when compared to heavier cosmic-ray primaries. A
  discrimination of these muons from the electromagnetic component in the
  shower can therefore allow a measurement of the primary mass. A study
  to discriminate muons using Monte-Carlo air showers of energies 20-100
  PeV and within the zenith angular range of 45$^\circ$-60$^\circ$ will
  be presented. The discrimination is done using charge and time-based
  cuts which allows us to select muon-like signals in each shower. The
  methodology of this analysis, which aims at categorizing the measured
  air showers as light or heavy on an event-by-event basis, will be
  discussed.

---------------------------------------------------------
Title: Multimessenger NuEM Alerts with AMON
Authors: Ayala, H.; Hawc; Abeysekara, A. U.; Albert, A.; Alfaro,
   R.; Alvarez, C.; Álvarez Romero, J. d. D.; Camacho, J. R. Angeles;
   Arteaga Velazquez, J. C.; Kollamparambil, A. B.; Avila Rojas, D. O.;
   Ayala Solares, H. A.; Babu, R.; Baghmanyan, V.; Barber, A. S.;
   Becerra Gonzalez, J.; Belmont-Moreno, E.; Berley, D.; Brisbois, C.;
   Caballero Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova,
   S.; Chaparro-Amaro, O.; Cotti, U.; Cotzomi, J.; Coutiño de Leon,
   S.; de la Fuente, E.; de León, C. L.; Diaz, L.; Diaz Hernandez,
   R.; Díaz Vélez, J. C.; Dingus, B.; Durocher, M.; Ellsworth, R.;
   Engel, K.; Espinoza Hernández, M. C.; Fan, J.; Fang, K.; Fernandez
   Alonso, M.; Fick, B.; Fleischhack, H.; Flores, J. L.; Fraija, N. I.;
   Garcia Aguilar, D.; Garcia-Gonzalez, J. A.; García-Luna, J. L.;
   García-Torales, G.; Garfias, F.; Giacinti, G.; Goksu, H.; González,
   M. M.; Goodman, J. A.; Harding, J. P.; Hernández Cadena, S.; Herzog,
   I.; Hinton, J.; Hona, B.; Huang, D.; Hueyotl-Zahuantitla, F.; Hui, M.;
   Humensky, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Jhee, H.;
   Joshi, V.; Kieda, D.; Kunde, G. J.; Kunwar, S.; Lara, A.; Lee, J.; Lee,
   W. H.; Lennarz, D.; Vargas, H. Leon; Linnemann, J.; Longinotti, A. L.;
   Lopez-Coto, R.; Luis-Raya, G.; Lundeen, J.; Malone, K.; Marandon,
   V.; Martinez, O.; Martinez Castellanos, I.; Martínez Huerta, H.;
   Martínez-Castro, J.; Matthews, J.; McEnery, J.; Miranda-Romagnoli,
   P.; Morales Soto, J. A.; Moreno Barbosa, E.; Mostafa, M.; Nayerhoda,
   A.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.;
   Olivera-Nieto, L.; Omodei, N.; Peisker, A.; Pérez Araujo, Y.;
   Pérez Pérez, E. G.; Rho, C. D.; Rivière, C.; Rosa-Gonzalez, D.;
   Ruiz-Velasco, E.; Ryan, J.; Salazar, H. I.; Salesa Greus, F.; Sandoval,
   A.; Schneider, M.; Schoorlemmer, H.; Serna-Franco, J.; Sinnis, G.;
   Smith, A. J.; Springer, W. R.; Surajbali, P.; Taboada, I.; Tanner,
   M.; Torres, I.; Torres Escobedo, R.; Turner, R.; Ureña-Mena, F.;
   Villaseñor, L.; Wang, X.; Watson, I. J.; Weisgarber, T.; Werner, F.;
   Willox, E.; Wood, J.; Yodh, G.; Zepeda, A.; Zhou, H.; IceCube; Abbasi,
   R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.;
   Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen,
   K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.;
   Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian,
   B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.;
   Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini,
   E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.;
   Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.;
   Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.;
   Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse,
   R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.;
   Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad,
   J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.;
   Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.;
   De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.;
   De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.;
   Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.;
   Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson,
   P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.;
   Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.;
   Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.;
   Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.;
   Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez,
   J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz,
   M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.;
   Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.;
   Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.;
   Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.;
   Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina,
   K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.;
   Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze,
   G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.;
   Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.;
   Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher,
   T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas,
   T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.;
   Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.;
   Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber,
   F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.;
   Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal,
   C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma,
   W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.;
   Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.;
   Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.;
   Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab,
   R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen,
   H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler,
   M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.;
   Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters,
   L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann,
   M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez,
   M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.;
   Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.;
   Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman,
   M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen,
   M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.;
   Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander,
   M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.958A    Altcode: 2021arXiv210804920A; 2022PoS...395E.958A
  The Astrophysical Multimessenger Observatory Network (AMON), has
  developed a real-time multi-messenger alert system. The system performs
  coincidence analyses of datasets from gamma-ray and neutrino detectors,
  making the Neutrino-Electromagnetic (NuEM) alert channel. For these
  analyses, AMON takes advantage of sub-threshold events, i.e., events
  that by themselves are not significant in the individual detectors. The
  main purpose of this channel is to search for gamma-ray counterparts
  of neutrino events. We will describe the different analyses that make
  up this channel and present a selection of recent results.

---------------------------------------------------------
Title: Density of GeV Muons Measured with IceTop
Authors: Soldin, D.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.;
   Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin,
   N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles,
   C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.;
   Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty,
   J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.;
   Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.;
   Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.;
   Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.;
   Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman,
   A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.;
   Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.;
   Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross,
   R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski,
   H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries,
   K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.;
   Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois,
   M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.;
   Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster,
   S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.;
   Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.;
   Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.;
   Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.;
   Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.;
   Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve,
   L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.;
   Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.;
   Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.;
   Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina,
   K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.;
   Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze,
   G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.;
   Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.;
   Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher,
   T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas,
   T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.;
   Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.;
   Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber,
   F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.;
   Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal,
   C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma,
   W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.;
   Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.;
   Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.;
   Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab,
   R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen,
   H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler,
   M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.;
   Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters,
   L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann,
   M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez,
   M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.;
   Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.;
   Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman,
   M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen,
   M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.;
   Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander,
   M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali,
   S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso,
   J.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.;
   Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.342S    Altcode: 2022PoS...395E.342S; 2021arXiv210709583S
  We present a measurement of the density of GeV muons in near-vertical
  air showers using three years of data recorded by the IceTop array at
  the South Pole. We derive the muon densities as functions of energy
  at reference distances of 600 m and 800 m for primary energies between
  2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively, at an
  atmospheric depth of about $690\,\mathrm{g/cm}^2$. The measurements are
  consistent with the predicted muon densities obtained from Sibyll~2.1
  assuming any physically reasonable cosmic ray flux model. However,
  comparison to the post-LHC models QGSJet-II.04 and EPOS-LHC shows
  that the post-LHC models yield a higher muon density than predicted
  by Sibyll 2.1 and are in tension with the experimental data for air
  shower energies between 2.5 PeV and 120 PeV.

---------------------------------------------------------
Title: Further Evidence for the Minifilament-eruption Scenario for
    Solar Polar Coronal Jets
Authors: Baikie, Tomi K.; Sterling, Alphonse C.; Moore, Ronald L.;
   Alexander, Amanda M.; Falconer, David A.; Savcheva, Antonia; Savage,
   Sabrina L.
2022ApJ...927...79B    Altcode: 2022arXiv220108882B
  We examine a sampling of 23 polar-coronal-hole jets. We first identified
  the jets in soft X-ray (SXR) images from the X-ray telescope (XRT) on
  the Hinode spacecraft, over 2014-2016. During this period, frequently
  the polar holes were small or largely obscured by foreground coronal
  haze, often making jets difficult to see. We selected 23 jets among
  those adequately visible during this period, and examined them further
  using Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly
  (AIA) 171, 193, 211, and 304 Å images. In SXRs, we track the lateral
  drift of the jet spire relative to the jet base's jet bright point
  (JBP). In 22 of 23 jets, the spire either moves away from (18 cases)
  or is stationary relative to (4 cases) the JBP. The one exception
  where the spire moved toward the JBP may be a consequence of
  line-of-sight projection effects at the limb. From the AIA images,
  we clearly identify an erupting minifilament in 20 of the 23 jets,
  while the remainder are consistent with such an eruption having taken
  place. We also confirm that some jets can trigger the onset of nearby
  "sympathetic" jets, likely because eruption of the minifilament field of
  the first jet removes magnetic constraints on the base-field region of
  the second jet. The propensity for spire drift away from the JBP, the
  identification of the erupting minifilament in the majority of jets,
  and the magnetic-field topological changes that lead to sympathetic
  jets, all support or are consistent with the minifilament-eruption
  model for jets.

---------------------------------------------------------
Title: Studies of a muon-based mass sensitive parameter for the
    IceTop surface array
Authors: Kang, D.; Browne, S. A.; Haungs, A.; Abbasi, R.; Ackermann,
   M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.;
   Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.;
   Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V.,
   A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.;
   Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi,
   C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder,
   G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo,
   F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.;
   Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Burgman,
   A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.;
   Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.;
   Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross,
   R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski,
   H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries,
   K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.;
   Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois,
   M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.;
   Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster,
   S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.;
   Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.;
   Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.;
   Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.;
   Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.;
   Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve,
   L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.;
   Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger,
   E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman,
   K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang,
   F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain,
   R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.;
   Jeong, M.; Jones, B.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.;
   Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.;
   Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk,
   J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.;
   Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich,
   M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.;
   Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.;
   Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto,
   M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.;
   Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama,
   R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.;
   Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.;
   Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.;
   Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas,
   A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.;
   Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson,
   J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto,
   A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price,
   P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.;
   Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.;
   Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel,
   B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott,
   C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer,
   J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.;
   Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.;
   Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider,
   A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer,
   G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.;
   Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.;
   Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska,
   J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer,
   A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.;
   Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein,
   F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi,
   D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte,
   R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.;
   Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom,
   D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.;
   Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.;
   Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.
2022icrc.confE.312K    Altcode: 2022PoS...395E.312K; 2021arXiv210902506K
  IceTop is the surface instrumentation of the IceCube Neutrino
  Observatory at the South Pole. It is designed to measure extensive
  air showers of cosmic rays in the primary energy range from PeV to
  EeV. Air showers induced by heavier primary particles develop earlier
  in the atmosphere and produce more muons observable at ground level
  than lighter cosmic rays with the same primary energy. Therefore,
  the fraction of muons to all charged particles measured by IceTop
  characterizes the mass of primary particles. This analysis seeks
  a muon-based mass sensitive parameter by using the charge signal
  distribution for each individual cosmic ray event. In this contribution
  we present the analysis method for the mass-sensitive parameter and
  our studies of its possible application to the measurement of cosmic
  ray mass composition with the IceTop surface array.

---------------------------------------------------------
Title: Birth and Evolution of a Jet-Base-Topology Solar Magnetic
    Field with Four Consecutive Major Flare Explosions
Authors: Doran, Ilana; Panesar, Navdeep K.; Tiwari, Sanjiv; Moore,
   Ron; Bobra, Monica; Sterling, Alphonse
2021AGUFMSH35B2039D    Altcode:
  During 2011 September 6-8, NOAA solar active region (AR) 11283
  produced four consecutive major coronal mass ejections (CMEs) each
  with a co-produced major flare (GOES class M5.3, X2.1, X1.8, and
  M6.7). We examined the ARs magnetic field evolution leading to and
  following each of these major solar magnetic explosions. We follow
  flux emergence, flux cancellation and magnetic shear buildup leading
  to each explosion, and look for sudden flux changes and shear changes
  wrought by each explosion. We use AIA 193 A images and line-of-sight
  HMI vector magnetograms from Solar Dynamics Observatory (SDO), and
  SunPy, SHARPkeys, and IDL Solarsoft to prepare and analyze these
  data. The observed evolution of the vector field informs how magnetic
  field emergence and cancellation lead to and trigger the magnetic
  explosions, and thus informs how major CMEs and their flares are
  produced. We find that (1) all four flares are triggered by flux
  cancellation, (2) the third and fourth explosions (X1.8 and M6.7)
  begin with a filament eruption from the cancellation neutral line,
  (3) in the first and second explosions a filament erupts in the core
  of a secondary explosion that lags the main explosion and is probably
  triggered by Hudson-effect field implosion under the adjacent main
  exploding field, and (4) the transverse field suddenly strengthens along
  each main explosions underlying neutral line during the explosion,
  also likely due to Hudson-effect field implosion. Our observations
  are consistent with flux cancellation at the explosions underlying
  neutral line being essential in the buildup and triggering of each
  of the four explosions in the same way as in smaller-scale magnetic
  explosions that drive coronal jets.

---------------------------------------------------------
Title: Characterizing Steady and Bursty Coronal Heating of a Solar
    Active Region
Authors: Wilkerson, Lucy; Tiwari, Sanjiv; Panesar, Navdeep K.;
   Moore, Ronald
2021AGUFMSH15E2060W    Altcode:
  One of the biggest problems in solar physics today is our inability
  to explain why the solar corona is so hot. In this project, we
  aimed to quantify transient and background coronal heating for a
  given active region in order to better understand coronal heating. We
  used SDO/AIA data of the active region NOAA 12712 observed on May 29,
  2018 over a period of 24 hours with a 3-minute cadence. We calculated
  FeXVIII emission (hot component of AIA 94 Å channel) by removing
  warm components using AIA 171 and 193 Å channels. From the maximum,
  minimum, and mean brightness values of each pixel over the full 24 hour
  period, we made maximum, minimum, and mean brightness maps. We repeated
  this process in moving time windows of 16 hours, 8 hours, 5 hours, 3
  hours, 1 hour, and 30 minutes. We used the total luminosity for each
  of these maps over time to make lightcurves that show the evolution
  of maximum, minimum, and mean brightness over time for each running
  window. Finally, we took the ratio of the total maximum and total
  minimum luminosity to total mean luminosity, and plotted these ratios
  over time. The average maximum to mean ratio was 8.40±0.00, 6.36±0.46,
  5.29±0.34, 4.73±0.24, 4.19±0.19, 3.21±0.17, and 2.64±0.15 and the
  average minimum to mean ratio was 0.053±0.00, 0.08±0.00, 0.12±0.01,
  0.14±0.02, 0.17±0.02, 0.26±0.02, and 0.33±0.03 for 24h, 16h, 8h,
  5h, 3h, 1h, and 30m windows, respectively. As expected, the ratio of
  background to mean luminosity increased as the time window decreased,
  and the ratio of transient to mean luminosity decreased as the time
  window decreased. As such, the ratio of background to mean luminosity
  is a new and effective technique to quantify the background intensity
  of the active region. Our 24h window result suggests that at most 5%
  of the luminosity of the AR at a given time comes from the steady
  background heating. This upper limit increases to 33% of the luminosity
  of the AR for the 30 min running window.

---------------------------------------------------------
Title: Studying Solar Active-Region Magnetic Evolution Leading to
    a Confined Eruption
Authors: Zigament, Benjamin; Sterling, Alphonse; Moore, Ronald;
   Falconer, David
2021AGUFMSH35B2037Z    Altcode:
  Current research suggests that there exists a continuum of solar
  eruptions ranging from the comparatively small, such as coronal jets,
  to extremely large eruptions that produce coronal mass ejections (CMEs)
  and solar flares, with all sharing a common triggering mechanism: a
  filament/flux rope eruption triggered by magnetic flux cancellation. For
  coronal jets the erupting "minifilaments" are of length ~10,000 km
  (Sterling et al. 2015, Panesar et al. 2016), while the larger eruptions
  are accompanied by eruptions of typical filaments of size ~several x
  10^4 --- ~3x10^5 km. Sterling et al. (2018) examined this idea for
  two small ARs (flux ~ 2x10^21 Mx) that erupted to make CMEs. They
  tracked the evolution of the ARs from emergence to eruption and found
  eruption to occur when some of the emerged flux drifted together and
  underwent cancellation along the main magnetic neutral line on the
  interior of the AR, with eruption occurring after about 30---50% of
  the total flux of the respective regions canceled. Here we perform a
  similar study, using Solar Dynamics Observatory (SDO) AIA EUV images and
  SDO/HMI magnetograms, of a smaller AR (total flux <~10^21 Mx) that
  emerged in isolation near the neutral line in a large overarching old
  weak-field magnetic arcade on 2014 September 8. It produced a confined
  eruption (i.e., one that did not make a CME) about three days later,
  on September 10 near 18:45 UT. The ARs flux reached maximum about 12
  hr after emergence start, and then decreased continuously, with the
  decrease being partly from cancellation of small flux clumps in the
  interior of the AR. The eruption occurred when the flux had decreased
  by about 20%, and was centered on the neutral line of the emerged AR,
  but also involved filament-holding field along some of the old arcades
  neutral line. That filament underwent a confined eruption as part of
  the overall confined eruption. The emerged ARs being inside the larger
  arcade, its smaller size, and its smaller amount of cancellation may
  be reasons why the eruption was confined, instead of being ejective
  and producing a CME as in the two cases of Sterling et al (2018). This
  work was supported by funding from NASA's HGI Program.

---------------------------------------------------------
Title: A muon-track reconstruction exploiting stochastic losses for
    large-scale Cherenkov detectors
Authors: Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers,
   M.; Ahrens, M.; Alispach, C.; Alves, A. A.; Amin, N. M.; An, R.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A.; Barwick, S. W.;
   Bastian, B.; Basu, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker,
   K. -H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.;
   Blot, S.; Borowka, J.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau,
   E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser,
   J.; Browne, S.; Burgman, A.; Busse, R. S.; Campana, M. A.; Chen,
   C.; Chirkin, D.; Choi, K.; Clark, B. A.; Clark, K.; Classen, L.;
   Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.;
   Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.;
   Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de
   Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Dharani, S.;
   Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dunkman, M.; DuVernois,
   M. A.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.;
   Evans, J.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Fiedlschuster,
   S.; Fienberg, A. T.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D.;
   Franckowiak, A.; Friedman, E.; Fritz, A.; Fürst, P.; K. Gaisser, T.;
   Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.;
   Glaser, C.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez,
   J. G.; Goswami, S.; Grant, D.; Grégoire, T.; Griffith, Z.; Griswold,
   S.; Gündüz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.;
   Halve, L.; Halzen, F.; Ha Minh, M.; Hanson, K.; Hardin, J.; Harnisch,
   A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen,
   F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill,
   G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig,
   B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.;
   Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.;
   Jansson, M.; Japaridze, G. S.; Jeong, M.; Jones, B. J. P.; Joppe,
   R.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg,
   T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley,
   J. L.; Kheirandish, A.; Kin, K.; Kintscher, T.; Kiryluk, J.; Klein,
   S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.;
   Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Krings, K.;
   Kurahashi, N.; Kyriacou, A.; Lagunas Gualda, C.; Lanfranchi, J. L.;
   Larson, M. J.; Lauber, F.; Lazar, J. P.; Lee, J. W.; Leonard, K.;
   Leszczyńska, A.; Li, Y.; Liu, Q. R.; Lohfink, E.; Lozano Mariscal,
   C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma,
   W. Y.; Madsen, J.; Mahn, K. B. M.; Makino, Y.; Mancina, S.; Mariş,
   I. C.; Maruyama, R.; Mase, K.; McNally, F.; Meagher, K.; Medina, A.;
   Meier, M.; Meighen-Berger, S.; Merz, J.; Micallef, J.; Mockler, D.;
   Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Naab, R.; Nagai,
   R.; Naumann, U.; Necker, J.; Nguyễn, L. V.; Niederhausen, H.; Nisa,
   M. U.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Oehler,
   M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D. V.; Park,
   N.; Parker, G. K.; Paudel, E. N.; Paul, L.; Pérez de los Heros,
   C.; Philippen, S.; Pieloth, D.; Pieper, S.; Pizzuto, A.; Plum, M.;
   Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries,
   B.; Przybylski, G. T.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.;
   Rea, I. C.; Rehman, A.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch,
   S.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Roellinghoff,
   G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.;
   Safa, I.; Saffer, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos,
   J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M.;
   Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.;
   Schneider, J.; Schröder, F. G.; Schumacher, L.; Sclafani, S.; Seckel,
   D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.;
   Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spiczak, G. M.;
   Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.;
   Stettner, J.; Steuer, A.; Stezelberger, T.; Stürwald, T.; Stuttard,
   T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.;
   Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.;
   Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.;
   Turcati, A.; Turcotte, R.; Turley, C. F.; Twagirayezu, J. P.; Ty,
   B.; Unland Elorrieta, M. A.; Valtonen-Mattila, N.; Vandenbroucke,
   J.; van Eijk, D.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.;
   Verpoest, S.; Vraeghe, M.; Walck, C.; Wallace, A.; Watson, T. B.;
   Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt,
   C.; Werthebach, J.; Weyrauch, M.; Whelan, B. J.; Whitehorn, N.;
   Wiebusch, C. H.; Williams, D. R.; Wolf, M.; Woschnagg, K.; Wrede,
   G.; Wulff, J.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yuan,
   T.; Zhang, Z.; IceCube collaboration
2021JInst..16P8034A    Altcode: 2021arXiv210316931A
  IceCube is a cubic-kilometer Cherenkov telescope operating at the South
  Pole. The main goal of IceCube is the detection of astrophysical
  neutrinos and the identification of their sources. High-energy
  muon neutrinos are observed via the secondary muons produced in
  charge current interactions with nuclei in the ice. Currently, the
  best performing muon track directional reconstruction is based on
  a maximum likelihood method using the arrival time distribution of
  Cherenkov photons registered by the experiment's photomultipliers. A
  known systematic shortcoming of the prevailing method is to assume
  a continuous energy loss along the muon track. However at energies
  >1 TeV the light yield from muons is dominated by stochastic
  showers. This paper discusses a generalized ansatz where the expected
  arrival time distribution is parametrized by a stochastic muon energy
  loss pattern. This more realistic parametrization of the loss profile
  leads to an improvement of the muon angular resolution of up to 20%
  for through-going tracks and up to a factor 2 for starting tracks
  over existing algorithms. Additionally, the procedure to estimate the
  directional reconstruction uncertainty has been improved to be more
  robust against numerical errors.

---------------------------------------------------------
Title: A fundamental mechanism of solar eruption initiation
Authors: Jiang, Chaowei; Feng, Xueshang; Liu, Rui; Yan, XiaoLi; Hu,
   Qiang; Moore, Ronald L.; Duan, Aiying; Cui, Jun; Zuo, Pingbing; Wang,
   Yi; Wei, Fengsi
2021NatAs...5.1126J    Altcode: 2021arXiv210708204J; 2021NatAs.tmp..128J
  Solar eruptions are spectacular magnetic explosions in the Sun's corona,
  and how they are initiated remains unclear. Prevailing theories
  often rely on special magnetic topologies that may not generally
  exist in the pre-eruption source region of corona. Here, using fully
  three-dimensional magnetohydrodynamic simulations with high accuracy,
  we show that solar eruptions can be initiated in a single bipolar
  configuration with no additional special topology. Through photospheric
  shearing motion alone, an electric current sheet forms in the highly
  sheared core field of the magnetic arcade during its quasi-static
  evolution. Once magnetic reconnection sets in, the whole arcade is
  expelled impulsively, forming a fast-expanding twisted flux rope with
  a highly turbulent reconnecting region underneath. The simplicity and
  efficacy of this scenario argue strongly for its fundamental importance
  in the initiation of solar eruptions.

---------------------------------------------------------
Title: What Causes Faint Solar Coronal Jets From Emerging Flux
    Regions In Coronal Holes?
Authors: Harden, A.; Panesar, N.; Moore, R.; Sterling, A.; Adams, M.
2021AAS...23821314H    Altcode:
  Using EUV images and line-of-sight magnetograms from Solar Dynamics
  Observatory, we examine eight emerging bipolar magnetic regions (BMRs)
  in central-disk coronal holes for whether the emerging magnetic arch
  made any noticeable coronal jets directly, via reconnection with
  ambient open field as modeled by Yokoyama & Shibata (1995). During
  emergence, each BMR produced no obvious EUV coronal jet of normal
  brightness, but each produced one or more faint EUV coronal jets that
  are discernible in AIA 193 Å images. The spires of these jets are much
  fainter and usually narrower than for typical EUV jets that have been
  observed to be produced by minifilament eruptions in quiet regions and
  coronal holes. For each of 26 faint jets from the eight emerging BMRs,
  we examine whether the faint spire was evidently made a la Yokoyama
  & Shibata (1995). We find: (1) 16 of these faint spires evidently
  originate from sites of converging opposite-polarity magnetic flux
  and show base brightenings like those in minifilament-eruption-driven
  coronal jets, (2) the 10 other faint spires maybe were made by a burst
  of the external-magnetic-arcade-building reconnection of the emerging
  magnetic arch with the ambient open field, reconnection directly driven
  by the arch's emergence, but (3) none were unambiguously made by such
  emergence-driven reconnection. Thus, for these eight emerging BMRs,
  the observations indicate that emergence-driven external reconnection
  of the emerging magnetic arch with ambient open field at most produces
  a jet spire that is much fainter than in previously-reported, much
  more obvious coronal jets driven by minifilament eruptions.

---------------------------------------------------------
Title: Network Jets As The Driver Of Counter-streaming Flows In A
    Solar Filament
Authors: Panesar, N. K.; Tiwari, S.; Moore, R.; Sterling, A.
2021AAS...23820506P    Altcode:
  We investigate the driving mechanism of counter-streaming flows
  in a solar filament, using EUV images from SDO/AIA, line of sight
  magnetograms from SDO/HMI, IRIS SJ images, and H-alpha data from
  GONG. We find that: (i) persistent counter-streaming flows along
  adjacent threads of a small (100" long) solar filament is present;
  (ii) both ends of the solar filament are rooted at the edges of
  magnetic network flux lanes; (iii) recurrent small-scale jets (also
  known as network jets) occur at both ends of the filament; (iv) some
  of the network jets occur at the sites of flux cancelation between the
  majority-polarity flux and merging minority-polarity flux patches;
  (v) these multiple network jets clearly drive the counter-streaming
  flows along the adjacent threads of the solar filament for ~2 hours
  with an average speed of 70 km s<SUP>-1</SUP>; (vi) some the network
  jets show base brightenings, analogous to the base brightenings of
  coronal jets; and (vii) the filament appears wider (4") in EUV images
  than in H-alpha images (2.5"), consistent with previous studies. Thus,
  our observations show that counter-streaming flows in the filament
  are driven by network jets and possibly these driving network jet
  eruptions are prepared and triggered by flux cancelation.

---------------------------------------------------------
Title: The Missing Cool Corona In The Flat Magnetic Field Around
    Solar Active Regions
Authors: Singh, T.; Sterling, A.; Moore, R.
2021AAS...23831321S    Altcode:
  SDO/AIA images the full solar disk in several EUV bands that are
  each sensitive to coronal plasma emissions of one or more specific
  temperatures. We observe that when isolated active regions (ARs) are on
  the disk, full-disk images in some of the coronal EUV channels show the
  outskirts of the AR as a dark moat surrounding the AR. Here we present
  several specific examples, selected from time periods when there was
  only a single AR present on the disk. Visually, moats are observed to
  be most prominent in the AIA 171 Angstrom band, which has the most
  sensitivity to emission from plasma at log10 T = 5.8. By using the
  emission measure distribution with temperature, we find the intensity
  of the moat to be most depressed over the temperature range log10 T ~
  5.7-6.2 for all the cases. We argue that the dark moat exists because
  the pressure from the strong magnetic field that splays out from the
  AR presses down on underlying magnetic loops, flattening those loops
  — along with the lowest of the AR's own loops over the moat — to a
  low altitude. Those loops, which would normally emit the bulk of the
  171 Angstrom emission, are restricted to heights above the surface
  that are too low to have 171 Angstrom emitting plasmas sustained in
  them, while hotter EUV-emitting plasmas are sustained in the overlying
  higher-altitude long AR-rooted coronal loops. This potentially explains
  the low-coronal-temperature dark moats surrounding the ARs.

---------------------------------------------------------
Title: On Making Magnetic-flux-rope Omega Loops For Solar Bipolar
    Magnetic Regions Of All Sizes By Convection Cells
Authors: Moore, R.; Tiwari, S.; Panesar, N.; Sterling, A.
2021AAS...23831318M    Altcode:
  This poster gives an overview of Moore, R. L., Tiwari, S. K., Panesar,
  N. K., &amp; Sterling, A. C. 2020, ApJ Letters, 902:L35. We propose that
  the magnetic-flux-rope omega loop that emerges to become any bipolar
  magnetic region (BMR) is made by a convection cell of the omega-loop's
  size from initially horizontal magnetic field ingested through the
  cell's bottom. This idea is based on (1) observed characteristics of
  BMRs of all spans (~1000 to ~200,000 km), (2) a well-known simulation
  of the production of a BMR by a supergranule-sized convection cell
  from horizontal field placed at cell bottom, and (3) a well-known
  convection-zone simulation. From the observations and simulations,
  we (1) infer that the strength of the field ingested by the biggest
  convection cells (giant cells) to make the biggest BMR omega loops
  is ~10<SUP>3</SUP> G, (2) plausibly explain why the span and flux of
  the biggest observed BMRs are ~200,000 km and ~10<SUP>22</SUP> Mx,
  (3) suggest how giant cells might also make "failed BMR" omega loops
  that populate the upper convection zone with horizontal field, from
  which smaller convection cells make BMR omega loops of their size,
  (4) suggest why sunspots observed in a sunspot cycle's declining
  phase tend to violate the hemispheric helicity rule, and (5) support a
  previously proposed amended Babcock scenario (Moore, R. L., Cirtain,
  J. W., &amp; Sterling, A. C. 2016, arXiv:1606.05371) for the sunspot
  cycle's dynamo process. Because the proposed convection-based heuristic
  model for making a sunspot-BMR omega loop avoids having ~10<SUP>5</SUP>
  G field in the initial flux rope at the bottom of the convection zone,
  it is an appealing alternative to the present magnetic-buoyancy-based
  standard scenario and warrants testing by high-enough-resolution
  giant-cell magnetoconvection simulations.

---------------------------------------------------------
Title: Coronal-jet-producing Minifilament Eruptions As A Possible
    Source Of Parker Solar Probe (PSP) Switchbacks
Authors: Sterling, A.; Moore, R.
2021AAS...23812306S    Altcode:
  The Parker Solar Probe (PSP) has observed copious rapid magnetic field
  direction changes in the near-Sun solar wind. These features have
  been called "switchbacks," and their origin is a mystery. But their
  widespread nature suggests that they may be generated by a frequently
  occurring process in the Sun's atmosphere. We examine the possibility
  that the switchbacks originate from coronal jets. Recent work suggests
  that many coronal jets result when photospheric magnetic flux cancels,
  and forms a small-scale "minifilament" flux rope that erupts and
  reconnects with coronal field. We argue that the reconnected erupting
  minifilament flux rope can manifest as an outward propagating Alfvenic
  fluctuation that steepens into an increasingly compact disturbance as
  it moves through the solar wind. Using previous observed properties
  of coronal jets that connect to coronagraph-observed white-light
  jets (a.k.a. "narrow CMEs"), along with typical solar wind speed
  values, we expect the coronal-jet-produced disturbances to traverse
  near-perihelion PSP in less than or about 25 min, with a velocity of
  about 400 km/s. To consider further the plausibility of this idea, we
  show that a previously studied series of equatorial latitude coronal
  jets, originating from the periphery of an active region, generate
  white-light jets in the outer corona (seen in STEREO/COR2 coronagraph
  images; 2.5 — 15 solar radii), and into the inner heliosphere (seen
  in STEREO/Hi1 heliospheric imager images; 15 — 84 solar radii). Thus
  it is tenable that disturbances put onto open coronal magnetic field
  lines by coronal-jet-producing erupting minifilament flux ropes can
  propagate out to PSP space and appear as switchbacks. This work was
  supported by the NASA Heliophysics Division, and by the NASA/MSFC
  Hinode Project. For further details see Sterling &amp; Moore (2020,
  ApJ, 896, L18).

---------------------------------------------------------
Title: What Percentage Of The Brightest Coronal Loops Are Rooted In
    Mixed-polarity Magnetic Flux?
Authors: Tiwari, S. K.; Evans, C. L.; Panesar, N.; Prasad, A.;
   Moore, R.
2021AAS...23820502T    Altcode:
  We have previously shown (Tiwari et al. 2017, ApJ Letters, 843,
  L20) that the heating in active region (AR) coronal loops depends
  systematically on their photospheric magnetic setting. There, we found
  that the brightest and hottest loops of ARs are the ones connecting
  sunspot umbra/penumbra at one end to (a) penumbra, (b) unipolar plage,
  or (c) mixed-polarity plage on the other end. The coolest loops are
  the ones that connect sunspot umbra at both ends. In this work we
  study the brightest loops during 24 hours in the core of the active
  region that was observed by Hi-C 2.1. These loops have neither foot in
  sunspot umbra or penumbra, but in plage. We investigate what percentage
  of the brightest coronal loops (in SDO/AIA Fe XVIII emission) have
  mixed-polarity magnetic flux at least at one of their feet, and so the
  heating could be driven by magnetic flux cancellation. We confirm the
  footpoint locations of loops via non-force-free field extrapolations
  (using SDO/HMI magnetograms) and find that ∼40% of the loops have
  both feet in unipolar flux, and ∼60% of the loops have at least one
  foot in mixed-polarity flux. The loops having mixed-polarity foot-point
  flux are ∼15% longer lived on average than the ones with both feet
  unipolar, but their peak-intensity averages do not show any significant
  difference. While the presence of mixed-polarity magnetic flux at least
  at one foot in majority of loops strongly supports the cancellation
  idea, the absence of mixed-polarity magnetic flux (to the detection
  limit of HMI) in about 40% of the loops suggests cancellation may not be
  necessary for heating coronal loops, but rather might enhance heating by
  some factor. We will further discuss some points that support, and some
  points that challenge, the flux cancellation idea of coronal heating.

---------------------------------------------------------
Title: What Causes Faint Solar Coronal Jets from Emerging Flux
    Regions in Coronal Holes?
Authors: Harden, Abigail R.; Panesar, Navdeep K.; Moore, Ronald L.;
   Sterling, Alphonse C.; Adams, Mitzi L.
2021ApJ...912...97H    Altcode: 2021arXiv210307813H
  Using EUV images and line-of-sight magnetograms from Solar Dynamics
  Observatory, we examine eight emerging bipolar magnetic regions (BMRs)
  in central-disk coronal holes for whether the emerging magnetic arch
  made any noticeable coronal jets directly, via reconnection with ambient
  open field as modeled by Yokoyama &amp; Shibata. During emergence,
  each BMR produced no obvious EUV coronal jet of normal brightness, but
  each produced one or more faint EUV coronal jets that are discernible
  in AIA 193 &amp;angst; images. The spires of these jets are much
  fainter and usually narrower than for typical EUV jets that have been
  observed to be produced by minifilament eruptions in quiet regions and
  coronal holes. For each of 26 faint jets from the eight emerging BMRs,
  we examine whether the faint spire was evidently made a la Yokoyama
  &amp; Shibata. We find that (1) 16 of these faint spires evidently
  originate from sites of converging opposite-polarity magnetic flux
  and show base brightenings like those in minifilament-eruption-driven
  coronal jets, (2) the 10 other faint spires maybe were made by a burst
  of the external-magnetic-arcade-building reconnection of the emerging
  magnetic arch with the ambient open field, with reconnection directly
  driven by the arch's emergence, but (3) none were unambiguously made by
  such emergence-driven reconnection. Thus, for these eight emerging BMRs,
  the observations indicate that emergence-driven external reconnection
  of the emerging magnetic arch with ambient open field at most produces
  a jet spire that is much fainter than in previously reported, much
  more obvious coronal jets driven by minifilament eruptions.

---------------------------------------------------------
Title: A Fundamental Mechanism of Solar Eruption Initiation
Authors: Jiang, Chaowei; Feng, Xueshang; Liu, Rui; Yan, Xiaoli; Hu,
   Qiang; Moore, Ronald L.
2021EGUGA..2310493J    Altcode:
  Solar eruptions are spectacular magnetic explosions in the Sun's corona
  and how they are initiated remains unclear. Prevailing theories often
  rely on special magnetic topologies, such as magnetic flux rope and
  magnetic null point, which, however, may not generally exist in the
  pre-eruption source region of corona. Here using fully three-dimensional
  magnetohydrodynamic simulations with high accuracy, we show that solar
  eruption can be initiated in a single bipolar configuration with no
  additional special topology. Through photospheric shearing motion alone,
  an electric current sheet forms in the highly sheared core field of
  the magnetic arcade during its quasi-static evolution. Once magnetic
  reconnection sets in, the whole arcade is expelled impulsively,
  forming a fast-expanding twisted flux rope with a highly turbulent
  reconnecting region underneath. The simplicity and efficacy of this
  scenario argue strongly for its fundamental importance in the initiation
  of solar eruptions.

---------------------------------------------------------
Title: Airborne Measurements of Contrail Ice Properties—Dependence
    on Temperature and Humidity
Authors: Bräuer, T.; Voigt, C.; Sauer, D.; Kaufmann, S.; Hahn, V.;
   Scheibe, M.; Schlager, H.; Diskin, G. S.; Nowak, J. B.; DiGangi,
   J. P.; Huber, F.; Moore, R. H.; Anderson, B. E.
2021GeoRL..4892166B    Altcode:
  The largest share in the climate impact of aviation results from
  contrail cirrus clouds. Here, the dependence of microphysical
  contrail ice properties and extinction on temperature and humidity
  is investigated. Contrail measurements were performed at various
  altitudes during the 2018 ECLIF II/NDMAX campaign with the NASA DC 8
  chasing the DLR A320. Ice number concentrations and contrail extinction
  coefficients are largest at altitudes near 9.5 km, typical for short
  and medium range air traffic. At higher altitudes near 11.5 km, low
  ambient water vapor concentrations lead to smaller contrail particle
  sizes and lower extinction coefficients. In addition, contrails were
  detected below 8.2 km near the Schmidt Appleman contrail formation
  threshold temperature. Here, only a small fraction (&lt;15%) of the
  emitted soot particles were activated into ice. Our observations
  enhance the understanding of contrail formation near the formation
  threshold and give a glimpse on the altitude dependence of climate
  relevant contrail properties.

---------------------------------------------------------
Title: The Missing Cool Corona in the Flat Magnetic Field around
    Solar Active Regions
Authors: Singh, Talwinder; Sterling, Alphonse C.; Moore, Ronald L.
2021ApJ...909...57S    Altcode: 2020arXiv201215406S
  Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
  (AIA) images the full solar disk in several extreme-ultraviolet
  (EUV) bands that are each sensitive to coronal plasma emissions of
  one or more specific temperatures. We observe that when isolated
  active regions (ARs) are on the disk, full-disk images in some of
  the coronal EUV channels show the outskirts of the AR as a dark
  moat surrounding the AR. Here we present seven specific examples,
  selected from time periods when there was only a single AR present
  on the disk. Visually, we observe the moat to be most prominent in
  the AIA 171 Å band, which has the most sensitivity to emission from
  plasma at log<SUB>10</SUB> T = 5.8. By examining the 1D line-of-sight
  emission measure temperature distribution found from six AIA EUV
  channels, we find the intensity of the moat to be most depressed over
  the temperature range log<SUB>10</SUB> T ≍ 5.7-6.2 for most of the
  cases. We argue that the dark moat exists because the pressure from
  the strong magnetic field that splays out from the AR presses down
  on underlying magnetic loops, flattening those loops—along with the
  lowest of the AR's own loops over the moat—to a low altitude. Those
  loops, which would normally emit the bulk of the 171 Å emission, are
  restricted to heights above the surface that are too low to have 171
  Å emitting plasmas sustained in them, according to Antiochos &amp;
  Noci, while hotter EUV-emitting plasmas are sustained in the overlying
  higher-altitude long AR-rooted coronal loops. This potentially explains
  the low-coronal-temperature dark moats surrounding the ARs.

---------------------------------------------------------
Title: Are the Brightest Coronal Loops Always Rooted in Mixed-polarity
    Magnetic Flux?
Authors: Tiwari, Sanjiv K.; Evans, Caroline L.; Panesar, Navdeep K.;
   Prasad, Avijeet; Moore, Ronald L.
2021ApJ...908..151T    Altcode: 2021arXiv210210146T
  A recent study demonstrated that freedom of convection and strength of
  magnetic field in the photospheric feet of active-region (AR) coronal
  loops, together, can engender or quench heating in them. Other studies
  stress that magnetic flux cancellation at the loop-feet potentially
  drives heating in loops. We follow 24 hr movies of a bipolar AR, using
  extreme ultraviolet images from the Atmospheric Imaging Assembly/Solar
  Dynamics Observatory (SDO) and line-of-sight (LOS) magnetograms from
  the Helioseismic and Magnetic Imager (HMI)/SDO, to examine magnetic
  polarities at the feet of 23 of the brightest coronal loops. We derived
  Fe XVIII emission (hot-94) images (using the Warren et al. method)
  to select the hottest/brightest loops, and confirm their footpoint
  locations via non-force-free field extrapolations. From 6″ × 6″
  boxes centered at each loop foot in LOS magnetograms we find that ∼40%
  of the loops have both feet in unipolar flux, and ∼60% of the loops
  have at least one foot in mixed-polarity flux. The loops with both feet
  unipolar are ∼15% shorter lived on average than the loops having
  mixed-polarity foot-point flux, but their peak-intensity averages
  are equal. The presence of mixed-polarity magnetic flux in at least
  one foot in the majority of the loops suggests that flux cancellation
  at the footpoints may drive most of the heating. But the absence of
  mixed-polarity magnetic flux (to the detection limit of HMI) in ∼40%
  of the loops suggests that flux cancellation may not be necessary to
  drive heating in coronal loops—magnetoconvection and field strength
  at both loop feet possibly drive much of the heating, even in the
  cases where a loop foot presents mixed-polarity magnetic flux.

---------------------------------------------------------
Title: Fine-scale explosive energy release at sites of magnetic
flux cancellation in the core of a solar active region: Hi-C 2.1,
    IRIS and SDO observations
Authors: Tiwari, Sanjiv Kumar; Moore, Ronald; De Pontieu, Bart;
   Winebarger, Amy; Panesar, Navdeep Kaur
2021cosp...43E1779T    Altcode:
  The second sounding-rocket flight of the High-Resolution Coronal Imager
  (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution
  (~250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 A, of
  a solar active region (AR NOAA 12712) near solar disk center. Three
  morphologically-different types (I: dot-like, II: loop-like, &amp;
  III: surge/jet-like) of fine-scale sudden brightening events (tiny
  microflares) are seen within and at the ends of an arch filament system
  in the core of the AR. Although type Is resemble IRIS bombs (in size,
  and brightness with respect to surroundings), our dot-like events are
  apparently much hotter, and shorter in span (70 s). Because Dot-like
  brightenings are not as clearly discernible in AIA 171 A as in Hi-C 172
  A, they were not reported before. We complement the 5-minute-duration
  Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images,
  and IRIS UV spectra and slit-jaw images to examine, at the sites of
  these events, brightenings and flows in the transition region and corona
  and evolution of magnetic flux in the photosphere. Most, if not all,
  of the events are seated at sites of opposite-polarity magnetic flux
  convergence (sometimes driven by adjacent flux emergence), implying
  flux cancellation at the microflare's polarity inversion line. In the
  IRIS spectra and images, we find confirming evidence of field-aligned
  outflow from brightenings at the ends of loops of the arch filament
  system. In types I and II the explosion is confined, while in type
  III the explosion is ejective and drives jet-like outflow. The light
  curves from Hi-C, AIA and IRIS peak nearly simultaneously for many
  of these events and none of the events display a systematic cooling
  sequence as seen in typical coronal flares, suggesting that these tiny
  brightening events have chromospheric/transition-region origin.

---------------------------------------------------------
Title: Coronal Jets Observed at Sites of Magnetic Flux Cancelation
Authors: Panesar, Navdeep Kaur; Sterling, Alphonse; Moore, Ronald;
   Tiwari, Sanjiv Kumar
2021cosp...43E1783P    Altcode:
  Solar jets of all sizes are magnetically channeled narrow eruptive
  events; the larger ones are often observed in the solar corona in EUV
  and coronal X-ray images. Recent observations show that the buildup and
  triggering of the minifilament eruptions that drive coronal jets result
  from magnetic flux cancelation under the minifilament, at the neutral
  line between merging majority-polarity and minority-polarity magnetic
  flux patches. Here we investigate the magnetic setting of on-disk
  small-scale jets (also known as jetlets) by using high resolution 172A
  images from the High-resolution Coronal Imager (Hi-C2.1) and EUV images
  from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
  (AIA), and UV images from the Interface Region Imaging Spectrograph
  (IRIS), and line-of-sight magnetograms from the SDO/Helioseismic
  and Magnetic Imager (HMI). We observe jetlets at edges of magnetic
  network lanes. From magnetograms co-aligned with the Hi-C, IRIS,
  and AIA images, we find that the jetlets stem from sites of flux
  cancelation between merging majority-polarity and minority-polarity
  flux patches, and some of the jetlets show faint brightenings at their
  bases reminiscent of the base brightenings in coronal jets. Based on
  these observations of jetlets and our previous observations of ∼90
  coronal jets in quiet regions and coronal holes, we infer that flux
  cancelation is the essential process in the buildup and triggering of
  jetlets. Our observations suggest that network jetlet eruptions are
  small-scale analogs of both larger-scale coronal jet eruptions and
  the still-larger-scale eruptions that make major CMEs.

---------------------------------------------------------
Title: The Signature of Sulfur: Geochemical Characterization of
    Hydrothermal S-rich Deposits in Terrestrial Mars Analogs
Authors: Moore, R.; Ende, J. J.; Burtt, P. K.; Szynkiewicz, A.
2020AGUFMEP017..11M    Altcode:
  The Spirit rover found localized hydrothermal/fumarolic deposits
  enriched in Fe-, Ca-, and Mg-sulfate within Gusev crater. However,
  it did not find conclusive evidence for the presence of reduced S
  (e.g., sulfides, elemental S), which dominates analogous terrestrial
  hydrothermal settings. Consequently, the sulfate (SO<SUB>4</SUB>)
  enrichment and apparent absence of reduced S in Gusev sediments
  raises questions about the formation and oxidation mechanisms of S in
  acidic hydrothermal systems. To address these questions, we collected
  sediment and water samples from highly-acidic hot springs, mud pots,
  fumaroles, and drainages with elevated H<SUB>2</SUB>S emissions in
  four analog sites, including Yellowstone, Valles Caldera, Lassen, and
  Iceland. The method of Sulfur Sequential Extraction (SSE) was used
  to determine oxidation states and measure quantities and S isotope
  compositions of sulfides (S<SUP>2-</SUP>, S<SUP>-</SUP>), elemental S
  (S<SUP>0</SUP>), and sulfates (S<SUP>6+</SUP>). Results show that
  S<SUP>0</SUP> was highly abundant in most sediment samples (0.3 -
  20 wt.% S, but up to ~70 wt.% S), followed by S<SUP>-</SUP> (0.2 -
  4.4 wt.% S), with significantly lower S<SUP>6+</SUP> in the sediment
  and water column (0.07 - 1.6 wt.% S). In the majority of samples, the
  δ<SUP>34</SUP>S of S<SUP>6+</SUP> was lower (-3 to +3‰) compared to
  emitted H<SUB>2</SUB>S (-2 to +6‰), but similar to S<SUP>-</SUP> and
  S<SUP>0</SUP> precipitated in the hydrothermal sediments (-7 to +3‰),
  suggesting the importance of subsequent step-oxidation of the reduced
  S to sulfate. Our results indicate that surface hydrothermal systems
  are capable of producing large quantities of reduced S, and could
  explain high-S deposits on Mars. However, the reported S contents for
  Gusev crater are lower in range (0.4 - 5.6 wt.% S) and more oxidized
  (mainly sulfate) compared to the studied analog sites (0.2 - 24 wt.% S,
  mainly elemental S and sulfides). The negligible amounts of reduced S
  in Gusev may be a result of subsequent oxidation to SO<SUB>4</SUB>, and
  the overall smaller amount of S might reflect removal of SO<SUB>4</SUB>
  by an active hydrological cycle during formation or later on over
  several billion years. Our previous study showed that ferric iron
  (Fe<SUP>3+</SUP>) reduction participates in the step-oxidation of
  hydrothermal H<SUB>2</SUB>S. This is especially compelling given the
  high concentrations of Fe<SUP>3+</SUP> iron and Fe-sulfates detected
  in Gusev, and thus provides new context for the formation of sulfate
  in Martian oxygen-depleted surface environments.

---------------------------------------------------------
Title: Fine-scale explosive energy release at sites of magnetic
flux cancellation in the core of a solar active region: Hi-C 2.1,
    IRIS and SDO observations
Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu,
   B.; Winebarger, A. R.
2020AGUFMSH0010007T    Altcode:
  The second sounding-rocket flight of the High-Resolution Coronal Imager
  (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution
  (~250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 Å, of
  a solar active region (AR NOAA 12712) near solar disk center. Three
  morphologically-different types (I: dot-like, II: loop-like, &amp;
  III: surge/jet-like) of fine-scale sudden brightening events (tiny
  microflares) are seen within and at the ends of an arch filament system
  in the core of the AR. Although type Is resemble IRIS bombs (in size,
  and brightness with respect to surroundings), our dot-like events are
  apparently much hotter, and shorter in span (70 s). Because Dot-like
  brightenings are not as clearly discernible in AIA 171 Å as in Hi-C 172
  Å, they were not reported before. We complement the 5-minute-duration
  Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images,
  and IRIS UV spectra and slit-jaw images to examine, at the sites of
  these events, brightenings and flows in the transition region and corona
  and evolution of magnetic flux in the photosphere. Most, if not all,
  of the events are seated at sites of opposite-polarity magnetic flux
  convergence (sometimes driven by adjacent flux emergence), implying
  flux cancellation at the microflare's polarity inversion line. In the
  IRIS spectra and images, we find confirming evidence of field-aligned
  outflow from brightenings at the ends of loops of the arch filament
  system. In types I and II the explosion is confined, while in type
  III the explosion is ejective and drives jet-like outflow. The light
  curves from Hi-C, AIA and IRIS peak nearly simultaneously for many
  of these events and none of the events display a systematic cooling
  sequence as seen in typical coronal flares, suggesting that these tiny
  brightening events have chromospheric/transition-region origin.

---------------------------------------------------------
Title: Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop
Authors: Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.;
   Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N. M.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Balagopal V.,
   A.; Barbano, A.; Barwick, S. W.; Bastian, B.; Baum, V.; Baur, S.;
   Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; BenZvi, S.;
   Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.;
   Blaufuss, E.; Blot, S.; Bohm, C.; Böser, S.; Botner, O.; Böttcher,
   J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.;
   Brostean-Kaiser, J.; Burgman, A.; Buscher, J.; Busse, R. S.; Carver,
   T.; Chen, C.; Cheung, E.; Chirkin, D.; Choi, S.; Clark, B. A.; Clark,
   K.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin,
   P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.;
   DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati,
   P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.;
   Dharani, S.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dvorak, E.;
   Eberhardt, B.; Ehrhardt, T.; Eller, P.; Engel, R.; Evenson, P. A.;
   Fahey, S.; Fazely, A. R.; Felde, J.; Fienberg, A. T.; Filimonov,
   K.; Finley, C.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.;
   Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt,
   L.; Ghorbani, K.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.;
   Gonzalez, J. G.; Grant, D.; Grégoire, T.; Griffith, Z.; Griswold,
   S.; Günder, M.; Gündüz, M.; Haack, C.; Hallgren, A.; Halliday, R.;
   Halve, L.; Halzen, F.; Hanson, K.; Haungs, A.; Hauser, S.; Hebecker,
   D.; Heereman, D.; Heix, P.; Helbing, K.; Hellauer, R.; Henningsen, F.;
   Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K. D.;
   Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huber,
   M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.;
   Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G. S.; Jeong, M.;
   Jero, K.; Jones, B. J. P.; Jonske, F.; Joppe, R.; Kang, D.; Kang,
   W.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz,
   U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kim,
   J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala,
   R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen,
   D. J.; Koundal, P.; Kowalski, M.; Krings, K.; Krückl, G.; Kulacz,
   N.; Kurahashi, N.; Kyriacou, A.; Lanfranchi, J. L.; Larson, M. J.;
   Lauber, F.; Lazar, J. P.; Leonard, K.; Leszczyńska, A.; Li, Y.; Liu,
   Q. R.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.;
   Ludwig, A.; Lünemann, J.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen,
   J.; Maggi, G.; Mahn, K. B. M.; Mallik, P.; Mallot, K.; Mancina,
   S.; Mariş, I. C.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.;
   Meagher, K.; Medici, M.; Medina, A.; Meier, M.; Meighen-Berger, S.;
   Merino, G.; Merz, J.; Meures, T.; Micallef, J.; Mockler, D.; Momenté,
   G.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Muth, P.;
   Nagai, R.; Naumann, U.; Neer, G.; Nguyën, L. V.; Niederhausen, H.;
   Nisa, M. U.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.;
   Oehler, M.; Olivas, A.; O'Murchadha, A.; O'Sullivan, E.; Pandya,
   H.; Pankova, D. V.; Park, N.; Parker, G. K.; Paudel, E. N.; Peiffer,
   P.; Pérez de los Heros, C.; Philippen, S.; Pieloth, D.; Pieper, S.;
   Pinat, E.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Price,
   P. B.; Przybylski, G. T.; Raab, C.; Raissi, A.; Rameez, M.; Rauch,
   L.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reimann, R.; Relethford,
   B.; Renschler, M.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.;
   Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk
   Cantu, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos,
   J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M.;
   Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.;
   Schneider, J.; Schröder, F. G.; Schumacher, L.; Sclafani, S.; Seckel,
   D.; Seunarine, S.; Shefali, S.; Silva, M.; Smithers, B.; Snihur, R.;
   Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering,
   C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner,
   J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Strotjohann, N. L.;
   Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.;
   Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Tollefson, K.; Tomankova,
   L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Ty, B.;
   Unger, E.; Unland Elorrieta, M. A.; Usner, M.; Vandenbroucke, J.;
   Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vannerom, D.;
   van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Wallace, A.;
   Wallraff, M.; Wandkowsky, N.; Watson, T. B.; Weaver, C.; Weindl, A.;
   Weldert, J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Whitehorn, N.;
   Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.;
   Wolf, M.; Wood, J.; Wood, T. R.; Woschnagg, K.; Wrede, G.; Wulff,
   J.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zhang, Z.; Zöcklein, M.; IceCube Collaboration
2020PhRvD.102l2001A    Altcode: 2020arXiv200605215I
  We report here an extension of the measurement of the all-particle
  cosmic-ray spectrum with IceTop to lower energy. The new measurement
  gives full coverage of the knee region of the spectrum and reduces the
  gap in energy between previous IceTop and direct measurements. With
  a new trigger that selects events in closely spaced detectors in the
  center of the array, the IceTop energy threshold is lowered by almost
  an order of magnitude below its previous threshold of 2 PeV. In this
  paper we explain how the new trigger is implemented, and we describe
  the new machine-learning method developed to deal with events with very
  few detectors hit. We compare the results with previous measurements
  by IceTop and others that overlap at higher energy and with HAWC and
  Tibet in the 100 TeV range.

---------------------------------------------------------
Title: Network Jets as the Driver of Counter-streaming Flows in a
    Solar Filament
Authors: Panesar, N. K.; Tiwari, S. K.; Moore, R. L.; Sterling, A. C.
2020AGUFMSH0240004P    Altcode:
  We investigate the driving mechanism of counter-streaming flows
  in a solar filament, using EUV images from SDO/AIA, line of sight
  magnetograms from SDO/HMI, IRIS SJ images, and H-alpha data from
  GONG. We find that: (i) persistent counter-streaming flows along
  adjacent threads of a small (100" long) solar filament is present;
  (ii) both ends of the solar filament are rooted at the edges of
  magnetic network flux lanes; (iii) recurrent small-scale jets (also
  known as network jets) occur at both ends of the filament; (iv) some
  of the network jets occur at the sites of flux cancelation between the
  majority-polarity flux and merging minority-polarity flux patches;
  (v) these multiple network jets clearly drive the counter-streaming
  flows along the adjacent threads of the solar filament for ~2 hours
  with an average speed of 70 km s<SUP>-1</SUP>; (vi) some the network
  jets show base brightenings, analogous to the base brightenings of
  coronal jets; and (vii) the filament appears wider (4") in EUV images
  than in H-alpha images (2.5"), consistent with previous studies. Thus,
  our observations show that counter-streaming flows in the filament
  are driven by network jets and possibly these driving network jet
  eruptions are prepared and triggered by flux cancelation.

---------------------------------------------------------
Title: Decoding the Pre-Eruptive Magnetic Field Configurations of
    Coronal Mass Ejections
Authors: Patsourakos, S.; Vourlidas, A.; Török, T.; Kliem, B.;
   Antiochos, S. K.; Archontis, V.; Aulanier, G.; Cheng, X.; Chintzoglou,
   G.; Georgoulis, M. K.; Green, L. M.; Leake, J. E.; Moore, R.; Nindos,
   A.; Syntelis, P.; Yardley, S. L.; Yurchyshyn, V.; Zhang, J.
2020SSRv..216..131P    Altcode: 2020arXiv201010186P
  A clear understanding of the nature of the pre-eruptive magnetic
  field configurations of Coronal Mass Ejections (CMEs) is required
  for understanding and eventually predicting solar eruptions. Only
  two, but seemingly disparate, magnetic configurations are considered
  viable; namely, sheared magnetic arcades (SMA) and magnetic flux ropes
  (MFR). They can form via three physical mechanisms (flux emergence,
  flux cancellation, helicity condensation). Whether the CME culprit
  is an SMA or an MFR, however, has been strongly debated for thirty
  years. We formed an International Space Science Institute (ISSI) team to
  address and resolve this issue and report the outcome here. We review
  the status of the field across modeling and observations, identify
  the open and closed issues, compile lists of SMA and MFR observables
  to be tested against observations and outline research activities
  to close the gaps in our current understanding. We propose that the
  combination of multi-viewpoint multi-thermal coronal observations
  and multi-height vector magnetic field measurements is the optimal
  approach for resolving the issue conclusively. We demonstrate the
  approach using MHD simulations and synthetic coronal images.

---------------------------------------------------------
Title: On Making Magnetic-flux-rope Ω Loops for Solar Bipolar
    Magnetic Regions of All Sizes by Convection Cells
Authors: Moore, Ronald L.; Tiwari, Sanjiv K.; Panesar, Navdeep K.;
   Sterling, Alphonse C.
2020ApJ...902L..35M    Altcode: 2020arXiv200913694M
  We propose that the flux-rope Ω loop that emerges to become any bipolar
  magnetic region (BMR) is made by a convection cell of the Ω-loop's size
  from initially horizontal magnetic field ingested through the cell's
  bottom. This idea is based on (1) observed characteristics of BMRs
  of all spans (∼1000 to ∼200,000 km), (2) a well-known simulation
  of the production of a BMR by a supergranule-sized convection cell
  from horizontal field placed at cell bottom, and (3) a well-known
  convection-zone simulation. From the observations and simulations,
  we (1) infer that the strength of the field ingested by the biggest
  convection cells (giant cells) to make the biggest BMR Ω loops is
  ∼10<SUP>3</SUP> G, (2) plausibly explain why the span and flux of
  the biggest observed BMRs are ∼200,000 km and ∼10<SUP>22</SUP>
  Mx, (3) suggest how giant cells might also make "failed-BMR" Ω loops
  that populate the upper convection zone with horizontal field, from
  which smaller convection cells make BMR Ω loops of their size, (4)
  suggest why sunspots observed in a sunspot cycle's declining phase
  tend to violate the hemispheric helicity rule, and (5) support a
  previously proposed amended Babcock scenario for the sunspot cycle's
  dynamo process. Because the proposed convection-based heuristic model
  for making a sunspot-BMR Ω loop avoids having ∼10<SUP>5</SUP> G
  field in the initial flux rope at the bottom of the convection zone,
  it is an appealing alternative to the present magnetic-buoyancy-based
  standard scenario and warrants testing by high-enough-resolution
  giant-cell magnetoconvection simulations.

---------------------------------------------------------
Title: Possible Evolution of Minifilament-Eruption-Produced Solar
    Coronal Jets, Jetlets, and Spicules, into Magnetic-Twist-Wave
    “Switchbacks” Observed by the Parker Solar Probe (PSP)
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K.;
   Samanta, Tanmoy
2020JPhCS1620a2020S    Altcode: 2020arXiv201012991S
  Many solar coronal jets result from erupting miniature-filament
  (“minifilament”) magnetic flux ropes that reconnect with encountered
  surrounding far-reaching field. Many of those minifilament flux
  ropes are apparently built and triggered to erupt by magnetic flux
  cancelation. If that cancelation (or some other process) results in
  the flux rope’s field having twist, then the reconnection with the
  far-reaching field transfers much of that twist to that reconnected
  far-reaching field. In cases where that surrounding field is open, the
  twist can propagate to far distances from the Sun as a magnetic-twist
  Alfvénic pulse. We argue that such pulses from jets could be the
  kinked-magnetic-field structures known as “switchbacks,” detected
  in the solar wind during perihelion passages of the Parker Solar Probe
  (PSP). For typical coronal-jet-generated Alfvénic pulses, we expect
  that the switchbacks would flow past PSP with a duration of several
  tens of minutes; larger coronal jets might produce switchbacks with
  passage durations ∼1hr. Smaller-scale jet-like features on the Sun
  known as “jetlets” may be small-scale versions of coronal jets,
  produced in a similar manner as the coronal jets. We estimate that
  switchbacks from jetlets would flow past PSP with a duration of a few
  minutes. Chromospheric spicules are jet-like features that are even
  smaller than jetlets. If some portion of their population are indeed
  very-small-scale versions of coronal jets, then we speculate that the
  same processes could result in switchbacks that pass PSP with durations
  ranging from about ∼2 min down to tens of seconds.

---------------------------------------------------------
Title: Sequential Lid Removal in a Triple-decker Chain of
    CME-producing Solar Eruptions
Authors: Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald
   L.; Joshi, Bhuwan
2020ApJ...901...38J    Altcode: 2020arXiv200804525J
  We investigate the onsets of three consecutive coronal mass ejection
  (CME) eruptions in 12 hr from a large bipolar active region (AR)
  observed by the Solar Dynamics Observatory (SDO), the Solar Terrestrial
  Relations Observatory (STEREO), the Reuven Ramaty High Energy Solar
  Spectroscopic Imager (RHESSI), and the Geostationary Operational
  Environmental Satellite (GOES). Evidently, the AR initially had a
  "triple-decker" configuration: three flux ropes in a vertical stack
  above the polarity inversion line (PIL). Upon being bumped by a confined
  eruption of the middle flux rope, the top flux rope erupts to make the
  first CME and its accompanying AR-spanning flare arcade rooted in a far
  apart pair of flare ribbons. The second CME is made by eruption of the
  previously arrested middle flux rope, which blows open the flare arcade
  of the first CME and produces a flare arcade rooted in a pair of flare
  ribbons closer to the PIL than those of the first CME. The third CME
  is made by blowout eruption of the bottom flux rope, which blows open
  the second flare arcade and makes its own flare arcade and pair of
  flare ribbons. Flux cancellation observed at the PIL likely triggers
  the initial confined eruption of the middle flux rope. That confined
  eruption evidently triggers the first CME eruption. The lid-removal
  mechanism instigated by the first CME eruption plausibly triggers the
  second CME eruption. Further lid removal by the second CME eruption
  plausibly triggers the final CME eruption.

---------------------------------------------------------
Title: Network Jets as the Driver of Counter-streaming Flows in a
    Solar Filament/Filament Channel
Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Moore, Ronald L.;
   Sterling, Alphonse C.
2020ApJ...897L...2P    Altcode: 2020arXiv200604249P
  Counter-streaming flows in a small (100″ long) solar filament/filament
  channel are directly observed in high-resolution Solar Dynamics
  Observatory (SDO)/Atmospheric Imaging Assembly (AIA) extreme-ultraviolet
  (EUV) images of a region of enhanced magnetic network. We combine
  images from SDO/AIA, SDO/Helioseismic and Magnetic Imager (HMI), and the
  Interface Region Imaging Spectrograph (IRIS) to investigate the driving
  mechanism of these flows. We find that: (I) counter-streaming flows are
  present along adjacent filament/filament channel threads for ∼2 hr,
  (II) both ends of the filament/filament channel are rooted at the
  edges of magnetic network flux lanes along which there are impinging
  fine-scale opposite-polarity flux patches, (III) recurrent small-scale
  jets (known as network jets) occur at the edges of the magnetic network
  flux lanes at the ends of the filament/filament channel, (IV) the
  recurrent network jet eruptions clearly drive the counter-streaming
  flows along threads of the filament/filament channel, (V) some
  of the network jets appear to stem from sites of flux cancelation,
  between network flux and merging opposite-polarity flux, and (VI) some
  show brightening at their bases, analogous to the base brightening in
  coronal jets. The average speed of the counter-streaming flows along the
  filament/filament channel threads is 70 km s<SUP>-1</SUP>. The average
  widths of the AIA filament/filament channel and the Hα filament are
  4″ and 2"5, respectively, consistent with the earlier findings
  that filaments in EUV images are wider than in Hα images. Thus,
  our observations show that the continually repeated counter-streaming
  flows come from network jets, and these driving network jet eruptions
  are possibly prepared and triggered by magnetic flux cancelation.

---------------------------------------------------------
Title: Coronal-jet-producing Minifilament Eruptions as a Possible
    Source of Parker Solar Probe Switchbacks
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2020ApJ...896L..18S    Altcode: 2020arXiv200604990S
  The Parker Solar Probe (PSP) has observed copious rapid magnetic
  field direction changes in the near-Sun solar wind. These features
  have been called "switchbacks," and their origin is a mystery. But
  their widespread nature suggests that they may be generated by a
  frequently occurring process in the Sun's atmosphere. We examine the
  possibility that the switchbacks originate from coronal jets. Recent
  work suggests that many coronal jets result when photospheric
  magnetic flux cancels, and forms a small-scale "minifilament" flux
  rope that erupts and reconnects with coronal field. We argue that the
  reconnected erupting-minifilament flux rope can manifest as an outward
  propagating Alfvénic fluctuation that steepens into an increasingly
  compact disturbance as it moves through the solar wind. Using previous
  observed properties of coronal jets that connect to coronagraph-observed
  white-light jets (a.k.a. "narrow CMEs"), along with typical solar
  wind speed values, we expect the coronal-jet-produced disturbances to
  traverse near-perihelion PSP in ≲25 minutes, with a velocity of ∼400
  km s<SUP>-1</SUP>. To consider further the plausibility of this idea,
  we show that a previously studied series of equatorial latitude coronal
  jets, originating from the periphery of an active region, generate
  white-light jets in the outer corona (seen in STEREO/COR2 coronagraph
  images; 2.5-15 R<SUB>⊙</SUB>), and into the inner heliosphere (seen in
  Solar-Terrestrial Relations Observatory (STEREO)/Hi1 heliospheric imager
  images; 15-84 R<SUB>⊙</SUB>). Thus it is tenable that disturbances
  put onto open coronal magnetic field lines by coronal-jet-producing
  erupting-minifilament flux ropes can propagate out to PSP space and
  appear as switchbacks.

---------------------------------------------------------
Title: Onset of Magnetic Explosion in Solar Coronal Jets in Quiet
    Regions on the Central Disk
Authors: Panesar, Navdeep K.; Moore, Ronald L.; Sterling, Alphonse C.
2020ApJ...894..104P    Altcode: 2020arXiv200604253P
  We examine the initiation of 10 coronal jet eruptions in quiet
  regions on the central disk, thereby avoiding near-limb spicule-forest
  obscuration of the slow-rise onset of the minifilament eruption. From
  the Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å 12
  s cadence movie of each eruption, we (1) find and compare the start
  times of the minifilament's slow rise, the jet-base bright point,
  the jet-base-interior brightening, and the jet spire, and (2) measure
  the minifilament's speed at the start and end of its slow rise. From
  (a) these data, (b) prior observations showing that each eruption was
  triggered by magnetic flux cancelation under the minifilament, and
  (c) the breakout-reconnection current sheet observed in one eruption,
  we confirm that quiet-region jet-making minifilament eruptions are
  miniature versions of CME-making filament eruptions, and surmise that
  in most quiet-region jets: (1) the eruption starts before runaway
  reconnection starts, (2) runaway reconnection does not start until
  the slow-rise speed is at least ∼1 km s<SUP>-1</SUP>, and (3) at
  and before eruption onset, there is no current sheet of appreciable
  extent. We therefore expect that (I) many CME-making filament eruptions
  are triggered by flux cancelation under the filament, (II) emerging
  bipoles seldom, if ever, directly drive jet production because the
  emergence is seldom, if ever, fast enough, and (III) at a separatrix
  or quasi-separatrix in any astrophysical setting of a magnetic field
  in low-beta plasma, a current sheet of appreciable extent can be built
  only dynamically by a magnetohydrodynamic convulsion of the field,
  not by quasi-static gradual converging of the field.

---------------------------------------------------------
Title: A Solar Magnetic-fan Flaring Arch Heated by Nonthermal
    Particles and Hot Plasma from an X-Ray Jet Eruption
Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi,
   Anand D.; Brooks, David H.; Imada, Shinsuke; Prasad, Avijeet; Dang,
   Phillip; Shimizu, Toshifumi; Savage, Sabrina L.; Moore, Ronald;
   Panesar, Navdeep K.; Reep, Jeffrey W.
2020ApJ...895...42L    Altcode: 2020arXiv200509875L
  We have investigated an M1.3 limb flare, which develops as a magnetic
  loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we
  found that the temperature increases with height to a value of over
  10<SUP>7</SUP> K at the loop top during the flare. The measured Doppler
  velocity (redshifts of 100-500 km s<SUP>-1</SUP>) and the nonthermal
  velocity (≥100 km s<SUP>-1</SUP>) from Fe XXIV also increase with
  loop height. The electron density increases from 0.3 × 10<SUP>9</SUP>
  cm<SUP>-3</SUP> early in the flare rise to 1.3 × 10<SUP>9</SUP>
  cm<SUP>-3</SUP> after the flare peak. The 3D structure of the loop
  derived with Solar TErrestrial RElations Observatory/EUV Imager
  indicates that the strong redshift in the loop-top region is due to
  upflowing plasma originating from the jet. Both hard X-ray and soft
  X-ray emission from the Reuven Ramaty High Energy Solar Spectroscopic
  Imager were only seen as footpoint brightenings during the impulsive
  phase of the flare, then, soft X-ray emission moved to the loop top in
  the decay phase. Based on the temperature and density measurements and
  theoretical cooling models, the temperature evolution of the flare arch
  is consistent with impulsive heating during the jet eruption followed
  by conductive cooling via evaporation and minor prolonged heating in
  the top of the fan loop. Investigating the magnetic field topology and
  squashing factor map from Solar Dynamics Observatory/HMI, we conclude
  that the observed magnetic-fan flaring arch is mostly heated from low
  atmospheric reconnection accompanying the jet ejection, instead of from
  reconnection above the arch as expected in the standard flare model.

---------------------------------------------------------
Title: Possible Production of Solar Spicules by Microfilament
    Eruptions
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Samanta, Tanmoy;
   Yurchyshyn, Vasyl
2020ApJ...893L..45S    Altcode: 2020arXiv200404187S
  We examine Big Bear Solar Observatory (BBSO) Goode Solar Telescope
  (GST) high spatial resolution (0"06), high-cadence (3.45 s), Hα-0.8
  Å images of central-disk solar spicules, using data of Samanta et
  al. We compare with coronal-jet chromospheric-component observations
  of Sterling et al. Morphologically, bursts of spicules, referred to as
  "enhanced spicular activities" by Samanta et al., appear as scaled-down
  versions of the jet's chromospheric component. Both the jet and the
  enhanced spicular activities appear as chromospheric-material strands,
  undergoing twisting-type motions of ∼20-50 km s<SUP>-1</SUP>
  in the jet and ∼20-30 km s<SUP>-1</SUP> in the enhanced spicular
  activities. Presumably, the jet resulted from a minifilament-carrying
  magnetic eruption. For two enhanced spicular activities that we
  examine in detail, we find tentative candidates for corresponding
  erupting microfilaments, but not the expected corresponding base
  brightenings. Nonetheless, the enhanced-spicular-activities'
  interacting mixed-polarity base fields, frequent-apparent-twisting
  motions, and morphological similarities to the coronal jet's
  chromospheric-temperature component, suggest that erupting
  microfilaments might drive the enhanced spicular activities but be hard
  to detect, perhaps due to Hα opacity. Degrading the BBSO/GST-image
  resolution with a 1"0-FWHM smoothing function yields enhanced spicular
  activities resembling the "classical spicules" described by, e.g.,
  Beckers. Thus, a microfilament eruption might be the fundamental driver
  of many spicules, just as a minifilament eruption is the fundamental
  driver of many coronal jets. Similarly, a 0"5-FWHM smoothing renders
  some enhanced spicular activities to resemble previously reported
  "twinned" spicules, while the full-resolution features might account
  for spicules sometimes appearing as 2D-sheet-like structures.

---------------------------------------------------------
Title: CESM-release-cesm2.1.2
Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier;
   Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large;
   Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson;
   Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein;
   Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner;
   Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand
2020zndo...3895328D    Altcode:
  The Community Earth System Model release version cesm2.1.2

---------------------------------------------------------
Title: Design and performance of the first IceAct demonstrator at
    the South Pole
Authors: Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.;
   Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.;
   Ansseau, I.; Anton, G.; Argüelles, C.; Arlen, T. C.; Auffenberg,
   J.; Axani, S.; Backes, P.; Bagherpour, H.; Bai, X.; Balagopal V., A.;
   Barbano, A.; Bartos, I.; Barwick, S. W.; Bastian, B.; Baum, V.; Baur,
   S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; BenZvi,
   S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig,
   D.; Blaufuss, E.; Blot, S.; Bohm, C.; Bohmer, M.; Börner, M.; Böser,
   S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio,
   F.; Braun, J.; Bretz, T.; Bron, S.; Brostean-Kaiser, J.; Burgman,
   A.; Buscher, J.; Busse, R. S.; Carver, T.; Chen, C.; Cheung, E.;
   Chirkin, D.; Choi, S.; Clark, K.; Classen, L.; Coleman, A.; Collin,
   G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross,
   R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar,
   K.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de
   With, M.; DeYoung, T.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.;
   Dunkman, M.; DuVernois, M. A.; Dvorak, E.; Eberhardt, B.; Ehrhardt,
   T.; Eller, P.; Engel, R.; Evans, J. J.; Evenson, P. A.; Fahey, S.;
   Farrag, K.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.;
   Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.;
   Gallagher, J.; Ganster, E.; Garrappa, S.; Gartner, A.; Gerhardt,
   L.; Gernhaeuser, R.; Ghorbani, K.; Glauch, T.; Glüsenkamp, T.;
   Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Griswold,
   S.; Günder, M.; Gündüz, M.; Haack, C.; Hallgren, A.; Halliday, R.;
   Halve, L.; Halzen, F.; Hanson, K.; Haugen, J.; Haungs, A.; Hebecker,
   D.; Heereman, D.; Heix, P.; Helbing, K.; Hellauer, R.; Henningsen, F.;
   Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann,
   B.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Holzapfel, K.;
   Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Huege, T.; Hultqvist,
   K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jonske, F.;
   Joppe, R.; Kalekin, O.; Kang, D.; Kang, W.; Kappes, A.; Kappesser,
   D.; Karg, T.; Karl, M.; Karle, A.; Katori, T.; Katz, U.; Kauer, M.;
   Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher, T.;
   Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.;
   Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.;
   Krauss, C. B.; Krings, K.; Krückl, G.; Kulacz, N.; Kurahashi, N.;
   Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber,
   F.; Lazar, J. P.; Leonard, K.; Leszczyńska, A.; Leuermann, M.;
   Liu, Q. R.; Lohfink, E.; LoSecco, J.; Lozano Mariscal, C. J.; Lu,
   L.; Lucarelli, F.; Lünemann, J.; Luszczak, W.; Lyu, Y.; Ma, W. Y.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Makino, Y.; Mallik, P.; Mallot,
   K.; Mancina, S.; Mandalia, S.; Mariş, I. C.; Marka, S.; Marka, Z.;
   Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici,
   M.; Medina, A.; Meier, M.; Meighen-Berger, S.; Menne, T.; Merino, G.;
   Meures, T.; Micallef, J.; Mockler, D.; Momenté, G.; Montaruli, T.;
   Moore, R. W.; Morse, R.; Moulai, M.; Muth, P.; Nagai, R.; Nakarmi,
   P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nisa, M. U.; Nowicki,
   S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.;
   O'Murchadha, A.; O'Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova,
   D. V.; Papp, L.; Park, N.; Peiffer, P.; Pérez de los Heros, C.;
   Petersen, T. C.; Philippen, S.; Pieloth, D.; Pinat, E.; Pinfold, J. L.;
   Pizzuto, A.; Plum, M.; Porcelli, A.; Price, P. B.; Przybylski, G. T.;
   Raab, C.; Rädel, L.; Raissi, A.; Rameez, M.; Rauch, L.; Rawlins,
   K.; Rea, I. C.; Reimann, R.; Relethford, B.; Renschler, M.; Renzi,
   G.; Resconi, E.; Rhode, W.; Richman, M.; Riegel, M.; Robertson, S.;
   Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.;
   Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.;
   Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.;
   Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider,
   J.; Schoenen, S.; Schröder, F. G.; Schumacher, J.; Schumacher, L.;
   Sclafani, S.; Seckel, D.; Seunarine, S.; Shaevitz, M. H.; Shefali, S.;
   Silva, M.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Söldner-Rembold,
   S.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos,
   M.; Stanev, T.; Stein, R.; Steinmüller, P.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.;
   Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Taketa, A.;
   Tanaka, H. K. M.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav,
   S.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.;
   Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.;
   Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.;
   Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven,
   N.; Vanheule, S.; van Santen, J.; Veberic, D.; Vraeghe, M.; Walck,
   C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Watson, T. B.; Weaver,
   C.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach,
   J.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille,
   L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.;
   Woschnagg, K.; Wrede, G.; Wren, S.; Xu, D. L.; Xu, X. W.; Xu, Y.;
   Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zöcklein, M.
2020JInst..15.2002A    Altcode: 2019arXiv191006945A
  In this paper we describe the first results of IceAct, a compact
  imaging air-Cherenkov telescope operating in coincidence with the
  IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An
  array of IceAct telescopes (referred to as the IceAct project) is under
  consideration as part of the IceCube-Gen2 extension to IceCube. Surface
  detectors in general will be a powerful tool in IceCube-Gen2 for
  distinguishing astrophysical neutrinos from the dominant backgrounds
  of cosmic-ray induced atmospheric muons and neutrinos: the IceTop
  array is already in place as part of IceCube, but has a high energy
  threshold. Although the duty cycle will be lower for the IceAct
  telescopes than the present IceTop tanks, the IceAct telescopes may
  prove to be more effective at lowering the detection threshold for
  air showers. Additionally, small imaging air-Cherenkov telescopes in
  combination with IceTop, the deep IceCube detector or other future
  detector systems might improve measurements of the composition of the
  cosmic ray energy spectrum. In this paper we present measurements of
  a first 7-pixel imaging air Cherenkov telescope demonstrator, proving
  the capability of this technology to measure air showers at the South
  Pole in coincidence with IceTop and the deep IceCube detector.

---------------------------------------------------------
Title: Hi-C 2.1 Observations of Small-scale
    Miniature-filament-eruption-like Cool Ejections in an Active Region
    Plage
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep
   K.; Reardon, Kevin P.; Molnar, Momchil; Rachmeler, Laurel A.; Savage,
   Sabrina L.; Winebarger, Amy R.
2020ApJ...889..187S    Altcode: 2019arXiv191202319S
  We examine 172 Å ultra-high-resolution images of a solar plage region
  from the High-Resolution Coronal Imager, version 2.1 (Hi-C 2.1, or Hi-C)
  rocket flight of 2018 May 29. Over its five minute flight, Hi-C resolved
  a plethora of small-scale dynamic features that appear near noise level
  in concurrent Solar Dynamics Observatory (SDO) Atmospheric Imaging
  Assembly (AIA) 171 Å images. For 10 selected events, comparisons with
  AIA images at other wavelengths and with Interface Region Imaging
  Spectrograph (IRIS) images indicate that these features are cool
  (compared to the corona) ejections. Combining Hi-C 172 Å, AIA 171 Å,
  IRIS 1400 Å, and Hα, we see that these 10 cool ejections are similar
  to the Hα "dynamic fibrils" and Ca II "anemone jets" found in earlier
  studies. The front of some of our cool ejections are likely heated,
  showing emission in IRIS 1400 Å. On average, these cool ejections
  have approximate widths 3"2 ± 2"1, (projected) maximum heights and
  velocities 4"3 ± 2"5 and 23 ± 6 km s<SUP>-1</SUP>, and lifetimes 6.5
  ± 2.4 min. We consider whether these Hi-C features might result from
  eruptions of sub-minifilaments (smaller than the minifilaments that
  erupt to produce coronal jets). Comparisons with SDO's Helioseismic and
  Magnetic Imager (HMI) magnetograms do not show magnetic mixed-polarity
  neutral lines at these events' bases, as would be expected for true
  scaled-down versions of solar filaments/minifilaments. But the features'
  bases are all close to single-polarity strong-flux-edge locations,
  suggesting possible local opposite-polarity flux unresolved by HMI. Or
  it may be that our Hi-C ejections instead operate via the shock-wave
  mechanism that is suggested to drive dynamic fibrils and the so-called
  type I spicules.

---------------------------------------------------------
Title: Improving the Forecasting of Drivers of Severe Space Weather
    with the New MAG4 HMI Vector Magnetogram Database
Authors: Fisher, M. A.; Falconer, D.; Moore, R.; Tiwari, S.
2020AAS...23521001F    Altcode:
  MAG4 (MAGnetogram FOREcasting) is a large-database space-weather
  forecasting tool that makes near-real-time forecasts of a solar
  active regions (AR's) next-day chance of producing major eruptions
  (e.g., major flares or major Coronal Mass Ejections [CMEs]) that
  can drive severe space weather. The centerpiece of MAG4 is a pair of
  AR-event-rate forecasting curves obtained from a large database of (1)
  AR major-eruption histories and (2) an AR free-magnetic-energy proxy
  computed from magnetograms of the ARs. The pair of curves currently used
  for forecasting major flares are from MAG4's large database built from
  Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI)
  AR line-of-sight (LOS) magnetograms and major-flare histories. Because
  MDI is now defunct, to forecast a current AR's major-flare rate, MAG4
  presently uses the vertical-field component of the AR's Solar Dynamics
  Observatory (SDO)/ Helioseismic and Magnetic Imager (HMI) vector
  magnetogram to approximate the AR's MDI LOS magnetogram. Now that MAG4
  has compiled a new comparably large database of AR major-flare histories
  and several alternative AR free-energy proxies computed from HMI vector
  magnetograms, we can quantify the improvement in MAG4's AR major-flare
  forecasts resulting from using the AR's HMI vector magnetogram with the
  pair of forecasting curves from MAG4's new HMI database instead of the
  presently-used pair from MAG4's MDI database. Using the Heidke Skill
  Score (HSS) and the statistical methods of Falconer et al. (2014),
  we show that this change gives for an optimized free-energy proxy (1)
  gives a 10-σ improvement in MAG4's major-flare forecasting performance,
  and (2) forecasting performance that ties or significantly exceeds that
  of the alternative AR free-energy proxies that are in the new database.

---------------------------------------------------------
Title: A CME-Producing Solar Eruption from the Interior of a Twisted
    Emerging Bipole
Authors: Moore, R. L.; Adams, M.; Panesar, N. K.; Falconer, D. A.;
   Tiwari, S. K.
2019AGUFMSH43D3355M    Altcode:
  In a negative-polarity coronal hole, magnetic flux emergence, seen by
  the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic Imager
  (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged
  magnetic field produced sunspots with penumbrae by 3:00 UT on March
  4, which NOAA numbered 12514. The emerging magnetic field is largely
  bipolar with the opposite-polarity fluxes spreading apart overall,
  but there is simultaneously some convergence and cancellation of
  opposite-polarity flux at the polarity inversion line (PIL) inside the
  emerging bipole. The emerging bipole shows obvious overall left-handed
  shear and/or twist in its magnetic field and corresponding clockwise
  rotation of the two poles of the bipole about each other as the bipole
  emerges. The eruption comes from inside the emerging bipole and blows
  it open to produce a CME observed by SOHO/LASCO. That eruption is
  preceded by flux cancellation at the emerging bipole's interior PIL,
  cancellation that plausibly builds a sheared and twisted flux rope
  above the interior PIL and finally triggers the blow-out eruption of
  the flux rope via photospheric-convection-driven slow tether-cutting
  reconnection of the legs of the sheared core field, low above the
  interior PIL, as proposed by van Ballegooijen and Martens (1989, ApJ,
  343, 971) and Moore and Roumeliotis (1992, in Eruptive Solar Flares,
  ed. Z. Svestka, B.V. Jackson, and M.E. Machado [Berlin:Springer],
  69). The production of this eruption is a (perhaps rare) counterexample
  to solar eruptions that result from external collisional shearing
  between opposite polarities from two distinct emerging and/or emerged
  bipoles (Chintzoglou et al., 2019, ApJ, 871:67).

---------------------------------------------------------
Title: A Two-Sided-Loop X-Ray Solar Coronal Jet and a Sudden
    Photospheric Magnetic-field Change, Both Driven by a Minifilament
    Eruption
Authors: Sterling, A. C.; Harra, L. K.; Moore, R. L.; Falconer, D. A.
2019AGUFMSH11D3382S    Altcode:
  Most of the commonly discussed solar coronal jets are of the
  type consisting of a <P />single spire extending approximately
  vertically from near the solar surface into the <P />corona. Recent
  research shows that eruption of a miniature filament (minifilament)
  <P />drives at least many such single-spire jets, and concurrently
  generates a miniflare at the <P />eruption site. A different type of
  coronal jet, identified in X-ray images during the <P />Yohkoh era, are
  two-sided-loop jets, which extend from a central excitation location <P
  />in opposite directions, along two opposite low-lying coronal loops
  that are more-or-less <P />horizontal to the surface. We observe such
  a two-sided-loop jet from the edge of active <P />region (AR) 12473,
  using data from Hinode XRT and EIS, and SDO AIA and HMI. Similar <P />to
  single-spire jets, this two-sided-loop jet results from eruption of a
  minifilament, which <P />accelerates to over 140 km/s before abruptly
  stopping upon striking overlying <P />nearly-horizontal magnetic field
  at ∼ 30,000 km altitude and producing the two-sided-loop <P />jet
  via interchange reconnection. Analysis of EIS raster scans show that
  a hot <P />brightening, consistent with a small flare, develops in the
  aftermath of the eruption, <P />and that Doppler motions (∼ 40 km/s)
  occur near the jet-formation region. As with <P />many single-spire
  jets, the trigger of the eruption here is apparently magnetic <P />flux
  cancelation, which occurs at a rate of ∼ 4×10^18 Mx/hr, comparable
  to the rate <P />observed in some single-spire AR jets. An apparent
  increase in the (line-of-sight) <P />flux occurs within minutes of
  onset of the minifilament eruption, consistent with the <P />apparent
  increase being due to a rapid reconfiguration of low-lying magnetic
  field <P />during the minifilament eruption. Details appear in Sterling
  et al. (2019, ApJ, 871, 220).

---------------------------------------------------------
Title: Are the brightest coronal loops always rooted in mixed-polarity
    magnetic flux?
Authors: Evans, C.; Tiwari, S. K.; Panesar, N. K.; Prasad, A.; Moore,
   R. L.
2019AGUFMSH41F3324E    Altcode:
  Magnetic energy dissipated in coronal loops heats the Sun's corona
  to millions of Kelvin. Some recent investigations indicate that in
  addition to the required magnetoconvection and field strength, heating
  in the brightest coronal loops are driven by flux cancellation at
  the loop-feet. To find coronal loop footpoints , we selected extreme
  ultraviolet (EUV) data from the Atmospheric Imaging Assembly (AIA)
  and line- of-sight (LOS) magnetograms from the Helioseismic and
  Magnetic Imager (HMI), both on-board the Solar Dynamics Observatory
  (SDO). We located the footpoints of 28 brightest coronal loops of
  the bipolar active region NOAA 12712 on 28 May 2018 in hot 94 images
  (calculated using the Warren et al. method) and confirm the location
  of these footpoints via non-force free field extrapolations. We examine
  the photospheric magnetic field in 6" boxes centered at each footpoint
  and find that ~20% of loops have both feet in unipolar magnetic flux,
  ~10% loops have both feet in mixed-polarity flux, and ~70% of loops
  have one foot in unipolar and one in mixed-polarity flux. The presence
  of mixed-polarity magnetic flux in at least one foot of majority
  of the brightest coronal loops suggests that flux cancellation at
  the footpoints may drive heating in them. However, the absence of
  mixed-polarity magnetic flux (to the detection limit of HMI) in a
  significant number of the brightest coronal loops suggests that flux
  cancellation may not be necessary to drive heating in the loops - the
  combination of magnetoconvection and the magnetic field strength at the
  footpoints could be responsible for much of the coronal loop heating
  even in cases where a footpoint presents mixed-polarity magnetic flux.

---------------------------------------------------------
Title: Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar
    Magnetic Network Lanes
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.;
   Winebarger, Amy R.; Tiwari, Sanjiv K.; Savage, Sabrina L.; Golub, Leon
   E.; Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain,
   Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.;
   Peter, Hardi; Testa, Paola; Walsh, Robert W.; Warren, Harry P.
2019ApJ...887L...8P    Altcode: 2019arXiv191102331P
  We present high-resolution, high-cadence observations of six,
  fine-scale, on-disk jet-like events observed by the High-resolution
  Coronal Imager 2.1 (Hi-C 2.1) during its sounding-rocket flight. We
  combine the Hi-C 2.1 images with images from the Solar Dynamics
  Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and the Interface
  Region Imaging Spectrograph (IRIS), and investigate each event’s
  magnetic setting with co-aligned line-of-sight magnetograms from the
  SDO/Helioseismic and Magnetic Imager (HMI). We find that (i) all six
  events are jetlet-like (having apparent properties of jetlets), (ii)
  all six are rooted at edges of magnetic network lanes, (iii) four of
  the jetlet-like events stem from sites of flux cancelation between
  majority-polarity network flux and merging minority-polarity flux, and
  (iv) four of the jetlet-like events show brightenings at their bases
  reminiscent of the base brightenings in coronal jets. The average
  spire length of the six jetlet-like events (9000 ± 3000 km) is three
  times shorter than that for IRIS jetlets (27,000 ± 8000 km). While
  not ruling out other generation mechanisms, the observations suggest
  that at least four of these events may be miniature versions of both
  larger-scale coronal jets that are driven by minifilament eruptions
  and still-larger-scale solar eruptions that are driven by filament
  eruptions. Therefore, we propose that our Hi-C events are driven by
  the eruption of a tiny sheared-field flux rope, and that the flux rope
  field is built and triggered to erupt by flux cancelation.

---------------------------------------------------------
Title: Fine-scale explosive energy release at sites of magnetic flux
    cancellation in the core of the solar active region observed by Hi-C
    2.1, IRIS and SDO
Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu,
   B.; Winebarger, A. R.
2019AGUFMSH31C3323T    Altcode:
  The second sounding-rocket flight of the High-Resolution Coronal Imager
  (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution

---------------------------------------------------------
Title: CME-Forecasting Performance of MAG4 with its HMI Vector
    Magnetogram Database
Authors: Schragal, N. T.; Falconer, D. A.; Tiwari, S. K.; Moore, R. L.
2019AGUFMSH33C3354S    Altcode:
  Coronal mass ejections (CMEs), solar flares, and solar proton events
  (SPEs) pose a threat to space-based infrastructure and astronauts. Many
  years of developmental work on predicting these events from active
  region (AR) magnetograms from MDI and HMI have led to MAG4 (MAGnetogram
  FOREcasting), a large-database forecasting technique for near-real-time
  forecasting of the next-day major flare, CME, and SPE productivity of
  an AR. MAG4 uses a free-magnetic-energy proxy computed for the AR from
  an HMI magnetogram and the AR's previous-day major-flare productivity in
  conjunction with a pair of forecasting curves derived from MAG4's large
  database of AR magnetograms to forecast these events. Previous work on
  improving the major-flare forecasting performance of MAG4 by deriving
  the forecasting curves from HMI vector magnetograms instead of from MDI
  line-of-sight magnetograms has laid the groundwork for improving the
  CME and SPE forecasting of MAG4. The present work is a first step in
  similarly improving MAG4's CME forecasting performance. We use MAG4's
  HMI AR vector magnetograms and a list of AR-produced CME events during
  August 2010 - March 2014. As done previously for major flares, we carry
  out 3000 random divisions of the observed set of ARs into a control
  half-set and an experimental half-set to determine the forecasting
  performance of each of 48 different parameters computed from the AR
  magnetograms. Each control set gives the pair of CME forecasting curves
  for each parameter. Then these curves are used to forecast the next-day
  event rate from each AR magnetogram in the experimental set. We measure
  forecasting performance by the Heidke Skill score which ranges from
  -∞ to 1, where a score of 0 is for performance that is no better than
  random chance, negative scores are for performance worse than random
  chance, and 1 is for perfect performance. Preliminary results indicate
  that the best-performing AR magnetogram parameters for predicting CMEs
  are not the same as the ones for major flares.

---------------------------------------------------------
Title: Cradle-to-Grave Evolution and Explosiveness of the Magnetic
    Field from Bipolar Ephemeral Active Regions (BEARs) in Solar
    Coronal Holes
Authors: Panesar, N. K.; Nagib, C.; Moore, R. L.; Sterling, A. C.
2019AGUFMSH11D3386P    Altcode:
  We report on the entire magnetic evolution and history of
  magnetic-explosion eruption production of each of 7 bipolar
  ephemeral active regions (BEARs) observed in on-disk coronal holes
  in line-of-sight magnetograms and in coronal EUV images. One of
  these BEARs made no eruptions. The other 6 BEARs together display
  three kinds of magnetic-explosion eruptions: (1) blowout eruptions
  (eruptions that make a wide-spire blowout jet), (2) partially-confined
  eruptions (eruptions that make a narrow-spire standard jet), (3)
  confined eruptions (eruptions that make no jet, i.e., make only a
  spireless EUV microflare). The 7 BEARs are a subset of a set of 60
  random coronal-hole BEARs that were observed from the advent to the
  final dissolution of the BEAR's minority-polarity magnetic flux. The
  emergence phase (time interval from advent to maximum minority flux)
  for the 60 BEARs had been previously visually estimated using the
  magnetograms, to find if magnetic-explosion eruption events commonly
  occur inside a BEAR's emerging magnetic field (as had been assumed by
  Moore et al 2010, ApJ 720:757). That inspection found no inside eruption
  during the estimated emergence phase of any of the 60 BEARs. In this new
  work, for each of the 7 BEARs, we obtain a more reliable determination
  of when the emergence phase ended by finding the time of the BEAR's
  maximum minority flux from a time plot of the BEAR's minority flux
  measured from the magnetograms. These plots show: (1) none of the 7
  BEARs had an inside eruption while the BEAR was emerging, and (2)
  for these 7 BEARs, the visually-estimated emergence end time was
  never more than 6 hours before the measured time of maximum minority
  flux. Of the 60 BEARs, in only 6 was there an inside eruption within
  6 hours after the visually-estimated end of emergence. The above two
  results for the 7 BEARs, together with the previous visual inspection
  of the 60 BEARs, support that a great majority (at least 90%) of the
  explosive magnetic fields from BEARs in coronal holes are prepared
  and triggered to explode by magnetic flux cancellation, and that
  such flux cancellation seldom occurs inside an emerging BEAR. The
  visual inspection of the magnetograms of the 60 BEARs showed that the
  pre-eruption flux cancellation was either on the outside of the BEAR
  during or after the BEAR's emergence or on the inside of the BEAR
  after the BEAR's emergence.

---------------------------------------------------------
Title: Onset of the Magnetic Explosion in On-disk Solar Coronal Jets
Authors: Panesar, N. K.; Moore, R. L.; Sterling, A. C.
2019AGUFMSH11D3384P    Altcode:
  In our recent studies of ~10 quiet region and ~13 coronal hole coronal,
  we found that flux cancelation is the fundamental process in the
  buildup and triggering of the minifilament eruption that drives the
  production of the jet. Here, we investigate the onset and growth of
  the ten on-disk quiet region jets, using EUV images from SDO/AIA and
  magnetograms from SDO/HMI. We find that: (i) in all ten events the
  minifilament starts to rise at or before the onset of the signature
  of internal or external reconnection; (ii) in two out of ten jets
  brightening from the external reconnection starts at the same time as
  the slow rise of the minifilament and (iii) in six out of ten jets
  brightening from the internal reconnection starts before the start
  of the brightening from external reconnection. These observations
  show that the magnetic explosion in coronal jets begins in the same
  way as the magnetic explosion in filament eruptions that make solar
  flares and coronal mass ejections (CMEs). Our results indicate (1) that
  coronal jets are miniature versions of CME-producing eruptions and flux
  cancelation is the fundamental process that builds and triggers both
  the small-scale and the large-scale eruptions, and (2) that, contrary to
  the view of Moore et al (2018), the current sheet at which the external
  reconnection occurs in coronal jets usually starts to form at or after
  the onset of (and as a result of) the slow rise of the minifilament
  flux-rope eruption, and so is seldom of appreciable size before the
  onset of the slow rise of the minifilament flux-rope eruption.

---------------------------------------------------------
Title: Fine-scale Explosive Energy Release at Sites of Prospective
    Magnetic Flux Cancellation in the Core of the Solar Active Region
    Observed by Hi-C 2.1, IRIS, and SDO
Authors: Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.;
   De Pontieu, Bart; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.;
   Rachmeler, Laurel A.; Kobayashi, Ken; Testa, Paola; Warren, Harry P.;
   Brooks, David H.; Cirtain, Jonathan W.; McKenzie, David E.; Morton,
   Richard J.; Peter, Hardi; Walsh, Robert W.
2019ApJ...887...56T    Altcode: 2019arXiv191101424T
  The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial
  and temporal resolution (∼250 km, 4.4 s) coronal EUV images of Fe IX/X
  emission at 172 Å of AR 12712 on 2018 May 29, during 18:56:21-19:01:56
  UT. Three morphologically different types (I: dot-like; II: loop-like;
  III: surge/jet-like) of fine-scale sudden-brightening events (tiny
  microflares) are seen within and at the ends of an arch filament system
  in the core of the AR. Although type Is (not reported before) resemble
  IRIS bombs (in size, and brightness with respect to surroundings),
  our dot-like events are apparently much hotter and shorter in span
  (70 s). We complement the 5 minute duration Hi-C 2.1 data with SDO/HMI
  magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw
  images to examine, at the sites of these events, brightenings and
  flows in the transition region and corona and evolution of magnetic
  flux in the photosphere. Most, if not all, of the events are seated
  at sites of opposite-polarity magnetic flux convergence (sometimes
  driven by adjacent flux emergence), implying likely flux cancellation
  at the microflare’s polarity inversion line. In the IRIS spectra
  and images, we find confirming evidence of field-aligned outflow from
  brightenings at the ends of loops of the arch filament system. In types
  I and II the explosion is confined, while in type III the explosion
  is ejective and drives jet-like outflow. The light curves from Hi-C,
  AIA, and IRIS peak nearly simultaneously for many of these events,
  and none of the events display a systematic cooling sequence as seen in
  typical coronal flares, suggesting that these tiny brightening events
  have chromospheric/transition region origin.

---------------------------------------------------------
Title: Further Evidence for Magnetic Flux Cancelation as the Build-up
    and Trigger Mechanism for Eruptions in Isolated Solar Active Regions
Authors: Sterling, A. C.; Buell, A.; Moore, R. L.; Falconer, D. A.
2019AGUFMSH11D3388S    Altcode:
  We examine the magnetic evolution of three eruption-producing solar
  active regions (ARs), one each from 2013, 2014, and 2017, using data
  from SDO HMI and AIA. Each of the ARs is relatively small, so that
  we can follow its entire development during a single disk passage,
  from birth by emergence through the time of the respective eruptions;
  the first-, second-, and third-born respectively lived 3, 6.5, and 3
  days before eruption. Each AR was relatively isolated, with minimal
  interaction with surrounding ARs, allowing us to study each AR as an
  approximately isolated system. CMEs resulted from eruptions in the
  first two ARs, while the third AR's eruption was smaller and appeared
  confined. In each AR, the eruption was seated on an interval of the AR's
  magnetic polarity inversion line (neutral line) where opposite-polarity
  flux was merging together and undergoing apparent cancelation. Our
  results, together with an earlier pilot study of two ARs by Sterling
  et al. (2018), and along with recent studies of solar coronal jets,
  support the view that the magnetic field that explodes to produce
  solar eruptions of size scales ranging from jets to CMEs are usually
  built and triggered by flux cancelation along a sharp neutral line.

---------------------------------------------------------
Title: Magnetic Flux Cancellation as the Trigger Mechanism of Solar
    Coronal Jets
Authors: McGlasson, Riley A.; Panesar, Navdeep K.; Sterling, Alphonse
   C.; Moore, Ronald L.
2019ApJ...882...16M    Altcode: 2019arXiv190606452M
  Coronal jets are transient narrow features in the solar corona that
  originate from all regions of the solar disk: active regions, quiet Sun,
  and coronal holes. Recent studies indicate that at least some coronal
  jets in quiet regions and coronal holes are driven by the eruption of a
  minifilament following flux cancellation at a magnetic neutral line. We
  have tested the veracity of that view by examining 60 random jets in
  quiet regions and coronal holes using multithermal (304, 171, 193, and
  211 Å) extreme ultraviolet images from the Solar Dynamics Observatory
  (SDO)/Atmospheric Imaging Assembly and line-of-sight magnetograms from
  the SDO/Helioseismic and Magnetic Imager. By examining the structure
  and changes in the magnetic field before, during, and after jet onset,
  we found that 85% of these jets resulted from a minifilament eruption
  triggered by flux cancellation at the neutral line. The 60 jets have
  a mean base diameter of 8800 ± 3100 km and a mean duration of 9 ±
  3.6 minutes. These observations confirm that minifilament eruption
  is the driver and magnetic flux cancellation is the primary trigger
  mechanism for most coronal hole and quiet region coronal jets.

---------------------------------------------------------
Title: CESM-release-cesm2.1.1
Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier;
   Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large;
   Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson;
   Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, van; Vertenstein;
   Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner;
   Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand
2019zndo...3895315D    Altcode:
  The Community Climate Earth System Model release version cesm2.1.1

---------------------------------------------------------
Title: Understanding the Mechanisms of Sulfate Formation in Acidic
    Volcanic Hydrothermal Environments on Mars Using Terrestrial Analogs
Authors: Ende, J. J.; Faiia, A. M.; Burtt, P.; Moore, R.; Szynkiewicz,
   A.
2019LPICo2089.6212E    Altcode:
  In this study, we use a combination of chemistry and oxygen isotopes
  as tracers for the oxidation mechanism of sulfate in volcanic acidic
  hydrothermal systems on Earth to better understand how sulfate forms
  in similar environments on Mars.

---------------------------------------------------------
Title: Fine-scale explosive energy release at sites of magnetic
    flux cancellation in the core of the solar active region observed
    by HiC2.1, IRIS and SDO
Authors: Tiwari, Sanjiv K.; Panesar, Navdeep; Moore, Ronald L.;
   De Pontieu, Bart; Testa, Paola; Winebarger, Amy R.
2019AAS...23411702T    Altcode:
  The second sounding-rocket flight of the High-Resolution Coronal Imager
  (HiC2.1) provided unprecedentedly-high spatial and temporal resolution
  (150 km, 4.5 s) coronal EUV images of Fe IX/X emission at 172 Å, of
  a solar active region (AR NOAA 12712) near solar disk center. Three
  morphologically-different types (I: dot-like, II: loop-like, &amp;
  III: surge/jet-like) of fine-scale sudden brightening events (tiny
  microflares) are seen within and at the ends of an arch filament
  system in the core of the AR. We complement the 5-minute-duration
  HiC2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images, and
  IRIS UV spectra and slit-jaw images to examine, at the sites of these
  events, brightenings and flows in the transition region and corona
  and evolution of magnetic flux in the photosphere. Most, if not all,
  of the events are seated at sites of opposite-polarity magnetic flux
  convergence (sometimes driven by adjacent flux emergence), implying
  flux cancellation at the polarity inversion line. In the IRIS spectra
  and images, we find confirming evidence of field-aligned outflow from
  brightenings at the ends of loops of the arch filament system. These
  outflows from both ends of the arch filament system are seen as
  bi-directional flows in the arch filament system, suggesting that the
  well-known counter-streaming flows in large classical filaments could be
  driven in the same way as in this arch filament system: by fine-scale
  jet-like explosions from fine-scale sites of mixed-polarity field in
  the feet of the sheared field that threads the filament. Plausibly,
  the flux cancellation at these sites prepares and triggers a fine scale
  core-magnetic-field structure (a small sheared/twisted core field or
  flux rope along and above the cancellation line) to explode. In types
  I &amp; II the explosion is confined, while in type III the explosion
  is ejective and drives jet-like outflow in the manner of larger jets
  in coronal holes, quiet regions, and active regions.

---------------------------------------------------------
Title: Hi-C2.1 Observations of Solar Jetlets at Sites of Flux
    Cancelation
Authors: Panesar, Navdeep; Sterling, Alphonse C.; Moore, Ronald L.
2019AAS...23411701P    Altcode:
  Solar jets of all sizes are magnetically channeled narrow eruptive
  events; the larger ones are often observed in the solar corona in EUV
  and coronal X-ray images. Recent observations show that the buildup
  and triggering of the minifilament eruptions that drive coronal jets
  result from magnetic flux cancelation under the minifilament, at the
  neutral line between merging majority-polarity and minority-polarity
  magnetic flux patches. Here we investigate the magnetic setting
  of six on-disk small-scale jet-like/spicule-like eruptions (also
  known as jetlets) by using high resolution 172A images from the
  High-resolution Coronal Imager (Hi-C2.1) and EUV images from Solar
  Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and
  line-of-sight magnetograms from SDO/Helioseismic and Magnetic Imager
  (HMI). From magnetograms co-aligned with the Hi-C and AIA images, we
  find that (i) these jetlets are rooted at edges of magnetic network
  lanes (ii) some jetlets stem from sites of flux cancelation between
  merging majority-polarity and minority-polarity flux patches (iii)
  some jetlets show faint brightenings at their bases reminiscent of
  the base brightenings in coronal jets. Based on the 6 Hi-C jetlets
  that we have examined in detail and our previous observations of 30
  coronal jets in quiet regions and coronal holes, we infer that flux
  cancelation is the essential process in the buildup and triggering of
  jetlets. Our observations suggest that network jetlets result from
  small-scale eruptions that are analogs of both larger-scale coronal
  jet minifilament eruptions and the still-larger-scale eruptions that
  make major CMEs. This work was supported by the NASA/MSFC NPP program
  and the NASA HGI Program.

---------------------------------------------------------
Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal
Loops: New Evidence that Magnetoconvection Drives Solar-Stellar
    Coronal Heating
Authors: Moore, Ronald L.; Tiwari, Sanjiv; Thalmann, Julia; Panesar,
   Navdeep; Winebarger, Amy
2019AAS...23410603M    Altcode:
  How magnetic energy is injected and released in the solar corona,
  keeping it heated to several million degrees, remains elusive. The
  corona is shaped by the magnetic field that fills it and the heating
  of the corona generally increases with increasing strength of the
  field. For each of two bipolar solar active regions having one or
  more sunspots in each of the two main opposite-polarity domains of
  magnetic flux, from comparison of a nonlinear force-free model of the
  active region's three-dimensional coronal magnetic field to observed
  extreme-ultraviolet coronal loops, we find that (1) umbra-to-umbra
  loops, despite being rooted in the strongest magnetic flux at both ends,
  are invisible, and (2) the brightest loops have one foot in a sunspot
  umbra or penumbra and the other foot in another sunspot's penumbra or
  in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra
  loops is new evidence that magnetoconvetion drives solar-stellar coronal
  heating: evidently, the strong umbral field at both ends quenches the
  magnetoconvection and hence the heating. Broadly, our results indicate
  that depending on the field strength in both feet, the photospheric feet
  of a coronal loop on any convective star can either engender or quench
  coronal heating in the body of the loop. <P />This work was supported
  by funding from the Heliophysics Division of NASA's Science Mission
  Directorate, from NASA's Postdoctoral Program, and from the Austrian
  Science Fund. The results have been published in The Astrophysical
  Journal Letters (Tiwari, S. K., Thalmann, J. K., Panesar, N. K., Moore,
  R. L., &amp; Winebarger, A. R. 2017, ApJ Letters, 843:L20).

---------------------------------------------------------
Title: A CME-Producing Solar Eruption from the Interior of an Emerging
    Bipolar Active Region
Authors: Adams, Mitzi L.; Moore, Ronald L.; Panesar, Navdeep;
   Falconer, David
2019AAS...23430501A    Altcode:
  In a negative-polarity coronal hole, magnetic flux emergence, seen
  by the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic
  Imager (HMI), begins at approximately 19:00 UT on March 3, 2016. The
  emerged magnetic field produced sunspots, which NOAA numbered 12514
  two days later. The emerging magnetic field is largely bipolar with
  the opposite-polarity fluxes spreading apart overall, but there is
  simultaneously some convergence and cancellation of opposite-polarity
  flux at the polarity inversion line (PIL) inside the emerging bipole. In
  the first fifteen hours after emergence onset, three obvious eruptions
  occur, observed in the coronal EUV images from SDO's Atmospheric
  Imaging Assembly (AIA). The first two erupt from separate segments
  of the external PIL between the emerging positve-polarity flux and
  the extant surrounding negative-polarity flux, with the exploding
  magnetic field being prepared and triggered by flux cancellation at the
  external PIL. The emerging bipole shows obvious overall left-handed
  shear and/or twist in its magnetic field. The third and largest
  eruption comes from inside the emerging bipole and blows it open to
  produce a CME observed by SOHO/LASCO. That eruption is preceded by flux
  cancellation at the emerging bipole's interior PIL, cancellation that
  plausibly builds a sheared and twisted flux rope above the interior
  PIL and finally triggers the blow-out eruption of the flux rope via
  photospheric-convection-driven slow tether-cutting reconnection of
  the legs of the sheared core field, low above the interior PIL, as
  proposed by van Ballegooijen and Martens (1989, ApJ, 343, 971) and
  Moore and Roumeliotis (1992, in Eruptive Solar Flares, ed. Z. Svestka,
  B.V. Jackson, and M.E. Machado [Berlin:Springer], 69). The production of
  this eruption is a (perhaps rare) counterexample to solar eruptions that
  result from external collisional shearing between opposite polarities
  from two distinct emerging and/or emerged bipoles (Chintzoglou et al.,
  2019, ApJ, 871:67). <P />This work was supported by NASA, the NASA
  Postdoctoral Program (NPP), and NSF.

---------------------------------------------------------
Title: Incorporating Students into Investigations of the Effects of
    Solar Eclipse Totality on Biological Organisms
Authors: Sudbrink, D. L., Jr.; Mills, R.; Moore, R.; Rendleman, E.
2019ASPC..516..457S    Altcode:
  Environmental changes during total solar eclipses can have impacts
  on behaviors of biological organisms. Observations of behaviors of
  several species of organisms were conducted during the Great American
  Eclipse of 21 August 2017 in Tennessee with students from U.S. Space
  &amp; Rocket Center Space Camp, Project INSPIRE and Austin Peay State
  University. Detailed observations were made of crickets, honeybees,
  cattle and turtles during this study. Results indicated that there were
  at least temporary alterations of typical diurnal behavior of many of
  the animals studied near or during the totality of the eclipse. In
  these instances, typical diurnal behaviors were observed to resume
  after totality.

---------------------------------------------------------
Title: Improving Forecasting of Drivers of Severe Space Weather with
    the New MAG4 HMI Vector Magnetogram Database
Authors: Falconer, David; Tiwari, Sanjiv; Moore, Ronald; Fisher, Megan
2019AAS...23431705F    Altcode:
  Major solar flares and Coronal Mass Ejections (CMEs) are drivers of
  severe space weather. The strongest ones come from active regions
  (ARs). They are powered by explosive release of magnetic energy. MAG4
  (Magnetogram Forecast) is a large-database near-real-time tool that
  measures an AR's free-energy proxy from the AR's deprojected HMI
  vector magnetograms. MAG4 converts the free-energy proxy to the AR's
  predicted event rate (and event probability) using a forecasting
  curve. MAG4 forecasts the event rate and probability for each AR
  on the disk, as well as for the full disk. The forecasting curves
  presently used by MAG4 are derived from a large sample of SOHO/MDI AR
  magnetograms. This requires the HMI vector magnetograms to be degraded
  in spatial resolution to approximate what MDI would have measured,
  in order to use the MDI forecasting curves. We report on the improved
  performance of MAG4 that results from using forecasting curves based
  on MAG4's new database of HMI vector magnetograms instead of using
  the present forecasting curves that are based on MDI line-of-sight
  magnetograms. MAG4's forecasting skill score significantly improves
  for major flares (M1 or greater). We present MAG4's improvement in
  forecasting SPEs (Solar Particle Events) and X-class flares as well. The
  improvement in forecasting CMEs will be evaluated in the future. These
  new forecasting curves are being implemented in the near-real-time
  operational MAG4, though forecasts from the old curves will still
  be given. This work is funded by NSF's Solar Terrestrial Program,
  and NASA/SRAG.

---------------------------------------------------------
Title: A Two-Sided-Loop X-Ray Solar Coronal Jet and a Sudden
    Photospheric Magnetic-field Change, Both Driven by a Minifilament
    Eruption
Authors: Sterling, Alphonse C.; Harra, Louise; Moore, Ronald L.;
   Falconer, David
2019AAS...23431701S    Altcode:
  Most of the commonly discussed solar coronal jets are of the type
  consisting of a single spire extending approximately vertically from
  near the solar surface into the corona. Recent research shows that
  eruption of a miniature filament (minifilament) drives at least many
  such single-spire jets, and concurrently generates a miniflare at the
  eruption site. A different type of coronal jet, identified in X-ray
  images during the Yohkoh era, are two-sided-loop jets, which extend
  from a central excitation location in opposite directions, along two
  opposite low-lying coronal loops that are more-or-less horizontal
  to the surface. We observe such a two-sided-loop jet from the edge
  of active region (AR) 12473, using data from Hinode XRT and EIS, and
  SDO AIA and HMI. Similar to single-spire jets, this two-sided-loop jet
  results from eruption of a minifilament, which accelerates to over 140
  km/s before abruptly stopping upon striking overlying nearly-horizontal
  magnetic field at ∼30,000 km altitude and producing the two-sided-loop
  jet via interchange reconnection. Analysis of EIS raster scans show
  that a hot brightening, consistent with a small flare, develops in
  the aftermath of the eruption, and that Doppler motions (∼40 km/s)
  occur near the jet-formation region. As with many single-spire jets, the
  trigger of the eruption here is apparently magnetic flux cancelation,
  which occurs at a rate of ∼4×10<SUP>18</SUP> Mx/hr, comparable to the
  rate observed in some single-spire AR jets. An apparent increase in the
  (line-of-sight) flux occurs within minutes of onset of the minifilament
  eruption, consistent with the apparent increase being due to a rapid
  reconfiguration of low-lying magnetic field during the minifilament
  eruption. Details appear in Sterling et al. (2019, ApJ, 871, 220).

---------------------------------------------------------
Title: Sheared Magnetic Arcades and the Pre-eruptive Magnetic
Configuration of Coronal Mass Ejections: Diagnostics, Challenges
    and Future Observables
Authors: Patsourakos, Spiros; Vourlidas, A.; Anthiochos, S. K.;
   Archontis, V.; Aulanier, G.; Cheng, X.; Chintzoglou, G.; Georgoulis,
   M. K.; Green, L. M.; Kliem, B.; Leake, J.; Moore, R. L.; Nindos, A.;
   Syntelis, P.; Torok, T.; Yardley, S. L.; Yurchyshyn, V.; Zhang, J.
2019shin.confE.194P    Altcode:
  Our thinking about the pre-eruptive magnetic configuration of Coronal
  Mass Ejections has been effectively dichotomized into two opposing
  and often fiercely contested views: namely, sheared magnetic arcades
  and magnetic flux ropes. Finding a solution to this issue will have
  important implications for our understanding of CME initiation. We
  first discuss the very value of embarking into the arcade vs. flux rope
  dilemma and illustrate the corresponding challenges and difficulties to
  address it. Next, we are compiling several observational diagnostics of
  pre-eruptive sheared magnetic arcades stemming from theory/modeling,
  discuss their merits, and highlight potential ambiguities that could
  arise in their interpretation. We finally conclude with a discussion
  of possible new observables, in the frame of upcoming or proposed
  instrumentation, that could help to circumvent the issues we are
  currently facing.

---------------------------------------------------------
Title: 2019 GA
Authors: Ludwig, F.; Stecklum, B.; Tichy, M.; Ticha, J.; Baransky, A.;
   McCarthy Obs, J. J.; Robson, M.; Moore, R.; Cloutier, W.; Lindner,
   P.; Holmes, R.; Foglia, S.; Buzzi, L.; Linder, T.; Ye, Q. -Z.;
   Collaboration, Z. T. F.; Duev, D. A.; Lin, H. -W.; Mahabal, A. A.;
   Masci, F. J.; Streaks, D.; Groeller, H.; Kowalski, R. A.; Leonard,
   G. J.; Africano, B. M.; Christensen, E. J.; Farneth, G. A.; Fuls,
   D. C.; Gibbs, A. R.; Grauer, A. D.; Larson, S. M.; Pruyne, T. A.;
   Seaman, R. L.; Shelly, F. C.; Birtwhistle, P.; Favero, G.; Furgoni,
   R.; Adamovsky, M.; Korlevic, K.; Nishiyama, K.; Urakawa, S.; Flynn,
   R. L.; Wells, G.; Bamberger, D.
2019MPEC....G...29L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A K-12 Microgravity Educational Intervention Framework
Authors: Carmona, J. A.; Smith, S. L.; York, J.; Moore, R.; Clyat,
   M.; Buchs, T.; Laufer, R.; Attai, S.; Matthews, L. S.; Hyde, T. W.
2019LPI....50.1574C    Altcode:
  The CASPER group has developed a STEM outreach program where
  participating students will have access to a 1.5s drop tower housed
  on the Baylor University campus.

---------------------------------------------------------
Title: A Two-sided Loop X-Ray Solar Coronal Jet Driven by a
    Minifilament Eruption
Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.;
   Falconer, David A.
2019ApJ...871..220S    Altcode: 2018arXiv181105557S
  Most of the commonly discussed solar coronal jets are the type that
  consist of a single spire extending approximately vertically from
  near the solar surface into the corona. Recent research supports
  that eruption of a miniature filament (minifilament) drives many such
  single-spire jets and concurrently generates a miniflare at the eruption
  site. A different type of coronal jet, identified in X-ray images during
  the Yohkoh era, are two-sided loop jets, which extend from a central
  excitation location in opposite directions, along low-lying coronal
  loops that are more-or-less horizontal to the surface. We observe
  such a two-sided loop jet from the edge of active region (AR) 12473,
  using data from Hinode X-Ray Telescope (XRT) and Extreme Ultraviolet
  Imaging Spectrometer (EIS), and from Solar Dynamics Observatory’s
  (SDO) Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic
  Imager (HMI). Similar to single-spire jets, this two-sided loop jet
  results from eruption of a minifilament, which accelerates to over 140
  km s<SUP>-1</SUP> before abruptly stopping after striking an overlying
  nearly horizontal-loop field at ∼30,000 km in altitude and producing
  the two-sided loop jet. An analysis of EIS raster scans shows that a hot
  brightening, consistent with a small flare, develops in the aftermath
  of the eruption, and that Doppler motions (∼40 km s<SUP>-1</SUP>)
  occur near the jet formation region. As with many single-spire jets, the
  magnetic trigger here is apparently flux cancelation, which occurs at
  a rate of ∼4 × 10<SUP>18</SUP> Mx hr<SUP>-1</SUP>, broadly similar
  to the rates observed in some single-spire quiet-Sun and AR jets. An
  apparent increase in the (line-of-sight) flux occurs within minutes of
  the onset of the minifilament eruption, consistent with the apparent
  increase being due to a rapid reconfiguration of low-lying fields
  during and soon after the minifilament-eruption onset.

---------------------------------------------------------
Title: All-sky Measurement of the Anisotropy of Cosmic Rays at 10
    TeV and Mapping of the Local Interstellar Magnetic Field
Authors: Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Arceo, R.;
   Arteaga-Velázquez, J. C.; Avila Rojas, D.; Belmont-Moreno,
   E.; BenZvi, S. Y.; Brisbois, C.; Capistrán, T.; Carramiana,
   A.; Casanova, S.; Cotti, U.; Cotzomi, J.; Díaz-Vélez, J. C.;
   De León, C.; De la Fuente, E.; Dichiara, S.; DuVernois, M. A.;
   Espinoza, C.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.;
   Galván-Gámez, A.; García-González, J. A.; González, M. M.;
   Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.;
   Hona, B.; Hueyotl-Zahuantitla, F.; Iriarte, A.; Jardin-Blicq, A.;
   Joshi, V.; Lara, A.; León Vargas, H.; Luis-Raya, G.; Malone, K.;
   Marinelli, S. S.; Martínez-Castro, J.; Martinez, O.; Matthews,
   J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.;
   Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pérez-Pérez, E. G.;
   Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.;
   Rosenberg, M.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider,
   M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Surajbali, P.; Taboada,
   I.; Tollefson, K.; Torres, I.; Villaseor, L.; Weisgarber, T.; Wood, J.;
   Zepeda, A.; Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aartsen,
   M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens,
   M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.;
   Argüelles, C.; Auffenberg, J.; Axani, S.; Backes, P.; Bagherpour, H.;
   Bai, X.; Barbano, A.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.;
   Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; BenZvi, S.; Berley,
   D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.;
   Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bretz, H. -P.;
   Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver,
   T.; Cheung, E.; Chirkin, D.; Clark, K.; Classen, L.; Collin, G. H.;
   Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave,
   P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.;
   Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries,
   K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.;
   Dujmovic, H.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.;
   Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.;
   Felde, J.; Filimonov, K.; Finley, C.; Franckowiak, A.; Friedman, E.;
   Fritz, A.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.;
   Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.;
   Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack,
   C.; Hallgren, A.; Halve, L.; Halzen, F.; Hanson, K.; Hebecker, D.;
   Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.;
   Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig,
   B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.;
   Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze,
   G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang,
   W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer,
   M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher,
   T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski,
   H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski,
   M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.;
   Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber,
   F.; Leonard, K.; Leuermann, M.; Liu, Q. R.; Lohfink, E.; Lozano
   Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.;
   Maggi, G.; Mahn, K. B. M.; Makino, Y.; Mancina, S.; Mariş, I. C.;
   Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nagai, R.;
   Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen,
   H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas,
   A.; O'Murchadha, A.; O'Sullivan, E.; Palczewski, T.; Pandya, H.;
   Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros,
   C.; Pieloth, D.; Pinat, E.; Pizzuto, A.; Plum, M.; Price, P. B.;
   Przybylski, G. T.; Raab, C.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea,
   I. C.; Reimann, R.; Relethford, B.; Renzi, G.; Resconi, E.; Rhode, W.;
   Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schaufel, M.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.;
   Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine,
   S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering,
   C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein,
   R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.;
   Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.;
   Sutherland, M.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Terliuk,
   A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.;
   Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.;
   Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.;
   Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven,
   N.; Vanheule, S.; van Santen, J.; Vraeghe, M.; Walck, C.; Wallace,
   A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Watson, T. B.;
   Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.;
   Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.;
   Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey,
   E.; Woschnagg, K.; Wrede, G.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez,
   J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration
2019ApJ...871...96A    Altcode: 2018arXiv181205682H
  We present the first full-sky analysis of the cosmic ray arrival
  direction distribution with data collected by the High-Altitude Water
  Cherenkov and IceCube observatories in the northern and southern
  hemispheres at the same median primary particle energy of 10 TeV. The
  combined sky map and angular power spectrum largely eliminate biases
  that result from partial sky coverage and present a key to probe
  into the propagation properties of TeV cosmic rays through our local
  interstellar medium and the interaction between the interstellar
  and heliospheric magnetic fields. From the map, we determine the
  horizontal dipole components of the anisotropy δ <SUB>0h </SUB> = 9.16
  × 10<SUP>-4</SUP> and δ <SUB>6h </SUB> = 7.25 × 10<SUP>-4</SUP>
  (±0.04 × 10<SUP>-4</SUP>). In addition, we infer the direction
  (229.°2 ± 3.°5 R.A., 11.°4 ± 3.°0 decl.) of the interstellar
  magnetic field from the boundary between large-scale excess and deficit
  regions from which we estimate the missing corresponding vertical dipole
  component of the large-scale anisotropy to be {δ }<SUB>N</SUB>∼
  -{3.97}<SUB>-2.0</SUB><SUP>+1.0</SUP>× {10}<SUP>-4</SUP>.

---------------------------------------------------------
Title: CESM-release-cesm2.1.0
Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier;
   Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large;
   Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson;
   Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein;
   Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner;
   Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand
2018zndo...3895306D    Altcode:
  The Community Earth System Model release version 2.1.0

---------------------------------------------------------
Title: Evidence of Twisting and Mixed-polarity Solar Photospheric
Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart;
   Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.;
   Sterling, Alphonse C.
2018ApJ...869..147T    Altcode: 2018arXiv181109554T
  A recent study using Hinode (Solar Optical Telescope/Filtergraph
  [SOT/FG]) data of a sunspot revealed some unusually large penumbral
  jets that often repeatedly occurred at the same locations in the
  penumbra, namely, at the tail of a penumbral filament or where the
  tails of multiple penumbral filaments converged. These locations had
  obvious photospheric mixed-polarity magnetic flux in Na I 5896 Stokes-V
  images obtained with SOT/FG. Several other recent investigations have
  found that extreme-ultraviolet (EUV)/X-ray coronal jets in quiet-Sun
  regions (QRs), in coronal holes (CHs), and near active regions (ARs)
  have obvious mixed-polarity fluxes at their base, and that magnetic
  flux cancellation prepares and triggers a minifilament flux-rope
  eruption that drives the jet. Typical QR, CH, and AR coronal jets are
  up to 100 times bigger than large penumbral jets, and in EUV/X-ray
  images they show a clear twisting motion in their spires. Here,
  using Interface Region Imaging Spectrograph (IRIS) Mg II k λ2796 SJ
  images and spectra in the penumbrae of two sunspots, we characterize
  large penumbral jets. We find redshift and blueshift next to each
  other across several large penumbral jets, and we interpret these as
  untwisting of the magnetic field in the jet spire. Using Hinode/SOT
  (FG and SP) data, we also find mixed-polarity magnetic flux at the
  base of these jets. Because large penumbral jets have a mixed-polarity
  field at their base and have a twisting motion in their spires, they
  might be driven the same way as QR, CH, and AR coronal jets.

---------------------------------------------------------
Title: IRIS and SDO Observations of Solar Jetlets Resulting from
    Network-edge Flux Cancelation
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.;
   Tiwari, Sanjiv K.; De Pontieu, Bart; Norton, Aimee A.
2018ApJ...868L..27P    Altcode: 2018arXiv181104314P
  Recent observations show that the buildup and triggering of minifilament
  eruptions that drive coronal jets result from magnetic flux cancelation
  at the neutral line between merging majority- and minority-polarity
  magnetic flux patches. We investigate the magnetic setting of 10
  on-disk small-scale UV/EUV jets (jetlets, smaller than coronal X-ray
  jets but larger than chromospheric spicules) in a coronal hole by using
  IRIS UV images and SDO/AIA EUV images and line-of-sight magnetograms
  from SDO/HMI. We observe recurring jetlets at the edges of magnetic
  network flux lanes in the coronal hole. From magnetograms coaligned
  with the IRIS and AIA images, we find, clearly visible in nine cases,
  that the jetlets stem from sites of flux cancelation proceeding at
  an average rate of ∼1.5 × 10<SUP>18</SUP> Mx hr<SUP>-1</SUP>, and
  show brightenings at their bases reminiscent of the base brightenings
  in larger-scale coronal jets. We find that jetlets happen at many
  locations along the edges of network lanes (not limited to the base
  of plumes) with average lifetimes of 3 minutes and speeds of 70 km
  s<SUP>-1</SUP>. The average jetlet-base width (4000 km) is three
  to four times smaller than for coronal jets (∼18,000 km). Based on
  these observations of 10 obvious jetlets, and our previous observations
  of larger-scale coronal jets in quiet regions and coronal holes, we
  infer that flux cancelation is an essential process in the buildup and
  triggering of jetlets. Our observations suggest that network jetlet
  eruptions might be small-scale analogs of both larger-scale coronal
  jets and the still-larger-scale eruptions producing CMEs.

---------------------------------------------------------
Title: Magnetic Flux Cancelation as the Buildup and Trigger Mechanism
    for CME-producing Eruptions in Two Small Active Regions
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K.
2018ApJ...864...68S    Altcode: 2018arXiv180703237S
  We follow two small, magnetically isolated coronal mass ejection
  (CME)-producing solar active regions (ARs) from the time of their
  emergence until several days later, when their core regions erupt to
  produce the CMEs. In both cases, magnetograms show: (a) following
  an initial period where the poles of the emerging regions separate
  from each other, the poles then reverse direction and start to retract
  inward; (b) during the retraction period, flux cancelation occurs along
  the main neutral line of the regions; (c) this cancelation builds
  the sheared core field/flux rope that eventually erupts to make the
  CME. In the two cases, respectively 30% and 50% of the maximum flux
  of the region cancels prior to the eruption. Recent studies indicate
  that solar coronal jets frequently result from small-scale filament
  eruptions, with those “minifilament” eruptions also being built up
  and triggered by cancelation of magnetic flux. Together, the small-AR
  eruptions here and the coronal jet results suggest that isolated bipolar
  regions tend to erupt when some threshold fraction, perhaps in the
  range of 50%, of the region's maximum flux has canceled. Our observed
  erupting filaments/flux ropes form at sites of flux cancelation, in
  agreement with previous observations. Thus, the recent finding that
  minifilaments that erupt to form jets also form via flux cancelation
  is further evidence that minifilaments are small-scale versions of
  the long-studied full-sized filaments.

---------------------------------------------------------
Title: Critical Magnetic Field Strengths for Solar Coronal Plumes
    in Quiet Regions and Coronal Holes?
Authors: Avallone, Ellis A.; Tiwari, Sanjiv K.; Panesar, Navdeep K.;
   Moore, Ronald L.; Winebarger, Amy
2018ApJ...861..111A    Altcode: 2018arXiv180511188A
  Coronal plumes are bright magnetic funnels found in quiet regions (QRs)
  and coronal holes (CHs). They extend high into the solar corona and last
  from hours to days. The heating processes of plumes involve dynamics
  of the magnetic field at their base, but the processes themselves
  remain mysterious. Recent observations suggest that plume heating is
  a consequence of magnetic flux cancellation and/or convergence at
  the plume base. These studies suggest that the base flux in plumes
  is of mixed polarity, either obvious or hidden in Solar Dynamics
  Observatory (SDO)/HMI data, but do not quantify it. To investigate the
  magnetic origins of plume heating, we select 10 unipolar network flux
  concentrations, four in CHs, four in QRs, and two that do not form a
  plume, and track plume luminosity in SDO/AIA 171 Å images along with
  the base flux in SDO/HMI magnetograms, over each flux concentration’s
  lifetime. We find that plume heating is triggered when convergence of
  the base flux surpasses a field strength of ∼200-600 G. The luminosity
  of both QR and CH plumes respond similarly to the field in the plume
  base, suggesting that the two have a common formation mechanism. Our
  examples of non-plume-forming flux concentrations, reaching field
  strengths of 200 G for a similar number of pixels as for a couple of our
  plumes, suggest that a critical field might be necessary to form a plume
  but is not sufficient for it, thus advocating for other mechanisms,
  e.g., flux cancellation due to hidden opposite-polarity field, at play.

---------------------------------------------------------
Title: Flux Cancelation as the Trigger of Coronal Hole Jet Eruptions
Authors: Panesar, Navdeep Kaur; Sterling, Alphonse C.; Moore,
   Ronald Lee
2018tess.conf40806P    Altcode:
  Coronal jets are magnetically channeled narrow eruptions often observed
  in the solar corona. Recent observations show that coronal jets are
  driven by the eruption of a small-scale filament (minifilament). Here
  we investigate the triggering mechanism of jet-driving minifilament
  eruptions in coronal holes, by using X-ray images from Hinode, EUV
  images from SDO/AIA, and line of sight magnetograms from SDO/HMI. We
  study 13 on-disk randomly selected coronal hole jets, and track
  the evolution of the jet-base. In each case we find that there is a
  minifilament present in the jet-base region prior to jet eruption. The
  minifilaments reside above a neutral line between majority-polarity
  and minority-polarity magnetic flux patches. HMI magnetograms
  show continuous flux cancelation at the neutral line between the
  opposite polarity flux patches. Persistent flux cancelation eventually
  destabilizes the field that holds the minifilament plasma. The erupting
  field reconnects with the neighboring far-reaching field and produces
  the jet spire. From our study, we conclude that flux cancelation is
  the fundamental process for triggering coronal hole jets. Other recent
  studies show that jets in quiet regions and active regions also are
  accompanied by flux cancelation at minifilament neutral lines (Panesar
  et al. 2016b, Sterling et al. 2017); therefore the same fundamental
  process - namely, magnetic flux cancelation - triggers at least many
  coronal jets in all regions of the Sun.

---------------------------------------------------------
Title: Solar Explosions Imager (SEIM): A Next-Generation
    High-Resolution and High-Cadence EUV Telescope for Unraveling Eruptive
    Solar Features
Authors: Sterling, Alphonse C.; Moore, Ronald Lee; Winebarger, Amy R.
2018tess.conf11002S    Altcode:
  We present a skeletal proposal for a space-based EUV telescope to
  fly on the Next Generation Solar Physics Mission (NGSPM). A primary
  motivation is to unravel physical processes leading to small-scale
  solar features, such as solar coronal jets, and the processes leading
  to larger eruptions as well. Recent evidence suggests that jets
  result from eruptions of small-scale filaments (size scale: ~1—a
  few arcsec), analogous to larger filament eruptions that drive CMEs,
  and it is plausible that the even-smaller-scale spicules (∼0′′.1)
  operate in a similar fashion. Therefore an instrument planned around
  the concept of observing jet features, but with the highest practical
  resolution and cadence, would be valuable for observing various erupting
  solar features on many size and time scales. Resolution and cadence
  should be comparable to or better than that of Hi-C, i.e. ≤0”.1
  pixels and ≤10 s cadence. While no single instrument could span the
  entire needed data-set space needed to address fully these questions,
  the proposed instrument would complement first-rate instrumentation
  (namely, DKIST) expected to be in operation around the time of expected
  deployment. If resources permit, the proposed EUV instrument could
  be supplemented with additional instrumentation, or such additional
  instrumentation could be proposed as (a) separate effort(s). Especially
  complementary would be a photospheric magnetograph having ≤0”.1
  pixels, ≤1-minute cadence, line-of-sight-field sensitivity of ≤10
  G, and few-arc-minute FOV. (The SEIM concept has been presented as a
  WhitePaper with the same title to the NGSPM planning committee.)

---------------------------------------------------------
Title: Onset of the Magnetic Explosion in Solar Polar X-Ray Jets
Authors: Moore, Ronald Lee; Sterling, Alphonse C.; Panesar, Navdeep
   Kaur
2018tess.conf30598M    Altcode:
  We follow up on the Sterling et al (2015, Nature, 523, 437) discovery
  that nearly all solar polar X-ray jets are made by an explosive
  eruption of closed magnetic field carrying a miniature cool-plasma
  filament in its core. In the same X-ray and EUV movies used by Sterling
  et al (2015), we examine the onset and growth of the driving magnetic
  explosion in 15 of the 20 jets that they studied. We find evidence that:
  (1) in a large majority of polar X-ray jets, the runaway internal
  tether-cutting reconnection under the erupting minifilament flux rope
  starts after both the minifilament's rise and the spire-producing
  breakout reconnection have started; and (2) in a large minority,
  (a) before the eruption starts there is a current sheet between the
  explosive closed field and the ambient open field, and (b) the eruption
  starts with breakout reconnection at that current sheet. The observed
  sequence of events as the eruptions start and grow support the idea
  that the magnetic explosions that make polar X-ray jets work the same
  way as the much larger magnetic explosions that make a flare and coronal
  mass ejection (CME). That idea, and recent observations indicating that
  magnetic flux cancelation is the fundamental process that builds the
  field in and around the pre-jet minifilament and triggers that field's
  jet-driving explosion, together suggest that flux cancelation inside
  the magnetic arcade that explodes in a flare/CME eruption is usually
  the fundamental process that builds the explosive field in the core
  of the arcade and triggers that field's explosion. <P />This work
  was funded by the Heliophysics Division of NASA's Science Mission
  Directorate through the Living With a Star Science Program and the
  Heliophysics Guest Investigators Program.

---------------------------------------------------------
Title: MAG4's New Database of HMI Active-Region Vector Magnetograms:
    Sample Size and Initial Results for Major-Flare Forecasting
Authors: Falconer, David Allen; Tiwari, Sanjiv K.; Moore, Ron L.
2018tess.conf41406F    Altcode:
  We have developed a large-database method of forecasting an active
  region's (AR's) chance of producing a major flare (GOES M- or X-class)
  and its chance of producing a major CME (speed &gt; 800 km/s) in the
  coming few days from a free-energy proxy - a proxy of the AR's free
  magnetic energy - measured from a magnetogram of the AR. We have
  named this forecasting tool MAG4 (for Magnetogram Forecast). In its
  present near-real-time operation mode, MAG4 forecasts each on-disk
  AR's rates of production of major flares and major CMEs in the
  coming few days, based on the observed major-flare and major-CME
  histories of 1,300 ARs observed within 30 degrees of disk center
  in MDI line-of-sight magnetograms. From the passages of these ARs
  across the 30-degree central disk, the presently-used MAG4 MDI
  database has the value of a free-energy proxy measured from 40,000
  MDI magnetograms of these 1,300 ARs. We are now compiling a similar
  database of the about the same size for MAG4, but for HMI vector
  magnetograms that are of ARs observed within 45 degrees of disk
  center and that have been deprojected to disk center. This new MAG4
  HMI database now has a wide variety of AR parameters measured from
  each of 40,000 deprojected HMI vector magnetograms of 900 ARs within
  45 degrees of disk center (15 magnetograms of each AR per day during
  its passage across the 45-degree central disk). We present the MAG4
  major-flare forecasting curves obtained from this new database for a few
  alternative free-energy proxies measured from either the vertical-field
  component or the horizontal-field component of the deprojected AR
  vector magnetograms. (The magnetogram's horizontal-field component
  more directly reflects the AR's free magnetic energy than does the
  magnetogram's vertical-field component.) By using our statistical method
  of measuring, via a skill score, whether the forecasting performance
  of one AR magnetogram parameter is significantly better than that
  of another, we show which free-energy proxy is the best major-flare
  predictor that we have found so far.

---------------------------------------------------------
Title: Birth of a Bipolar Active Region in a Small Solar Coronal Hole
Authors: Adams, Mitzi; Panesar, Navdeep Kaur; Moore, Ronald L.
2018tess.conf20235A    Altcode:
  We report on an the emergence of an anemone active region in a very
  small

---------------------------------------------------------
Title: Observations of Large Penumbral Jets from IRIS and Hinode
Authors: Tiwari, Sanjiv K.; Moore, Ronald Lee; De Pontieu, Bart;
   Tarbell, Theodore D.; Panesar, Navdeep Kaur; Winebarger, Amy R.;
   Sterling, Alphonse C.
2018tess.conf40807T    Altcode:
  Recent observations from Hinode (SOT/FG) revealed the presence of
  large penumbral jets (widths ≥ 500 km, larger than normal penumbral
  microjets, which have widths &lt; 400 km) repeatedly occurring at
  the same locations in a sunspot penumbra, at the tail of a penumbral
  filament or where the tails of several penumbral filaments apparently
  converge (Tiwari et al. 2016, ApJ). These locations were observed
  to have mixed-polarity flux in Stokes-V images from SOT/FG. Large
  penumbral jets displayed direct signatures in AIA 1600, 304, 171,
  and 193 channels; thus they were heated to at least transition region
  temperatures. Because large jets could not be detected in AIA 94 Å,
  whether they had any coronal-temperature plasma remains unclear. In
  the present work, for another sunspot, we use IRIS Mg II k 2796
  slit jaw images and spectra and magnetograms from Hinode SOT/FG and
  SOT/SP to examine: whether penumbral jets spin, similar to spicules
  and coronal jets in the quiet Sun and coronal holes; whether they stem
  from mixed-polarity flux; and whether they produce discernible coronal
  emission, especially in AIA 94 Å images.

---------------------------------------------------------
Title: Onset of the Magnetic Explosion in Solar Polar Coronal
    X-Ray Jets
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.
2018ApJ...859....3M    Altcode: 2018arXiv180512182M
  We follow up on the Sterling et al. discovery that nearly all polar
  coronal X-ray jets are made by an explosive eruption of a closed
  magnetic field carrying a miniature filament in its core. In the same
  X-ray and EUV movies used by Sterling et al., we examine the onset
  and growth of the driving magnetic explosion in 15 of the 20 jets
  that they studied. We find evidence that (1) in a large majority of
  polar X-ray jets, the runaway internal/tether-cutting reconnection
  under the erupting minifilament flux rope starts after both the
  minifilament’s rise and the spire-producing external/breakout
  reconnection have started; and (2) in a large minority, (a) before
  the eruption starts, there is a current sheet between the explosive
  closed field and the ambient open field, and (b) the eruption starts
  with breakout reconnection at that current sheet. The variety of
  event sequences in the eruptions supports the idea that the magnetic
  explosions that make polar X-ray jets work the same way as the much
  larger magnetic explosions that make a flare and coronal mass ejection
  (CME). That idea and recent observations indicating that magnetic
  flux cancellation is the fundamental process that builds the field
  in and around the pre-jet minifilament and triggers that field’s
  jet-driving explosion together suggest that flux cancellation inside
  the magnetic arcade that explodes in a flare/CME eruption is usually
  the fundamental process that builds the explosive field in the core
  of the arcade and triggers that field’s explosion.

---------------------------------------------------------
Title: Magnetic Flux Cancelation as the Trigger of Solar Coronal
    Jets in Coronal Holes
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2018ApJ...853..189P    Altcode: 2018arXiv180105344P
  We investigate in detail the magnetic cause of minifilament eruptions
  that drive coronal-hole jets. We study 13 random on-disk coronal-hole
  jet eruptions, using high-resolution X-ray images from the Hinode/X-ray
  telescope(XRT), EUV images from the Solar Dynamics Observatory
  (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the
  SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track
  the evolution of the jet-base region and find that a minifilament of
  cool (transition-region-temperature) plasma is present prior to each jet
  eruption. HMI magnetograms show that the minifilaments reside along a
  magnetic neutral line between majority-polarity and minority-polarity
  magnetic flux patches. These patches converge and cancel with each
  other, with an average cancelation rate of ∼0.6 × 10<SUP>18</SUP>
  Mx hr<SUP>-1</SUP> for all 13 jets. Persistent flux cancelation at
  the neutral line eventually destabilizes the minifilament field, which
  erupts outward and produces the jet spire. Thus, we find that all 13
  coronal-hole-jet-driving minifilament eruptions are triggered by flux
  cancelation at the neutral line. These results are in agreement with
  our recent findings for quiet-region jets, where flux cancelation at
  the underlying neutral line triggers the minifilament eruption that
  drives each jet. Thus, from that study of quiet-Sun jets and this
  study of coronal-hole jets, we conclude that flux cancelation is the
  main candidate for triggering quiet-region and coronal-hole jets.

---------------------------------------------------------
Title: Theory and Transport of Nearly Incompressible
    Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence
Authors: Zank, G. P.; Adhikari, L.; Hunana, P.; Tiwari, S. K.; Moore,
   R.; Shiota, D.; Bruno, R.; Telloni, D.
2018ApJ...854...32Z    Altcode:
  A new model describing the transport and evolution of turbulence in the
  quiet solar corona is presented. In the low plasma beta environment,
  transverse photospheric convective fluid motions drive predominantly
  quasi-2D (nonpropagating) turbulence in the mixed-polarity “magnetic
  carpet,” together with a minority slab (Alfvénic) component. We use
  a simplified sub-Alfvénic flow velocity profile to solve transport
  equations describing the evolution and dissipation of turbulence from
  1\hspace{0.5em}{{t}}{{o}} 15 {R}<SUB>⊙ </SUB> (including the Alfvén
  surface). Typical coronal base parameters are used, although one model
  uses correlation lengths derived observationally by Abramenko et al.,
  and the other assumes values 10 times larger. The model predicts that
  (1) the majority quasi-2D turbulence evolves from a balanced state
  at the coronal base to an imbalanced state, with outward fluctuations
  dominating, at and beyond the Alfvén surface, i.e., inward turbulent
  fluctuations are dissipated preferentially; (2) the initially imbalanced
  slab component remains imbalanced throughout the solar corona, being
  dominated by outwardly propagating Alfvén waves, and wave reflection
  is weak; (3) quasi-2D turbulence becomes increasingly magnetized,
  and beyond ∼ 6 {R}<SUB>⊙ </SUB>, the kinetic energy is mainly
  in slab fluctuations; (4) there is no accumulation of inward energy
  at the Alfvén surface; (5) inertial range quasi-2D rather than slab
  fluctuations are preferentially dissipated within ∼ 3 {R}<SUB>⊙
  </SUB>; and (6) turbulent dissipation of quasi-2D fluctuations is
  sufficient to heat the corona to temperatures ∼ 2× {10}<SUP>6</SUP>
  K within 2 {R}<SUB>⊙ </SUB>, consistent with observations that suggest
  that the fast solar wind is accelerated most efficiently between ∼
  2\hspace{0.5em}{{a}}{{n}}{{d}} 4 {R}<SUB>⊙ </SUB>.

---------------------------------------------------------
Title: A Microfilament-Eruption Mechanism for Solar Spicules
Authors: Sterling, A. C.; Moore, R. L.
2017AGUFMSH43A2791S    Altcode:
  Recent studies indicate that solar coronal jets result from eruption
  of small-scale filaments, or "minifilaments" (Sterling et al. 2015,
  Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects,
  these coronal jets appear to be small-scale versions of long-recognized
  large-scale solar eruptions that are often accompanied by eruption of
  a large-scale filament and that produce solar flares and coronal mass
  ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that
  is often observed to accompany the jet and that sits on the magnetic
  neutral line from which the minifilament erupts, corresponds to the
  solar flare of larger-scale eruptions that occurs at the neutral line
  from which the large-scale filament erupts. Large-scale eruptions are
  relatively uncommon ( 1/day) and occur with relatively large-scale
  erupting filaments ( 10^5 km long). Coronal jets are more common (&gt;
  100s/day), but occur from erupting minifilaments of smaller size ( 10^4
  km long). It is known that solar spicules are much more frequent (many
  millions/day) than coronal jets. Just as coronal jets are small-scale
  versions of large-scale eruptions, here we suggest that solar spicules
  might in turn be small-scale versions of coronal jets; we postulate that
  the spicules are produced by eruptions of “microfilaments” of length
  comparable to the width of observed spicules ( 300 km). A plot of the
  estimated number of the three respective phenomena (flares/CMEs, coronal
  jets, and spicules) occurring on the Sun at a given time, against the
  average sizes of erupting filaments, minifilaments, and the putative
  microfilaments, results in a size distribution that can be fit with a
  power-law within the estimated uncertainties. The counterparts of the
  flares of large-scale eruptions and the JBPs of jets might be weak,
  pervasive, transient brightenings observed in Hinode/CaII images, and
  the production of spicules by microfilament eruptions might explain why
  spicules spin, as do coronal jets. The expected small-scale neutral
  lines from which the microfilaments would be expected to erupt would
  be difficult to detect reliably with current instrumentation, but
  might be apparent with instrumentation of the near future. A summary
  of this work appears in Sterling and Moore 2016, ApJL, 829, L9.

---------------------------------------------------------
Title: Critical Magnetic Field Strengths for Unipolar Solar Coronal
    Plumes in Quiet Regions and Coronal Holes?
Authors: Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L.
2017AGUFMSH43A2797A    Altcode:
  Coronal plumes are sporadic fountain-like structures that are bright
  in coronal emission. Each is a magnetic funnel rooted in a strong
  patch of dominant-polarity photospheric magnetic flux surrounded by
  a predominantly-unipolar magnetic network, either in a quiet region
  or a coronal hole. The heating processes that make plumes bright
  evidently involve the magnetic field in the base of the plume, but
  remain mysterious. Raouafi et al. (2014) inferred from observations
  that plume heating is a consequence of magnetic reconnection in the
  base, whereas Wang et al. (2016) showed that plume heating turns
  on/off from convection-driven convergence/divergence of the base
  flux. While both papers suggest that the base magnetic flux in their
  plumes is of mixed polarity, these papers provide no measurements
  of the abundance and strength of the evolving base flux or consider
  whether a critical magnetic field strength is required for a plume to
  become noticeably bright. To address plume production and evolution,
  we track the plume luminosity and the abundance and strength of the
  base magnetic flux over the lifetimes of six coronal plumes, using
  Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171
  Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight
  magnetograms. Three of these plumes are in coronal holes, three are in
  quiet regions, and each plume exhibits a unipolar base flux. We track
  the base magnetic flux over each plume's lifetime to affirm that its
  convergence and divergence respectively coincide with the appearance
  and disappearance of the plume in 171 Å images. We tentatively find
  that plume formation requires enough convergence of the base flux to
  surpass a field strength of ∼300-500 Gauss, and that quiet Sun and
  coronal-hole plumes both exhibit the same behavior in the response of
  their luminosity in 171 Å to the strength of the magnetic field in
  the base.

---------------------------------------------------------
Title: Dynamic Solar Coronal Jets occurring in a Near-Limb Active
    Region
Authors: Velasquez, J.; Sterling, A. C.; Falconer, D. A.; Moore,
   R. L.; Panesar, N. K.
2017AGUFMSH43A2792V    Altcode:
  Coronal Jets are long, narrow columns of plasma ejected from the lower
  solar atmosphere into the corona and observed at coronal wavelengths. In
  this study, we observe a series of coronal jets occurring in NOAA
  active region (AR) 12473 on 2015 December 30. At that time the AR was
  approaching the Sun's west limb, allowing for observation of the jets in
  profile, contrasting with our recent studies of on-disk active region
  jets (Sterling et al. 2016, ApJ, 821, 100; and 2017, ApJ, 844, 28). We
  observe the jets using X-ray images from Hinode's X-Ray Telescope
  (XRT) and EUV images from the Solar Dynamic Observatory's (SDO)
  Atmospheric Imaging Assembly (AIA). Here, we investigate the dynamic
  trajectories of about 9 jets, by measuring the distance between the jet
  base and the leading edge of the erupting jet (i.e., the jet length)
  as a function of time, when observed in 304 Angstrom AIA images. All
  of the selected jets are concurrently visible in X-rays, and thus we
  are measuring properties of the chromospheric-transition region "cool
  component" of X-ray jets; in most cases, the appearance of the jets,
  such as the length of their spire, differs substantially between the
  X-ray and EUV 304 Angstrom images. For our selection of jets, we find
  that in the 304 Angstrom images many of them spin as they extend. Most
  of those in our selection do not make coronal mass ejections (CMEs);
  on average our jets have outward velocities of about 126 km/s, average
  maximum lengths of 84,000 km, and average lifetimes of 38 min. These
  values fall in the range of outward velocities and lifetimes found by
  Panesar et al. (2016, ApJ, 822, L23) for active-region 304 Angstrom jets
  that did not make CMEs. These values are also comparable to those found
  by Moschou et al. (2013, Solar Phys, 284, 427) for a selection of quiet
  Sun and coronal hole 304 Angstrom jets. One of our selected jets did
  make a CME, and it has outward velocity of about 240 km/s, consistent
  with the Panesar et al. (2016) results for CME-producing jets.

---------------------------------------------------------
Title: Magnetic Flux Cancellation as the Trigger of Solar Coronal Jets
Authors: McGlasson, R.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2017AGUFMSH43A2796M    Altcode:
  Coronal jets are narrow eruptions in the solar corona, and are often
  observed in extreme ultraviolet (EUV) and X-ray images. They occur
  everywhere on the solar disk: in active regions, quiet regions,
  and coronal holes (Raouafi et al. 2016). Recent studies indicate
  that most coronal jets in quiet regions and coronal holes are driven
  by the eruption of a minifilament (Sterling et al. 2015), and that
  this eruption follows flux cancellation at the magnetic neutral line
  under the pre-eruption minifilament (Panesar et al. 2016). We confirm
  this picture for a large sample of jets in quiet regions and coronal
  holes using multithermal (304 Å 171 Å, 193 Å, and 211 Å) extreme
  ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)
  /Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from
  the SDO /Helioseismic and Magnetic Imager (HMI). We report observations
  of 60 randomly selected jet eruptions. We have analyzed the magnetic
  cause of these eruptions and measured the base size and the duration of
  each jet using routines in SolarSoft IDL. By examining the evolutionary
  changes in the magnetic field before, during, and after jet eruption,
  we found that each of these jets resulted from minifilament eruption
  triggered by flux cancellation at the neutral line. In agreement
  with the above studies, we found our jets to have an average base
  diameter of 7600 ± 2700 km and an average duration of 9.0 ± 3.6
  minutes. These observations confirm that minifilament eruption is the
  driver and magnetic flux cancellation is the primary trigger mechanism
  for nearly all coronal hole and quiet region coronal jet eruptions.

---------------------------------------------------------
Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal
Loops: New Evidence that Magnetoconvection Drives Solar-Stellar
    Coronal Heating
Authors: Tiwari, S. K.; Thalmann, J. K.; Panesar, N. K.; Moore, R. L.;
   Winebarger, A. R.
2017AGUFMSH43A2789T    Altcode:
  Coronal heating generally increases with increasing magnetic field
  strength: the EUV/X-ray corona in active regions is 10-100 times more
  luminous and 2-4 times hotter than that in quiet regions and coronal
  holes, which are heated to only about 1.5 MK, and have fields that are
  10-100 times weaker than that in active regions. From a comparison of
  a nonlinear force-free model of the three-dimensional active region
  coronal field to observed extreme-ultraviolet loops, we find that (1)
  umbra-to-umbra coronal loops, despite being rooted in the strongest
  magnetic flux, are invisible, and (2) the brightest loops have one
  foot in an umbra or penumbra and the other foot in another sunspot's
  penumbra or in unipolar or mixed-polarity plage. The invisibility of
  umbra-to-umbra loops is new evidence that magnetoconvection drives
  solar-stellar coronal heating: evidently, the strong umbral field at
  both ends quenches the magnetoconvection and hence the heating. Our
  results from EUV observations and nonlinear force-free modeling of
  coronal magnetic field imply that, for any coronal loop on the Sun or
  on any other convective star, as long as the field can be braided by
  convection in at least one loop foot, the stronger the field in the
  loop, the stronger the coronal heating.

---------------------------------------------------------
Title: Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation
Authors: Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2017AGUFMSH41C..03P    Altcode:
  We recently investigated the triggering mechanism of ten quiet-region
  coronal jet eruptions and found that magnetic flux cancellation at the
  neutral line of minifilaments is the main cause of quiet-region jet
  eruptions (Panesar et al 2016). However, what leads to the formation
  of the pre-jet minifilaments remained unknown. In the present work,
  we study the longer-term evolution of the magnetic field that leads
  to the formation of pre-jet minifilaments by using SDO/AIA intensity
  images and concurrent line of sight SDO/HMI magnetograms. We find
  that each of the ten pre-jet minifilaments formed due to progressive
  flux cancellation between the minority-polarity and majority-polarity
  flux patches (with a minority-polarity flux loss of 10% - 40% prior
  to minifilament birth). Apparently, the flux cancellation between the
  opposite polarity flux patches builds a highly-sheared field at the
  magnetic neutral line, and that field holds the cool transition region
  minifilament plasma. Even after the formation of minifilaments, the
  flux continues to cancel, making the minifilament body more thick and
  prominent. Further flux cancellation between the opposite-flux patches
  leads to the minifilament eruption and a resulting jet. From these
  observations, we infer that flux cancellation is usually the process
  that builds up the sheared and twisted field in pre-jet minifilaments,
  and that triggers it to erupt and drive a jet.

---------------------------------------------------------
Title: Coronal Heating and the Magnetic Field in Solar Active Regions
Authors: Falconer, D. A.; Tiwari, S. K.; Winebarger, A. R.; Moore,
   R. L.
2017AGUFMSH43A2790F    Altcode:
  A strong dependence of active-region (AR) coronal heating on the
  magnetic field is demonstrated by the strong correlation of AR X-ray
  luminosity with AR total magnetic flux (Fisher et al 1998 ApJ). AR X-ray
  luminosity is also correlated with AR length of strong-shear neutral
  line in the photospheric magnetic field (Falconer 1997). These two
  whole-AR magnetic parameters are also correlated with each other. From
  150 ARs observed within 30 heliocentric degrees from disk center by AIA
  and HMI on SDO, using AR luminosity measured from the hot component of
  the AIA 94 Å band (Warren et al 2012, ApJ) near the time of each of
  3600 measured HMI vector magnetograms of these ARs and a wide selection
  of whole-AR magnetic parameters from each vector magnetogram after
  it was deprojected to disk center, we find: (1) The single magnetic
  parameter having the strongest correlation with AR 94-hot luminosity
  is the length of strong-field neutral line. (2) The two-parameter
  combination having the strongest still-stronger correlation with AR
  94-hot luminosity is a combination of AR total magnetic flux and AR
  neutral-line length weighted by the vertical-field gradient across
  the neutral line. We interpret these results to be consistent with the
  results of both Fisher et al (1998) and Falconer (1997), and with the
  correlation of AR coronal loop heating with loop field strength recently
  found by Tiwari et al (2017, ApJ Letters). Our interpretation is that,
  in addition to depending strongly on coronal loop field strength,
  AR coronal heating has a strong secondary positive dependence on the
  rate of flux cancelation at neutral lines at coronal loop feet. This
  work was funded by the Living With a Star Science and Heliophysics
  Guest Investigators programs of NASA's Heliophysics Division.

---------------------------------------------------------
Title: Onset of a Large Ejective Solar Eruption from a Typical
    Coronal-jet-base Field Configuration
Authors: Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald
   L.; Magara, Tetsuya; Moon, Yong-Jae
2017ApJ...845...26J    Altcode: 2017arXiv170609176J
  Utilizing multiwavelength observations and magnetic field data from
  the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
  (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary
  Operational Environmental Satellite (GOES), and RHESSI, we investigate
  a large-scale ejective solar eruption of 2014 December 18 from active
  region NOAA 12241. This event produced a distinctive “three-ribbon”
  flare, having two parallel ribbons corresponding to the ribbons of a
  standard two-ribbon flare, and a larger-scale third quasi-circular
  ribbon offset from the other two. There are two components to this
  eruptive event. First, a flux rope forms above a strong-field polarity
  inversion line and erupts and grows as the parallel ribbons turn on,
  grow, and spread apart from that polarity inversion line; this evolution
  is consistent with the mechanism of tether-cutting reconnection for
  eruptions. Second, the eruption of the arcade that has the erupting
  flux rope in its core undergoes magnetic reconnection at the null
  point of a fan dome that envelops the erupting arcade, resulting
  in formation of the quasi-circular ribbon; this is consistent with
  the breakout reconnection mechanism for eruptions. We find that
  the parallel ribbons begin well before (∼12 minutes) the onset
  of the circular ribbon, indicating that tether-cutting reconnection
  (or a non-ideal MHD instability) initiated this event, rather than
  breakout reconnection. The overall setup for this large-scale eruption
  (diameter of the circular ribbon ∼10<SUP>5</SUP> km) is analogous to
  that of coronal jets (base size ∼10<SUP>4</SUP> km), many of which,
  according to recent findings, result from eruptions of small-scale
  “minifilaments.” Thus these findings confirm that eruptions of
  sheared-core magnetic arcades seated in fan-spine null-point magnetic
  topology happen on a wide range of size scales on the Sun.

---------------------------------------------------------
Title: A new method to quantify and reduce projection error in
    whole-solar-active-region parameters measured from vector magnetograms
Authors: Falconer, David; Tiwari, Sanjiv K.; Moore, Ronald L.;
   Khazanov, Igor
2017SPD....4811107F    Altcode:
  Projection error limits the use of vector magnetograms of active regions
  (ARs) far from disk center. For ARs observed up to 60<SUP>o</SUP>
  from disk center, we demonstrate a method of measuring and reducing
  the projection error in the magnitude of any whole-AR parameter derived
  from a vector magnetogram that has been deprojected to disk center. The
  method assumes that the center-to-limb curve of the average of the
  parameter’s absolute values measured from the disk passage of a
  large number of ARs and normalized to each AR’s absolute value of the
  parameter at central meridian, gives the average fractional projection
  error at each radial distance from disk center. To demonstrate the
  method, we use a large set of large-flux ARs and apply the method to
  a whole-AR parameter that is among the simplest to measure: whole-AR
  magnetic flux. We measure 30,845 SDO/HMI vector magnetograms covering
  the disk passage of 272 large-flux ARs, each having whole-AR flux
  &gt;10<SUP>22 </SUP>Mx. We obtain the center-to-limb radial-distance
  run of the average projection error in measured whole-AR flux from
  a Chebyshev fit to the radial-distance plot of the 30,845 normalized
  measured values. The average projection error in the measured whole-AR
  flux of an AR at a given radial distance is removed by multiplying the
  measured flux by the correction factor given by the fit. The correction
  is important for both the study of evolution of ARs and for improving
  the accuracy of forecasting an AR’s major flare/CME productivity. We
  will also show corrections for other whole-AR parameters, especially
  AR free-energy proxies.

---------------------------------------------------------
Title: Onset of the Magnetic Explosion in Solar Polar Coronal
    X-Ray Jets
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep
2017SPD....4820006M    Altcode:
  We examine the onset of the driving magnetic explosion in 15 random
  polar coronal X-ray jets. Each eruption is observed in a coronal
  X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics
  Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437)
  scenario for minifilament eruptions that drive polar coronal jets,
  these observations indicate: (1) in most polar coronal jets (a)
  the runaway internal tether-cutting reconnection under the erupting
  minifilament flux rope starts after the spire-producing breakout
  reconnection starts, not before it, and (b) aleady at eruption onset,
  there is a current sheet between the explosive closed magnetic field
  and ambient open field; and (2) the minifilament-eruption magnetic
  explosion often starts with the breakout reconnection of the outside
  of the magnetic arcade that carries the minifilament in its core. On
  the other hand, the diversity of the observed sequences of occurrence
  of events in the jet eruptions gives further credence to the Sterlling
  et al (2015, Nature, 523, 437) idea that the magnetic explosions that
  make a polar X-ray jet work the same way as the much larger magnetic
  explosions that make and flare and CME. We point out that this idea,
  and recent observations indicating that magnetic flux cancelation is
  the fundamental process that builds the field in and around pre-jet
  minifilaments and triggers the jet-driving magnetic explosion, together
  imply that usually flux cancelation inside the arcade that explodes
  in a flare/CME eruption is the fundamental process that builds the
  explosive field and triggers the explosion.This work was funded by the
  Heliophysics Division of NASA's Science Mission Directorate through
  its Living With a Star Targeted Research and Technology Program,
  its Heliophsyics Guest Investigators Program, and the Hinode Project.

---------------------------------------------------------
Title: Active Region Jets II: Triggering and Evolution of Violent Jets
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David;
   Panesar, Navdeep K.; Martinez, Francisco
2017SPD....4830403S    Altcode:
  We study a series of X-ray-bright, rapidly evolving active-region
  coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT,
  SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such
  rapidly evolving “violent” jets remained a mystery after our
  previous investigation of active region jets (Sterling et al. 2016,
  ApJ, 821, 100). The jets we investigate here erupt from three
  localized subregions, each containing a rapidly evolving (positive)
  minority-polarity magnetic-flux patch bathed in a (majority)
  negative-polarity magnetic-flux background. At least several of
  the jets begin with eruptions of what appear to be thin (thickness
  ∼&lt;2‧‧) miniature-filament (minifilament) “strands” from
  a magnetic neutral line where magnetic flux cancelation is ongoing,
  consistent with the magnetic configuration presented for coronal-hole
  jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands
  are difficult/ impossible to detect, perhaps due to their thinness,
  obscuration by surrounding bright or dark features, or the absence
  of erupting cool-material minifilaments in those jets. Tracing
  in detail the flux evolution in one of the subregions, we find
  bursts of strong jetting occurring only during times of strong flux
  cancelation. Averaged over seven jetting episodes, the cancelation
  rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled
  prior to each episode, arguably building up ~10^28—10^29 ergs of
  free magnetic energy per jet. From these and previous observations,
  we infer that flux cancelation is the fundamental process responsible
  for the pre-eruption buildup and triggering of at least many jets in
  active regions, quiet regions, and coronal holes.

---------------------------------------------------------
Title: Flux Cancelation as the trigger of quiet-region coronal
    jet eruptions
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2017SPD....4830402P    Altcode:
  Coronal jets are frequent transient features on the Sun, observed
  in EUV and X-ray emissions. They occur in active regions, quiet
  Sun and coronal holes, and appear as a bright spire with base
  brightenings. Recent studies show that many coronal jets are driven by
  the eruption of a minifilament. Here we investigate the magnetic cause
  of jet-driving minifilament eruptions. We study ten randomly-found
  on-disk quiet-region coronal jets using SDO/AIA intensity images
  and SDO/HMI magnetograms. For all ten events, we track the evolution
  of the jet-base region and find that (a) a cool (transition-region
  temperature) minifilament is present prior to each jet eruption; (b)
  the pre-eruption minifilament resides above the polarity-inversion line
  between majority-polarity and minority-polarity magnetic flux patches;
  (c) the opposite-polarity flux patches converge and cancel with each
  other; (d) the ongoing cancelation between the majority-polarity and
  minority-polarity flux patches eventually destabilizes the field holding
  the minifilament to erupt outwards; (e) the envelope of the erupting
  field barges into ambient oppositely-directed far-reaching field and
  undergoes external reconnection (interchange reconnection); (f) the
  external reconnection opens the envelope field and the minifilament
  field inside, allowing reconnection-heated hot material and cool
  minifilament material to escape along the reconnected far-reaching
  field, producing the jet spire. In summary, we found that each of our
  ten jets resulted from a minifilament eruption during flux cancelation
  at the magnetic neutral line under the pre-eruption minifilament. These
  observations show that flux cancelation is usually the trigger of
  quiet-region coronal jet eruptions.

---------------------------------------------------------
Title: Magnetic Flux Cancellation as the Origin of Solar Quiet-region
    Pre-jet Minifilaments
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2017ApJ...844..131P    Altcode: 2017arXiv170609079P
  We investigate the origin of 10 solar quiet-region pre-jet
  minifilaments, using EUV images from the Solar Dynamics Observatory
  (SDO)/Atmospheric Imaging Assembly (AIA) and magnetograms from the
  SDO Helioseismic and Magnetic Imager (HMI). We recently found that
  quiet-region coronal jets are driven by minifilament eruptions, where
  those eruptions result from flux cancellation at the magnetic neutral
  line under the minifilament. Here, we study the longer-term origin of
  the pre-jet minifilaments themselves. We find that they result from
  flux cancellation between minority-polarity and majority-polarity flux
  patches. In each of 10 pre-jet regions, we find that opposite-polarity
  patches of magnetic flux converge and cancel, with a flux reduction
  of 10%-40% from before to after the minifilament appears. For our 10
  events, the minifilaments exist for periods ranging from 1.5 hr to 2
  days before erupting to make a jet. Apparently, the flux cancellation
  builds a highly sheared field that runs above and traces the neutral
  line, and the cool transition region plasma minifilament forms in this
  field and is suspended in it. We infer that the convergence of the
  opposite-polarity patches results in reconnection in the low corona
  that builds a magnetic arcade enveloping the minifilament in its core,
  and that the continuing flux cancellation at the neutral line finally
  destabilizes the minifilament field so that it erupts and drives the
  production of a coronal jet. Thus, our observations strongly support
  that quiet-region magnetic flux cancellation results in both the
  formation of the pre-jet minifilament and its jet-driving eruption.

---------------------------------------------------------
Title: Evidence from IRIS that Sunspot Large Penumbral Jets Spin
Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart;
   Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy; Sterling,
   Alphonse C.
2017SPD....4810506T    Altcode:
  Recent observations from {\it Hinode} (SOT/FG) revealed the presence of
  large penumbral jets (widths $\ge$500 km, larger than normal penumbral
  microjets, which have widths $&lt;$ 400 km) repeatedly occurring at the
  same locations in a sunspot penumbra, at the tail of a filament or where
  the tails of several penumbral filaments apparently converge (Tiwari et
  al. 2016, ApJ). These locations were observed to have mixed-polarity
  flux in Stokes-V images from SOT/FG. Large penumbral jets displayed
  direct signatures in AIA 1600, 304, 171, and 193 channels; thus they
  were heated to at least transition region temperatures. Because
  large jets could not be detected in AIA 94 \AA, whether they had
  any coronal-temperature plasma remains unclear. In the present work,
  for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and
  spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine:
  whether penumbral jets spin, similar to spicules and coronal jets in the
  quiet Sun and coronal holes; whether they stem from mixed-polarity flux;
  and whether they produce discernible coronal emission, especially in
  AIA 94 Å images. The few large penumbral jets for which we have IRIS
  spectra show evidence of spin. If these have mixed-polarity at their
  base, then they might be driven the same way as coronal jets and CMEs.

---------------------------------------------------------
Title: Babcock Redux: An Amendment of Babcock's Schematic of the
    Sun's Magnetic Cycle
Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.
2017SPD....4811103M    Altcode:
  We amend Babcock's original scenario for the global dynamo process
  that sustains the Sun's 22-year magnetic cycle. The amended scenario
  fits post-Babcock observed features of the magnetic activity cycle and
  convection zone, and is based on ideas of Spruit &amp; Roberts (1983,
  Nature, 304, 401) about magnetic flux tubes in the convection zone. A
  sequence of four schematic cartoons lays out the proposed evolution
  of the global configuration of the magnetic field above, in, and at
  the bottom of the convection zone through sunspot Cycle 23 and into
  Cycle 24. Three key elements of the amended scenario are: (1) as the
  net following-polarity magnetic field from the sunspot-region Ω-loop
  fields of an ongoing sunspot cycle is swept poleward to cancel and
  replace the opposite-polarity polar-cap field from the previous sunspot
  cycle, it remains connected to the ongoing sunspot cycle's toroidal
  source-field band at the bottom of the convection zone; (2) topological
  pumping by the convection zone's free convection keeps the horizontal
  extent of the poleward-migrating following-polarity field pushed to
  the bottom, forcing it to gradually cancel and replace old horizontal
  field below it that connects the ongoing-cycle source-field band to
  the previous-cycle polar-cap field; (3) in each polar hemisphere,
  by continually shearing the poloidal component of the settling new
  horizontal field, the latitudinal differential rotation low in the
  convection zone generates the next-cycle source-field band poleward
  of the ongoing-cycle band. The amended scenario is a more-plausible
  version of Babcock's scenario, and its viability can be explored
  by appropriate kinematic flux-transport solar-dynamo simulations. A
  paper giving a full description of our dynamo scenario is posted on
  arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the
  Heliophysics Division of NASA's Science Mission Directorate through
  the Living With a Star Targeted Research and Technology Program and
  the Hinode Project.

---------------------------------------------------------
Title: Solar Active Region Coronal Jets. II. Triggering and Evolution
    of Violent Jets
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.;
   Panesar, Navdeep K.; Martinez, Francisco
2017ApJ...844...28S    Altcode: 2017arXiv170503040S
  We study a series of X-ray-bright, rapidly evolving active region
  coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray
  telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly
  (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface
  Region Imaging Spectrograph (IRIS) data. The detailed evolution of
  such rapidly evolving “violent” jets remained a mystery after our
  previous investigation of active region jets. The jets we investigate
  here erupt from three localized subregions, each containing a rapidly
  evolving (positive) minority-polarity magnetic-flux patch bathed in a
  (majority) negative-polarity magnetic-flux background. At least several
  of the jets begin with eruptions of what appear to be thin (thickness
  ≲ 2<SUP>\prime\prime</SUP> ) miniature-filament (minifilament)
  “strands” from a magnetic neutral line where magnetic flux
  cancelation is ongoing, consistent with the magnetic configuration
  presented for coronal-hole jets in Sterling et al. (2016). Some jets
  strands are difficult/impossible to detect, perhaps due to, e.g.,
  their thinness, obscuration by surrounding bright or dark features,
  or the absence of erupting cool-material minifilaments in those
  jets. Tracing in detail the flux evolution in one of the subregions,
  we find bursts of strong jetting occurring only during times of strong
  flux cancelation. Averaged over seven jetting episodes, the cancelation
  rate was ∼ 1.5× {10}<SUP>19</SUP> Mx hr<SUP>-1</SUP>. An average
  flux of ∼ 5× {10}<SUP>18</SUP> Mx canceled prior to each episode,
  arguably building up ∼10<SUP>28</SUP>-10<SUP>29</SUP> erg of free
  magnetic energy per jet. From these and previous observations, we infer
  that flux cancelation is the fundamental process responsible for the
  pre-eruption build up and triggering of at least many jets in active
  regions, quiet regions, and coronal holes.

---------------------------------------------------------
Title: New Evidence that Magnetoconvection Drives Solar-Stellar
    Coronal Heating
Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Panesar, Navdeep K.;
   Moore, Ronald L.; Winebarger, Amy R.
2017ApJ...843L..20T    Altcode: 2017arXiv170608035T
  How magnetic energy is injected and released in the solar
  corona, keeping it heated to several million degrees, remains
  elusive. Coronal heating generally increases with increasing magnetic
  field strength. From a comparison of a nonlinear force-free model
  of the three-dimensional active region coronal field to observed
  extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal
  loops, despite being rooted in the strongest magnetic flux, are
  invisible, and (2) the brightest loops have one foot in an umbra or
  penumbra and the other foot in another sunspot’s penumbra or in
  unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra
  loops is new evidence that magnetoconvection drives solar-stellar
  coronal heating: evidently, the strong umbral field at both ends
  quenches the magnetoconvection and hence the heating. Broadly, our
  results indicate that depending on the field strength in both feet,
  the photospheric feet of a coronal loop on any convective star can
  either engender or quench coronal heating in the loop’s body.

---------------------------------------------------------
Title: The Triggering Mechanism of Coronal Jets and CMEs: Flux
    Cancelation
Authors: Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald
2017shin.confE..27P    Altcode:
  Recent investigations (e.g. Sterling et al 2015, Panesar et al 2016)
  show that coronal jets are driven by the eruption of a small-scale
  filament (10,000 - 20,000 km long, called a minifilament) following
  magnetic flux cancelation at the neutral line underneath the
  minifilament. Minifilament eruptions appear to be analogous to
  larger-scale solar filament eruptions: they both reside, before
  the eruption, in the highly sheared field between the adjacent
  opposite-polarity magnetic flux patches (neutral line); jet-producing
  minifilament and larger-scale solar filament first show a slow-rise,
  followed by a fast-rise as they erupt; during the jet-producing
  minifilament eruption a jet bright point (JBP) appears at the
  location where the minifilament was rooted before the eruption,
  analogous to the situation with CME-producing larger-scale filament
  eruptions where a solar flare arcade forms during the filament eruption
  along the neutral line along which the filament resided prior to its
  eruption. In the present study we investigate the triggering mechanism
  of CME-producing large solar filament eruptions, and find that enduring
  flux cancelation at the neutral line of the filaments often triggers
  their eruptions. This corresponds to the finding that persistent flux
  cancelation at the neutral is the cause of jet-producing minifilament
  eruptions. Thus our observations support coronal jets being miniature
  version of CMEs.

---------------------------------------------------------
Title: Probing the W tb vertex structure in t-channel single-top-quark
    production and decay in pp collisions at √{s}=8 TeV with the
    ATLAS detector
Authors: Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.;
   Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu,
   H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk,
   L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.;
   Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov,
   F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.;
   Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada;
   Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos,
   T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire,
   S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.;
   Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.;
   Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio,
   B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor
   Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu,
   L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson,
   K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.;
   Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.;
   Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki,
   M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz,
   V. Araujo; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos,
   S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold,
   H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.;
   Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan,
   K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.;
   Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca,
   M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.;
   Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.;
   Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio,
   E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M. -S.;
   Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett,
   R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.;
   Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães;
   Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.;
   Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce,
   M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.;
   Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.;
   Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov,
   V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.;
   Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.;
   Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev,
   N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos,
   N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.;
   Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge,
   D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.;
   Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.;
   Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche,
   C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.;
   Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.;
   Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski,
   R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud,
   T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.;
   Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black,
   K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker,
   C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.;
   Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler,
   M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.;
   Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben,
   M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt,
   J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman,
   M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker,
   E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.;
   Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt,
   O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden;
   Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler,
   S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock,
   I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer,
   J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko,
   D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH;
   Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.;
   Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.;
   Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.;
   Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.;
   Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.;
   Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti,
   P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera;
   Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.;
   Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba,
   L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.;
   Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans,
   R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani,
   A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero,
   J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.;
   Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli,
   I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney,
   R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter,
   J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper,
   D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez,
   V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.;
   Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.;
   Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda;
   Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.;
   Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.;
   Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau,
   C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.;
   Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.;
   Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.;
   El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.;
   Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan,
   A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou,
   S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba,
   J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.;
   Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto,
   F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark,
   B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou,
   Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.;
   Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis,
   E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu,
   S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar,
   A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.;
   Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa,
   M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.;
   Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs,
   W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.;
   Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth,
   J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio,
   M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.;
   Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.;
   Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger,
   M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.;
   Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison,
   P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De
   Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.;
   De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis,
   U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.;
   Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot,
   F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.;
   Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.;
   DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.;
   Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.;
   Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.;
   Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di
   Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo,
   R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino,
   D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.;
   Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.;
   Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland,
   J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi,
   J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini,
   J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.;
   Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.;
   Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.;
   Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.;
   Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta,
   B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards,
   N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi,
   M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot,
   A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari,
   Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis,
   G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch,
   H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans,
   H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov,
   R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.;
   Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.;
   Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht,
   P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett,
   W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni,
   L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.;
   Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.;
   Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere,
   D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini,
   L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel,
   N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.;
   Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.;
   Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier,
   D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis,
   D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn,
   D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost,
   J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster,
   J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach,
   G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea,
   C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster,
   G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls,
   F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres,
   M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon;
   Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.;
   Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee,
   C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt,
   K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.;
   George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.;
   Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.;
   Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich,
   D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.;
   Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.;
   Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.;
   Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov,
   A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.;
   Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa,
   J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de
   la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov,
   P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek,
   A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.;
   Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber,
   L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling,
   J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.;
   Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen,
   K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo,
   A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Groh, S.;
   Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.;
   Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.;
   Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.;
   Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.;
   Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam,
   C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck,
   S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian,
   G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton,
   A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.;
   Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.;
   Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.;
   Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison,
   P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.;
   Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek,
   M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays,
   C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.;
   Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim,
   T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal,
   J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson,
   R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques;
   Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez,
   Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh,
   G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.;
   Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines,
   E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.;
   Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp,
   M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.;
   Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.;
   Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howarth, J.;
   Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.;
   Hrynevich, A.; Hsu, P. J.; Hsu, S. -C.; Hu, Q.; Hu, S.; Huang, Y.;
   Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.;
   Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.;
   Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.;
   Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno,
   M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.;
   Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.;
   Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe;
   Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson,
   B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.;
   Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.;
   Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.;
   Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.;
   Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.;
   Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru,
   A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson,
   C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones,
   S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.;
   Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.;
   Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.;
   Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.;
   Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.;
   Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik,
   K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.;
   Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.;
   Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.;
   Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian,
   H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader,
   M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.;
   Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby,
   C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.;
   King, B. T.; King, M.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.;
   Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.;
   Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.;
   Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg,
   R.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik,
   J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.;
   Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas,
   T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.;
   Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas,
   K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner,
   O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris,
   A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.;
   Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.;
   Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.;
   Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.;
   Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka,
   K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.;
   Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal,
   M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.;
   Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky,
   Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.;
   Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.;
   Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos,
   D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.;
   Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.;
   Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon,
   E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.;
   Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.;
   Lapertosa, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.;
   Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law,
   A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz,
   O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.;
   Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.;
   Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto,
   G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.;
   Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.;
   Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.;
   Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko,
   M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.;
   Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.;
   Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.;
   Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.;
   Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi,
   M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.;
   Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.;
   Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.;
   Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew,
   K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long,
   B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez,
   J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis,
   A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.;
   Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti,
   H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.;
   Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.;
   Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.;
   Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens,
   J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.;
   Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze,
   E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier,
   T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.;
   Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone,
   C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli,
   L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos,
   J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.;
   Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.;
   March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley,
   D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia,
   S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin;
   Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu,
   V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.;
   Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.;
   Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.;
   Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini,
   R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee,
   S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont,
   L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon,
   S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.;
   Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia,
   B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng,
   X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod,
   P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe,
   J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.;
   Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi,
   S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi,
   M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.;
   Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur,
   B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.;
   Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.;
   Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki,
   K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden,
   R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano,
   A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore,
   R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.;
   Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak,
   V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj,
   L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi,
   K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd,
   R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.;
   Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz;
   Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja,
   M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.;
   Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel,
   M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.;
   Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias;
   Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.;
   Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic,
   S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno,
   A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski,
   P.; Newman, P. R.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou,
   R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.;
   Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe,
   T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.;
   Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka,
   L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.;
   O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.;
   Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren,
   H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.;
   Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino,
   S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.;
   Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.;
   Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.;
   y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou,
   A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.;
   Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco;
   Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais,
   P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.;
   Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.;
   Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi,
   L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez,
   D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi,
   F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci,
   E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater,
   J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez,
   S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng,
   H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.;
   Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke,
   R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.;
   Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.;
   Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.;
   Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.;
   Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher,
   J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold,
   J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.;
   Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.;
   Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.;
   Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès,
   K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton,
   A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.;
   Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga,
   M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price,
   L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.;
   Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit,
   M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.;
   Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu,
   V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal,
   G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.;
   Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.;
   Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.;
   Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.;
   Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren,
   H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.;
   Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was,
   E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.;
   Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi,
   L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.;
   Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.;
   Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.;
   Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.;
   Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano;
   Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati,
   S.; Rosbach, K.; Rose, P.; Rosien, N. -A.; Rossetti, V.; Rossi,
   E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.;
   Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova,
   Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord,
   J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.;
   Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti,
   S.; Sadrozinski, H. F. -W.; Sadykov, R.; Tehrani, F. Safai; Saha,
   P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai,
   Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek,
   D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.;
   Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel,
   D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda,
   A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.;
   Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico,
   R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva,
   J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.;
   Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra,
   C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.;
   Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.;
   Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.;
   Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger,
   R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.;
   Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.;
   Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.;
   Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.;
   Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.;
   Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.;
   Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.;
   Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger,
   H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.;
   Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel,
   S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon,
   K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin,
   L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.;
   Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.;
   Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.;
   Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.;
   Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva,
   A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.;
   Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.;
   Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.;
   Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.;
   Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon,
   D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.;
   Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe,
   H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa,
   K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.;
   Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith,
   J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.;
   Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.;
   Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar,
   M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.;
   Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.;
   Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou,
   C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.;
   Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.;
   Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis,
   R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek,
   R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.;
   Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.;
   Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer,
   B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte,
   P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.;
   Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec,
   P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci,
   S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya,
   Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun,
   X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.;
   Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.;
   Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout,
   R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo,
   Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka,
   R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia;
   Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.;
   Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor,
   A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger,
   F. A.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.;
   Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo,
   S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.;
   Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.;
   Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.;
   Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome,
   K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku,
   K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.;
   Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró;
   Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.;
   Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.;
   Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.;
   Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng,
   J. C. -L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.;
   Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.;
   Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.;
   Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi,
   S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.;
   Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal,
   G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.;
   Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant,
   L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes;
   Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.;
   Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.;
   van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop,
   J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.;
   Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.;
   Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell,
   K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder,
   T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso,
   F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini,
   A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest,
   A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu,
   O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.;
   Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.;
   Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.;
   Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von
   Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld,
   J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk,
   M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg,
   H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak,
   W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.;
   Wang, J.; Wang, J.; Wang, K.; Wang, Q.; Wang, R.; Wang, S. M.; Wang,
   T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope,
   D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.;
   Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber,
   S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert,
   B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus,
   T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.;
   Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.;
   White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.;
   Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.;
   Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.;
   Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier,
   F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf,
   T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek,
   B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu,
   M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella,
   S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.;
   Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi,
   K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.;
   Yao, W. -M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye,
   J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.;
   Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.;
   Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.;
   Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk,
   N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.;
   Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.;
   Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.;
   Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.;
   Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.;
   Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou,
   M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.;
   Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.;
   Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković,
   L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.
2017JHEP...04..124A    Altcode: 2019arXiv190605310A
  To probe the W tb vertex structure, top-quark and W -boson polarisation
  observables are measured from t-channel single-top-quark events produced
  in proton-proton collisions at a centre-of-mass energy of 8 TeV. The
  dataset corresponds to an integrated luminosity of 20.2 fb<SUP>-1</SUP>,
  recorded with the ATLAS detector at the LHC. Selected events contain
  one isolated electron or muon, large missing transverse momentum and
  exactly two jets, with one of them identified as likely to contain a
  b-hadron. Stringent selection requirements are applied to discriminate
  t-channel single-top-quark events from background. The polarisation
  observables are extracted from asymmetries in angular distributions
  measured with respect to spin quantisation axes appropriately chosen for
  the top quark and the W boson. The asymmetry measurements are performed
  at parton level by correcting the observed angular distributions for
  detector effects and hadronisation after subtracting the background
  contributions. The measured top-quark and W -boson polarisation
  values are in agreement with the Standard Model predictions. Limits
  on the imaginary part of the anomalous coupling g <SUB>R</SUB> are
  also set from model-independent measurements. [Figure not available:
  see fulltext.]

---------------------------------------------------------
Title: 2017 FL1
Authors: Read, M. T.; Johnson, J. A.; Christensen, E. J.; Fuls, D. C.;
   Gibbs, A. R.; Grauer, A. D.; Kowalski, R. A.; Larson, S. M.; Leonard,
   G. J.; Matheny, R. G.; Seaman, R. L.; Shelly, F. C.; Schwartz, M.;
   Holvorcem, P. R.; McCarthy Obs, J. J.; Robson, M.; Moore, R.; Matthews,
   J.; Matthews, K.; Bosch, J. M.; Mantero, A.; Gibson, B.; Goggia, T.;
   Kahale, S.; Lowe, T.; Schultz, A.; Willman, M.; Chambers, K.; Chastel,
   S.; Denneau, L.; Flewelling, H.; Huber, M.; Lilly, E.; Magnier,
   E.; Wainscoat, R.; Waters, C.; Weryk, R.; Ryan, W. H.; Ryan, E. V.;
   Holmes, R.; Foglia, S.; Buzzi, L.; Linder, T.; Hudin, L.; Rowe, B.
2017MPEC....F...42R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Evaluation of the Minifilament-Eruption Scenario for Solar
    Coronal Jets in Polar Coronal Holes
Authors: Sterling, A. C.; Baikie, T. K.; Falconer, D. A.; Moore,
   R. L.; Savage, S. L.
2016AGUFMSH31B2574S    Altcode:
  Solar coronal jets are suspected to result from magnetic reconnection
  low in the Sun's atmosphere. Sterling et al. (2015) looked at 20 jets
  in polar coronal holes, using X-ray images from the Hinode/X-Ray
  Telescope (XRT) and EUV images from the Solar Dynamics Observatory
  (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet
  was driven by the eruption of twisted closed magnetic field carrying
  a small-scale filament, which they call a "minifilament", and that
  the jet was produced by reconnection of the erupting field with
  surrounding open field. In this study, we carry out a more extensive
  examination of polar coronal jets. From 280 hours of XRT polar coronal
  hole observations spread over two years (2014-2016), we identified 117
  clearly-identifiable X-ray jet events. From the broader set, we selected
  25 of the largest and brightest events for further study in AIA 171,
  193, 211, and 304 Angstrom images. We find that at least the majority
  of the jets follow the minifilament-eruption scenario, although for some
  cases the evolution of the minifilament in the onset of its eruption is
  more complex then presented in the simplified schematic of Sterling et
  al. (2015). For all cases in which we could make a clear determination,
  the spire of the X-ray jet drifted laterally away from the jet-base-edge
  bright point; this spire drift away from the bright point is consistent
  with expectations of the minifilament-eruption scenario for coronal-jet
  production. This work was supported with funding from the NASA/MSFC
  Hinode Project Office, and from the NASA HGI program.

---------------------------------------------------------
Title: Solar Coronal Jets in Active Regions
Authors: Sterling, A. C.; Moore, R. L.; Martinez, F.; Falconer, D. A.
2016AGUFMSH43E..06S    Altcode:
  Solar coronal jets are common in both coronal holes and in active
  regions. Recently, Sterling et al. (2015, Nature 523, 437), using data
  from Hinode/XRT and SDO/AIA, found that coronal jets originating in
  polar coronal holes result from the eruption of small-scale filaments
  (minifilaments). The jet bright point (JBP) seen in X-rays and hotter
  EUV channels off to one side of the base of the jet's spire develops
  at the location where the minifilament erupts, consistent with the JBPs
  being miniature versions of typical solar flares that occur in the wake
  of large-scale filament eruptions. Here we consider whether active
  region coronal jets also result from the same minifilament-eruption
  mechanism, or whether they instead result from a different process, such
  as emerging flux. Here we present observations of NOAA active region
  12259, over 13-20 Jan 2015, using observations from Hinode/XRT, and
  from SDO/AIA and HMI. We focused on 13 standout jets that we identified
  from an initial survey of the XRT X-ray images, and we found many more
  jets in the AIA data set, which have higher cadence and more continuous
  coverage than our XRT data. All 13 jets originated from identifiable
  magnetic neutral lines; we further found magnetic flux cancelation to
  be occurring at essentially all of these neutral lines. At least 6 of
  those 13 jets were homologous, developing with similar morphology from
  nearly the same location, and in fact there were many more jets in the
  homologous sequence apparent in the higher-fidelity AIA data. Each of
  these homologous jets was consistent with minifilament-like ejections at
  the start of the jets. Other jets displayed a variety of morphologies,
  at least some of which were consistent with minifilament eruptions. For
  other jets however we have not yet clearly deciphered the driving
  mechanism. Our overall conclusions are similar to those of our earlier
  study of active region jets (Sterling et al. 2016, ApJ, 821, 100), where
  we found: some jets clearly to result from mini-filament eruptions;
  it was difficult to disentangle the mechanism of some other jets;
  and all of the jets originated from magnetic neutral lines, most of
  which were undergoing flux cancelation. This work was supported by
  funding from NASA/HGI, from the Hinode project, and (for FM) from the
  NASA/MSFC Research Experience for Undergraduates (REU) program.

---------------------------------------------------------
Title: Sunspot Coronal Fan Loops: Location, Closure, and Heating
Authors: Heerikhuisen, J.; Ruiz, S.; Tiwari, S. K.; Moore, R. L.;
   Winebarger, A. R.
2016AGUFMSH31B2578H    Altcode:
  We define sunspot coronal fan loops to be structures that are bright
  in Fe IX/X 171Å images, have fan-like appearance, and have a foot in a
  sunspot. The exact location in aggregate within the sunspot in which the
  coronal fan loops are rooted has not previously been studied. Through
  umbra-edge and penumbra-edge maps and potential field extrapolations
  we show that fan loops are commonly found in the center of the umbra
  in single sunspot active regions, although they can also be located
  in the outer umbra or the penumbra. In bipolar active regions, a fan
  loop can be rooted in the center of the umbra at one footpoint as
  long as the other footpoint is located in a convective region e.g.,
  in a plage or penumbra. Furthermore, the extrapolations illustrate
  that it is unlikely for fan loops to be open, which disagrees with the
  previously thought idea that fan loops occur along open magnetic field
  lines hosting a slow solar wind. We infer that any coronal field loop
  having one foot in a sunspot umbra (with no fan loops in it) has its
  other foot either in another umbra or in weak magnetic flux.

---------------------------------------------------------
Title: Flux Cancellation Leading to Solar Filament Eruptions
Authors: Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2016AGUFMSH31B2572P    Altcode:
  Solar filaments are strands of relatively cool, dense plasma
  magnetically suspended in the lower density hotter solar corona. They
  trace magnetic polarity inversion lines (PILs) in the photosphere
  below, and are supported against gravity at heights of up to 100 Mm
  above the chromosphere by the magnetic field in and around them. This
  field erupts when it is rendered unstable by either magnetic flux
  cancellation or emergence at or near the PIL. We have studied the
  evolution of photospheric magnetic flux leading to ten observed filament
  eruptions. Specifically, we look for gradual magnetic changes in the
  neighborhood of the PIL prior to and during eruption. We use Extreme
  Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA),
  and magnetograms from the Helioseismic and Magnetic Imager (HMI),
  both onboard the Solar Dynamics Observatory (SDO), to study filament
  eruptions and their photospheric magnetic fields. We examine whether
  flux cancellation or/and emergence leads to filament eruptions and
  find that continuous flux cancellation was present at the PIL for many
  hours prior to each eruption. We present two events in detail and find
  the following: (a) the pre-eruption filament-holding core field is
  highly sheared and appears in the shape of a sigmoid above the PIL;
  (b) at the start of the eruption the opposite arms of the sigmoid
  reconnect in the middle above the site of (tether-cutting) flux
  cancellation at the PIL; (c) the filaments first show a slow-rise,
  followed by a fast-rise as they erupt. We conclude that these two
  filament eruptions result from flux cancellation in the middle of
  the sheared field and are in agreement with the standard model for
  a CME/flare filament eruption from a closed bipolar magnetic field
  [flux cancellation (van Ballegooijen and Martens 1989 and Moore and
  Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

---------------------------------------------------------
Title: A New Method to Quantify and Reduce the net Projection Error in
    Whole-solar-active-region Parameters Measured from Vector Magnetograms
Authors: Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L.;
   Khazanov, Igor
2016ApJ...833L..31F    Altcode: 2016arXiv161201948F
  Projection errors limit the use of vector magnetograms of active regions
  (ARs) far from the disk center. In this Letter, for ARs observed up to
  60° from the disk center, we demonstrate a method for measuring and
  reducing the projection error in the magnitude of any whole-AR parameter
  that is derived from a vector magnetogram that has been deprojected to
  the disk center. The method assumes that the center-to-limb curve of
  the average of the parameter’s absolute values, measured from the
  disk passage of a large number of ARs and normalized to each AR’s
  absolute value of the parameter at central meridian, gives the average
  fractional projection error at each radial distance from the disk
  center. To demonstrate the method, we use a large set of large-flux ARs
  and apply the method to a whole-AR parameter that is among the simplest
  to measure: whole-AR magnetic flux. We measure 30,845 SDO/Helioseismic
  and Magnetic Imager vector magnetograms covering the disk passage
  of 272 large-flux ARs, each having whole-AR flux &gt;10<SUP>22</SUP>
  Mx. We obtain the center-to-limb radial-distance run of the average
  projection error in measured whole-AR flux from a Chebyshev fit to
  the radial-distance plot of the 30,845 normalized measured values. The
  average projection error in the measured whole-AR flux of an AR at a
  given radial distance is removed by multiplying the measured flux by
  the correction factor given by the fit. The correction is important for
  both the study of the evolution of ARs and for improving the accuracy of
  forecasts of an AR’s major flare/coronal mass ejection productivity.

---------------------------------------------------------
Title: Coronal Jets from Minifilament Eruptions in Active Regions
Authors: Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L.
2016AGUFMSH31B2567S    Altcode:
  Solar coronal jets are transient (frequently of lifetime 10 min)
  features that shoot out from near the solar surface, become much
  longer than their width, and occur in all solar regions, including
  coronal holes, quiet Sun, and active regions (e.g., Shimojo et
  al. 1996, Certain et al. 2007). Sterling et al. (2015) and other
  studies found that in coronal holes and in quiet Sun the jets
  result when small-scale filaments, called “minifilaments,” erupt
  onto nearby open or high-reaching field lines. Additional studies
  found that coronal-jet-onset locations (and hence presumably the
  minifilament-eruption-onset locations) coincided with locations of
  magnetic-flux cancellation. For active region (AR) jets however the
  situation is less clear. Sterling et al. (2016) studied jets in one
  active region over a 24-hour period; they found that some AR jets
  indeed resulted from minifilament eruptions, usually originating
  from locations of episodes of magnetic-flux cancelation. In some
  cases however they could not determine whether flux was emerging or
  canceling at the polarity inversion line from which the minifilament
  erupted; and for other jets of that region minifilaments were not
  conclusively apparent prior to jet occurrence. Here we further study
  AR jets, by observing them in a single AR over a one-week period,
  using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA,
  and line-of-sight magnetograms and white-light intensity-grams from
  SDO/HMI. We initially identified 13 prominent jets in the XRT data,
  and examined corresponding AIA and HMI data. For at least several of
  the jets, our findings are consistent with the jets resulting from
  minifilament eruptions, and originating from sights of magnetic-field
  cancelation. Thus our findings support that, at least in many cases,
  AR coronal jets result from the same physical processes that produce
  coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby
  the Research Experience for Undergraduates (REU) program at NASA/MSFC
  and the University of Alabama, Huntsville. Additional support was from
  the NASA HGI program and the Hinode project.

---------------------------------------------------------
Title: Plumes in Solar Coronal Holes: Magnetic Flux Content and
    Luminosity
Authors: Paiste, J. H.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R.
2016AGUFMSH31B2573P    Altcode:
  On-disc coronal hole plumes, formation and disappearance of which might
  have implications on heating of coronal loops, have drawn attention
  from several researchers recently. Raouafi et al. (2014) proposed that
  plumes form when magnetic reconnection at their footpoints occurs. Other
  observations, e.g. Wang et al. (2016), have shown that plumes form
  when magnetic flux at their feet in the photosphere converges and
  they disappear when the magnetic flux at their feet diverges. In this
  work, we take a quantitative look at this hypothesis, and find that
  the luminosity of plumes in 171 Å Fe IX/X emission broadly peaks
  in step with the plume-base flux content of unipolar magnetic field
  stronger than 200 Gauss. Flux convergence/divergence seems to help flux
  grow/decay at the plume base leading to brighter/dimmer intensity in
  AIA 171 channel.

---------------------------------------------------------
Title: Magnetic Flux Cancelation as the Trigger of Solar Quiet-region
    Coronal Jets
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.;
   Chakrapani, Prithi
2016ApJ...832L...7P    Altcode: 2016arXiv161008540P
  We report observations of 10 random on-disk solar quiet-region coronal
  jets found in high-resolution extreme ultraviolet (EUV) images from the
  Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having
  good coverage in magnetograms from the SDO/Helioseismic and Magnetic
  Imager (HMI). Recent studies show that coronal jets are driven by the
  eruption of a small-scale filament (called a minifilament). However,
  the trigger of these eruptions is still unknown. In the present
  study, we address the question: what leads to the jet-driving
  minifilament eruptions? The EUV observations show that there is a
  cool-transition-region-plasma minifilament present prior to each jet
  event and the minifilament eruption drives the jet. By examining pre-jet
  evolutionary changes in the line of sight photospheric magnetic field,
  we observe that each pre-jet minifilament resides over the neutral line
  between majority-polarity and minority-polarity patches of magnetic
  flux. In each of the 10 cases, the opposite-polarity patches approach
  and merge with each other (flux reduction between 21% and 57%). After
  several hours, continuous flux cancelation at the neutral line
  apparently destabilizes the field holding the cool-plasma minifilament
  to erupt and undergo internal reconnection, and external reconnection
  with the surrounding coronal field. The external reconnection opens the
  minifilament field allowing the minifilament material to escape outward,
  forming part of the jet spire. Thus, we found that each of the 10 jets
  resulted from eruption of a minifilament following flux cancelation at
  the neutral line under the minifilament. These observations establish
  that magnetic flux cancelation is usually the trigger of quiet-region
  coronal jet eruptions.

---------------------------------------------------------
Title: Babcock Redux: An Amendment of Babcock's Schematic of the
    Sun's Magnetic Cycle
Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.
2016usc..confE...5M    Altcode: 2016arXiv160605371M
  We amend Babcock's original scenario for the global dynamo process
  that sustains the Sun's 22-year magnetic cycle. The amended scenario
  fits post-Babcock observed features of the magnetic activity cycle
  and convection zone, and is based on ideas of Spruit &amp; Roberts
  (1983) about magnetic flux tubes in the convection zone. A sequence of
  four schematic cartoons lays out the proposed evolution of the global
  configuration of the magnetic field above, in, and at the bottom of the
  convection zone through sunspot Cycle 23 and into Cycle 24. Three key
  elements of the amended scenario are: (1) as the net following-polarity
  magnetic field from the sunspot-region -loop fields of an
  ongoing sunspot cycle is swept poleward to cancel and replace the
  opposite-polarity polar-cap field from the previous sunspot cycle, it
  remains connected to the ongoing sunspot cycle's toroidal source-field
  band at the bottom of the convection zone; (2) topological pumping by
  the convection zone's free convection keeps the horizontal extent of
  the poleward-migrating following-polarity field pushed to the bottom,
  forcing it to gradually cancel and replace old horizontal field below it
  that connects the ongoing-cycle source-field band to the previous-cycle
  polar-cap field; (3) in each polar hemisphere, by continually shearing
  the poloidal component of the settling new horizontal field, the
  latitudinal differential rotation low in the convection zone generates
  the next-cycle source-field band poleward of the ongoing-cycle band. The
  amended scenario is a more-plausible version of Babcock's scenario, and
  its viability can be explored by appropriate kinematic flux-transport
  solar-dynamo simulations. A paper of the above title and authors, giving
  a full description of the solar dynamo scenario of this abstract, is
  available at http://arxiv.org/abs/1606.05371. This work was funded by
  the Heliophysics Division of NASA's Science Mission Directorate through
  the Living With a Star Targeted Research and Technology Program and
  the Hinode Project.

---------------------------------------------------------
Title: A Microfilament-eruption Mechanism for Solar Spicules
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2016ApJ...828L...9S    Altcode: 2016arXiv161200430S
  Recent investigations indicate that solar coronal jets result from
  eruptions of small-scale chromospheric filaments, called minifilaments;
  that is, the jets are produced by scaled-down versions of typical-sized
  filament eruptions. We consider whether solar spicules might in turn
  be scaled-down versions of coronal jets, being driven by eruptions
  of microfilaments. Assuming a microfilament's size is about a
  spicule's width (∼300 km), the estimated occurrence number plotted
  against the estimated size of erupting filaments, minifilaments, and
  microfilaments approximately follows a power-law distribution (based
  on counts of coronal mass ejections, coronal jets, and spicules),
  suggesting that many or most spicules could result from microfilament
  eruptions. Observed spicule-base Ca II brightenings plausibly result
  from such microfilament eruptions. By analogy with coronal jets,
  microfilament eruptions might produce spicules with many of their
  observed characteristics, including smooth rise profiles, twisting
  motions, and EUV counterparts. The postulated microfilament eruptions
  are presumably eruptions of twisted-core micro-magnetic bipoles
  that are ∼1.″0 wide. These explosive bipoles might be built and
  destabilized by merging and cancelation of approximately a few to 100
  G magnetic-flux elements of size ≲ 0\buildrel{\prime\prime}\over{.}
  5{--}1\buildrel{\prime\prime}\over{.} 0. If, however, spicules
  are relatively more numerous than indicated by our extrapolated
  distribution, then only a fraction of spicules might result from this
  proposed mechanism.

---------------------------------------------------------
Title: 2016 SH1
Authors: Bacci, P.; Tesi, L.; Fagioli, G.; Jaeger, M.; Prosperi, E.;
   Vollmann, W.; Foglia, S.; Galli, G.; Buzzi, L.; Tichy, M.; Ticha,
   J.; Sarneczky, K.; Sicoli, P.; Testa, A.; Pettarin, E.; Piani, F.;
   Matheny, R. G.; Christensen, E. J.; Fuls, D. C.; Gibbs, A. R.; Grauer,
   A. D.; Johnson, J. A.; Kowalski, R. A.; Larson, S. M.; Leonard, G. J.;
   Seaman, R. L.; Shelly, F. C.; Durig, D. T.; Schwartz, M.; Holvorcem,
   P. R.; McCarthy Obs, J. J.; Polansky, M.; Moore, R.; Yapoujian, B.;
   Spencer, A.; Dupouy, P.; de Vanssay, J. B.; Dangl, G.; Mantero, A.;
   Birtwhistle, P.; Hudin, L.; Rankin, D.; Mickleburgh, A.
2016MPEC....S...51B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Suppression of heating of coronal loops rooted in opposite
    polarity sunspot umbrae
Authors: Tiwari, Sanjiv K.; Thalmann, Julia; Moore, Ronald; Panesar,
   Navdeep; Winebarger, Amy
2016shin.confE..61T    Altcode:
  EUV observations of active region (AR) coronae reveal the presence
  of loops at different temperatures. To understand the mechanisms that
  result in hotter or cooler loops, we study a typical bipolar AR, near
  solar disk center, which has moderate overall magnetic twist and at
  least one fully developed sunspot of each polarity. From AIA 193 and
  94 Å images we identify many clearly discernible coronal loops that
  connect plage or a sunspot of one polarity to an opposite-polarity
  plage region. The AIA 94 Å images show dim regions in the umbrae of
  the sunspots. To see which coronal loops are rooted in a dim umbral
  area, we performed a non-linear force-free field (NLFFF) modeling
  using photospheric vector magnetic field measurements obtained with
  the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model,
  validated by comparison of calculated model field lines with observed
  loops in AIA 193 and 94 Å, specifies the photospheric roots of the
  model field lines. Some model coronal magnetic field lines arch from
  the dim umbral area of the positive-polarity sunspot to the dim umbral
  area of a negative-polarity sunspot. Because these coronal loops are
  not visible in any of the coronal EUV and X-ray images of the AR, we
  conclude they are the coolest loops in the AR. This result suggests
  that the loops connecting opposite polarity umbrae are the least heated
  because the field in umbrae is so strong that the convective braiding
  of the field is strongly suppressed.

---------------------------------------------------------
Title: Homologous Jet-driven Coronal Mass Ejections from Solar Active
    Region 12192
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2016ApJ...822L..23P    Altcode: 2016arXiv160405770P
  We report observations of homologous coronal jets and their coronal mass
  ejections (CMEs) observed by instruments onboard the Solar Dynamics
  Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO)
  spacecraft. The homologous jets originated from a location with emerging
  and canceling magnetic field at the southeastern edge of the giant
  active region (AR) of 2014 October, NOAA 12192. This AR produced in
  its interior many non-jet major flare eruptions (X- and M- class) that
  made no CME. During October 20 to 27, in contrast to the major flare
  eruptions in the interior, six of the homologous jets from the edge
  resulted in CMEs. Each jet-driven CME (∼200-300 km s<SUP>-1</SUP>)
  was slower-moving than most CMEs, with angular widths (20°-50°)
  comparable to that of the base of a coronal streamer straddling the AR
  and were of the “streamer-puff” variety, whereby the preexisting
  streamer was transiently inflated but not destroyed by the passage
  of the CME. Much of the transition-region-temperature plasma in the
  CME-producing jets escaped from the Sun, whereas relatively more of
  the transition-region plasma in non-CME-producing jets fell back to
  the solar surface. Also, the CME-producing jets tended to be faster and
  longer-lasting than the non-CME-producing jets. Our observations imply
  that each jet and CME resulted from reconnection opening of twisted
  field that erupted from the jet base and that the erupting field did
  not become a plasmoid as previously envisioned for streamer-puff CMEs,
  but instead the jet-guiding streamer-base loop was blown out by the
  loop’s twist from the reconnection.

---------------------------------------------------------
Title: A Series of Streamer-Puff CMEs Driven by Solar Homologous
    Jets from Active Region 12192
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.
2016SPD....47.0622P    Altcode:
  We investigate characteristics of solar coronal jets that originated
  from active region NOAA 12192 and produced coronal mass ejections
  (CMEs). This active region produced many non-jet major flare eruptions
  (X and M class) that made no CME. A multitude of jets occurred from the
  southeast edge of the active region, and in contrast to the major-flare
  eruptions in the core, six of these jets resulted in CMEs. Our jet
  observations are from multiple SDO/AIA EUV channels, including 304,
  171 and 193Å, and CME observations are taken from SOHO/LASCO C2
  coronograph. Each jet-driven CME was relatively slow-moving (~200
  - 300 km s<SUP>-1</SUP>) compared to most CMEs; had angular width
  (20° - 50°) comparable to that of the streamer base; and was of
  the “streamer-puff” variety, whereby a preexisting streamer was
  transiently inflated but not removed (blown out) by the passage of
  the CME. Much of the chromospheric-temperature plasma of the jets
  producing the CMEs escaped from the Sun, whereas relatively more of
  the chromospheric plasma in the non-CME-producing jets fell back to
  the solar surface. We also found that the CME-producing jets tended to
  be faster in speed and longer in duration than the non-CME-producing
  jets. We expect that the jets result from eruptions of minifilaments
  (Sterling et al. 2015). We further propose that the CMEs are driven
  by magnetic twist injected into streamer-base coronal loops when
  erupting-twisted-minifilament field reconnects with the ambient field
  at the foot of those loops. This research was supported by funding
  from NASA's LWS program.

---------------------------------------------------------
Title: Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole
Authors: Adams, Mitzi; Tennant, Allyn F.; Alexander, Caroline E.;
   Sterling, Alphonse C.; Moore, Ronald L.; Woolley, Robert
2016SPD....4740701A    Altcode:
  We report on an eruption seen in a very small coronal hole (about
  120” across), beginning at approximately 19:00 UT on March 3,
  2016. The event was initially observed by an amateur astronomer (RW)
  in an H-alpha movie from the Global Oscillation Network Group (GONG);
  the eruption attracted the attention of the observer because there was
  no nearby active region. To examine the region in detail, we use data
  from the Solar Dynamics Observatory (SDO), provided by the Atmospheric
  Imaging Assembly (AIA) in wavelengths 193 Å, 304 Å, and 94 Å, and the
  Helioseismic and Magnetic Imager (HMI). Data analysis and calibration
  activities such as scaling, rotation so that north is up, and removal of
  solar rotation are accomplished with SunPy. The eruption in low-cadence
  HMI data begins with the appearance of a bipole in the location of
  the coronal hole, followed by (apparent) expansion outwards when the
  intensity of the AIA wavelengths brighten; as the event proceeds,
  the coronal hole disappears. From high-cadence data, we will present
  results on the magnetic evolution of this structure, how it is related
  to intensity brightenings seen in the various SDO/AIA wavelengths,
  and how this event compares with the standard-anemone picture.

---------------------------------------------------------
Title: Minifilament Eruptions that Drive Coronal Jets in a Solar
    Active Region
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David;
   Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat
2016SPD....47.0334S    Altcode:
  Solar coronal jets are common in both coronal holes and in active
  regions. Recently, Sterling et al. (2015), using data from Hinode/XRT
  and SDO/AIA, found that coronal jets originating in polar coronal holes
  result from the eruption of small-scale filaments (minifilaments). The
  jet bright point (JBP) seen in X-rays and hotter EUV channels off to one
  side of the base of the jet's spire develops at the location where the
  minifilament erupts, consistent with the JBPs being miniature versions
  of typical solar flares that occur in the wake of large-scale filament
  eruptions. Here we consider whether active region coronal jets also
  result from the same minifilament-eruption mechanism, or whether they
  instead result from a different mechanism, such as the hitherto popular
  “emerging flux” model for jets. We present observations of an on-disk
  active region that produced numerous jets on 2012 June 30, using data
  from SDO/AIA and HMI, and from GOES/SXI. We find that several of these
  active region jets also originate with eruptions of miniature filaments
  (size scale ~20”) emanating from small-scale magnetic neutral lines
  of the region. This demonstrates that active region coronal jets are
  indeed frequently driven by minifilament eruptions. Other jets from the
  active region were also consistent with their drivers being minifilament
  eruptions, but we could not confirm this because the onsets of those
  jets were hidden from our view. This work was supported by funding
  from NASA/LWS, NASA/HGI, and Hinode.

---------------------------------------------------------
Title: Hi-C Observations of Sunspot Penumbral Bright Dots
Authors: Alpert, Shane E.; Tiwari, Sanjiv K.; Moore, Ronald L.;
   Winebarger, Amy R.; Savage, Sabrina L.
2016ApJ...822...35A    Altcode: 2016arXiv160304968A
  We report observations of bright dots (BDs) in a sunspot penumbra
  using High Resolution Coronal Imager (Hi-C) data in 193 Å and examine
  their sizes, lifetimes, speeds, and intensities. The sizes of the
  BDs are on the order of 1″ and are therefore hard to identify in
  the Atmospheric Imaging Assembly (AIA) 193 Å images, which have a
  1.″2 spatial resolution, but become readily apparent with Hi-C's
  spatial resolution, which is five times better. We supplement Hi-C
  data with data from AIA's 193 Å passband to see the complete lifetime
  of the BDs that appeared before and/or lasted longer than Hi-C's
  three-minute observation period. Most Hi-C BDs show clear lateral
  movement along penumbral striations, either toward or away from the
  sunspot umbra. Single BDs often interact with other BDs, combining to
  fade away or brighten. The BDs that do not interact with other BDs tend
  to have smaller displacements. These BDs are about as numerous but move
  slower on average than Interface Region Imaging Spectrograph (IRIS)
  BDs, which was recently reported by Tian et al., and the sizes and
  lifetimes are on the higher end of the distribution of IRIS BDs. Using
  additional AIA passbands, we compare the light curves of the BDs to
  test whether the Hi-C BDs have transition region (TR) temperatures
  like those of the IRIS BDs. The light curves of most Hi-C BDs peak
  together in different AIA channels, indicating that their temperatures
  are likely in the range of the cooler TR (1-4 × 10<SUP>5</SUP> K).

---------------------------------------------------------
Title: Suppression of heating of coronal loops rooted in opposite
    polarity sunspot umbrae
Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.;
   Panesar, Navdeep; Winebarger, Amy R.
2016SPD....47.0336T    Altcode:
  EUV observations of active region (AR) coronae reveal the presence
  of loops at different temperatures. To understand the mechanisms that
  result in hotter or cooler loops, we study a typical bipolar AR, near
  solar disk center, which has moderate overall magnetic twist and at
  least one fully developed sunspot of each polarity. From AIA 193 and
  94 A images we identify many clearly discernible coronal loops that
  connect plage or a sunspot of one polarity to an opposite-polarity
  plage region. The AIA 94 A images show dim regions in the umbrae of
  the spots. To see which coronal loops are rooted in a dim umbral area,
  we performed a non-linear force-free field (NLFFF) modeling using
  photospheric vector magnetic field measurements obtained with the
  HMI onboard SDO. After validation of the NLFFF model by comparison of
  calculated model field lines and observed loops in AIA 193 and 94, we
  specify the photospheric roots of the model field lines. The model field
  then shows the coronal magnetic loops that arch from the dim umbral
  areas of the opposite polarity sunspots. Because these coronal loops
  are not visible in any of the coronal EUV and X-ray images of the AR,
  we conclude they are the coolest loops in the AR. This result suggests
  that the loops connecting opposite polarity umbrae are the least
  heated because the field in umbrae is so strong that the convective
  braiding of the field is strongly suppressed.We hypothesize that the
  convective freedom at the feet of a coronal loop, together with the
  strength of the field in the body of the loop, determines the strength
  of the heating. In particular, we expect the hottest coronal loops
  to have one foot in an umbra and the other foot in opposite-polarity
  penumbra or plage (coronal moss), the areas of strong field in which
  convection is not as strongly suppressed as in umbra. Many transient,
  outstandingly bright, loops in the AIA 94 movie of the AR do have this
  expected rooting pattern. We will also present another example of AR
  in which we find a similar rooting pattern of coronal loops.

---------------------------------------------------------
Title: Minifilament Eruptions that Drive Coronal Jets in a Solar
    Active Region
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.;
   Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat
2016ApJ...821..100S    Altcode:
  We present observations of eruptive events in an active region adjacent
  to an on-disk coronal hole on 2012 June 30, primarily using data from
  the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA),
  SDO/Helioseismic and Magnetic Imager (HMI), and STEREO-B. One eruption
  is of a large-scale (∼100″) filament that is typical of other
  eruptions, showing slow-rise onset followed by a faster-rise motion
  starting as flare emissions begin. It also shows an “EUV crinkle”
  emission pattern, resulting from magnetic reconnections between
  the exploding filament-carrying field and surrounding field. Many
  EUV jets, some of which are surges, sprays and/or X-ray jets, also
  occur in localized areas of the active region. We examine in detail
  two relatively energetic ones, accompanied by GOES M1 and C1 flares,
  and a weaker one without a GOES signature. All three jets resulted
  from small-scale (∼20″) filament eruptions consistent with a slow
  rise followed by a fast rise occurring with flare-like jet-bright-point
  brightenings. The two more-energetic jets showed crinkle patters, but
  the third jet did not, perhaps due to its weakness. Thus all three jets
  were consistent with formation via erupting minifilaments, analogous
  to large-scale filament eruptions and to X-ray jets in polar coronal
  holes. Several other energetic jets occurred in a nearby portion of
  the active region; while their behavior was also consistent with their
  source being minifilament eruptions, we could not confirm this because
  their onsets were hidden from our view. Magnetic flux cancelation
  and emergence are candidates for having triggered the minifilament
  eruptions.

---------------------------------------------------------
Title: Transition-region/Coronal Signatures and Magnetic Setting
of Sunspot Penumbral Jets: Hinode (SOT/FG), Hi-C, and SDO/AIA
    Observations
Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.;
   Alpert, Shane E.
2016ApJ...816...92T    Altcode: 2015arXiv151107900T
  Penumbral microjets (PJs) are transient narrow bright features in the
  chromosphere of sunspot penumbrae, first characterized by Katsukawa
  et al. using the Ca II H-line filter on Hinode's Solar Optical
  Telescope (SOT). It was proposed that the PJs form as a result of
  reconnection between two magnetic components of penumbrae (spines
  and interspines), and that they could contribute to the transition
  region (TR) and coronal heating above sunspot penumbrae. We propose a
  modified picture of formation of PJs based on recent results on the
  internal structure of sunspot penumbral filaments. Using data of a
  sunspot from Hinode/SOT, High Resolution Coronal Imager, and different
  passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar
  Dynamics Observatory, we examine whether PJs have signatures in the TR
  and corona. We find hardly any discernible signature of normal PJs in
  any AIA passbands, except for a few of them showing up in the 1600 Å
  images. However, we discovered exceptionally stronger jets with similar
  lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly
  in a few locations in the penumbra, where evidence of patches of
  opposite-polarity fields in the tails of some penumbral filaments is
  seen in Stokes-V images. These tail PJs do display signatures in the
  TR. Whether they have any coronal-temperature plasma is unclear. We
  infer that none of the PJs, including the tail PJs, directly heat the
  corona in active regions significantly, but any penumbral jet might
  drive some coronal heating indirectly via the generation of Alfvén
  waves and/or braiding of the coronal field.

---------------------------------------------------------
Title: Probing Solar Eruption by Tracking Magnetic Cavities and
    Filaments
Authors: Sterling, A. C.; Johnson, J. R.; Moore, R. L.; Gibson, S. E.
2015AGUFMSH53B2489S    Altcode:
  A solar eruption is a tremendous explosion on the Sun that happens when
  energy stored in twisted (or distorted) magnetic fields is suddenly
  released. When this field is viewed along the axis of the twist in
  projection at the limb, e.g. in EUV or white-light coronal images,
  the outer portions of the pre-eruption magnetic structure sometimes
  appears as a region of weaker emission, called a "coronal cavity,"
  surrounded by a brighter envelope. Often a chromospheric filament
  resides near the base of the cavity and parallel to the cavity's central
  axis. Typically, both the cavity and filament move outward from the Sun
  at the start of an eruption of the magnetic field in which the cavity
  and filament reside. Studying properties the cavities and filaments
  just prior to and during eruption can help constrain models that
  attempt to explain why and how the eruptions occur. In this study,
  we examined six different at-limb solar eruptions using images from
  the Extreme Ultraviolet Imaging Telescope (EIT) aboard the Solar and
  Heliospheric Observatory (SOHO). For four of these eruptions we observed
  both cavities and filaments, while for the remaining two eruptions,
  one had only a cavity and the other only a filament visible in EIT
  images. All six eruptions were in comparatively-quiet solar regions,
  with one in the neighborhood of the polar crown. We measured the height
  and velocities of the cavities and filaments just prior to and during
  the start of their fast-eruption onsets. Our results support that the
  filament and cavity are integral parts of a single large-scale erupting
  magnetic-field system. We examined whether the eruption-onset heights
  were correlated with the expected magnetic field strengths of the
  eruption-source regions, but no clear correlation was found. We discuss
  possible reasons for this lack of correlation, and we also discuss
  future research directions. The research performed was supported
  by the National Science Foundation under Grant No. AGS-1460767;
  J.J. participated in the Research Experience for Undergraduates (REU)
  program, at NASA/MSFC. Additional support was from a grant from the
  NASA LWS program.

---------------------------------------------------------
Title: Evolution of Fine-scale Penumbral Magnetic Structure and
    Formation of Penumbral Jets
Authors: Tiwari, S. K.; Moore, R. L.; Rempel, M.; Winebarger, A. R.
2015AGUFMSH13D2461T    Altcode:
  Sunspot penumbra consists of spines (more vertical field) and
  penumbral filaments (interspines). Spines are outward extension of
  umbra. Penumbral filaments are recently found, both in observations
  and magnetohydrodynamic (MHD) simulations, to be magnetized stretched
  granule-like convective cells, with strong upflows near the head
  that continues along the central axis with weakening strength of the
  flow. Strong downflows are found at the tails of filaments and weak
  downflows along the sides of it. These lateral downflows often contain
  opposite polarity magnetic field to that of spines; most strongly near
  the heads of filaments. In spite of this advancement in understanding
  of small-scale structure of sunspot penumbra, how the filaments and
  spines evolve and interact remains uncertain. <P />Penumbral jets,
  bright, transient features, seen in the chromosphere, are one of
  several dynamic events in sunspot penumbra. It has been proposed
  that these penumbral microjets result from component (acute angle)
  reconnection of the magnetic field in spines with that in interspines
  and could contribute to transition-region and coronal heating above
  sunspots. In a recent investigation, it was proposed that the jets
  form as a result of reconnection between the opposite polarity field
  at edges of filaments with spine field, and it was found that these
  jets do not significantly directly heat the corona above sunspots. We
  discuss how the proposed formation of penumbral jets is integral to the
  formation mechanism of penumbral filaments and spines, and may explain
  why penumbral jets are few and far between. We also point out that
  the generation of the penumbral jets could indirectly drive coronal
  heating via generation of MHD waves or braiding of the magnetic field.

---------------------------------------------------------
Title: Revised View of Solar X-Ray Jets
Authors: Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Adams, M.
2015AGUFMSH23D..04S    Altcode:
  We investigate the onset of ~20 random X-ray jets observed by
  Hinode/XRT. Each jetwas near the limb in a polar coronal hole,
  and showed a ”bright point” in anedge of the base of the jet, as
  is typical for previously-observed X-ray jets. Weexamined SDO/AIA
  EUV images of each of the jets over multiple AIA channels,including
  304 Ang, which detects chromospheric emissions, and 171, 193, and
  211 Ang,which detect cooler-coronal emissions. We find the jets to
  result from eruptionsof miniature (size &lt;~10 arcsec) filaments from
  the bases of the jets. In manycases, much of the erupting-filament
  material forms a chromospheric-temperaturejet. In the cool-coronal
  channels, often the filament appears in absorption andthe hotter
  EUV component of the jet appears in emission. The jet bright point
  formsat the location from which the miniature filament erupts,
  analogous to theformation of a standard solar flare arcade via flare
  (“internal”) reconnection in the wake of the eruption of a typical
  larger-scale chromospheric filament. Thespire of the jet forms on open
  field lines that presumably have undergoneinterchange (”external”)
  reconnection with the erupting field that envelops andcarries the
  miniature filament. This is consistent with what we found for theonset
  of an on-disk coronal jet we examined in Adams et al. (2014), and
  theobservations of other workers. It is however not consistent with
  the basicversion of the ”emerging-flux model” for X-ray jets. This
  work was supported byfunding from NASA/LWS, Hinode, and ISSI.

---------------------------------------------------------
Title: Exploring the properties of Solar Prominence Tornados
Authors: Ahmad, E.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2015AGUFMSH53B2485A    Altcode:
  Solar prominences consist of relatively cool and dense plasma
  embedded in the hotter solar corona above the solar limb. They
  form along magnetic polarity inversion lines, and are magnetically
  supported against gravity at heights of up to ~100 Mm above the
  chromosphere. Often, parts of prominences visually resemble Earth-based
  tornados, with inverted-cone-shaped structures and internal motions
  suggestive of rotation. These "prominence tornados" clearly possess
  complex magnetic structure, but it is still not certain whether
  they actually rotate around a ”rotation” axis, or instead just
  appear to do so because of composite internal material motions such
  as counter-streaming flows or lateral (i.e. transverse to the field)
  oscillations. Here we study the structure and dynamics of five randomly
  selected prominences, using extreme ultraviolet (EUV) 171 Å images
  obtained with high spatial and temporal resolution by the Atmospheric
  Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO)
  spacecraft. All of the prominences resided in non-active-region
  locations, and displayed what appeared to be tornado-like rotational
  motions. Our set includes examples oriented both broadside and end-on to
  our line-of-sight. We created time-distance plots of horizontal slices
  at several different heights of each prominence, to study the horizontal
  plasma motions. We observed patterns of oscillations at various heights
  in each prominence, and we measured parameters of these oscillations. We
  find the oscillation time periods to range over ~50 - 90 min, with
  average amplitudes of ~6,000 km, and with average velocities of ~7
  kms-1. We found similar values for prominences viewed either broadside
  or end-on; this observed isotropy of the lateral oscillatory motion
  suggests that the apparent oscillations result from actual rotational
  plasma motions and/or lateral oscillations of the magnetic field,
  rather than to counter-streaming flows. This research was supported
  by the National Science Foundation under Grant No. AGS-1460767;
  EA participated in the Research Experience for Undergraduates (REU)
  program, at NASA/MSFC. Additional support was from a grant from the
  NASA LWS program.

---------------------------------------------------------
Title: Magnetic Structure and Formation of On-disk Coronal Plumes
Authors: Antonsson, S.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R.
2015AGUFMSH53B2486A    Altcode:
  "Plumes" are feather-like features found on the solar disk, in
  the plage-like field concentrations of quiet regions. On-disk
  plumes are analogous to polar/coronal-hole plumes but have not
  been studied in detail in the past. We research their formation and
  characteristics, such as lifetime, intensity and magnetic setting at
  the feet. Atmospheric Imaging Assembly (AIA) images in the 171 Å filter
  and Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms,
  both from the Solar Dynamics Observatory (SDO), are analyzed with the
  IDL SolarSoftWare package and used to study the plumes. We find that
  on-disk plumes form at the places of converging magnetic fields, and
  disappear when those fields disperse. However, plumes disappear after
  nearby events, such as flares, or with the emergence of opposite
  polarity. The lifetime of each plume tends to be several days,
  although some appear and disappear within several hours. On-disk
  plumes outline magnetic fields close to the sun, allowing a better
  understanding of fine magnetic structures than before. Additionally,
  since plumes must be heated to around 600,000 K to be visible in 171
  Å, their formation and characteristics could tell about how they,
  and therefore the corona, are heated.

---------------------------------------------------------
Title: A Series of Streamer-Puff CMEs Driven by Solar Homologous Jets
Authors: Panesar, N. K.; Sterling, A. C.; Moore, R. L.
2015AGUFMSH54B..07P    Altcode:
  Solar coronal jets are magnetically channeled narrow eruptions
  often observed in the solar atmosphere, typically in EUV and X-ray
  emission, and occurring in various solar environments including
  active regions and coronal holes. Their driving mechanism is still
  under discussion, but facts that we know about jets include: (a)
  they are ejected from or near sites of compact magnetic explosions
  (compact ejective solar flares), (b) they sometimes carry chromospheric
  material high into the corona along with coronal-temperature plasma,
  (c) the cool-material jet velocities can reach 100 km s-1 or more, and
  (d) some active-region jets produce coronal mass ejections (CMEs). Here
  we investigate characteristics of EUV jets that originated from active
  region NOAA 12192 and produced CMEs. This active region produced many
  non-jet major flare eruptions (X and M class) that made no CME. A
  multitude of jets also occurred in the region, and in contrast to the
  major-flare eruptions, seven of these jets resulted in CMEs. Our jet
  observations are from multiple SDO/AIA EUV channels, including 304,
  171, 193 and 94 Å, and our CME observations are from SOHO/LASCO C2
  images. Each jet-driven CME was relatively slow-moving; had angular
  width (30° - 70°) comparable to that of the streamer base; and was
  of the "streamer-puff" variety, whereby a preexisting streamer was
  transiently inflated but not removed (blown out) by the passage of
  the CME. Much of the chromospheric-temperature plasma of the jets
  producing the CMEs escaped from the Sun, whereas relatively more of
  the chromospheric plasma in the non-CME-producing jets fell back to
  the solar surface. We also found that the CME-producing jets tended to
  be faster in speed and longer in duration than the non-CME-producing
  jets. This research was supported by funding from NASA's LWS program.

---------------------------------------------------------
Title: Visibility of Hinode/XRT X-Ray Jets at AIA/EUV Wavelengths,
    a Temperature Indicator
Authors: Sterling, A. C.; Bakucz Canario, D.; Moore, R. L.; Falconer,
   D. A.
2015AGUFMSH31B2415S    Altcode:
  X-ray jets have been observed for years using data from the X-Ray
  Telescope (XRT) on the Hinode Satellite. Recently with the launch of the
  Solar Dynamics Observatory (SDO) it has been possible to observe solar
  jets over a range of EUV of wavelengths using the Atmospheric Imaging
  Assembly (AIA). In this study, we investigated the appearance of X-ray
  jets in AIA images at wavelengths of 304, 171, 193, 211, 131, 94, and
  335 Å. We selected 20 random X-ray jets from XRT movies of the polar
  coronal holes and then examined AIA EUV images from the same locations
  and times to determine the visibility of the jets at the different EUV
  wavelengths. We found that the jets were almost always visible in the
  193 and 211 Å channel images. In the "hottest" EUV channels (94 Å, 335
  Å), usually the spire of the jet was not visible, although sometimes
  a base brightening could be discerned. At other wavelengths (171, 131,
  and 335), the results were mixed. Based on the response characteristics
  of AIA (Lemen et al, 2011) to the temperature of the observed radiating
  solar plasma, our finding that most jets are visible in the 193 and 211
  Å channels is consistent with other recent studies that measured jet
  temperatures of 1.5~2.0 MK (Pucci et al, 2012 &amp; Paraschiv et al,
  2015). This work was supported by the NASA LWS and HGI programs.

---------------------------------------------------------
Title: Destabilization of a Solar Prominence/Filament Field System
    by a Series of Eight Homologous Eruptive Flares Leading to a CME
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Innes, Davina E.;
   Moore, Ronald L.
2015ApJ...811....5P    Altcode: 2015arXiv150801952P
  Homologous flares are flares that occur repetitively in the same
  active region, with similar structure and morphology. A series of at
  least eight homologous flares occurred in active region NOAA 11237 over
  2011 June 16-17. A nearby prominence/filament was rooted in the active
  region, and situated near the bottom of a coronal cavity. The active
  region was on the southeast solar limb as seen from the Solar Dynamics
  Observatory/Atmospheric Imaging Assembly, and on the disk as viewed from
  the Solar TErrestrial RElations Observatory/EUVI-B. The dual perspective
  allows us to study in detail behavior of the prominence/filament
  material entrained in the magnetic field of the repeatedly erupting
  system. Each of the eruptions were mainly confined, but expelled hot
  material into the prominence/filament cavity system (PFCS). The field
  carrying and containing the ejected hot material interacted with the
  PFCS and caused it to inflate, resulting in a step-wise rise of the
  PFCS approximately in step with the homologous eruptions. The eighth
  eruption triggered the PFCS to move outward slowly, accompanied by
  a weak coronal dimming. As this slow PFCS eruption was underway, a
  final “ejective” flare occurred in the core of the active region,
  resulting in strong dimming in the EUVI-B images and expulsion of a
  coronal mass ejection (CME). A plausible scenario is that the repeated
  homologous flares could have gradually destabilized the PFCS, and its
  subsequent eruption removed field above the acitive region and in turn
  led to the ejective flare, strong dimming, and CME.

---------------------------------------------------------
Title: Search for Dark Matter in Events with Missing Transverse
    Momentum and a Higgs Boson Decaying to Two Photons in p p Collisions
    at √{s }=8 TeV with the ATLAS Detector
Authors: Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.;
   Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.;
   Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman,
   J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.;
   Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.;
   Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.;
   Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.;
   Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos,
   T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.;
   Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.;
   Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.;
   Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.;
   Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.;
   Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.;
   Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders,
   J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.;
   Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov,
   A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos,
   J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai,
   Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.;
   Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.;
   Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai,
   S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan,
   K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten,
   K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos,
   G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain,
   T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli,
   F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.;
   Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari,
   T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett,
   B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr,
   A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.;
   Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.;
   Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce,
   M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.;
   Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker,
   K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall,
   A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.;
   Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.;
   Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.;
   Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender,
   M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.;
   Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen,
   S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.;
   Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.;
   Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella,
   C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana,
   M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.;
   Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.;
   Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul,
   A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn,
   D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.;
   Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.;
   Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler,
   M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold,
   T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.;
   Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto,
   V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.;
   Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.;
   Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt,
   A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun,
   H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner,
   L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton,
   D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.;
   Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.;
   Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.;
   Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat,
   Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer,
   F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.;
   Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.;
   Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.;
   Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu,
   A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.;
   Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.;
   Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda,
   S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.;
   Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.;
   Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido,
   M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli,
   R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.;
   Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.;
   Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.;
   Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.;
   Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.;
   Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny,
   K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.;
   Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova,
   I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau,
   C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov,
   S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.;
   Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El
   Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella,
   V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.;
   Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.;
   Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.;
   Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci,
   A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron,
   Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke,
   R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.;
   Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn,
   A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.;
   Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.;
   Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi,
   F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen,
   T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez,
   A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté,
   D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.;
   Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar,
   M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann,
   T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski,
   P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.;
   da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire,
   F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells,
   A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora,
   S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.;
   Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson,
   I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro,
   S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de
   Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis,
   U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del
   Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.;
   Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della
   Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.;
   Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz,
   D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre,
   C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio,
   A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo,
   A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di
   Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond,
   M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio,
   S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.;
   Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos,
   D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.;
   Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini,
   J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.;
   Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda,
   D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford,
   M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger,
   D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.;
   Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler,
   K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus,
   F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov,
   D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.;
   Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion,
   E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov,
   R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.;
   Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.;
   Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima,
   D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.;
   Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini,
   L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher,
   W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.;
   Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus,
   A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.;
   Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.;
   Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn,
   D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.;
   Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.;
   Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch,
   S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.;
   Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.;
   Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.;
   García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner,
   R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio,
   G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.;
   Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts,
   D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest,
   M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon,
   A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti,
   P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.;
   Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani,
   M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.;
   Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis,
   S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.;
   Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.;
   Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.;
   Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella,
   L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.;
   Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini,
   B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling,
   C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.;
   Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.;
   Grahn, K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi,
   V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.;
   Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo,
   A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs,
   J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.;
   Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta,
   O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo,
   J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.;
   Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand,
   H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan,
   H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.;
   Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton,
   S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.;
   Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen,
   M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri,
   F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.;
   Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.;
   Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.;
   Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays,
   C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.;
   Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann,
   B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.;
   Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler,
   C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.;
   Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.;
   Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey,
   N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill,
   E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.;
   Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.;
   Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp,
   M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann,
   M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.;
   Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howard, J.;
   Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.;
   Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu,
   X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.;
   Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov,
   N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.;
   Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina,
   O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.;
   Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice,
   M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.;
   Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.;
   Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.;
   Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson,
   P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.;
   Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.;
   Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.;
   Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.;
   Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.;
   Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.;
   Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones,
   G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi,
   K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.;
   Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.;
   Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya,
   N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.;
   Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik,
   K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.;
   Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto,
   T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler,
   R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka,
   O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.;
   Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy,
   V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim,
   Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.;
   King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska,
   D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.;
   Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.;
   Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.;
   Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops,
   E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.;
   Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova,
   N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.;
   Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp,
   A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.;
   Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin,
   V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.;
   Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.;
   Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.;
   Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.;
   Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.;
   Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.;
   Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.;
   Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal,
   M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger,
   F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.;
   Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.;
   Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.;
   Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta,
   V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.;
   Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.;
   Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford,
   A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte,
   J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.;
   Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.;
   Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee,
   C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.;
   Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.;
   Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.;
   Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone,
   S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.;
   Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.;
   Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.;
   Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.;
   Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani,
   A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann,
   J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer,
   D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.;
   Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.;
   Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.;
   Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.;
   Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.;
   Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos,
   D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez,
   N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.;
   Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte,
   A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen,
   B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone,
   G.; Macchiolo, A.; MacDonald, C. M.; Machado Miguens, J.; Macina,
   D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen,
   A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi,
   K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier,
   T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.;
   Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone,
   C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini,
   G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira,
   J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos,
   J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie,
   B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori,
   G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.;
   Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin,
   B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez,
   M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.;
   Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.;
   Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.;
   Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.;
   Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.;
   Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn,
   A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane,
   K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson,
   R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier,
   K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.;
   Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer,
   S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.;
   Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer,
   J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.;
   Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.;
   Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.;
   Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.;
   Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.;
   Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra,
   S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.;
   Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani,
   S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.;
   Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.;
   Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen,
   S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.;
   Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza,
   S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller,
   R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.;
   Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.;
   Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.;
   Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata,
   K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.;
   Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.;
   Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.;
   Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.;
   Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy,
   P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.;
   Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson,
   R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.;
   Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos,
   K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius,
   R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.;
   Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.;
   Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti,
   F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham,
   F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.;
   Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.;
   Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.;
   Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.;
   Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi,
   P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando,
   N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero
   Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada,
   F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.;
   Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.;
   Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.;
   Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini,
   S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou,
   E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.;
   Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.;
   Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.;
   Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio,
   S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel,
   N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen,
   L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.;
   Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.;
   Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger,
   H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters,
   R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.;
   Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.;
   Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro,
   E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.;
   Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold,
   J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak,
   L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth,
   D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio,
   A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.;
   Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic,
   D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.;
   Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov,
   V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.;
   Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev,
   K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot,
   J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.;
   Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie,
   D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.;
   Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.;
   Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith,
   C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.;
   Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece,
   R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren,
   H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek,
   P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken,
   O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek,
   M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.;
   Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau,
   A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe,
   S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez,
   S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.;
   Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.;
   Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov,
   Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato,
   G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F. -W.; Sadykov, R.;
   Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna,
   G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.;
   Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.;
   Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez,
   J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander,
   H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.;
   Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico,
   R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva,
   J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.;
   Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.;
   Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella,
   M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.;
   Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer,
   U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.;
   Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo,
   C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt,
   C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.;
   Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf,
   E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova,
   J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens,
   M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm,
   B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz,
   T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst,
   R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.;
   Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov,
   G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.;
   Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach,
   K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.;
   Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj,
   T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.;
   Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.;
   Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.;
   Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva,
   A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.;
   Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.;
   Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver,
   Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion,
   S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo,
   P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.;
   Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic,
   P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.;
   Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova,
   L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.;
   Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.;
   Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov,
   E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov,
   O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.;
   Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.;
   Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South,
   D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel,
   F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer,
   T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm,
   S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.;
   Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov,
   P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer,
   H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte,
   P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.;
   Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss,
   M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.;
   Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su,
   J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.;
   Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann,
   J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki,
   Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora,
   T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.;
   Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.;
   Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.;
   Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.;
   Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.;
   Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.;
   Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger,
   F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming,
   K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada,
   S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.;
   Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker,
   J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson,
   A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.;
   Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov,
   Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.;
   Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.;
   Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.;
   Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.;
   Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli,
   A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk,
   W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.;
   True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.;
   Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.;
   Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.;
   Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.;
   Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek,
   D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.;
   Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock,
   M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno,
   Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai,
   G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis,
   C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar,
   S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.;
   van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van
   der Graaf, H.; van der Leeuw, R.; van Eldik, N.; van Gemmeren, P.;
   van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.;
   Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan,
   G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian,
   A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.;
   Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi,
   M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke,
   W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou,
   I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.;
   Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter,
   M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.;
   Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.;
   von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.;
   Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes
   Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic,
   I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.;
   Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.;
   Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang,
   R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.;
   Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki,
   C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.;
   Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber,
   S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten,
   J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.;
   Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter,
   J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.;
   White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.;
   Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.;
   Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.;
   Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter,
   B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.;
   Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak,
   K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne,
   B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe,
   R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka,
   T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang,
   Y.; Yao, L.; Yao, W. -M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.;
   Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita,
   K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef,
   S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.;
   Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.;
   Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman,
   M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang,
   D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang,
   Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou,
   B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.;
   Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.;
   Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser,
   M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur
   Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration
2015PhRvL.115m1801A    Altcode: 2015arXiv150601081A
  Results of a search for new phenomena in events with large missing
  transverse momentum and a Higgs boson decaying to two photons are
  reported. Data from proton-proton collisions at a center-of-mass
  energy of 8 TeV and corresponding to an integrated luminosity of 20.3
  fb<SUP>-1</SUP> have been collected with the ATLAS detector at the
  LHC. The observed data are well described by the expected standard
  model backgrounds. Upper limits on the cross section of events with
  large missing transverse momentum and a Higgs boson candidate are also
  placed. Exclusion limits are presented for models of physics beyond
  the standard model featuring dark-matter candidates.

---------------------------------------------------------
Title: Small-scale filament eruptions as the driver of X-ray jets
    in solar coronal holes
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.;
   Adams, Mitzi
2015Natur.523..437S    Altcode: 2017arXiv170503373S
  Solar X-ray jets are thought to be made by a burst of reconnection
  of closed magnetic field at the base of a jet with ambient open
  field. In the accepted version of the `emerging-flux' model, such
  a reconnection occurs at a plasma current sheet between the open
  field and the emerging closed field, and also forms a localized X-ray
  brightening that is usually observed at the edge of the jet's base. Here
  we report high-resolution X-ray and extreme-ultraviolet observations
  of 20 randomly selected X-ray jets that form in coronal holes at
  the Sun's poles. In each jet, contrary to the emerging-flux model,
  a miniature version of the filament eruptions that initiate coronal
  mass ejections drives the jet-producing reconnection. The X-ray bright
  point occurs by reconnection of the `legs' of the minifilament-carrying
  erupting closed field, analogous to the formation of solar flares in
  larger-scale eruptions. Previous observations have found that some
  jets are driven by base-field eruptions, but only one such study, of
  only one jet, provisionally questioned the emerging-flux model. Our
  observations support the view that solar filament eruptions are formed
  by a fundamental explosive magnetic process that occurs on a vast range
  of scales, from the biggest mass ejections and flare eruptions down
  to X-ray jets, and perhaps even down to smaller jets that may power
  coronal heating. A similar scenario has previously been suggested,
  but was inferred from different observations and based on a different
  origin of the erupting minifilament.

---------------------------------------------------------
Title: Near-Sun speed of CMEs and the magnetic nonpotentiality of
    their source active regions
Authors: Tiwari, Sanjiv K.; Falconer, David A.; Moore, Ronald L.;
   Venkatakrishnan, P.; Winebarger, Amy R.; Khazanov, Igor G.
2015GeoRL..42.5702T    Altcode: 2015arXiv150801532T
  We show that the speed of the fastest coronal mass ejections (CMEs)
  that an active region (AR) can produce can be predicted from a
  vector magnetogram of the AR. This is shown by logarithmic plots of
  CME speed (from the SOHO Large Angle and Spectrometric Coronagraph
  CME catalog) versus each of ten AR-integrated magnetic parameters
  (AR magnetic flux, three different AR magnetic-twist parameters,
  and six AR free-magnetic-energy proxies) measured from the vertical
  and horizontal field components of vector magnetograms (from the
  Solar Dynamics Observatory's Helioseismic and Magnetic Imager)
  of the source ARs of 189 CMEs. These plots show the following: (1)
  the speed of the fastest CMEs that an AR can produce increases with
  each of these whole-AR magnetic parameters and (2) that one of the AR
  magnetic-twist parameters and the corresponding free-magnetic-energy
  proxy each determine the CME-speed upper limit line somewhat better
  than any of the other eight whole-AR magnetic parameters.

---------------------------------------------------------
Title: Magnetic Untwisting in Solar Jets that Go into the Outer
    Corona in Polar Coronal Holes
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.
2015ApJ...806...11M    Altcode: 2015arXiv150403700M
  We study 14 large solar jets observed in polar coronal holes. In
  EUV movies from the Solar Dynamics Observatory/Atmospheric Imaging
  Assembly (AIA), each jet appears similar to most X-ray jets and
  EUV jets that erupt in coronal holes; but each is exceptional in
  that it goes higher than most, so high that it is observed in the
  outer corona beyond 2.2 R <SUB>Sun</SUB> in images from the Solar
  and Heliospheric Observatory/Large Angle Spectroscopic Coronagraph
  (LASCO)/C2 coronagraph. From AIA He ii 304 Å movies and LASCO/C2
  running-difference images of these high-reaching jets, we find: (1)
  the front of the jet transits the corona below 2.2 R <SUB>Sun</SUB> at
  a speed typically several times the sound speed; (2) each jet displays
  an exceptionally large amount of spin as it erupts; (3) in the outer
  corona, most of the jets display measureable swaying and bending of
  a few degrees in amplitude; in three jets the swaying is discernibly
  oscillatory with a period of order 1 hr. These characteristics suggest
  that the driver in these jets is a magnetic-untwisting wave that is
  basically a large-amplitude (i.e., nonlinear) torsional Alfvén wave
  that is put into the reconnected open field in the jet by interchange
  reconnection as the jet erupts. From the measured spinning and swaying,
  we estimate that the magnetic-untwisting wave loses most of its energy
  in the inner corona below 2.2 R <SUB>Sun</SUB>. We point out that the
  torsional waves observed in Type-II spicules might dissipate in the
  corona in the same way as the magnetic-untwisting waves in our big jets,
  and thereby power much of the coronal heating in coronal holes.

---------------------------------------------------------
Title: Small-Scale Filament Eruptions Leading to Solar X-Ray Jets
Authors: Sterling, Alphonse; Moore, Ronald; Falconer, David
2015TESS....140701S    Altcode:
  We investigate the onset of ~10 random X-ray jets observed by
  Hinode/XRT. Each jet was near the limb in a polar coronal hole, and
  showed a “bright point” in an edge of the base of the jet, as is
  typical for previously-observed X-ray jets. We examined SDO/AIA EUV
  images of each of the jets over multiple AIA channels, including
  304 Å, which detects chromospheric emissions, and 171, 193, and
  211 Å, which detect cooler-coronal emissions. We find the jets to
  result from eruptions of miniature (size &lt;~10 arcsec) filaments
  from the bases of the jets. Much of the erupting-filament material
  forms a chromospheric-temperature jet. In the cool-coronal channels,
  often the filament appears in absorption and the hotter EUV component
  of the jet appears in emission. The jet bright point forms at the
  location from which the miniature filament erupts, analogous to the
  formation of a standard solar flare arcade in the wake of the eruption
  of a typical larger-scalechromospheric filament. The spire of the jet
  forms on open field lines that presumably have undergone interchange
  reconnection with the erupting field that envelops and carries the
  miniature filament. Thus these X-ray jets and their bright points are
  made by miniature filament eruptions via “internal” and “external”
  reconnection of the erupting field. This is consistent with what we
  found for the onset of an on-disk coronal jet we examined in Adams et
  al. (2014). This work was supported by funding from NASA/LWS, Hinode,
  and ISSI.

---------------------------------------------------------
Title: A Prominence/filament eruption triggered by eight homologous
    flares
Authors: Panesar, Navdeep K.; Sterling, Alphonse; Innes, Davina;
   Moore, Ronald
2015TESS....140805P    Altcode:
  Eight homologous flares occurred in active region NOAA 11237 over 16 -
  17 June 2011. A prominence system with a surrounding coronal cavity
  was adjacent to, but still magnetically connected to the active
  region. The eight eruptions expelled hot material from the active
  region into the prominence/filament cavity system (PFCS) where the
  ejecta became confined. We mainly aim to diagnose the 3D dynamics of
  the PFCS during the series of eight homologous eruptions by using data
  from two instruments: SDO/AIA and STEREO/EUVI-B, covering the Sun from
  two directions. The field containing the ejected hot material interacts
  with the PFCS and causes it to inflate, resulting in a discontinuous
  rise of the prominence/filament approximately in steps with the
  homologous eruptions. The eighth eruption triggers the PFCS to move
  outward slowly, accompanied by a weak coronal dimming. Subsequently the
  prominence/filament material drains to the solar surface. This PFCS
  eruption evidently slowly opens field overlying the active region,
  which results in a final ‘ejective’ eruption from the core of
  the active region. A strong dimming appears adjacent to the final
  eruption’s flare loops in the EUVI-B images, followed by a CME. We
  propose that the eight homologous flares gradually disrupted the PFCS
  and removed the overlying field above the active region, leading to
  the CME via the ‘lid removal’ mechanism.

---------------------------------------------------------
Title: More Macrospicule Jets in On-Disk Coronal Holes
Authors: Adams, Mitzi; Sterling, Alphonse; Moore, Ronald
2015TESS....120301A    Altcode:
  We examine the magnetic structure and dynamics of multiple jets found
  in coronal holes close to or at disk center. All data are from the
  Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic
  Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on
  observations of about ten jets in an equatorial coronal hole spanning
  2011 February 27 and 28. We show the evolution of these jets in AIA 193
  Å, examine the magnetic field configuration and flux changes in the
  jet area, and discuss the probable trigger mechanism of these events. We
  reported on another jet in this same coronal hole on 2011 February 27,
  ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously
  unrecognized variety of blowout jet, in which the base-edge bright
  point is a miniature filament-eruption flare arcade made by internal
  reconnection of the legs of the erupting field. In contrast, in the
  presently-accepted "standard" picture for blowout jets, the base-edge
  bright point is made by interchange reconnection of initially-closed
  erupting jet-base field with ambient open field. This poster presents
  further evidence of the production of the base-edge bright point in
  blowout jets by internal reconnection. Our observations suggest that
  most of the bigger and brighter EUV jets in coronal holes are blowout
  jets of the new-found variety.

---------------------------------------------------------
Title: Evidence of suppressed heating of coronal loops rooted in
    opposite polarity sunspot umbrae
Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Winebarger, Amy R.;
   Panesar, Navdeep K.; Moore, Ronald
2015TESS....120404T    Altcode:
  Observations of active region (AR) coronae in different EUV wavelengths
  reveal the presence of various loops at different temperatures. To
  understand the mechanisms that result in hotter or cooler loops, we
  study a typical bipolar AR, near solar disk center, which has moderate
  overall magnetic twist and at least one fully developed sunspot of
  each polarity. From AIA 193 and 94 A images we identify many clearly
  discernible coronal loops that connect opposite-polarity plage or
  a sunspot to a opposite-polarity plage region. The AIA 94 A images
  show dim regions in the umbrae of the spots. To see which coronal
  loops are rooted in a dim umbral area, we performed a non-linear
  force-free field (NLFFF) modeling using photospheric vector magnetic
  field measurements obtained with the Heliosesmic Magnetic Imager (HMI)
  onboard SDO. After validation of the NLFFF model by comparison of
  calculated model field lines and observed loops in AIA 193 and 94 A,
  we specify the photospheric roots of the model field lines. The model
  field then shows the coronal magnetic loops that arch from the dim
  umbral area of the positive-polarity sunspot to the dim umbral area of a
  negative-polarity sunspot. Because these coronal loops are not visible
  in any of the coronal EUV and X-ray images of the AR, we conclude they
  are the coolest loops in the AR. This result suggests that the loops
  connecting opposite polarity umbrae are the least heated because the
  field in umbrae is so strong that the convective braiding of the field
  is strongly suppressed.From this result, we further hypothesize that
  the convective freedom at the feet of a coronal loop, together with the
  strength of the field in the body of the loop, determines the strength
  of the heating. In particular, we expect the hottest coronal loops
  to have one foot in an umbra and the other foot in opposite-polarity
  penumbra or plage (coronal moss), the areas of strong field in which
  convection is not as strongly suppressed as in umbrae. Many transient,
  outstandingly bright, loops in the AIA 94 A movie of the AR do have
  this expected rooting pattern.

---------------------------------------------------------
Title: Center-to-Limb Variation of Deprojection Errors in SDO/HMI
    Vector Magnetograms
Authors: Falconer, David; Moore, Ronald; Barghouty, Nasser; Tiwari,
   Sanjiv K.; Khazanov, Igor
2015TESS....140204F    Altcode:
  For use in investigating the magnetic causes of coronal heating
  in active regions and for use in forecasting an active region’s
  productivity of major CME/flare eruptions, we have evaluated various
  sunspot-active-region magnetic measures (e.g., total magnetic flux,
  free-magnetic-energy proxies, magnetic twist measures) from HMI Active
  Region Patches (HARPs) after the HARP has been deprojected to disk
  center. From a few tens of thousand HARP vector magnetograms (of a
  few hundred sunspot active regions) that have been deprojected to disk
  center, we have determined that the errors in the whole-HARP magnetic
  measures from deprojection are negligibly small for HARPS deprojected
  from distances out to 45 heliocentric degrees. For some purposes the
  errors from deprojection are tolerable out to 60 degrees. We obtained
  this result by the following process. For each whole-HARP magnetic
  measure: 1) for each HARP disk passage, normalize the measured values by
  the measured value for that HARP at central meridian; 2) then for each
  0.05 R<SUB>s</SUB> annulus, average the values from all the HARPs in
  the annulus. This results in an average normalized value as a function
  of radius for each measure. Assuming no deprojection errors and that,
  among a large set of HARPs, the measure is as likely to decrease
  as to increase with HARP distance from disk center, the average of
  each annulus is expected to be unity, and, for a statistically large
  sample, the amount of deviation of the average from unity estimates
  the error from deprojection effects. The deprojection errors arise
  from 1) errors in the transverse field being deprojected into the
  vertical field for HARPs observed at large distances from disk center,
  2) increasingly larger foreshortening at larger distances from disk
  center, and 3) possible errors in transverse-field-direction ambiguity
  resolution.From the compiled set of measured vales of whole-HARP
  magnetic nonpotentiality parameters measured from deprojected HARPs,
  we have examined the relation between each nonpotentiality parameter
  and the speed of CMEs from the measured active regions. For several
  different nonpotentiality parameters we find there is an upper limit
  to the CME speed, the limit increasing as the value of the parameter
  increases.

---------------------------------------------------------
Title: Reconnection and Spire Drift in Coronal Jets
Authors: Moore, Ronald; Sterling, Alphonse; Falconer, David
2015TESS....140702M    Altcode:
  It is observed that there are two morphologically-different kinds of
  X-ray/EUV jets in coronal holes: standard jets and blowout jets. In
  both kinds: (1) in the base of the jet there is closed magnetic
  field that has one foot in flux of polarity opposite that of the
  ambient open field of the coronal hole, and (2) in coronal X-ray/EUV
  images of the jet there is typically a bright nodule at the edge
  of the base. In the conventional scenario for jets of either kind,
  the bright nodule is a compact flare arcade, the downward product of
  interchange reconnection of closed field in the base with impacted
  ambient open field, and the upper product of this reconnection is the
  jet-outflow spire. It is also observed that in most jets of either
  kind the spire drifts sideways away from the bright nodule. We present
  the observed bright nodule and spire drift in an example standard
  jet and in two example blowout jets. With cartoons of the magnetic
  field and its reconnection in jets, we point out: (1) if the bright
  nodule is a compact flare arcade made by interchange reconnection,
  then the spire should drift toward the bright nodule, and (2) if
  the bright nodule is instead a compact flare arcade made, as in a
  filament-eruption flare, by internal reconnection of the legs of the
  erupting sheared-field core of a lobe of the closed field in the base,
  then the spire, made by the interchange reconnection that is driven on
  the outside of that lobe by the lobe’s internal convulsion, should
  drift away from the bright nodule. Therefore, from the observation
  that the spire usually drifts away from the bright nodule, we infer:
  (1) in X-ray/EUV jets of either kind in coronal holes the interchange
  reconnection that generates the jet-outflow spire usually does not make
  the bright nodule; instead, the bright nodule is made by reconnection
  inside erupting closed field in the base, as in a filament eruption,
  the eruption being either a confined eruption for a standard jet or
  a blowout eruption (as in a CME) for a blowout jet, and (2) in this
  respect, the conventional reconnection picture for the bright nodule in
  coronal jets is usually wrong for observed coronal jets of either kind.

---------------------------------------------------------
Title: Exploring Euv Spicules Using 304 Ang He II Data from SDO/AIA
Authors: Snyder, I. R.; Sterling, A. C.; Falconer, D. A.; Moore, R. L.
2014AGUFMSH51C4179S    Altcode:
  We present results from an exploratory study of He II 304 ŠEUV
  spicules at the limb of the Sun. We also measured properties of
  one macrospicule; macrospicules are longer than most spicules, and
  much broader in width than spicules. We use high-cadence (12 sec)
  and high-resolution (0.6 arcsec pixels) data from the Atmospheric
  Imaging Array (AIA) instrument on the Solar Dynamic Observatory
  (SDO). All of the observed events occurred near the solar north pole,
  in quiet-Sun or coronal-hole environments. We examined the maximum
  lengths, maximum rise velocities, and lifetimes of about 30 EUV spicules
  and the macrospicule. For the bulk of the EUV spicules the ranges of
  these quantities are respectively ~10,000----40,000 km, 20---100 km/s,
  and ~100--- ~600 sec. For the macrospicule the corresponding quantities
  are respectively ~60,000 km, ~130 km/s, and ~1800 sec, which is typical
  of macrospicules measured by other workers. Therefore macrospicules
  are taller, longer-lived, and faster than most EUV spicules. The
  rise profiles of both the spicules and the macrospicules fit well to
  a second-order ("parabolic”) trajectory, although the acceleration
  was often weaker than that of solar gravity in the profiles fitted to
  the trajectories. Our macrospicule also had an obvious brightening at
  its base at birth, whereas such brightenings were not apparent for
  the EUV spicules. Most of the EUV spicules remained visible during
  their decent back to the solar surface, although a small percentage
  of the spicules and the macrospicule faded out before falling back
  to the surface. Our sample of macrospicules is not yet large enough
  to address whether they are scaled-up versions of EUV spicules, or
  independent phenomena. A.C.S. and R.L.M. were supported by funding from
  the Heliophysics Division of NASA's Science Mission Directorate through
  the Living With a Star Targeted Research and Technology Program, and
  the Hinode Project. I.R.S. was supported by NSF's Research Experience
  for Undergraduates Program.

---------------------------------------------------------
Title: Speed of CMEs and the magnetic non-potentiality of their
    source active regions
Authors: Tiwari, S. K.; Falconer, D. A.; Moore, R. L.; Venkatakrishnan,
   P.
2014AGUFMSH21C4134T    Altcode:
  Most fast coronal mass ejections (CMEs) originate from solar active
  regions (ARs). Non-potentiality of ARs is expected to determine the
  speed and size of CMEs in the outer corona. Several other unexplored
  parameters might be important as well. To find out the correlation
  between the initial speed of CMEs and the non-potentiality of source
  ARs, we associated over a hundred of CMEs with source ARs via their
  co-produced flares. The speed of the CMEs are collected from the SOHO
  LASCO CME catalog. We have used vector magnetograms obtained mainly
  with HMI/SDO, also with Hinode (SOT/SP) when available within an hour
  of a CME occurence, to evaluate various magnetic non-potentiality
  parameters, e.g. magnetic free-energy proxies, computed magnetic
  free energy, twist, shear angle, signed shear angle etc. We have
  also included several other parameters e.g. total unsigned flux, net
  current, magnetic area of ARs, area of sunspots, to investigate their
  correlation, if any, with the initial speeds of CMEs. Our preliminary
  results show that the ARs with larger non-potentiality and area mostly
  produce fast CMEs but they can also produce slower ones. The ARs with
  lesser non-potentiality and area generally produce only slower CMEs,
  however, there are a few exceptions. The total unsigned flux correlate
  with the non-potentiality parameters and area of ARs but some ARs with
  large unsigned flux are also found to be least non-potential. A more
  detailed analysis is underway. SKT is supported by an appointment to
  the NASA Postdoctoral Program at the NASA Marshall Space Flight Center,
  administered by Oak Ridge Associated Universities through a contract
  with NASA. RLM is supported by funding from the Living With a Star
  Targeted Research and Technology Program of the Heliophysics Division
  of NASA's Science Mission Directorate. Support for MAG4 development
  comes from NASA's Game Changing Development Program, and Johnson Space
  Center's Space Radiation Analysis Group (SRAG).

---------------------------------------------------------
Title: Macrospicule Jets in On-Disk Coronal Holes
Authors: Adams, M.; Sterling, A. C.; Moore, R. L.
2014AGUFMSH51C4178A    Altcode:
  We examine the magnetic structure and dynamics of multiple jets found
  in coronal holes close to or on disk center. All data are from the
  Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic
  Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on
  observations of ten jets in an equatorial coronal hole from 2011
  February 27 and multiple jets found in equatorial coronal holes
  on these dates: 2010-June-4, 2012-March-13, 2013-May 29-2013, and
  2014-February-24. We will show in detail the evolution of the jets
  and will compare the magnetic field arrangement and probable trigger
  mechanism of these events to those of a specific macrospicule jet
  observed on 2011 February 27. We recently discovered that this jet is
  a previously-unrecognized variety of blowout jet (Adams et al 2014,
  ApJ, 783: 11). In this variety, the reconnection bright point is not
  made by interchange reconnection of initially-closed erupting field
  in the base of the jet with ambient open field but is a miniature
  filament-eruption flare arcade made by internal reconnection of the
  legs of the erupting field.

---------------------------------------------------------
Title: Exploring He II 304 Å Spicules and Macrospicules at the
    Solar Limb
Authors: Sterling, A. C.; Snyder, I. R.; Falconer, D. A.; Moore, R. L.
2014AGUFMSH53D..04S    Altcode:
  We present results from a study of He II 304 Ang spicules and
  macrospiculesobserved at the limb of the Sun in 304 Ang channel image
  sequences from theAtmospheric Imaging Assembly (AIA) on the Solar
  Dynamics Observatory (SDO). Thesedata have both high spatial (0.6 arcsec
  pixels) and temporal (12 s) resolution. All of the observed events
  occurred in quiet or coronal hole regions near the solarpole. He II 304
  Ang spicules and macrospicules are both transient jet-likefeatures,
  with the macrospicules being wider and having taller maximum heights
  thanthe spicules. We looked for characteristics of the populations
  of these twophenomena that might indicate whether they have the same
  initiation mechanisms. Weexamine the maximum heights, time-averaged
  rise velocities, and lifetimes of about30 spicules and about five
  macrospicules. For the spicules, these quantities are,respectively,
  ~10,000----40,000 km, 20---100 km/s, and a few 100--- ~600 sec. Forthe
  macrospicules the corresponding properties are &gt;~60,000 km, &gt;~55
  km/s, andlifetimes of &gt;~1800 sec. Therefore the macrospicules have
  velocities comparable tothose of the fastest spicules and live longer
  than the spicules. The leading-edgetrajectories of both the spicules
  and the macrospicules match well a second-order(“parabolic”)
  profile, although the acceleration in the fitted profiles is
  generally weaker than that of solar gravity. The macrospicules also
  have obviousbrightenings at their bases at their birth, while such
  brightenings are notapparent for most of the spicules. Our findings are
  suggestive of the twophenomena possibly having different initiation
  mechanisms, but this is not yetconclusive. A.C.S. and R.L.M. were
  supported by funding from the HeliophysicsDivision of NASA's Science
  Mission Directorate through the Living With a StarTargeted Research
  and Technology Program, and the Hinode Project. I.R.S. wassupported
  by NSF's Research Experience for Undergraduates Program.

---------------------------------------------------------
Title: Hi-C Observations of Penumbral Bright Dots
Authors: Alpert, S.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.;
   Winebarger, A. R.
2014AGUFMSH51C4182A    Altcode:
  We use high-quality data obtained by the High Resolution Coronal Imager
  (Hi-C) to examine bright dots (BDs) in a sunspot's penumbra. The sizes
  of these BDs are on the order of 1 arcsecond (1") and are therefore
  hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6"
  pixel-1 resolution. These BDs become readily apparent with Hi-C's
  0.1" pixel-1 resolution. Tian et al. (2014) found penumbral BDs in
  the transition region (TR) by using the Interface Region Imaging
  Spectrograph (IRIS). However, only a few of their dots could be
  associated with any enhanced brightness in AIA channels. In this work,
  we examine the characteristics of the penumbral BDs observed by Hi-C
  in a sunspot penumbra, including their sizes, lifetimes, speeds, and
  intensity. We also attempt to relate these BDs to the IRIS BDs. There
  are fewer Hi-C BDs in the penumbra than seen by IRIS, though different
  sunspots were studied. We use 193Å Hi-C data from July 11, 2012
  which observed from ~18:52:00 UT--18:56:00 UT and supplement it with
  data from AIA's 193Å passband to see the complete lifetime of the
  dots that were born before and/or lasted longer than Hi-C's 5-minute
  observation period. We use additional AIA passbands and compare the
  light curves of the BDs at different temperatures to test whether the
  Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement,
  and of those that do, they move in a radial direction, toward or away
  from the sunspot umbra. Single BDs interact with other BDs, combining
  to fade away or brighten. The BDs that do not interact with other BDs
  tend to move less. Our BDs are similar to the exceptional IRIS BDs:
  they move slower on average and their sizes and lifetimes are on the
  high end of the distribution of IRIS BDs. We infer that our penumbral
  BDs are some of the larger BDs observed by IRIS, those that are bright
  enough in TR emission to be seen in the 193Å band of Hi-C.

---------------------------------------------------------
Title: Trigger Mechanism of Solar Subflares in a Braided Coronal
    Magnetic Structure
Authors: Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger,
   Amy R.; Moore, Ronald L.
2014ApJ...795L..24T    Altcode: 2014arXiv1410.4260T
  Fine-scale braiding of coronal magnetic loops by continuous
  footpoint motions may power coronal heating via nanoflares, which are
  spontaneous fine-scale bursts of internal reconnection. An initial
  nanoflare may trigger an avalanche of reconnection of the braids,
  making a microflare or larger subflare. In contrast to this internal
  triggering of subflares, we observe external triggering of subflares
  in a braided coronal magnetic field observed by the High-resolution
  Coronal Imager (Hi-C). We track the development of these subflares
  using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and
  registered magnetograms of SDO/HMI, over four hours centered on the
  Hi-C observing time. These data show numerous recurring small-scale
  brightenings in transition-region emission happening on polarity
  inversion lines where flux cancellation is occurring. We present in
  detail an example of an apparent burst of reconnection of two loops
  in the transition region under the braided coronal field which is
  appropriate for releasing a short reconnected loop downward and a longer
  reconnected loop upward. The short loop presumably submerges into the
  photosphere, participating in observed flux cancellation. A subflare
  in the overlying braided magnetic field is apparently triggered by the
  disturbance of the braided field by the reconnection-released upward
  loop. At least 10 subflares observed in this braided structure appear
  to be triggered this way. How common this external trigger mechanism
  for coronal subflares is in other active regions, and how important
  it is for coronal heating in general, remain to be seen.

---------------------------------------------------------
Title: New Aspects of a Lid-removal Mechanism in the Onset of an
    Eruption Sequence that Produced a Large Solar Energetic Particle
    (SEP) Event
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.;
   Knox, Javon M.
2014ApJ...788L..20S    Altcode:
  We examine a sequence of two ejective eruptions from a single active
  region on 2012 January 23, using magnetograms and EUV images from the
  Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager
  (HMI) and Atmospheric and Imaging Assembly (AIA), and EUV images from
  STEREO/EUVI. This sequence produced two coronal mass ejections (CMEs)
  and a strong solar energetic particle event (SEP); here we focus on
  the magnetic onset of this important space weather episode. Cheng
  et al. showed that the first eruption's ("Eruption 1") flux rope was
  apparent only in "hotter" AIA channels, and that it removed overlying
  field that allowed the second eruption ("Eruption 2") to begin via
  ideal MHD instability; here we say that Eruption 2 began via a "lid
  removal" mechanism. We show that during Eruption 1's onset, its flux
  rope underwent a "tether weakening" (TW) reconnection with field that
  arched from the eruption-source active region to an adjacent active
  region. Standard flare loops from Eruption 1 developed over Eruption
  2's flux rope and enclosed filament, but these overarching new loops
  were unable to confine that flux rope/filament. Eruption 1's flare
  loops, from both TW reconnection and standard-flare-model internal
  reconnection, were much cooler than Eruption 2's flare loops (GOES
  thermal temperatures of ~7.5 MK and 9 MK, compared to ~14 MK). The
  corresponding three sequential GOES flares were, respectively, due to TW
  reconnection plus earlier phase Eruption 1 tether-cutting reconnection,
  Eruption 1 later-phase tether-cutting reconnection, and Eruption 2
  tether-cutting reconnection.

---------------------------------------------------------
Title: MAG4 versus Alternative Techniques for Forecasting
    Active-Region Flare Productivity
Authors: Falconer, David; Moore, Ronald L.; Barghouty, Abdulnasser F;
   Khazanov, Igor
2014AAS...22440204F    Altcode:
  MAG4 is a technique of forecasting an active region's rate of production
  of major flares in the coming few days from a free-magnetic-energy
  proxy. We present a statistical method of measuring the difference
  in performance between MAG4 and comparable alternative techniques
  that forecast an active region’s major-flare productivity from
  alternative observed aspects of the active region. We demonstrate
  the method by measuring the difference in performance between the
  “Present MAG4” technique and each of three alternative techniques,
  called “McIntosh Active-Region Class,” “Total Magnetic Flux,”
  and “Next MAG4.” We do this by using (1) the MAG4 database of
  magnetograms and major-flare histories of sunspot active regions,
  (2) the NOAA table of the major-flare productivity of each of 60
  McIntosh active-region classes of sunspot active regions, and (3) five
  technique-performance metrics (Heidke Skill Score, True Skill Score,
  Percent Correct, Probability of Detection, and False Alarm Rate)
  evaluated from 2000 random two-by-two contingency tables obtained
  from the databases. We find that (1) Present MAG4 far outperforms
  both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next
  MAG4 significantly outperforms Present MAG4, (3) the performance of
  Next MAG4 is insensitive to the forward and backward temporal windows
  used, in the range of one to a few days, and (4) forecasting from
  the free-energy proxy in combination with either any broad category
  of McIntosh active-region classes or any Mount Wilson active-region
  class gives no significant performance improvement over forecasting
  from the free-energy proxy alone (Present MAG4). Funding for this
  research came from NASA’s Game Changing Development Program, Johnson
  Space Center’s Space Radiation Analysis Group (SRAG), and AFOSR’s
  Multi-University Research Initiative. In particular, funding was
  facilitated by Dr. Dan Fry (NASA-JSC) and David Moore (NASA-LaRC).

---------------------------------------------------------
Title: New Aspects of a Lid-Removal Mechanism in the Onset of a
    SEP-Producing Eruption Sequence
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David;
   Knox, Javon M
2014AAS...22421202S    Altcode:
  We examine a sequence of two ejective eruptions from a single active
  region on 2012 January 23, using magnetograms and EUV images from
  SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013)
  showed that the first eruption's (“Eruption 1”) flux rope was apparent
  only in “hotter” AIA channels, and that it removed overlying field
  that allowed the second eruption (“Eruption 2”) to begin via ideal
  MHD instability; here we say Eruption 2 began via a “lid removal”
  mechanism. We show that during Eruption-1's onset, its flux rope
  underwent “tether weakening” (TW) reconnection with the field of an
  adjacent active region. Standard flare loops from Eruption 1 developed
  over Eruption-2's flux rope and enclosed filament, but these overarching
  new loops were unable to confine that flux rope/filament. Eruption-1's
  flare loops, from both TW reconnection and standard-flare-model internal
  reconnection, were much cooler than Eruption-2's flare loops (GOES
  thermal temperatures of ~9 MK compared to ~14 MK). This eruption
  sequence produced a strong solar energetic particle (SEP) event
  (10 MeV protons, &gt;10^3 pfu for 43 hrs), apparently starting when
  Eruption-2's CME blasted through Eruption-1's CME at 5---10 R_s. This
  occurred because the two CMEs originated in close proximity and in
  close time sequence: Eruption-1's fast rise started soon after the TW
  reconnection; the lid removal by Eruption-1's ejection triggered the
  slow onset of Eruption 2; and Eruption-2's CME, which started ~1 hr
  later, was three times faster than Eruption-1's CME.

---------------------------------------------------------
Title: Magnetic structure of sites of braiding in Hi-C active region
Authors: Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger,
   Amy R.; Moore, Ronald L.
2014AAS...22440904T    Altcode:
  High-resolution Coronal Imager (Hi-C) observations of an active region
  (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the
  first direct evidence of field lines braiding, which could deliver
  sufficient energy to heat the AR corona by current dissipation
  via magnetic reconnection, a proposal given by Parker three decades
  ago. The energy required to heat the corona must be transported from the
  photosphere along the field lines. The mechanism that drives the energy
  transport to the corona is not yet fully understood.To investigate
  simultaneous magnetic and intensity structure in and around the AR in
  detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute
  Hi-C flight. In the case of the QS, work done by convection/granulation
  on the inter-granular feet of the coronal field lines probably
  translates into the heat observed in the corona. In the case of the
  AR, as here, there could be flux emergence, cancellation/submergence,
  or shear flows generating large stress and tension in coronal field
  loops which is released as heat in the corona. However, to the best of
  our knowledge, there is no observational evidence available to these
  processes. We investigate the changes taking place in the photospheric
  feet of the magnetic field involved with brightenings in the Hi-C
  AR corona. Using HMI 45s magnetograms of four hours we find that,
  out of the two Hi-C sub-regions where the braiding of field lines
  were recently detected, flux emergence takes place in one region and
  flux cancellation in the other. The field in these sub-regions are
  highly sheared and have apparent high speed plasma flows at their
  feet. Therefore, shearing flows plausibly power much of the coronal
  and transition region heating in these areas of the AR. In addition,
  the presence of large flux emergence/cancellation strongly suggests that
  the work done by these processes on the pre-existing field also drives
  much of the observed heating.For this work, SKT and CEA were supported
  by an appointment to the NASA Postdoctoral Program at the NASA Marshall
  Space Flight Center, administered by Oak Ridge Associated Universities
  through a contract with NASA, and AW and RLM were supported by funding
  from the Living With a Star Targeted Research and Technology Program
  of the Heliophysics Division of NASA's Science Mission Directorate.

---------------------------------------------------------
Title: Magnetic Untwisting in Jets that Go into the Outer Solar
    Corona in Polar Coronal Holes
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David
2014AAS...22440803M    Altcode:
  We present results from a study of 14 jets that were observed in SDO/AIA
  EUV movies to erupt in the Sun’s polar coronal holes. These jets
  were similar to the many other jets that erupt in coronal holes, but
  reached higher than the vast majority, high enough to be observed in the
  outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2
  coronagraph. We illustrate the characteristic structure and motion of
  these high-reaching jets by showing observations of two representative
  jets. We find that (1) the speed of the jet front from the base of the
  corona out to 2-3 solar radii is typically several times the sound speed
  in jets in coronal holes, (2) each high-reaching jet displays unusually
  large rotation about its axis (spin) as it erupts, and (3) in the outer
  corona, many jets display lateral swaying and bending of the jet axis
  with an amplitude of a few degrees and a period of order 1 hour. From
  these observations we infer that these jets are magnetically driven,
  propose that the driver is a magnetic-untwisting wave that is basically
  a large-amplitude (non-linear) torsional Alfven wave that is put into
  the open magnetic field in the jet by interchange reconnection as the
  jet erupts, and estimate that the magnetic-untwisting wave loses most
  of its energy before reaching the outer corona. These observations of
  high-reaching coronal jets suggest that the torsional magnetic waves
  observed in Type-II spicules can similarly dissipate in the corona and
  thereby power much of the coronal heating in coronal holes and quiet
  regions. This work is funded by the NASA/SMD Heliophysics Division’s
  Living With a Star Targeted Research &amp; Technology Program.

---------------------------------------------------------
Title: Search for Invisible Decays of a Higgs Boson Produced in
    Association with a Z Boson in ATLAS
Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek,
   S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.;
   Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.;
   Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky,
   S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.;
   Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.;
   Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.;
   Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria,
   F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob,
   M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison,
   L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.;
   Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.;
   Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov,
   V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.;
   Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.;
   Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.;
   Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi,
   F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli,
   M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.;
   Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.;
   Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster,
   A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.;
   Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.;
   Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.;
   Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma,
   Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.;
   Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee,
   Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.;
   Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.;
   Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.;
   Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro,
   F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.;
   Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.;
   Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.;
   Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.;
   Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.;
   Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann,
   T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.;
   Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.;
   Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.;
   Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou,
   Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.;
   Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas
   Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.;
   Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.;
   Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.;
   Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.;
   Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.;
   Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.;
   Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard,
   J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein,
   U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.;
   Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.;
   Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.;
   Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.;
   Bona, M.; Boonekamp, M.; Borer, C.; Borisov, A.; Borissov, G.; Borri,
   M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini,
   D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.;
   Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.;
   Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic,
   I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.;
   Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.;
   Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler,
   S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock,
   R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks,
   T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.;
   Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.;
   Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat,
   Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda,
   S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bugge,
   M. K.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin,
   S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher,
   V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt,
   A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.;
   Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura,
   P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi,
   R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron,
   D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli,
   M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.;
   Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua,
   M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati,
   L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.;
   Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.;
   Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro,
   N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.;
   Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza,
   M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira,
   A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.;
   Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.;
   Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton,
   D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov,
   S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.;
   Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu,
   E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.;
   Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.;
   Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi,
   I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti,
   G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.;
   Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan,
   M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens,
   J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro,
   A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas,
   J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.;
   Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis,
   E.; Conidi, M. C.; Connelly, I. A.; Consonni, S. M.; Consorti, V.;
   Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.;
   Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic,
   K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.;
   Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo,
   D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.;
   Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.;
   Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.;
   Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.;
   Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio,
   M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.;
   Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola,
   C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.;
   Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.;
   Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.;
   Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.;
   de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot,
   N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.;
   de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo,
   A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.;
   Deigaard, I.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot,
   F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.;
   Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.;
   Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz,
   D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros,
   P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.;
   di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di
   Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.;
   di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch,
   T. A.; Diglio, S.; Dimitrievska, A.; Dindar Yagci, K.; Dingfelder,
   J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava,
   T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.;
   Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi,
   J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero,
   P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.;
   Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil,
   E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.;
   Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.;
   Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.;
   Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen,
   G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles,
   S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing,
   M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann,
   R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.;
   Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne,
   F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri,
   L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.;
   Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag,
   S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari,
   R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.;
   Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.;
   Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.;
   Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher,
   M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.;
   Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus,
   A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.;
   Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla,
   P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.;
   Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich,
   F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa,
   E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli,
   A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi,
   G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.;
   Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.;
   Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.;
   García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli,
   N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.;
   Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.;
   Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel,
   Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile,
   S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.;
   Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti,
   P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam,
   T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.;
   Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud,
   P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas,
   I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti,
   G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski,
   J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes,
   A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da
   Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.;
   Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov,
   P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini,
   E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin,
   M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.;
   Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold,
   I.; Grafström, P.; Grahn, K. -J.; Gramling, J.; Gramstad, E.;
   Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray,
   H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood,
   Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.;
   Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris,
   Ph.; Grishkevich, Y. V.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean,
   A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.;
   Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.;
   Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert,
   C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz,
   N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam,
   C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck,
   S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian,
   G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.;
   Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.;
   Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson,
   P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.;
   Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey,
   A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.;
   Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins,
   A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood,
   S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim,
   T.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller,
   C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson,
   J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.;
   Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez,
   Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.;
   Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.;
   Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe,
   I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.;
   Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.;
   Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes,
   T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou,
   S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova,
   I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu,
   X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.;
   Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing,
   T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci,
   G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga,
   J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.;
   Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince,
   T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles
   Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov,
   R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki,
   H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson,
   M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.;
   Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.;
   Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty,
   L.; Jeng, G. -Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch,
   J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.;
   Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi,
   O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.;
   Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.;
   Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst,
   R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.;
   Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya,
   N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki,
   J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis,
   N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.;
   Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas,
   A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.;
   Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov,
   M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller,
   J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.;
   Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.;
   Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli,
   G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim,
   H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King,
   R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.;
   Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva,
   E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov,
   A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova,
   T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.;
   Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.;
   Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl,
   K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova,
   E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.;
   Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.;
   Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin,
   A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev,
   D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.;
   Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger,
   P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.;
   Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn,
   Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.;
   Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov,
   S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa,
   A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava,
   F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.;
   Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.;
   Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.;
   Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni,
   F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte,
   J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.;
   Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.;
   Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee,
   H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.;
   Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.;
   Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.;
   Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone,
   R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester,
   C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis,
   G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.;
   Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie,
   K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.;
   Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles,
   E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister,
   A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.;
   Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres,
   A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska,
   E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.;
   Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.;
   Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long,
   R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.;
   Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou,
   X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti,
   H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.;
   Lukas, W.; Luminari, L.; Lundberg, J.; Lundberg, O.; Lund-Jensen,
   B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.;
   Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina,
   D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader,
   W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.;
   Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.;
   Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal,
   P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.;
   Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.;
   Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.;
   Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres
   Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.;
   Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.;
   Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques,
   C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.;
   Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.;
   Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.;
   Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.;
   Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa,
   I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.;
   Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann,
   J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.;
   Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee,
   S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.;
   McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.;
   McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel,
   M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.;
   Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.;
   Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli,
   A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric,
   N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt,
   H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.;
   Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.;
   Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.;
   Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.;
   Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.;
   Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani,
   T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa,
   P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr,
   W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini,
   C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.;
   Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange,
   N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.;
   Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi,
   G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss,
   J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.;
   Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.;
   Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.;
   Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.;
   Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano,
   K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama,
   Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava,
   G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.;
   Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.;
   Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.;
   Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer,
   M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer,
   F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson,
   R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.;
   Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.;
   Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius,
   R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg,
   S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.;
   Nuncio-Quiroz, A. -E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse,
   E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea,
   V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.;
   Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm,
   C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama,
   T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.;
   Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.;
   Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia,
   M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.;
   Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.;
   Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren,
   K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.;
   Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan
   Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.;
   Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.;
   Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.;
   Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.;
   Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker,
   M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.;
   Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.;
   Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.;
   Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk,
   S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa,
   D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale,
   V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov,
   V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.;
   Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.;
   Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio,
   G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.;
   Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina,
   J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.;
   Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.;
   Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl,
   M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard,
   C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo,
   L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.;
   Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.;
   Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda,
   J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad,
   S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.;
   Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin,
   F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.;
   Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel,
   E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.;
   Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.;
   Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Ragusa, F.; Rahal,
   G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.;
   Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.;
   Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger,
   G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.;
   Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi,
   S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.;
   Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu,
   I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.;
   Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson,
   A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues,
   L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo,
   G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.;
   Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.;
   Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov,
   Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti,
   S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.; Sadykov, R.;
   Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon,
   A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.;
   Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.;
   Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez,
   A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.;
   Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem,
   R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos,
   H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.;
   Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.;
   Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan,
   J. B.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon,
   D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio,
   D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.;
   Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer,
   A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky,
   V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.;
   Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.;
   Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider,
   B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.;
   Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.;
   Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder,
   C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.;
   Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman,
   A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling,
   J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla,
   G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.;
   Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.;
   Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.;
   Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.;
   Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla,
   A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.;
   Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.;
   Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.;
   Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.;
   Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.;
   Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.;
   Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.;
   Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.;
   Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.;
   Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.;
   Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.;
   Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.;
   Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska,
   M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.;
   Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans,
   C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli
   Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.;
   Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.;
   Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.;
   Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.;
   Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka,
   E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.;
   Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov,
   P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg,
   P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.;
   Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton,
   M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling,
   A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie,
   A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom,
   D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak,
   J.; Styles, N. A.; Su, D.; Su, J.; Subramania, Hs.; Subramaniam, R.;
   Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy,
   S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.;
   Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.;
   Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard,
   A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima,
   R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.;
   Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.;
   Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.;
   Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.;
   Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati,
   Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger,
   F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming,
   K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.;
   Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.;
   Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.;
   Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.;
   Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.;
   Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov,
   Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.;
   Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.;
   Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.;
   Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor,
   E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger,
   T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.;
   Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon,
   C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski,
   M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C. -L.; Tsiareshka,
   P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze,
   S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia,
   V.; Tsung, J. -W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.;
   Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek,
   D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.;
   Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.;
   Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro,
   F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.;
   Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti,
   S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.;
   Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl,
   P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.;
   van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop,
   J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.;
   Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.;
   Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell,
   K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.;
   Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.;
   Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.;
   Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.;
   Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.;
   Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.;
   Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli,
   I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel,
   A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt,
   H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss,
   R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba,
   V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal,
   Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder,
   J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang,
   C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang,
   S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope,
   D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.;
   Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts,
   G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.;
   Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten,
   J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.;
   Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.;
   Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White,
   R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens,
   F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.;
   Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.;
   Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis,
   W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.;
   Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski,
   J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek,
   B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.;
   Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne,
   B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.;
   Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto,
   K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki,
   Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.;
   Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.;
   Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.;
   Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef,
   S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.;
   Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.;
   Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla,
   A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta,
   G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.;
   Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu,
   C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska,
   D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.;
   Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig,
   G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski,
   L.; Atlas Collaboration
2014PhRvL.112t1802A    Altcode: 2014arXiv1402.3244A
  A search for evidence of invisible-particle decay modes of a Higgs boson
  produced in association with a Z boson at the Large Hadron Collider is
  presented. No deviation from the standard model expectation is observed
  in 4.5 fb-<SUP>1</SUP> (20.3 fb-<SUP>1</SUP>) of 7 (8) TeV pp collision
  data collected by the ATLAS experiment. Assuming the standard model
  rate for ZH production, an upper limit of 75%, at the 95% confidence
  level is set on the branching ratio to invisible-particle decay modes
  of the Higgs boson at a mass of 125.5 GeV. The limit on the branching
  ratio is also interpreted in terms of an upper limit on the allowed
  dark matter-nucleon scattering cross section within a Higgs-portal dark
  matter scenario. Within the constraints of such a scenario, the results
  presented in this Letter provide the strongest available limits for
  low-mass dark matter candidates. Limits are also set on an additional
  neutral Higgs boson, in the mass range 110&lt;m<SUB>H</SUB>&lt;400
  GeV, produced in association with a Z boson and decaying to invisible
  particles.

---------------------------------------------------------
Title: A Small-scale Eruption Leading to a Blowout Macrospicule Jet
    in an On-disk Coronal Hole
Authors: Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary,
   G. Allen
2014ApJ...783...11A    Altcode:
  We examine the three-dimensional magnetic structure and dynamics
  of a solar EUV-macrospicule jet that occurred on 2011 February 27
  in an on-disk coronal hole. The observations are from the Solar
  Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and
  the SDO Helioseismic and Magnetic Imager (HMI). The observations
  reveal that in this event, closed-field-carrying cool absorbing
  plasma, as in an erupting mini-filament, erupted and opened,
  forming a blowout jet. Contrary to some jet models, there was no
  substantial recently emerged, closed, bipolar-magnetic field in the
  base of the jet. Instead, over several hours, flux convergence and
  cancellation at the polarity inversion line inside an evolved arcade
  in the base apparently destabilized the entire arcade, including its
  cool-plasma-carrying core field, to undergo a blowout eruption in the
  manner of many standard-sized, arcade-blowout eruptions that produce
  a flare and coronal mass ejection. Internal reconnection made bright
  "flare" loops over the polarity inversion line inside the blowing-out
  arcade field, and external reconnection of the blowing-out arcade field
  with an ambient open field made longer and dimmer EUV loops on the
  outside of the blowing-out arcade. That the loops made by the external
  reconnection were much larger than the loops made by the internal
  reconnection makes this event a new variety of blowout jet, a variety
  not recognized in previous observations and models of blowout jets.

---------------------------------------------------------
Title: Search for Dark Matter in Events with a Hadronically Decaying
    W or Z Boson and Missing Transverse Momentum in pp Collisions at
    √s =8 TeV with the ATLAS Detector
Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek,
   S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.;
   Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk,
   L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.;
   Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni,
   M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Ahsan, M.; Aielli, G.;
   Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert,
   J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov,
   I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.;
   Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.;
   Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.;
   Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso,
   A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.;
   Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor
   Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.;
   Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.;
   Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.;
   Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov,
   A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov,
   A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.;
   Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.;
   Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster,
   A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.;
   Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.;
   Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.;
   Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma,
   Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.;
   Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee,
   Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.;
   Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero,
   M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow,
   N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr,
   A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.;
   Barton, A. E.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.;
   Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.;
   Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.;
   Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall,
   A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.;
   Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell,
   P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo,
   M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.;
   Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.;
   Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger,
   J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann,
   E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.;
   Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.;
   Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.;
   Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.;
   Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.;
   Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.;
   Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard,
   J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.;
   Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.;
   Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert,
   N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm,
   J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.;
   Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov,
   A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto,
   V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami,
   J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios,
   C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.;
   Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.;
   Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun,
   H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brenner, R.;
   Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.;
   Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.;
   Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown,
   J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet,
   S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.;
   Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.;
   Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer,
   F.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart,
   H.; Burdin, S.; Burgess, T.; Burke, S.; Burmeister, I.; Busato,
   E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler,
   J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.;
   Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir,
   O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba,
   L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri,
   P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana,
   S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero,
   J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.;
   Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino,
   G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.;
   Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado,
   M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo
   Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore,
   J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli,
   D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.;
   Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.;
   Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova,
   I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman,
   J. W.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas,
   C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.;
   Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen,
   X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.;
   Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari,
   G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm,
   A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.;
   Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart,
   D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci,
   R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.;
   Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.;
   Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.;
   Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan,
   J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.;
   Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella,
   G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.;
   Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.;
   Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.;
   Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu,
   A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.;
   Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox,
   B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.;
   Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.;
   Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.;
   Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.;
   D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski,
   W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.;
   Damiani, D. S.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo,
   G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David,
   C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.;
   Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.;
   de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot,
   N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.;
   de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo,
   A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.;
   Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev,
   M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.;
   Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.;
   Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui,
   J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst,
   A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di
   Ciaccio, L.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di
   Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.;
   di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch,
   T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.;
   Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale,
   M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.;
   Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.;
   Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Donini, J.;
   Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle,
   A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni,
   E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.;
   Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz,
   H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.;
   Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler,
   K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles,
   S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing,
   M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann,
   R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.;
   Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne,
   F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri,
   L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng,
   E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.;
   Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima,
   D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.;
   Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.;
   Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.;
   Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher,
   G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos,
   A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.;
   Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.;
   Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.;
   Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux,
   D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.;
   Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.;
   Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.;
   Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.;
   Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.;
   Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García
   Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.;
   Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.;
   Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse,
   Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt,
   K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.;
   George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.;
   Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti,
   F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.;
   Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani,
   M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.;
   Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas,
   I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti,
   G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski,
   J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes,
   A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da
   Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.;
   Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens,
   L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini,
   B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling,
   C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.;
   Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas,
   H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn,
   K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo,
   S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani,
   E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.;
   Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm,
   K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J. -F.;
   Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi,
   G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guescini, F.; Guest,
   D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.;
   Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.;
   Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan,
   C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner,
   P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian,
   G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.;
   Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel,
   C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen,
   P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha,
   S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.;
   Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug,
   S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings,
   R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward,
   H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan,
   L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary,
   L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.;
   Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia,
   A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez,
   C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten,
   G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.;
   Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.;
   Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.;
   Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.;
   Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann,
   J. I.; Hohlfeld, M.; Holmes, T. R.; Holmgren, S. O.; Hong, T. M.;
   Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.;
   Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.;
   Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, X.; Huang, Y.;
   Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.;
   Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz,
   M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.;
   Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo,
   P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.;
   Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice,
   M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.;
   Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin,
   S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.;
   Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.;
   Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin,
   D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.;
   Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G. -Y.; Jen-La Plante,
   I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.;
   Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer,
   M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.;
   Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.;
   Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic,
   J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.;
   Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan,
   M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.;
   Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy,
   M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.;
   Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka,
   Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.;
   Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler,
   R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian,
   H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung,
   J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.;
   Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov,
   A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.;
   Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King,
   S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.;
   Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.;
   Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.;
   Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge,
   E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.;
   Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys,
   P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl,
   K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova,
   E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.;
   Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura,
   V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.;
   Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny,
   M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.;
   Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger,
   K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.;
   Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.;
   Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel,
   A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.;
   Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee,
   R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta,
   C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.;
   Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier,
   H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.;
   Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford,
   A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire,
   C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.;
   Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.;
   Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.;
   Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre,
   G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehan, A.;
   Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.;
   Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.;
   Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis,
   S.; Leroy, C.; Lessard, J. -R.; Lester, C. G.; Lester, C. M.; Levêque,
   J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.;
   Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang,
   Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig,
   W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.;
   Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.;
   Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.;
   Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.;
   Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino,
   J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman,
   W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.;
   Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.;
   Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos,
   D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada,
   M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.;
   Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte,
   A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.;
   Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.;
   Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.;
   Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang,
   R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen,
   A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.;
   Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.;
   Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu,
   B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.;
   Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.;
   Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini,
   A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.;
   Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel,
   R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori,
   G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.;
   Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.;
   Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.;
   Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx,
   M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov,
   R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea,
   P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita,
   T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer,
   J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.;
   Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy,
   R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden,
   J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson,
   R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan,
   S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck,
   C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.;
   Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio,
   K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.;
   Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.;
   Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.;
   Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova,
   M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.;
   Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.;
   Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.;
   Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.;
   Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.;
   Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.;
   Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.;
   Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes,
   A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini,
   P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi,
   G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.;
   Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd,
   R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.;
   Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.;
   Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.;
   Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar,
   A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura,
   K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier,
   A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.;
   Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.;
   Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek,
   S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.;
   Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.;
   Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.;
   Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov,
   A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.;
   Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman,
   L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova,
   J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A. -E.; Nunes
   Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Grady, F.;
   O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.;
   Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.;
   Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.;
   Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino,
   S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito,
   D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram,
   C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza
   Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.;
   Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.;
   Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan,
   V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.;
   Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel,
   K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.;
   Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.;
   Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.;
   Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.;
   Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci,
   E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor,
   G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly,
   T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales,
   M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.;
   Penson, A.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.;
   Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.;
   Perini, L.; Pernegger, H.; Perrino, R.; Peshekhonov, V. D.; Peters,
   K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.;
   Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.;
   Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori,
   E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia,
   R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.;
   Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.;
   Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.;
   Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl,
   M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard,
   C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo,
   L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.;
   Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.;
   Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda,
   J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad,
   S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.;
   Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin,
   F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.;
   Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel,
   E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.;
   Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.;
   Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.;
   Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.;
   Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.;
   Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.;
   Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren,
   Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek,
   P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.;
   Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.;
   Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.;
   Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.;
   Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.;
   Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.;
   Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati,
   S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.;
   Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.;
   Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.;
   Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.;
   Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna,
   G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.;
   Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.;
   Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez,
   J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders,
   M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.;
   Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos,
   H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.;
   Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.;
   Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan,
   E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer,
   C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.;
   Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.;
   Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel,
   S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.;
   Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer,
   M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker,
   S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt,
   S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel,
   L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.;
   Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm,
   S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens,
   M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm,
   B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling,
   Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer,
   M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti,
   F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.;
   Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach,
   K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.;
   Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini,
   H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.;
   Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw,
   K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova,
   M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga,
   E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti,
   A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.;
   Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic,
   Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan,
   M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.;
   Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.;
   Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater,
   M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad,
   L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.;
   Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero,
   G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer,
   A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.;
   Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov,
   O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee,
   M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo,
   S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.;
   Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen,
   R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu,
   M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.;
   Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele,
   G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer,
   H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea,
   G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.;
   Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec,
   P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.;
   Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.;
   Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.;
   Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann,
   J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos,
   M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.;
   Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.;
   Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita,
   T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett,
   M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.;
   Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem,
   S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro,
   T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor,
   F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias
   Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.;
   Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa,
   M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.;
   Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.;
   Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong,
   W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov,
   V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton,
   P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.;
   Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.;
   Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topilin, N. D.;
   Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard,
   F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli,
   A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett,
   N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.;
   Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas,
   C.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.;
   Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.;
   Tsukerman, I. I.; Tsulaia, V.; Tsung, J. -W.; Tsuno, S.; Tsybychev,
   D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.;
   Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.;
   Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda,
   I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.;
   Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec,
   D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.;
   Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.;
   Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.;
   Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der
   Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.;
   van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.;
   van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov,
   P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.;
   Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.;
   Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura,
   A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.;
   Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.;
   Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.;
   Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.;
   Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.;
   Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak,
   M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der
   Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos,
   M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic,
   M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.;
   Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.;
   Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller,
   P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang,
   K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward,
   C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.;
   Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson,
   M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.;
   Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell,
   P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.;
   Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner,
   M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.;
   White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.;
   Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann,
   P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer,
   A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams,
   E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson,
   J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier,
   F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.;
   Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack,
   J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu,
   S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.;
   Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.;
   Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.;
   Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang,
   H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.;
   Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.;
   Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.;
   Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu,
   J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev,
   A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.;
   Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas,
   D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.;
   Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.;
   Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.;
   Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann,
   R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.;
   Zitoun, R.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden,
   M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2014PhRvL.112d1802A    Altcode:
  A search is presented for dark matter pair production in association
  with a W or Z boson in pp collisions representing 20.3 fb-<SUP>1</SUP>
  of integrated luminosity at √s =8 TeV using data recorded with the
  ATLAS detector at the Large Hadron Collider. Events with a hadronic
  jet with the jet mass consistent with a W or Z boson, and with large
  missing transverse momentum are analyzed. The data are consistent
  with the standard model expectations. Limits are set on the mass
  scale in effective field theories that describe the interaction of
  dark matter and standard model particles, and on the cross section
  of Higgs production and decay to invisible particles. In addition,
  cross section limits on the anomalous production of W or Z bosons with
  large missing transverse momentum are set in two fiducial regions.

---------------------------------------------------------
Title: Einar Tandberg-Hanssen
Authors: Schmieder, Brigitte; Pecker, Jean-Claude; Gary, Allen; Wu,
   S. T.; Moore, Ronald; Biesmann, Else
2014IAUS..300....4S    Altcode:
  I would like to report first on the scientific career of Einar
  Tandberg-Hanssen: how he became a Solar Physicist particularly
  interested in prominences. In the second part of my talk I will show
  what he brought to the French community from the science perspective.

---------------------------------------------------------
Title: Evidence for Solar Tether-cutting Magnetic Reconnection from
    Coronal Field Extrapolations
Authors: Liu, Chang; Deng, Na; Lee, Jeongwoo; Wiegelmann, Thomas;
   Moore, Ronald L.; Wang, Haimin
2013ApJ...778L..36L    Altcode: 2013arXiv1310.5098L
  Magnetic reconnection is one of the primary mechanisms for triggering
  solar eruptive events, but direct observation of this rapid process has
  been a challenge. In this Letter, using a nonlinear force-free field
  (NLFFF) extrapolation technique, we present a visualization of field
  line connectivity changes resulting from tether-cutting reconnection
  over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA
  AR 11158. Evidence for the tether-cutting reconnection was first
  collected through multiwavelength observations and then by analysis of
  the field lines traced from positions of four conspicuous flare 1700
  Å footpoints observed at the event onset. Right before the flare,
  the four footpoints are located very close to the regions of local
  maxima of the magnetic twist index. In particular, the field lines
  from the inner two footpoints form two strongly twisted flux bundles
  (up to ~1.2 turns), which shear past each other and reach out close to
  the outer two footpoints, respectively. Immediately after the flare,
  the twist index of regions around the footpoints diminishes greatly and
  the above field lines become low-lying and less twisted (lsim0.6 turns),
  overarched by loops linking the two flare ribbons formed later. About
  10% of the flux (~3 × 10<SUP>19</SUP> Mx) from the inner footpoints
  undergoes a footpoint exchange. This portion of flux originates
  from the edge regions of the inner footpoints that are brightened
  first. These rapid changes of magnetic field connectivity inferred
  from the NLFFF extrapolation are consistent with the tether-cutting
  magnetic reconnection model.

---------------------------------------------------------
Title: Detecting Nanoflare Heating Events in Subarcsecond Inter-moss
    Loops Using Hi-C
Authors: Winebarger, Amy R.; Walsh, Robert W.; Moore, Ronald;
   De Pontieu, Bart; Hansteen, Viggo; Cirtain, Jonathan; Golub, Leon;
   Kobayashi, Ken; Korreck, Kelly; DeForest, Craig; Weber, Mark; Title,
   Alan; Kuzin, Sergey
2013ApJ...771...21W    Altcode:
  The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding
  rocket on 2012 July 11 and captured roughly 345 s of high-spatial and
  temporal resolution images of the solar corona in a narrowband 193 Å
  channel. In this paper, we analyze a set of rapidly evolving loops that
  appear in an inter-moss region. We select six loops that both appear in
  and fade out of the Hi-C images during the short flight. From the Hi-C
  data, we determine the size and lifetimes of the loops and characterize
  whether these loops appear simultaneously along their length or
  first appear at one footpoint before appearing at the other. Using
  co-aligned, co-temporal data from multiple channels of the Atmospheric
  Imaging Assembly on the Solar Dynamics Observatory, we determine the
  temperature and density of the loops. We find the loops consist of
  cool (~10<SUP>5</SUP> K), dense (~10<SUP>10</SUP> cm<SUP>-3</SUP>)
  plasma. Their required thermal energy and their observed evolution
  suggest they result from impulsive heating similar in magnitude to
  nanoflares. Comparisons with advanced numerical simulations indicate
  that such dense, cold and short-lived loops are a natural consequence
  of impulsive magnetic energy release by reconnection of braided magnetic
  field at low heights in the solar atmosphere.

---------------------------------------------------------
Title: Magnetic Untwisting in Most Solar X-Ray Jets
Authors: Moore, Ronald L.; Sterling, A. C.; Falconer, D.; Robe, D. M.
2013SPD....4410304M    Altcode:
  From 54 X-ray jets observed in the polar coronal holes by Hinode’s
  X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic
  Observatory’s Atmospheric Imaging Assembly (AIA) taken in its
  He II 304 Å band at a cadence of 12 s, we have established a basic
  characteristic of solar X-ray jets: untwisting motion in the spire. In
  this presentation, we show the progression of few of these X-ray jets
  in XRT images and track their untwisting in AIA He II images. From
  their structure displayed in their XRT movies, 19 jets were evidently
  standard jets made by interchange reconnection of the magnetic-arcade
  base with ambient open field, 32 were evidently blowout jets made by
  blowout eruption of the base arcade, and 3 were of ambiguous form. As
  was anticipated from the &gt;10,000 km span of the base arcade in
  most polar X-ray jets and from the disparity of standard jets and
  blowout jets in their magnetic production, few of the standard X-ray
  jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32)
  carried enough cool (T ~ 10^5 K) plasma to be seen in their He II
  movies. In the 32 X-ray jets that showed a cool component, the He II
  movies show 10-100 km/s untwisting motions about the axis of the spire
  in all 3 standard jets and in 26 of the 29 blowout jets. Evidently,
  the open magnetic field in nearly all blowout X-ray jets and probably
  in most standard X-ray jets carries transient twist. This twist
  apparently relaxes by propagating out along the open field as a
  torsional wave. High-resolution spectrograms and Dopplergrams have
  shown that most Type-II spicules have torsional motions of 10-30
  km/s. Our observation of similar torsional motion in X-ray jets (1)
  strengthens the case for Type-II spicules being made in the same way
  as X-ray jets, by blowout eruption of a twisted magnetic arcade in the
  spicule base and/or by interchange reconnection of the twisted base
  arcade with the ambient open field, and hence (2) strengthens the case
  made by Moore et al (2011, ApJ, 731: L18) that the Sun's granule-size
  emerging magnetic bipoles, by making Type-II spicules, power the global
  corona and solar wind. This work was funded by NASA’s LWS TRT Program,
  NASA's Hinode Project, and NSF's REU Program.

---------------------------------------------------------
Title: A Small-Scale Filament Eruption Leading to a Blowout
    Macrospicule Jet in an On-Disk Coronal Hole
Authors: Sterling, Alphonse C.; Adams, M.; Moore, R. L.; Tennant,
   A. F.; Gary, G. A.
2013SPD....44...17S    Altcode:
  We observe an eruptive jet that occurred in an on-disk solar coronal
  hole, using EUV images from the Solar Dynamics Observatory (SDO)
  Atmospheric Imaging Assembly (AIA), supplemented by magnetic data from
  the SDO Helioseismic and Magnetic Imager (HMI). This jet is similar to
  features variously called macrospicules or erupting minifilaments. After
  an initial pre-eruptive phase, a concentration of absorbing, cool
  material in the AIA images moves with a substantially-horizontal motion
  toward a region of open magnetic field, and subsequently jets out along
  that vertical field. Prior to and during the jet's ~20 min lifetime,
  the magnetic flux integrated over the local region shows flux changes
  of &amp;lt 20% of the background flux levels, with a time-averaged
  emergence rate of no more than &lt;3 × 10^15 Mx/s in the neighborhood
  of the jet. Contrary to some jet models, there was no substantial
  recently-emerged bipolar field in the base of the jet. Instead, there
  was an established evolving magnetic arcade that held mini-filament-like
  cool plasma in its core field. We propose that subtle evolution of the
  magnetic flux in and around this arcade destabilized its core field,
  as in some standard-sized arcade blowout eruptions that produce a flare
  and CME following the slow rise of a standard-sized filament in the
  core of the arcade. Closed field carrying the cool plasma erupted into
  the open field and formed the blowout jet, evidently at least partly
  by interchange reconnection with the open field. Internal reconnection
  made compact bright "flare" loops inside the blowing-out arcade, while,
  on the outside, interchange reconnection made longer and dimmer EUV
  "crinkle" loops. That the loops made by the external reconnection were
  considerably larger than the loops made by the internal reconnection
  makes this event a new variety of blowout jet, a variety not recognized
  in previous observations and models of blowout jets.

---------------------------------------------------------
Title: The Cool Component and the Dichotomy, Lateral Expansion,
    and Axial Rotation of Solar X-Ray Jets
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.;
   Robe, Dominic
2013ApJ...769..134M    Altcode:
  We present results from a study of 54 polar X-ray jets that were
  observed in coronal X-ray movies from the X-ray Telescope on Hinode and
  had simultaneous coverage in movies of the cooler transition region (T
  ~ 10<SUP>5</SUP> K) taken in the He II 304 Å band of the Atmospheric
  Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual
  observations verify the standard-jet/blowout-jet dichotomy of polar
  X-ray jets previously found primarily from XRT movies alone. In accord
  with models of blowout jets and standard jets, the AIA 304 Å movies
  show a cool (T ~ 10<SUP>5</SUP> K) component in nearly all blowout X-ray
  jets and in a small minority of standard X-ray jets, obvious lateral
  expansion in blowout X-ray jets but none in standard X-ray jets, and
  obvious axial rotation in both blowout X-ray jets and standard X-ray
  jets. In our sample, the number of turns of axial rotation in the
  cool-component standard X-ray jets is typical of that in the blowout
  X-ray jets, suggesting that the closed bipolar magnetic field in the
  jet base has substantial twist not only in all blowout X-ray jets but
  also in many standard X-ray jets. We point out that our results for
  the dichotomy, lateral expansion, and axial rotation of X-ray jets add
  credence to published speculation that type-II spicules are miniature
  analogs of X-ray jets, are generated by granule-size emerging bipoles,
  and thereby carry enough energy to power the corona and solar wind.

---------------------------------------------------------
Title: Energy release in the solar corona from spatially resolved
    magnetic braids
Authors: Cirtain, J. W.; Golub, L.; Winebarger, A. R.; de Pontieu,
   B.; Kobayashi, K.; Moore, R. L.; Walsh, R. W.; Korreck, K. E.; Weber,
   M.; McCauley, P.; Title, A.; Kuzin, S.; Deforest, C. E.
2013Natur.493..501C    Altcode:
  It is now apparent that there are at least two heating mechanisms
  in the Sun's outer atmosphere, or corona. Wave heating may be the
  prevalent mechanism in quiet solar periods and may contribute to
  heating the corona to 1,500,000 K (refs 1, 2, 3). The active corona
  needs additional heating to reach 2,000,000-4,000,000 K this heat
  has been theoretically proposed to come from the reconnection and
  unravelling of magnetic `braids'. Evidence favouring that process has
  been inferred, but has not been generally accepted because observations
  are sparse and, in general, the braided magnetic strands that are
  thought to have an angular width of about 0.2 arc seconds have not been
  resolved. Fine-scale braiding has been seen in the chromosphere but not,
  until now, in the corona. Here we report observations, at a resolution
  of 0.2 arc seconds, of magnetic braids in a coronal active region that
  are reconnecting, relaxing and dissipating sufficient energy to heat
  the structures to about 4,000,000 K. Although our 5-minute observations
  cannot unambiguously identify the field reconnection and subsequent
  relaxation as the dominant heating mechanism throughout active regions,
  the energy available from the observed field relaxation in our example
  is ample for the observed heating.

---------------------------------------------------------
Title: Observations from SDO, Hinode, and STEREO of a Twisting and
    Writhing Start to a Solar-filament-eruption Cascade
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa
2012ApJ...761...69S    Altcode:
  We analyze data from SDO (AIA, HMI), Hinode (SOT, XRT, EIS), and STEREO
  (EUVI) of a solar eruption sequence of 2011 June 1 near 16:00 UT,
  with an emphasis on the early evolution toward eruption. Ultimately,
  the sequence consisted of three emission bursts and two filament
  ejections. SDO/AIA 304 Å images show absorbing-material strands
  initially in close proximity which over ~20 minutes form a
  twisted structure, presumably a flux rope with ~10<SUP>29</SUP>
  erg of free energy that triggers the resulting evolution. A jump
  in the filament/flux rope's displacement (average velocity ~20 km
  s<SUP>-1</SUP>) and the first burst of emission accompanies the
  flux-rope formation. After ~20 more minutes, the flux rope/filament
  kinks and writhes, followed by a semi-steady state where the flux
  rope/filament rises at (~5 km s<SUP>-1</SUP>) for ~10 minutes. Then
  the writhed flux rope/filament again becomes MHD unstable and violently
  erupts, along with rapid (50 km s<SUP>-1</SUP>) ejection of the filament
  and the second burst of emission. That ejection removed a field that
  had been restraining a second filament, which subsequently erupts as
  the second filament ejection accompanied by the third (final) burst of
  emission. Magnetograms from SDO/HMI and Hinode/SOT, and other data,
  reveal several possible causes for initiating the flux-rope-building
  reconnection, but we are not able to say which is dominant. Our
  observations are consistent with magnetic reconnection initiating the
  first burst and the flux-rope formation, with MHD processes initiating
  the further dynamics. Both filament ejections are consistent with the
  standard model for solar eruptions.

---------------------------------------------------------
Title: Using a global aerosol model adjoint to unravel the footprint
    of spatially-distributed emissions on cloud droplet number and
    cloud albedo
Authors: Karydis, V. A.; Capps, S. L.; Moore, R. H.; Russell, A. G.;
   Henze, D. K.; Nenes, A.
2012GeoRL..3924804K    Altcode:
  The adjoints of the GEOS-Chem Chemical Transport Model and a
  comprehensive cloud droplet parameterization are coupled to study the
  sensitivity of cloud droplet number concentration (N<SUB>d</SUB>) over
  US regions and Central Europe to global emissions of anthropogenic fine
  mode aerosol precursors. Simulations reveal that the N<SUB>d</SUB> over
  the midwestern and southeastern US is mostly sensitive to SO<SUB>2</SUB>
  emissions during August, and to NH<SUB>3</SUB> emissions during
  February. Over the western US, N<SUB>d</SUB> is mostly sensitivity to
  SO<SUB>2</SUB> and primary organic aerosol emissions. In Central Europe,
  N<SUB>d</SUB> is most sensitive to NH<SUB>3</SUB> and NO<SUB>x</SUB>
  emissions. As expected, local emissions strongly affect N<SUB>d</SUB>;
  long-range transport, however, is also important for the western US and
  Europe. Emissions changes projected for the year 2050 are estimated
  to have the largest impacts on cloud albedo and N<SUB>d</SUB> over
  Central Europe during August (42% and 82% change, respectively) and
  western US during February (12% and 36.5% change, respectively).

---------------------------------------------------------
Title: Dichotomy of X-Ray Jets in Solar Coronal Holes
Authors: Robe, D. M.; Moore, R. L.; Falconer, D. A.
2012AGUFMSH51A2200R    Altcode:
  It has been found that there are two different types of X-ray jets
  observed in the Sun's polar coronal holes: standard jets and blowout
  jets. A proposed model of this dichotomy is that a standard jet is
  produced by a burst of reconnection of the ambient magnetic field with
  the opposite-polarity leg of the base arcade. In contrast, it appears
  that a blowout jet is produced when the interior of the arcade has so
  much pent-up free magnetic energy in the form of shear and twist in the
  interior field that the external reconnection unleashes the interior
  field to erupt open. In this project, X-ray movies of the polar coronal
  holes taken by Hinode were searched for X-ray jets. Co-temporal movies
  taken by the Solar Dynamics Observatory in 304 Å emission from He II,
  showing solar plasma at temperatures around 80,000 K, were examined
  for whether the identified blowout jets carry much more He II plasma
  than the identified standard jets. It was found that though some jets
  identified as standard from the X-ray movies could be seen in the He
  II 304 Å movies, the blowout jets carried much more 80,000 K plasma
  than did most standard jets. This finding supports the proposed model
  for the morphology and development of the two types of jets.

---------------------------------------------------------
Title: Forecasting the Solar Drivers of Severe Space Weather from
    Active-Region Magnetograms
Authors: Falconer, D. A.; Moore, R. L.; Barghouty, A. F.; Khazanov,
   I. G.
2012AGUFMSH51C..01F    Altcode:
  Large flares and fast CMEs are the drivers of the most severe space
  weather including Solar Energetic Particle Events (SEP Events). Large
  flares and their co-produced CMEs are powered by the explosive release
  of free magnetic energy stored in non-potential magnetic fields of
  sunspot active regions. The free energy is stored in and released from
  the low-beta regime of the active region's magnetic field above the
  photosphere, in the chromosphere and low corona. From our work over the
  past decade and from similar work of several other groups, it is now
  well established that (1) a proxy of the free magnetic energy stored
  above the photosphere can be measured from photospheric magnetograms,
  and (2) an active region's rate of production of major CME/flare
  eruptions in the coming day or so is strongly correlated with its
  present measured value of the free-energy proxy. These results have
  led us to use the large database of SOHO/MDI full-disk magnetograms
  spanning Solar Cycle 23 to obtain empirical forecasting curves that
  from an active region's present measured value of the free-energy proxy
  give the active region's expected rates of production of major flares,
  CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et
  al 2011, Space Weather, 9, S04003). We will present these forecasting
  curves and demonstrate the accuracy of their forecasts. In addition,
  we will show that the forecasts for major flares and fast CMEs can be
  made significantly more accurate by taking into account not only the
  value of the free energy proxy but also the active region's recent
  productivity of major flares; specifically, whether the active region
  has produced a major flare (GOES class M or X) during the past 24
  hours before the time of the measured magnetogram. By empirically
  determining the conversion of the value of free-energy proxy measured
  from a GONG or HMI magnetogram to that which would be measured from
  an MDI magnetogram, we have made GONG and HMI magnetograms useable
  with our MDI-based forecasting curves to forecast event rates. This
  work has been funded by NASA's Heliophysics Division, NSF's Division
  of Atmospheric Sciences, and AFOSR's MURI Program. Development of this
  forecasting tool for JSC/Space Radiation Analysis Group was supported
  by NASA's Office of Chief Engineer Technical Excellence Initiative
  and is supported by NASA's AES (Advance Exploration Systems) Program.

---------------------------------------------------------
Title: A Twin-CME Scenario for Ground Level Enhancement Events
Authors: Li, G.; Moore, R.; Mewaldt, R. A.; Zhao, L.; Labrador, A. W.
2012SSRv..171..141L    Altcode: 2012SSRv..tmp....1L
  Ground Level Enhancement (GLEs) events are extreme Solar Energetic
  Particle (SEP) events. Protons in these events often reach
  ∼GeV/nucleon. Understanding the underlying particle acceleration
  mechanism in these events is a major goal for Space Weather studies. In
  Solar Cycle 23, a total of 16 GLEs have been identified. Most of them
  have preceding CMEs and in-situ energetic particle observations show
  some of them are enhanced in ICME or flare-like material. Motivated
  by this observation, we discuss here a scenario in which two CMEs
  erupt in sequence during a short period of time from the same Active
  Region (AR) with a pseudo-streamer-like pre-eruption magnetic field
  configuration. The first CME is narrower and slower and the second CME
  is wider and faster. We show that the magnetic field configuration
  in our proposed scenario can lead to magnetic reconnection between
  the open and closed field lines that drape and enclose the first CME
  and its driven shock. The combined effect of the presence of the first
  shock and the existence of the open close reconnection is that when the
  second CME erupts and drives a second shock, one finds both an excess
  of seed population and an enhanced turbulence level at the front of the
  second shock than the case of a single CME-driven shock. Therefore,
  a more efficient particle acceleration will occur. The implications
  of our proposed scenario are discussed.

---------------------------------------------------------
Title: Prior Flaring as a Complement to Free Magnetic Energy for
    Forecasting Solar Eruptions
Authors: Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser
   F.; Khazanov, Igor
2012ApJ...757...32F    Altcode:
  From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms
  covering the passage of 1300 sunspot active regions across the 30°
  radius central disk of the Sun, (2) a proxy of each active region's
  free magnetic energy measured from each of the active region's
  central-disk-passage magnetograms, and (3) each active region's
  full-disk-passage history of production of major flares and fast
  coronal mass ejections (CMEs), we find new statistical evidence that
  (1) there are aspects of an active region's magnetic field other than
  the free energy that are strong determinants of the active region's
  productivity of major flares and fast CMEs in the coming few days; (2)
  an active region's recent productivity of major flares, in addition to
  reflecting the amount of free energy in the active region, also reflects
  these other determinants of coming productivity of major eruptions;
  and (3) consequently, the knowledge of whether an active region
  has recently had a major flare, used in combination with the active
  region's free-energy proxy measured from a magnetogram, can greatly
  alter the forecast chance that the active region will have a major
  eruption in the next few days after the time of the magnetogram. The
  active-region magnetic conditions that, in addition to the free energy,
  are reflected by recent major flaring are presumably the complexity
  and evolution of the field.

---------------------------------------------------------
Title: Solar Spicules near and at the Limb, Observed from Hinode
Authors: Sterling, A. C.; Moore, R. L.
2012ASPC..454...87S    Altcode:
  Solar spicules appear as narrow jets emanating from the chromosphere and
  extending into the corona. They have been observed for over a hundred
  years, mainly in chromospheric spectral lines such as H-alpha. Because
  they are at the limit of visibility of ground-based instruments,
  their nature has long been a puzzle. In recent years however, vast
  progress has been made in understanding them both theoretically
  and observationally, as spicule studies have undergone a revolution
  because of the superior resolution and time cadence of ground-based
  and space-based instruments. Even more rapid progress is currently
  underway, due to the Solar Optical Telescope (SOT) instrument on the
  Hinode spacecraft. Here we give a synopsis of our recent findings from
  a movie of sharpened images from the Hinode SOT Ca II filtergraph of
  spicules at and near the limb in a polar coronal hole.

---------------------------------------------------------
Title: Search for a Dark Matter Candidate Produced in Association
    with a Single Top Quark in pp¯ Collisions at s=1.96TeV
Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei,
   D.; Anastassov, A.; Annovi, A.; Antos, J.; Anzá, F.; Apollinari,
   G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas,
   W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.;
   Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.;
   Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.;
   Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello,
   D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.;
   Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg,
   C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto,
   G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.;
   Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith,
   D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.;
   Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza,
   M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.;
   Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.;
   Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella,
   G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.;
   Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.;
   d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier,
   L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza,
   B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo,
   M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.;
   Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.;
   Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.;
   Franklin, M.; Freeman, J. C.; Fuks, B.; Funakoshi, Y.; Furic, I.;
   Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich,
   H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.;
   Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu,
   G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt,
   N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.;
   González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein,
   S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn,
   S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara,
   K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck,
   M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins,
   W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.;
   Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov,
   A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.;
   Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin,
   P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.;
   Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim,
   S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.;
   Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.;
   Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov,
   V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel,
   S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.;
   LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.;
   Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.;
   Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.;
   Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan,
   P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima,
   K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.;
   Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera,
   K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.;
   McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.;
   Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.;
   Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.;
   Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini,
   M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.;
   Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh,
   S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.;
   Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone,
   C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick,
   J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.;
   Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.;
   Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin,
   F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan,
   V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.;
   Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.;
   Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.;
   Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato,
   K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.;
   Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri,
   F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout,
   S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.;
   Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith,
   J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti,
   P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.;
   Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.;
   Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng,
   P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback,
   D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.;
   Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.;
   Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila,
   I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner,
   R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters,
   D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.;
   Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.;
   Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu,
   X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang,
   Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida,
   T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.;
   Zhou, C.; Zucchelli, S.
2012PhRvL.108t1802A    Altcode: 2012arXiv1202.5653C
  We report a new search for dark matter in a data sample of an integrated
  luminosity of 7.7fb<SUP>-1</SUP> of Tevatron pp¯ collisions at
  s=1.96TeV, collected by the CDF II detector. We search for production of
  a dark-matter candidate, D, in association with a single top quark. We
  consider the hadronic decay mode of the top quark exclusively, yielding
  a final state of three jets with missing transverse energy. The data
  are consistent with the standard model; we thus set 95% confidence
  level upper limits on the cross section of the process pp¯→t+D as
  a function of the mass of the dark-matter candidate. The limits are
  approximately 0.5 pb for a dark-matter particle with mass in the range
  of 0-150GeV/c<SUP>2</SUP>.

---------------------------------------------------------
Title: Search for Dark Matter in Events with One Jet and Missing
    Transverse Energy in pp¯ Collisions at s=1.96TeV
Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei,
   D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel,
   J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.;
   Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Bai,
   Y.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria,
   P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini,
   G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello,
   D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.;
   Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg,
   C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto,
   G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.;
   Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.;
   Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro,
   A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri,
   A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze,
   G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.;
   Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery,
   M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.;
   Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo,
   N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno,
   M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann,
   J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.;
   Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat,
   N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field,
   R.; Flanagan, G.; Forrest, R.; Fox, P. J.; Frank, M. J.; Franklin, M.;
   Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.;
   Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu,
   S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.;
   Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski,
   D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez,
   G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.;
   Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group,
   R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi,
   A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harnik,
   R.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.;
   Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou,
   S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.;
   Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.;
   Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.;
   Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato,
   Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim,
   D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.;
   Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel,
   K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps,
   M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata,
   M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.;
   Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee,
   E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis,
   J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.; Lipeles, E.; Lister,
   A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz,
   S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu,
   G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik,
   S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.;
   Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane,
   A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta,
   A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.;
   Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore,
   R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee,
   A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.;
   Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer,
   M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.;
   Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan,
   L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou,
   V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paus, C.; Pellett,
   D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot,
   J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos,
   K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.;
   Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno,
   M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.;
   Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz,
   A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.;
   Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.;
   Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.;
   Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout,
   S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.;
   Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith,
   J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti,
   P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.;
   Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.;
   Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng,
   P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback,
   D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.;
   Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.;
   Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila,
   I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner,
   R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters,
   D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.;
   Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.;
   Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu,
   X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang,
   Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida,
   T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.;
   Zhou, C.; Zucchelli, S.
2012PhRvL.108u1804A    Altcode: 2012arXiv1203.0742T
  We present the results of a search for dark matter production
  in the monojet signature. We analyze a sample of Tevatron pp¯
  collisions at s=1.96TeV corresponding to an integrated luminosity of
  6.7fb<SUP>-1</SUP> recorded by the CDF II detector. In events with large
  missing transverse energy and one energetic jet, we find good agreement
  between the standard model prediction and the observed data. We set 90%
  confidence level upper limits on the dark matter production rate. The
  limits are translated into bounds on nucleon-dark matter scattering
  rates which are competitive with current direct detection bounds on
  spin-independent interaction below a dark matter candidate mass of
  5GeV/c<SUP>2</SUP>, and on spin-dependent interactions up to masses
  of 200GeV/c<SUP>2</SUP>.

---------------------------------------------------------
Title: Prior Flaring: A Complement to Free Magnetic Energy for
    Forecasting Solar Eruptions
Authors: Falconer, David; Moore, R.; Barghouty, A.; Khazanov, I.
2012AAS...22050803F    Altcode:
  From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms
  covering the passage of 1,300 sunspot active regions across the
  30-degree radius central disk of the Sun, (2) a proxy of each active
  region’s free magnetic energy measured from each of the active
  region’s central-disk-passage magnetograms, and (3) each active
  region’s full-disk-passage history of production of major flares and
  fast coronal mass ejections (CMEs), we find new statistical evidence
  that (1) there are aspects of an active region’s magnetic field
  other than the free energy that are strong determinants of the active
  region’s productivity of major flares and fast CMEs in the coming few
  days, (2) an active region’s recent productivity of major flares,
  in addition to reflecting the amount of free energy in the active
  region, also reflects these other determinants of coming productivity
  of major eruptions, and (3) consequently, the knowledge of whether an
  active region has recently had a major flare, used in combination with
  the active region’s free-energy proxy measured from a magnetogram,
  can greatly alter the forecast chance that the active region will
  have a major eruption in the next few days after the time of the
  magnetogram. The active-region magnetic conditions that in addition to
  the free energy are reflected by recent major flaring are presumably
  the complexity of the field configuration and facets of the evolution
  of the field. <P />This work has been funded by NASA’s Heliophysics
  Division, NSF’s Division of Atmospheric Sciences, and AFOSR’s MURI
  Program. Development of this forecasting tool for JSC/Space Radiation
  Analysis Group was supported by NASA’s Office of Chief Engineer
  Technical Excellence Initiative and is supported by NASA’s AES
  (Advance Exploration Systems) Program.

---------------------------------------------------------
Title: Search for anomalous production of multiple leptons in
    association with W and Z bosons at CDF
Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.;
   Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.;
   Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.;
   Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.;
   Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.;
   Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin,
   D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.;
   Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.;
   Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov,
   J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.;
   Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell,
   M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.;
   Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz,
   D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen,
   Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho,
   K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark,
   A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo,
   M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.;
   Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro,
   P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico,
   M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati,
   S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig,
   A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington,
   S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.;
   Frank, M. J.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.;
   Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.;
   Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti,
   P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu,
   G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt,
   N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.;
   González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein,
   S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn,
   S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara,
   K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck,
   M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins,
   W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.;
   Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov,
   A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.;
   Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin,
   P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.;
   Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim,
   S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.;
   Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.;
   Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov,
   V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel,
   S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.;
   LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.;
   Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.;
   Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.;
   Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan,
   P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima,
   K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.;
   Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera,
   K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.;
   McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.;
   Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.;
   Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.;
   Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini,
   M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.;
   Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh,
   S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.;
   Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone,
   C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick,
   J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.;
   Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.;
   Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin,
   F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan,
   V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.;
   Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.;
   Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.;
   Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato,
   K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.;
   Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri,
   F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout,
   S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.;
   Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith,
   J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti,
   P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.;
   Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.;
   Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng,
   P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback,
   D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.;
   Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.;
   Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila,
   I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner,
   R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters,
   D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.;
   Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.;
   Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu,
   X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang,
   Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida,
   T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.;
   Zucchelli, S.
2012PhRvD..85i2001A    Altcode: 2012arXiv1202.1260T
  This paper presents a search for anomalous production of multiple
  low-energy leptons in association with a W or Z boson using events
  collected at the CDF experiment corresponding to 5.1fb<SUP>-1</SUP>
  of integrated luminosity. This search is sensitive to a wide range
  of topologies with low-momentum leptons, including those with
  the leptons near one another. The observed rates of production of
  additional electrons and muons are compared with the standard model
  predictions. No indications of phenomena beyond the standard model are
  found. A 95% confidence level limit is presented on the production cross
  section for a benchmark model of supersymmetric hidden-valley Higgs
  production. Particle identification efficiencies are also provided to
  enable the calculation of limits on additional models.

---------------------------------------------------------
Title: The Limit of Magnetic-Shear Energy in Solar Active Regions
Authors: Moore, Ronald L.; Falconer, D. A.; Sterling, A. C.
2012AAS...22020438M    Altcode:
  It has been found previously, by measuring from active-region
  magnetograms a proxy of the free energy in the active region’s
  magnetic field, (1) that there is a sharp upper limit to the free energy
  the field can hold that increases with the amount of magnetic field
  in the active region, the active region’s magnetic flux content,
  and (2) that most active regions are near this limit when their field
  explodes in a CME/flare eruption. That is, explosive active regions are
  concentrated in a main-sequence path bordering the free-energy-limit
  line in (flux content, free-energy proxy) phase space. Here we present
  evidence that specifies the underlying magnetic condition that gives
  rise to the free-energy limit and the accompanying main sequence of
  explosive active regions. Using a suitable free energy proxy measured
  from vector magnetograms of 44 active regions, we find evidence that
  (1) in active regions at and near their free-energy limit, the ratio of
  magnetic-shear free energy to the non-free magnetic energy the potential
  field would have is of order 1 in the core field, the field rooted along
  the neutral line, and (2) this ratio is progressively less in active
  regions progressively farther below their free-energy limit. Evidently,
  most active regions in which this core-field energy ratio is much less
  than 1 cannot be triggered to explode; as this ratio approaches 1,
  most active regions become capable of exploding; and when this ratio
  is 1, most active regions are compelled to explode. <P />This work was
  funded by NASA’s Science Mission Directorate through the Heliophysics
  Guest Investigators Program, the Hinode Project, and the Living With
  a Star Targeted Research &amp; Technology Program.

---------------------------------------------------------
Title: Observations from SDO and Hinode of a Twisting and Writhing
    Start to a Solar-filament-eruption Cascade
Authors: Sterling, Alphonse C.; Moore, R. L.
2012AAS...22050802S    Altcode:
  We analyze data from SDO and hinode of a solar eruption sequence of
  1 June 2011 near 16:00 UT, with emphasis on the early evolution
  toward eruption. Ultimately, the sequence consisted of three
  emission bursts and two filament ejections. SDO/AIA 304 Ang images
  show absorbing-material strands initially in close proximity that
  over 20 min form a twisted structure, presumably a flux rope with
  10<SUP>29 </SUP>ergs of free energy that triggers the resulting
  evolution. A jump in the filament/flux rope's height (average velocity
  20 km s<SUP>-1</SUP>) and the first burst of emission accompanies
  the flux-rope formation. After 20 min more, the flux rope/filament
  kinks and writhes, followed by a semi-steady state where the flux
  rope/filament rises at ( 5 km s<SUP>-1</SUP>) for 10 min. Then the
  writhed flux rope/filament again becomes MHD unstable and violently
  erupts, along with rapid (&gt; 50 km s<SUP>-1</SUP>) ejection of the
  filament and the second burst of emission. That ejection removed field
  that had been restraining a second filament, which subsequently erupts
  as the second filament ejection accompanied by the third (final) burst
  of emission. Magnetograms from SDO/HMI and hinode/SOT, and other data,
  reveal several possible causes for initiating the flux-rope-building
  reconnection, but we are not able to say which is dominant. Our
  observations are consistent with tether-cutting reconnection initiating
  the first burst and the flux-rope formation, with MHD processes
  initiating the further dynamics. Both filament ejections are consistent
  with the standard model for solar eruptions. NASA supported this work
  through its Heliophysics program.

---------------------------------------------------------
Title: The Limit of Magnetic-shear Energy in Solar Active Regions
Authors: Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.
2012ApJ...750...24M    Altcode:
  It has been found previously, by measuring from active-region
  magnetograms a proxy of the free energy in the active region's magnetic
  field, (1) that there is a sharp upper limit to the free energy the
  field can hold that increases with the amount of magnetic field
  in the active region, the active region's magnetic flux content,
  and (2) that most active regions are near this limit when their
  field explodes in a coronal mass ejection/flare eruption. That is,
  explosive active regions are concentrated in a main-sequence path
  bordering the free-energy-limit line in (flux content, free-energy
  proxy) phase space. Here, we present evidence that specifies the
  underlying magnetic condition that gives rise to the free-energy limit
  and the accompanying main sequence of explosive active regions. Using
  a suitable free-energy proxy measured from vector magnetograms of 44
  active regions, we find evidence that (1) in active regions at and near
  their free-energy limit, the ratio of magnetic-shear free energy to the
  non-free magnetic energy the potential field would have is of the order
  of one in the core field, the field rooted along the neutral line, and
  (2) this ratio is progressively less in active regions progressively
  farther below their free-energy limit. Evidently, most active regions
  in which this core-field energy ratio is much less than one cannot
  be triggered to explode; as this ratio approaches one, most active
  regions become capable of exploding; and when this ratio is one,
  most active regions are compelled to explode.

---------------------------------------------------------
Title: Obituary: Einar A. Tandberg-Hanssen (1921-2011)
Authors: Gary, G.; Emslie, A.; Hathaway, David; Moore, Ronald
2011BAAS...43..032G    Altcode:
  Dr. Einar Andreas Tandberg-Hanssen was born on 6 August 1921,
  in Bergen, Norway, and died on July 22, 2011, in Huntsville, AL,
  USA, due to complications from ALS (Amyotrophic lateral sclerosis,
  often referred to as Lou Gehrig's disease). <P />His parents were
  administrator Birger Tandberg-Hanssen (1883-1951) and secretary Antonie
  "Mona" Meier (1895-1967). <P />He married Erna Rönning (27 October
  1921 - 22 November 1994), a nurse, on 22 June 1951. She was the
  daughter of Captain Einar Rönning (1890-1969) and Borghild Lyshaug
  (1897-1980). <P />Einar and Erna had two daughters, Else Biesman (and
  husband Allen of Rapid City, SD, USA) and Karin Brock (and husband
  Mike of Gulf Shores, AL, USA). At the time of his death Einar had eight
  grandchildren and eight great-grandchildren. <P />Dr. Tandberg-Hanssen
  was an internationally-known member of the solar physics community,
  with over a hundred published scientific papers and several books,
  including Solar Activity (1967), Solar Prominences (1974), The
  Physics of Solar Flares (1988) and The Nature of Solar Prominences
  (1995). <P />Einar grew up in Langesund and Skien, Norway, where he
  took the qualifying exams at Skien High School in 1941. After the war
  he studied natural sciences at the University of Oslo and received his
  undergraduate degree in astronomy in 1950. <P />He worked as a research
  assistant in the Institute of Theoretical Astrophysics at the University
  of Oslo for three intervals in the 1950s, interspersed by fellowships
  at the Institut d'Astrophysique in Paris, Caltech in Pasadena, CA, the
  High Altitude Observatory in Boulder, CO, and the Cavendish Laboratory
  in the UK (at the invitation of British radio-astronomer Sir Martin
  Ryle). He earned a doctorate in astrophysics at the University in
  Oslo in 1960 with a dissertation titled "An Investigation of the
  Temperature Conditions in Prominences with a Special Study of the
  Excitation of Helium." <P />From 1959-61, Tandberg-Hanssen was a
  professor at the University in Oslo. He then traveled back to the High
  Altitude Observatory in Boulder, Colorado, where he was employed until
  1974. He was then employed at the Space Science Laboratory at NASA's
  Marshall Space Flight Center (MSFC) in Huntsville, Alabama. There,
  he was a Senior Research Scientist and later Deputy Director of the
  Laboratory. He served as Lab Director from 1987 until his retirement
  from NASA in 1993. He promptly took a part-time post within the Center
  for Space Plasma and Aeronomic Research at The University of Alabama
  in Huntsville, where he worked until his death. <P />During his tenure
  at NASA, he, along with Dr. Mona Hagyard and Dr. S. T. Wu, built up
  a substantial, internationally-based group of solar physicists at
  MSFC and UA Huntsville. He was a lead investigator on two instruments
  aboard NASA spacecraft: the S-056 X-Ray Event Analyzer on the Skylab
  Apollo Telescope Mount (which provided pioneering, high-time-cadence
  temperature and density information on solar X-ray-emitting regions)
  and the Ultraviolet Spectrometer and Polarimeter on the Solar Maximum
  Mission (which carried out sweeping new studies of EUV emission from
  solar active regions and flares). Dr. Tandberg-Hanssen's books about
  various aspects of solar activity, viz.Solar Activity (Blaisdell, 1967),
  Solar Prominences (Reidel, 1974), The Physics of Solar Flares (with
  A. G. Emslie) (Cambridge, 1988), and The Nature of Solar Prominences
  (Reidel, 1995), have become international standard works within the
  discipline of solar physics. <P />In 1982, Dr. Tandberg-Hanssen
  was elected to membership in the Norwegian Academy of Science
  and Letters. From 1979-82 and 1982-85, respectively, he served as
  vice-president and president of Commission 10 of the International
  Astronomical Union (IAU). He served as president of the Federation of
  Astronomical and Geophysical Data Analysis Services from 1990-1994. He
  has received the NASA Exceptional Service Medal. He was also a long
  time editor of the journal Solar Physics. <P />Dr. Tandberg-Hanssen's
  Solar Physics Memoir paper, entitled Solar Prominences - An Intriguing
  Phenomenon http://www.springerlink.com/content/1166j74k577kv332/
  was published shortly before his death. The article starts with an
  autobiographical account, where the author relates how his several
  study-trips abroad gradually led him to the study of solar physics
  in general, and prominences particularly. <P />Einar's residence
  as a research fellow at the Institut d'Astrophysique in Paris in
  the 1950s laid the foundation for a lifelong interest in France and
  French culture. His great interest in and knowledge of French mediaeval
  churches, as well as the Norwegian stave churches, is reflected in two
  books, Letters to My Daughters (Ivy House Pub. Group, 2004), and The Joy
  of Travel: More Letters to My Daughters (Pentland Press, 2007), which
  serve as a review, tourist guide and history book, shaped in the form of
  letters home to his two daughters, from his many travels in Norway and
  France. <P />Einar was a true gentleman and a true scholar. As evidenced
  by his papers, his books, and his dealings with others, he was always
  seeking not only to expand his own knowledge and understanding, but also
  to find new ways of communicating his remarkable insight to others. He
  is survived by his daughters, Else and Karin, and their families.

---------------------------------------------------------
Title: Lateral Offset of the Coronal Mass Ejections from the X-flare
    of 2006 December 13 and Its Two Precursor Eruptions
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K.
2011ApJ...743...63S    Altcode:
  Two GOES sub-C-class precursor eruptions occurred within ~10 hr prior
  to and from the same active region as the 2006 December 13 X4.3-class
  flare. Each eruption generated a coronal mass ejection (CME) with
  center laterally far offset (gsim 45°) from the co-produced bright
  flare. Explaining such CME-to-flare lateral offsets in terms of the
  standard model for solar eruptions has been controversial. Using
  Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS)
  data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and
  Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI)
  data, we find or infer the following. (1) The first precursor was a
  "magnetic-arch-blowout" event, where an initial standard-model eruption
  of the active region's core field blew out a lobe on one side of the
  active region's field. (2) The second precursor began similarly, but the
  core-field eruption stalled in the side-lobe field, with the side-lobe
  field erupting ~1 hr later to make the CME either by finally being blown
  out or by destabilizing and undergoing a standard-model eruption. (3)
  The third eruption, the X-flare event, blew out side lobes on both
  sides of the active region and clearly displayed characteristics of the
  standard model. (4) The two precursors were offset due in part to the
  CME originating from a side-lobe coronal arcade that was offset from
  the active region's core. The main eruption (and to some extent probably
  the precursor eruptions) was offset primarily because it pushed against
  the field of the large sunspot as it escaped outward. (5) All three CMEs
  were plausibly produced by a suitable version of the standard model.

---------------------------------------------------------
Title: Observed Aspects of Reconnection in Solar Eruptions
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Gary, G. Allen;
   Cirtain, Jonathan W.; Falconer, David A.
2011SSRv..160...73M    Altcode: 2011SSRv..tmp..113M; 2011SSRv..tmp..189M; 2011SSRv..tmp...30M
  The observed magnetic field configuration and signatures of reconnection
  in the large solar magnetic eruptions that make major flares and coronal
  mass ejections and in the much smaller magnetic eruptions that make
  X-ray jets are illustrated with cartoons and representative observed
  eruptions. The main reconnection signatures considered are the imaged
  bright emission from the heated plasma on reconnected field lines. In
  any of these eruptions, large or small, the magnetic field that drives
  the eruption and/or that drives the buildup to the eruption is initially
  a closed bipolar arcade. From the form and configuration of the magnetic
  field in and around the driving arcade and from the development of the
  reconnection signatures in coordination with the eruption, we infer
  that (1) at the onset of reconnection the reconnection current sheet
  is small compared to the driving arcade, and (2) the current sheet can
  grow to the size of the driving arcade only after reconnection starts
  and the unleashed erupting field dynamically forces the current sheet to
  grow much larger, building it up faster than the reconnection can tear
  it down. We conjecture that the fundamental reason the quasi-static
  pre-eruption field is prohibited from having a large current sheet is
  that the magnetic pressure is much greater than the plasma pressure
  in the chromosphere and low corona in eruptive solar magnetic fields.

---------------------------------------------------------
Title: Confirmation of the 'Main Sequence' of Explosive Active Regions
Authors: Falconer, David Allen; Moore, Ron
2011shin.confE..45F    Altcode:
  We study the dependence of production of major CME/flare eruptions
  on the source active region's (AR's) location in (flux content, free
  energy) phase space. For this, an AR's flux content and a proxy of its
  free magnetic energy content can be adequately measured from 96-minute
  cadence SOHO/MDI magnetograms when the AR is within 30 degrees of disk
  center (Falconer et al 2008, ApJ, 688, 143). The AR's evolution in this
  phase space can thereby be tracked as it crosses the central disk. By
  our definition, an AR is (1) mature if its flux is growing by less than
  50%/day when it rotates onto the 30-degree-radius central disk, or (2)
  emerging if its flux is growing faster than 50%/day when it enters the
  central disk or if it is born within the central disk. In an initial
  study of 46 ARs, 44 were mature and 2 were emerging. From 1800 MDI
  magnetograms of mature ARs, we found that (1) mature ARs have a sharp
  upper bound on the free energy they can attain that increases with
  increasing flux content, and (2) for mature ARs, nearly all CMEs and
  X-class flares are produced by ARs that are near the free-energy limit
  line. These ARs constitute the main sequence of explosive mature ARs
  (Falconer et al 2009, ApJ, 700, L166). The two emerging ARs attained
  free energy well beyond the limit for mature ARs of the same flux
  content, questioning whether emerging ARs have a free-energy limit
  and explosive main sequence like those for mature ARs. Here, from a
  much larger sample, we (1) confirm the free-energy limit and explosive
  main sequence for mature ARs, and (2) show that emerging ARs do have
  a free-energy limit and an explosive main sequence, each offset to
  higher free energy relative to its mature-AR counterpart. <P />This
  work was funded by NSF SHINE Program and by the AFOSR MURI Program.

---------------------------------------------------------
Title: The Main Sequence of Explosive Emerging Solar Active Regions
Authors: Falconer, David; Moore, R.
2011SPD....42.2304F    Altcode: 2011BAAS..43S.2304F
  We study the dependence of production of major CME/flare eruptions
  on the source active region's (AR's) location in (flux content, free
  energy) phase space. For this, an AR's flux content and a proxy of its
  free magnetic energy content can be adequately measured from 96-minute
  cadence SOHO/MDI magnetograms when the AR is within 30 degrees of disk
  center (Falconer et al 2008, ApJ, 688, 143). The AR's evolution in this
  phase space can thereby be tracked as it crosses the central disk. By
  our definition, an AR is (1) mature if its flux is growing by less than
  50%/day when it rotates onto the 30-degree-radius central disk, or (2)
  emerging if its flux is growing faster than 50%/day when it enters the
  central disk or if it is born within the central disk. In an initial
  study of 46 ARs, 42 were mature and 4 were emerging. From 1800 MDI
  magnetograms of the 42 mature ARs, we found that (1) mature ARs have
  a sharp upper bound on the free energy they can attain that increases
  with increasing flux content, and (2) for mature ARs, nearly all CMEs
  and X-class flares are produced by ARs that are near the free-energy
  limit line. These ARs constitute the main sequence of explosive mature
  ARs (Falconer et al 2009, ApJ, 700, L166). Two of the four emerging
  ARs attained free energy well beyond the limit for mature ARs of the
  same flux content, questioning whether emerging ARs have a free-energy
  limit and explosive main sequence like those for mature ARs. Here,
  we show from a much larger sample of ARs ( 1000), of which about 1/3
  are emerging, that emerging ARs do have a free-energy limit and a
  explosive main sequence, each offset to higher free energy relative
  to its mature-AR counterpart.

---------------------------------------------------------
Title: The Reason for the Main Sequence of Explosive Solar Active
    Regions
Authors: Moore, Ronald L.; Falconer, D. A.
2011SPD....42.2305M    Altcode: 2011BAAS..43S.2305M
  From measurement of magnetic flux and a proxy of free magnetic energy
  from 1800 SOHO/MDI line-of-sight magnetograms of 44 sunspot active
  regions, Falconer et al (2009, ApJ, 700, L169) showed (1) there is an
  upper limit to the free magnetic energy an active region can hold, (2)
  this limit increases with active-region magnetic size (flux content),
  (3) most major CME/flare eruptions are produce by active regions that
  are near their free-energy limit, (4) in (flux content, free-energy
  proxy) phase space, the source active regions for major CME/flare
  eruptions are concentrated along a main sequence, a path that runs
  close below the free-energy limit line, and (5) the free-energy limit
  and the main sequence probably result from the steep increase in
  CME/flare productivity as an active region approaches its free-energy
  limit, depleting the active region's free energy as fast as it is built
  up. Here we present (1) a new direct proxy of an active region's free
  magnetic energy, and (2) a corresponding proxy of the ratio of free
  energy to potential-field energy in the more-nonpotential parts of
  the active region. Each is measured from a vector magnetogram of the
  active region. From these two magnetic-energy proxies measured from
  Marshall Space Flight Center vector magnetograms of 42 of the active
  regions of Falconer et al (2009), we (1) affirm that the free-energy
  proxy measured in Falconer et al (2009) is indeed a proxy of an active
  region's free magnetic energy, (2) further support the above reason for
  the main sequence of explosive active regions, and (3) conclude that
  magnetic fields in active regions become ready to explode and produce
  CME/flare eruptions when their free energy becomes comparable to the
  potiential-field energy. <P />This work was supported by funding from
  NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences,
  and AFOSR's MURI Program.

---------------------------------------------------------
Title: Insights into Filament Eruption Onset from Solar Dynamics
    Observatory Observations
Authors: Sterling, Alphonse C.; Moore, R. L.; Freeland, S. L.
2011SPD....42.0904S    Altcode: 2011BAAS..43S.0904S
  We examine the buildup to and onset of an active region filament
  confined eruption of 2010 May 12, using EUV imaging data from the Solar
  Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight
  magnetic data from the SDO Helioseismic and Magnetic Imager. Over the
  hour preceding eruption the filament undergoes a slow rise averaging
  3 km/s, with a step-like trajectory. Accompanying a final rise step 20
  minutes prior to eruption is a transient preflare brightening, occurring
  on loops rooted near the site where magnetic field had canceled over
  the previous 20 hr. Flow-type motions of the filament are relatively
  smooth with speeds 50 km/s prior to the preflare brightening and appear
  more helical, with speeds 50-100 km/s, after that brightening. After
  a final plateau in the filament's rise, its rapid eruption begins,
  and concurrently an outer shell "cocoon" of the filament material
  increases in emission in hot EUV lines, consistent with heating in
  a newly formed magnetic flux rope. The main flare brightenings start
  5 minutes after eruption onset. The main flare arcade begins between
  the legs of an envelope-arcade loop that is nearly orthogonal to the
  filament, suggesting that the flare results from reconnection among
  the legs of that loop. This progress of events is broadly consistent
  with flux cancellation leading to formation of a helical flux rope
  that subsequently erupts due to onset of a magnetic instability and/or
  runaway tether cutting. A full description of this work appears in
  ApJ Letters 2011, 731, L3. NASA supported this work through its Solar
  Physics Supporting Research and Technology, Sun-Earth Connection
  Guest Investigator, and Living With a Star Targeted Research &amp;
  Technology programs.

---------------------------------------------------------
Title: A tool for empirical forecasting of major flares, coronal mass
    ejections, and solar particle events from a proxy of active-region
    free magnetic energy
Authors: Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor;
   Moore, Ron
2011SpWea...9.4003F    Altcode:
  This paper describes a new forecasting tool developed for and
  currently being tested by NASA's Space Radiation Analysis Group (SRAG)
  at Johnson Space Center, which is responsible for the monitoring
  and forecasting of radiation exposure levels of astronauts. The
  new software tool is designed for the empirical forecasting of M-
  and X-class flares, coronal mass ejections, and solar energetic
  particle events. For each type of event, the algorithm is based on
  the empirical relationship between the event rate and a proxy of the
  active region's free magnetic energy. Each empirical relationship is
  determined from a data set of ∼40,000 active-region magnetograms
  from ∼1300 active regions observed by SOHO/Michelson Doppler Imager
  (MDI) that have known histories of flare, coronal mass ejection, and
  solar energetic particle event production. The new tool automatically
  extracts each strong-field magnetic area from an MDI full-disk
  magnetogram, identifies each as a NOAA active region, and measures the
  proxy of the active region's free magnetic energy from the extracted
  magnetogram. For each active region, the empirical relationship is then
  used to convert the free-magnetic-energy proxy into an expected event
  rate. The expected event rate in turn can be readily converted into
  the probability that the active region will produce such an event in
  a given forward time window. Descriptions of the data sets, algorithm,
  and software in addition to sample applications and a validation test
  are presented. Further development and transition of the new tool in
  anticipation of SDO/HMI are briefly discussed.

---------------------------------------------------------
Title: Insights into Filament Eruption Onset from Solar Dynamics
    Observatory Observations
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Freeland, Samuel L.
2011ApJ...731L...3S    Altcode:
  We examine the buildup to and onset of an active region filament
  confined eruption of 2010 May 12, using EUV imaging data from the Solar
  Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight
  magnetic data from the SDO Helioseismic and Magnetic Imager. Over the
  hour preceding eruption the filament undergoes a slow rise averaging
  ~3 km s<SUP>-1</SUP>, with a step-like trajectory. Accompanying a
  final rise step ~20 minutes prior to eruption is a transient preflare
  brightening, occurring on loops rooted near the site where magnetic
  field had canceled over the previous 20 hr. Flow-type motions of the
  filament are relatively smooth with speeds ~50 km s<SUP>-1</SUP>
  prior to the preflare brightening and appear more helical, with
  speeds ~50-100 km s<SUP>-1</SUP>, after that brightening. After a
  final plateau in the filament's rise, its rapid eruption begins,
  and concurrently an outer shell "cocoon" of the filament material
  increases in emission in hot EUV lines, consistent with heating in
  a newly formed magnetic flux rope. The main flare brightenings start
  ~5 minutes after eruption onset. The main flare arcade begins between
  the legs of an envelope-arcade loop that is nearly orthogonal to the
  filament, suggesting that the flare results from reconnection among
  the legs of that loop. This progress of events is broadly consistent
  with flux cancellation leading to formation of a helical flux rope
  that subsequently erupts due to onset of a magnetic instability and/or
  runaway tether cutting.

---------------------------------------------------------
Title: Solar X-ray Jets, Type-II Spicules, Granule-size Emerging
    Bipoles, and the Genesis of the Heliosphere
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Cirtain, Jonathan
   W.; Falconer, David A.
2011ApJ...731L..18M    Altcode:
  From Hinode observations of solar X-ray jets, Type-II spicules, and
  granule-size emerging bipolar magnetic fields in quiet regions and
  coronal holes, we advocate a scenario for powering coronal heating
  and the solar wind. In this scenario, Type-II spicules and Alfvén
  waves are generated by the granule-size emerging bipoles (EBs) in the
  manner of the generation of X-ray jets by larger magnetic bipoles. From
  observations and this scenario, we estimate that Type-II spicules and
  their co-generated Alfvén waves carry into the corona an area-average
  flux of mechanical energy of ~7 × 10<SUP>5</SUP> erg cm<SUP>-2</SUP>
  s<SUP>-1</SUP>. This is enough to power the corona and solar wind
  in quiet regions and coronal holes, and therefore indicates that the
  granule-size EBs are the main engines that generate and sustain the
  entire heliosphere.

---------------------------------------------------------
Title: Refractories, Structure and Properties of
Authors: Moore, R. E.
2011emst.book.8079M    Altcode:
  The definition of "refractory" employed as an adjective is variously
  applied; to people, it means obstinate or unmanageable, and to things
  such as ores, it means hard to reduce or to fuse. This latter usage
  is correct for refractory ceramic materials, which possess the
  key characteristic of refractoriness, i.e., they are difficult to
  fuse. Refractory ceramics are inorganic chemical substances, single or
  polyphase in nature, which are processed at high temperature and/or are
  intended for high-temperature applications. They are employed wherever
  a process involves treatment or exposure at elevated temperatures,
  e.g., the smelting of metals, the sintering of ceramics, the melting
  of glass, the processing of hydrocarbons and other chemicals, etc.

---------------------------------------------------------
Title: First results for the Solar Ultraviolet Magnetograph
    Investigation (SUMI)
Authors: Moore, R. L.; Cirtain, J. W.; West, E.; Kobayashi, K.;
   Robinson, B.; Winebarger, A. R.; Tarbell, T. D.; de Pontieu, B.;
   McIntosh, S. W.
2010AGUFMSH11B1655M    Altcode:
  On July 31, 2010 SUMI was launched to 286km above the White
  Sands Missile Range to observe active region 11092. SUMI is a
  spectro-polarimeter capable of measuring the spectrum for Mg II h &amp;
  k at 280 nm and C IV at 155 nm. Simultaneous observations with Hinode
  and SDO provide total coverage of the region from the photosphere into
  the corona, a very unique and original data set. We will present the
  initial results from this first flight of the experiment and demonstrate
  the utility of further observations by SUMI.

---------------------------------------------------------
Title: 24-Hour Forecasting of CME/Flare Eruptions from Active-Region
    Magnetograms (Invited)
Authors: Falconer, D. A.; Barghouty, A.; Khazanov, I. G.; Moore, R. L.
2010AGUFMSH54D..04F    Altcode:
  We have developed an automated tool for forecasting severe space
  weather from full-disk magnetograms. This tool is now being used
  on a trial basis by NASA’s Space Radiation Analysis Group (SRAG)
  at JSC. SRAG is responsible for the monitoring and forecasting of
  exposure the astronauts to particle radiation. The tool is described
  in Falconer, Barghouty, Khazanov, and Moore (2010), submitted to
  Space Weather. The new software tool is designed for the empirical
  forecasting of M- and X-class flares, coronal mass ejections, and
  solar energetic particle events. For each of these event types, the
  algorithm is based on the empirical relationship between the event
  rate and a proxy of the active region’s free magnetic energy. The
  relationship is determined from ~40,000 active-region magnetograms from
  ~1,300 active regions that were observed within 30 heliographic degrees
  from disk center by SOHO/MDI, and that have known histories of flare,
  coronal mass ejection, and solar energetic particle event production
  during disk passage. The tool automatically extracts each strong-field
  magnetic areas from an MDI full-disk magnetogram, identifies each as
  a NOAA active region, and measures the proxy of the active region’s
  free magnetic energy from the extracted magnetogram. For each active
  region, the empirical relationship is then used to convert the free
  magnetic energy proxy into the active region’s expected event rate
  (see figure). The expected event rate in turn can be readily converted
  into the probability that the active region will produce such an event
  in a given forward time window. We can make this tool applicable to
  the full-disk line-of-sight magnetograms from SDO/HMI or as a backup,
  from NSO/GONG. By empirically determining the conversion of the
  value of free-energy proxy measured from an HMI magnetogram to that
  which would be measured from an MDI magnetogram, we can use the HMI
  magnetograms with the empirical relationships determined from our MDI
  data base to make forecasts of event rates. This work was funded by
  the NASA Technical Excellence Initiative, by the AFOSR MURI Program,
  and by the NASA LWS TR&amp;T Program.

---------------------------------------------------------
Title: On the Origin of the Solar Moreton Wave of 2006 December 6
Authors: Balasubramaniam, K. S.; Cliver, E. W.; Pevtsov, A.; Temmer,
   M.; Henry, T. W.; Hudson, H. S.; Imada, S.; Ling, A. G.; Moore, R. L.;
   Muhr, N.; Neidig, D. F.; Petrie, G. J. D.; Veronig, A. M.; Vršnak,
   B.; White, S. M.
2010ApJ...723..587B    Altcode:
  We analyzed ground- and space-based observations of the eruptive flare
  (3B/X6.5) and associated Moreton wave (~850 km s<SUP>-1</SUP> ~270°
  azimuthal span) of 2006 December 6 to determine the wave driver—either
  flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic
  analysis favors a CME driver of the wave, despite key gaps in coronal
  data. The CME scenario has a less constrained/smoother velocity versus
  time profile than is the case for the flare hypothesis and requires an
  acceleration rate more in accord with observations. The CME picture is
  based, in part, on the assumption that a strong and impulsive magnetic
  field change observed by a GONG magnetograph during the rapid rise phase
  of the flare corresponds to the main acceleration phase of the CME. The
  Moreton wave evolution tracks the inferred eruption of an extended
  coronal arcade, overlying a region of weak magnetic field to the west
  of the principal flare in NOAA active region 10930. Observations of
  Hα foot point brightenings, disturbance contours in off-band Hα
  images, and He I 10830 Å flare ribbons trace the eruption from 18:42
  to 18:44 UT as it progressed southwest along the arcade. Hinode EIS
  observations show strong blueshifts at foot points of this arcade
  during the post-eruption phase, indicating mass outflow. At 18:45
  UT, the Moreton wave exhibited two separate arcs (one off each flank
  of the tip of the arcade) that merged and coalesced by 18:47 UT to
  form a single smooth wave front, having its maximum amplitude in
  the southwest direction. We suggest that the erupting arcade (i.e.,
  CME) expanded laterally to drive a coronal shock responsible for the
  Moreton wave. We attribute a darkening in Hα from a region underlying
  the arcade to absorption by faint unresolved post-eruption loops.

---------------------------------------------------------
Title: Fibrillar Chromospheric Spicule-like Counterparts to an
    Extreme-ultraviolet and Soft X-ray Blowout Coronal Jet
Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.
2010ApJ...722.1644S    Altcode:
  We observe an erupting jet feature in a solar polar coronal hole, using
  data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet
  Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental
  data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray
  (SXR) images we identify the erupting feature as a blowout coronal
  jet: in SXRs it is a jet with a bright base, and in EUV it appears
  as an eruption of relatively cool (~50,000 K) material of horizontal
  size scale ~30” originating from the base of the SXR jet. In SOT
  Ca II H images, the most pronounced analog is a pair of thin (~1”)
  ejections at the locations of either of the two legs of the erupting
  EUV jet. These Ca II features eventually rise beyond 45”, leaving the
  SOT field of view, and have an appearance similar to standard spicules
  except that they are much taller. They have velocities similar to that
  of "type II" spicules, ~100 km s<SUP>-1</SUP>, and they appear to have
  spicule-like substructures splitting off from them with horizontal
  velocity ~50 km s<SUP>-1</SUP>, similar to the velocities of splitting
  spicules measured by Sterling et al. Motions of splitting features and
  of other substructures suggest that the macroscopic EUV jet is spinning
  or unwinding as it is ejected. This and earlier work suggest that a
  subpopulation of Ca II type II spicules are the Ca II manifestation
  of portions of larger scale erupting magnetic jets. A different
  subpopulation of type II spicules could be blowout jets occurring on
  a much smaller horizontal size scale than the event we observe here.

---------------------------------------------------------
Title: Evidence for magnetic flux cancelation leading to an ejective
    solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI
Authors: Sterling, A. C.; Chifor, C.; Mason, H. E.; Moore, R. L.;
   Young, P. R.
2010A&A...521A..49S    Altcode:
  <BR /> Aims: We study the onset of a solar eruption involving a
  filament ejection on 2007 May 20. <BR /> Methods: We observe the
  filament in Hα images from Hinode/SOT and in EUV with TRACE and
  STEREO/SECCHI/EUVI. Hinode/XRT images are used to study the eruption in
  soft X-rays. From spectroscopic data taken with Hinode/EIS we obtain
  bulk-flow velocities, line profiles, and plasma densities in the
  onset region. The magnetic field evolution was observed in SoHO/MDI
  magnetograms. <BR /> Results: We observed a converging motion between
  two opposite polarity sunspots that form the primary magnetic polarity
  inversion line (PIL), along which resides filament material before
  eruption. Positive-flux magnetic elements, perhaps moving magnetic
  features (MMFs) flowing from the spot region, appear north of the
  spots, and the eruption onset occurs where these features cancel
  repeatedly in a negative-polarity region north of the sunspots. An
  ejection of material observed in Hα and EUV marks the start of the
  filament eruption (its “fast-rise”). The start of the ejection is
  accompanied by a sudden brightening across the PIL at the jet's base,
  observed in both broad-band images and in EIS. Small-scale transient
  brightenings covering a wide temperature range (Log T<SUB>e</SUB> =
  4.8-6.3) are also observed in the onset region prior to eruption. The
  preflare transient brightenings are characterized by sudden, localized
  density enhancements (to above Log n<SUB>e</SUB> [ cm<SUP>-3</SUP>] =
  9.75, in Fe XIII) that appear along the PIL during a time when pre-flare
  brightenings were occurring. The measured densities in the eruption
  onset region outside the times of those enhancements decrease with
  temperature. Persistent downflows (red-shifts) and line-broadening
  (Fe XII) are present along the PIL. <BR /> Conclusions: The array of
  observations is consistent with the pre-eruption sheared-core magnetic
  field being gradually destabilized by evolutionary tether-cutting flux
  cancelation that was driven by converging photospheric flows, and the
  main filament ejection being triggered by flux cancelation between the
  positive flux elements and the surrounding negative field. A definitive
  statement however on the eruption's ultimate cause would require
  comparison with simulations, or additional detailed observations of
  other eruptions occurring in similar magnetic circumstances. <P />The
  video that accompanies Fig. 3 is only available in electronic form at
  <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets
Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse
   C.; Falconer, David A.
2010ApJ...720..757M    Altcode:
  By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray
  movies of the polar coronal holes, we found that there is a dichotomy
  of polar X-ray jets. About two thirds fit the standard reconnection
  picture for coronal jets, and about one third are another type. We
  present observations indicating that the non-standard jets are
  counterparts of erupting-loop Hα macrospicules, jets in which the
  jet-base magnetic arch undergoes a miniature version of the blowout
  eruptions that produce major coronal mass ejections. From the coronal
  X-ray movies we present in detail two typical standard X-ray jets
  and two typical blowout X-ray jets that were also caught in He II
  304 Å snapshots from STEREO/EUVI. The distinguishing features of
  blowout X-ray jets are (1) X-ray brightening inside the base arch
  in addition to the outside bright point that standard jets have,
  (2) blowout eruption of the base arch's core field, often carrying a
  filament of cool (T ~ 10<SUP>4</SUP> - 10<SUP>5</SUP> K) plasma, and
  (3) an extra jet-spire strand rooted close to the bright point. We
  present cartoons showing how reconnection during blowout eruption of
  the base arch could produce the observed features of blowout X-ray
  jets. We infer that (1) the standard-jet/blowout-jet dichotomy of
  coronal jets results from the dichotomy of base arches that do not
  have and base arches that do have enough shear and twist to erupt open,
  and (2) there is a large class of spicules that are standard jets and
  a comparably large class of spicules that are blowout jets.

---------------------------------------------------------
Title: Confirmation of the 'Main Sequence' of Explosive Active Regions
Authors: Falconer, David; Moore, Ronald L.
2010shin.confE.106F    Altcode:
  We examine the location and distribution of the production of coronal
  mass ejections (CMEs) and major flares by mature sunspot active regions
  in the phase space of two whole-active-region magnetic quantities
  measured from 18,800 SOHO/MDI magnetograms. These magnetograms track
  the evolution of 420 mature active regions across the central disk of
  radius 0.5 RSun. A mature active region is one that has completed its
  rapid-emergence birth phase. The present study is an expansion of a
  previous initial study (Falconer, Moore, Gary, &amp; Adams 2009, ApJ
  700 L166), for which the sample was 1,865 magnetograms from 44 mature
  active regions. The two whole-active-region magnetic quantities are
  L⊙, a measure of the active region's total magnetic flux, and LWLSG,
  a proxy of the total free energy in an active region's magnetic field
  above the photosphere. We compiled each active region's production of
  CMEs, X flares, and M flares during its rotation across the disk. In
  addition, at the time of each magnetogram, we evaluated from the NOAA
  Catalog of Active Region Flares a flare-power measure, the active
  region's 48-hour average power output in 1-8 Å radiation from X and M
  flares. In agreement with our previous study, from the present expanded
  sample we again find that (1) CME/flare-productive active regions are
  concentrated in a 'main sequence' along a straight line in (Log L⊙,
  Log LWLSG) space, (2) this line is close below an upper edge of maximum
  attainable free magnetic energy, and (3) the average flare-power
  measure increases sharply across this line as the free-energy-limit
  front is approached. As before, this third result suggests that the main
  sequence of explosive active regions is the consequence of equilibrium
  between input of free energy by contortion of the field via convection
  in and below the photosphere and loss of free energy via CMEs, flares,
  and coronal heating, an equilibrium between energy gain and loss that
  is analogous to that of the main sequence of hydrogen-burning stars
  in Mass-Luminosity space. <P />This work is funded by the NSF SHINE
  Program, by the NASA LWS TR&amp;T Program, by the AFOSR MURI Program,
  and by the NASA Technical Excellence Initiative.

---------------------------------------------------------
Title: Hinode Solar Optical Telescope Observations of the Source
    Regions and Evolution of "Type II" Spicules at the Solar Polar Limb
Authors: Sterling, Alphonse C.; Moore, Ronald L.; DeForest, Craig E.
2010ApJ...714L...1S    Altcode:
  We examine solar spicules using high-cadence Ca II data of the north
  pole coronal hole region, using the Solar Optical Telescope (SOT)
  on the Hinode spacecraft. The features we observe are referred to as
  "Type II" spicules by De Pontieu et al. in 2007. By convolving the
  images with the inverse-point-spread function for the SOT Ca II filter,
  we are able to investigate the roots of some spicules on the solar
  disk, and the evolution of some spicules after they are ejected from
  the solar surface. We find that the source regions of at least some of
  the spicules correspond to locations of apparent-fast-moving (~few ×
  10 km s<SUP>-1</SUP>), transient (few 100 s), Ca II brightenings on the
  disk. Frequently the spicules occur when these brightenings appear to
  collide and disappear. After ejection, when seen above the limb, many
  of the spicules fade by expanding laterally (i.e., roughly transverse
  to their motion away from the solar surface), splitting into two or
  more spicule "strands," and the spicules then fade without showing
  any downward motion. Photospheric/chromospheric acoustic shocks alone
  likely cannot explain the high velocities (~100 km s<SUP>-1</SUP>) of
  the spicules. If the Ca II brightenings represent magnetic elements,
  then reconnection among those elements may be a candidate to explain
  the spicules. Alternatively, many of the spicules could be small-scale
  magnetic eruptions, analogous to coronal mass ejections, and the
  apparent fast motions of the Ca II brightenings could be analogs of
  flare loops heated by magnetic reconnection in these eruptions.

---------------------------------------------------------
Title: Blowout Jets: Hinode X-Ray Jets that Don't Fit the Standard
    Model
Authors: Moore, Ronald L.; Cirtain, J. W.; Sterling, A. C.
2010AAS...21640620M    Altcode: 2010BAAS...41..883M
  Nearly half of all H-alpha macrospicules in polar coronal holes appear
  to be miniature filament eruptions (Yamauchi et al 2004, ApJ, 605,
  511). This suggests that there is a large class of X-ray jets in which
  the jet-base magnetic arcade undergoes a blowout eruption as in a CME,
  instead of remaining static as in most solar X-ray jets, the standard
  jets that fit the model advocated by Shibata (e.g., Shibata et al 1992,
  PASJ, 44, L173). Along with a cartoon depicting the standard model,
  we present a cartoon depicting the signatures expected of blowout
  jets in coronal X-ray images. From Hinode/XRT movies and STEREO/EUVI
  snapshots in polar coronal holes, we present examples of (1) X-ray jets
  that fit the standard model, and (2) X-ray jets that do not fit the
  standard model but do have features appropriate for blowout jets. These
  features are (1) a flare arcade inside the jet-base arcade in addition
  to the small flare arcade (bright point) outside that standard jets
  have, (2) a filament of cool (T 80,000 K) plasma that erupts from
  the core of the jet-base arcade, and (3) an extra jet strand that
  should not be made by the reconnection for standard jets but could
  be made by reconnection between the ambient unipolar open field and
  the opposite-polarity leg of the filament-carrying flux-rope core
  field of the erupting jet-base arcade. We therefore infer that these
  non-standard jets are blowout jets, jets made by miniature versions of
  the sheared-core-arcade eruptions that make CMEs. <P />This work was
  funded by NASA's Science Mission Directorate through the Heliophysics
  Guest Investigators Program, the Hinode Project, and the Living With
  a Star Targeted Research and Technology Program.

---------------------------------------------------------
Title: Confirmation of the "Main Sequence” of Explosive Active
    Regions
Authors: Falconer, David; Moore, R. L.
2010AAS...21640612F    Altcode: 2010BAAS...41..881F
  We examine the location and distribution of the production of coronal
  mass ejections (CMEs) and major flares by mature sunspot active regions
  in the phase space of two whole-active-region magnetic quantities
  measured from SOHO/MDI magnetograms of 420 active regions during
  their passage within 0.5 R<SUB>Sun</SUB> of disk center. This study
  is a ten-fold expansion of our recent exploratory study (Falconer et
  al 2009, ApJ, 700, L166). The two measured magnetic quantities are
  <SUP>L</SUP>Φ, a measure of an active region's total magnetic flux,
  and <SUP>L</SUP>WL<SUB>SG</SUB>, a proxy of the total free energy
  in the active region's magnetic field above the photosphere. For
  each active region we also have (1) the times of CMEs, X flares,
  and M flares produced during disk passage, and (2) at the time of
  each magnetogram, a measure of the active region's power output in
  major flares, the 48-hour average power output in 1-8 Å radiation
  from its X and M flares. In agreement with our exploratory study, we
  again find (1) CME/flare-productive active regions are concentrated
  in a "main sequence” along a straight line in (Log <SUP>L</SUP>Φ,
  Log <SUP>L</SUP>WL<SUB>SG</SUB>) space, (2) this line is close below
  an upper edge of maximum attainable free magnetic energy, and (3)
  the average flare-power measure increases steeply across this line as
  the free-energy-limit edge is approached. As before, this third result
  suggests that the main sequence of explosive active regions results
  from equilibrium between the input of free energy by contortion of
  the field via convection in and below the photosphere and loss of
  free energy via CMEs, flares, and coronal heating, an equilibrium
  between energy gain and energy loss that is analogous to that for the
  main sequence of hydrogen-burning stars in Mass-Luminosity space. <P
  />NASA's LWS/TR&amp;T Program, AFOSR's MURI Program, and NASA's TEI
  Program funded this work.

---------------------------------------------------------
Title: Solar Polar Spicules Observed with Hinode
Authors: Sterling, Alphonse C.; Moore, R. L.; DeForest, C. E.
2010AAS...21640303S    Altcode: 2010BAAS...41Q.878S
  We examine solar polar region spicules using high-cadence Ca II data
  from the Solar Optical Telescope (SOT) on the Hinode spacecraft. We
  sharpened the images by convolving them with the inverse-point-spread
  function of the SOT Ca II filter, and we are able to see some of
  the spicules originating on the disk just inside the limb. Bright
  points are frequently at the root of the disk spicules. These “Ca
  II brightenings” scuttle around at few x 10 km/s, live for 100 sec,
  and may be what are variously known as “H<SUB>2V</SUB> grains,”
  “K<SUB>2V</SUB> grains,” or "K<SUB>2V</SUB> bright points.” When
  viewed extending over the limb, some of the spicules appear to expand
  horizontally or spit into two or more components, with the horizontal
  expansion or splitting velocities reaching 50 km/s. This work was
  funded by NASA's Science Mission Directorate through the Living
  With a Star Targeted Research and Technology Program, the Supporting
  Research and Program, the Heliospheric Guest Investigator Program,
  and the Hinode project.

---------------------------------------------------------
Title: Surface Gravity and Hawking Temperature from Entropic Force
    Viewpoint
Authors: Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio,
   S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari,
   G.; Appel, J.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.;
   Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.;
   Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.;
   Bartos, P.; Bauer, G.; Beauchemin, P. -H.; Bedeschi, F.; Beecher, D.;
   Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas,
   A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.;
   Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.;
   Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.;
   Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd,
   H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.;
   Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli,
   M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.;
   Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro,
   A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri,
   A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli,
   G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.;
   Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.;
   Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.;
   Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli,
   F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.;
   Dagenhart, D.; D'Ascenzo, N.; Datta, M.; Davies, T.; de Barbaro, P.;
   de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca,
   C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.;
   di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.;
   Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede,
   D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington,
   S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.;
   Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.;
   Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt,
   J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.;
   Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.;
   Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris,
   N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.;
   Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.;
   Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw,
   A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.;
   Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.;
   Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B. -Y.; Han, J. Y.;
   Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz,
   M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.;
   Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.;
   Hocker, A.; Hou, S.; Houlden, M.; Hsu, S. -C.; Hughes, R. E.; Hurwitz,
   M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi,
   G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon,
   E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.;
   Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin,
   P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Kietzman, B.;
   Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.;
   Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura,
   N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.;
   Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack,
   N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.;
   Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.;
   Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.;
   Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone,
   S.; Lewis, J. D.; Lin, C. -J.; Linacre, J.; Lindgren, M.; Lipeles,
   E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.;
   Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens,
   P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima,
   K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.;
   Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.;
   Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.;
   Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland,
   K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione,
   A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller,
   R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake,
   H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.;
   Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt,
   J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.;
   Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett,
   J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.;
   Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.;
   Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.;
   Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.;
   Paramanov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta,
   G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.;
   Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.;
   Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin,
   F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.;
   Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo,
   I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.;
   Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.;
   Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ,
   J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto,
   W. K.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro,
   A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.;
   Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano,
   A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.;
   Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears,
   T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon,
   Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter,
   A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur,
   R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki,
   M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.;
   Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov,
   I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.;
   Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.;
   Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback,
   D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.;
   Torretta, D.; Totaro, P.; Trovato, M.; Tsai, S. -Y.; Tu, Y.; Turini,
   N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga,
   E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar,
   R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.;
   Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.;
   Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.;
   Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.;
   Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.;
   Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright,
   T.; Wu, X.; Würthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang,
   U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita,
   K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti,
   A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.; CDF Collaboration
2010MPLA...25.2825E    Altcode: 2010arXiv1003.2049C
  We consider a freely falling holographic screen for the Schwarzschild
  and Reissner-Nordström black holes and evaluate the entropic force à
  la Verlinde. When the screen crosses the event horizon, the temperature
  of the screen agrees to the Hawking temperature and the entropic force
  gives rise to the surface gravity for both of the black holes.

---------------------------------------------------------
Title: Two types of magnetic flux cancelation in the solar eruption
    of 2007 May 20
Authors: Sterling, Alphonse; Moore, Ronald; Mason, Helen
2010cosp...38.1946S    Altcode: 2010cosp.meet.1946S
  We study a solar eruption on 2007 May 20, in an effort to understand the
  cWe study a solar eruption of 2007 May 20, in an effort to understand
  the cause of the eruption's onset. The event produced a GOES class
  B6.7 flare peaking at 05:56 UT, while ejecting a surge/filament and
  producing a coronal mass ejection (CME). We examine several data
  sets, including Hα images from the Solar Optical Telescope (SOT) on
  Hinode, EUV images from TRACE, and line-of-sight magnetograms from
  SoHO/MDI. Flux cancelation occurs among two different sets of flux
  elements inside of the erupting active region: First, for several days
  prior to eruption, opposite-polarity sunspot groups inside the region
  move toward each other, leading to the cancelation of ∼ 1021 Mx
  of flux over three days. Second, within hours prior to the eruption,
  positive-polarity moving magnetic features (MMFs) flowing out of the
  positive-flux spots at ∼ 1 km/s repeatedly cancel with field inside
  a patch of negative-polarity flux located north of the sunspots. The
  filament erupts as a surge whose base is rooted in the location where
  the MMF cancelation occurs, while during the eruption that filament
  flows out along the polarity inversion line between the converging spot
  groups. We conclude that a plausible scenario is that the converging
  spot fields brought the magnetic region to the brink of instability,
  and the MMF cancelation pushed the system "over the edge," triggering
  the eruption. This work was funded by NASA's Science Mission Directorate
  thought the Living With a Star Targeted Research and Technology Program,
  the Supporting Research and Program, and the Hinode project.

---------------------------------------------------------
Title: The "Main Sequence" of Explosive Solar Active Regions:
    Discovery and Interpretation
Authors: Falconer, David A.; Moore, Ronald L.; Gary, G. Allen;
   Adams, Mitzi
2009ApJ...700L.166F    Altcode:
  We examine the location and distribution of the production of coronal
  mass ejections (CMEs) and major flares by sunspot active regions
  in the phase space of two whole-active-region magnetic quantities
  measured from 1897 SOHO/MDI magnetograms. These magnetograms track the
  evolution of 44 active regions across the central disk of radius 0.5
  R <SUB>Sun</SUB>. The two quantities are <SUP>L</SUP>WL<SUB>SG</SUB>,
  a gauge of the total free energy in an active region's magnetic field,
  and <SUP>L</SUP>Φ, a measure of the active region's total magnetic
  flux. From these data and each active region's history of production
  of CMEs, X flares, and M flares, we find (1) that CME/flare-productive
  active regions are concentrated in a straight-line "main sequence"
  in (log <SUP>L</SUP>WL<SUB>SG</SUB>, log <SUP>L</SUP>Φ) space, (2)
  that main-sequence active regions have nearly their maximum attainable
  free magnetic energy, and (3) evidence that this arrangement plausibly
  results from equilibrium between input of free energy to an explosive
  active region's magnetic field in the chromosphere and corona by
  contortion of the field via convection in and below the photosphere
  and loss of free energy via CMEs, flares, and coronal heating, an
  equilibrium between energy gain and loss that is analogous to that of
  the main sequence of hydrogen-burning stars in (mass, luminosity) space.

---------------------------------------------------------
Title: Search for Dark Photons from Supersymmetric Hidden Valleys
Authors: Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.;
   Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G. D.; Alkhazov,
   G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Andeen, T.;
   Anzelc, M. S.; Aoki, M.; Arnoud, Y.; Arov, M.; Arthaud, M.; Askew, A.;
   Åsman, B.; Atramentov, O.; Avila, C.; Backusmayes, J.; Badaud, F.;
   Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.;
   Barfuss, A. -F.; Bargassa, P.; Baringer, P.; Barreto, J.; Bartlett,
   J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.;
   Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.;
   Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram,
   I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.;
   Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein,
   A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose,
   T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.;
   Bu, X. B.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.;
   Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calfayan, P.; Calpas,
   B.; Calvet, S.; Cammin, J.; Carrasco-Lizarraga, M. A.; Carrera, E.;
   Carvalho, W.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.;
   Chakraborty, D.; Chan, K. M.; Chandra, A.; Cheu, E.; Cho, D. K.;
   Choi, S.; Choudhary, B.; Christoudias, T.; Cihangir, S.; Claes,
   D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc,
   F.; Cousinou, M. -C.; Crépé-Renaudin, S.; Cuplov, V.; Cutts,
   D.; Ćwiok, M.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La
   Cruz-Burelo, E.; Devaughan, K.; Déliot, F.; Demarteau, M.; Demina,
   R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg,
   M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duflot, L.;
   Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds,
   D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.;
   Escalier, M.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.;
   Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.;
   Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.;
   Galea, C. F.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.;
   Geng, W.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.;
   Gómez, B.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.;
   Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz,
   J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo,
   F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.;
   Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han,
   L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Hebbeker, T.;
   Hedin, D.; Hegeman, J. G.; Heinson, A. P.; Heintz, U.; Hensel, C.;
   Heredia-de La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.;
   Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.;
   Hossain, S.; Houben, P.; Hu, Y.; Hubacek, Z.; Huske, N.; Hynek, V.;
   Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.;
   Jain, S.; Jakobs, K.; Jamin, D.; Jarvis, C.; Jesik, R.; Johns, K.;
   Johnson, C.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson,
   P.; Juste, A.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos,
   I.; Kaushik, V.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.;
   Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kim, T. J.; Kirby,
   M. H.; Kirsch, M.; Klima, B.; Kohli, J. M.; Konrath, J. -P.; Kozelov,
   A. V.; Kraus, J.; Kuhl, T.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin,
   V. A.; Kvita, J.; Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.;
   Lebrun, P.; Lee, W. M.; Leflat, A.; Lellouch, J.; Li, J.; Li, L.; Li,
   Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev,
   V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.;
   Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel,
   A. K. A.; Mackin, D.; Mättig, P.; Magerkurth, A.; Mal, P. K.;
   Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martin,
   B.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.;
   Mendoza, L.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Merritt,
   K. W.; Meyer, A.; Meyer, J.; Mitrevski, J.; Mommsen, R. K.; Mondal,
   N. K.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulhearn, M.; Mundal,
   O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Neal, H. A.;
   Negret, J. P.; Neustroev, P.; Nilsen, H.; Nogima, H.; Novaes, S. F.;
   Nunnemann, T.; Obrant, G.; Ochando, C.; Onoprienko, D.; Orduna, J.;
   Oshima, N.; Osman, N.; Osta, J.; Otec, R.; Otero Y Garzón, G. J.;
   Owen, M.; Padilla, M.; Padley, P.; Pangilinan, M.; Parashar, N.; Park,
   S. -J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa,
   A.; Pawloski, G.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.;
   Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M. -A.; Podesta-Lerma,
   P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M. -E.; Polozov,
   P.; Popov, A. V.; Potter, C.; Prado da Silva, W. L.; Protopopescu,
   S.; Qian, J.; Quadt, A.; Quinn, B.; Rakitine, A.; Rangel, M. S.;
   Ranjan, K.; Ratoff, P. N.; Renkel, P.; Rich, P.; Rijssenbeek, M.;
   Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.;
   Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot,
   G.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Savage, G.;
   Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov,
   Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger,
   C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.;
   Shamim, M.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Siccardi, V.;
   Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow,
   G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.;
   Sopczak, A.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Stark, J.;
   Stolin, V.; Stoyanova, D. A.; Strandberg, J.; Strandberg, S.; Strang,
   M. A.; Strauss, E.; Strauss, M.; Ströhmer, R.; Strom, D.; Stutte,
   L.; Sumowidagdo, S.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.;
   Taylor, W.; Tiller, B.; Tissandier, F.; Titov, M.; Tokmenin, V. V.;
   Torchiani, I.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.;
   Unalan, R.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den
   Berg, P. J.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes,
   E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.;
   Vilanova, D.; Vint, P.; Vokac, P.; Voutilainen, M.; Wagner, R.; Wahl,
   H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber,
   G.; Weber, M.; Welty-Rieger, L.; Wenger, A.; Wetstein, M.; White,
   A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.;
   Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob,
   S.; Yamada, R.; Yang, W. -C.; Yasuda, T.; Yatsunenko, Y. A.; Ye,
   Z.; Yin, H.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Zeitnitz, C.;
   Zelitch, S.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska,
   D.; Zivkovic, L.; Zutshi, V.; Zverev, E. G.
2009PhRvL.103h1802A    Altcode: 2009arXiv0905.1478D
  We search for a new light gauge boson, a dark photon, with the D0
  experiment. In the model we consider, supersymmetric partners are pair
  produced and cascade to the lightest neutralinos that can decay into
  the hidden sector state plus either a photon or a dark photon. The dark
  photon decays through its mixing with a photon into fermion pairs. We
  therefore investigate a previously unexplored final state that contains
  a photon, two spatially close leptons, and large missing transverse
  energy. We do not observe any evidence for dark photons and set a
  limit on their production.

---------------------------------------------------------
Title: Suppression of Active-Region CME Production by the Presence
    of Other Active Regions
Authors: Falconer, David Allen; Moore, Ron; Barghouty, Abdulnasser;
   Khazanov, Igor
2009shin.confE.102F    Altcode:
  From the SOHO mission's data base of MDI full-disk magnetograms spanning
  solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300
  active regions, tracking each active region across the 30 degree central
  solar disk. Each active region magnetogram is cropped from the full-disk
  magnetogram by an automated code. The cadence is 96 minutes. From each
  active-region magnetogram, we have measured two whole-active-region
  magnetic quantities: (1) the magnetic size of the active region (the
  active region's total magnetic flux), and (2) a gauge of the active
  region's free magnetic energy (part of the free energy is released in
  the production of a flare and/or CME eruption). From NOAA Flare/CME
  catalogs, we have obtained the event (Flare/CME/SEP event) production
  history of each active region. Using all these data, we find that for
  each type of eruptive event, an active region's expected rate of event
  production increases as a power law of our gauge of active-region free
  magnetic energy. We have also found that, among active regions having
  nearly the same free energy, the rate of the CME production is less when
  there are many other active regions on the disk than when there are few
  or none, but there is no significant discernible suppression of the rate
  of flare production. This indicates that the presence of other active
  regions somehow tends to inhibit an active region's flare-producing
  magnetic explosions from becoming CMEs, contrary to the expectation
  from the breakout model for the production of CMEs. <P />This work is
  funded by the NASA Technical Excellence Initiative, by the AFOSR MURI
  Program, by the NASA LWS TR&amp;T Program, and by the NSF SHINE Program.

---------------------------------------------------------
Title: Measurements of differential cross sections of
    Z/γ<SUP></SUP>+jets+X events in pp¯ collisions at s=1.96 TeV
Authors: Dø Collaboration; Abazov, V. M.; Abbott, B.; Abolins,
   M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.;
   Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.;
   Ancu, L. S.; Andeen, T.; Anzelc, M. S.; Aoki, M.; Arnoud, Y.; Arov,
   M.; Arthaud, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.;
   Backusmayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.;
   Banerjee, P.; Banerjee, S.; Barberis, E.; Barfuss, A. -F.; Bargassa,
   P.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.;
   Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.;
   Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi,
   G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov,
   V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.;
   Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.;
   Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.;
   Bu, X. B.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.;
   Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calfayan,
   P.; Calpas, B.; Calvet, S.; Cammin, J.; Carrasco-Lizarraga, M. A.;
   Carrera, E.; Carvalho, W.; Casey, B. C. K.; Castilla-Valdez, H.;
   Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Cheu, E.;
   Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Christoudias,
   T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.;
   Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Crépé-Renaudin, S.;
   Cuplov, V.; Cutts, D.; Ćwiok, M.; Das, A.; Davies, G.; de, K.;
   de Jong, S. J.; de La Cruz-Burelo, E.; Devaughan, K.; Déliot, F.;
   Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.;
   Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.;
   Dudko, L. V.; Duflot, L.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant,
   A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno,
   S.; Ermolov, P.; Escalier, M.; Evans, H.; Evdokimov, A.; Evdokimov,
   V. N.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.;
   Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.;
   Gadfort, T.; Galea, C. F.; Garcia-Bellido, A.; Gavrilov, V.; Gay,
   P.; Geist, W.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.;
   Ginther, G.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greder, S.;
   Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris,
   Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald,
   M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.;
   Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall,
   R. E.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.;
   Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinson, A. P.; Heintz,
   U.; Hensel, C.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky,
   R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain,
   S.; Houben, P.; Hu, Y.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili,
   I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.;
   Jakobs, K.; Jamin, D.; Jarvis, C.; Jesik, R.; Johns, K.; Johnson, C.;
   Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Juste, A.;
   Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kaushik, V.;
   Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.;
   Kharzheev, Y. N.; Khatidze, D.; Kim, T. J.; Kirby, M. H.; Kirsch, M.;
   Klima, B.; Kohli, J. M.; Konrath, J. -P.; Kozelov, A. V.; Kraus, J.;
   Kuhl, T.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.;
   Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee,
   W. M.; Leflat, A.; Lellouch, J.; Li, J.; Li, L.; Li, Q. Z.; Lietti,
   S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton,
   R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti,
   H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.;
   Mättig, P.; Magerkurth, A.; Mal, P. K.; Malbouisson, H. B.; Malik,
   S.; Malyshev, V. L.; Maravin, Y.; Martin, B.; McCarthy, R.; McGivern,
   C. L.; Meijer, M. M.; Melnitchouk, A.; Mendoza, L.; Mercadante,
   P. G.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Mitrevski,
   J.; Mommsen, R. K.; Mondal, N. K.; Moore, R. W.; Moulik, T.; Muanza,
   G. S.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.;
   Narain, M.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.;
   Nogima, H.; Novaes, S. F.; Nunnemann, T.; O'Neil, D. C.; Obrant, G.;
   Ochando, C.; Onoprienko, D.; Orduna, J.; Oshima, N.; Osman, N.; Osta,
   J.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Padley,
   P.; Pangilinan, M.; Parashar, N.; Park, S. -J.; Park, S. K.; Parsons,
   J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Penning,
   B.; Perfilov, M.; Peters, K.; Peters, Y.; Pétroff, P.; Piegaia, R.;
   Piper, J.; Pleier, M. -A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.;
   Pogorelov, Y.; Pol, M. -E.; Polozov, P.; Popov, A. V.; Potter, C.;
   da Silva, W. L. Prado; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn,
   B.; Rakitine, A.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Renkel,
   P.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.;
   Robinson, S.; Rodrigues, R. F.; Rominsky, M.; Royon, C.; Rubinov, P.;
   Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders,
   M. P.; Sanghi, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.;
   Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.;
   Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.;
   Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.;
   Shivpuri, R. K.; Siccardi, V.; Simak, V.; Sirotenko, V.; Skubic,
   P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.;
   Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.;
   Soustruznik, K.; Spurlock, B.; Stark, J.; Stolin, V.; Stoyanova,
   D. A.; Strandberg, J.; Strandberg, S.; Strang, M. A.; Strauss, E.;
   Strauss, M.; Ströhmer, R.; Strom, D.; Stutte, L.; Sumowidagdo, S.;
   Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Taylor, W.; Tiller, B.;
   Tissandier, F.; Titov, M.; Tokmenin, V. V.; Torchiani, I.; Tsybychev,
   D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Unalan, R.; Uvarov, L.;
   Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Kooten,
   R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.;
   Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vilanova, D.; Vint,
   P.; Vokac, P.; Voutilainen, M.; Wagner, R.; Wahl, H. D.; Wang,
   M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, G.; Weber,
   M.; Welty-Rieger, L.; Wenger, A.; Wetstein, M.; White, A.; Wicke,
   D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.;
   Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yamada, R.;
   Yang, W. -C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip,
   K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Zeitnitz, C.; Zelitch, S.; Zhao,
   T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.;
   Zutshi, V.; Zverev, E. G.
2009PhLB..678...45D    Altcode: 2009PhLB..678...45A; 2009arXiv0903.1748D
  We present cross section measurements for Z/γ<SUP></SUP>+jets+X
  production, differential in the transverse momenta of the three leading
  jets. The data sample was collected with the DØ detector at the
  Fermilab Tevatron pp¯ collider at a center-of-mass energy of 1.96 TeV
  and corresponds to an integrated luminosity of 1 fb<SUP></SUP>. Leading
  and next-to-leading order perturbative QCD predictions are compared
  with the measurements, and agreement is found within the theoretical
  and experimental uncertainties. We also make comparisons with
  the predictions of four event generators. Two parton-shower-based
  generators show significant shape and normalization differences with
  respect to the data. In contrast, two generators combining tree-level
  matrix elements with a parton shower give a reasonable description
  of the shapes observed in data, but the predicted normalizations show
  significant differences with respect to the data, reflecting large scale
  uncertainties. For specific choices of scales, the normalizations for
  either generator can be made to agree with the measurements.

---------------------------------------------------------
Title: Chemical composition of aerosols and cloud condensation nuclei
in the Eastern Mediterranean: Results from long-term studies.
Authors: Bougiatioti, A.; Fountoukis, C.; Kalivitis, N.; Moore, R.;
   Nenes, A.; Pandis, S.; Mihalopoulos, N.
2009GeCAS..73R.145B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Detection of a Preferred Direction of Polar-Latitude Magnetic
    Bipoles via the Reconnection Bright Point in X-Ray Jets
Authors: Stern, Julie; Cirtain, J.; Falconer, D.; Moore, R.; DeLuca, E.
2009SPD....40.1304S    Altcode:
  Martin and Harvey (1979, Sol. Phys. 64, 93) found that during the
  solar minimum between Cycles 20 and 21 ephemeral active regions
  at high latitudes (55-65 degrees) showed a definite preference for
  the east-west magnetic direction expected from Hale's Law for the
  active regions of the coming solar cycle. In the present study, we use
  Hinode X-Ray Telescope movies of X-ray jets observed in and around the
  polar coronal holes to examine whether the magnetic bipoles at polar
  latitudes (&gt; 60 degrees) during the present Cycle 23-24 minimum
  display any preference in their east-west direction. The particular
  feature of an X-ray jet that we use to detect the magnetic direction
  of the magnetic bipole spanning the base of the jet is the smaller
  bright-point bipole produced at one end of the jet-base bipole by the
  jet-producing reconnection with the surrounding high-reaching background
  field in and around the coronal hole (a la Shibata et al 1992, PASJ,
  44, L173). For any jet-producing bipole that has an obvious east-west
  component to its direction, the east-west magnetic direction of the
  bipole is deduced from the polarity of the polar-cap background field
  and whether the reconnection bright point is on the east or west end
  of the jet-base bipole. For an initial collection of about 100 polar
  jets, observed in late 2006 and early 2007 and produced by bipoles
  having obvious east-west inclination, we find that a majority ( 60%)
  of the bipoles had the east-west direction expected from Hale's Law
  for the coming solar cycle (Cycle 24). We can use this method to see
  if this direction preference at polar latitudes changes as Cycle 24
  progresses. <P />This work was supported by the NASA/MSFC Undergraduate
  Student Research Program and by NASA's Heliophysics Division through
  the Hinode Mission and the Heliophysics Guest Investigators Program.

---------------------------------------------------------
Title: The "Main Sequence” of Explosive Solar Active Regions:
    Discovery and Interpretation
Authors: Falconer, David; Moore, R. L.; Gary, G. A.; Adams, M.
2009SPD....40.1925F    Altcode:
  We examine the location and distribution of the production of coronal
  mass ejections (CMEs) and major flares by sunspot active regions in
  the phase space of two whole-active-region magnetic quantities measured
  from 1865 SOHO/MDI magnetograms. These magnetograms track the evolution
  of 44 full-grown active regions across the central disk of radius 0.5
  R<SUB>Sun</SUB>. The two quantities are <SUP>L</SUP>WL<SUB>SG</SUB>,
  a gauge of the total free energy in an active region's magnetic
  field above the photosphere, and <SUP>L</SUP>Φ, a measure of the
  active region's total magnetic flux. We compiled each active region's
  production of CMEs, X flares, and M flares during its rotation across
  the disk. In addition, at the time of each magnetogram, we evaluated
  from the NOAA Catalog of Active Region Flares a flare-power measure, the
  active region's 48-hour average power output in 1-8 Å radiation from
  X and M flares. From these data, we find that (1) CME/flare-productive
  active regions are concentrated in a straight-line "main sequence” in
  (Log <SUP>L</SUP>WL<SUB>SG</SUB>, Log <SUP>L</SUP>Φ) space, (2) this
  line is close behind a front of maximum attainable magnetic twist, and
  (3) the average flare-power measure increases sharply across this line
  as the leading front is approached. These results suggest that the main
  sequence of explosive active regions is the consequence of equilibrium
  between input of free energy by contortion of the field via convection
  in and below the photosphere and loss of free energy via CMEs, flares,
  and coronal heating, an equilibrium between energy gain and loss
  that is analogous to that of the main sequence of hydrogen-burning
  stars in Mass-Luminosity space. <P />This work was funded by NASA's
  LWS TR&amp;T Program, NSF's SHINE Program, AFOSR's MURI Program,
  and NASA's Technical Excellence Initiative Program.

---------------------------------------------------------
Title: The Maximum Free Magnetic Energy Allowed in a Solar Active
    Region
Authors: Moore, Ronald L.; Falconer, D. A.
2009SPD....40.1905M    Altcode:
  Two whole-active-region magnetic quantities that can be measured
  from a line-of-sight magnetogram are <SUP>L</SUP>WL<SUB>SG</SUB>, a
  gauge of the total free energy in an active region's magnetic field,
  and <SUP>L</SUP>Φ, a measure of the active region's total magnetic
  flux. From these two quantities measured from 1865 SOHO/MDI magnetograms
  that tracked 44 sunspot active regions across the 0.5 R<SUB>Sun</SUB>
  central disk, together with each active region's observed production
  of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted)
  found that (1) active regions have a maximum attainable free magnetic
  energy that increases with the magnetic size <SUP>L</SUP>Φ of
  the active region, (2) in (Log <SUP>L</SUP>WL<SUB>SG</SUB>, Log
  <SUP>L</SUP>Φ) space, CME/flare-productive active regions are
  concentrated in a straight-line main sequence along which the free
  magnetic energy is near its upper limit, and (3) X and M flares are
  restricted to large active regions. Here, from (a) these results, (b)
  the observation that even the greatest X flares produce at most only
  subtle changes in active-region magnetograms, and (c) measurements
  from MSFC vector magnetograms and from MDI line-of-sight magnetograms
  showing that practically all sunspot active regions have nearly the
  same area-averaged magnetic field strength: áBñ ≡ ΦA ≈ 300 G,
  where Φ is the active region's total photospheric flux of field
  stronger than 100 G and A is the area of that flux, we infer that
  (1) the maximum allowed ratio of an active region's free magnetic
  energy to its potential-field energy is 1, and (2) any one CME/flare
  eruption releases no more than a small fraction (&lt; 10%) of the
  active region's free magnetic energy. <P />This work was funded by
  NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences,
  and AFOSR's MURI Program.

---------------------------------------------------------
Title: Quiescent current sheets in the solar wind and origins of
    slow wind
Authors: Suess, S. T.; Ko, Y. -K.; von Steiger, R.; Moore, R. L.
2009JGRA..114.4103S    Altcode: 2009JGRA..11404103S
  Solar wind near the heliospheric current sheet is investigated using
  Ulysses and ACE data in a superposed epoch analysis for several days
  on either side of the current sheets. Only data near sunspot minima
  are used, minimizing the influence of transients. New results are
  shown for composition and ionization state. Existing results showing
  a ∼2 day wide depletion in He/H (He<SUP>++</SUP>/H<SUP>+</SUP>) at
  the current sheet are confirmed, although the depletion is generally
  more narrow. A recent finding of a broad 5-10 day wide reduction in
  He/H around the current sheet is also confirmed. An important result
  is that the narrow depletion is not a real phenomenon but is instead
  a statistical consequence of the superposition of transient depletions
  that also create the broad reduction in the averages. These transient
  depletions last from a few hours up to several days, come from the core
  of streamers, and are embedded in a quasi-steady flow from streamers'
  legs. Most depletions contain a current sheet just inside one edge,
  leading to the apparent narrow depletion at the current sheet in the
  superposed epoch analysis. These results lead us to a hypothesis for
  how the He/H depletions form with a current sheet just inside one
  edge. Fe/O fluctuations associated with the He/H fluctuations further
  show that mixing of plasma from coronal holes adjacent to streamer
  brightness boundaries into outflow inside the brightness boundary is
  not an important process.

---------------------------------------------------------
Title: Supernova 2009dc in UGC 10064
Authors: Puckett, T.; Moore, R.; Newton, J.; Orff, T.
2009CBET.1762....1P    Altcode: 2009CBET.1762A...1P
  T. Puckett, Ellijay, GA, U.S.A.; R. Moore, Warwick, NY, U.S.A.; and
  J. Newton, Portal, AZ, U.S.A., report the discovery of an apparent
  supernova (mag 16.5) on unfiltered CCD images (limiting mag 18.4) taken
  with a 0.40-m reflector at Portal on Apr. 9.31 UT in the course of the
  Puckett Observatory Supernova Search. The new object was confirmed at
  mag 16.3 on images (limiting mag 18.5) taken by T. Orff on Apr. 10.42
  with a 0.40-m reflector at Portal. SN 2009dc is located at R.A. =
  15h51m12s.12, Decl. = +25o42m28s.0 (equinox 2000.0), which is 15".8
  west and 20".8 north of the center of UGC 10064. Nothing is visible at
  this position on images taken by Puckett on Mar. 21 (limiting mag 19.3).

---------------------------------------------------------
Title: Supernova 2009ba in IC 582
Authors: Puckett, T.; Moore, R.; Orff, T.
2009CBET.1730....1P    Altcode: 2009CBET.1730A...1P
  T. Puckett, Ellijay, GA, U.S.A.; and R. Moore, Warwick, NY, U.S.A.,
  report the discovery of an apparent supernova (mag 18.4) on unfiltered
  CCD images (limiting mag 19.7) taken with a 0.35-m reflector at
  Ellijay on Mar. 21.18 UT in the course of the Puckett Observatory
  Supernova Search. The new object, which was confirmed at mag 18.3
  on images (limiting mag 19.7) taken by T. Orff on Mar. 23.14 with a
  0.60-m reflector at Ellijay, is located at R.A. = 9h59m01s.92, Decl. =
  +17o49m00s.1 (equinox 2000.0), which is 24".1 east and 1".9 south of
  the center of IC 582. Nothing is visible at this position on images
  taken by Puckett on Feb. 21 (limiting mag 19.5).

---------------------------------------------------------
Title: Quiescent Current Sheets in the Solar Wind and Origins of
    Slow Wind
Authors: Suess, S. T.; Ko, Y. -; von Steiger, R.; Moore, R. L.
2008AGUFMSH43B..03S    Altcode:
  Solar wind near the heliospheric current sheet is investigated using
  Ulysses and ACE data, in a superposed epoch analysis for several days
  on either side of the current sheets. Only data near sunspot minima
  are used, minimizing the influence of transients. New results are
  shown for composition and ionization state. Existing results showing
  a ~2 day wide depletion in He/H at the current sheet are confirmed,
  although the depletion is generally more narrow. A recent finding of
  a broad 5-10 day wide reduction in He/H around the current sheet is
  also confirmed. An important result is that the narrow depletion is
  not a real phenomenon, but is instead a statistical consequence of
  the superposition of transient depletions that also create the broad
  reduction in the averages. These transient depletions last from
  a few hours up to several days, come from the core of streamers,
  and are embedded in a quasi-steady flow from streamers legs. Most
  depletions contain a current sheet just inside one edge, leading to
  the apparent narrow depletion at the current sheet in the superposed
  epoch analysis. These results lead us to a hypothesis for how the
  He/H depletions form with a current sheet just inside one edge. Fe/O
  fluctuations associated with the He/H fluctuations further show that
  mixing of plasma from coronal holes adjacent to streamer brightness
  boundaries into outflow inside the brightness boundary is not an
  important process.

---------------------------------------------------------
Title: Magnetogram Measures of Total Nonpotentiality for Prediction
    of Solar Coronal Mass Ejections from Active Regions of Any Degree
    of Magnetic Complexity
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2008ApJ...689.1433F    Altcode:
  For investigating the magnetic causes of coronal mass ejections
  (CMEs) and for forecasting the CME productivity of active regions,
  in previous work we have gauged the total nonpotentiality of a
  whole active region by either of two measures, L<SUB>SSM</SUB>
  and L<SUB>SGM</SUB>, two measures of the magnetic field along the
  main neutral line in a vector magnetogram of the active region. This
  previous work was therefore restricted to nominally bipolar active
  regions, active regions that have a clearly identifiable main neutral
  line. In the present paper, we show that our work can be extended
  to include multipolar active regions of any degree of magnetic
  complexity by replacing L<SUB>SSM</SUB> and L<SUB>SGM</SUB> with their
  generalized counterparts, WL<SUB>SS</SUB> and WL<SUB>SG</SUB>, which
  are corresponding integral measures covering all neutral lines in an
  active region instead of only the main neutral line. In addition, we
  show that for active regions within 30 heliocentric degrees of disk
  center, WL<SUB>SG</SUB> can be adequately measured from line-of-sight
  magnetograms instead of vector magnetograms. This approximate measure
  of active-region total nonpotentiality,<SUP>L</SUP>WL<SUB>SG</SUB>,
  with the extensive set of 96 minute cadence full-disk line-of-sight
  magnetograms from SOHO MDI, can be used to study the evolution of
  active-region total nonpotentiality leading to the production of CMEs.

---------------------------------------------------------
Title: Downstream development and Kona low genesis
Authors: Moore, R. W.; Martius, O.; Davies, H. C.
2008GeoRL..3520814M    Altcode:
  A composite analysis of 43 Kona lows in conjunction with a case study of
  a particularly damaging Kona low indicate that downstream development
  is dynamically important to the subtropical cyclogenesis. It takes
  the form of eastward propagating, statistically significant upstream
  potential vorticity (PV) anomalies with accompanying meridional wind
  anomalies at the tropopause level prior to the formation of a Kona
  low. The downstream development culminates in the formation of a PV
  streamer, a meridionally-elongated stratospheric intrusion of high
  PV air into the troposphere, associated with a breaking wave on the
  dynamical tropopause. Subsequently, the streamer `cuts off' from
  the stratospheric reservoir of high PV and translates equatorward,
  thereby providing a necessary dynamical forcing for the subtropical
  surface cyclogenesis.

---------------------------------------------------------
Title: New Evidence that CMEs are Self-Propelled Magnetic Bubbles
Authors: Moore, R. L.; Sterling, A. C.; Suess, S. T.
2008ASPC..397...98M    Altcode:
  We briefly describe the “standard model” for the production of coronal
  mass ejections (CMEs), and our view of how it works. We then summarize
  pertinent recent results that we have found from SOHO observations of
  CMEs and the flares at the sources of these magnetic explosions. These
  results support our interpretation of the standard model: a CME is
  basically a self-propelled magnetic bubble, a low-beta plasmoid,
  that (1) is built and unleashed by the tether-cutting reconnection
  that builds and heats the coronal flare arcade, (2) can explode from
  a flare site that is far from centered under the full-blown CME in
  the outer corona, and (3) drives itself out into the solar wind by
  pushing on the surrounding coronal magnetic field.

---------------------------------------------------------
Title: Early Hinode Observations of a Solar Filament Eruption
Authors: Sterling, A. C.; Moore, R. L.
2008ASPC..397..115S    Altcode:
  We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT)
  filtergraph (FG) Stokes-V magnetogram observations to study the early
  onset of a solar eruption that includes an erupting filament that we
  observe in TRACE EUV images; this is one of the first filament eruptions
  seen with Hinode. The filament undergoes a slow rise for at least
  30 min prior to its fast eruption and strong soft X-ray flaring, and
  the new Hinode data elucidate the physical processes occurring during
  the slow-rise period. During the slow-rise phase, a soft X-ray (SXR)
  sigmoid forms from apparent reconnection low in the sheared core field
  traced by the filament, and there is a low-level intensity peak in both
  EUV and SXRs during the slow rise. The SOT data show that magnetic flux
  cancelation occurs along the neutral line of the filament in the hours
  before eruption, and this likely caused the low-lying reconnection that
  produced the microflaring and the slow rise leading up to the eruption.

---------------------------------------------------------
Title: The Foggy EUV Corona and Coronal Heating by MHD Waves From
    Explosive Reconnection Events
Authors: Moore, R. L.; Cirtain, J. W.; Falconer, D. A.
2008AGUSMSP43C..03M    Altcode:
  In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in
  active regions that are at the limb and are not flaring is seen to
  consist of (1) a complex array of discrete loops and plumes embedded
  in (2) a diffuse ambient component that shows no fine structure and
  gradually fades with height. For each of two not-flaring active regions,
  Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse
  component is (1) approximately isothermal and hydrostatic and (2)
  emits well over half of the total EUV luminosity of the active-region
  corona. Here, from a TRACE Fe XII coronal image of another not-flaring
  active region, the large sunspot active region AR 10652 when it was at
  the west limb on 30 July 2004, we separate the diffuse component from
  the discrete-loop component by spatial filtering, and find that the
  diffuse component has about 60% of the total luminosity. If under
  much higher spatial resolution than that of TRACE (e.g., the 0.1
  arcsec/pixel resolution of the Hi-C sounding- rocket experiment
  proposed by J. W. Cirtain et al), most of the diffuse component
  remains diffuse rather being resolved into very narrow loops and
  plumes, this will raise the possibility that the EUV corona in active
  regions consists of two basically different but comparably luminous
  components: one being the set of discrete bright loops and plumes and
  the other being a truly diffuse component filling the space between
  the discrete loops and plumes. This dichotomy would imply that there
  are two different but comparably powerful coronal heating mechanisms
  operating in active regions, one for the distinct loops and plumes and
  another for the diffuse component. We present a scenario in which (1)
  each discrete bright loop or plume is a flux tube that was recently
  reconnected in a burst of reconnection, and (2) the diffuse component
  is heated by MHD waves that are generated by these reconnection events
  and by other fine-scale explosive reconnection events, most of which
  occur in and below the base of the corona where they are seen as UV
  explosive events, EUV blinkers, and type II spicules. These MHD waves
  propagate across field lines and dissipate, heating the plasma in the
  field between the bright loops and plumes. This work was funded by
  NASA's Heliophysics Division.

---------------------------------------------------------
Title: Magnetic Flux Cancelation Leading to the Eruption of a Coronal
Mass Ejection: Observations from Hinode, SOHO, TRACE, and STEREO
Authors: Sterling, A. C.; Chifor, C.; Mason, H.; Moore, R. L.
2008AGUSMSP23B..05S    Altcode:
  We study a solar eruption involving ejection of a filament on 2007 May
  20, using instruments on Hinode, STEREO, TRACE, and SOHO. We observe
  the filament in EUV from TRACE and STEREO, and in H-alpha from SOT on
  Hinode. We also see the eruption in soft X-rays with XRT on Hinode,
  and in several EUV lines from EIS on Hinode. SOHO/MDI magnetograms
  show that converging motion between opposite-polarity sunspots in the
  region result in expansion of large-scale loops overlying the region's
  primary magnetic neutral line, along which sits filament material prior
  to its eruption. The source location of an EUV filament's surge-like
  ejection is a negative-polarity magnetic region that is north of the
  interacting spots, and patches of magnetic field flow at ~ 0.5 km/s
  from the positive converging spots into the negative region in the
  north. Apparently, repeated episodes of flux cancelation occur where
  the flowing positive flux collides with the northern negative flux,
  and the source of the EUV filament's ejection is near this cancelation
  site. Spectroscopic data from EIS are available for a portion of the
  active region that includes the northern cancelation site, and from
  these data we obtain bulk-flow velocities, line-broadening turbulent
  velocities, and densities of plasma in the region. The array of
  observations is consistent with the pre-eruption sheared-core magnetic
  arcade being gradually destabilized by evolutionary tether-cutting
  flux cancelation that was driven by converging photospheric flows.

---------------------------------------------------------
Title: The "Main Sequence" of Explosive Solar Active Regions:
    Discovery and Interpretation
Authors: Falconer, D.; Moore, R.; Gary, G. A.
2008AGUSMSP24A..07F    Altcode:
  From ~ 2000 MDI magnetograms of 44 evolving active regions within
  30 heliocentric degrees of disk center, we measured active-region
  magnetic size and total nonpotentiality. Besides displaying the upper
  limit on active- region size above which the sun rarely produces
  active regions and the lower limit on active-region size below which
  a magnetic flux concentration is not an active region, we discovered
  that active-region total nonpotentiality has an upper bound that
  increases with active-region magnetic size. For a given size, an active
  region can have only so much total nonpotentiality. We show that this
  limit amounts to an upper bound on a particular measure of an active
  region's nonpotentiality per unit flux, that is, an upper bound on a
  flux-normalized measure of an active region's nonpotentiality. This
  limit plausibly represents an upper bound on the overall degree of
  twist in an active region's magnetic field. If so, an active region's
  magnetic twist can increase to this limit but go no further. After being
  near the limit for a while the active region can loose nonpotentiality
  and retreat from the limit. Albeit entirely different physics, this
  evolution is analogous to how stars evolve to the main sequence,
  stay there a while and then evolve away from it. Unlike the stellar
  evolution path, an active region can evolve to its limit multiple
  times. We present evidence that what is enforcing this upper limit on
  flux-normalized nonpotentiality is that as an active region's magnetic
  field becomes more twisted, it more rapidly releases energy in the form
  of flares and CMEs. When an active region's energy-burn-down rate by
  flares and CMEs equals the rate of buildup of its nonpotential energy,
  it can get no more nonpotential. The upper limit on flux- normalized
  nonpotentiality is determined by the burn-down rate dependence on the
  flux-normalized nonpotentiality and an upper limit on how rapidly an
  active region's nonpotentiality can buildup. This work is funded by
  the NASA LWS TR&amp;T Program, by the NSF SHINE Program, by the AFOSR
  MURI Program, and by the NASA Technical Excellence Initiative.

---------------------------------------------------------
Title: Molar mass, surface tension, and droplet growth kinetics of
    marine organics from measurements of CCN activity
Authors: Moore, R. H.; Ingall, E. D.; Sorooshian, A.; Nenes, A.
2008GeoRL..35.7801M    Altcode:
  The CCN-relevant properties and droplet growth kinetics are determined
  for marine organic matter isolated from seawater collected near the
  Georgia coast. The organic matter is substantially less CCN active than
  (NH<SUB>4</SUB>)<SUB>2</SUB>SO<SUB>4</SUB>, but droplet growth kinetics
  are similar. Köhler Theory Analysis (KTA) is used to determine the
  average organic molar masses of two samples, which are 4370 +/- 24%
  and 4340 +/- 18% kg kmol<SUP>-1</SUP>. KTA is used to infer surface
  tension depression, which is in excellent agreement with direct
  measurements. For the first time it is shown that direct measurements
  of surface tension are relevant for CCN activation, and this study
  highlights the power of KTA.

---------------------------------------------------------
Title: Initiation of Solar Eruptions
Authors: Sterling, A. C.; Moore, R. L.
2008ASPC..383..163S    Altcode:
  We consider processes occurring just prior to and at the start of
  the onset of flare- and CME-producing solar eruptions. Our recent
  work uses observations of filament motions around the time of
  eruption onset as a proxy for the evolution of the fields involved
  in the eruption. Frequently the filaments show a slow rise prior to
  fast eruption, indicative of a slow expansion of the field that is
  about to explode. Work by us and others suggests that reconnection
  involving emerging or canceling flux results in a lengthening of
  fields restraining the filament-carrying field, and the consequent
  upward expansion of the field in and around the filament produces the
  filament's slow rise; that is, the reconnection weakens the magnetic
  “tethers” (“tether-weakening” reconnection), and results in the slow
  rise of the filament. It is still inconclusive, however, what mechanism
  is responsible for the switch from the slow rise to the fast eruption.

---------------------------------------------------------
Title: Learning by Doing: Science in a Large General Education Class
Authors: Lebofsky, Larry A.; Moore, R. W.; Lebofsky, N. R.
2007DPS....39.2712L    Altcode: 2007BAAS...39..464L
  Teaching science in a large (150+ students) class can be a
  challenge. This is especially true in a general education science
  class that is populated by non-science majors, athletes, and students
  with math phobias, as well as students with a variety of learning
  disabilities. <P />To illustrate Newton's Laws, we used The Egg Fling:
  knocking a pie pan from under a raw egg which then falls straight
  down into a container of water. Newton's Laws are projected on an
  overhead in constant view of the students, and an ELMO is used to give
  a live, big-screen view to engage even those in the back of the large
  lecture room. Students make predictions, watch the demo, then refine
  or correct predictions as we discuss which laws are illustrated. The
  Laws are later related to students’ science fiction books and the
  GEMS Moons of Jupiter activity. <P />Reading classic science fiction
  books allows students to see how our understanding of the universe
  and our technology have changed over the last 150 years, also adding
  a writing component to the class. <P />Student preceptors are critical
  to the success of this approach, leading small group discussions that
  could not easily be done with the whole class. Preceptors receive
  training before they lead activities or discussions with groups of
  10 to 15 peers. <P />Students do live sky observations and informal
  measurements to track the motion and phases of the Moon against the
  background stars, but use technology (Heavens Above and Starry Night)
  to track and understand the rising and setting of the Sun and its
  relation to the reason for the seasons. <P />Using a combination of
  live demonstrations with technology, short assessments, and student
  preceptors makes teaching a large group possible, effective, and fun.

---------------------------------------------------------
Title: Learning by Doing: Science in a Large General Education Class
Authors: Lebofsky, Larry A.; Moore, R. W.; Lebofsky, N. R.
2007AAS...211.0604L    Altcode: 2007BAAS...39..736L
  Teaching science in a large (150+ students) class can be a
  challenge. This is especially true in a general education science
  class that is populated by non-science majors, athletes, and students
  with math phobias, as well as students with a variety of learning
  disabilities. <P />To illustrate Newton's Laws, we used The Egg Fling:
  knocking a pie pan from under a raw egg which then falls straight
  down into a container of water. Newton's Laws are projected on an
  overhead in constant view of the students, and an ELMO is used to give
  a live, big-screen view to engage even those in the back of the large
  lecture room. Students make predictions, watch the demo, then refine
  or correct predictions as we discuss which laws are illustrated. The
  Laws are later related to students’ science fiction books and the
  GEMS Moons of Jupiter activity. <P />Reading classic science fiction
  books allows students to see how our understanding of the universe
  and our technology have changed over the last 150 years, also adding
  a writing component to the class. <P />Student preceptors are critical
  to the success of this approach, leading small group discussions that
  could not easily be done with the whole class. Preceptors receive
  training before they lead activities or discussions with groups of
  10 to 15 peers. <P />Students do live sky observations and informal
  measurements to track the motion and phases of the Moon against the
  background stars, but use technology (Heavens Above and Starry Night)
  to track and understand the rising and setting of the Sun and its
  relation to the reason for the seasons. <P />Using a combination of
  live demonstrations with technology, short assessments, and student
  preceptors makes teaching a large group possible, effective, and fun.

---------------------------------------------------------
Title: Hinode Observations of the Onset Stage of a Solar Filament
    Eruption
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Berger, Thomas
   E.; Bobra, Monica; Davis, John M.; Jibben, Patricia; Kano, Ryohei;
   Lundquist, Loraine L.; Myers, D.; Narukage, Noriyuki; Sakao, Taro;
   Shibasaki, Kiyoto; Shine, Richard A.; Tarbell, Theodore D.; Weber, Mark
2007PASJ...59S.823S    Altcode:
  We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT)
  filtergraph (FG) Stokes-V magnetogram observations, to study the
  early onset of a solar eruption that includes an erupting filament
  that we observe in TRACE EUV images. The filament undergoes a slow
  rise for at least 20min prior to its fast eruption and strong soft
  X-ray (SXR) flaring; such slow rises have been previously reported,
  and the new Hinode data elucidate the physical processes occurring
  during this period. XRT images show that during the slow-rise phase,
  an SXR sigmoid forms from apparent reconnection low in the sheared core
  field traced by the filament, and there is a low-level intensity peak
  in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V
  magnetograms show that the pre-eruption filament is along a neutral
  line between opposing-polarity enhanced network cells, and the SOT
  magnetograms show that these opposing fields are flowing together
  and canceling for at least six hours prior to eruption. From the MDI
  data we measured the canceling network fields to be ∼ 40G, and we
  estimated that ∼ 10<SUP>19</SUP> Mx of flux canceled during the
  five hours prior to eruption; this is only ∼ 5% of the total flux
  spanned by the eruption and flare, but apparently its tether-cutting
  cancellation was enough to destabilize the sigmoid field holding the
  filament and resulted in that field's eruption.

---------------------------------------------------------
Title: New Evidence for the Role of Emerging Flux in a Solar
    Filament's Slow Rise Preceding Its CME-producing Fast Eruption
Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.
2007ApJ...669.1359S    Altcode:
  We observe the eruption of a large-scale (~300,000 km) quiet-region
  solar filament leading to an Earth-directed “halo” coronal mass
  ejection (CME), using data from EIT, CDS, MDI, and LASCO on SOHO
  and from SXT on Yohkoh. Initially the filament shows a slow (~1 km
  s<SUP>-1</SUP> projected against the solar disk) and approximately
  constant velocity rise for about 6 hr, before erupting rapidly, reaching
  a velocity of ~8 km s<SUP>-1</SUP> over the next ~25 minutes. CDS
  Doppler data show Earth-directed filament velocities ranging from
  &lt;20 km s<SUP>-1</SUP> (the noise limit) during the slow-rise phase,
  to ~100 km s<SUP>-1</SUP> early in the eruption. Beginning within 10
  hr prior to the start of the slow rise, localized new magnetic flux
  emerged near one end of the filament. Near the start of and during the
  slow-rise phase, soft X-ray (SXR) microflaring occurred repeatedly at
  the flux-emergence site, and the magnetic arcade over the filament
  progressively brightened in a fan of illumination in SXRs. These
  observations are consistent with “tether-weakening” reconnection
  occurring between the newly emerging flux and the overlying arcade
  field containing the filament, and apparently this reconnection is the
  cause of the filament's slow rise. We cannot, however, discern whether
  the transition from slow rise to fast eruption was caused by a final
  episode of tether-weakening reconnection, or by one or some combination
  of other possible mechanisms allowed by the observations. Intensity
  “dimmings” and “brightenings” occurring both near to and relatively
  far from the location of the filament are possible signatures of the
  expansion (“opening”) of the erupting field and its reconnection
  with overarching field during the eruption.

---------------------------------------------------------
Title: Origin of the Sheared Magnetic Fields that Explode in Flares
    and Coronal Mass Ejections
Authors: Moore, R. L.; Sterling, A. C.
2007ASPC..369..539M    Altcode:
  From observations of 37 flare-arcade events, their magnetic settings,
  their sheared core fields, and the coronal mass ejections from these
  events, we find evidence that the sheared core fields in mature
  magnetic arcades are not formed by bodily emergence of a twisted flux
  rope along the neutral line. This implies that these sigmoidal sheared
  fields are instead formed by reconnection and flows above and in the
  photosphere. A high priority of Solar-B should be to discover the
  evolutionary processes that build the sigmoidal sheared fields along
  mature neutral lines.

---------------------------------------------------------
Title: An All-Sky 2MASS Mosaic Constructed on the TeraGrid
Authors: Laity, A.; Berriman, G. B.; Good, J. C. Katz, D. S.; Jacob,
   J. C. Brieger, L.; Moore, R. Williams, R. Deelman, E.; Singh, G.;
   Su, M. -H.
2007ASPC..376...65L    Altcode: 2007adass..16...65L
  The Montage mosaic engine supplies on-request image mosaic services for
  the NVO astronomical community. A companion paper describes scientific
  applications of Montage. This paper describes one application in
  detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image
  Atlas on the NSF TeraGrid. The goals of the project are: to provide a
  value-added 2MASS product that combines overlapping images to improve
  sensitivity; to demonstrate applicability of computing at-scale to
  astronomical missions and surveys, especially projects such as LSST;
  and to demonstrate the utility of the NVO Hyperatlas format. The
  numerical processing of an 8~TB, 32-bit survey to produce a 64-bit,
  20~TB output atlas presented multiple scalability and operational
  challenges. An MPI Python module, MYMPI, was used to manage the
  alternately sequential and parallel steps of the Montage process. This
  allowed us to parallelize all steps of the mosaic process: that of many,
  sequential steps executing simultaneously for independent mosaics and
  that of a single MPI parallel job executing on many CPUs for a single
  mosaic. The Storage Resource Broker (SRB) <P />was used to archive
  the output results in the Hyperatlas. The 2MASS mosaics are now being
  assessed for scientific quality. <P />Around 130,000 CPU-hours were used
  to complete the mosaics. The output consists of 1734 plates spanning
  6° for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in
  size, and each has been tiled into a 12×12 array of 26~MB files for
  ease of handling. The total size is about 20~TB in 750,000 tiles.

---------------------------------------------------------
Title: The Width of a Solar Coronal Mass Ejection and the Source of
the Driving Magnetic Explosion: A Test of the Standard Scenario for
    CME Production
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.
2007ApJ...668.1221M    Altcode:
  We show that the strength (B<SUB>Flare</SUB>) of the magnetic
  field in the area covered by the flare arcade following
  a CME-producing ejective solar eruption can be estimated
  from the final angular width (Final θ<SUB>CME</SUB>)
  of the CME in the outer corona and the final angular width
  (θ<SUB>Flare</SUB>) of the flare arcade: B<SUB>Flare</SUB>~1.4[(Final
  θ<SUB>CME</SUB>)/θ<SUB>Flare</SUB><SUP>2</SUP> G. We assume (1) the
  flux-rope plasmoid ejected from the flare site becomes the interior of
  the CME plasmoid; (2) in the outer corona (R&gt;2 R<SUB>solar</SUB>)
  the CME is roughly a “spherical plasmoid with legs” shaped like a
  lightbulb; and (3) beyond some height in or below the outer corona
  the CME plasmoid is in lateral pressure balance with the surrounding
  magnetic field. The strength of the nearly radial magnetic field
  in the outer corona is estimated from the radial component of the
  interplanetary magnetic field measured by Ulysses. We apply this
  model to three well-observed CMEs that exploded from flare regions
  of extremely different size and magnetic setting. One of these CMEs
  was an over-and-out CME, that is, in the outer corona the CME was
  laterally far offset from the flare-marked source of the driving
  magnetic explosion. In each event, the estimated source-region field
  strength is appropriate for the magnetic setting of the flare. This
  agreement (1) indicates that CMEs are propelled by the magnetic field
  of the CME plasmoid pushing against the surrounding magnetic field;
  (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs;
  and (3) shows that a CME's final angular width in the outer corona
  can be estimated from the amount of magnetic flux covered by the
  source-region flare arcade.

---------------------------------------------------------
Title: Study of Small-Scale Dynamics in Quiet Regions from TRACE/BBSO
    Observations
Authors: Yamauchi, Y.; Wang, H.; Moore, R. L.
2007ASPC..369..573Y    Altcode:
  TRACE UV observations of coronal holes and quiet regions were made in
  September 2004 jointly with Hα and magnetogram observations at Big
  Bear Solar Observatory (BBSO) to study the structure, evolution, and
  magnetic setting of small-scale explosive events in those regions. Such
  activity in the fine-scale mixed-polarity magnetic fields in the network
  is believed to play an important role in coronal heating and solar wind
  acceleration. From the observations, 373 events were identified. Of
  these, 343 events were in the form of a spiked jet and 10 events were
  in the form of an erupting loop. Twenty were unclassifiable. The
  spiky events were rooted in compact bipolar fields at the edges
  of the magnetic network and 76% of the events showed brightening at
  their base in C IV 1550 Å images. This is further evidence that spiky
  macrospicules are driven by reconnection between a network bipole and
  high-reaching magnetic fields.

---------------------------------------------------------
Title: An all-sky 2MASS mosaic constructed on the TeraGrid: processing
    steps for generation of a 20-terabyte 2MASS all-sky mosaic
Authors: Berriman, G. B.; Good, J. C.; Laity, A. C.; Katz, D. S.;
   Jacob, J. C.; Brieger, L.; Moore, R. W.; Williams, R.; Deelman, E.;
   Singh, G.; Su, M. -H.
2007HiA....14Q.625B    Altcode: 2006IAUSS...3E..57B
  The Montage mosaic engine supplies on-request image mosaic services for
  the NVO astronomical community. A companion paper describes scientific
  applications of Montage. This paper describes one application in
  detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image
  Atlas on the NSF TeraGrid. The goals of the project are: to provide a
  `valueadded' 2MASS product that combines overlapping images to improve
  sensitivity; to demonstrate applicability of computing at-scale to
  astronomical missions and surveys, especially projects such as LSST;
  and to demonstrate the utility of the NVO Hyperatlas format. The
  numerical processing of an 8-TB 32-bit survey to produce a 64-bit
  20-TB output atlas presented multiple scalability and operational
  challenges. An MPI Python module, MYMPI, was used to manage the
  alternately sequential and parallel steps of the Montage process. This
  allowed us to parallelize all steps of the mosaic process: that of many,
  sequential steps executing simultaneously for independent mosaics
  and that of a single MPI parallel job executing on many CPUs for a
  single mosaic. The Storage Resource Broker (SRB) developed at SDSC
  has been used to archive the output results in the Hyperatlas. The
  2MASS mosaics are now being assessed for scientific quality. The input
  images consist of 4,121,440 files, each 2 MB in size. The input files
  that fall on mosaic boundaries are opened, read, and used multiple
  times in the processing of adjacent mosaics, so that a total of 14
  TB in 6,275,494 files are actually opened and read in the creation of
  mosaics across the entire survey. Around 130,000 CPU-hours were used
  to complete the mosaics. The output consists of 1734 6-degree plates
  for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in size,
  and each has been tiled into a 12 × 12 array of 26-MB files for ease
  of handling. The total size is about 20 TB in 750 000 tiles.

---------------------------------------------------------
Title: The Coronal-dimming Footprint of a Streamer-Puff Coronal Mass
Ejection: Confirmation of the Magnetic-Arch-Blowout Scenario
Authors: Moore, Ronald L.; Sterling, Alphonse C.
2007ApJ...661..543M    Altcode:
  A streamer puff is a recently identified variety of coronal mass
  ejection (CME) of narrow to moderate width. It (1) travels out along
  a streamer, transiently inflating the streamer but leaving it largely
  intact, and (2) occurs in step with a compact ejective flare in an
  outer flank of the base of the streamer. These aspects suggest the
  following magnetic-arch-blowout scenario for the production of these
  CMEs: the magnetic explosion that produces the flare also produces a
  plasmoid that explodes up the leg of an outer loop of the arcade base
  of the streamer, blows out the top of this loop, and becomes the core
  of the CME. In this paper, we present a streamer-puff CME that produced
  a coronal dimming footprint. The coronal dimming, its magnetic setting,
  and the timing and magnetic setting of a strong compact ejective flare
  within the dimming footprint nicely confirm the magnetic-arch-blowout
  scenario. From these observations, together with several published
  cases of a transequatorial CME produced in tandem with an ejective
  flare or filament eruption that was far offset from directly under the
  CME, we propose the following. Streamer-puff CMEs are a subclass (one
  variety) of a broader class of “over-and-out” CMEs that are often
  much larger than streamer puffs but are similar to them in that they
  are produced by the blowout of a large quasi-potential magnetic arch
  by a magnetic explosion that erupts from one foot of the large arch,
  where it is marked by a filament eruption and/or an ejective flare.

---------------------------------------------------------
Title: The Coronal-dimming Footprint Of A Streamer-puff Coronal Mass
Ejection: Confirmation Of The Magnetic-arch-blowout Scenario
Authors: Moore, Ronald L.; Sterling, A. C.
2007AAS...210.2907M    Altcode: 2007BAAS...39..138M
  A streamer puff is a recently identified variety of coronal mass
  ejection (CME) of narrow to moderate width. It (1) travels out along
  a streamer, transiently inflating the streamer but leaving it largely
  intact, and (2) occurs in step with a compact ejective flare in an
  outer flank of the base of the streamer. These aspects suggest the
  following magnetic-arch-blowout scenario for the production of these
  CMEs: the magnetic explosion that produces the flare also produces a
  plasmoid that explodes up the leg of an outer loop of the arcade base
  of the streamer, blows out the top of this loop, and becomes the core
  of the CME. In this paper, we present a steamer-puff CME that produced
  a coronal dimming footprint. The coronal dimming, its magnetic setting,
  and the timing and magnetic setting of a strong compact ejective flare
  within the dimming footprint nicely confirm the magnetic-arch-blowout
  scenario. From these observations, together with several published
  cases of a trans-equatorial CME produced in tandem with an ejective
  flare or filament eruption that was far offset from directly under the
  CME, we propose the following. Streamer-puff CMEs are a subclass (one
  variety) of a broader class of “over-and-out” CMEs that are often
  much larger than steamer puffs but are similar to them in that they
  are produced by the blowout of a large quasi-potential magnetic arch
  by a magnetic explosion that erupts from one foot of the large arch,
  where it is marked by a filament eruption and/or an ejective flare. <P
  />This work was funded by the Heliophysics Division of NASA's Science
  Mission Directorate.

---------------------------------------------------------
Title: Combined Hinode, STEREO, And TRACE Observations of a Solar
Filament Eruption: Evidence For Destabilization By Flux-Cancelation
    Tether Cutting
Authors: Sterling, Alphonse C.; Moore, R. L.; Hinode Team
2007AAS...210.7207S    Altcode: 2007BAAS...39R.179S
  We present observations from Hinode, STEREO, and TRACE of a solar
  filament eruption and flare that occurred on 2007 March 2. Data
  from the two new satellites, combined with the TRACE observations,
  give us fresh insights into the eruption onset process. HINODE/XRT
  shows soft X-ray (SXR) activity beginning approximately 30 minutes
  prior to ignition of bright flare loops. STEREO and TRACE images show
  that the filament underwent relatively slow motions coinciding with
  the pre-eruption SXR brightenings, and it underwent rapid eruptive
  motions beginning near the time of flare onset. Concurrent HINODE/SOT
  magnetograms showed substantial flux cancelation under the filament at
  the site of the pre-eruption SXR activity. From these observations
  we infer that progressive tether-cutting reconnection driven by
  photospheric convection caused the slow rise of the filament and
  led to its eruption. <P />NASA supported this work through a NASA
  Heliosphysics GI grant.

---------------------------------------------------------
Title: Forecasting Solar Coronal Mass Ejections from MDI Magnetograms
Authors: Falconer, David; Moore, R.; Gary, A.
2007AAS...210.2702F    Altcode: 2007BAAS...39..135F
  We have shown in Falconer, Moore, &amp; Gary (2006 ApJ, 644, 1258),
  from a sample of 36 MSFC vector magnetograms of predominately bipolar
  active regions, that whether an active region will or will not be CME
  productive in the next few days is better predicted by measures of the
  active region’s total nonpotentiality ( 75% prediction success rate)
  than by measures of either its magnetic twist or its magnetic size ( 65%
  prediction success rate). Here we show that our two main-neutral-line
  measures of total nonpotentiality for bipolar active regions are
  easily generalized to measure multipolar active regions of any degree
  of magnetic complexity. We find that the generalized measures retain
  the CME-prediction success rate of the previous measures for bipolar
  active regions, and have the same CME-prediction success rate for
  multipolar active regions as for bipolar active regions. One of the
  generalized measures of total nonpotentiality is obtained from the
  vertical field component of the vector magnetogram. We show that for
  active regions within 30 degrees of disk center, similar CME-prediction
  success rates are obtained when this measure is obtained from the
  line-of-sight component of the vector magnetogram as though it
  were the vertical component. We report results for this measure of
  total nonpotentiality measured from active-region magnetograms from
  SOHO/MDI, a space-based line-of-sight magnetograph. We find that the
  CME-prediction success rate remains about 75%. MDI, with its full-disk
  field of view, 96-minute cadence, and over 10 years of operation with
  few gaps 1) provides a much larger data set than does the MSFC vector
  magnetograph, and 2) will allow us to examine whether the magnetic
  evolution of an active region (e.g., time-rate-of-change of the total
  nonpotentiality) provides a stronger CME prediction when combined with
  total nonpotentiality.This work is funded by the NASA LWS TR&amp;T
  Program and by the NSF SHINE Program.

---------------------------------------------------------
Title: Cool-Plasma Jets that Escape into the Outer Corona
Authors: Corti, Gianni; Poletto, Giannina; Suess, Steve T.; Moore,
   Ronald L.; Sterling, Alphonse C.
2007ApJ...659.1702C    Altcode:
  We report on observations acquired in 2003 May during a SOHO-Ulysses
  quadrature campaign. The UVCS slit was set normal to the radial of
  the Sun along the direction to Ulysses at 1.7 R<SUB>solar</SUB>, at
  a northern latitude of 14.5°. From May 25 to May 28, UVCS acquired
  spectra of several short-lived ejections that represent the extension
  at higher altitudes of recursive EIT jets, imaged in He II λ304. The
  jets were visible also in LASCO images and seem to propagate along
  the radial to Ulysses. UVCS spectra showed an unusually high emission
  in cool lines, lasting for about 10-25 minutes, with no evidence of
  hot plasma. Analysis of the cool line emission allowed us to infer
  the physical parameters (temperature, density, and outward velocity)
  of jet plasma and the evolution of these quantities as the jet crossed
  the UVCS slit. From these quantities, we estimated the energy needed
  to produce the jet. We also looked for any evidence of the events in
  the in situ data. We conclude by comparing our results with those of
  previous works on similar events and propose a scenario that accounts
  for the observed magnetic setting of the source of the jets and allows
  the jets to be magnetically driven.

---------------------------------------------------------
Title: Forecasting coronal mass ejections from line-of-sight
    magnetograms
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2007JASTP..69...86F    Altcode: 2007JATP...69...86F
  We show that the length of strong-gradient, strong-field main neutral
  line, L<SUB>SGM</SUB>, which can be measured from line-of-sight
  magnetograms such as from SOHO/MDI, is both a measure of active-region
  nonpotentiality and a useful predictor of an active region's future
  Coronal mass ejections (CME) productivity. To demonstrate that
  L<SUB>SGM</SUB> is a nonpotentiality measure, we show that it is
  strongly correlated with a direct measure of nonpotentiality. For an
  appropriate choice of a threshold value, an active region's measured
  L<SUB>SGM</SUB> can be used as a predictor of whether the active
  region will produce a CME within a few days after the magnetogram. For
  our set of 36 Marshall Space Flight CentreMSFC vector magnetograms of
  bipolar active regions, L<SUB>SGM</SUB> is found to have a success rate
  of 80% for prediction of CME productivity in the 0 2 day window. The
  development of L<SUB>SGM</SUB> as a method of measuring nonpotentiality
  for forecasting large, fast CMEs from present space-based assets is
  of value to NASA's space exploration initiative (manned missions to
  the Moon and Mars).

---------------------------------------------------------
Title: Probing the Magnetic Causes of CMEs: Free Magnetic Energy
    More Important Than Either Size Or Twist
Authors: Falconer, D.; Moore, R.; Gary, A.
2006AGUFMSH31B..03F    Altcode:
  To probe the magnetic causes of CMEs, we have examined three types of
  magnetic measures: size, twist and total nonpotentiality (or total
  free magnetic energy) of an active region. Total nonpotentiality is
  roughly the product of size times twist. For predominately bipolar
  active regions, we have found that total nonpotentiality measures
  have the strongest correlation with future CME productivity (~ 75%
  prediction success rate), while size and twist measures each have a
  weaker correlation with future CME productivity (~ 65% prediction
  success rate) (Falconer, Moore, &amp;Gary, ApJ, 644, 2006). For
  multipolar active regions, we find that the CME-prediction success
  rates for total nonpotentiality and size are about the same as for
  bipolar active regions. We also find that the size measure correlation
  with CME productivity is nearly all due to the contribution of size to
  total nonpotentiality. We have a total nonpotentiality measure that can
  be obtained from a line-of-sight magnetogram of the active region and
  that is as strongly correlated with CME productivity as are any of our
  total-nonpotentiality measures from deprojected vector magnetograms. We
  plan to further expand our sample by using MDI magnetograms of each
  active region in our sample to determine its total nonpotentiality
  and size on each day that the active region was within 30 degrees of
  disk center. The resulting increase in sample size will improve our
  statistics and allow us to investigate whether the nonpotentiality
  threshold for CME production is nearly the same or significantly
  different for mutipolar regions than for bipolar regions. In addition,
  we will investigate the time rates of change of size and total
  nonpotentiality as additional causes of CME productivity. This work
  was funded by NSF through its Solar Terrestrial Research and SHINE
  Programs and by NASA through its LWS TR&amp;T Program and its Solar
  and Heliospheric Physics SR&amp;T Program.

---------------------------------------------------------
Title: Electric Currents in Granite and Gabbro Generated by Impacts
    Up To 1 km/sec
Authors: Hollerman, W. A.; Lau, B. L.; Moore, R. J.; Malespin, C. A.;
   Bergeron, N. P.; Freund, F. T.; Wasilewski, P. J.
2006AGUFM.T31A0419H    Altcode:
  For many years, radio noise, strange lights coming out of the ground,
  and other unusual phenomena have been detected prior to major
  earthquakes. Only recently have these signals been systematically
  monitored and their correlations to earthquakes have been more firmly
  established. A glow in the sky sometimes heralds a big quake. In January
  1995, white, blue, or orange lights extending some 200 m into the air
  and spreading 1 to 8 km across the ground were reported by at least 23
  eyewitnesses in and around Kobe, Japan. Hours later, a 6.9-magnitude
  earthquake killed more than 4,500 people. Such signals imply the
  movement of electric currents through rock and soil and their discharge
  into the air. During summer 2006 a research project started using the
  single-stage light gas gun at the NASA Goddard Space Flight Center in
  Maryland. The gun fires 63 mm diameter aluminum sabots of a few grams to
  1.2 kilograms. A catcher was designed to stop the sabot while allowing
  a smaller projectile to impact a desired target at velocities up to 1
  km/s. This presentation documents first results of the production of
  electric currents during impacts on granite and gabbro instrumented
  with capacitive sensors, contact electrodes, magnetic pick-up coils
  and photo diodes for light detection. This research is critical towards
  the development of techniques that could be used to monitor quakes on
  the Earth and estimate secondary effects of meteorite impacts on the
  Moon and Mars during the next phase of human space exploration.

---------------------------------------------------------
Title: Initiation of Coronal Mass Ejections
Authors: Moore, Ronald L.; Sterling, Alphonse C.
2006GMS...165...43M    Altcode:
  This paper is a synopsis of the initiation of the strong-field magnetic
  explosions that produce large, fast coronal mass ejections. The
  presentation outlines our current view of the eruption onset, based on
  results from our own observational work and from the observational and
  modeling work of others. From these results and from physical reasoning,
  we and others have inferred the basic processes that trigger and
  drive the explosion. We describe and illustrate these processes using
  cartoons. The magnetic field that explodes is a sheared-core bipole
  that may or may not be embedded in surrounding strong magnetic field,
  and may or may not contain a flux rope before it starts to explode. We
  describe three different mechanisms that singly or in combination
  can trigger the explosion: (1) runaway internal tether-cutting
  reconnection, (2) runaway external tether-cutting reconnection, and
  (3) ideal MHD instability or loss or equilibrium. For most eruptions,
  high-resolution, high-cadence magnetograms and chromospheric and coronal
  movies (such as from TRACE or Solar-B) of the pre-eruption region and
  of the onset of the eruption and flare are needed to tell which one
  or which combination of these mechanisms is the trigger. Whatever the
  trigger, it leads to the production of an erupting flux rope. Using
  a simple model flux rope, we demonstrate that the explosion can be
  driven by the magnetic pressure of the expanding flux rope, provided
  the shape of the expansion is "fat" enough.

---------------------------------------------------------
Title: An All-Sky 2MASS Mosaic Constructed on the TeraGrid
Authors: Berriman, G. B.; Brieger, L.; Good, J. C.; Moore, R.;
   Williams, R.; Laity, A. C.; Jacob, J. C.; Katz, D. S.
2006IAUSS...6E...8B    Altcode:
  The Montage mosaic engine supplies on-request image mosaic services for
  the NVO astronomical community. A companion paper describes scientific
  applications of Montage. This paper describes one application in
  detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image
  Atlas on the NSF TeraGrid. The goals of the project are: to provide a
  "value-added" 2MASS product that combines overlapping images to improve
  sensitivity; to demonstrate applicability of computing at-scale to
  astronomical missions and surveys, especially projects such as LSST;
  and to demonstrate the utility of the NVO Hyperatlas format. The
  numerical processing of an 8-TB 32-bit survey to produce a 64-bit
  20-TB output atlas presented multiple scalability and operational
  challenges. An MPI Python module, MYMPI, was used to manage the
  alternately sequential and parallel steps of the Montage process. This
  allowed us to parallelize all steps of the mosaic process: that of many,
  sequential steps executing simultaneously for independent mosaics
  and that of a single MPI parallel job executing on many CPUs for a
  single mosaic. The Storage Resource Broker (SRB) developed at SDSC
  has been used to archive the output results in the Hyperatlas. The
  2MASS mosaics are now being assessed for scientific quality. The input
  images consist of 4,121,440 files, each 2 MB in size. The input files
  that fall on mosaic boundaries are opened, read, and used multiple
  times in the processing of adjacent mosaics, so that a total of 14
  TB in 6,275,494 files are actually opened and read in the creation of
  mosaics across the entire survey. Around 130,000 CPU-hours were used
  to complete the mosaics. The output consists of 1734 6-degree plates
  for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in size,
  and each has been tiled into a 12x12 array of 26-MB files for ease of
  handling. The total size is about 20 TB in 750,000 tiles.

---------------------------------------------------------
Title: Wide and Narrow CMEs and their Source Explosions Observed at
    the Spring 2003 SOHO-Sun-Ulysses Quadrature
Authors: Suess, S. T.; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.
2006ESASP.617E.147S    Altcode: 2006soho...17E.147S
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Causes of Solar Coronal Mass Ejections: Dominance
    of the Free Magnetic Energy over the Magnetic Twist Alone
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2006ApJ...644.1258F    Altcode:
  We examine the magnetic causes of coronal mass ejections (CMEs)
  by examining, along with the correlations of active-region magnetic
  measures with each other, the correlations of these measures with
  active-region CME productivity observed in time windows of a few days,
  either centered on or extending forward from the day of the magnetic
  measurement. The measures are from 36 vector magnetograms of bipolar
  active regions observed within ~30° of disk center by the Marshal
  Space Flight Center (MSFC) vector magnetograph. From each magnetogram,
  we extract six whole-active-region measures twice, once from the
  original plane-of-the-sky magnetogram and again after deprojection of
  the magnetogram to disk center. Three of the measures are alternative
  measures of the total nonpotentiality of the active region, two are
  alternative measures of the overall twist in the active-region's
  magnetic field, and one is a measure of the magnetic size of the
  active region (the active region's magnetic flux content). From the
  deprojected magnetograms, we find evidence that (1) magnetic twist and
  magnetic size are separate but comparably strong causes of active-region
  CME productivity, and (2) the total free magnetic energy in an active
  region's magnetic field is a stronger determinant of the active region's
  CME productivity than is the field's overall twist (or helicity)
  alone. From comparison of results from the non-deprojected magnetograms
  with corresponding results from the deprojected magnetograms, we find
  evidence that (for prediction of active-region CME productivity and for
  further studies of active-region magnetic size as a cause of CMEs),
  for active regions within ~30° of disk center, active-region total
  nonpotentiality and flux content can be adequately measured from
  line-of-sight magnetograms, such as from SOHO MDI.

---------------------------------------------------------
Title: Initiation of the Slow-Rise and Fast-Rise Phases of an Erupting
    Solar Filamentby Localized Emerging Magnetic Field via Microflaring
Authors: Sterling, Alphonse C.; Moore, R. L.; Harra, L. K.
2006SPD....37.0823S    Altcode: 2006BAAS...38..234S
  EUV data from EIT show that a filament of 2001 February 28 underwent
  aslow-rise phase lasting about 6 hrs, before rapidly erupting in a
  fast-risephase. Concurrent images in soft X-rays (SXRs) from Yohkoh/SXT
  show that aseries of three microflares, prominent in SXT images but weak
  in EIT 195 AngEUV images, occurred near one end of the filament. The
  first and lastmicroflares occurred respectively in conjunction with
  the start of theslow-rise phase and the start of the fast-rise phase,
  and the second microflarecorresponded to a kink in the filament
  trajectory. Beginning within 10 hoursof the start of the slow rise,
  new magnetic flux emerged at the location of themicroflaring. This
  localized new flux emergence and the resulting microflares,consistent
  with reconnection between the emerging field and the sheared sigmoidcore
  magnetic field holding the filament, apparently caused the slow
  rise ofthis field and the transition to explosive eruption. For the
  first time insuch detail, the observations show this direct action of
  localized emergingflux in the progressive destabilization of a sheared
  core field in the onset ofa coronal mass ejection (CME). Similar
  processes may have occurred in otherrecently-studied events.NASA
  supported this work through NASA SR&amp;T and SEC GI grants.

---------------------------------------------------------
Title: Magnetic Causes of Solar Coronal Mass Ejections: Dominance of
    the Free Magnetic Energy over Either the Magnetic Twist or Size Alone
Authors: Falconer, David; Moore, R.; Gary, A.
2006SPD....37.2004F    Altcode: 2006BAAS...38..248F
  We report further results from our ongoing assessment of
  magnetogram-based measures of active-region nonpotentiality and
  size as predictors of coronal mass ejections (CMEs). We have devised
  improved generalized measures of active-region nonpotentiality that
  apply to active regions of any degree of magnetic complexity, rather
  than being limited to bipolar active regions as our initial measures
  were. From a set of 50 active-regions, we have found that measures
  of total nonpotentiality have a 75-80% success rate in predicting
  whether an active region will produce a CME within 2 days after the
  magnetogram. This makes measures of total nonpotentiality a better
  predictor than either active-region size, or active-region twist
  (size-normalized nonpotentiality), which have 65% success rates. We
  have also found that we can measure from a line-of-sight magnetogram
  an active region's total nonpotentiality and the size, which allows
  use of to use MDI to evaluate these quantities for 4-5 consecutive
  days for each active region, and to investigate if there is some
  combination of size and total nonpotentiality that have a stronger
  predictive power than does total nonpotentiality.This work was funded
  by NASA through its LWS TR&amp;T Program and its Solar and Heliospheric
  Physics SR&amp;T Program, and by NSF through its Solar Terrestrial
  Research and SHINE Programs.

---------------------------------------------------------
Title: The Origin Of The Sheared Magnetic Fields That Erupt In Flares
    And Coronal Mass Ejections
Authors: Moore, Ronald L.; Sterling, A. C.
2006SPD....37.2001M    Altcode: 2006BAAS...38R.247M
  From a search of the Yohkoh/SXT whole-Sun movie in the years 2000 and
  2001, we found 37 flare-arcade events for which there were full-disk
  magnetograms from SOHO/MDI, coronagraph movies from SOHO/LASCO, and
  before and after full-disk chromospheric images from SOHO/EIT and/or
  from ground-based observatories. For each event, the observations show
  or strongly imply that the flare arcade was produced in the usual way
  by the eruption of sheared core field (as a flux rope) from along the
  neutral line inside a mature bipolar magnetic arcade. Two-thirds (25)
  of these arcades had the normal leading-trailing magnetic polarity
  arrangement of the active regions in the hemisphere of the arcade, but
  the other third (12) had reversed polarity, their leading flux being
  the trailing-polarity remnant of one or more old active regions and
  their trailing flux being the leading-polarity remnant of one or more
  other old active regions. &gt;From these observations, we conclude:
  (1) The sheared core field in a reversed-polarity arcade must be formed
  by processes in and above the photosphere, not by the emergence of a
  twisted flux rope bodily from below the photosphere. (2) The sheared
  core fields in the normal-polarity arcades were basically the same as
  those in the reversed-polarity arcades: both showed similar sigmoidal
  form and produced similar explosions (similar flares and CMEs). (3)
  Hence, the sheared core fields in normal-polarity mature arcades are
  likely formed mainly by the same processes as in reversed-polarity
  arcades. (4) These processes should be discernible in high-resolution
  magnetogram sequences and movies of the photosphere, chromosphere, and
  corona such those to come from Solar-B.This work was supported by NASA's
  Science Mission Directorate through its Solar and Heliospheric Physics
  Supporting Research &amp; Technology program and its Heliophysics
  Guest Investigators program.

---------------------------------------------------------
Title: Developing a phosphor-based health monitoring sensor suite
    for future spacecraft
Authors: Goedeke, S. M.; Hollerman, W. A.; Bergeron, N. P.; Allison,
   S. W.; Moore, R. J.
2006SPIE.6222E..0BG    Altcode: 2006SPIE.6222E..10G
  The desire to explore the Moon and Mars by 2030 makes cost effective
  and low mass health monitoring sensors essential for spacecraft
  development. Parameters such as impact, temperature, and radiation
  fluence need to be measured in order to determine the health of a human
  occupied vehicle. A phosphor-based sensor offers one good approach to
  develop a robust health monitoring system. The authors have spent the
  last few years evaluating physical characteristics of zinc sulfide
  (ZnS) phosphors. These materials emit triboluminescence (TL) which
  is fluorescence produced as a result of an impact. Currently, two ZnS
  materials have been tested for impact response for velocities from 1
  m/s to 6 km/s. These materials have also been calibrated for use as
  temperature sensors from room temperature to 350 °C. Finally, any
  sensor that is intended to function in space must be characterized
  for response to ionizing radiation. Research to date has included
  irradiating ZnS with 3 MeV protons and 20 keV electrons, which are
  likely components of the space radiation environment. Results have shown
  that that the fluorescence emission intensity decreases with radiation
  fluence. However, radiation induced damage can be annealed at small
  fluence levels. This annealing not only increased light intensity of
  the exposed sample from excitation but also TL excitation as well.

---------------------------------------------------------
Title: Muon Reconstruction and Identification for the Event Filter
    of the Atlas Experiment
Authors: Ventura, A.; Dos Anjos, A.; Armstrong, S.; Baines, J. T. M.;
   Bee, C. P.; Bellomo, M.; Biglietti, M.; Bogaerts, J. A.; Bosman, M.;
   Carlino, G.; Caron, B.; Casado, P.; Cataldi, G.; Cavalli, D.; Comune,
   G.; Conde, P.; Conventi, F.; Crone, G.; Damazio, D.; de Santo, A.;
   Diaz Gomez, M.; di Mattia, A.; Ellis, N.; Emeliyanov, D.; Epp, B.;
   Falciano, S.; Garitaonandia, H.; George, S.; Ghete, V.; Goncalo,
   S.; Gorini, E.; Haller, J.; Kabana, S.; Khomich, A.; Kilvington,
   G.; Kirk, N.; Konstantinidis, N.; Kootz, A.; Lankford, A. J.; Lowe,
   A.; Luminari, L.; Maeno, T.; Masik, J.; Meessen, C.; Mello, A. G.;
   Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati, A.; Osuna,
   C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Pasqualucci, E.;
   Perez Reale, V.; Pinfold, J. L.; Pinto, P.; Primavera, M.; Qian, Z.;
   Resconi, S.; Rosati, S.; Sanchez, C.; Santamarina, C.; Scannicchio,
   D. A.; Schiavi, C.; Segura, E.; de Seixas, J. M.; Sivoklokov, S.;
   Sobreira, A.; Soluk, R.; Spagnolo, S.; Stefanidis, E.; Sushkov, S.;
   Sutton, M.; Tapprogge, S.; Tarem, S.; Thomas, E.; Touchard, F.; Usai,
   G.; Venda Pinto, B.; Ventura, A.; Vercesi, V.; Wengler, T.; Werner,
   P.; Wheeler, S. J.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.;
   Zobernig, G.
2006apsp.conf..648V    Altcode:
  The ATLAS Trigger requires high efficiency and selectivity in order
  to keep the full physics potential of the experiment and to reject
  uninteresting processes from the 40 MHz event production rate of
  the LHC. These goals are achieved with a trigger composed of three
  sequential levels of increasing accuracy that have to reduce the output
  event rate down to ~100 Hz. This work focuses on muon reconstruction and
  identification for the third level (Event Filter), for which specific
  algorithms from the off-line environment have been adapted to work in
  the trigger framework. Two different strategies for accessing data
  (wrapped and seeded modes) are described and their reconstruction
  potential is then shown in terms of efficiencies, resolutions and fake
  muon rejection power.

---------------------------------------------------------
Title: Strong shaking in Los Angeles expected from southern San
    Andreas earthquake
Authors: Olsen, K. B.; Day, S. M.; Minster, J. B.; Cui, Y.; Chourasia,
   A.; Faerman, M.; Moore, R.; Maechling, P.; Jordan, T.
2006GeoRL..33.7305O    Altcode:
  The southernmost San Andreas fault has a high probability of rupturing
  in a large (greater than magnitude 7.5) earthquake sometime during the
  next few decades. New simulations show that the chain of sedimentary
  basins between San Bernardino and downtown Los Angeles form an effective
  waveguide that channels Love waves along the southern edge of the
  San Bernardino and San Gabriel Mountains. Earthquake scenarios with
  northward rupture, in which the guided wave is efficiently excited,
  produce unusually high long-period ground motions over much of the
  greater Los Angeles region, including intense, localized amplitude
  modulations arising from variations in waveguide cross-section.

---------------------------------------------------------
Title: Tracking Strategy and Performance for the Atlas High Level
    Triggers
Authors: Khomich, A.; Dos Anjos, A.; Armstrong, S.; Baines, J. T. M.;
   Bee, C. P.; Biglietti, M.; Bogaerts, J. A.; Bosman, M.; Caron, B.;
   Casado, P.; Cataldi, G.; Cavalli, D.; Cervetto, M.; Comune, G.; Conde,
   P.; Crone, G.; Damazio, D.; Diaz Gomez, M.; Ellis, N.; Emeliyanov,
   D.; Epp, B.; Falciano, S.; Garitaonandia, H.; George, S.; Ghete, V.;
   Goncalo, R.; Haller, J.; Kabana, S.; Khomich, A.; Kilvington, G.;
   Kirk, J.; Konstantinidis, N.; Kootz, A.; Lankford, A. J.; Lowe, A.;
   Luminari, L.; Maeno, T.; Masik, J.; di Mattia, A.; Meessen, C.; Mello,
   A. G.; Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati, A.;
   Osuna, C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Perez Reale, V.;
   Pinfold, J. L.; Pinto, P.; Qian, Z.; Resconi, S.; Rosati, S.; Sanchez,
   C.; Santamarina, C.; de Santo, A.; Scannicchio, D. A.; Schiavi, C.;
   Segura, E.; de Seixas, J. M.; Sivoklokov, S.; Sobreira, A.; Soluk,
   R.; Stefanidis, E.; Sushkov, S.; Sutton, M.; Tapprogge, S.; Tarem,
   S.; Thomas, E.; Touchard, F.; Usai, G.; Venda Pinto, B.; Ventura,
   A.; Vercesi, V.; Wengler, T.; Werner, P.; Wheeler, S. J.; Wickens,
   F. J.; Wiedenmann, W.; Wielers, M.; Zobernig, G.
2006apsp.conf.1077K    Altcode:
  Tracking has a central role in the event selection at the High Level
  Triggers of ATLAS. The earliest stage where tracking information
  can be used is the Second Level Trigger, where about 10 ms will be
  available for event processing. This constraint, together with the high
  multiplicity environment of ATLAS due to the multiple pp collisions,
  poses great challenges to the track reconstruction algorithms. In this
  review, we will describe the pattern recognition strategy for tracking
  in the HLT, and present results on (a) the tracking performance for
  different trigger signatures, such as single high-pt leptons, b-jets,
  and exclusive B decays; and (b) timing measurements of the complete
  tracking chain, including data access, unpacking, clustering, space
  point formation and the final pattern recognition.

---------------------------------------------------------
Title: Implementation and Performance of a Tau Lepton Selection
    Within the Atlas Trigger System at the Lhc
Authors: Dos Anjos, A.; Armstrong, S.; Baines, J. T.; Bee, C. P.;
   Biglietti, M.; Bogaerts, A.; Bosman, M.; Caron, B.; Casado,
   P.; Cataldi, G.; Cavalli, D.; Comune, G.; Conde, P.; Crone, G.;
   Damazio, D.; de Santo, A.; Diaz Gómez, M.; di Mattia, A.; Ellis, N.;
   Emeliyanov, D.; Epp, B.; Falciano, S.; Garitaonandia, H.; George,
   S.; Ghete, V.; Goncalo, R.; Haller, J.; Kabana, S.; Khomich, A.;
   Kilvington, G.; Kirk, J.; Konstantinidis, N.; Kootz, A.; Lankford,
   A. J.; Lowe, A.; Luminari, L.; Maeno, T.; Masik, J.; Meessen, C.;
   Mello, A. G.; Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati,
   A.; Osuna, C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Pasqualucci,
   E.; Perez-Reale, V.; Pinfold, J. L.; Pinto, P.; Qian, Z.; Resconi,
   S.; Rosati, S.; Sánchez, C.; Santamarina, C.; Scannicchio, D. A.;
   Schiavi, C.; Segura, E.; de Seixas, J. M.; Sivoklokov, S.; Sobreira,
   A.; Soluk, R.; Stefanidis, E.; Sushkov, S.; Sutton, M.; Tapprogge,
   S.; Tarem, S.; Thomas, E.; Touchard, F.; Usai, G.; Venda Pinto, B.;
   Ventura, A.; Vercesi, V.; Wengler, T.; Werner, P.; Wheeler, S. J.;
   Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Zobernig, H.; Casado, P.
2006apsp.conf..546D    Altcode:
  The ATLAS experiment at the Large Hadron Collider (LHC) has an
  interaction rate of up to 10<SUP>9</SUP> Hz. The trigger must
  efficiently select interesting events while rejecting the large
  amount of background. The First Level trigger will reduce this rate
  to around O(75 kHz). Subsequently, the High Level Trigger (HLT),
  comprising the Second Level trigger and the Event Filter, will reduce
  this rate by a factor of O(10<SUP>3</SUP>). Triggering on taus is
  important for Higgs and SUSY searches at the LHC. In this paper tau
  trigger selections are presented based on a lepton trigger if the
  tau decays leptonically or via a dedicated tau hadron trigger if the
  tau disintegrates semileptonically. We present signal efficiency with
  the electron trigger using the data sample A → ττ → e hadron,
  and rate studies obtained from the dijet sample.

---------------------------------------------------------
Title: H-alpha and UV chromospheric jets from BBSO/TRACE observations
Authors: Yamauchi, Y.; Wang, H.; Moore, R. L.
2006cosp...36.1944Y    Altcode: 2006cosp.meet.1944Y
  Solar magnetic field controls the energy and mass flux in the corona as
  well as the structure of the corona Small-scale explosive events such
  as macrospicules and microflares are believed to play an important role
  for the conversion from magnetic to thermal energy to heat the corona
  We made joint observations with the Transition Region and Coronal
  Explorer TRACE and Big Bear Solar Observatory BBSO in September 2004
  to study small-scale explosive events in quiet regions We studied the
  dynamics and evolution of small-scale events comparing the morphology
  and magnetic settings between H alpha and UV chromospheric jets We
  report on the results of the analysis and discuss the relation between
  the chromosphere and transition region through small-scale explosive
  events in the meeting

---------------------------------------------------------
Title: Recursive Narrowcmes Within a Coronal Streamer
Authors: Bemporad, A.; Sterling, A. C.; Moore, R. L.; Poletto, G.
2005ESASP.600E.153B    Altcode: 2005ESPM...11..153B; 2005dysu.confE.153B
  No abstract at ADS

---------------------------------------------------------
Title: A New Multidimensional Relativistic Hydrodynamics code based
    on Semidiscrete Central and WENO schemes
Authors: Rahman, Tanvir; Moore, R. B.
2005astro.ph.12246R    Altcode:
  We have proposed a new High Resolution Shock Capturing (HRSC)
  scheme for Special Relativistic Hydrodynamics (SRHD) based on the
  semidiscrete central Godunov-type schemes and a modified Weighted
  Essentially Non-oscillatory (WENO) data reconstruction algorithm. This
  is the first application of the semidiscrete central schemes with high
  order WENO data reconstruction to the SRHD equations. This method does
  not use a Riemann solver for flux computations and a number of one and
  two dimensional benchmark tests show that the algorithm is robust and
  comparable in accuracy to other SRHD codes.

---------------------------------------------------------
Title: A New Variety of Coronal Mass Ejection: Streamer Puffs from
    Compact Ejective Flares
Authors: Bemporad, A.; Sterling, Alphonse C.; Moore, Ronald L.;
   Poletto, G.
2005ApJ...635L.189B    Altcode:
  We report on SOHO UVCS, LASCO, EIT, and MDI observations of a
  series of narrow ejections that occurred at the solar limb. These
  ejections originated from homologous compact flares whose source
  was an island of included polarity located just inside the base of
  a coronal streamer. Some of these ejections result in narrow CMEs
  (“streamer puffs”) that move out along the streamer. These streamer
  puffs differ from “streamer blowout” CMEs in that (1) while the
  streamer is transiently inflated by the puff, it is not disrupted, and
  (2) each puff comes from a compact explosion in the outskirts of the
  streamer arcade, not from an extensive eruption along the main neutral
  line of the streamer arcade. From the observations, we infer that
  each streamer puff is produced by means of the inflation or blowing
  open of an outer loop of the arcade by ejecta from the compact-flare
  explosion in the foot of the loop. So, in terms of their production,
  our streamer puffs are a new variety of CME.

---------------------------------------------------------
Title: A New Multidimensional Hydrodynamics code based on Semidiscrete
    Central and WENO schemes
Authors: Rahman, Tanvir; Moore, R. B.
2005astro.ph.11728R    Altcode:
  We present a new multidimensional classical hydrodynamics code based
  on Semidiscrete Central Godunov-type schemes and high order Weighted
  Essentially Non-oscillatory (WENO) data reconstruction. This approach
  is a lot simpler and easier to implement than other Riemann solver based
  methods. The algorithm incorporates elements of the Piecewise Parabolic
  Method (PPM) in the reconstruction schemes to ensure robustness and
  applications of high order reconstruction schemes. A number of one and
  two dimensional benchmark tests have been carried out to verify the
  code. The tests show that this new algorithm and code is comparable
  in accuracy, efficiency and robustness to others.

---------------------------------------------------------
Title: Investigating the rp-process with the Canadian Penning trap
    mass spectrometer
Authors: Clark, J. A.; Barber, R. C.; Blank, B.; Boudreau, C.;
   Buchinger, F.; Crawford, J. E.; Greene, J. P.; Gulick, S.; Hardy,
   J. C.; Hecht, A. A.; Heinz, A.; Lee, J. K. P.; Levand, A. F.; Lundgren,
   B. F.; Moore, R. B.; Savard, G.; Scielzo, N. D.; Seweryniak, D.;
   Sharma, K. S.; Sprouse, G. D.; Trimble, W.; Vaz, J.; Wang, J. C.;
   Wang, Y.; Zabransky, B. J.; Zhou, Z.
2005EPJAS..25..629C    Altcode:
  The Canadian Penning trap (CPT) mass spectrometer at the Argonne
  National Laboratory makes precise mass measurements of nuclides
  with short half-lives. Since the previous ENAM conference, many
  significant modifications to the apparatus were implemented to improve
  both the precision and efficiency of measurement, and now more than 60
  radioactive isotopes have been measured with half-lives as short as one
  second and with a precision ( Δm/m) approaching 10<SUP>-8</SUP>. The
  CPT mass measurement program has concentrated so far on nuclides of
  importance to astrophysics. In particular, measurements have been
  obtained of isotopes along the rp-process path, in which energy is
  released from a series of rapid proton-capture reactions. An X-ray
  burst is one possible site for the rp-process mechanism which involves
  the accretion of hydrogen and helium from one star onto the surface
  of its neutron star binary companion. Mass measurements are required
  as key inputs to network calculations used to describe the rp-process
  in terms of the abundances of the nuclides produced, the light-curve
  profile of the X-ray bursts, and the energy produced. This paper
  will present the precise mass measurements made along the rp-process
  path with particular emphasis on the “waiting-point” nuclides
  <SUP>68</SUP>Se and <SUP>64</SUP>Ge.

---------------------------------------------------------
Title: Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament,
    and Flare Emission Onset
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2005ApJ...630.1148S    Altcode:
  We observe the eruption of an active-region solar filament on
  1998 July 11 using high time cadence and high spatial resolution
  EUV observations from the TRACE satellite, along with soft X-ray
  images from the soft X-ray telescope (SXT) on the Yohkoh satellite,
  hard X-ray fluxes from the BATSE instrument on the CGRO satellite
  and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based
  magnetograms. We concentrate on the initiation of the eruption in an
  effort to understand the eruption mechanism. Prior to eruption the
  filament undergoes a slow upward movement in a slow-rise phase with an
  approximately constant velocity of ~15 km s<SUP>-1</SUP> that lasts
  about 10 minutes. It then erupts in a fast-rise phase, accelerating
  to a velocity of ~200 km s<SUP>-1</SUP> in about 5 minutes and then
  decelerating to ~150 km s<SUP>-1</SUP> over the next 5 minutes. EUV
  brightenings begin about concurrently with the start of the filament's
  slow rise and remain immediately beneath the rising filament during
  the slow rise; initial soft X-ray brightenings occur at about the same
  time and location. Strong hard X-ray emission begins after the onset
  of the fast rise and does not peak until the filament has traveled
  to a substantial altitude (to a height about equal to the initial
  length of the erupting filament) beyond its initial location. Our
  observations are consistent with the slow-rise phase of the eruption
  resulting from the onset of “tether cutting” reconnection between
  magnetic fields beneath the filament, and the fast rise resulting from
  an explosive increase in the reconnection rate or by catastrophic
  destabilization of the overlying filament-carrying fields. About 2
  days prior to the event, new flux emerged near the location of the
  initial brightenings, and this recently emerged flux could have been
  a catalyst for initiating the tether-cutting reconnection. With the
  exception of the sudden transition from the slow-rise phase to the
  fast-rise phase in our event, our filament's height-time profile is
  qualitatively similar to the plot of the erupting flux rope height as
  a function of time recently computed by Chen and Shibata for a model
  in which the eruption is triggered by reconnection between an emerging
  field and another field under the flux rope.

---------------------------------------------------------
Title: Emission spectra from ZnS:Mn due to low velocity impacts
Authors: Hollerman, W. A.; Goedeke, S. M.; Bergeron, N. P.; Moore,
   R. J.; Allison, S. W.; Lewis, L. A.
2005SPIE.5897..138H    Altcode:
  Triboluminescence (TL) is the emission of light due to crystal fracture
  and has been known for centuries. One of the most common examples of
  TL is the flash created from chewing wintergreen Lifesavers. Since
  2003, the authors have been measuring triboluminescent properties of
  phosphors, of which zinc sulfide doped with manganese (ZnS:Mn) is an
  example. Preliminary results indicate that impact velocities greater
  than 0.5 m/s produce measurable TL from ZnS:Mn. To extend this research,
  the investigation of the emission spectrum was chosen. This differs
  from using filtered photodetectors in that the spectral composition
  of fluorescence can be ascertained. Previous research has utilized a
  variety of schemes that include scratching, crushing, and grinding to
  generate TL. In our case, the material is activated by a short duration
  interaction of a dropped mass and a small number of luminescence
  centers. This research provides a basis for the characterization and
  selection of materials for future spacecraft impact detection schemes.

---------------------------------------------------------
Title: Small-Scale Dynamics of the Chromospheric Network in Coronal
    Holes from TRACE/BBSO Observations
Authors: Yamauchi, Y.; Wang, H.; Moore, R. L.
2005ESASP.592..579Y    Altcode: 2005ESASP.592E.111Y; 2005soho...16E.111Y
  No abstract at ADS

---------------------------------------------------------
Title: Resolving multiple particles in a highly segmented silicon
    array
Authors: Paduszynski, T.; Sprunger, P.; de Souza, R. T.; Hudan, S.;
   Alexander, A.; Davin, B.; Fleener, G.; McIntosh, A.; Metelko, C.;
   Moore, R.; Peters, N.; Poehlman, J.; Gauthier, J.; Grenier, F.; Roy,
   R.; Thériault, D.; Bell, E.; Garey, J.; Iglio, J.; Keksis, A. L.;
   Parketon, S.; Richers, C.; Shetty, D. V.; Soisson, S. N.; Soulioutis,
   G. A.; Stein, B.; Yennello, S. J.
2005NIMPA.547..464P    Altcode:
  The design, construction, and performance of a new highly segmented
  charged particle detector array, FIRST, are described. This forward
  angle annular array (2<SUP></SUP>⩽θ<SUB></SUB>⩽28<SUP></SUP>)
  has been developed to study peripheral and mid-central heavy-ion
  collisions at intermediate energies (E/A≈50MeV). FIRST consists of
  three individual telescopes that each utilize ion-passivated silicon
  detectors in either a Si(IP) Si(IP) CsI(Tl) stack or a Si(IP) CsI(Tl)
  stack. This array provides elemental identification for 1⩽Z⩽50 with
  isotopic identification of lighter elements, Z⩽13, over a wide dynamic
  range in energy. The high segmentation of each silicon detector provides
  good angular resolution in a compact geometry and allows deconvolution
  of multiple particles incident on a single telescope. The performance
  of the array in a commissioning experiment Zn64+Zn64,Bi209 at E/A=45MeV
  is shown.

---------------------------------------------------------
Title: MTRAP: the magnetic transition region probe
Authors: Davis, J. M.; West, E. A.; Moore, R. L.; Gary, G. A.;
   Kobayashi, K.; Oberright, J. E.; Evans, D. C.; Wood, H. J.; Saba,
   J. L. R.; Alexander, D.
2005SPIE.5901..273D    Altcode:
  The Magnetic Transition Region Probe is a space telescope designed to
  measure the magnetic field at several heights and temperatures in the
  solar atmosphere, providing observations spanning the chromospheric
  region where the field is expected to become force free. The primary
  goal is to provide an early warning system (hours to days) for solar
  energetic particle events that pose a serious hazard to astronauts in
  deep space and to understand the source regions of these particles. The
  required magnetic field data consist of simultaneous circular and linear
  polarization measurements in several spectral lines over the wavelength
  range from 150 to 855 nm. Because the observations are photon limited
  an optical telescope with a large (&gt;18m<SUP>2</SUP>) collecting area
  is required. To keep the heat dissipation problem manageable we have
  chosen to implement MTRAP with six separate Gregorian telescopes, each
  with ~ 3 m<SUP>2</SUP> collecting area, that are brought to a common
  focus. The necessary large field of view (5 × 5 arcmin<SUP>2</SUP>)
  and high angular resolution (0.025 arcsec pixels) require large
  detector arrays and, because of the requirements on signal to noise
  (10<SUP>3</SUP>), pixels with large full well depths to reduce the
  readout time and improve the temporal resolution. The optical and
  engineering considerations that have gone into the development of a
  concept that meets MTRAP's requirements are described.

---------------------------------------------------------
Title: Study of Hα Macrospicules in Coronal Holes: Magnetic Structure
    and Evolution in Relation to Photospheric Magnetic Setting
Authors: Yamauchi, Y.; Wang, H.; Jiang, Y.; Schwadron, N.; Moore, R. L.
2005ApJ...629..572Y    Altcode:
  Small-scale solar dynamic events such as spicules, macrospicules,
  and microflares may play an important role in the coronal heating
  and solar wind acceleration in coronal holes. In these regions, the
  network fields concentrated along edges of supergranules are probably
  the source of the fine-scale activity that may drive the heating
  and acceleration. Recent Hα limb observations from Big Bear Solar
  Observatory (BBSO) have shown that most macrospicules have two different
  forms of magnetic structure-a spiked jet or an erupting loop, suggesting
  two different formation mechanisms. In this paper, we analyze BBSO Hα
  images and magnetograms of a coronal hole region near the disk center
  to study the evolution of the two types of macrospicule in relation to
  the magnetic arrangement at their base. We identified 78 macrospicules
  from the best day of 3 days of observations. Of these, 65 events were
  in the form of a spiked jet and were rooted in compact bipolar fields
  at the edges of the magnetic network. This supports the idea that spiky
  macrospicules are driven by reconnection between the network bipole
  and open magnetic fields. We also found five macrospicules that were
  in the form of an erupting loop oriented along a neutral line between
  the positive and negative network flux. They appear to be minifilament
  eruptions. Our results verify the magnetic structure inferred from our
  previous limb observations and support scenarios of coronal heating
  and solar wind generation through fine-scale explosive reconnection
  events seated in the magnetic network.

---------------------------------------------------------
Title: Shape and Reconnection of the Exploding Magnetic Field in
    the Onset of CMEs
Authors: Moore, R. L.; Sterling, A. C.; Falconer, D. A.; Gary, G. A.
2005AGUSMSH54B..01M    Altcode:
  From chromospheric and coronal images and line-of-sight and vector
  magnetograms of magnetic regions that produce CMEs, and from
  chromospheric and coronal movies of the onsets of CME eruptions,
  it appears that the magnetic field that explodes to drive the CME
  is initially the strongly sheared core of a magnetic arcade encasing
  a polarity dividing line in the magnetic flux. Before or during the
  onset of the explosion, the sheared core field becomes a flux rope,
  often carrying chromospheric material within it. For the erupting flux
  rope to drive the explosion, that is, for its magnetic energy content
  to decrease in the explosion, the flux rope's cross-sectional area
  must increase faster than its length. For instance, for isotropic
  expansion, the area increases as the square of the length, and the
  magnetic energy content of the flux rope decreases as the inverse of
  the length. The instability that initiates the eruption of the flux
  rope might be an ideal MHD kink instability, or might involve runaway
  tether-cutting reconnection. The reconnection begins below the flux
  rope (internal to the arcade) when the overall field configuration
  of the region is effectively that of a single bipole. When the flux
  rope resides in a multi-bipolar configuration having a magnetic null
  above the flux rope, the runaway tether-cutting reconnection might
  begin either below the flux rope or at the null above (external to)
  the arcade. We present examples of observed CME onsets that illustrate
  the above alternatives. In each example, reconnection below the flux
  rope begins early in the eruption. This indicates that internal
  tether cutting reconnection (classic tether-cutting reconnection)
  is important in unleashing the CME explosion in all cases, including
  those in which the explosion may be triggered by MHD kinking or by
  external reconnection (classic breakout reconnection).

---------------------------------------------------------
Title: Flare Emission Onset in the Slow-Rise and Fast-Rise Phases
    of an Erupting Solar Filament Observed with TRACE
Authors: Sterling, A. C.; Moore, R. L.
2005AGUSMSP44A..02S    Altcode:
  We observe the eruption of an active-region solar filament of 1998
  July~11 using high time cadence and high spatial resolution EUV
  observations from the TRACE satellite, along with soft X-ray images
  from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray
  fluxes from the BATSE instrument on the ( CGRO) satellite and from the
  hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We
  concentrate on the initiation of the eruption in an effort to
  understand the eruption mechanism. First the filament undergoes slow
  upward movement in a "slow rise" phase with an approximately constant
  velocity of ≍ 15~km~s-1 that lasts about 10~min, and then it erupts
  in a "fast-rise" phase, reaching a velocity of ≍ 200~km~s-1 in about
  5~min, followed by a period of deceleration. EUV brightenings begin just
  before the start of the filament's slow rise, and remain immediately
  beneath the rising filament during the slow rise; initial soft X-ray
  brightenings occur at about the same time and location. Strong hard
  X-ray emission begins after the onset of the fast rise, and does not
  peak until the filament has traveled a substantial altitude (to a
  height about equal to the initial length of the erupting filament)
  beyond its initial location. Our observations are consistent with
  the slow-rise phase of the eruption resulting from the onset of
  "tether cutting" reconnection between magnetic fields beneath the
  filament, and the fast rise resulting from an explosive increase
  in the reconnection rate or by catastrophic destabilization of the
  overlying filament-carrying fields. About two days prior to the event
  new flux emerged near the location of the initial brightenings, and
  this recently-emerged flux could have been a catalyst for initiating
  the tether-cutting reconnection. With the exception of the initial
  slow rise, our findings qualitatively agree with the prediction for
  erupting-flux-rope height as a function of time in a model discussed
  by Chen &amp; Shibata~(2000) based on reconnection between emerging
  flux and a flux rope. NASA supported this work through NASA SR&amp;T
  and SEC GI grants.

---------------------------------------------------------
Title: Study of Small-Scale Dynamics in Coronal Holes and Quiet
    Regions from TRACE/BBSO Observations
Authors: Yamauchi, Y.; Wang, H.; Moore, R. L.
2005AGUSMSP51B..02Y    Altcode:
  We made high-spatial and temporal resolution TRACE UV/EUV observations
  of coronal holes and quiet regions in September 2004 jointly with
  BBSO Hα and magnetogram observations. From the observations, we
  study the dynamics, structure, and magnetic setting of small-scale
  explosive events such as microflares, macrospicules, and mini-filament
  eruptions, both in coronal holes and in quiet regions. These event are
  of interest because they may play an important role in coronal heating
  in these regions. These events are thought to result from explosions
  in fine-scale mixed-polarity magnetic fields in the network. However,
  even though the fine-scale magnetic structure of the network is expected
  to be essentially the same in both regions, coronal holes and quiet
  regions are quite different in that coronal holes show open field
  magnetic structure and are the source of fast solar wind while quiet
  regions have closed magnetic fields and are the source of slow solar
  wind. Study of small-scale dynamic events is important for solving
  the problem of coronal heating in the regions and for understanding
  whether the heating process is different in coronal holes than in quiet
  regions. We report on the time evolution of dynamics of these events in
  relation to the structure and evolution of the network magnetic flux
  at their footpoints. We also report whether any differences between
  the events in coronal holes and quiet regions are seen.

---------------------------------------------------------
Title: Macrospicules, Coronal Heating, and SolarB
Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.;
   Sakurai, T.
2004ASPC..325..301Y    Altcode:
  We investigated the magnetic structures of macrospicules in polar
  coronal holes using Hα images taken at Big Bear Solar Observatory. We
  found a total of 35 macrospicules. Half of the events were in the form
  of an erupting loop while the rest were in the form of a single-column
  spiked jet. These erupting-loop and spiked-jet macrospicules are
  considered to support models in which the coronal heating and solar
  wind acceleration in coronal holes are driven by explosive reconnection
  events seated in the network. We believe that the vector magnetograph
  on the forthcoming SolarB mission will provide critical clues to the
  mechanisms of coronal heating and solar wind acceleration by detecting
  magnetic activities at the base of macrospicules in the network and
  spicules rooted in the edges of the network flux clumps. These results
  are also presented in Astrophysical Journal (Yamauchi et al. 2004).

---------------------------------------------------------
Title: The NVO Comes of Age
Authors: Szalay, A. S.; Cutri, R.; De Young, D.; Hanisch, R.; Moore,
   R.; Schreier, E.; Williams, R.; NVO Team
2004AAS...20513001S    Altcode: 2004BAAS...36.1557S
  Astronomy faces a data avalanche. Breakthroughs in telescope,
  detector, and computer technology allow astronomical surveys to
  produce terabytes of images and catalogs. These datasets cover
  the sky in different wavebands, from gamma- and X-rays, optical,
  infrared, through to radio. With the advent of inexpensive storage
  technologies and the availability of high-speed networks, the concept
  of multi-terabyte on-line databases interoperating seamlessly is no
  longer outlandish. <P />These technological developments are changing
  the way astronomy is done. In August 2001, the US National Science
  Foundation awarded five-year funding to a collaboration “Framework for
  the National Virtual Observatory", under its Information Technology
  Research program. <P />The project is now ready to present the first
  few applications, which are aimed at providing simple and commonly used
  services for most astronomers. The services represent some of the most
  generic patterns that astronomers need to deal with today's distributed
  data --“where do I find data that is relevant to me”, “which surveys
  have information on my favorite objects”. etc. These services form
  the building blocks of other, higher level applications, similar to
  the way IDL or IRAF operate. <P />The NVO Project is working closely
  with similar development efforts worldwide. We have jointly formed
  the International Virtual Observatory Alliance, bringing together the
  leaders from all such efforts, and have agreed upon on common roadmap
  for development and interoperability.

---------------------------------------------------------
Title: Coronal Heating, Spicules, and SolarB
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway,
   D. H.; Yamauchi, Y.; Rabin, D. M.
2004ASPC..325..283M    Altcode:
  We summarize certain observations of coronal luminosity, network
  magnetic flux, spicules, and macrospicules. These observations together
  imply that in quiet regions that are not influenced by active regions
  the coronal heating comes from magnetic activity in the edges of the
  network flux, possibly from explosions of sheared core fields around
  granule-sized inclusions of opposite-polarity flux. This scenario can
  be tested by SolarB.

---------------------------------------------------------
Title: Precise mass measurements of astrophysical interest made with
    the Canadian Penning trap mass spectrometer
Authors: Clark, J. A.; Barber, R. C.; Blank, B.; Boudreau, C.;
   Buchinger, F.; Crawford, J. E.; Gulick, S.; Hardy, J. C.; Heinz, A.;
   Lee, J. K. P.; Levand, A. F.; Moore, R. B.; Savard, G.; Seweryniak,
   D.; Sharma, K. S.; Sprouse, G. D.; Trimble, W.; Vaz, J.; Wang, J. C.;
   Zhou, Z.
2004NuPhA.746..342C    Altcode:
  The processes responsible for the creation of elements more massive
  than iron are not well understood. Possible production mechanisms
  involve the rapid capture of protons (rp-process) or the rapid capture
  of neutrons (r-process), which are thought to occur in explosive
  astrophysical events such as novae, x-ray bursts, and supernovae. Mass
  measurements of the nuclides involved with uncertainties on the
  order of 100 keV or better are critical to determine the process
  `paths', the energy output of the events, and the resulting nuclide
  abundances. Particularly important are the masses of `waiting-point'
  nuclides along the rp-process path where the process stalls until the
  subsequent β decay of the nuclides. This paper will discuss the precise
  mass measurements made of isotopes along the rp-process and r-process
  paths using the Canadian Penning Trap mass spectrometer, including
  the mass of the critical waiting-point nuclide <SUP>68</SUP>Se.

---------------------------------------------------------
Title: External and Internal Reconnection in Two Filament-Carrying
    Magnetic Cavity Solar Eruptions
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2004ApJ...613.1221S    Altcode:
  We observe two near-limb solar filament eruptions, one of 2000 February
  26 and the other of 2002 January 4. For both we use 195 Å Fe XII images
  from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms
  from the Michelson Doppler Imager (MDI), both of which are on the
  Solar and Heliospheric Observatory (SOHO). For the earlier event
  we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT),
  and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite,
  and hard X-ray data from the BATSE experiment on the Compton Gamma
  Ray Observatory (CGRO). Both events occur in quadrupolar magnetic
  regions, and both have coronal features that we infer belong to the
  same magnetic cavity structures as the filaments. In both cases, the
  cavity and filament first rise slowly at ~10 km s<SUP>-1</SUP> prior
  to eruption and then accelerate to ~100 km s<SUP>-1</SUP> during the
  eruption, although the slow-rise movement for the higher altitude cavity
  elements is clearer in the later event. We estimate that both filaments
  and both cavities contain masses of ~10<SUP>14</SUP>-10<SUP>15</SUP> and
  ~10<SUP>15</SUP>-10<SUP>16</SUP> g, respectively. We consider whether
  two specific magnetic reconnection-based models for eruption onset,
  the “tether cutting” and the “breakout” models, are consistent
  with our observations. In the earlier event, soft X-rays from SXT
  show an intensity increase during the 12 minute interval over which
  fast eruption begins, which is consistent with tether-cutting-model
  predictions. Substantial hard X-rays, however, do not occur until
  after fast eruption is underway, and so this is a constraint the
  tether-cutting model must satisfy. During the same 12 minute interval
  over which fast eruption begins, there are brightenings and topological
  changes in the corona indicative of high-altitude reconnection early
  in the eruption, and this is consistent with breakout predictions. In
  both eruptions, the state of the overlying loops at the time of onset
  of the fast-rise phase of the corresponding filament can be compared
  with expectations from the breakout model, thereby setting constraints
  that the breakout model must meet. Our findings are consistent with
  both runaway tether-cutting-type reconnection and fast breakout-type
  reconnection, occurring early in the fast phase of the February eruption
  and with both types of reconnection being important in unleashing
  the explosion, but we are not able to say which, if either, type of
  reconnection actually triggered the fast phase. In any case, we have
  found specific constraints that either model, or any other model,
  must satisfy if correct.

---------------------------------------------------------
Title: Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a
Large Flare: Evidence for External and Internal Reconnection That
    Fits the Breakout Model of Solar Magnetic Eruptions
Authors: Gary, G. Allen; Moore, R. L.
2004ApJ...611..545G    Altcode:
  We present observations and an interpretation of a unique multiple-turn
  spiral flux tube eruption from active region 10030 on 2002 July 15. The
  TRACE C IV observations clearly show a flux tube that is helical and
  erupting from within a sheared magnetic field. These observations are
  interpreted in the context of the breakout model for magnetic field
  explosions. The initiation of the helix eruption, as determined by a
  linear backward extrapolation, starts 25 s after the peak of the flare's
  strongest impulsive spike of microwave gyrosynchrotron radiation early
  in the flare's explosive phase, implying that the sheared core field
  is not the site of the initial reconnection. Within the quadrupolar
  configuration of the active region, the external and internal
  reconnection sites are identified in each of two consecutive eruptive
  flares that produce a double coronal mass ejection (CME). The first
  external breakout reconnection apparently releases an underlying sheared
  core field and allows it to erupt, leading to internal reconnection in
  the wake of the erupting helix. This internal reconnection releases the
  helix and heats the two-ribbon flare. These events lead to the first
  CME and are followed by a second breakout that initiates a second and
  larger halo CME. The strong magnetic shear in the region is compatible
  with the observed rapid proper motion and evolution of the active
  region. The multiple-turn helix originates from above a sheared-field
  magnetic inversion line within a filament channel, and starts to erupt
  only after fast breakout reconnection has started. These observations
  are counter to the standard flare model and support the breakout model
  for eruptive flare initiation.

---------------------------------------------------------
Title: A precision measurement of the mass of the top quark
Authors: Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.;
   Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.;
   Alexeev, G. D.; Alton, A.; Alves, G. A.; Arnoud, Y.; Avila, C.;
   Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baffioni,
   S.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer,
   P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.;
   Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.;
   Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.;
   Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.; Blessing,
   S.; Boehnlein, A.; Bojko, N. I.; Bolton, T. A.; Borcherding, F.; Bos,
   K.; Bose, T.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.;
   Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.;
   Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Castilla-Valdez,
   H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.;
   Choi, S.; Chopra, S.; Claes, D.; Clark, A. R.; Connolly, B.; Cooper,
   W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A. C.; Cutts,
   D.; da Motta, H.; Davis, G. A.; De, K.; de Jong, S. J.; Demarteau,
   M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.;
   Diehl, H. T.; Diesburg, M.; Doulas, S.; Dudko, L. V.; Duflot, L.;
   Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.; Ellison, J.;
   Eltzroth, J. T.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.;
   Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.;
   Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.;
   Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik,
   R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Ginther, G.;
   Gómez, B.; Goncharov, P. I.; Gounder, K.; Goussiou, A.; Grannis,
   P. D.; Greenlee, H.; Greenwood, Z. D.; Grinstein, S.; Groer, L.;
   Grünendahl, S.; Grünewald, M. W.; Gurzhiev, S. N.; Gutierrez, G.;
   Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian,
   V.; Hall, R. E.; Han, C.; Hansen, S.; Hauptman, J. M.; Hebert, C.;
   Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hildreth,
   M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, J.; Huang,
   Y.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain,
   S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein,
   H.; Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.;
   Karmanov, D.; Karmgard, D.; Kehoe, R.; Kesisoglou, S.; Khanov,
   A.; Kharchilava, A.; Klima, B.; Kohli, J. M.; Kostritskiy, A. V.;
   Kotcher, J.; Kothari, B.; Kozelov, A. V.; Kozlovsky, E. A.; Krane,
   J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev,
   M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.;
   Landsberg, G.; Lee, W. M.; Leflat, A.; Lehner, F.; Leonidopoulos, C.;
   Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann,
   J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.;
   Maciel, A. K. A.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao,
   H. S.; Marshall, T.; Martin, M. I.; Mattingly, S. E. K.; Mayorov,
   A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Melnitchouk, A.;
   Merkin, A.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.;
   Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mutaf,
   Y. D.; Nagy, E.; Narain, M.; Narasimham, V. S.; Naumann, N. A.;
   Neal, H. A.; Negret, J. P.; Nelson, S.; Nomerotski, A.; Nunnemann,
   T.; O'Neil, D.; Oguri, V.; Oshima, N.; Padley, P.; Papageorgiou,
   K.; Parashar, N.; Partridge, R.; Parua, N.; Patwa, A.; Peters, O.;
   Pétroff, P.; Piegaia, R.; Pope, B. G.; Prosper, H. B.; Protopopescu,
   S.; Przybycien, M. B.; Qian, J.; Rajagopalan, S.; Rapidis, P. A.;
   Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek, M.; Rizatdinova,
   F.; Rockwell, T.; Royon, C.; Rubinov, P.; Ruchti, R.; Sabirov, B. M.;
   Sajot, G.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.;
   Schwartzman, A.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe,
   M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Slattery, P.; Smith,
   R. P.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, Y.;
   Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.;
   Stanton, N. R.; Steinbrück, G.; Stoker, D.; Stolin, V.; Stone, A.;
   Stoyanova, D. A.; Strang, M. A.; Strauss, M.; Strovink, M.; Stutte,
   L.; Sznajder, A.; Talby, M.; Taylor, W.; Tentindo-Repond, S.; Trippe,
   T. G.; Turcot, A. S.; Tuts, P. M.; Van Kooten, R.; Vaniev, V.; Varelas,
   N.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl,
   H. D.; Wang, Z. -M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.;
   White, A.; Whiteson, D.; Wijngaarden, D. A.; Willis, S.; Wimpenny,
   S. J.; Womersley, J.; Wood, D. R.; Xu, Q.; Yamada, R.; Yasuda, T.;
   Yatsunenko, Y. A.; Yip, K.; Yu, J.; Zanabria, M.; Zhang, X.; Zhou,
   B.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi,
   V.; Zverev, E. G.; Zylberstejn, A.
2004Natur.429..638A    Altcode: 2004hep.ex....6031C; 2004hep.ex....6031D
  The standard model of particle physics contains parameters-such
  as particle masses-whose origins are still unknown and which
  cannot be predicted, but whose values are constrained through their
  interactions. In particular, the masses of the top quark (M<SUB>t</SUB>)
  and W boson (M<SUB>W</SUB>) constrain the mass of the long-hypothesized,
  but thus far not observed, Higgs boson. A precise measurement of
  M<SUB>t</SUB> can therefore indicate where to look for the Higgs, and
  indeed whether the hypothesis of a standard model Higgs is consistent
  with experimental data. As top quarks are produced in pairs and decay in
  only about 10<SUP>-24</SUP>s into various final states, reconstructing
  their masses from their decay products is very challenging. Here
  we report a technique that extracts more information from each
  top-quark event and yields a greatly improved precision (of +/-
  5.3GeV/c<SUP>2</SUP>) when compared to previous measurements. When our
  new result is combined with our published measurement in a complementary
  decay mode and with the only other measurements available, the new world
  average for M<SUB>t</SUB> becomes 178.0 +/- 4.3GeV/c<SUP>2</SUP>. As
  a result, the most likely Higgs mass increases from the experimentally
  excluded value of 96 to 117GeV/c<SUP>2</SUP>, which is beyond current
  experimental sensitivity. The upper limit on the Higgs mass at the 95%
  confidence level is raised from 219 to 251GeV/c<SUP>2</SUP>.

---------------------------------------------------------
Title: On-disk Observations of Macrospicules in Coronal Holes
Authors: Yamauchi, Y.; Wang, H.; Moore, R. L.
2004AAS...204.3715Y    Altcode: 2004BAAS...36..711Y
  Small-scale solar dynamics, e.g., spicules and macrospicules, in coronal
  holes are believed to play an important role in the coronal heating and
  solar wind acceleration. Since photospheric magnetic flux observations
  have shown that there is a small fraction of opposite polarity in
  the coronal holes [e.g., DeForest et al., 1997, Sol. Phys., v175(2),
  393-410], network magnetic fields in supergranule boundary are likely
  to be the most important factors responsible for the dynamics. However,
  the formation mechanism of macrospicules remains controversial, in
  particular in the relation with magnetic field arrangement at the
  base of macrospicules. At the last SPD meeting, from H-alpha limb
  observations from Big Bear Solar Observatory (BBSO), we reported
  that most macrospicules have one or the other of two forms, that
  of an erupting loop or that of a spiked jet. Each of these magnetic
  structural forms indicates that the macrospicule is rooted in mixed
  polarity magnetic flux [Yamauchi et al 2004, ApJ, in press]. Here,
  we have investigated BBSO on-disk H-alpha and magnetic data in coronal
  holes to find the disk counterparts of each type of macrospicules on the
  limb, such as microflares, mini-filament eruptions, or H-alpha jets. We
  will report results from the analysis and discuss the production of
  macrospicules in relation to the polarity arrangement and evolution
  of the network magnetic flux.

---------------------------------------------------------
Title: Forecasting Coronal Mass Ejections from Magnetograms
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.; Balasubramanian,
   S.
2004AAS...204.2705F    Altcode: 2004BAAS...36..693F
  We report further results from our ongoing assessment of
  magnetogram-based measures of active-region nonpotentiality (magnetic
  shear and twist), magnetic complexity and size as predictors of
  coronal mass ejections (CMEs). From a set of 36 vector magnetograms
  of predominantly bipolar active regions (Falconer, Moore, &amp;
  Gary 2004, ApJ, submitted), we have found: (1) Each of five different
  measures of active-region nonpotentiality has a 75-80 (with correlation
  confidence level &gt; 95%) in predicting whether an active region will
  produce a CME within 2 days after the magnetogram. (2) One of these
  measures can be obtained from a line-of-sight magnetogram without use
  of a vector magnetogram. Hence this measure appears to be the best
  practical measure of active-region nonpotentiality for operational
  CME forecasting. (3) Our measure of active-region size has a 65%
  success rate in predicting CMEs in this window, but the correlation
  is not statistically significant (confidence level ∼ 80%) for our
  sample size. We have applied a measure of active-region complexity (the
  fraction of magnetic flux not in the active region's primary bipole)
  to our set of 36 magnetograms and found a correlation with the CME
  productivity of the active regions. We are also applying measures of
  nonpotentiality, size, and complexity to multi-bipolar active regions to
  assess their CME-prediction ability for these more complicated active
  regions. <P />This work was funded by NASA through its LWS TR&amp;T
  Program and its Solar and Heliospheric Physics SR&amp;T Program,
  and by NSF through its Solar Terrestrial Research and SHINE Programs.

---------------------------------------------------------
Title: Solar Magnetic Explosions, Spicules, and the Heliosphere
Authors: Moore, R. L.; Yamauchi, Y.
2004AAS...204.1801M    Altcode: 2004BAAS...36..682M
  We present an example of each of the following observed characteristics
  of the magnetic origins of quiet-region coronal heating, spicules,
  macrospicules, and coronal mass ejections (CMEs). (1) In quiet regions,
  the luminosity of the corona is roughly proportional to the edge length
  of the underlying photospheric magnetic network (Falconer et al 2003,
  ApJ, 593, 549). (2) Spicules and EUV explosive events are concentrated
  at the edges of the magnetic network (e.g., Beckers, J. M. 1968,
  Sol. Phys., 3, 367; Porter, J. G. &amp; Dere, K. P. 1991, ApJ, 370,
  775). (3) Many macrospicules have the magnetic structure of a surge
  rooted around an inclusion of opposite-polarity magnetic flux (Yamauchi,
  Y. et al 2004, ApJ, in press). (4) CMEs and eruptive flares are driven
  by explosions of sheared magnetic fields rooted along polarity dividing
  lines (neutral lines) in the photospheric magnetic flux (e.g., Moore,
  R. L. et al 2001, ApJ, 552, 833). These characteristics together
  suggest that the mainstay of the heliosphere, the corona/solar wind
  rooted in quiet regions and coronal holes, may be driven by myriads
  of tiny magnetic explosions at the network edges, explosions like
  those that drive CMEs but of vastly smaller scale. If so, the steady
  solar wind and the CMEs that disrupt it both have the same root cause:
  explosions of initially- closed, strongly-sheared, bipolar magnetic
  fields. The photospheric vector magnetograms, chromospheric filtergrams,
  EUV spectra, and coronal images from Solar-B are expected to have
  sufficient sensitivity, spatial resolution, and cadence to test this
  scenario for coronal heating in quiet regions and coronal holes. This
  work was supported by NASA/OSS through its Solar &amp; Heliospheric
  Physics SR&amp;T Program and Sun-Earth Connection GI Program.

---------------------------------------------------------
Title: Magnetic Shear and Microflaring in Active Regions Observed
    with TRACE
Authors: Porter, J. G.; Zhang, Y.; Falconer, D. A.; Moore, R. L.
2004AAS...204.3904P    Altcode: 2004BAAS...36..715P
  We have previously reported results from studies that have compared
  the magnetic structure and heating of the transition region and corona
  (both in active regions and in the quiet Sun) by combining X-ray
  and EUV images from Yohkoh and SOHO with photospheric magnetograms
  from ground-based observatories. Our findings have led us to the
  hypothesis that most heating throughout the corona is driven from near
  and below the base of the corona by eruptive microflares occurring in
  compact low-lying "core" magnetic fields (i.e., fields rooted along
  and closely enveloping polarity inversion lines in the photospheric
  magnetic flux). We are now extending these studies to cooler plasmas,
  incorporating sequences of UV images from TRACE (in addition to SOHO
  and Yohkoh data) into a comparison with longitudinal magnetograms
  from MDI and Kitt Peak and vector magnetograms from MSFC. We examine
  statistical measures of the microflaring and its association with
  the degree of magnetic shear in core fields. These studies support
  the previous results regarding the importance of magnetic shear for
  core-field microflaring in active regions. This work is funded by
  NASA's Office of Space Science through the Sun-Earth Connection Guest
  Investigator Program and the Solar Physics Supporting Research and
  Technology Program.

---------------------------------------------------------
Title: Quiet-Region Filament Eruptions
Authors: Choudhary, D. P.; Moore, R. L.
2004AAS...204.1805C    Altcode: 2004BAAS...36..683C
  We report characteristics of quiescent filament eruptions that did
  not produce coronal mass ejections (CMEs). It is known that there is
  a dichotomy of quiescent filament eruptions: those that produce CMEs
  and those that do not. We examined the quiescent filament eruptions,
  each of which was located far from disk center (&gt;/= 0.7 RSun) in
  diffuse remnant magnetic fields of decayed active regions, was well
  observed in Halpha observations and Fe XII, and had good coronagraph
  coverage. We present the similarity and differences of two classes
  of filament eruptions. From their lack of CME production and the
  appearance of their eruptive motion in Fe XII movies, we conclude
  that the non-CME-producing filament eruptions are confined eruptions
  like the confined filament eruptions in active regions. We take the
  similarity of the confined and eruptive quiescent filament eruptions
  with their active-region counterparts to favor runaway tether-cutting
  reconnection for unleashing the magnetic explosion in all these
  eruptions. The results of this work have been published in Geophysical
  Research Letters (Geophys. Res. Lett, 30, 2107, 2003). <P />The work
  was performed while one of the authors (DPC) held a National Research
  Council NASA/MSFC Resident Research Associateship.

---------------------------------------------------------
Title: External and Internal Reconnection in Two Filament-Carrying
    Magnetic-Cavity Solar Eruptions
Authors: Sterling, A. C.; Moore, R. L.
2004AAS...204.1804S    Altcode: 2004BAAS...36..683S
  We observe two near-limb solar filament eruptions, one of 2000 February
  26 and the other of 2002 January 4, using 195 Å Fe xii\ images from
  SOHO/EIT and magnetograms from SOHO/MDI\@. For the earlier event
  we also use soft X-ray data from Yohkoh/SXT, and hard X-ray data
  from Yohkoh/HXT and CGRO/BATSE\@. Both events occur in quadrupolar
  magnetic regions, and both have coronal features belonging to the same
  magnetic-cavity-structures as the filaments. In both cases the cavity
  and filament have a slow-rise phase of ∼ 10 km s<SUP>-1</SUP> prior to
  eruption, followed by a fast-rise phase of ∼ 100 km s<SUP>-1</SUP>
  during eruption. We estimate both filaments and both cavities to
  contain masses of ∼ 10<SUP>14-15</SUP> g and ∼ 10<SUP>15-16</SUP>
  g, respectively. We consider two specific magnetic-reconnection-based
  models for eruption onset, the “tether cutting” and the “breakout”
  models. In the earlier event SXT images show an intensity increase
  during the 12-minute interval over which the fast phase begins,
  consistent with tether-cutting. Substantial hard X-rays, however,
  do not occur until after fast eruption is underway, which provides
  a constraint on the tether-cutting model. Also around the time fast
  eruption begins there are brightenings and topological changes in
  the corona indicative of high-altitude reconnection, consistent with
  breakout. In both eruptions, however, fast rise onset occurs while
  cavity-related coronal loops are still evolving from “closed” to
  “open,” providing constraints on the breakout model. Therefore our
  findings are consistent with aspects of both models, but we cannot
  say which, if either, mechanism triggered the fast phase. We have
  also found specific constraints that either model, or any other
  eruption-onset model, must satisfy if correct. NASA supported this
  work through SR&amp;T and SEC GI grants.

---------------------------------------------------------
Title: Triggering of the Two X-class Flares of 28 and 29 October 2003
Authors: Choudhary, D. P.; Moore, R. L.; Falconer, D.; Pojoga, S.;
   Tian-Sen, H.; Krucker, S.; Uddin, W.
2004AAS...204.0225C    Altcode: 2004BAAS...36..982C
  From H-alpha movies from Aryabhatta Research Institute of Observational
  Sciences and from Prairie View Solar Observatory, hard X-ray movies
  from RHESSI, line-of-sight magnetogram movies from SOHO/MDI, and
  vector magnetograms from Marshal Space Flight Center, we examine the
  magnetic structure and evolution of the large delta-sunspot active
  region NOAA 10486 in relation to the onset and development of the
  two X-class flares that occurred in this active region on 28 and 29
  October 2003. We find evidence that each of these flares was triggered
  by strongly sheared magnetic field via “tether-cutting" reconnection
  with adjacent/overlying strongly sheared field. In the first flare, the
  initial brightening in H-alpha (1) was partly rooted in emerging sheared
  magnetic field along the edge of the large positive-polarity flux
  domain of the delta sunspot, and (2) consisted of four flare kernels,
  two in negative magnetic flux and two in positive magnetic flux. In
  the second flare, the brightening started in the core of a Z-shaped
  sigmoidal sheared magnetic field and the inner two of four H-alpha
  kernels were visible in 30-50 Kev hard x-ray image from RHESSI. Each
  flare spread from the initial quadrupolar brightening to develop into
  a much larger two-ribbon flare straddling a much more extensive swath
  of strongly sheared field along the edge of the large positive-flux
  domain of the delta sunspot, the first flare on the leading side and
  the second flare on the trailing side of this domain. Thus, localized
  internal reconnection triggered the explosion of these extensive sheared
  magnetic fields. <P />This research was supported by NASA's Office
  of Space Science through the Solar and Heliospheric Physics SR&amp;T
  Program, and was done during Dr. Choudhary's tenure at MSFC/NSSTC as
  an NRC Senior Resident Research Associate.

---------------------------------------------------------
Title: The Magnetic Structure of Hα Macrospicules in Solar Coronal
    Holes
Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.;
   Sakurai, T.
2004ApJ...605..511Y    Altcode:
  Measurements by Ulysses in the high-speed polar solar wind have shown
  the wind to carry some fine-scale structures in which the magnetic
  field reverses direction by having a switchback fold in it. The
  lateral span of these magnetic switchbacks, translated back to the
  Sun, is of the scale of the lanes and cells of the magnetic network
  in which the open magnetic field of the polar coronal hole and polar
  solar wind are rooted. This suggests that the magnetic switchbacks
  might be formed from network-scale magnetic loops that erupt into
  the corona and then undergo reconnection with the open field. This
  possibility motivated us to undertake the study reported here of the
  structure of Hα macrospicules observed at the limb in polar coronal
  holes, to determine whether a significant fraction of these eruptions
  appear to be erupting loops. From a search of the polar coronal holes
  in 6 days of image-processed full-disk Hα movies from Big Bear Solar
  Observatory, we found a total of 35 macrospicules. Nearly all of these
  (32) were of one or the other of two different forms: 15 were in the
  form of an erupting loop, and 17 were in the form of a single-column
  spiked jet. The erupting-loop macrospicules are appropriate for
  producing the magnetic switchbacks in the polar wind. The spiked-jet
  macrospicules show the appropriate structure and evolution to be driven
  by reconnection between network-scale closed field (a network bipole)
  and the open field rooted against the closed field. This evidence for
  reconnection in a large fraction of our macrospicules (1) suggests that
  many spicules may be generated by similar but smaller reconnection
  events and (2) supports the view that coronal heating and solar wind
  acceleration in coronal holes and in quiet regions are driven by
  explosive reconnection events in the magnetic network.

---------------------------------------------------------
Title: Search for Kaluza-Klein Graviton Emission in pp¯ Collisions
    at √(s)=1.8 TeV Using the Missing Energy Signature
Authors: Acosta, D.; Affolder, T.; Akimoto, H.; Albrow, M. G.; Ambrose,
   D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.;
   Artikov, A.; Asakawa, T.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta,
   P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Bailey, S.; de Barbaro,
   P.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant,
   S.; Barone, M.; Bauer, G.; Bedeschi, F.; Behari, S.; Belforte, S.;
   Bell, W. H.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Bensinger,
   J.; Beretvas, A.; Berryhill, J.; Bhatti, A.; Binkley, M.; Bisello,
   D.; Bishai, M.; Blair, R. E.; Blocker, C.; Bloom, K.; Blumenfeld, B.;
   Blusk, S. R.; Bocci, A.; Bodek, A.; Bolla, G.; Bolshov, A.; Bonushkin,
   Y.; Bortoletto, D.; Boudreau, J.; Brandl, A.; Bromberg, C.; Brozovic,
   M.; Brubaker, E.; Bruner, N.; Budagov, J.; Budd, H. S.; Burkett, K.;
   Busetto, G.; Byrum, K. L.; Cabrera, S.; Calafiura, P.; Campbell, M.;
   Carithers, W.; Carlson, J.; Carlsmith, D.; Caskey, W.; Castro, A.;
   Cauz, D.; Cerri, A.; Cerrito, L.; Chan, A. W.; Chang, P. S.; Chang,
   P. T.; Chapman, J.; Chen, C.; Chen, Y. C.; Cheng, M. -T.; Chertok,
   M.; Chiarelli, G.; Chirikov-Zorin, I.; Chlachidze, G.; Chlebana, F.;
   Christofek, L.; Chu, M. L.; Chung, J. Y.; Chung, W. -H.; Chung, Y. S.;
   Ciobanu, C. I.; Clark, A. G.; Coca, M.; Connolly, A.; Convery, M.;
   Conway, J.; Cordelli, M.; Cranshaw, J.; Culbertson, R.; Dagenhart, D.;
   D'Auria, S.; de Cecco, S.; Dejongh, F.; dell'Agnello, S.; dell'Orso,
   M.; Demers, S.; Demortier, L.; Deninno, M.; de Pedis, D.; Derwent,
   P. F.; Devlin, T.; Dionisi, C.; Dittmann, J. R.; Dominguez, A.;
   Donati, S.; D'Onofrio, M.; Dorigo, T.; Eddy, N.; Einsweiler, K.;
   Engels, E.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fan,
   Q.; Farrington, S.; Feild, R. G.; Fernandez, J. P.; Ferretti, C.;
   Field, R. D.; Fiori, I.; Flaugher, B.; Flores-Castillo, L. R.; Foster,
   G. W.; Franklin, M.; Freeman, J.; Friedman, J.; Fukui, Y.; Furic, I.;
   Galeotti, S.; Gallas, A.; Gallinaro, M.; Gao, T.; Garcia-Sciveres,
   M.; Garfinkel, A. F.; Gatti, P.; Gay, C.; Gerdes, D. W.; Gerstein,
   E.; Giagu, S.; Giannetti, P.; Giolo, K.; Giordani, M.; Giromini, P.;
   Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Goldstein,
   J.; Gomez, G.; Goncharov, M.; Gorelov, I.; Goshaw, A. T.; Gotra, Y.;
   Goulianos, K.; Green, C.; Gresele, A.; Grim, G.; Grosso-Pilcher, C.;
   Guenther, M.; Guillian, G.; da Costa, J. Guimaraes; Haas, R. M.; Haber,
   C.; Hahn, S. R.; Halkiadakis, E.; Hall, C.; Handa, T.; Handler, R.;
   Happacher, F.; Hara, K.; Hardman, A. D.; Harris, R. M.; Hartmann,
   F.; Hatakeyama, K.; Hauser, J.; Heinrich, J.; Heiss, A.; Hennecke,
   M.; Herndon, M.; Hill, C.; Hocker, A.; Hoffman, K. D.; Hollebeek,
   R.; Holloway, L.; Hou, S.; Huffman, B. T.; Hughes, R.; Huston, J.;
   Huth, J.; Ikeda, H.; Issever, C.; Incandela, J.; Introzzi, G.; Iori,
   M.; Ivanov, A.; Iwai, J.; Iwata, Y.; Iyutin, B.; James, E.; Jones,
   M.; Joshi, U.; Kambara, H.; Kamon, T.; Kaneko, T.; Kang, J.; Unel,
   M. Karagoz; Karr, K.; Kartal, S.; Kasha, H.; Kato, Y.; Keaffaber,
   T. A.; Kelley, K.; Kelly, M.; Kennedy, R. D.; Kephart, R.; Khazins,
   D.; Kikuchi, T.; Kilminster, B.; Kim, B. J.; Kim, D. H.; Kim, H. S.;
   Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, T. H.; Kim, Y. K.; Kirby, M.;
   Kirk, M.; Kirsch, L.; Klimenko, S.; Koehn, P.; Kondo, K.; Konigsberg,
   J.; Korn, A.; Korytov, A.; Kotelnikov, K.; Kovacs, E.; Kroll, J.;
   Kruse, M.; Krutelyov, V.; Kuhlmann, S. E.; Kurino, K.; Kuwabara,
   T.; Kuznetsova, N.; Laasanen, A. T.; Lai, N.; Lami, S.; Lammel, S.;
   Lancaster, J.; Lannon, K.; Lancaster, M.; Lander, R.; Lath, A.; Latino,
   G.; Lecompte, T.; Le, Y.; Lee, J.; Lee, S. W.; Leonardo, N.; Leone,
   S.; Lewis, J. D.; Li, K.; Lin, C. S.; Lindgren, M.; Liss, T. M.; Liu,
   J. B.; Liu, T.; Liu, Y. C.; Litvintsev, D. O.; Lobban, O.; Lockyer,
   N. S.; Loginov, A.; Loken, J.; Loreti, M.; Lucchesi, D.; Lukens, P.;
   Lusin, S.; Lyons, L.; Lys, J.; Madrak, R.; Maeshima, K.; Maksimovic,
   P.; Malferrari, L.; Mangano, M.; Manca, G.; Mariotti, M.; Martignon,
   G.; Martin, M.; Martin, A.; Martin, V.; Martínez, M.; Matthews,
   J. A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; Menguzzato,
   M.; Menzione, A.; Merkel, P.; Mesropian, C.; Meyer, A.; Miao, T.;
   Miller, R.; Miller, J. S.; Minato, H.; Miscetti, S.; Mishina, M.;
   Mitselmakher, G.; Miyazaki, Y.; Moggi, N.; Moore, E.; Moore, R.;
   Morita, Y.; Moulik, T.; Mulhearn, M.; Mukherjee, A.; Muller, T.;
   Munar, A.; Murat, P.; Murgia, S.; Nachtman, J.; Nagaslaev, V.; Nahn,
   S.; Nakada, H.; Nakano, I.; Napora, R.; Niell, F.; Nelson, C.; Nelson,
   T.; Neu, C.; Neubauer, M. S.; Neuberger, D.; Newman-Holmes, C.; Ngan,
   C. -Y. P.; Nigmanov, T.; Niu, H.; Nodulman, L.; Nomerotski, A.; Oh,
   S. H.; Oh, Y. D.; Ohmoto, T.; Ohsugi, T.; Oishi, R.; Okusawa, T.;
   Olsen, J.; Orejudos, W.; Pagliarone, C.; Palmonari, F.; Paoletti, R.;
   Papadimitriou, V.; Partos, D.; Patrick, J.; Pauletta, G.; Paulini, M.;
   Pauly, T.; Paus, C.; Pellett, D.; Penzo, A.; Pescara, L.; Phillips,
   T. J.; Piacentino, G.; Piedra, J.; Pitts, K. T.; Pompoš, A.; Pondrom,
   L.; Pope, G.; Pratt, T.; Prokoshin, F.; Proudfoot, J.; Ptohos, F.;
   Pukhov, O.; Punzi, G.; Rademacker, J.; Rakitine, A.; Ratnikov, F.;
   Ray, H.; Reher, D.; Reichold, A.; Renton, P.; Rescigno, M.; Ribon,
   A.; Riegler, W.; Rimondi, F.; Ristori, L.; Riveline, M.; Robertson,
   W. J.; Rodrigo, T.; Rolli, S.; Rosenson, L.; Roser, R.; Rossin, R.;
   Rott, C.; Roy, A.; Ruiz, A.; Ryan, D.; Safonov, A.; Denis, R. St.;
   Sakumoto, W. K.; Saltzberg, D.; Sanchez, C.; Sansoni, A.; Santi, L.;
   Sarkar, S.; Sato, H.; Savard, P.; Savoy-Navarro, A.; Schlabach, P.;
   Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Scodellaro, L.; Scott,
   A.; Scribano, A.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.;
   Semeria, F.; Shah, T.; Shapiro, M. D.; Shepard, P. F.; Shibayama,
   T.; Shimojima, M.; Shochet, M.; Sidoti, A.; Siegrist, J.; Sill, A.;
   Sinervo, P.; Singh, P.; Slaughter, A. J.; Sliwa, K.; Snider, F. D.;
   Snihur, R.; Solodsky, A.; Speer, T.; Spezziga, M.; Sphicas, P.;
   Spinella, F.; Spiropulu, M.; Spiegel, L.; Steele, J.; Stefanini,
   A.; Strologas, J.; Strumia, F.; Stuart, D.; Sukhanov, A.; Sumorok,
   K.; Suzuki, T.; Takano, T.; Takashima, R.; Takikawa, K.; Tamburello,
   P.; Tanaka, M.; Tannenbaum, B.; Tecchio, M.; Tesarek, R. J.; Teng,
   P. K.; Terashi, K.; Tether, S.; Thom, J.; Thompson, A. S.; Thomson, E.;
   Thurman-Keup, R.; Tipton, P.; Tkaczyk, S.; Toback, D.; Tollefson, K.;
   Tonelli, D.; Tonnesmann, M.; Toyoda, H.; Trischuk, W.; de Troconiz,
   J. F.; Tseng, J.; Tsybychev, D.; Turini, N.; Ukegawa, F.; Unverhau,
   T.; Vaiciulis, T.; Varganov, A.; Vataga, E.; Vejcik, S.; Velev, G.;
   Veramendi, G.; Vidal, R.; Vila, I.; Vilar, R.; Volobouev, I.; von
   der Mey, M.; Vucinic, D.; Wagner, R. G.; Wagner, R. L.; Wagner, W.;
   Wan, Z.; Wang, C.; Wang, M. J.; Wang, S. M.; Ward, B.; Waschke, S.;
   Watanabe, T.; Waters, D.; Watts, T.; Weber, M.; Wenzel, H.; Wester,
   W. C.; Whitehouse, B.; Wicklund, A. B.; Wicklund, E.; Wilkes, T.;
   Williams, H. H.; Wilson, P.; Winer, B. L.; Winn, D.; Wolbers, S.;
   Wolinski, D.; Wolinski, J.; Wolinski, S.; Wolter, M.; Worm, S.; Wu,
   X.; Würthwein, F.; Wyss, J.; Yang, U. K.; Yao, W.; Yeh, G. P.; Yeh,
   P.; Yi, K.; Yoh, J.; Yosef, C.; Yoshida, T.; Yu, I.; Yu, S.; Yu, Z.;
   Yun, J. C.; Zanello, L.; Zanetti, A.; Zetti, F.; Zucchelli, S.
2004PhRvL..92l1802A    Altcode: 2003hep.ex....9051A
  We report on a search for direct Kaluza-Klein graviton production in
  a data sample of 84 pb<SUP>-1</SUP> of pp¯ collisions at √(s)=1.8
  TeV, recorded by the Collider Detector at Fermilab. We investigate
  the final state of large missing transverse energy and one or two
  high energy jets. We compare the data with the predictions from a
  (3+1+n)-dimensional Kaluza-Klein scenario in which gravity becomes
  strong at the TeV scale. At 95% confidence level (C.L.) for n=2,
  4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and
  0.71TeV, respectively.

---------------------------------------------------------
Title: Evidence for Gradual External Reconnection before Explosive
    Eruption of a Solar Filament
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2004ApJ...602.1024S    Altcode:
  We observe a slowly evolving quiet-region solar eruption of 1999
  April 18, using extreme-ultraviolet (EUV) images from the EUV
  Imaging Telescope (EIT) on the Solar and Heliospheric Observatory
  (SOHO) and soft X-ray images from the Soft X-ray Telescope (SXT) on
  Yohkoh. Using difference images, in which an early image is subtracted
  from later images, we examine dimmings and brightenings in the region
  for evidence of the eruption mechanism. A filament rose slowly at
  about 1 km s<SUP>-1</SUP> for 6 hours before being rapidly ejected at
  about 16 km s<SUP>-1</SUP>, leaving flare brightenings and postflare
  loops in its wake. Magnetograms from the Michelson Doppler Imager
  (MDI) on SOHO show that the eruption occurred in a large quadrupolar
  magnetic region with the filament located on the neutral line of the
  quadrupole's central inner lobe between the inner two of the four
  polarity domains. In step with the slow rise, subtle EIT dimmings
  commence and gradually increase over the two polarity domains on one
  side of the filament, i.e., in some of the loops of one of the two
  sidelobes of the quadrupole. Concurrently, soft X-ray brightenings
  gradually increase in both sidelobes. Both of these effects suggest
  heating in the sidelobe magnetic arcades, which gradually increase
  over several hours before the fast eruption. Also, during the slow
  pre-eruption phase, SXT dimmings gradually increase in the feet and
  legs of the central lobe, indicating expansion of the central-lobe
  magnetic arcade enveloping the filament. During the rapid ejection,
  these dimmings rapidly grow in darkness and in area, especially in
  the ends of the sigmoid field that erupts with the filament, and flare
  brightenings begin underneath the fast-moving but still low-altitude
  filament. We consider two models for explaining the eruption:
  “breakout,” which says that reconnection occurs high above the
  filament prior to eruption, and “tether cutting,” which says that
  the eruption is unleashed by reconnection beneath the filament. The
  pre-eruption evolution is consistent with gradual breakout that led to
  (and perhaps caused) the fast eruption. Tether-cutting reconnection
  below the filament begins early in the rapid ejection, but our data are
  not complete enough to determine whether this reconnection began early
  enough to be the cause of the fast-phase onset. Thus, our observations
  are consistent with gradual breakout reconnection causing the long slow
  rise of the filament, but allow the cause of the sudden onset of the
  explosive fast phase to be either a jump in the breakout reconnection
  rate or the onset of runaway tether-cutting reconnection, or both.

---------------------------------------------------------
Title: Tether-cutting Energetics of a Solar Quiet-Region Prominence
    Eruption
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2003ApJ...599.1418S    Altcode:
  We study the morphology and energetics of a slowly evolving quiet-region
  solar prominence eruption occurring on 1999 February 8-9 in the solar
  north polar crown region, using soft X-ray data from the soft X-ray
  telescope (SXT) on Yohkoh and Fe XV EUV 284 Å data from the EUV
  Imaging Telescope (EIT) on the Solar and Heliospheric Observatory
  (SOHO). After rising at ~1 km s<SUP>-1</SUP> for about six hours,
  the prominence accelerates to a velocity of ~10 km s<SUP>-1</SUP>,
  leaving behind EUV and soft X-ray loop arcades of a weak flare in
  its source region. Intensity dimmings occur in the eruption region
  cospatially in EUV and soft X-rays, indicating that the dimmings
  result from a depletion of material. Over the first two hours of
  the prominence's rapid rise, flarelike brightenings occur beneath
  the rising prominence that might correspond to “tether-cutting”
  magnetic reconnection. These brightenings have heating requirements of
  up to ~10<SUP>28</SUP>-10<SUP>29</SUP> ergs, and this is comparable
  to the mechanical energy required for the rising prominence over the
  same time period. If the ratio of mechanical energy to heating energy
  remains constant through the early phase of the eruption, then we infer
  that coronal signatures for the tether cutting may not be apparent
  at or shortly after the start of the fast phase in this or similar
  low-energy eruptions, since the plasma-heating energy levels would
  not exceed that of the background corona.

---------------------------------------------------------
Title: Tether-Cutting Energetics of a Solar Quiet Region Prominence
    Eruption
Authors: Sterling, A. C.; Moore, R. L.
2003AGUFMSH22A0182S    Altcode:
  We study the morphology and energetics of a slowly-evolving quiet region
  solar prominence eruption occurring on 1999 February 8---9 in the
  solar north polar crown region, using Fe~xv EUV 284~Å data from the
  EUV Imaging Telescope (EIT) on SOHO and soft X-ray data from the soft
  X-ray telescope (SXT) on Yohkoh. After rising at ≈ 1~km~s<SUP>-1</SUP>
  for about six hours, the prominence accelerates to a velocity of ≈
  10~km~s<SUP>-1</SUP>, leaving behind EUV and soft X-ray loop arcades
  of a weak flare in its source region. Intensity dimmings occur in the
  eruption region cospatially in EUV and soft X-rays, indicating that
  the dimmings result from a depletion of material. Over the first two
  hours of the prominence's rapid rise, flare-like brightenings occur
  beneath the rising prominence which may correspond to “tether cutting”
  magnetic reconnection. These brightenings have heating requirements of
  up to ∼ 10<SUP>28</SUP>---10<SUP>29</SUP>~ergs, and this is comparable
  to the mechanical energy required for the rising prominence over the
  same time period. If the ratio of mechanical energy to heating energy
  remains constant through the early phase of the eruption, then we infer
  that coronal signatures for the tether cutting may not be apparent at
  or shortly after the start of the faster-rise phase of the prominence
  in this or similar low-energy eruptions, since the plasma-heating
  energy levels would not exceed that of the background corona. Our
  findings have strong implications for the correct use of observations
  in testing theoretical ideas for the onset of solar eruptions.

---------------------------------------------------------
Title: Filament eruption without coronal mass ejection
Authors: Choudhary, Debi Prasad; Moore, Ronald L.
2003GeoRL..30.2107C    Altcode: 2003GeoRL..30uSSC7C
  We report characteristics of quiescent filament eruptions that were
  not associated with coronal mass ejections (CMEs). We examined 12
  quiescent filament eruptions, each of which was located far from disk
  center (&gt;=0.7 R<SUB>Sun</SUB>) in diffuse remnant magnetic fields
  of decayed active regions, was well observed in full-disk movies in
  Hα and Fe XII, and had good coronagraph coverage. Of the 12 events,
  9 were associated with CMEs and 3 were not. Even though the two
  kinds of eruption were indistinguishable in their magnetic setting
  and in the eruptive motion of the filament in the Hα movies, each
  of the CME-producing eruptions produced a two-ribbon flare in Hα
  and a coronal arcade and/or two-ribbon flare in Fe XII, and each of
  the non-CME-producing eruptions did not. From this result, and the
  appearance of the eruptive motion in the Fe XII movies, we conclude
  that the non-CME-associated filament eruptions are confined eruptions
  like the confined filament eruptions in active regions.

---------------------------------------------------------
Title: A measure from line-of-sight magnetograms for prediction of
    coronal mass ejections
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2003JGRA..108.1380F    Altcode:
  From a sample of 17 vector magnetograms of 12 bipolar active regions we
  have recently found (1) that a measure of the overall nonpotentiality
  (the overall twist and shear in the magnetic field) of an active region
  is given by the strong shear length L<SUB>SS</SUB>, the length of
  the portion of the main neutral line on which the observed transverse
  fields is strong (&gt;150 Guass (G)) and strongly sheared (shear angle
  &gt;45°), and (2) that L<SUB>SS</SUB> is well correlated with the
  coronal mass ejection (CME) productivity of the active regions during
  the ±2-day time window centered on the day of the magnetogram. In the
  present paper, from the same sample of 17 vector magnetograms, we show
  that there is a viable proxy for L<SUB>SS</SUB> that can be measured
  from a line-of-sight magnetogram. This proxy is the strong gradient
  length L<SUB>SG</SUB>, the length of the portion of the main neutral
  line on which the potential transverse field is strong (&gt;150 G), and
  the gradient of the line-of-sight field is sufficiently steep (greater
  than ∼50 G/Mm). In our sample of active regions, L<SUB>SG</SUB> is
  statistically significantly correlated with L<SUB>SS</SUB> (correlation
  confidence level &gt;95%), and L<SUB>SG</SUB> is as strongly
  correlated with active region CME productivity as is L<SUB>SS</SUB>
  (correlation confidence level ∼99.7%). Because L<SUB>SG</SUB> can
  be measured from line-of-sight magnetograms obtained from conventional
  magnetographs, such as the magnetograph mode of the Michelson Doppler
  Imager (MDI) on board the Solar and Heliospheric Observatory, it is
  a dependable substitute for L<SUB>SS</SUB> for use in operational
  CME forecasting. In addition, via measurement of L<SUB>SG</SUB>, the
  years-long, nearly continuous sequence of 1.5-hour cadence full disk
  line-of-sight magnetograms from MDI can be used to track the growth
  and decay of the large-scale nonpotentiality in active regions and to
  examine the role of this evolution in active region CME productivity.

---------------------------------------------------------
Title: Solar Coronal Heating and the Magnetic Flux Content of
    the Network
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
2003ApJ...593..549F    Altcode:
  We investigate the heating of the quiet corona by measuring the increase
  of coronal luminosity with the amount of magnetic flux in the underlying
  network at solar minimum when there were no active regions on the face
  of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs
  of coronal images from SOHO/EIT, under the assumption that practically
  all of the coronal luminosity in our quiet regions comes from plasma in
  the temperature range 0.9×10<SUP>6</SUP>K&lt;=T&lt;=1.3×10<SUP>6</SUP>
  K. The network magnetic flux content is measured from SOHO/MDI
  magnetograms. We find that the luminosity of the corona in our quiet
  regions increases roughly in proportion to the square root of the
  magnetic flux content of the network and roughly in proportion to the
  length of the perimeter of the network magnetic flux clumps. From (1)
  this result, (2) other observations of many fine-scale explosive events
  at the edges of network flux clumps, and (3) a demonstration that it is
  energetically feasible for the heating of the corona in quiet regions
  to be driven by explosions of granule-sized sheared-core magnetic
  bipoles embedded in the edges of network flux clumps, we infer that in
  quiet regions that are not influenced by active regions the corona is
  mainly heated by such magnetic activity in the edges of the network
  flux clumps. Our observational results together with our feasibility
  analysis allow us to predict that (1) at the edges of the network flux
  clumps there are many transient sheared-core bipoles of the size and
  lifetime of granules and having transverse field strengths greater
  than ~100 G, (2) ~30 of these bipoles are present per supergranule,
  and (3) most spicules are produced by explosions of these bipoles.

---------------------------------------------------------
Title: Coronal Heating and the Magnetic Flux Content of the Network
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.
2003SPD....34.1010M    Altcode: 2003BAAS...35..826M
  We investigate the heating of the quiet corona by measuring the
  increase of coronal luminosity with the amount of magnetic flux in
  the underlying network at solar minimum when there were no active
  regions on the face of the Sun. The coronal luminosity is measured
  from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network
  magnetic flux content is measured from SOHO/MDI magnetograms. We find
  that the luminosity of the corona in our quiet regions increases roughly
  in proportion to the square root of the magnetic flux content of the
  network and roughly in proportion to the length of the perimeter of
  the network magnetic flux clumps. From (1) this result, (2) other
  observations of many fine-scale explosive events at the edges of
  network flux clumps, and (3) a demonstration that it is energetically
  feasible for the heating of the corona in quiet regions to be driven by
  explosions of granule-sized sheared-core magnetic bipoles embedded in
  the edges of network flux clumps, we infer that in quiet regions that
  are not influenced by active regions the corona is mainly heated by
  such magnetic activity in the edges of the network flux clumps. Our
  observational results together with our feasibility analysis allow
  us to predict that (1) at the edges of the network flux clumps there
  are many transient sheared-core bipoles of the size and lifetime of
  granules and having transverse field strengths &gt; 100 G, (2) 30 of
  these bipoles are present per supergranule, and (3) most spicules are
  produced by explosions of these bipoles. <P />This work was supported
  by NASA's Office of Space Science through its Solar and Heliospheric
  Physics Supporting Research and Technology Program and its Sun-Earth
  Connection Guest Investigator Program.

---------------------------------------------------------
Title: Evidence for Gradual External Reconnection Leading to Explosive
    Eruption of a Solar Filament
Authors: Sterling, A. C.; Moore, R. L.
2003SPD....34.2301S    Altcode: 2003BAAS...35..851S
  We observe a slowly-evolving quiet region solar eruption of 1999
  April 18, using images in 195 Å Fe xii from EIT on SOHO, and in soft
  X-rays from SXT on Yohkoh. We examine dimmings and brightenings in
  difference images, where an early image is subtracted from later
  images, for evidence of the eruption mechanism. A filament rose
  slowly at about 1 km s<SUP>-1</SUP> for six hours before being
  rapidly ejected at about 10 km s<SUP>-1</SUP>, leaving flare
  brightenings and post-flare loops in its wake. SOHO MDI data show
  that the eruption occurred in a quadrupolar region, with the filament
  location splitting the four magnetic sources. During the slow rise,
  subtle EIT dimmings occur between the filament and one of the remote
  magnetic regions. Concurrently, soft X-ray brightenings occur between
  the filament and either remote magnetic region. Both of these effects
  suggest temperature enhancements in magnetic loop systems on either
  side of the filament prior to eruption. Pre-eruption SXT dimmings
  occur on either side of and very close to the slowly rising filament,
  indicating expansion of enveloping magnetic loops. At the start of the
  rapid ejection, intense dimmings occur at the locations evacuated by
  the filament, and brightenings occur underneath the fast-moving but
  still low-altitude filament. We consider two models for explaining
  the eruption: “breakout,” which says that reconnection occurs high
  above the filament prior to eruption, and “tether cutting,” which
  says that the eruption is driven by reconnecting field lines beneath
  the filament. We find that pre-eruption evolution is consistent with
  breakout. Tether cutting-type reconnection occurs during the rapid
  ejection, but our data are not complete enough to determine whether
  that reconnection is the primary cause of the fast-phase onset.

---------------------------------------------------------
Title: Beyond Solar-B: MTRAP, the Magnetic TRAnsition Region Probe
Authors: Davis, J. M.; Moore, R. L.; Hathaway, D. H.; Science
   Definition CommitteeHigh-Resolution Solar Magnetography Beyond
   Solar-B Team
2003SPD....34.2014D    Altcode: 2003BAAS...35..846D
  The next generation of solar missions will reveal and measure
  fine-scale solar magnetic fields and their effects in the solar
  atmosphere at heights, small scales, sensitivities, and fields
  of view well beyond the reach of Solar-B. The necessity for, and
  potential of, such observations for understanding solar magnetic
  fields, their generation in and below the photosphere, and their
  control of the solar atmosphere and heliosphere, were the focus of
  a science definition workshop, "High-Resolution Solar Magnetography
  from Space: Beyond Solar-B," held in Huntsville Alabama in April
  2001. Forty internationally prominent scientists active in solar
  research involving fine-scale solar magnetism participated in this
  Workshop and reached consensus that the key science objective to be
  pursued beyond Solar-B is a physical understanding of the fine-scale
  magnetic structure and activity in the magnetic transition region,
  defined as the region between the photosphere and corona where neither
  the plasma nor the magnetic field strongly dominates the other. The
  observational objective requires high cadence (&lt; 10s) vector
  magnetic field maps, and spatially resolved spectra from the IR,
  visible, vacuum UV, to the EUV at high resolution (&lt; 50km) over
  a large FOV ( 140,000 km). A polarimetric resolution of one part in
  ten thousand is required to measure transverse magnetic fields of &lt;
  30G. The latest SEC Roadmap includes a mission identified as MTRAP to
  meet these requirements. Enabling technology development requirements
  include large, lightweight, reflecting optics, large format sensors
  (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft
  structures. The Science Organizing Committee of the Beyond Solar-B
  Workshop recommends that: 1. Science and Technology Definition Teams
  should be established in FY04 to finalize the science requirements
  and to define technology development efforts needed to ensure the
  practicality of MTRAP's observational goals. 2. The necessary technology
  development funding should be included in Code S budgets for FY06 and
  beyond to prepare MTRAP for a new start no later than the nominal end
  of the Solar-B mission, around 2010.

---------------------------------------------------------
Title: Observation of Two Forms of Macrospicules in Coronal Holes:
    Spikes and Loops
Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.;
   Sakurai, T.
2003SPD....34.0411Y    Altcode: 2003BAAS...35..812Y
  Ulysses high-latitude observations show the existence of small
  structures in the high-speed solar wind that contain magnetic field
  reversals. These reversals sometimes appear to be associated with
  plasmoids or current sheets. We have proposed that the reversals
  are created by activity low in the magnetic network in coronal holes
  [Yamauchi et al., 2002, GRL, v29(10)]. Here we present solar evidence
  favoring this hypothesis. Since photospheric magnetic flux observations
  have shown that there is a small fraction of opposite polarity in
  coronal holes [e.g., Deforest et al., 1997, Sol. Phys., v175(2),
  393-410], there should be local magnetic loops in the network. If
  one of these loops were to erupt into the corona, it could create
  a magnetic field reversal by reconnection with the surrounding open
  magnetic field. Tanaka [1972, Report of BBSO, No. 125] observed that
  some H-alpha mottles (spicules) in the network show a double-strand
  structure. The two strands might be the legs of an erupted network
  loop. Any coronal hole macrospicule that showed a bipolar erupting loop
  structure rather than a unipolar, jet-like spike, would be a candidate
  for such an event. From sequences of full-disk H-alpha images from
  Big Bear Solar Observatory, we have found 35 macrospicules in polar
  coronal holes. About half of these appear to be erupting loops, while
  the rest look more like unipolar spikes. Thus, we have found evidence
  that network-scale erupting magnetic loops are a common occurrence in
  coronal holes. This strengthens the possibility that such events are
  the source of the fine-scale field reversals in the high-speed wind.

---------------------------------------------------------
Title: CME Prediction from Line-of-Sight Magnetograms
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2003SPD....34.0503F    Altcode: 2003BAAS...35R.814F
  We have previously shown for bipolar active regions that measures of
  active-region nonpotentiality from vector magnetograms are correlated
  with active-region CME productivity (Falconer, Moore, &amp; Gary
  2002, ApJ, 569, 1016). Guided by those measures and results, we have
  now obtained a measure from line-of-sight magnetograms that is well
  correlated both with our measures of active-region nonpotentiality from
  vector magnetograms and with active-region CME productivity. The measure
  is the length of strong-gradient main neutral line (L<SUB>G</SUB>). This
  is the length of a bipolar region's main neutral line on which the
  potential transverse field is greater than 150G, and the gradient in
  the line-of-sight field is greater than 50G/Mm. <P />From the sample
  of 17 MSFC magnetograms of 12 basically bipolar active regions used in
  our previous paper, we find that L<SUB>G</SUB> is strongly correlated
  (99.7%) with one of our vector-magnetogram measures of nonpotentiality,
  the length of strong-gradient main neutral line L<SUB>SS</SUB>. We
  also find that L<SUB>G</SUB> is as strongly correlated (99.7%)
  with CME productivity as is L<SUB>SS</SUB>. Being obtainable from
  line-of-sight magnetograms, L<SUB>G</SUB> makes the much larger data
  set of line-of-sight magnetograms (i.e. from SOHO/MDI and Kitt Peak)
  available for CME prediction study. This is especially important for
  evolutionary studies, with SOHO/MDI having no day/night, cloudy weather,
  or atmospheric seeing problems. <P />This work was supported by funding
  from NSF's Division of Atmospheric Sciences (Space Weather and Shine
  Programs) and by NASA's Office of Space Science (Living with a Star
  Program and Solar and Heliospheric Physics Supporting Research and
  Technology Program).

---------------------------------------------------------
Title: Search for minimal supergravity in single-electron events
    with jets and large missing transverse energy in pp¯ collisions at
    (s)=1.8 TeV
Authors: Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.;
   Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.;
   Alexeev, G. D.; Alton, A.; Alves, G. A.; Anderson, E. W.; Arnoud, Y.;
   Avila, C.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Bacon,
   T. C.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis,
   E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer,
   D.; Bean, A.; Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.;
   Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.;
   Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.;
   Blessing, S.; Boehnlein, A.; Bojko, N. I.; Bolton, T. A.; Borcherding,
   F.; Bos, K.; Bose, T.; Brandt, A.; Breedon, R.; Briskin, G.; Brock,
   R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher,
   V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey,
   D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.;
   Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.;
   Chung, M.; Claes, D.; Clark, A. R.; Coney, L.; Connolly, B.; Cooper,
   W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A.; Cutts,
   D.; Davis, G. A.; de, K.; de Jong, S. J.; Demarteau, M.; Demina, R.;
   Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.;
   Diesburg, M.; Doulas, S.; Ducros, Y.; Dudko, L. V.; Duensing, S.;
   Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.;
   Ellison, J.; Eltzroth, J. T.; Elvira, V. D.; Engelmann, R.; Eno,
   S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.;
   Evdokimov, V. N.; Fahland, T.; Fein, D.; Ferbel, T.; Filthaut, F.;
   Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Fox,
   H.; Frame, K. C.; Fu, S.; Fuess, S.; Gallas, E.; Galyaev, A. N.;
   Gao, M.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.;
   Gershtein, Y.; Gilmartin, R.; Ginther, G.; Gómez, B.; Goncharov,
   P. I.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf,
   N.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.;
   Grinstein, S.; Groer, L.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.;
   Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian,
   S.; Hagopian, V.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hays, C.;
   Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.;
   Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang,
   Y.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain,
   S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein, H.;
   Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov,
   D.; Karmgard, D.; Kehoe, R.; Khanov, A.; Kharchilava, A.; Kim, S. K.;
   Klima, B.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.;
   Kotcher, J.; Kothari, B.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky,
   E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski,
   S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.;
   Kuznetsov, V. E.; Landsberg, G.; Lee, W. M.; Leflat, A.; Leggett, C.;
   Lehner, F.; Leonidopoulos, C.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln,
   D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking,
   L.; Lundstedt, C.; Luo, C.; Maciel, A. K.; Madaras, R. J.; Malyshev,
   V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Mayorov,
   A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt,
   K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mishra, C. S.; Mokhov,
   N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.;
   da Motta, H.; Mutaf, Y.; Nagy, E.; Nang, F.; Narain, M.; Narasimham,
   V. S.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nomerotski, A.;
   Nunnemann, T.; O'Neil, D.; Oguri, V.; Olivier, B.; Oshima, N.; Padley,
   P.; Pan, L. J.; Papageorgiou, K.; Parashar, N.; Partridge, R.; Parua,
   N.; Paterno, M.; Patwa, A.; Pawlik, B.; Peters, O.; Pétroff, P.;
   Piegaia, R.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu,
   S.; Przybycien, M. B.; Qian, J.; Raja, R.; Rajagopalan, S.; Ramberg,
   E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek,
   M.; Rizatdinova, F.; Rockwell, T.; Roco, M.; Royon, C.; Rubinov, P.;
   Ruchti, R.; Rutherfoord, J.; Sabirov, B. M.; Sajot, G.; Santoro, A.;
   Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sen,
   N.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell,
   R. A.; Simak, V.; Singh, H.; Sirotenko, V.; Slattery, P.; Smith, E.;
   Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon,
   J.; Song, Y.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.;
   Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stoker,
   D.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strang, M. A.; Strauss,
   M.; Strovink, M.; Stutte, L.; Sznajder, A.; Talby, M.; Taylor, W.;
   Tentindo-Repond, S.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.;
   Tuts, P. M.; Vaniev, V.; van Kooten, R.; Varelas, N.; Vertogradov,
   L. S.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl,
   H. D.; Wang, H.; Wang, Z. -M.; Warchol, J.; Watts, G.; Wayne, M.;
   Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wijngaarden,
   D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Xu,
   Q.; Yamada, R.; Yamin, P.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.;
   Youssef, S.; Yu, J.; Zanabria, M.; Zhang, X.; Zheng, H.; Zhou, B.;
   Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.;
   Zverev, E. G.; Zylberstejn, A.
2002PhRvD..66k2001A    Altcode: 2002hep.ex....5002A
  We describe a search for evidence of minimal supergravity (MSUGRA)
  in 92.7 pb<SUP>-1</SUP> of data collected with the DØ detector at the
  Fermilab Tevatron pp¯ collider at (s)=1.8 TeV. Events with a single
  electron, four or more jets, and large missing transverse energy
  were used in this search. The major backgrounds are from W+jets,
  misidentified multijet, tt¯, and WW production. We observe no excess
  above the expected number of background events in our data. A new
  limit in terms of MSUGRA model parameters is obtained.

---------------------------------------------------------
Title: Coronal Heating and the Increase of Coronal Luminosity with
    Magnetic Flux
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.
2002AAS...200.8808M    Altcode: 2002BAAS...34R.790M
  We present the observed scaling of coronal luminosity with magnetic
  flux in a set of quiet regions. Comparison of this with the observed
  scaling found for active regions by Fisher et al (1998, ApJ, 508,
  985) suggests an underlying difference between coronal heating in
  active regions and quiet regions. From SOHO/EIT coronal images and
  SOHO/MDI magnetograms of 4 similar large quiet regions, we measure
  L<SUB>Corona</SUB> and Φ <SUB>Total</SUB> in random subregions
  ranging in area from about 4 supergranules [(70,000 km)<SUP>2</SUP>]
  to about 100 supergranules [(0.5 R<SUB>Sun</SUB>)<SUP>2</SUP>], where
  L<SUB>Corona</SUB> is the luminosity of the corona in a subregion and
  Φ <SUB>Total</SUB> is the flux content of the magnetic network in the
  subregion. This sampling of our quiet regions yields a correlation plot
  of Log(L<SUB>Corona</SUB>) vs Log(Φ <SUB>Total</SUB>) appropriate for
  comparison with the corresponding plot from Fisher et al for active
  regions. For our quiet regions, the mean values of L<SUB>Corona</SUB>
  and Φ <SUB>Total</SUB> both increase linearly with area (simply
  because each set of subregions of the same area has very nearly
  the same mean coronal luminosity per unit area and mean magnetic
  flux per unit area), and in each constant-area set the values of
  L<SUB>Corona</SUB> and Φ <SUB>Total</SUB> "scatter" about their
  means for that area. This results in the linear least-squares fit to
  the Log(L<SUB>Corona</SUB>) vs Log(Φ <SUB>Total</SUB>) plot having
  a slope somewhat less than 1. If active regions mimicked our quiet
  regions in that all large sets of same-area active regions had the same
  mean coronal luminosity per unit area and same mean magnetic flux per
  unit area, then the least-squares fit to their Log(L<SUB>Corona</SUB>)
  vs Log(Φ <SUB>Total</SUB>) plot would also have a slope of less than
  1. Instead, the slope for active regions is 1.2. Given the observed
  factor of 3 scatter about the least-squares linear fit, this slope
  is consistent with Φ <SUB>Total</SUB> on average increasing linearly
  with area (A) as in quiet regions, but L<SUB>Corona</SUB> on average
  increasing as the volume (A<SUP>1.5</SUP>) of the active region instead
  of as the area. This possiblity is reasonable if the heating in active
  regions is a burning down of previously-stored coronal magnetic energy
  rather than a steady dissipation of energy flux from below as expected
  in quiet regions. This work is supported by NASA, OSS, through its
  S&amp;HP SR&amp;T and SEC GI programs.

---------------------------------------------------------
Title: Forecasting Coronal Mass Ejections from Vector Magnetograms
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2002AAS...200.2005F    Altcode: 2002BAAS...34..673F
  In a 17 vector magnetogram study of 12 bipolar active regions
  (Falconer, Moore, &amp; Gary 2002, ApJ in press), we evaluated from
  each vector magnetogram four global measures of the magnetic field of
  the observed active region, and examined the correlation of each of
  these quantities with the CME productivity of the active regions. The
  four global magnetic quantities were 1) the total magnetic flux (Φ ),
  which is a measure of the size of an active region, and three measures
  of the global nonpotentiality of an active region: 2) the length of
  strong-field, strong-shear main neutral line (L<SUB>SS</SUB>), the
  net current (I<SUB>N</SUB>), and the magnetic twist parameter ( α =μ
  I<SUB>N</SUB>/Φ ). The CME productivity of each active region for each
  day of its disk passage was determined from Yohkoh/SXT coronal X-ray
  images together with GOES X-ray flux observations and, when available,
  SOHO/LASCO observations. For a centered time window of 5 days (day of
  the magnetogram +/- 2 days) for CME production, for each of the three
  measures of global nonpotentiality, whether the measure was above its
  median value was well correlated with whether the active region produced
  any CMEs. For each, the confidence level of the correlation was &gt;=
  99%. The sample size was too small to show a statistically significant
  correlation (confidence level &gt;= 95%) of the global nonpotentiality
  measures with future CME production, that is, from the date of the
  magnetogram forward. We are doubling our sample, and will report on
  our statistical evaluation of global nonpotentiality as a predictor of
  future CME productivity. The vector magnetograms of the added active
  regions are from the first year of operation (September 2000 - October
  2001) of the upgraded MSFC vector magnetograph. This work is funded by
  NSF through its Space Weather Program, and by NASA through its Living
  With a Star Targeted Research and Technology Program and its Solar and
  Heliospheric Physics Supporting Research and Technology Program. The
  upgrade of the MSFC vector magnetograph was funded by the HESSI mission.

---------------------------------------------------------
Title: Correlation of the Coronal Mass Ejection Productivity of
    Solar Active Regions with Measures of Their Global Nonpotentiality
from Vector Magnetograms: Baseline Results
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2002ApJ...569.1016F    Altcode:
  From conventional magnetograms and chromospheric and coronal images,
  it is known qualitatively that the fastest coronal mass ejections
  (CMEs) are magnetic explosions from sunspot active regions in which
  the magnetic field is globally strongly sheared and twisted from its
  minimum-energy potential configuration. In this paper, we present
  measurements from active region vector magnetograms that begin to
  quantify the dependence of the CME productivity of an active region
  on the global nonpotentiality of its magnetic field. From each of 17
  magnetograms of 12 bipolar active regions, we obtain a measure of the
  size of the active region (the magnetic flux content, Φ) and three
  different measures of the global nonpotentiality (L<SUB>SS</SUB>, the
  length of strong-shear, strong-field main neutral line; I<SUB>N</SUB>,
  the net electric current arching from one polarity to the other;
  and α=μI<SUB>N</SUB>/Φ, a flux-normalized measure of the field
  twist). From these measurements and the observed CME productivity of
  the active regions, we find that: (1) All three measures of global
  nonpotentiality are statistically significantly correlated with
  each other and with the active region flux content. (2) All three
  measures of global nonpotentiality are significantly correlated with
  CME productivity. The flux content has some correlation with CME
  productivity, but at a less than statistically significant confidence
  level (less than 95%). (3) The net current is less strongly correlated
  with CME productivity than is α, and the correlation of flux
  content with CME productivity is weaker still. If these differences
  in correlation strength, and a significant correlation of α with
  flux content, persist to larger samples of active regions, this would
  suggest that active region size does not affect CME productivity except
  through global nonpotentiality. (4) For each of the four global magnetic
  quantities, the correlation with CME productivity is stronger for a +/-2
  day time window for the CME production than for windows half as wide or
  twice as wide. This plausibly results from most CME-productive active
  regions producing less than one CME per day, and from active region
  evolution often significantly changing the global nonpotentiality over
  the course of several days. These results establish that measures of
  active region global nonpotentiality from vector magnetograms (such as
  L<SUB>SS</SUB>, I<SUB>N</SUB>, and α) should be useful for prediction
  of active region CMEs.

---------------------------------------------------------
Title: Modeling Carbon Flows Ffrom Land Use Change Aand Forestry
    Datasets Using Transition Probabilities - A Case Study From India
Authors: Krishnaprasad, V.; Cardina, J.; Stinner, B.; Badarinath,
   K.; Moore, R.; Stinner, R.; Hoy, C.
2002cosp...34E.290K    Altcode: 2002cosp.meetE.290K
  Forests and soils are a major sinks of carbon and land use changes can
  affect the magnitude of above ground and below ground carbon stores
  and the net flux of carbon between the land and the atmosphere. In
  this study, `carbon flow' approach has been used to quantify the carbon
  flux from Indian forests for the years 1997 and 1999 using the landuse
  change data in forestry sector obtained from Satellite Remote sensing
  data. A simulation approach combining Markov chain processes using
  transition probabilities and carbon pools for forests and soils has been
  implemented to study the carbon flows over a period of time. Results
  suggested a total carbon sink of about 18.3 Mt and 29.9 Mt for the years
  1997 and 1999 from forest management and land use change in India. This
  is contrary to the previously reported studies, which suggests Indian
  forests as a source of carbon. Simulation results from Markov modeling
  suggested Indian forests as a potential sink for 0.94 Gt carbon,
  with an increase in dense forest area of about 75.93 Mha and 3.4 Mha
  and 5.0Mha decrease in open and scrub forests, if similar land use
  changes that occurred during 1997-1999 would continue. Although Indian
  forests are found to be a potential carbon sink, analysis of results
  from transition probabilities for different years till 2050 suggests
  that, the forests will continue to be a source of about 20.59 MtC to
  the atmosphere. The implications of these results in the context of
  increasing anthropogenic pressure on open and scrub forests and their
  contribution to carbon flux from land use change and forestry sector are
  discussed. Some of the mitigation aspects to reduce GHG emissions from
  land use change in the forestry sector are also reviewed in the study.

---------------------------------------------------------
Title: SXT and EIT Observations of A Quiet Region Large-Scale
Eruption: Implications for Eruption Theories
Authors: Sterling, A. C.; Moore, R. L.; Thompson, B. J.
2002mwoc.conf..165S    Altcode:
  We present Yohkoh/SXT and SOHO/EIT observations of a set of slow, large
  scale, quiet-region solar eruptions. In SXT data, these events seem to
  appear “out of nothing,” indicating that they are associated initially
  with weak magnetic fields and corresponding low heating rates. These
  events evolve relatively slowly, affording us an opportunity to
  examine in detail their development. We look for signatures of the
  start of the eruptions through intensity variations, physical motions,
  and dimming signatures in the SXT and EIT data. In particular, we look
  to see whether the earliest signatures are brightenings occurring in
  the “core” region (i.e., the location where the magnetic shear is
  strongest and the post-flare loops develop); such early brightenings in
  the core could be indicative of a “tether-cutting” process, whereby
  the eruption is instigated by magnetic reconnection among highly-sheared
  core fields. In our best-observed case, we find motions of the core
  fields beginning well before brightenings in the core. This is new
  evidence that tether-cutting is not the primary mechanism operating
  in solar eruptions. Rather, our observations are more consistent with
  the eruption process known as the “breakout model” (Antiochos et
  al. 1999), which holds that the eruption results from initial slow
  magnetic reconnections occurring high above (far from) the core region.

---------------------------------------------------------
Title: Use of Yohkoh SXT in Measuring the Net Current and CME
    Productivity of Active Regions
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2002mwoc.conf..303F    Altcode:
  In our investigation of the correlation of global nonpotentiality of
  active regions to their CME productivity (Falconer, D. A. 2001, JGR,
  in press, and Falconer, Moore, &amp; Gary, 2000, EOS 82, 20 S323),
  we use Yohkoh SXT images for two purposes. The first use is to help
  resolve the 180<SUP>o</SUP> ambiguity in the direction of the observed
  transverse magnetic field. Resolution of the 180<SUP>o</SUP> ambiguity
  is important, since the net current, one of our measures of global
  nonpotentiality, is derived from integrating the dot product of the
  transverse field around a contour (I<SUB>N</SUB> = int B<SUB>T</SUB>cdot
  dl). The ambiguity results from the observed transverse field being
  determined from the linear polarization, which gives the plane of the
  direction, but leaves a 180<SUP>o</SUP> ambiguity. Automated methods
  to resolve the ambiguity ranging from the simple acute angle rule
  (Falconer, D. A. 2001) to the more sophisticated annealing method
  (Metcalf T. R. 1994). For many active regions, especially ones that are
  nearly potential these methods work well. But for very nonpotential
  active regions where the shear angle (the angle between the observed
  and potential transverse field) is near 90<SUP>o</SUP> throughout
  large swaths along the main neutral line, both methods can resolve
  the ambiguity incorrectly for long segments of the neutral line. By
  determining from coronal images, such as those from Yohkoh/SXT, the
  sense of shear along the main neutral line in the active region, these
  cases can be identified and corrected by a modification of the acute
  angle rule described here. The second use of Yohkoh/SXT in this study
  is to check for the cusped coronal arcades of long-duration eruptive
  flares. This signature is an excellent proxy for CMEs, and was used
  by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This
  work is funded by NSF through the Space Weather Program and by NASA
  through the Solar Physics Supporting Research and Technology Program.

---------------------------------------------------------
Title: Contagious Coronal Heating from Recurring Emergence of
    Magnetic Flux
Authors: Moore, R. L.; Falconer, D. A.; Sterling, A. C.
2002mwoc.conf...39M    Altcode:
  For each of six old bipolar active regions, we present and interpret
  Yohkoh/SXT and SOHO/MDI observations of the development, over several
  days, of enhanced coronal heating in and around the old bipole in
  response to new magnetic flux emergence within the old bipole. The
  observations show: 1. In each active region, new flux emerges in the
  equatorward side of the old bipole, around a lone remaining leading
  sunspot and/or on the equatorward end of the neutral line of the old
  bipole. 2. The emerging field is marked by intense internal coronal
  heating, and enhanced coronal heating occurs in extended loops stemming
  from the emergence site. 3. In five of the six cases, a "rooster tail"
  of coronal loops in the poleward extent of the old bipole also brightens
  in response to the flux emergence. 4. There are episodes of enhanced
  coronal heating in surrounding magnetic fields that are contiguous
  with the old bipole but are not directly connected to the emerging
  field. From these observations, we suggest that the accommodation
  of localized newly emerged flux within an old active region entails
  far reaching adjustments in the 3D magnetic field throughout the
  active region and in surrounding fields in which the active region is
  embedded, and that these adjustments produce the extensive enhanced
  coronal heating. We Also Note That The Reason For The recurrence
  of flux emergence in old active regions may be that active-region
  flux tends to emerge in giant-cell convection downflows. If so, the
  poleward "rooster tail" is a coronal flag of a long-lasting downflow
  in the convection zone. This work was funded by NASA's Office of Space
  Science through the Solar Physics Supporting Research and Technology
  Program and the Sun-Earth Connection Guest Investigator Program.

---------------------------------------------------------
Title: Hα Proxies for EIT Crinkles: Further Evidence for Preflare
    “Breakout”-Type Activity in an Ejective Solar Eruption
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Qiu, Jiong; Wang,
   Haimin
2001ApJ...561.1116S    Altcode:
  We present Hα observations from Big Bear Solar Observatory of an
  eruptive flare in NOAA Active Region 8210, occurring near 22:30 UT
  on 1998 May 1. Previously, using the EUV Imaging Telescope (EIT)
  on the SOHO spacecraft, we found that a pattern of transient,
  localized brightenings, which we call “EIT crinkles,” appears in
  the neighborhood of the eruption near the time of flare onset. These
  EIT crinkles occur at a location in the active region well separated
  from the sheared core magnetic fields, which is where the most intense
  features of the eruption are concentrated. We also previously found
  that high-cadence images from the Soft X-ray Telescope (SXT) on
  Yohkoh indicate that soft X-ray intensity enhancements in the core
  begin after the start of the EIT crinkles. With the Hα data, we find
  remote flare brightening counterparts to the EIT crinkles. Light curves
  as functions of time of various areas of the active region show that
  several of the remote flare brightenings undergo intensity increases
  prior to the onset of principal brightenings in the core region,
  consistent with our earlier findings from EIT and SXT data. These timing
  relationships are consistent with the eruption onset mechanism known
  as the breakout model, introduced by Antiochos and colleagues, which
  proposes that eruptions begin with reconnection at a magnetic null high
  above the core region. Our observations are also consistent with other
  proposed mechanisms that do not involve early reconnection in the core
  region. As a corollary, our observations are not consistent with the
  so-called tether-cutting models, which say that the eruption begins with
  reconnection in the core. The Hα data further show that a filament in
  the core region becomes activated near the time of EIT crinkle onset,
  but little if any of the filament actually erupts, despite the presence
  of a halo coronal mass ejection (CME) associated with this event.

---------------------------------------------------------
Title: EIT and SXT Observations of a Quiet-Region Filament Ejection:
    First Eruption, Then Reconnection
Authors: Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J.
2001ApJ...561L.219S    Altcode:
  We observe a slow-onset quiet-region filament eruption with the EUV
  Imaging Telescope (EIT) on the Solar Heliospheric Observatory (SOHO)
  and the soft X-ray telescope (SXT) on Yohkoh. This event occurred on
  1999 April 18 and was likely the origin of a coronal mass ejection
  detected by SOHO at 08:30 UT on that day. In the EIT observation,
  one-half of the filament shows two stages of evolution: stage 1 is a
  slow, roughly constant upward movement at ~1 km s<SUP>-1</SUP> lasting
  ~6.5 hr, and stage 2 is a rapid upward eruption at ~16 km s<SUP>-1</SUP>
  occurring just before the filament disappears into interplanetary
  space. The other half of the filament shows little motion along the
  line of sight during the time of stage 1 but erupts along with the rest
  of the filament during stage 2. There is no obvious emission from the
  filament in the SXT observation until stage 2; at that time, an arcade
  of EUV and soft X-ray loops forms first at the central location of the
  filament and then expands outward along the length of the filament
  channel. A plot of EUV intensity versus time of the central portion
  of the filament (where the postflare loops initially form) shows a
  flat profile during stage 1 and a rapid upturn after the start of
  stage 2. This light curve is delayed from what would be expected if
  “tether-cutting” reconnection in the core of the erupting region
  were responsible for the initiation of the eruption. Rather, these
  observations suggest that a loss of stability of the magnetic field
  holding the filament initiates the eruption, with reconnection in the
  core region occurring only as a by-product.

---------------------------------------------------------
Title: Internal and external reconnection in a series of homologous
    solar flares
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2001JGR...10625227S    Altcode:
  Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO
  and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of
  morphologically homologous solar flares occurring in National Oceanic
  and Atmospheric Administration (NOAA) active region 8210 over May 1-2,
  1998. An emerging flux region (EFR) impacted against a sunspot to
  the west and next to a coronal hole to the east is the source of the
  repeated flaring. An SXT sigmoid parallels the EFR's neutral line at
  the site of the initial flaring in soft X rays. In EIT each flaring
  episode begins with the formation of a crinkle pattern external to
  the EFR. These EIT crinkles move out from, and then in toward, the
  EFR with velocities ~20 km s<SUP>-1</SUP>. A shrinking and expansion
  of the width of the coronal hole coincides with the crinkle activity,
  and generation and evolution of a postflare loop system begins near the
  time of crinkle formation. Using a schematic based on magnetograms of
  the region, we suggest that these observations are consistent with the
  standard reconnection-based model for solar eruptions but are modified
  by the presence of the additional magnetic fields of the sunspot
  and coronal hole. In the schematic, internal reconnection begins
  inside of the EFR-associated fields, unleashing a flare postflare
  loops, and a coronal mass ejection (CME). External reconnection,
  first occurring between the escaping CME and the coronal hole field
  and second occurring between fields formed as a result of the first
  external reconnection, results in the EIT crinkles and changes in the
  coronal hole boundary. By the end of the second external reconnection,
  the initial setup is reinstated; thus the sequence can repeat, resulting
  in morphologically homologous eruptions. Our inferred magnetic topology
  is similar to that suggested in the “breakout model” of eruptions
  [Antiochos, 1998], although we cannot determine if our eruptions are
  released primarily by the breakout mechanism (external reconnection)
  or, alternatively, primarily by the internal reconnection.

---------------------------------------------------------
Title: EIT Crinkles as Evidence for the Breakout Model of Solar
    Eruptions
Authors: Sterling, Alphonse C.; Moore, Ronald L.
2001ApJ...560.1045S    Altcode:
  We present observations of two homologous flares in NOAA Active Region
  8210 occurring on 1998 May 1 and 2, using EUV data from the EUV Imaging
  Telescope (EIT) on board the Solar and Heliospheric Observatory,
  high-resolution and high-time cadence images from the soft X-ray
  telescope on Yohkoh, images or fluxes from the hard X-ray telescope
  on Yohkoh and the BATSE experiment on board the Compton Gamma Ray
  Observatory, and Ca XIX soft X-ray spectra from the Bragg crystal
  spectrometer (BCS) on Yohkoh. Magnetograms indicate that the flares
  occurred in a complex magnetic topology, consisting of an emerging flux
  region (EFR) sandwiched between a sunspot to the west and a coronal
  hole to the east. In an earlier study we found that in EIT images,
  both flaring episodes showed the formation of a crinkle-like pattern
  of emission (“EIT crinkles”) occurring in the coronal hole vicinity,
  well away from a central “core field” area near the EFR-sunspot
  boundary. With our expanded data set, here we find that most of the
  energetic activity occurs in the core region in both events, with some
  portions of the core brightening shortly after the onset of the EIT
  crinkles, and other regions of the core brightening several minutes
  later, coincident with a burst of hard X-rays there are no obvious core
  brightenings prior to the onset of the EIT crinkles. These timings are
  consistent with the “breakout model” of solar eruptions, whereby the
  emerging flux is initially constrained by a system of overlying magnetic
  field lines, and is able to erupt only after an opening develops in
  the overlying fields as a consequence of magnetic reconnection at a
  magnetic null point. In our case, the EIT crinkles would be a signature
  of this pre-impulsive phase magnetic reconnection, and brightening of
  the core only occurs after the core fields begin to escape through the
  newly created opening in the overlying fields. Morphology in soft X-ray
  images and properties in hard X-rays differ between the two events,
  with complexities that preclude a simple determination of the dynamics
  in the core at the times of eruption. From the BCS spectra, we find
  that the core region expends energy at a rate of ~10<SUP>26</SUP> ergs
  s<SUP>-1</SUP> during the time of the growth of the EIT crinkles; this
  rate is an upper limit to energy expended in the reconnections opening
  the overlying fields. Energy losses occur at an order of magnitude
  higher rate near the time of the peak of the events. There is little
  evidence of asymmetry in the spectra, consistent with the majority of
  the mass flows occurring normal to the line of sight. Both events have
  similar electron temperature dependencies on time.

---------------------------------------------------------
Title: Onset of the Magnetic Explosion in Solar Flares and Coronal
    Mass Ejections
Authors: Moore, Ronald L.; Sterling, Alphonse C.; Hudson, Hugh S.;
   Lemen, James R.
2001ApJ...552..833M    Altcode:
  We present observations of the magnetic field configuration and its
  transformation in six solar eruptive events that show good agreement
  with the standard bipolar model for eruptive flares. The observations
  are X-ray images from the Yohkoh soft X-ray telescope (SXT) and
  magnetograms from Kitt Peak National Solar Observatory, interpreted
  together with the 1-8 Å X-ray flux observed by GOES. The observations
  yield the following interpretation. (1) Each event is a magnetic
  explosion that occurs in an initially closed single bipole in which the
  core field is sheared and twisted in the shape of a sigmoid, having an
  oppositely curved elbow on each end. The arms of the opposite elbows are
  sheared past each other so that they overlap and are crossed low above
  the neutral line in the middle of the bipole. The elbows and arms seen
  in the SXT images are illuminated strands of the sigmoidal core field,
  which is a continuum of sheared/twisted field that fills these strands
  as well as the space between and around them. (2) Although four of
  the explosions are ejective (appearing to blow open the bipole) and
  two are confined (appearing to be arrested within the closed bipole),
  all six begin the same way. In the SXT images, the explosion begins
  with brightening and expansion of the two elbows together with the
  appearance of short bright sheared loops low over the neutral line
  under the crossed arms and, rising up from the crossed arms, long
  strands connecting the far ends of the elbows. (3) All six events are
  single-bipole events in that during the onset and early development
  of the explosion they show no evidence for reconnection between the
  exploding bipole and any surrounding magnetic fields. We conclude that
  in each of our events the magnetic explosion was unleashed by runaway
  tether-cutting via implosive/explosive reconnection in the middle of the
  sigmoid, as in the standard model. The similarity of the onsets of the
  two confined explosions to the onsets of the four ejective explosions
  and their agreement with the model indicate that runaway reconnection
  inside a sheared core field can begin whether or not a separate system
  of overlying fields, or the structure of the bipole itself, allows the
  explosion to be ejective. Because this internal reconnection apparently
  begins at the very start of the sigmoid eruption and grows in step
  with the explosion, we infer that this reconnection is essential for
  the onset and growth of the magnetic explosion in eruptive flares and
  coronal mass ejections.

---------------------------------------------------------
Title: EIT Crinkles as Evidence for the Breakout Model of Solar
    Eruptions
Authors: Sterling, A. C.; Moore, R. L.
2001AGUSM..SH51B02S    Altcode:
  Ejective solar eruptions generally involve: (i) a strong magnetic
  field “core” region, which envelops a magnetic inversion line and
  is the site of the earliest post-flare loop footpoints, and (ii)
  weaker magnetic fields surrounding the core. Determining whether the
  eruption begins in the core or in the surrounding fields is vital
  to understanding the eruption process. Here we discuss observational
  tests of two different models with opposing views on where the eruption
  begins. The “tether-cutting model” suggests that magnetic reconnection
  among fields in the core is the primary cause of the eruption; in this
  case, we expect the earliest signature of the start of the eruption to
  be brightenings inside the core. In contrast, the “breakout model”
  (Antiochos et al.~1999, ApJ, 510, 485) suggests that the eruption
  begins when overlying coronal fields are eroded away by low-energy
  reconnection far from the core; in this case, we would expect initial
  brightenings at sites remote from the core. To test these ideas, we
  examine relative timings of brightenings inside and outside the core
  region of a series of homologous flares in NOAA AR~8210 over 1998
  May 1-2. As we previously reported (Sterling and Moore 2001, JGR, in
  press), these events displayed a crinkle-like pattern of emission in
  EIT 195 images (“EIT crinkles”) near the time of the eruptions, at
  locations remote from the core. We examine the onset of these remote
  brightenings relative to the core brightenings, observing the core
  using EIT data and high-cadence ( ~ 10~s), high resolution (2.5”
  pixels) data from the Soft X-ray Telescope (SXT) on Yohkoh. We find
  that the EIT crinkles precede the core brightenings by several minutes,
  which is consistent with the breakout model, but inconsistent with
  the tether-cutting model. ACS is an NRC---MSFC Research Associate.

---------------------------------------------------------
Title: Coronal Heating and the Magnetic Flux Content of the Network
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
2001AGUSM..SH31D06F    Altcode:
  Previously, from analysis of SOHO/EIT coronal images in combination
  with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396),
  we found that the quiet corona is the sum of two components: the
  large-scale corona and the coronal network. The large-scale corona
  consists of all coronal-temperature ( million-degree) structures larger
  than the width of a chromospheric network lane (&gt; 10,000 km). The
  coronal network (1) consists of all coronal-temperature structures
  of the scale of the network lanes and smaller (&lt; 10,000 km), (2)
  is rooted in and loosely traces the photospheric magnetic network, (3)
  has its brightest features seated on polarity dividing lines (neutral
  lines) in the network magnetic flux, and (4) produces only about 5%
  of the total coronal emission in quiet regions. The heating of the
  coronal network is apparently magnetic in origin. Here, from analysis
  of EIT coronal images of quiet regions in combination with magnetograms
  of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine
  the other 95% of the quiet corona and its relation to the underlying
  magnetic network. We find: (1) Dividing the large-scale corona into
  its bright and dim halves divides the area into bright "continents" and
  dark "oceans" having spans of 2-4 supergranules. (2) These patterns are
  also present in the photospheric magnetograms: the network is stronger
  under the bright half and weaker under the dim half. (3) The radiation
  from the large-scale corona increases roughly as the cube root of the
  magnetic flux content of the underlying magnetic network. In contrast,
  Fisher et al (1998, ApJ, 508, 985-998) found that the coronal radiation
  from an active region increases roughly linearly with the magnetic
  flux content of the active region. We assume, as is widely held, that
  nearly all of the large-scale corona is magnetically rooted in the
  network. Our results, together with the result of Fisher et al (1998),
  suggest that either the coronal heating in quiet regions has a large
  non-magnetic component, or, if the heating is predominantly produced via
  the magnetic field, the mechanism is significantly different than in
  active regions. This work is funded by NASA's Office of Space Science
  through the Solar Physics Supporting Research and Technology Program
  and the Sun-Earth Connection Guest Investigator Program.

---------------------------------------------------------
Title: Magnetic Characteristics of Active Region Heating Observed
    with TRACE, SOHO/EIT, and Yohkoh/SXT
Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.
2001AGUSM..SH41A05P    Altcode:
  Over the past several years, we have reported results from studies that
  have compared the magnetic structure and heating of the transition
  region and corona (both in active regions and in the quiet Sun) by
  combining X-ray and EUV images from Yohkoh and SOHO with photospheric
  magnetograms from ground-based observatories. Our findings have led us
  to the hypothesis that most heating throughout the corona is driven
  from near and below the base of the corona by eruptive microflares
  occurring in compact low-lying "core" magnetic fields (i.e., fields
  rooted along and closely enveloping polarity inversion lines in the
  photospheric magnetic flux). We now extend these studies to cooler
  plasmas, incorporating sequences of UV and EUV images from TRACE (in
  addition to SOHO and Yohkoh data) into a comparison with longitudinal
  magnetograms from Kitt Peak and vector magnetograms from MSFC. These
  studies support the previous results regarding the importance of
  core-field activity to active region heating. Activity in fields
  associated with satellite polarity inclusions and/or magnetically
  sheared configurations is especially prominent. This work is funded
  by NASA's Office of Space Science through the Sun-Earth Connection
  Guest Investigator Program and the Solar Physics Supporting Research
  and Technology Program.

---------------------------------------------------------
Title: Prediction of Coronal Mass Ejections from Vector Magnetograms:
    Quantitative Measures as Predictors
Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.
2001AGUSM..SH41C04F    Altcode:
  In a pilot study of 4 active regions (Falconer, D.A. 2001, JGR, in
  press), we derived two quantitative measures of an active region's
  global nonpotentiality from the region's vector magnetogram, 1) the
  net current (I<SUB>N</SUB>), and 2) the length of the strong-shear,
  strong-field main neutral line (L<SUB>SS</SUB>), and used these two
  measures of the CME productivity of the active regions. We compared the
  global nonpotentiality measures to the active regions' CME productivity
  determined from GOES and Yohkoh/SXT observations. We found that two
  of the active regions were highly globally nonpotential and were
  CME productive, while the other two active regions had little global
  nonpotentiality and produced no CMEs. At the Fall 2000 AGU (Falconer,
  Moore, &amp; Gary, 2000, EOS 81, 48 F998), we reported on an expanded
  study (12 active regions and 17 magnetograms) in which we evaluated
  four quantitative global measures of an active region's magnetic field
  and compared these measures with the CME productivity. The four global
  measures (all derived from MSFC vector magnetograms) included our two
  previous measures (I<SUB>N</SUB> and L<SUB>SS</SUB>) as well as two new
  ones, the total magnetic flux (Φ ) (a measure of an active region's
  size), and the normalized twist (α =μ I<SUB>N</SUB>/Φ ). We found
  that the three measures of global nonpotentiality (I<SUB>N</SUB>,
  L<SUB>SS</SUB>, α ) were all well correlated (&gt;99% confidence
  level) with an active region's CME productivity within (2 days of
  the day of the magnetogram. We will now report on our findings of how
  good our quantitative measures are as predictors of active-region CME
  productivity, using only CMEs that occurred after the magnetogram. We
  report the preliminary skill test of these quantitative measures as
  predictors. We compare the CME prediction success of our quantitative
  measures to the CME prediction success based on an active region's past
  CME productivity. We examine the cases of the handful of false positive
  and false negatives to look for improvements to our predictors. This
  work is funded by NSF through the Space Weather Program and by NASA
  through the Solar Physics Supporting Research and Technology Program.

---------------------------------------------------------
Title: Search for Large Extra Dimensions in Dielectron and Diphoton
    Production
Authors: Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams,
   D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand,
   M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm,
   P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett,
   J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.;
   Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.;
   Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein,
   A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin,
   G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.;
   Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho,
   W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.;
   Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.;
   Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.;
   Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.;
   Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore,
   K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov,
   S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas,
   S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.;
   Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.;
   Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans,
   H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.;
   Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame,
   K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov,
   V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard,
   B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov,
   P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.;
   Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.;
   Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl,
   S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley,
   N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall,
   R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.;
   Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs,
   J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.;
   Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.;
   Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov,
   D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein,
   C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher,
   J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.;
   Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.;
   Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.;
   Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.;
   Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.;
   Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall,
   T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov,
   A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.;
   Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.;
   Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.;
   Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.;
   Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.;
   Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima,
   N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.;
   Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters,
   M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.;
   Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.;
   Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft,
   S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.;
   Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger,
   R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina,
   E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell,
   R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.;
   Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.;
   Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.;
   Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson,
   M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.;
   Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.;
   Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi,
   S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.;
   Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev,
   A. P.; Wahl, H. D.; Wang, H.; Wang, Z. -M.; Warchol, J.; Watts,
   G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.;
   Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.;
   Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.;
   Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng,
   H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski,
   A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.
2001PhRvL..86.1156A    Altcode: 2000hep.ex....8065C; 2000hep.ex....8065D
  We report a search for effects of large extra spatial dimensions in pp¯
  collisions at a center-of-mass energy of 1.8 TeV with the D0 detector,
  using events containing a pair of electrons or photons. The data are in
  good agreement with the expected background and do not exhibit evidence
  for large extra dimensions. We set the most restrictive lower limits
  to date, at the 95% C.L. on the effective Planck scale between 1.0
  and 1.4 TeV for several formalisms and numbers of extra dimensions.

---------------------------------------------------------
Title: Astronomy Image Collections
Authors: Moore, R. W.
2001ASPC..225..257M    Altcode: 2001vof..conf..257M
  No abstract at ADS

---------------------------------------------------------
Title: Solar Prominence Eruption
Authors: Moore, R.
2000eaa..bookE2282M    Altcode:
  The prominence in a solar prominence eruption is a magnetic structure in
  the chromosphere and corona (see SOLAR PROMINENCES; SOLAR PROMINENCE:
  ACTIVE). Prior to its eruption, the prominence is visible in
  chromospheric images by virtue of chromospheric-temperature plasma
  suspended in the magnetic field, and belongs to that large class of
  solar magnetic structures appropriately called solar filamen...

---------------------------------------------------------
Title: Water Level Monitoring from Space
Authors: Close, G.; Lee, C.; Moore, R.; Moore, T.
2000ESASP.458..105C    Altcode: 2000geom.conf..105C
  No abstract at ADS

---------------------------------------------------------
Title: Erratum: An Assessment of Magnetic Conditions for Strong
    Coronal Heating in Solar Active Regions by Comparing Observed Loops
    with Computed Potential Field Lines
Authors: Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G.
2000ApJ...538..467F    Altcode:
  In the paper “An Assessment of Magnetic Conditions for Strong
  Coronal Heating in Solar Active Regions by Comparing Observed Loops
  with Computed Potential Field Lines” by D. A. Falconer, G. A. Gary,
  R. L. Moore, and J. G. Porter (ApJ, 528, 1004 [2000]), Figure 4 was
  rotated 180° and so did not match the figure caption. The correct
  orientation and figure caption is given here.

---------------------------------------------------------
Title: Sunspots and Giant-Cell Convection
Authors: Moore, R.; Hathaway, D.; Reichmann, E.
2000SPD....31.0403M    Altcode: 2000BAAS...32..835M
  From analysis of Doppler velocity images from SOHO/MDI, Hathaway
  et al (2000, Solar Phys., in press) have found clear evidence for
  giant convection cells that fill the solar surface, have diameters
  3-10 times that typical of supergranules, and have lifetimes ≳ 10
  days. Analogous to the superposition of the granular convection on the
  supergranular convection, the ~ 30,000 km diameter supergranules are
  superposed on these still larger giant cells. Because the giant cells
  make up the large-scale end of a continuous power spectrum that peaks
  at the size scale of supergranules, it appears that the giant cells
  are made by the same mode of convection as the supergranules. This
  suggests that the giant cells are similar to supergranules, just
  longer-lived, larger in diameter, and deeper. Here we point out that
  the range of lengths of large bipolar sunspot groups is similar to the
  size range of giant cells. This, along with the long lives (weeks) of
  large sunspots, suggests that large sunspots sit in long-lived, deep
  downflows at the corners of giant cells, and that the distance from
  leader to follower sunspots in large bipolar groups is the distance
  from one giant-cell corner to the next. By this line of reasoning,
  an unusually large and strong downdraft might pull in both legs of a
  rising spot-group magnetic flux loop, resulting in the formation of a
  delta sunspot. This leads us to suggest that a large, strong giant-cell
  corner downdraft should be present at the birthplaces of large delta
  sunspots for some time (days to weeks) before the birth. Thus, early
  detection of such downdrafts by local helioseismology might provide an
  early warning for the formation of those active regions (large delta
  sunspot groups) that produce the Sun's most violent flares and coronal
  mass ejections. This work is supported by NASA's Office of Space Science
  through the Solar Physics Branch of its Sun-Earth Connection Program.

---------------------------------------------------------
Title: Large-Scale Coronal Heating from `Cool' Activity in the Solar
    Magnetic Network
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
2000SPD....31.0208F    Altcode: 2000BAAS...32..812F
  In either Fe IX/X images of Fe XII images from SOHO/EIT, the quiet solar
  corona shows structure on scales ranging from sub-supergranular (i.e.,
  bright points and coronal network) to multi-supergranular (large-scale
  corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the
  large-scale corona and found that the network-scale coronal features are
  predominantly rooted in the magnetic network lanes at the boundaries
  of the supergranules. Here we investigate the relationship between
  the large-scale corona and the network as seen in three different
  EIT filters (He II, Fe IX/X, and Fe XII), and in the magnetic field
  from SOHO/MDI. We find that, underlying the brighter regions of the
  large-scale corona (either Fe IX/X or Fe XII), the coronal network
  (Fe IX/X, and Fe XII), the transition region network (He II), and
  the magnetic flux content of the network are all enhanced relative to
  that underlying the dimmer regions of the large-scale corona. We find
  that the transition region network radiates more than the large-scale
  corona, which radiates more than the coronal network. From our results
  we infer that quiet-sun regions (supergranular or larger in size)
  with enhanced magnetic flux produce enhanced network activity. The
  small fraction of the network activity manifested as coronal network
  also increases with increasing magnetic flux. The network activity,
  predominately the transition region network activity, (or something
  else also correlated with the magnetic field) drives the heating of
  the large-scale corona. If the large-scale corona is being heated by
  the transition region activity, the heating must be done primarily by
  some nonthermal process (nonjet, possibly waves or currents), because
  the transition region is cool relative to the corona. This work was
  funded by the Solar Physics Branch of NASA's office of Space Science
  through the SR&amp;T Program and the SEC Guest Investigator Program.

---------------------------------------------------------
Title: Internal and External Reconnection in a Series of Homologous
    Solar Flares
Authors: Sterling, A. C.; Moore, R. L.
2000SPD....31.1405S    Altcode: 2000BAAS...32..847S
  Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and
  the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of
  morphologically homologous solar flares occurring in NOAA AR 8210
  over May 1---2, 1998. An emerging flux region (EFR) impacted against
  a sunspot to the west and next to a coronal hole to the east is the
  source of the repeated flaring. An SXT sigmoid traces the EFR's neutral
  line at the site of the initial flaring in soft X-rays. In EIT, each
  flaring episode begins with the formation of a crinkle pattern external
  to the EFR\@. These EIT crinkles move out from, and then in toward, the
  EFR with velocities ~ 20 km s<SUP>-1</SUP>. A shrinking and expansion
  of the width of the coronal hole coincides with the crinkle activity,
  and generation and evolution of a postflare loop system begins near the
  time of crinkle formation. Using a schematic based on magnetograms of
  the region, we suggest that these observations are consistent with the
  standard reconnection-based model for solar eruptions, but modified
  by the presence of the additional magnetic fields of the sunspot and
  coronal hole. In the schematic, internal reconnection begins inside of
  the EFR-associated fields, unleashing a flare, postflare loops, and a
  CME\@. External reconnection, occurring between the escaping CME and
  the surrounding fields, results in the EIT crinkles and changes in the
  coronal hole boundary. Our inferred magnetic topology is similar to that
  suggested in the ` ` breakout model" of eruptions [Antiochos, 1998],
  although we cannot determine if the ultimate source of the eruptions
  in this case is due to the breakout mechanism or, alternatively, is
  primarily released by the internal reconnection. ACS is an NRC---MSFC
  Research Associate

---------------------------------------------------------
Title: An Assessment of Magnetic Conditions for Strong Coronal
    Heating in Solar Active Regions by Comparing Observed Loops with
    Computed Potential Field Lines
Authors: Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G.
2000ApJ...528.1004F    Altcode:
  We report further results on the magnetic origins of coronal heating
  found from registering coronal images with photospheric vector
  magnetograms. For two complementary active regions, we use computed
  potential field lines to examine the global nonpotentiality of bright
  extended coronal loops and the three-dimensional structure of the
  magnetic field at their feet, and assess the role of these magnetic
  conditions in the strong coronal heating in these loops. The two
  active regions are complementary, in that one is globally potential
  and the other is globally nonpotential, while each is predominantly
  bipolar, and each has an island of included polarity in its trailing
  polarity domain. We find the following: (1) The brightest main-arch
  loops of the globally potential active region are brighter than the
  brightest main-arch loops of the globally strongly nonpotential active
  region. (2) In each active region, only a few of the mainarch magnetic
  loops are strongly heated, and these are all rooted near the island. (3)
  The end of each main-arch bright loop apparently bifurcates above the
  island, so that it embraces the island and the magnetic null above the
  island. (4) At any one time, there are other main-arch magnetic loops
  that embrace the island in the same manner as do the bright loops but
  that are not selected for strong coronal heating. (5) There is continual
  microflaring in sheared core fields around the island, but the main-arch
  bright loops show little response to these microflares. <P />From these
  observational and modeling results we draw the following conclusions:
  (1) The heating of the main-arch bright loops arises mainly from
  conditions at the island end of these loops and not from their global
  nonpotentiality. (2) There is, at most, only a loose coupling between
  the coronal heating in the bright loops of the main arch and the coronal
  heating in the sheared core fields at their feet, although in both the
  heating is driven by conditions/events in and around the island. (3)
  The main-arch bright loops are likely to be heated via reconnection
  driven at the magnetic null over the island. The details of how and
  where (along the null line) the reconnection is driven determine
  which of the split-end loops are selected for strong heating. (4)
  The null does not appear to be directly involved in the heating of
  the sheared core fields or in the heating of an extended loop rooted
  in the island. Rather, these all appear to be heated by microflares
  in the sheared core field.

---------------------------------------------------------
Title: On Heating the Sun's Corona by Magnetic Explosions: Feasibility
    in Active Regions and Prospects for Quiet Regions and Coronal Holes
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Suess, S. T.
1999ApJ...526..505M    Altcode:
  We build a case for the persistent strong coronal heating in active
  regions and the pervasive quasi-steady heating of the corona in quiet
  regions and coronal holes being driven in basically the same way
  as the intense transient heating in solar flares: by explosions of
  sheared magnetic fields in the cores of initially closed bipoles. <P
  />We begin by summarizing the observational case for exploding sheared
  core fields being the drivers of a wide variety of flare events, with
  and without coronal mass ejections. We conclude that the arrangement
  of an event's flare heating, whether there is a coronal mass ejection,
  and the time and place of the ejection relative to the flare heating
  are all largely determined by four elements of the form and action of
  the magnetic field: (1) the arrangement of the impacted, interacting
  bipoles participating in the event, (2) which of these bipoles are
  active (have sheared core fields that explode) and which are passive
  (are heated by injection from impacted active bipoles), (3) which
  core field explodes first, and (4) which core-field explosions are
  confined within the closed field of their bipoles and which ejectively
  open their bipoles. <P />We then apply this magnetic-configuration
  framework for flare heating to the strong coronal heating observed
  by the Yohkoh Soft X-ray Telescope in an active region with strongly
  sheared core fields observed by the Marshall Space Flight Center vector
  magnetograph. All of the strong coronal heating is in continually
  microflaring sheared core fields or in extended loops rooted against
  these active core fields. Thus, the strong heating occurs in field
  configurations consistent with the heating being driven by frequent
  core-field explosions that are smaller than but similar to those in
  confined flares and flaring arches. From analysis of the thermal and
  magnetic energetics of two selected core-field microflares and a bright
  extended loop, we find that (1) it is energetically feasible for the
  sheared core fields to drive all of the coronal heating in the active
  region via a staccato of magnetic microexplosions, (2) the microflares
  at the feet of the extended loop behave as the flares at the feet of
  flaring arches in that more coronal heating is driven within the active
  bipole than in the extended loop, (3) the filling factor of the X-ray
  plasma in the core field microflares and in the extended loop is ~0.1,
  and (4) to release enough magnetic energy for a typical microflare
  (10<SUP>27</SUP>-10<SUP>28</SUP> ergs), a microflaring strand of sheared
  core field need expand and/or untwist by only a few percent at most. <P
  />Finally, we point out that (1) the field configurations for strong
  coronal heating in our example active region (i.e., neutral-line core
  fields, many embedded in the feet of extended loops) are present in
  abundance in the magnetic network in quiet regions and coronal holes,
  and (2) it is known that many network bipoles do microflare and that
  many produce detectable coronal heating. We therefore propose that
  exploding sheared core fields are the drivers of most of the heating
  and dynamics of the solar atmosphere, ranging from the largest and most
  powerful coronal mass ejections and flares, to the vigorous microflaring
  and coronal heating in active regions, to the multitude of fine-scale
  explosive events in the magnetic network, which drive microflares,
  spicules, global coronal heating, and, consequently, the solar wind.

---------------------------------------------------------
Title: Microflaring in Low-lying Core Fields and Extended Coronal
    Heating in the Quiet Sun
Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.
1999AAS...194.2302P    Altcode: 1999BAAS...31..860P
  We have previously reported analyses of Yohkoh SXT data examining the
  relationship between the heating of extended coronal loops (both within
  and stemming from active regions) and microflaring in core fields lying
  along neutral lines near their footpoints (J. G. Porter, D. A. Falconer,
  and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne,
  ESA SP-421, and references therein). We found a surprisingly poor
  correlation of intensity variations in the extended loops with
  individual microflares in the compact heated areas at their feet,
  despite considerable circumstantial evidence linking the heating
  processes in these regions. Now, a study of Fe XII image sequences
  from SOHO EIT show that similar associations of core field structures
  with the footpoints of very extended coronal features can be found in
  the quiet Sun. The morphology is consistent with the finding of Wang et
  al. (1997, ApJ 484, L75)) that polar plumes are rooted at sites of mixed
  polarity in the magnetic network. We find that the upstairs/downstairs
  intensity variations often follow the trend, identified in the active
  region observations, of a weak correspondence. Apparently much of the
  coronal heating in the extended loops is driven by a type of core field
  magnetic activity that is “cooler" than the events having the coronal
  signature of microflares, i.e., activity that results in little heating
  within the core fields themselves. This work was funded by the Solar
  Physics Branch of NASA's Office of Space Science through the SR&amp;T
  Program and the SEC Guest Investigator Program.

---------------------------------------------------------
Title: On Heating Large Bright Coronal Loops by Magnetic
Microexplosions at their Feet: Feasibility of Empirical Energy
    Requirements
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.
1999AAS...194.2303M    Altcode: 1999BAAS...31..861M
  In previous work, by registering Yohkoh SXT coronal X-ray images
  with MSFC vector magnetograms, we found that (1) many of the larger
  bright coronal loops rooted at one or both ends in an active region
  are rooted around magnetic islands of included polarity, (2) the core
  field encasing the neutral line encircling the island is strongly
  sheared, and (3) this sheared core field is the seat of frequent
  microflares (Falconer et al 1997, ApJ, 482, 519; Porter et al 1998,
  in Solar Jets and Coronal Plumes, ed. T.-D. Guyenne (ESA SP-421),
  p. 147). This suggests that the coronal heating in these extended
  bright loops is driven by many small explosive releases of stored
  magnetic energy from the sheared core field at their feet, some of
  which magnetic microexplosions also produce the microflare heating in
  the core fields. In this paper, we show that this scenario is feasible
  in terms of the energy required for the observed coronal heating and
  the magnetic energy available in the observed sheared core fields. In
  a representative active region, from the X-ray and vector field data,
  we estimate the coronal heating energy consumption by a selected typical
  large bright loop, the coronal heating energy consumption by a typical
  microflare at the foot of this loop, the frequency of microflares
  at the foot, and the available magnetic energy in the microflaring
  core field. We find that (1) the rate of magnetic energy release to
  power the microflares at the foot ( ~ 6 x 10(25) erg/s) is enough
  to also power the coronal heating in the body of the extended loop (
  ~ 2 x 10(25) erg/s), and (2) there is enough stored magnetic energy
  in the sheared core field to sustain the microflaring and extended
  loop heating for about a day, which is a typical time for buildup of
  neutral-line magnetic shear in an active region. This work was funded
  by the Solar Physics Branch of NASA's Office of Space Science through
  the SR&amp;T Program and the SEC Guest Investigator Program.

---------------------------------------------------------
Title: Large-Scale Coronal Heating from the Solar Magnetic Network
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
1999AAS...194.2301F    Altcode: 1999BAAS...31..860F
  In Fe XII images from SOHO/EIT, the quiet solar corona shows structure
  on scales ranging from sub-supergranular (i.e., bright points and
  coronal network) to multi-supergranular. In Falconer et al 1998 (Ap.J.,
  501, 386) we suppressed the large-scale background and found that
  the network-scale features are predominantly rooted in the magnetic
  network lanes at the boundaries of the supergranules. The emission
  of the coronal network and bright points contribute only about 5% of
  the entire quiet solar coronal Fe XII emission. Here we investigate
  the large-scale corona, the supergranular and larger-scale structure
  that we had previously treated as a background, and that emits 95%
  of the total Fe XII emission. We compare the dim and bright halves
  of the large-scale corona and find that the bright half is 1.5 times
  brighter than the dim half, has an order of magnitude greater area
  of bright point coverage, has three times brighter coronal network,
  and has about 1.5 times more magnetic flux than the dim half. These
  results suggest that the brightness of the large-scale corona is
  more closely related to the large-scale total magnetic flux than to
  bright point activity. We conclude that in the quiet sun: (1) Magnetic
  flux is modulated (concentrated/diluted) on size scales larger than
  supergranules. (2) The large-scale enhanced magnetic flux gives an
  enhanced, more active, magnetic network and an increased incidence
  of network bright point formation. (3) The heating of the large-scale
  corona is dominated by more widespread, but weaker, network activity
  than that which heats the bright points. This work was funded by the
  Solar Physics Branch of NASA's office of Space Science through the
  SR&amp;T Program and the SEC Guest Investigator Program.

---------------------------------------------------------
Title: Chemical, multispectral, and textural constraints on the
    composition and origin of rocks at the Mars Pathfinder landing site
Authors: McSween, H. Y.; Murchie, S. L.; Crisp, J. A.; Bridges,
   N. T.; Anderson, R. C.; Bell, J. F., III; Britt, D. T.; Brückner,
   J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M. P.; Greenwood,
   J. P.; Johnson, J. R.; Moore, H. J.; Moore, R. V.; Parker, T. J.;
   Rieder, R.; Singer, R.; Wänke, H.
1999JGR...104.8679M    Altcode: 1999JGRE..104..679M
  Rocks at the Mars Pathfinder site are probably locally derived. Textures
  on rock surfaces may indicate volcanic, sedimentary, or impact-generated
  rocks, but aeolian abration and dust coatings prevent unambiguous
  interpretation. Multispectral imaging has resolved four spectral
  classes of rocks: gray and red, which occur on different surfaces of
  the same rocks; pink, which is probably soil crusts; and maroon, which
  occurs as large boulders, mostly in the far field. Rocks are assigned
  to two spectral trends based on the position of peak reflectance: the
  primary spectral trend contains gray, red, and pink rocks; maroon rocks
  constitute the secondary spectral trend. The spatial pattern of spectral
  variations observed is oriented along the prevailing wind direction. The
  primary spectral trend arises from thin ferric coatings of aeolian
  dust on darker rocks. The secondary spectral trend is apparently due to
  coating by a different mineral, probably maghemite or ferrihydrite. A
  chronology based on rock spectra suggests that rounded maroon boulders
  constitute the oldest petrologic unit (a flood deposit), succeeded by
  smaller cobbles possibly deposited by impact, and followed by aeolian
  erosion and deposition. Nearly linear chemical trends in alpha proton
  X-ray spectrometer rock compositions are interpreted as mixing lines
  between rock and adhering dust, a conclusion supported by a correlation
  between sulfur abundance and red/blue spectral ratio. Extrapolations
  of regression lines to zero sulfur give the composition of a presumed
  igneous rock. The chemistry and normative mineralogy of the sulfur-free
  rock resemble common terrestrial volcanic rocks, and its classification
  corresponds to andesite. Igneous rocks of this composition may occur
  with clastic sedimentary rocks or impact melts and breccias. However,
  the spectral mottling expected on conglomerates or breccias is not
  observed in any APXS-analyzed rocks. Interpretation of the rocks
  as andesites is complicated by absence of a “1 μm” pyroxene
  absorption band. Plausible explanations include impact glass, band
  masking by magnetite, or presence of calcium- and iron-rich pyroxenes
  and olivine which push the absorption band minimum past the imager's
  spectral range. The inferred andesitic composition is most similar
  to terrestrial anorogenic icelandites, formed by fractionation of
  tholeiitic basaltic magmas. Early melting of a relatively primitive
  Martian mantle could produce an appropriate parent magma, supporting
  the ancient age of Pathfinder rocks inferred from their incorporation
  in Hesperian flood deposits. Although rocks of andesitic composition
  at the Pathfinder site may represent samples of ancient Martian crust,
  inferences drawn about a necessary role for water or plate tectonics
  in their petrogenesis are probably unwarranted.

---------------------------------------------------------
Title: Large-scale Coronal Heating, Clustering of Coronal Bright
    Points, and Concentration of Magnetic Flux
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
1999SSRv...87..181F    Altcode:
  By combining quiet-region Fe XII coronal images from SOHO/EIT with
  magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the
  population of network coronal bright points and the magnetic flux
  content of the network are both markedly greater under the bright
  half of the large-scale quiet corona than under the dim half. These
  results (1) support the view that the heating of the entire corona
  in quiet regions and coronal holes is driven by fine-scale magnetic
  activity (microflares, explosive events, spicules) seated low in the
  magnetic network, and (2) suggest that this large-scale modulation
  of the magnetic flux and coronal heating is a signature of giant
  convection cells.

---------------------------------------------------------
Title: Coronal Heating by Magnetic Explosions
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Suess, S. T.
1999SSRv...87..283M    Altcode:
  From magnetic fields and coronal heating observed in flares, active
  regions, quiet regions, and coronal holes, we propose that exploding
  sheared core magnetic fields are the drivers of most of the dynamics
  and heating of the solar atmosphere, ranging from the largest and most
  powerful coronal mass ejections and flares, to the vigorous microflaring
  and coronal heating in active regions, to a multitude of fine-scale
  explosive events in the magnetic network, driving microflares, spicules,
  global coronal heating, and, consequently, the solar wind.

---------------------------------------------------------
Title: On Analysis of Dual Spacecraft Stereoscopic Observations to
    Determine the Three-Dimensional Morphology and Plasma Properties of
    Solar Coronal Flux Tubes
Authors: Gary, G. Allen; Davis, John M.; Moore, Ronald
1998SoPh..183...45G    Altcode:
  By using two spacecraft equipped with multi-bandpass X-ray telescopes,
  it is possible to obtain direct 3-dimensional morphology of coronal
  structures which is essential for understanding the energetics and
  dynamics of the solar atmosphere. X-ray observations taken only in
  orbit about the Earth are inadequate to fully resolve the 3-dimensional
  nature of the solar corona. These Earth-orbit observations produce
  2-dimensional images and an appropriate model must be included
  to derive the 3-dimensional structures from the line-of-sight
  information. Stereoscopic observations from space will remove this
  limitation and are needed if we are to improve our knowledge of the
  3-dimensional morphology of the corona.

---------------------------------------------------------
Title: Network Coronal Bright Points: Coronal Heating Concentrations
    Found in the Solar Magnetic Network
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
1998ApJ...501..386F    Altcode:
  We examine the magnetic origins of coronal heating in quiet
  regions by combining SOHO/EIT Fe XII coronal images and Kitt Peak
  magnetograms. Spatial filtering of the coronal images shows a network
  of enhanced structures on the scale of the magnetic network in quiet
  regions. Superposition of the filtered coronal images on maps of the
  magnetic network extracted from the magnetograms shows that the coronal
  network does indeed trace and stem from the magnetic network. Network
  coronal bright points, the brightest features in the network lanes,
  are found to have a highly significant coincidence with polarity
  dividing lines (neutral lines) in the network and are often at the feet
  of enhanced coronal structures that stem from the network and reach
  out over the cell interiors. These results indicate that, similar to
  the close linkage of neutral-line core fields with coronal heating in
  active regions (shown in previous work), low-lying core fields encasing
  neutral lines in the magnetic network often drive noticeable coronal
  heating both within themselves (the network coronal bright points)
  and on more extended field lines rooted around them. This behavior
  favors the possibility that active core fields in the network are the
  main drivers of the heating of the bulk of the quiet corona, on scales
  much larger than the network lanes and cells.

---------------------------------------------------------
Title: The magnetic roots of enhanced coronal heating in large loops
    and plumes
Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.
1998ESASP.421..147P    Altcode: 1998sjcp.conf..147P
  No abstract at ADS

---------------------------------------------------------
Title: Causality in Relativistic Multi-Particle Classical Dynamic
    Systems
Authors: Moore, R. A.
1998clmp.conf..277M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: 3-D Magnetic Field Configuration Late in a Large Two-Ribbon
    Flare
Authors: Moore, R. L.; Schmieder, B.; Hathaway, D. H.; Tarbell, T. D.
1997SoPh..176..153M    Altcode:
  We present Hα and coronal X-ray images of the large two-ribbon flare
  of 25-26 June, 1992 during its long-lasting gradual decay phase. From
  these observations we deduce that the 3-D magnetic field configuration
  late in this flare was similar to that at and before the onset of
  such large eruptive bipolar flares: the sheared core field running
  under and out of the flare arcade was S-shaped, and at least one
  elbow of the S looped into the low corona. From previous observations
  of filament-eruption flares, we infer that such core-field coronal
  elbows, though rarely observed, are probably a common feature of the
  3-D magnetic field configuration late in large two-ribbon flares. The
  rare circumstance that apparently resulted in a coronal elbow of the
  core field being visible in Hα in our flare was the occurrence of a
  series of subflares low in the core field under the late-phase arcade
  of the large flare; these subflares probably produced flaring arches
  in the northern coronal elbow, thereby rendering this elbow visible
  in Hα. The observed late-phase 3-D field configuration presented
  here, together with the recent sheared-core bipolar magnetic field
  model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh
  SXT observations of the coronal magnetic field configuration at
  and before the onset of large eruptive bipolar flares, supports the
  seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama
  (1974), with three modifications: (1) the preflare magnetic field is
  closed over the filament-holding core field; (2) the preflare core
  field has the shape of an S (or backward S) with coronal elbows; (3)
  a lower part of the core field does not erupt and open, but remains
  closed throughout flare, and can have prominent coronal elbows. In
  this picture, the rest of the core field, the upper part, does erupt
  and open along with the preflare arcade envelope field in which it
  rides; the flare arcade is formed by reconnection that begins in the
  middle of the core field at the start of the eruption and progresses
  from reconnecting closed core field early in the flare to reconnecting
  `opened' envelope field late in the flare.

---------------------------------------------------------
Title: The Solar-B Mission
Authors: Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila,
   Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon;
   Harvey, John; Hathaway, David; Hudson, Hugh; Moore, Ronald; Lites,
   Bruce; Rust, David; Strong, Keith; Title, Alan
1997STIN...9721329A    Altcode:
  Solar-B, the next ISAS mission (with major NASA participation), is
  designed to address the fundamental question of how magnetic fields
  interact with plasma to produce solar variability. The mission has
  a number of unique capabilities that will enable it to answer the
  outstanding questions of solar magnetism. First, by escaping atmospheric
  seeing, it will deliver continuous observations of the solar surface
  with unprecedented spatial resolution. Second, Solar-B will deliver the
  first accurate measurements of all three components of the photospheric
  magnetic field. Solar-B will measure both the magnetic energy driving
  the photosphere and simultaneously its effects in the corona. Solar-B
  offers unique programmatic opportunities to NASA. It will continue an
  effective collaboration with our most reliable international partner. It
  will deliver images and data that will have strong public outreach
  potential. Finally, the science of Solar-B is clearly related to the
  themes of origins and plasma astrophysics, and contributes directly
  to the national space weather and global change programs.

---------------------------------------------------------
Title: Neutral-Line Magnetic Shear and Enhanced Coronal Heating in
    Solar Active Regions
Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.;
   Shimizu, T.
1997ApJ...482..519F    Altcode:
  By examining the magnetic structure at sites in the bright coronal
  interiors of active regions that are not flaring but exhibit persistent
  strong coronal heating, we establish some new characteristics of
  the magnetic origins of this heating. We have examined the magnetic
  structure of these sites in five active regions, each of which was well
  observed by both the Yohkoh SXT and the Marshall Space Flight Center
  Vector Magnetograph and showed strong shear in its magnetic field along
  part of at least one neutral line (polarity inversion). Thus, we can
  assess whether this form of nonpotential field structure in active
  regions is a characteristic of the enhanced coronal heating and vice
  versa. From 27 orbits' worth of Yohkoh SXT images of the five active
  regions, we have obtained a sample of 94 persistently bright coronal
  features (bright in all images from a given orbit), 40 long (&gt;~20,000
  km) neutral-line segments having strong magnetic shear throughout
  (shear angle greater than 45°), and 39 long neutral-line segments
  having weak magnetic shear throughout (shear angle less than 45°). From
  this sample, we find that (1) all of our persistently bright coronal
  features are rooted in magnetic fields that are stronger than 150 G,
  (2) nearly all (95%) of these enhanced coronal features are rooted near
  neutral lines (closer than 10,000 km), (3) a great majority (80%) of the
  bright features are rooted near strong-shear portions of neutral lines,
  (4) a great majority (85%) of long strong-shear segments of neutral
  lines have persistently bright coronal features rooted near them, (5)
  a large minority (40%) of long weak-shear segments of neutral lines
  have persistently bright coronal features rooted near them, and (6)
  the brightness of a persistently bright coronal feature often changes
  greatly over a few hours. From these results, we conclude that most
  persistent enhanced heating of coronal loops in active regions (1)
  requires the presence of a polarity inversion in the magnetic field
  near at least one of the loop footpoints, (2) is greatly aided by the
  presence of strong shear in the core magnetic field along that neutral
  line, and (3) is controlled by some variable process that acts in this
  magnetic environment. We infer that this variable process is low-lying
  reconnection accompanying flux cancellation.

---------------------------------------------------------
Title: 3-D Magnetic Field Configuration Late in a Large Two-Ribbon
    Flare
Authors: Moore, R. L.; Schmieder, B.; Hathaway, D. H.; Tarbell, T. D.
1997SPD....28.0157M    Altcode: 1997BAAS...29R.889M
  We present H-alpha and coronal X-ray images of the large two-ribbon
  flare of 25/26 June 1992 during its long-lasting gradual decay
  phase. From these observations we deduce that the 3-D magnetic field
  configuration late in this flare was similar to that at and before the
  onset of such large eruptive bipolar flares: the sheared core field
  running under and out of the flare arcade was S-shaped, and at least one
  elbow of the S looped into the low corona. From previous observations
  of filament-eruption flares, we infer that such core-field coronal
  elbows, though rarely observed, are probably a common feature of the
  3-D magnetic field configuration late in large two-ribbon flares. The
  rare circumstance that apparently resulted in a coronal elbow of the
  core field being visible in H-alpha in our flare was the occurrence
  of a series of subflares low in the core field under the late-phase
  arcade of the large flare; these subflares probably produced flaring
  arches in the northern coronal elbow, thereby rendering this elbow
  visible in H-alpha. The observed late-phase 3-D field configuration
  presented here, together with the recent sheared-core bipolar magnetic
  field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent
  Yohkoh SXT observations of the coronal magnetic field configuration
  at and before the onset of large eruptive bipolar flares, supports the
  seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama
  (1974), with three modifications: (1) the preflare magnetic field is
  closed over the filament-holding core field; (2) the preflare core
  field has the shape of an S (or backward S) with coronal elbows; (3)
  a lower part of the core field does not erupt and open, but remains
  closed throughout flare, and can have prominent coronal elbows. In
  this picture, the rest of the core field, the upper part, does erupt
  and open along with the preflare arcade envelope field in which it
  rides; the flare arcade is formed by reconnection that begins in the
  middle of the core field at the start of the eruption and progresses
  from reconnecting closed core field early in the flare to reconnecting
  "opened" envelope field late in the flare.

---------------------------------------------------------
Title: Using the radium quartet for evaluating groundwater input
    and water exchange in salt marshes
Authors: Moore, R.; Moore, W. S.
1996GeCoA..60.4645M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The relationship between methyl bromide and chlorophyll α
    in high latitude ocean waters
Authors: Moore, R. M.; Webb, M.
1996GeoRL..23.2951M    Altcode:
  We present a set of measurements of methyl bromide concentrations
  along with chlorophyll a data made in the high latitude, biologically
  productive, waters of the Labrador Sea in July 1995. Methyl bromide
  concentrations are found not to show a positive linear correlation
  with chlorophyll a above a chlorophyll concentration of ca. 0.7
  mg L<SUP>-1</SUP>. Production rates of methyl bromide, calculated
  from a steady-state balance with ocean-atmosphere exchange, chemical
  degradation and downward mixing, are also found to have no positive
  linear correlation with chlorophyll a. If chlorophyll levels higher than
  ca. 0.7 mg L<SUP>-1</SUP> are selected, a negative linear correlation
  is found between methyl bromide production rates (calculated using
  climatological wind speeds) and chlorophyll a. Labrador Sea waters were
  found to be undersaturated with methyl bromide, an observation which,
  when taken with evidence for a negative correlation between calculated
  methyl bromide production rate and the higher chlorophyll values, points
  to the existence of a biological consumption process. We conclude that
  models depending on an assumed positive linear correlation between
  methyl bromide and chlorophyll cannot be used to infer the source
  strength of methyl bromide in high latitude, productive waters.

---------------------------------------------------------
Title: New Promise for Electron Bulk Energization in Solar Flares:
    Preferential Fermi Acceleration of Electrons over Protons in
    Reconnection-driven Magnetohydrodynamic Turbulence
Authors: Larosa, T. N.; Moore, R. L.; Miller, J. A.; Shore, S. N.
1996ApJ...467..454L    Altcode:
  The hard X-ray luminosity of impulsive solar flares indicates
  that electrons in the low corona are bulk energized to energies
  of order 25 keV. LaRosa &amp; Moore pointed out that the required
  bulk energization could be produced by cascading MHD turbulence
  generated by Alfvénic outflows from sites of strongly driven
  reconnection. LaRosa, Moore, &amp; Shore proposed that the compressive
  component of the cascading turbulence dissipates into the electrons
  via Fermi acceleration. However, for this to be a viable electron
  bulk energization mechanism, the rate of proton energization by the
  same turbulence cannot exceed the electron energization rate. In
  this paper we estimate the relative efficiency of electron and proton
  Fermi acceleration in the compressive MHD turbulence expected in the
  reconnection outflows in impulsive solar flares. We find that the
  protons pose no threat to the electron energization. Particles extract
  energy from the MHD turbulence by mirroring on magnetic compressions
  moving along the magnetic field at the Alfvén speed. The mirroring
  rate, and hence the energization rate, is a sensitive function of
  the particle velocity distribution. In particular, there is a lower
  speed limit V<SUB>min</SUB> ≍ V<SUB>A</SUB>, below which the
  pitch-angle distribution of the particles is so highly collapsed
  to the magnetic field in the frame of the magnetic compressions
  that there is no mirroring and hence no Fermi acceleration. For
  coronal conditions, the proton thermal speed is much less than
  the Alfvén speed and proton Fermi acceleration is negligible. In
  contrast, nearly all of the electrons are super-Alfvénic, so their
  pitch-angle distribution is nearly isotropic in the frame of the
  magnetic compressions. Consequently, the electrons are so vigorously
  mirrored that they are Fermi accelerated to hard X-ray energies in
  a few tenths of a second by the magnetic compressions on scales of
  10<SUP>5</SUP>-10<SUP>3</SUP> cm in the cascading MHD turbulence. We
  conclude that dissipation of reconnection-generated MHD turbulence by
  electron Fermi acceleration plausibly accounts for the electron bulk
  energization in solar flares.

---------------------------------------------------------
Title: 3D Magnetic Fields and Coronal Heating in Active Regions
Authors: Falconer, D. A.; Allen, G. A.; Moore, R. L.; Porter, J. G.
1996AAS...188.8603F    Altcode: 1996BAAS...28..963F
  A major limitation in the analysis of solar disk images is that only
  2D information is observed. 3D coronal magnetic structures can be
  modeled by comparing coronal images and field extrapolations. If
  a good correspondence is found between loops in the X-ray image
  and those derived from the extrapolation, then the extrapolated 3D
  coronal magnetic structure can be used for information about the
  height of the X-ray features. We show that even the simplest 3D
  extrapolation, the potential extrapolation, can be useful for the
  analysis of observed X-ray loops. For this analysis of 5 different
  active regions, we use Sakurai's potential field extrapolation code
  to determine the 3D potential model of the coronal magnetic structure
  from both Marshall Space Flight Center (MSFC) magnetograms and Kitt
  Peak magnetograms. The 3D magnetic field is compared to images of
  the persistent X-ray brightness derived from Yohkoh SXT images. Only
  some of the X-ray loops in some active regions fit well with 3D
  coronal potential magnetic structures. Large differences between the
  potential loops and observed loops that have one foot in the same
  place show that the observed loop traces nonpotential field. For many
  of the cases where there is no good fit, at least one footpoint of the
  observed loop is in a sizeable region of strong magnetic shear, so that
  potential coronal field would not be expected. Many of the extrapolated
  3D magnetic field lines are far from any bright X-ray loop. That is,
  the active region is filled with magnetic loops, but only a fraction
  of these strongly emit X-rays. Since not all of the coronal structures
  experience strong heating, some factor is controlling which structures
  do. We have also found from these active regions that the presence of
  a neutral line with strong magnetic shear is a favorable condition for
  strong heating. Large loops in the high coronal envelope of an active
  region are apparently selected for enhanced heating by the presence of
  such magnetic shear near a footpoint of the large loop, independently
  of whether or not the envelope field is strongly nonpotential.

---------------------------------------------------------
Title: Microflaring in Sheared Core Magnetic Fields and Episodic
    Heating in Large Coronal Loops
Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.;
   Rabin, D. M.; Shimizu, T.
1996AAS...188.7018P    Altcode: 1996BAAS...28..941P
  We have previously reported that large, outstandingly-bright coronal
  loops within an active region or stemming from an active region have
  one end rooted around a magnetic island of included polarity that is
  itself a site of locally enhanced coronal heating (X-ray bright point)
  [Porter et al 1996, in Proceedings of the Yohkoh Solar/Stellar IAU
  Symposium, ed. Y. Uchida, T. Kosugi, H.S. Hudson (Kluwer: Dordrecht), in
  press]. This suggests that exceptional magnetic structure in and around
  the magnetic island fosters magnetic activity, such as microflaring,
  that results in the enhanced coronal heating in both the compact core
  field around the island and in the body of large loops that extend
  from this site. We have also reported that enhanced coronal heating
  in active regions goes hand-in-hand with strong magnetic shear in
  the core magnetic fields along polarity neutral lines (Falconer et al
  1995, BAAS, 27(2), 976). Here, by combining MSFC vector magnetograms
  with an NSO full-disk magnetogram and Yohkoh SXT coronal images, we
  examine the incidence of sheared core fields, enhanced coronal heating,
  and microflaring in two active regions having several good examples
  of enhanced extended coronal loops. It appears that the localized
  microflaring activity in sheared core fields is basically similar
  whether the core field is on the neutral line around an island of
  included polarity or on the main neutral line of an entire bipolar
  active region. This suggests that the enhanced coronal heating in an
  extended loop stemming from near a polarity inversion line requires a
  special field configuration at its foot to plug it into the activity at
  the neutral line, rather than a different kind of activity in the core
  field on the neutral line. We also examine whether the waxing and waning
  of the coronal brightness of extended loops shows any correlation with
  the vigor or frequency of microflaring at the feet. This research was
  supported by the Solar Physics Branch of NASA's Office of Space Science.

---------------------------------------------------------
Title: Evidence that Strong Coronal Heating Results from Photospheric
    Magnetic Flux Cancellation
Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Gary, G. A.;
   Shimizu, T.
1996AAS...188.8604M    Altcode: 1996BAAS...28..963M
  Soft X-ray images of the Sun's corona, such as those from the Yohkoh
  SXT, show that the sites of strongest persistent (non-flare) coronal
  heating are located within the strong (&gt;100 gauss) magnetic fields
  in sunspot regions and are limited to only certain places within these
  stong-field domains, covering only a fraction of the total area. We have
  examined the structure of the magnetic field at these sites in 5 active
  regions by superposing Yohkoh SXT coronal X-ray images on MSFC vector
  magnetograms. We find: (1) nearly all of the enhanced (outstandingly
  bright) coronal features that persist for tens of minutes are rooted
  near polarity neutral lines in the photospheric magnetic flux; (2) in
  most cases the core magnetic field closely straddling the neutral line
  at the root of the strong heating is strongly sheared; (3) the enhanced
  coronal X-ray brightness in the low-lying core fields shows spatial
  substructure that fluctuates on time scales of minutes, in the manner
  of microflaring; and (4) large parts of extensive enhanced coronal
  features often last for no more than a few hours. From these results,
  it appears that most enhanced coronal heating in active regions is a
  consequence of some process that (1) acts only in the presence of a
  photospheric polarity neutral line, (2) is episodic on times of about
  an hour, (3) usually gives stronger coronal heating in the presence of
  stronger magnetic shear, but is not required to act by the presence of
  magnetic shear, and (4) is often accompanied by microflaring in the
  core field. We point out that magnetic flux cancellation (driven by
  photospheric flows at the neutral line) is a process that plausibly
  meets all these requirements. The flux cancellation might directly
  drive microflaring, or trigger microflaring in the sheared core field,
  or both. The microflaring might directly produce the enhanced coronal
  heating in the core fields as well as generate MHD waves that propagate
  up into the enhanced extended coronal loops to provide the strong
  coronal heating in these.

---------------------------------------------------------
Title: Stochastic Electron Acceleration by Cascading Fast Mode Waves
    in Impulsive Solar Flares
Authors: Miller, James A.; Larosa, T. N.; Moore, R. L.
1996ApJ...461..445M    Altcode:
  We present a model for the acceleration of electrons from thermal
  to ultrarelativistic energies during an energy release fragment in an
  impulsive solar flare. Long-wavelength low-amplitude fast mode waves are
  assumed to be generated during the initial flare energy release (by,
  for example, large-scale restructuring of the magnetic field). These
  waves nonlinearly cascade to higher wavenumbers and eventually reach
  the dissipation range, whereupon they are transit-time damped by
  electrons in the tail of the thermal distribution. The electrons,
  in turn, are energized out of the tail and into substantially higher
  energies. We find that for turbulence energy densities much smaller
  than the ambient magnetic field energy density and comparable to
  the thermal particle energy density, and for a wide range of initial
  wavelengths, a sufficient number of electrons are accelerated to hard
  X-ray-producing energies on observed timescales. We suggest that MHD
  turbulence unifies electron and proton acceleration in impulsive solar
  flares, since a preceding study established that a second MHD mode
  (the shear Alfvén wave) preferentially accelerates protons from
  thermal to gamma-ray line-producing energies.

---------------------------------------------------------
Title: Effects of thermal conduction on the energy balance of open
    coronal regions
Authors: Hammer, R.; Nesis, A.; Moore, R. L.; Suess, S. T.; Musielak,
   Z. M.
1996ASPC..109..525H    Altcode: 1996csss....9..525H
  No abstract at ADS

---------------------------------------------------------
Title: Energization of the 10-100 keV Electrons in Solar Flares by
    Strongly-Driven Reconnection
Authors: Moore, R. L.; Larosa, T. N.; Miller, J. A.; Shore, S. N.
1996mpsa.conf..565M    Altcode: 1996IAUCo.153..565M
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Roots of Enhanced High Coronal Loops
Authors: Porter, J. C.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.;
   Rabin, D. M.; Shimizu, T.
1996mpsa.conf..429P    Altcode: 1996IAUCo.153..429P
  No abstract at ADS

---------------------------------------------------------
Title: Klein-Gordon Equation and the Local Critical Frequency for
    Alfven Waves Propagating in an Isothermal Atmosphere
Authors: Musielak, Z. E.; Moore, R. L.
1995ApJ...452..434M    Altcode:
  A Klein-Gordon equation approach developed by Musielak, Fontenla,
  and Moore for assessing reflection of Alfvén waves in a smoothly
  nonuniform medium is reexamined. In this approach, the local critical
  frequency for strong reflection is simply found by transforming the wave
  equations into their Klein-Gordon forms and then choosing the largest
  positive coefficient of the zeroth-order term to be the square of the
  local critical frequency. In this paper, we verify this approach for
  a particular atmosphere and show that the local critical frequency
  can be alternatively defined by using the turning-point property of
  Euler's equation. Our results are obtained specifically for steady
  state, linear Alfvén waves in an isothermal atmosphere with constant
  gravity and uniform vertical magnetic field. The upward Alfvén waves
  (those above the wave source) are standing waves and the downward waves
  (those below the wave source) are propagating waves. We demonstrate that
  for any given wave frequency both upward and downward waves have the
  same turning point or critical height. This height is determined by the
  condition ω = Ω<SUB>A</SUB> = V<SUB>A</SUB>/2H, where V<SUB>A</SUB>
  is the Alfvén velocity and H is the scale height; Ω<SUB>A</SUB>
  can be taken as the local critical frequency for strong reflection
  for the upward waves and as the local critical frequency for free
  propagation for the downward waves. Our turning-point analysis also
  yields another interesting result: for our particular model atmosphere
  the magnetic field perturbation wave equation yields the local critical
  frequency but the velocity-perturbation wave equation does not. Thus,
  for this model atmosphere, we find that the Klein-Gordon equation
  approach of Musielak, Fontenla, and Moore is correct in (1) its choice
  of the magnetic-field-perturbation wave equation for finding the local
  critical frequency, and (2) its assumption that the upward and downward
  waves have the same critical frequency.

---------------------------------------------------------
Title: On the Origin of “Dividing Lines” for Late-Type Giants
    and Supergiants
Authors: Rosner, R.; Musielak, Z. E.; Cattaneo, F.; Moore, R. L.;
   Suess, S. T.
1995ApJ...442L..25R    Altcode:
  We show how a change in the nature of the stellar dyanmo can lead to
  a transition in the topological character of stellar magnetic fields
  of evolved stars, from being mainly closed on the blueward side of the
  giant tracks in the Hertzsprung-Russell (H-R) diagram to being mainly
  open on their redward side. If such a topological transition occurs,
  then these stars naturally segregate into two classes: those having hot
  coronae on the blueward side, and those having massive cool winds on the
  redward side, thus leading naturally to the so-called dividing lines.

---------------------------------------------------------
Title: Rapid and Efficient Electron Bulk Energization in Solar Flares
    by Fermi Acceleration
Authors: Larosa, T. N.; Moore, R. L.; Miller, J. M.; Shore, S. N.
1995SPD....26.1209L    Altcode: 1995BAAS...27R.984L
  No abstract at ADS

---------------------------------------------------------
Title: Klein-Gordon Equation and Reflection of Alfvén Waves
Authors: Musielak, Z. E.; Moore, R. L.
1995SPD....26..910M    Altcode: 1995BAAS...27R.975M
  No abstract at ADS

---------------------------------------------------------
Title: Photospheric Origins of Enhanced High Coronal Loops
Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.;
   Rabin, D. M.
1995SPD....26..704P    Altcode: 1995BAAS...27..966P
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Shear and Enhanced Coronal Heating in Active Regions
Authors: Falconer, D.; Moore, R. L.; Porter, J.; Shimizu, T.;
   Shearer, K.
1995SPD....26..913F    Altcode: 1995BAAS...27..976F
  No abstract at ADS

---------------------------------------------------------
Title: Propagating Alfven Waves, Intermittent Magnetic Levitation,
    and Coronal Heating in Coronal Holes
Authors: Moore, R. L.; Musielak, Z. E.; Krogulec, M.; Suess, S. T.
1995SPD....26..908M    Altcode: 1995BAAS...27Q.975M
  No abstract at ADS

---------------------------------------------------------
Title: The Wall of Reconnection-driven Magnetohydrodynamic Turbulence
    in a Large Solar Flare
Authors: Moore, R. L.; Larosa, T. N.; Orwig, L. E.
1995ApJ...438..985M    Altcode:
  LaRosa and Moore (1993) recently proposed that the bulk dissipation of
  magnetic field that is required for the electron energization in the
  explosive phase of solar flares occurs in a 'fat current sheet', a wall
  of cascading magnetohydrodynamic (MHD) turbulence sustained by highly
  disordered driven reconnection of opposing magnetic fields impacting
  at a turbulent boundary layer. Here, we use the well-observed great
  two-ribbon eruptive flare of 1984 April 24/25 to assess the feasibility
  of both (1) the standard model for the overall three-dimensional form
  and action of the magnetic field and (2) the turbulent reconnection
  wall within it. We find (1) that the morphology of this flare closely
  matched that of the standard model; (2) the preflare sheared core field
  had enough nonpotential magnetic energy to power the flare; (3) the
  model turbulent wall required to achieve the flare's peak dissipative
  power easily fit within the overall span of the flaring magnetic field;
  (4) this wall was thick enough to have turbulent eddies large enough
  (diameters approximately 10<SUP>8 cm</SUP> to produce the approximately
  ergs energy release fragments typically observed in the explosive
  phase of flares; (5) the aspect ratio (thickness/vertical extent)
  of the turbulent reconnection wall was in the 0.1-1 range expected by
  (Parker 1973). We therefore conclude that the viability of our version
  of the standard model (i.e., having the magnetic field dissipation
  occur in our turbulent reconnection wall) is well confirmed by this
  typical great two-ribbon eruptive flare.

---------------------------------------------------------
Title: Reflection of Alfvén waves in the solar wind
Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.;
   Moore, R. L.
1994JGR....9923489K    Altcode:
  We have revisited the problem of propagation of toroidal and linear
  Alfvén waves formulated by Heinemann and Olbert (1980) to compare WKB
  and non-WKB waves and their effects on the solar wind. They considered
  two solar wind models and showed that reflection is important for
  Alfvén waves with periods of the order of one day and longer and
  that non-WKB Alfvén waves are no more effective in accelerating
  the solar wind than WKB waves. There are several recently published
  papers that seem to indicate that Alfvén waves with periods of
  the order of several minutes should be treated as non-WKB waves
  and that these non-WKB waves exert a stronger acceleration force
  than WKB waves. The purpose of this paper is to study the origin of
  these discrepancies by performing parametric studies of the behavior
  of the waves under a variety of different conditions. In addition,
  we want to investigate two problems that have not been addressed by
  Heinemann and Olbert, namely, calculate the efficiency of Alfvén wave
  reflection by using the reflection coefficient and identify the region
  of strongest wave reflection in different wind models. To achieve
  these goals, we investigated the influence of temperature, electron
  density distribution, wind velocity,and magnetic field strength on
  the waves. <P />The obtained results clearly demonstrate that Alfvén
  wave reflection is strongly model dependent and that the strongest
  reflection can be expected in the models with the base temperatures
  higher than 10<SUP>6</SUP> K and with the base densities lower than 7
  × 10<SUP>7</SUP> cm<SUP>-3</SUP>. In these models as well as in the
  models with lower temperatures and higher densities, Alfvén waves
  with periods as short as several minutes have negligible reflection so
  that they can be treated as WKB waves; however, for Alfvén waves with
  periods of the order of one hour or longer reflection is significant,
  requiring a non-WKB treatment. We also show that non-WKB, linear
  Alfvén waves are always less effective in accelerating the plasma
  than WKB Alfvén waves. Finally, it is evident from our results that
  the region of strongest wave reflection is usually located at the base
  of the models and hence that interpretation of wave reflection based
  solely on the reflection coefficient can be misleading.

---------------------------------------------------------
Title: The Role of Alfven Waves in Solar Wind Acceleration
Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.;
   Moore, R. L.
1994AAS...185.9206K    Altcode: 1994BAAS...26.1472K
  The fact that Alfven waves may play a significant role in the
  energy balance in solar coronal holes has been known for a number
  of years. A special attention has been given to these waves because
  they can transfer energy to large distances and deposit efficiently
  momentum in the background medium. It has been shown that non-WKB
  effects are important for Alfven waves with periods of the order
  of one day and longer, and that non-WKB Alfven waves are no more
  effective in acceleration of the solar wind than WKB waves. There are,
  however, some recently published papers which seem to indicate that
  Alfven waves with periods of the order of several minutes should
  be treated as non-WKB waves and that these waves exert a stronger
  acceleration force than WKB waves. To investigate the origin of these
  discrepancies, we have performed a series of parametric studies of
  the behavior of the waves under a variety of different conditions
  in solar coronal holes. The obtained results demonstrate that both
  Alfven wave reflection and the acceleration force due to the waves are
  strongly model dependent. The strongest reflection can be expected
  in models with the base temperatures higher than 10(6) K and with
  the base densities lower than 7 times 10(7) cm(-3) . However, the
  strongest acceleration force is expected in the models with the weakest
  reflection. This clearly indicates that linear non-WKB Alfven waves
  are always less effective in accelerating the plasma than WKB Alfven
  waves. Implications of this result for the heating in solar coronal
  holes and for the acceleration of the solar wind will be discussed.

---------------------------------------------------------
Title: Klein-Gordon Equation and Reflection of Alfven Waves
Authors: Musielak, Z. E.; Moore, R. L.
1994AAS...18512106M    Altcode: 1994BAAS...26.1520M
  It is of some interest to know the physical conditions that lead
  to efficient reflection of Alfven waves in the solar and stellar
  atmospheres. The problem seems to be important because these waves
  may play some role in non-radiative heating of the solar and stellar
  chromosphere and coronae, and may also be responsible for acceleration
  of the solar and cool massive stellar winds. A significant effort
  has been made by a number of authors to understand the behavior of
  these waves in highly inhomogeneous stellar atmospheres. The simplest
  treatment of the problem seems to be the so-called Klein-Gordon
  equation approach, which allows obtaining local critical frequencies by
  transforming the wave equations into their Klein-Gordon forms and then
  choosing the largest positive coefficient to be the square of the local
  critical frequency. In this paper, we show that the local critical
  frequency can be alternatively defined by using the turning-point
  property of Euler's equation. Our results are obtained specifically
  for Alfven waves propagating in an isothermal atmosphere with constant
  gravity and uniform vertical magnetic field. We demonstrate that
  Alfven waves in the upper (above the wave source) part of our model
  always form a standing wave pattern and that the waves in the lower
  (below the wave source) part of the model are always propagating
  (but partially reflected) waves. We also show that the turning point
  for the upward and downward waves is located at the height where
  the condition omega = Omega_A is satisfied and that Omega_A = V_A /
  2 H, where V_A is the Alfven velocity and H is the scale height,
  can be taken as a local critical frequency because the waves undergo
  strong reflection in this region of the atmosphere where omega &lt;=
  Omega_A . By applying our turning-point analysis to the Alfven
  wave equations for the velocity and magnetic field perturbation, we
  obtain an interesting result: for our particular model atmosphere the
  magnetic-field-perturbation wave equation yields the local critical
  frequency but the velocity-perturbation wave equation does not. A
  physical interpretation of the obtained results will be given.

---------------------------------------------------------
Title: Production of isoprene by marine phytoplankton cultures
Authors: Moore, R. M.; Oram, D. E.; Penkett, S. A.
1994GeoRL..21.2507M    Altcode:
  While release of isoprene from the terrestrial biosphere is well
  established and known to influence the tropospheric concentrations of
  a number of reactive species including ozone, very little is known of
  its production in the ocean and possible release to the marine boundary
  layer. Measurements reported here of low molecular weight trace gases
  produced by a series of laboratory phytoplankton have shown that
  isoprene is a major component. Though the results confirm that the
  oceans are a potential source of isoprene to the atmosphere, it is
  not possible to extrapolate release rates from laboratory studies to
  the very different conditions under which marine plants grow naturally.

---------------------------------------------------------
Title: Observations of Enhanced Coronal Heating in Sheared MAgnetic
    Fields
Authors: Moore, R. T.; Porter, J.; Roumeliotis, G.; Tsuneta, S.;
   Shimizu, T.; Sturrock, P. A.; Acton, L. W.
1994kofu.symp...89M    Altcode:
  From superposition of Yohkoh SXT images on MSFC vector magnetograms of
  two active regions, we find: (1) coronal heating is enhanced at sites of
  strong magnetic shear, and (2) this heating is produced by microflares.

---------------------------------------------------------
Title: Microflaring at the Feet of Large Active Region Loops
Authors: Porter, J.; Moore, R. T.; Roumeliotis, G.; Shimizu, T.;
   Tsuneta, S.; Sturrock, P. A.; Acton, L. W.
1994kofu.symp...65P    Altcode:
  By superposing Yohkoh SXT images on an MSFC magnetogram of an active
  region, we find that the brightest loops in the bipolar magnetic
  envelope spanning the active region are rooted near a compact site
  of mixed polarity and microflaring. Apparently, the enhanced coronal
  heating in these high loops is a consequence of the microflaring and/or
  related magnetic activity at this end site.

---------------------------------------------------------
Title: A New Path for the Electron Bulk Energization in Solar Flares:
    Fermi Acceleration by Magnetohydrodynamic Turbulence in Reconnection
    Outflows
Authors: Larosa, T. N.; Moore, R. L.; Shore, S. N.
1994ApJ...425..856L    Altcode:
  We recently proposed that a magnetohydrodynamic (MHD) turbulent
  cascade produces the bulk energization of electrons to approximately
  25 keV in the impulsive phase of solar flares (LaRosa &amp; Moore
  1993). In that scenario, (1) the cascading MHD turbulence is fed
  by shear-unstable Alfvenic outflows from sites of strongly driven
  reconnection in the low corona, and (2) the electrons are energized
  by absorbing the energy that flows down through the cascade. We did
  not specify the physical mechanism by which the cascading energy is
  ultimately transferred to the electrons. Here we propose that Fermi
  acceleration is this mechanism, the process by which the electrons are
  energized and by which the cascading MHD turbulence is dissipated. We
  point out that in the expected cascade MHD fluctuations of scale 1 km
  can Fermi-accelerate electrons from 0.1 keV to approximately 25 keV
  on the subsecond timescales observed in impulsive flares, provided
  there is sufficient trapping and scattering of electrons in the MHD
  turbulence. We show that these same fluctuations provide the required
  trapping; they confine the electrons within the turbulent region until
  the turbulence eis dissipated. This results in the energization of all
  of the lectrons in each large-scale (5 x 10<SUP>7</SUP>cm) turbulent
  eddy to 25 keV. The Fermi process also requires efficient scattering so
  that the pitch-angle distribution of the accelerating electrons remains
  isotropic. We propose that the electrons undergo resonant scattering
  by high-frequency plasma R-waves that, as suggested by others (Hamilton
  &amp; Petrosian 1992), are generated by the reconnection. Ions are not
  scattered by R-waves. Provided that there is negligible generation of
  ion-scattering plasma turbulence (e.g., L-waves) by the reconnection
  or the MHD turbulence, the ions will not Fermi-accelerate and the
  cascading energy is transferred only to the electrons. We conclude
  that, given this situation, electron Fermi acceleration can plausibly
  account for the electron bulk energization in impulsive solar flares.

---------------------------------------------------------
Title: On the visualization of Bolyai-Lobatchevsky's geometry.
Authors: Moore, R. G.; Espy, P.
1994AdSpR..14b.147M    Altcode: 1994AdSpR..14..147M
  A group of U.S. universities, under the auspices of NASA's Space Grant
  College and Fellowship Program, has initiated a super-pressure balloon
  research project to measure ozone column density in the atmosphere
  above 20 kilometers, together with stratospheric circulation between
  20 km and 40 km, over the continental U.S.A. Data from a balloon-borne
  ultraviolet spectrometer, together with time, altitude, latitude and
  longitude information from a Global Positioning System receiver, are
  recorded at ten-minute intervals during daytime hours in an on-board
  solid-state data logger. Coded messages are transmitted nightly from
  selected amateur radio ground stations to a receiver in the balloon
  gondola to command the transmission of packet radio bursts from the data
  logger to the ground stations, for relay to a central data collection
  and analysis facility at Utah State University. Discussions are under
  way with radio amateurs and members of the international scientific
  balloon community regarding extension of flights to cover the earth's
  northern hemisphere.

---------------------------------------------------------
Title: A Search for Sunspot Canopies Using a Vector Magnetograph
Authors: Adams, M.; Solanki, S. K.; Hagyard, M. J.; Moore, R. L.
1994ASPC...64..342A    Altcode: 1994csss....8..342A
  No abstract at ADS

---------------------------------------------------------
Title: A Mechanism for Bulk Energization in the Impulsive Phase of
Solar Flares: MHD Turbulent Cascade
Authors: Larosa, T. N.; Moore, R. L.
1993ApJ...418..912L    Altcode:
  We propose that the large production rate (∼10<SUP>36</SUP>
  s<SUP>-1</SUP>) of energetic electrons (≳25 keV) required to account
  for the impulsive-phase hard X-ray burst in large flares is achieved
  through MHD turbulent cascade of the bulk kinetic energy of the outflows
  from many separate reconnection events. Focusing on large two- ribbon
  eruptive flares as representative of most large flares, we envision the
  reconnection events to be the driven reconnection of oppositely directed
  elementary flux tubes pressing into the flare-length current-sheet
  interface that forms in the wake of the eruption of the sheared core
  of the preflare bipolar field configuration. We point our that, because
  the outflows from these driven reconnection events have speeds of order
  the Alfvén speed and because the magnetic field reduces the shear
  viscosity of the plasma, it is reasonable that the outflows are unstable
  and turbulent, so that the kinetic energy of an outflow is rapidly
  dissipated through turbulent cascade. If the largest eddies in the
  turbulence have diameters of order the expected widths of the outflows
  (10<SUP>7</SUP>-10<SUP>8</SUP> cm), then the cascade dissipation of
  each of these eddies could produce a ∼10<SUP>26</SUP> erg burst
  of energized electrons (∼3 × 10<SUP>33</SUP> 25 keV electrons)
  in ∼0.3 s, which agrees well with hard X-ray and radio sub-bursts
  commonly observed during the impulsive phase. Of order 10<SUP>2</SUP>
  simultaneous reconnection events with turbulent outflow would produce
  the observed rate of impulsive-phase plasma energization in the most
  powerful flares (∼10<SUP>36</SUP> 25 keV electrons s<SUP>-1</SUP>);
  this number of reconnection sites can easily fit within the estimated
  3 × 10<SUP>9</SUP> cm span of the overall current-sheet dissipation
  region formed in these large flares. We therefore conclude that MHD
  turbulent cascade is a promising mechanism for the plasma energization
  observed in the impulsive phase of solar flares.

---------------------------------------------------------
Title: A Search for Sunspot Canopies Using a Vector Magnetograph
Authors: Adams, M.; Solanki, S. K.; Hagyard, M.; Moore, R. L.
1993SoPh..148..201A    Altcode:
  Using a magnetograph, we examine four sunspots for evidence of a
  magnetic canopy at the penumbra/photosphere boundary. The penumbral
  edge is determined from the photometric intensity and is defined
  to correspond to the value of the average intensity minus twice the
  standard deviation from the average. From a comparison of the location
  of this boundary with the location of contours of the vertical and
  horizontal components of the magnetic field, we conclude that the
  data are best represented by canopy-type fields close to all four
  sunspots. There is some evidence that the magnetic inclination in the
  canopies is 5°-15° with respect to the horizontal and that the canopy
  base height lies in the middle/upper photosphere. The observations
  further suggest that the magnetic canopy of a sunspot begins at its
  outer penumbral boundary.

---------------------------------------------------------
Title: A Linear Solution for Magnetic Reconnection Driven by
    Converging or Diverging Footpoint Motions
Authors: Roumeliotis, George; Moore, Ronald L.
1993ApJ...416..386R    Altcode:
  In this paper, we develop a linear, analytic model for magnetic
  reconnection and current sheet formation at an X-type neutral line in
  the solar atmosphere. The reconnection process is assumed to be driven
  by converging or diverging footpoint motions at the photosphere. In
  particular, we examine how the stressed magnetic configuration around
  the neutral line is influenced by the magnitude of the photospheric
  driving velocities and the properties of the plasma between the
  photosphere and the neutral line. From application of the model
  to the solar atmosphere in active regions, we suggest that flux
  cancellation in the photosphere may be accomplished through gradual,
  linear reconnection with little noticeable heating of the atmosphere
  around the reconnection site and that the classical coronal neutral
  line current sheet will likely undergo continual rapid dissipation that
  prevents the build-up of enough stored magnetic energy to power a flare.

---------------------------------------------------------
Title: Can Flare Energy be Built Up by Slow Deformation at an X-Type
    Separator?
Authors: Moore, R. L.; Roumeliotis, G.; Larosa, T. N.
1993BAAS...25.1199M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Mechanism for Bulk Energization in the Impulsive Phase of
Solar Flares: MHD Turbulent Cascade
Authors: Larosa, T. N.; Moore, R. L.
1993BAAS...25R1197L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Measurement of p-Mode Energy Propagation in the Quiet Solar
    Photosphere
Authors: Fontenla, J. M.; Rabin, D.; Hathaway, D. H.; Moore, R. L.
1993ApJ...405..787F    Altcode:
  We have measured and analyzed the p-mode oscillations in the profile
  of the Mg I 4571 A line in a quiet region near disk center. The
  oscillations are found to be mostly standing waves, in agreement with
  previous work. However, a small propagating component is measured, and
  we determine the direction, magnitude, and vertical variation of the
  energy propagation. The work integral indicates an upward energy flow of
  about 2 x 10 exp 7 ergs/sq cm/s at a height of 50 km above the base of
  the photosphere for waves with frequencies of 2-16 mHz. This energy flow
  decreases exponentially with height and drops below 10 exp 5 ergs/sq
  cm/s in the uppermost photosphere. The energy flow leaving the upper
  photosphere is at least an order of magnitude too small to constitute a
  significant source of heating for the chromosphere. However, the p-mode
  damping in the lower photosphere approaches levels large enough to
  account for the measured p-mode line widths. The relative amplitudes
  and phases of the thermodynamic quantities indicate that the p-mode
  are neither adiabatic nor isothermal in the photosphere.

---------------------------------------------------------
Title: On the Heating Mechanism of Coronal Holes
Authors: Hammer, R.; Moore, R. L.; Musielak, Z. E.; Suess, S. T.
1993ASSL..183..587H    Altcode: 1993pssc.symp..587H
  No abstract at ADS

---------------------------------------------------------
Title: SOURCE: The Solar Ultraviolet Radiation and Correlative
    Emissions Mission
Authors: Smith, P. L.; Lean, J. L.; Christensen, A. B.; Harvey, K. L.;
   Judge, D. L.; Moore, R. L.; Torr, M. R.; Woods, T. N.
1993Metro..30..275S    Altcode:
  The Solar Ultraviolet Radiation and Correlative Emissions (SOURCE)
  mission is intended to advance our ability to specify the spectral
  irradiance of the Sun in the extreme ultraviolet (EUV) wavelength
  range through simultaneous, radiometrically accurate measurements of
  the solar EUV spectral irradiance and measurements, including EUV and
  visible images, of solar parameters that are correlated with the EUV
  flux. The data will be used in combination with empirical modelling
  to develop and validate a more accurate system of proxy, or surrogate,
  indices for the solar EUV flux.

---------------------------------------------------------
Title: On reflection of Alfven waves in the solar wind
Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.;
   Nerney, S. F.
1993STIN...9530582K    Altcode:
  We have revisited the problem of propagation of toroidal and linear
  Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB
  and non-WKB waves and their effects on the solar wind. They considered
  two solar wind models and showed that reflection is important for Alfven
  waves with periods of the order of one day and longer, and that non-WKB
  Alfven waves are no more effective in accelerating the solar wind than
  WKB waves. There are several recently published papers which seem to
  indicate that Alfven waves with periods of the order of several minutes
  should be treated as non-WKB waves and that these non-WKB waves exert
  a stronger acceleration force than WKB waves. The purpose of this paper
  is to study the origin of these discrepancies by performing parametric
  studies of the behavior of the waves under a variety of different
  conditions. In addition, we want to investigate two problems that
  have not been addressed by Heinemann and Olbert, namely, calculate
  the efficiency of Alfven wave reflection by using the reflection
  coefficient and identify the region of strongest wave reflection in
  different wind models. To achieve these goals, we investigated the
  influence of temperature, electron density distribution, wind velocity
  and magnetic field strength on the waves. The obtained results clearly
  demonstrate that Alfven wave reflection is strongly model dependent and
  that the strongest reflection can be expected in models with the base
  temperatures higher than 10<SUP>6</SUP> K and with the base densities
  lower than 7 x 10<SUP>7</SUP> cm<SUP>-3</SUP>. In these models as
  well as in the models with lower temperatures and higher densities,
  Alfven waves with periods as short as several minutes have negligible
  reflection so that they can be treated as WKB waves; however, for Alfven
  waves with periods of the order of one hour or longer reflection is
  significant, requiring a non-WKB treatment. We also show that non-WKB,
  linear Alfven waves are always less effective in accelerating the
  plasma than WKB Alfven waves. Finally, it is evident from our results
  that the region of strongest wave reflection is usually located at the
  base of the models, and hence that interpretation of wave reflection
  based solely on the reflection coefficient can be misleading.

---------------------------------------------------------
Title: Microflaring at the feet of large active region loops
Authors: Porter, Jason; Moore, Ron; Roumeliotis, George; Shimizu,
   Toshifumi; Tsuneta, Saku; Sturrock, Peter; Acton, Loren
1993STIN...9670891P    Altcode:
  By superposing Yohkoh SXT images on an MSFC magnetogram of an active
  region, we find that the brightest loops in the bipolar magnetic
  envelope spanning the active region are rooted near a compact site
  of mixed polarity and microflaring. Apparently, the enhanced coronal
  heating in these high loops is a consequence of the microflaring and/or
  related magnetic activity at this end site.

---------------------------------------------------------
Title: A Search for Circular Polarization in Cataclysmic Variables
Authors: Stockman, H. S.; Schmidt, Gary D.; Berriman, G.; Liebert,
   James; Moore, R. L.; Wickramasinghe, D. T.
1992ApJ...401..628S    Altcode:
  Results are presented of an optical and IR polarimetric observing
  program at Steward Observatory to search for AM Her systems and to
  detect circularly polarized light in CV systems in which a magnetic
  white dwarf may be present. Circular polarization techniques are found
  to be quite sensitive in detecting the polarized cyclotron emission,
  free-free emission, or photospheric emission in CV systems with highly
  magnetic white dwarfs. Of the known CVs, few or no AM Her systems
  remain undiscovered. Thus, the space density of these systems can be
  determined by the completeness of the original X-ray or photometric
  surveys and subsequent CV identifications. Selection effects of this
  survey's sensitivity cannot explain the lack of identified AM Her
  systems with very high field strengths or with long periods.

---------------------------------------------------------
Title: A New Way to Convert Alfven Waves into Heat in Solar Coronal
Holes: Intermittent Magnetic Levitation
Authors: Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.;
   An, C. -H.
1992ApJ...397L..55M    Altcode:
  In our recent analysis of Alfven wave reflection in solar coronal
  holes, we found evidence that coronal holes are heated by reflected
  Alfven waves. This result suggests that the reflection is inherent to
  the process that dissipates these Alfven waves into heat. We propose
  a novel dissipation process that is driven by the reflection, and that
  plausibly dominates the heating in coronal holes.

---------------------------------------------------------
Title: Kinetics of the removal of dissolved aluminum by diatoms in
seawater: A comparison with thorium
Authors: Moran, S. B.; Moore, R. M.
1992GeCoA..56.3365M    Altcode:
  Kinetic experiments were conducted using batch systems to investigate
  the removal of dissolved Al and <SUP>234</SUP>Th tracer by dead
  Phaeodactylum tricomutrnm diatoms in seawater. Experiments were
  conducted at constant temperature (2°C), pH (7.8), and salinity
  (30 psu), using realistic oceanic concentrations of dissolved Al
  (50 nM), and 1, 2.5, 5, and 10 mg/L suspensions of dead diatoms in
  ultrafiltered (&lt;10,000 NMW) seawater. Results are characterized
  by a rapid initial removal followed by slower sorption of dissolved
  Al and <SUP>234</SUP>Th by the diatoms on time scales ranging
  from hours to days. Both the removal rate and the percentage of Al
  and <SUP>234</SUP>Th removed are strong functions of the particle
  concentration ( C<SUB>p</SUB>). Modelling the kinetic data as a
  reversible exchange of metal between solution and particles indicates
  a first-order dependence of the forward rate constants for Al and
  <SUP>234</SUP>Th on C<SUB>p</SUB>. Extending these results to oceanic
  scavenging, it is shown that a first-order dependence exists between
  oceanic scavenging rate constants for Al and Th and suspended particle
  concentration for C<SUB>p</SUB> ~ 0.01-1 mg/L. This relationship
  is suggested to reflect the importance of physicochemical removal
  mechanisms (surface-adsorption, co agulation/sedimentation) rather
  than active biological uptake of dissolved Al and Th in oceanic
  waters. Oceanic scavenging rate constants for Al and Th qualitatively
  agree with removal rate constants predicted by the Brownian-pumping
  model for reactive metal scavenging.

---------------------------------------------------------
Title: Intermittent Magnetic Levitation and Heating by Alfven Waves
    in Solar Coronal Holes
Authors: Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.;
   An, C. -H.
1992AAS...180.5506M    Altcode: 1992BAAS...24R.819M
  No abstract at ADS

---------------------------------------------------------
Title: The Inadequacy of Resistive Dissipation in Solar Flares
Authors: Larosa, T. N.; Moore, R. L.
1992AAS...180.1802L    Altcode: 1992BAAS...24..754L
  No abstract at ADS

---------------------------------------------------------
Title: Why the Winds from Late-Type Giants; Supergiants are Cool
Authors: Moore, R. L.; Musielak, Z. E.; An, C. -H.; Rosner, R.; Suess,
   S. T.
1992ASPC...26..464M    Altcode: 1992csss....7..464M
  No abstract at ADS

---------------------------------------------------------
Title: Triggering of Eruptive Flares - Destabilization of the Preflare
    Magnetic Field Configuration
Authors: Moore, R. L.; Roumeliotis, G.
1992LNP...399...69M    Altcode: 1992IAUCo.133...69M; 1992esf..coll...69M
  This paper takes the three-dimensional configuration of the magnetic
  field in and before eruptive flares as our main guide to how the
  preflare field comes to lose its stability and erupt. From observed
  characteristics (1) of the preflare magnetic field configuration,
  (2) of the onset and development of the eruption of this configuration
  before and during the flare, and (3) of the onset and development of
  the flare energy release (i.e., the heating and particle acceleration)
  within the erupting field, the typical erupting field configuration for
  two-ribbon eruptive flares is constructed. The observational centerpiece
  for this construction is the evidence from the Marshall Space Flight
  Center vector magnetograph that strong magnetic shear along the main
  magnetic inversion line is critical for large eruptive flares. From
  (a) the empirical field configuration and (b) the observation that
  the initial flare brightening typically stems from points where
  opposite-polarity flux is gradually merging and canceling at or near the
  main inversion line, it is argued (1) that eruptive flares are driven
  by the eruptive expansion of the strongly sheared core of the preflare
  magnetic field, (2) that this eruption is triggered by preflare slow
  reconnection accompanying flux cancellation in the sheared core, and (3)
  that in some flares the triggering reconnection and flux cancellation
  is between opposite-polarity strands of the extant preflare sheared
  core field, while in other flares it is between the sheared core field
  and new emerging flux.

---------------------------------------------------------
Title: Heating of solar coronal holes by reflected Alfven waves
Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H.
1992MmSAI..63..777M    Altcode:
  As a continuation of the work of Moore et al. (1991), who found evidence
  that coronal holes are heated by Alfven waves that are reflected back
  down within the coronal holes, this paper shows that to demonstrate
  this evidence, it is only necessary to consider a subset of the Moore
  et al. models, namely, those having radial magnetic field. Using
  these models, it is shown that the Alfven velocity is not constant in
  the atmosphere of coronal holes, but changes with height (or radius),
  causing downward reflection of all upward Alfven waves of sufficiently
  long wavelength (or period).

---------------------------------------------------------
Title: Klein-Gordon equation and reflection of Alfvén waves in
    nonuniform media
Authors: Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1992PhFlB...4...13M    Altcode:
  A new analytical approach is presented for assessing the reflection
  of linear Alfven waves in smoothly nonuniform media. The general
  one-dimensional case in Cartesian coordinates is treated. It is
  shown that the wave equations, upon transformation into the form
  of the Klein-Gordon equation, display a local critical frequency for
  reflection. At any location in the medium, reflection becomes strong as
  the wave frequency descends past this characteristic frequency set by
  the local nonuniformity of the medium. This critical frequecy is given
  by the transformation as an explicit function of the Alfven velocity
  and its first and second derivatives, and hence as an explicit spatial
  function. The transformation thus directly yields, without solution
  of the wave equations, the location in the medium at which an Alfven
  wave of any given frequency becomes strongly reflected and has its
  propagation practically cut off.

---------------------------------------------------------
Title: Alfven wave reflection and heating in coronal holes - Theory
    and observation
Authors: Suess, S. T.; Moore, R. L.; Musielak, Z. E.; An, C. -H.
1992sws..coll..117S    Altcode:
  We present evidence for significant reflection of Alfven waves in an
  isothermal, hydrostatic model corona and that heating in coronal holes
  is provided by Alfven waves. For Alfven waves with periods of 5 min,
  upward propagating waves are reflected if the temperature is less
  than 10 exp 6 K, but escape into the solar wind if the temperature
  is greater than 10 exp 6 K. This sensitive temperature dependence
  may provide the self-limiting mechanism that has been suspected to
  exist because the reflected waves result in heating which raises the
  temperature which, in turn, decreases the reflection. The reflection
  occurs mostly inside of about 6 solar radii, depending on temperature,
  wave period, and magnetic field strength and geometry. The importance of
  this process has often been overlooked due to a poor choice of coronal
  Alfven speed and temperature. SOHO is well-suited to measure whether
  the required properties for reflection exist. Solar Probe, however,
  is the only definitive experiment to show if the waves actually exist
  to the degree necessary.

---------------------------------------------------------
Title: The potential source of dissolved aluminum from resuspended
    sediments to the North Atlantic Deep Water
Authors: Moran, S. B.; Moore, R. M.
1991GeCoA..55.2745M    Altcode:
  Laboratory and field studies were conducted to investigate the
  significance of resuspended sediments as a source of dissolved Al to the
  deep northwest Atlantic. Sediment resuspension experiments demonstrate
  the effect on dissolved Al concentration (initially 11 nM) of adding
  natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The
  concentration of dissolved Al increased by the resuspension of
  sediments; for example, addition of 0.15 mg/L sediments caused dissolved
  Al to increase by 10 nM. Distributions of dissolved and leachable
  particulate Al off the tail of the Grand Banks, near the highenergy
  western boundary current, show elevated levels in the near-bottom
  waters. We suggest that resuspended sediments associated with nepheloid
  layers along the western boundary of the North Atlantic are a source
  of dissolved Al. Strong western boundary currents provide the energy to
  resuspend and maintain intense nepheloid layers of sediments. Continued
  resuspension and deposition of sediments within the nepheloid layer
  promotes the release of Al from sediments to the overlying water. The
  Al-rich terrigenous sediments that predominate along the deep boundary
  of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia
  constitute a potentially significant source of dissolved Al. Release
  of Al from resuspended sediments associated with nepheloid layers at
  a more northern location (e.g., Denmark Strait) may contribute to the
  near-linear increase in dissolved Al with depth observed in the deep
  northwest Atlantic.

---------------------------------------------------------
Title: Supercluster-Void Structure and Cartesian Tourbillons Compared
Authors: Moore, R. E. M.
1991PThPh..86..765M    Altcode:
  The cellular structure of supercluster-voids is currently regarded
  as a Voronoi tessellation. Descartes' theory of celestial tourbillons
  can also be regarded in terms of a Voronoi tessellation.

---------------------------------------------------------
Title: Alfven Wave Trapping, Network Microflaring, and Heating in
    Solar Coronal Holes
Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H.
1991ApJ...378..347M    Altcode:
  Fresh evidence that much of the heating in coronal holes is provided
  by Alfven waves is presented. This evidence comes from examining the
  reflection of Alfven waves in an isothermal hydrostatic model coronal
  hole with an open magnetic field. Reflection occurs if the wavelength
  is as long as the order of the scale height of the Alfven velocity. For
  Alfven waves with periods of about 5 min, and for realistic density,
  magnetic field strength, and magnetic field spreading in the model,
  the waves are reflected back down within the model hole if the coronal
  temperature is only slightly less than 1.0 x 10 to the 6th K, but
  are not reflected and escape out the top of the model if the coronal
  temperature is only slightly greater than 1.0 x 10 to the 6th K. Because
  the spectrum of Alfven waves in real coronal holes is expected to peak
  around 5 min and the temperature is observed to be close to 1.0 x 10
  to the 6th K, the sensitive temperature dependence of the trapping
  suggests that the temperature in coronal holes is regulated by heating
  by the trapped Alfven waves.

---------------------------------------------------------
Title: Heating Times and Heating Mechanisms in the Quiet Solar
    Atmosphere
Authors: Hammer, R.; Moore, R. L.
1991BAAS...23.1442H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Why the Winds from Late-Type Giants and Supergiants are Cool
Authors: Moore, R. L.; Musielak, Z. E.; An, C. -H.; Rosner, R.; Suess,
   S. T.
1991BAAS...23Q1385M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Confinement, Alfven Wave Reflection, and the Origins
    of X-Ray and Mass-Loss “Dividing Lines” for Late-Type Giants
    and Supergiants
Authors: Rosner, R.; An, C. -H.; Musielak, Z. E.; Moore, R. L.; Suess,
   S. T.
1991ApJ...372L..91R    Altcode:
  A simple qualitative model for the origin of the coronal and mass-loss
  dividing lines separating late-type giants and supergiants with and
  without hot, X-ray-emitting corona, and with and without significant
  mass loss is discussed. The basic physical effects considered are
  the necessity of magnetic confinement for hot coronal material on the
  surface of such stars and the large reflection efficiency for Alfven
  waves in cool exponential atmospheres. The model assumes that the
  magnetic field geometry of these stars changes across the observed
  'dividing lines' from being mostly closed on the high effective
  temperature side to being mostly open on the low effective temperature
  side.

---------------------------------------------------------
Title: Report of the solar physics panel
Authors: Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro;
   Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald;
   Radick, Richard R.; Rottman, Gary; Scherrer, Philip
1991spsi....1...67W    Altcode:
  Recent accomplishments in solar physics can be grouped by the
  three regions of the Sun: the solar interior, the surface, and the
  exterior. The future scientific problems and areas of interest involve:
  generation of magnetic activity cycle, energy storage and release,
  solar activity, solar wind and solar interaction. Finally, the report
  discusses a number of future space mission concepts including: High
  Energy Solar Physics Mission, Global Solar Mission, Space Exploration
  Initiative, Solar Probe Mission, Solar Variability Explorer, Janus,
  as well as solar physics on Space Station Freedom.

---------------------------------------------------------
Title: A Novel Way to Convert Alfvén Waves to Heat in Coronal Holes:
    Reflective Damping
Authors: Moore, R. L.
1991BAAS...23R1037M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The MSFC Solar GRO Guest Investigation
Authors: Hagyard, M. J.; Gary, G. A.; Moore, R. L.
1991BAAS...23.1073H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Simultaneous UV and X-ray Observations of Solar Microflares
Authors: Porter, J. G.; Fontenla, J. M.; Moore, R. L.; Simnett, G. M.
1991BAAS...23..935P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The X-Ray Counterparts of UV Microflares
Authors: Porter, J. G.; Fontenla, J. M.; Moore, R. L.; Simnett, G. M.
1991BAAS...23.1027P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The MSFC Vector Magnetograph, Eruptive Flares, and the SOLAR-A
    X-ray Images
Authors: Moore, R. L.; Hagyard, M. J.; Davis, J. M.; Porter, J. G.
1991LNP...387..324M    Altcode: 1991fpsa.conf..324M
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Confinement, Alfvén Wave Reflection, and the Origin
    of X-ray and Mass Loss "Dividing Lines"
Authors: An, C. -H.; Rosner, R.; Musielak, Z. E.; Moore, R. L.; Suess,
   S. T.
1991mcch.conf..445A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Reflection of Alfvén Waves and Heating in Solar Coronal Holes
    (With 1 Figure)
Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H.
1991mcch.conf..435M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Heat transfer from Atlantic waters to sea ice in the Arctic
Ocean: Evidence from dissolved argon
Authors: Moore, R. M.; Spitzer, W.
1990GeoRL..17.2149M    Altcode:
  In an attempt to determine whether the temperature and salinity
  properties of Arctic Ocean waters above the Atlantic water
  temperature maximum are the result of heat transfer to sea-ice,
  dissolved Ar has been measured as a temperature tracer. Consistent
  with such a hypothesis, it is found that there is a transition from
  supersaturation of Ar in the upper waters to undersaturation below a
  depth of 275m. Using the known dependence of the solubility of Ar on
  T and S, and assuming that the water was originally equilibrated with
  the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C
  of cooling can be attributed to transfer of heat to sea-ice.

---------------------------------------------------------
Title: The Advanced Solar Observatory
Authors: Walker, Arthur B. C., Jr.; Bailey, Wayne; Chupp, Edward L.;
   Hudson, Hugh S.; Moore, Ronald; Roberts, William; Hoover, Richard B.
1990OptEn..29.1306W    Altcode:
  A conceptual plan for the development of a comprehensive long duration
  solar space observatory, The Advanced Solar Observatory (ASO) is
  described. The ASO is intended to provide solar astronomers with
  the observational power necessary to address fundamental problems
  relating to the solar convection zone and activity cycle; the thermal
  and nonthermal processes that control the transport of energy, mass, and
  magnetic flux in the solar atmosphere; the generation of the solar wind;
  and the dynamics of the inner heliosphere. The ASO concept encompasses
  three proposed Space Station-based instrument ensembles: (1) the High
  Resolution Telescope Cluster, which includes far ultraviolet, extreme
  ultraviolet, and X-ray telescopes; (2) the Pinhole/Occulter Facility,
  which includes Fourier transform and coded aperture hard X-ray and gamma
  ray telescopes and occulted ultraviolet and visible light coronagraphs;
  and (3) the High Energy Facility, which contains neutron, gamma ray, and
  low frequency radio spectrometers. Two other facilities, the Orbiting
  Solar Laboratory, and a package of Global Dynamics Instrumentation,
  will, with the Space Station ensembles, form a comprehensive capability
  for solar physics. The scientific program of the ASO, current instrument
  concepts for the Space Station based ASO instrument ensembles, and
  plans for their accommodation on the Space Station are described.

---------------------------------------------------------
Title: Advanced Solar Observatory
Authors: Walker, Arthur B.; Bailey, Wayne L.; Chupp, Edward L.; Hudson,
   Hugh S.; Moore, Ronald L.; Roberts, William T.; Hoover, Richard B.;
   Wu, Shi T.
1990SPIE.1235..802W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A lunar based solar observatory rationale and concepts
Authors: Davis, John M.; Balasubramaniam, K. S.; Gary, G. A.; Moore,
   Ronald L.
1990AIPC..207..567D    Altcode: 1990am...proc..567D
  The rationale for a lunar solar observatory is described and the
  requirements for various candidate instruments are developed. The unique
  characteristics of the lunar surface, its stability, low seismicity,
  and long unobstructed paths make it an ideal site for a large, high
  performance optical telescope. The capabilities of such an instrument is
  used, as an example (1) for the science that might be achieved from the
  lunar surface, (2) to identify the magnitude of the instrumentation,
  and (3) to indicate the technologies that must be developed if such
  an observatory is to become a reality.

---------------------------------------------------------
Title: Magnetic Loops in the Chromospheric Network
Authors: Moore, R. L.; Rabin, D. M.; Dowdy, J. F., Jr.
1990BAAS...22..815M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Measurement of Dissipation or Pumping of P-Modes in the
    Solar Photosphere
Authors: Fontenla, J. M.; Hathaway, D. H.; Rabin, D.; Moore, R.
1990BAAS...22..856F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Reflection and Trapping of Alfven Waves in a Spherically
    Symmetric Stellar Atmosphere
Authors: An, C. -H.; Suess, S. T.; Moore, R. L.; Musielak, Z. E.
1990ApJ...350..309A    Altcode:
  Alfven wave propagation in a spherically symmetric isothermal and
  stratified stellar atmosphere are analzyed using a time-dependent MHD
  numerical model. Particular consideration is given to wave reflection
  and the resultant trapping of the wave due to a peak in the Alfven speed
  in the atmosphere. Resonance frequencies in the trapping region and the
  effect of trapping on Alfven wave pressure force and propagation are
  examined. The data reveal that Alfven wave trapping has a potentially
  important role in accelerating winds from cool stars.

---------------------------------------------------------
Title: Effect of Radiative Transfer on Convection in the Deep
    Photosphere of Late-Type Dwarfs
Authors: Fontenla, J. M.; Musielak, Z. E.; Moore, R. L.
1990ASPC....9...82F    Altcode: 1990csss....6...82F
  A method is proposed to eliminate the compressional instability of a
  shallow layer in the upper part of stellar convective zones in standard
  mixing-length models. By equating the radiative cooling time of mixing
  eddies to their convective turnover time, the effective sizes of the
  eddies are assumed to be the smallest of those which are not eliminated
  by radiative transfer. Computations of the models with this assumption
  leads to smooth temperature profiles in the previously unstable layers
  and reductions of the convective velocity above its maximum value.

---------------------------------------------------------
Title: Hallmarks of the magnetic field in the solar atmosphere -
    Structure, evolution, heating, and flaring
Authors: Moore, Ronald L.
1990MmSAI..61..317M    Altcode:
  Recent observations of the solar magnetic field and its effects on the
  solar atmosphere are discussed, with an emphasis on large-scale active
  regions and their implications for the fine-scale magnetic structure
  and for activity in the so-called quiet regions. Sample magnetograms,
  sunlight images, H-alpha images, X-ray images, and spectroheliograms
  are presented and characterized in detail, and the form and action of
  the magnetic field in flares are considered. It is pointed out that
  simultaneous observations of all levels (from the photosphere to the
  corona) at 100-km (about 100-marcsec) resolution are needed to see the
  extent of fields looping into the corona and understand their structure
  and activity; large space-based observatories would be required.

---------------------------------------------------------
Title: Driving of the Solar P-modes by Radiative Pumping in the
    Upper Photosphere
Authors: Fontenla, Juan M.; Emslie, A. G.; Moore, Ronald L.
1990AIPC..198..218F    Altcode: 1989AIPC..198..218F; 1990asan.conf..218F
  It is shown that one viable driver of the solar p-modes is radiative
  pumping in the upper photosphere where the opacity is dominated by
  the negative hydrogen ion. This new option is suggested by the similar
  magnitudes of two energy flows that have been evaluated by independent
  empirical methods. The similarity indicates that the p-modes are
  radiatively pumped in the upper photosphere and therefore provide the
  required nonradiative cooling.

---------------------------------------------------------
Title: A Mechanism for the Increase in Stellar Wind Mass Loss from
    Giants across the Dividing Line
Authors: An, C. H.; Musielak, Z. E.; Rosner, R.; Moore, R. L.; Suess,
   S. T.
1990ASPC....9...70A    Altcode: 1990csss....6...70A
  No abstract at ADS

---------------------------------------------------------
Title: Reflection and trapping of transient Alfven waves propagating
    in an isothermal atmosphere with constant gravity and uniform
    magnetic field
Authors: An, C. -H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.
1989ApJ...345..597A    Altcode:
  A time-dependent linear magnetohydrodynamic numerical model was used
  to investigate the propagation of Alfven waves in an isothermal and
  stratified atmosphere with constant gravity and uniform vertical
  magnetic field. Results show that the Alfven wave transit time for
  the wave source to infinity is finite and that the wave exhibits
  continuous partial reflection which becomes total reflection as the
  front approaches infinity. The total reflection causes the waves to be
  trapped in the cavity that extends from the wave source to infinity
  and in which the wave energy is stored. The results suggest that the
  reflection of Alfven waves (of sufficiently long period) from the
  outer corona is an intrinsic phenomenon for any stellar atmosphere
  stratified by gravity and an open magnetic field, and that, therefore,
  such waves may be trapped in the stellar atmosphere.

---------------------------------------------------------
Title: Alfven Speed and Heating in Solar Coronal Holes
Authors: Moore, R. L.; An, C. H.; Suess, S. T.; Musielak, Z. E.
1989BAAS...21.1180M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Propagating and Nonpropagating Compression Waves in an
    Isothermal Atmosphere with Uniform Horizontal Magnetic Field
Authors: Musielak, Z. E.; An, C. -H.; Moore, R. L.; Suess, S. T.
1989ApJ...344..478M    Altcode:
  Full analytical solutions to the wave equations for steady vertical
  compression waves in an isothermal hydrostatic atmosphere with a uniform
  horizontal magnetic field are presented. It is shown that, in the steady
  state approach, the behavior of upward waves and downward waves is very
  different. It is shown that the finding of Thomas (1983), indicating
  that the cutoff frequency for vertically propagating magnetoacoustic
  waves in an isothermal atmosphere with a horizontal magnetic field
  is the same for isothermal atmosphere with no magnetic field, is true
  only for the downward waves.

---------------------------------------------------------
Title: Do Any White Dwarfs Have X-ray Coronae?
Authors: Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.
1989BAAS...21.1222M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Role of Alfven Wave Trapping in the Acceleration of
    Stellar Winds from Late-Type Giants and Supergiants
Authors: An, C. -H.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Moore,
   R. L.
1989BAAS...21..792A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Ubiquity of magnetic Loops in the Chromospheric Network
Authors: Moore, R. L.; Rabin, D. M.; Dowdy, J. F., Jr.
1989BAAS...21..864M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Reflection and Trapping of Alfven Waves in Coronal Holes
Authors: An, C. -H.; Suess, S. T.; Moore, R. L.; Musielak, Z. E.
1989BAAS...21..844A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Subphotospheric Excitation of Alfven Waves and Their Role in
    the Solar Atmosphere
Authors: Musielak, Z. E.; Rosner, R.; Ulmschneider, P.; Moore, R. L.
1989BAAS...21R.830M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Alfven Wave Trapping and Heating in Coronal Holes
Authors: Moore, R. L.; An, C. -H.; Suess, S. T.; Musielak, Z. E.
1989BAAS...21Q.830M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A sketch of solar physics.
Authors: Moore, R. L.
1989GMS....54....1M    Altcode: 1989sspp.conf....1M
  Solar physics is an important, exciting branch of science in three
  ways. To begin with, solar phenomena and the physics that governs
  them are fascinating and worthy of study in their own right. The
  length scales, temperatures, densities, magnetic fields, gravity,
  and rotation of the Sun yield an array of magnetohydrodynamic (MHD)
  phenomena that are captivating to observe, confounding to explain,
  and impossible to truely replicate in the laboratory. In another way,
  solar physics is important because the Sun is the nearest star. This
  makes our knowledge and understanding of the Sun, i.e., solar physics,
  a key to stellar astrophysics. Moreover, as in the MHD and plasma
  phenomena of the Sun, magnetized plasma is an essential ingredient
  of most cosmic systems of stellar and galactic scale, including the
  violent objects prominent in modern astrophysics (e.g., collapsed
  stellar objects with accretion disks, active galactic nuclei, and
  stellar and galactic jets). Because of this and the nearness of the
  Sun, solar physics guides and tests our understanding of processes
  that are important for much of astrophysics beyond that of normal
  stars. Finally, solar physics is important because the Sun, through
  its direct radiation and the solar wind, is the origin or driver of
  phenomena central to space physics: the interplanetary medium and the
  magnetospheres, ionospheres, and atmospheres of the planets. This domain
  includes solar-terrestrial effects of great practical importance:
  the Sun sustains life on Earth, drives our weather, and regulates
  our climate. As in astrophysics, plasma processes that govern solar
  phenomena also pervade space physics. For example, this is evident in
  the strong similarity between solar flares and magnetospheric substorms
  (e.g., see Svestka, 1976). So, in broad perspective, solar physics is
  a worthy endeavor because solar physics by itself is a challenging and
  rewarding science, because solar physics (together with space physics)
  is a key to much of astrophysics, and because of the preeminence of
  the Sun in space physics phenomena and the terrestrial environment.

---------------------------------------------------------
Title: Chromospheric explosions.
Authors: Doschek, G. A.; Antiochos, S. K.; Antonucci, E.; Cheng,
   C. -C.; Culhane, J. L.; Fisher, G. H.; Jordan, C.; Leibacher, J. W.;
   MacNiece, P.; McWhirter, R. W. P.; Moore, R. L.; Rabin, D. M.; Rust,
   D. M.; Shine, R. A.
1989epos.conf..303D    Altcode:
  The work of this team addressed the question of the response and
  relationship of the flare chromosphere and transition region to the
  hot coronal loops that reach temperatures of about 10<SUP>7</SUP>K
  and higher. Flare related phenomena such as surges and sprays were
  also discussed. The team members debate three main topics: 1) whether
  the blue-shifted components of X-ray spectral lines are signatures of
  "chromospheric evaporation"; 2) whether the excess line broadening of UV
  and X-ray lines is accounted for by "convective velocity distribution"
  in evaporation; and 3) whether most chromospheric heating is driven by
  electron beams. These debates illustrated the strengths and weaknesses
  of our current observations and theories.

---------------------------------------------------------
Title: Yosemite Conference on Outstanding Problems in Solar System
Plasma Physics: Theory and Instrumentation
Authors: Waite, J. H., Jr.; Burch, J. L.; Moore, R. L.
1989GMS....54.....W    Altcode: 1989sspp.conf.....W; 1994QB529.S625.....
  Science involves a well orchestrated interplay between theory and
  experiment. Past unexplained observations suggest new questions
  to be asked, and answering these questions many times requires
  new observational techniques or at least new applications of old
  techniques. Solar system plasma physics is a classic example of
  the scientific process at work and has benefited from the rapid
  technological exploration of our near space environment over the last
  35 years. This book is a 1988 snapshot of the scientific process in
  solar system plasma physics. It is structured by a series of scientific
  questions. Under each of these headings are theoretical papers which
  review the pertinent science and properly formulate the question in
  specific observational terms. These are followed by experimental papers
  which address the present state of observational techniques which can
  be used to investigate these outstanding problems. In addition, two
  introductory papers offer overviews of the fields of solar physics and
  magnetospheric physics; each addresses itself, as a kind of short course
  in its respective discipline, to scientists from the other discipline.

---------------------------------------------------------
Title: The driver in flares and coronal mass ejections: Magnetic
    expansion
Authors: Moore, Ronald L.
1988fnsm.work...97M    Altcode:
  Chromospheric filaments, and hence the sheared magnetic fields that they
  trace, are observed to erupt in flares and coronal mass ejections. In
  the eruption, the filament-traced field is seen to expand in volume. For
  frozen-in magnetic field and isotropic expansion, the magnetic energy in
  a flux tube decreases as the flux tube expands. The amount of expansion
  of the magnetic field and the corresponding decrease in magnetic
  energy in a filament-eruption flare and/or coronal mass ejection can
  be estimated to order of magnitude from the observed expansion of the
  erupting filament. This evaluation for filament-eruption events in
  which the filament expansion is clearly displayed gives decreases in
  magnetic energy of the order of the total energy of the accompanying
  flare and/or coronal mass ejection. This simple expanding flux tube
  model can also fit the observed acceleration of coronal mass ejections,
  if it is assumed that the increase in mechanical energy of the mass
  ejection comes from the magnetic energy decrease in the expansion. These
  results encourage the view that magnetic expansion such as seen in
  filament eruptions drives both the plasma particle energization in
  flares and the bulk mass motion in coronal mass ejections.

---------------------------------------------------------
Title: Observed Magnetic Structure and Activity in the Quiet Solar
    Atmosphere
Authors: Moore, R. L.; Dowdy, J. F., Jr.; Rabin, D. M.
1988BAAS...20.1009M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Filament Eruptions and the Impulsive Phase of Solar Flares
Authors: Kahler, S. W.; Moore, R. L.; Kane, S. R.; Zirin, H.
1988ApJ...328..824K    Altcode:
  Filament motion during the onset of the solar flare impulsive
  phase is examined. The impulsive phase onset is established from
  profiles of about 30 keV X-ray fluxes and the rapid flare brightenings
  characteristic of the H-alpha flash phase. The filament motion begins
  several minutes before the impulsive or flash phase of the flare. No
  new accleration is observed in the motion of the filament during the
  onset of the impulsive phase for at least two of the four flares. The
  most common H-alpha brightenings associated with the impulsive phase
  lie near the magnetic inversion line roughly centered under the erupting
  filament. Filament speeds at the onset of the impulsive or flash phase
  lie in the range 30-180 km/s. These characteristics indicate that
  the filament eruption is not driven by the flare plasma pressure,
  but instead marks an eruption of magnetic field driven by a global
  MHD instability of the field configuration in the region of the flare.

---------------------------------------------------------
Title: The 2-D magnetohydrostatic configurations leading to flares
    or quiescent filament eruptions
Authors: An, C. -H.; Suess, S. T.; Moore, R. L.
1988STIN...8825423A    Altcode:
  To investigate the cause of flares and quiescent filament eruptions
  the quasi-static evolution of a magnetohydrostatic (MHS) model was
  studied. The results lead to a proposal that: the sudden disruption
  of an active-region filament field configuration and the accompanying
  flare result from the lack of a neighboring equilibrium state as
  magnetic shear is increased above the critical value; and a quiescent
  filament eruption is due to an ideal MHD kink instability of a highly
  twisted detached flux tube formed by the increase of plasma current
  flowing along the length of the filament. A numerical solution was
  developed for the 2-D MHS equation for the self-consistent equilibrium
  of a filament and overlying coronal magnetic field. Increase of the
  poloidal current causes increase of magnetic shear. As shear increases
  past a critical point, there is a discontinuous topological change
  in the equilibrium configuration. It was proposed that the lack of
  a neighboring equilibrium triggers a flare. Increase of the axial
  current results in a detached tube with enough helical twist to be
  unstable to ideal MHD kink modes. It was proposed that this is the
  condition for the eruption of a quiescent filament.

---------------------------------------------------------
Title: The Driver in Flares and Coronal Mass Ejections: Magnetic
    Expansion
Authors: Moore, R. L.
1988BAAS...20R.745M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Trapping of Magnetoacoustic Waves in an Isothermal Atmosphere
Authors: Musielak, Z. E.; Moore, R. L.; Suess, S. T.
1988BAAS...20..683M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Modulation of the Short-Period Cutoff for Solar
    Global p-Mode Oscillations
Authors: Moore, R. L.; Musielak, Z. E.
1988BAAS...20Q.684M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Observed Characteristics of Flare Energy
    Release. I. Magnetic Structure at the Energy Release Site
Authors: Machado, Marcos E.; Moore, Ronald L.; Hernandez, Ana M.;
   Rovira, Marta G.; Hagyard, Mona J.; Smith, Jesse B., Jr.
1988ApJ...326..425M    Altcode:
  It is shown that flaring activity as seen in X-rays usually encompasses
  two or more interacting magnetic bipoles within an active region. Soft
  and hard X-ray spatiotemporal evolution is considered as well as the
  time dependence of the thermal energy content in different magnetic
  bipoles participating in the flare, the hardness and impulsivity of the
  hard X-ray emission, and the relationship between the X-ray behavior
  and the strength and 'observable shear' of the magnetic field. It
  is found that the basic structure of a flare usually consists of an
  initiating closed bipole plus one or more adjacent closed bipoles
  impacted against it.

---------------------------------------------------------
Title: Chromospheric Emission Bifurcation of Sunspots
Authors: Gary, G. A.; Moore, R. L.
1988BAAS...20..704G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Detection of Microflares with the Present UVSP
Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J.; Fontenla, J. M.
1988BAAS...20..711P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Photospheric Radiative Pumping of the Solar Global p-Mode
    Oscillations
Authors: Fontenla, J. M.; Moore, R. L.
1988BAAS...20..684F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Kinematic Properties of the Ejected Matter in NGC 1275
Authors: Marr, J. M.; Backer, D. C.; Wright, M. C. H.; Readhead,
   A. C. S.; Moore, R.
1988IAUS..129...91M    Altcode:
  The authors have mapped the nearby (z = 0.018), active galaxy NGC 1275
  (3C 84) at 6 different epochs from 1981 to 1986 at 1.3 cm (22.3 GHz)
  with a global VLBI array of seven telescopes. They find a long-lived
  knot of emission separating from the brightest radio component with a
  projected velocity 0.46±0.12 h<SUP>-1</SUP>c. This knot moves through
  diffuse emission that also moves away from the main component with a
  slower projected velocity of 0.33±0.12 h<SUP>-1</SUP>c. It is shown
  that the knot and diffuse emission result from two separate events
  that occurred around 1959 and 1968.

---------------------------------------------------------
Title: Evidence that coronal mass ejections are magnetically
    self-propelled.
Authors: Moore, Ronald L.
1988sscd.conf..520M    Altcode:
  The observed embedment of erupting filaments in coronal mass ejections,
  the results of Kahler et al. (1988) on the observed dynamics of
  erupting filaments, and the empirical estimates of Moore (1988) of
  the magnetic energy released in filament eruptions reinforce each
  other in pointing to the conclusion that coronal mass ejections are
  magnetically self-propelled plasmoids.

---------------------------------------------------------
Title: Evidence That Magnetic Energy Shedding in Solar Filament
    Eruptions is the Drive in Accompanying Flares and Coronal Mass
    Ejections
Authors: Moore, Ronald L.
1988ApJ...324.1132M    Altcode:
  Both in solar regions of strong (100 - 1000 G) magnetic field (active
  regions) and in regions of weaker magnetic field (quiet regions),
  filaments of chromospheric material reside in sheared magnetic fields
  over magnetic inversion lines. Such filaments, and hence the sheared
  fields that they trace, often erupt in flares and coronal mass
  ejections. This paper shows that the apparent decrease of magnetic
  energy in observed filament-field eruptions is of the order of the
  total energy of the flare and/or coronal mass ejection in which the
  erupting filament is embedded. This quantitative match supports the
  long-standing tenet that the flare energy comes from the preflare
  magnetic field, and indicates that the magnetic energy dumped in a
  filament-eruption flare comes from the erupting flux tube.

---------------------------------------------------------
Title: Report of conference on outstanding questions in solar sytem
plasma physics: Theory and instrumentation
Authors: Burch, J. L.; Moore, R. L.; Waite, J. H., Jr.
1988EOSTr..69..796B    Altcode:
  On February 2-5, 1988, 90 space physicists met at Yosemite National
  Park to discuss theoretical and instrumentation aspects of solar system
  plasma physics. The participants were divided nearly equally between
  those involved in the plasma physics of planetary, Earth, and cometary
  magnetospheres and those involved in the field of solar physics. This
  dichotomy led to a significant amount of cross fertilization of ideas
  between the two groups. In retrospect the exchange would have been
  facilitated by introductory tutorial lectures on the outstanding
  problems extant in the two subjects. Nonetheless, as the conference
  progressed, with plenty of time for informal discussion, the two
  groups found that not only are the Sun and the various planetary
  magnetospheres inextricably linked, as expected, via the solar wind,
  but also that they are characterized by a number of the same physical
  phenomena. For example, one phenomenon, the cyclotron maser resonance,
  was suggested to be responsible for Type III solar radio bursts. The
  same phenomenon is generally accepted to cause auroral kilometric
  radiation in the Earth's magnetosphere. Lively discussions were also
  held on collisionless shocks, which are important phenomena in the
  solar atmosphere, the solar wind, and in the interaction of the solar
  wind with planetary magnetospheres. The analogy of solar flares and
  magnetospheric substorms and the role of magnetic reconnection in solar
  and magnetospheric physics were also topics of mutual interest which
  spawned vigorous discussion as a result of the different perspectives
  of the two communities.

---------------------------------------------------------
Title: Coronal heating by microflares.
Authors: Porter, J. G.; Moore, R. L.
1988sscd.conf..125P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The kinetics of reversible Th reactions with marine particles
Authors: Moore, R. M.; Millward, G. E.
1988GeCoA..52..113M    Altcode:
  Experiments on the reversibility of Th adsorption on natural marine
  particles utilized the short-lived isotope <SUP>234</SUP>Th as a
  tracer. The adsorption of Th from seawater onto mineral particles is a
  reversible process. The extent to which Th can desorb from the particles
  decreases as the particles age. The kinetics of adsorption-desorption
  reactions have been modelled as a three-stage equilibrium; values of
  the six rate constants have been evaluated. Attempts to determine
  a single rate constant for the adsorption of Th from seawater from
  a single parent-daughter disequilibrium, or to determine a forward
  and a back rate constant using two such disequilibria will yield rate
  constants that depend on the time for which the marine particles have
  been reacting with Th in seawater.

---------------------------------------------------------
Title: Microflares in the Solar Magnetic Network
Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J.; Engvold, O.;
   Harvey, K. L.
1987ApJ...323..380P    Altcode:
  It is suggested that the events observed by HRTS are microflares
  in tiny magnetic bipoles (some in cell interiors but most in the
  magnetic network) and that these same events, when strong enough
  and frequent enough in some of the larger bipoles, sustain X-ray
  bright points. In this paper, the authors present new evidence in
  favor of this hypothesis. Using C IV spectroheliograms in combination
  with magnetograms and He I λ10,830 spectroheliograms they find that
  impulsive heating events of the class observed by HRTS are common at
  small bipoles in the network, both at bipoles corresponding to X-ray
  bright points and at many weaker bipoles that show no sustained enhanced
  coronal brightness.

---------------------------------------------------------
Title: 10.7 cm solar radio flux and the magnetic complexity of
    active regions.
Authors: Wilson, Robert M.; Rabin, Douglas; Moore, Ronald L.
1987SoPh..111..279W    Altcode:
  During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar
  radio flux occurred about 1.5 yr after the maximum smoothed sunspot
  number, whereas during cycles 18 and 19 no lag was observed. Thus,
  although 10.7-cm radio flux and Zürich suspot number are highly
  correlated, they are not interchangeable, especially near solar
  maximum. The 10.7-cm flux more closely follows the number of sunspots
  visible on the solar disk, while the Zürich sunspot number more
  closely follows the number of sunspot groups. The number of sunspots
  in an active region is one measure of the complexity of the magnetic
  structure of the region, and the coincidence in the maxima of radio
  flux and number of sunspots apparently reflects higher radio emission
  from active regions of greater magnetic complexity. The presence
  of a lag between sunspot-number maximum and radio-flux maximum in
  some cycles but not in others argues that some aspect of the average
  magnetic complexity near solar maximum must vary from cycle to cycle. A
  speculative possibility is that the radio-flux lag discriminates between
  long-period and short-period cycles, being another indicator that the
  solar cycle switches between long-period and short-period modes.

---------------------------------------------------------
Title: On the inability of magnetically constricted transition regions
    to account for the 10<SUP>5</SUP> to 10<SUP>6</SUP> K plasma in the
    quiet solar atmosphere
Authors: Dowdy, James F., Jr.; Moore, Ronald L.; Emslie, A. Gordon
1987SoPh..112..255D    Altcode:
  Although `back conduction' from the corona has been shown to be
  inadequate for powering EUV emission below T ≈ 2 × 10<SUP>5</SUP>
  K, it is thought to be adequate in the temperature range 2 ×
  10<SUP>5</SUP> K &lt; T &lt; 10<SUP>6</SUP> K. No models to date,
  however, have included the large magnetic constriction which should
  occur in the legs of coronal loops where conductive `transition
  regions', hitherto thought to contain the bulk of the plasma in this
  higher temperature range, are located. On the basis of fine scale
  magnetograms, Dowdy et al. (1986) have estimated that these magnetic
  flux tubes are constricted from end to end by an areal factor of
  approximately 100. Furthermore, on the basis of simple steady-state
  conductive models, Dowdy et al. (1985) have shown that the large
  constriction can inhibit the conductive flow of heat by an order of
  magnitude. We are thus led to re-examine static models of this region
  of the atmosphere which incorporate not only conduction and radiation
  but also the effects of large magnetic constrictions. We find that
  the structure of this plasma depends not only on the magnitude of the
  constriction but also on the tube's shape.

---------------------------------------------------------
Title: Microflares, Spicules, and the Heating of the Corona
Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J.
1987BAAS...19..921P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: An ISOL/post-accelerator facility for nuclear astrophysics
    at TRIUMF
Authors: Buchmann, L.; D'Auria, J. M.; King, J. D.; MacKenzie, G.;
   Schneider, H.; Moore, R. B.; Rolfs, C.
1987NIMPB..26..151B    Altcode:
  A facility to perform measurements of nuclear reaction rates in which
  one of the reactants is a radioactive species is described. The value
  of these reactions to the area of nuclear astrophysics is discussed
  in detail and calculations of expected yields for selected examples
  are given. This proposed facility is composed of an on-line isotope
  separator (ISOL) front-end coupled to a booster post-accelerator stage
  to raise the energy of a radioactive ion beam to sufficient energies
  (up to 1.5 MeV/u) to perform these studies. The advantages of this
  approach are presented along with a discussion of the feasibility
  of not only obtaining the necessary radioactive beam intensities
  of the important isotopes, but also of achieving the acceleration
  necessary. Details of one feasible accelerator system are presented.

---------------------------------------------------------
Title: Nonpotential Features Observed in the Magnetic Field of an
    Active Region
Authors: Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, Bernhard M.
1987ApJ...314..782G    Altcode:
  A unique coordinated data set consisting of vector magnetograms,
  H-alpha photographs, and high-resolution ultraviolet images of a
  solar active region is used, together with mathematical models, to
  calculate potential and force-free magnetic field lines and to examine
  the nonpotential nature of the active region structure. It is found
  that the overall bipolar magnetic field of the active region had a net
  twist corresponding to net current of order 3 x 10 to the 12th A and
  average density of order 4 x 10 to the -4th A/sq m flowing antiparallel
  to the field. There were three regions of enhanced nonpotentiality
  in the interior of the active region; in one the field had a marked
  nonpotential twist or shear with height above the photosphere. The
  measured total nonpotential magnetic energy stored in the entire
  active region was of order 10 to the 32nd ergs, about 3 sigma above
  the noise level.

---------------------------------------------------------
Title: Observed form and action of the magnetic field in flares
Authors: Moore, Ronald L.
1987SoPh..113..121M    Altcode: 1982SoPh..113..121M
  No abstract at ADS

---------------------------------------------------------
Title: Flare research with the NASA/MSFC vector magnetograph: Observed
    characteristics of sheared magnetic fields that produce flares
Authors: Moore, R. L.; Hagyard, M. J.; Davis, J. M.
1987SoPh..113..347M    Altcode: 1982SoPh..113..347M
  The present MSFC Vector Magnetograph has sufficient spatial resolution
  (2.7 arcsec pixels) and sensitivity to the transverse field (the noise
  level is about 100 gauss) to map the transverse field in active regions
  accurately enough to reveal key aspects of the sheared magnetic fields
  commonly found at flare sites. From the measured shear angle along the
  polarity inversion line in sites that flared and in other shear sites
  that didn't flare, we find evidence that a sufficient condition for a
  flare to occur in 1000 gauss fields in and near sunspots is that both
  (1) the maximum shear angle exceed 85 degrees and (2) the extent of
  strong shear (shear angle &gt; 80 degrees) exceed 10,000 km.

---------------------------------------------------------
Title: Magnetic location of C IV events in the quiet network.
Authors: Porter, Jason G.; Reichmann, Ed J.; Moore, Ronald L.; Harvey,
   Karen L.
1986NASCP2442..383P    Altcode: 1986copp.nasa..383P
  Ultraviolet Spectrograph and Polarimeter (UVSP) observations
  of C IV intensity in the quiet sun were examined and compared
  to magnetograms and He I 10830 A spectroheliograms from Kitt Peak
  National Laboratory. The observations were made between 3 and 9 April,
  1985. Spatially rastered UVSP intensity measurements were obtained at 11
  wavelength positions in the 1548 A line of C IV. It was concluded that
  the stochastic process whereby convective shuffling of loop footprints
  leads to many topically dissipative events in active regions and the
  larger bipoles treated here continues to operate in regions of fewer,
  weaker flux loops, but the resulting events above threshold are less
  frequent.

---------------------------------------------------------
Title: Accuracy Requirements for Vector Magnetic Field Measurements
    for Solar Flare Prediction
Authors: Moore, R. L.; Gary, G. A.; Hagyard, M. J.; Davis, J. M.
1986BAAS...18.1043M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Evolution of the Compact Radio Source in 3C 345. I. VLBI
    Observations
Authors: Biretta, J. A.; Moore, R. L.; Cohen, M. H.
1986ApJ...308...93B    Altcode:
  A systematic analysis of VLBI observations of the superluminal radio
  source 3 C 345 is presented. Observation frequencies range from
  2.3 to 89 GHz, and epochs are from 1979.25 through 1984.11. A newly
  ejected knot (C4) accelerates, changes position angle, and undergoes
  a large flux outburst. Older knots C2 and C3 have different speeds,
  little or no acceleration, and different position angles. The flux
  of C3 decays, and its spectrum steepens. The moving knots define an
  opening angle of about 27 deg and show direct evidence of expansion. The
  counterjet-to-jet flux ratio is -0.007 + or 0.007.

---------------------------------------------------------
Title: On the Magnetic Structure of the Quiet Transition Region
Authors: Dowdy, J. F., Jr.; Rabin, D.; Moore, R. L.
1986SoPh..105...35D    Altcode:
  Existing models of the quiet chromosphere-corona transition region
  predict a distribution of emission measure over temperature that agrees
  with observation for T ≳ 10<SUP>5</SUP> K. These `network' models
  assume that all magnetic field lines that emerge from the photosphere
  extend into and are in thermal contact with the corona. We show
  that the observed fine-scale structure of the photospheric magnetic
  network instead suggests a two-component picture in which magnetic
  funnels that open into the corona emerge from only a fraction of the
  network. The gas that makes up the hotter transition region is mostly
  contained within these funnels, as in standard models, but, because
  the funnels are more constricted in our picture, the heat flowing
  into the cooler transition region from the corona is reduced by up
  to an order of magnitude. The remainder of the network is occupied
  by a population of low-lying loops with lengths ≲ 10<SUP>4</SUP>
  km. We propose that the cooler transition region is mainly located
  within such loops, which are magnetically insulated from the corona
  and must, therefore, be heated internally. The fine-scale structure
  of ultraviolet spectroheliograms is consistent with this proposal,
  and theoretical models of internally heated loops can explain the
  behavior of the emission measure below T ≈ 10<SUP>5</SUP> K.

---------------------------------------------------------
Title: Wave speeds in the corona and the dynamics of mass ejections
Authors: Suess, S. T.; Moore, R. L.
1986sfcp.rept..262S    Altcode:
  A disturbance or coronal mass ejection being advected by the solar
  wind will expand at the fastest local characteristic speed - typically
  approximately the fast-mode speed. To estimate this characteristic wave
  speed and the velocity field in the ambient corona, it is necessary to
  know the magnetic field, temperature, and density. Only the density
  is known from coronal observations. The temperature, magnetic field,
  and velocity are not yet directly measured in the outer corona and
  must be estimated from a model. In this study, it is estimated that
  the magnetic field, solar wind velocity, and characteristic speeds
  use the MHD model of coronal expansion between 1 and 5 solar radii
  (R solar radii) with a dipole magnetic field at the base. This model,
  for a field strength of about 2 gauss at the base, gives flow speeds at
  low latitudes (near the heliospheric current sheet) of 250 km/s at 5 R
  solar radii and, 50 km/s at 2 solar radii, and fast-mode speeds to 400
  to 500 km/s everywhere between 2 and 5 solar radii. This suggests that
  the outer edge of a velocity of mass ejection reported by MacQueen and
  Fisher (1983) and implies that the acceleration mechanism for coronal
  mass ejections is other than simple entrainment in the solar wind.

---------------------------------------------------------
Title: Bimodality of the solar cycle
Authors: Rabin, D.; Wilson, R. M.; Moore, R. L.
1986GeoRL..13..352R    Altcode:
  For sunspot cycles 1-20 (1755-1976), all cycles occurred in strings
  (two to six cycles in length) during which the period remained longer
  or shorter than the sample mean period. These strings have coincided
  with long-term trends of growth or decay in the amplitude of the
  cycle. In six out of six cases, the period of the cycle has switched
  from long to short (or the reverse) in coincidence with turning points
  in the long-term trend. This suggests that the solar dynamo has two
  modes with different mean periods. In the short-period mode, the
  amplitude of the cycle grows; in the long-period mode, the amplitude
  decays. The transition between modes has occurred at irregular
  intervals. A persistence of the long-period mode would eventually
  produce a grand minimum such as the Maunder minimum; a persistence
  of the short-period mode would produce a grand maximum. Unless the
  present interval between transitions turns out to be shorter than any
  previously observed interval, the present cycle (cycle 21) is part of a
  long-period, decaying trend and will be of longer-than-average duration
  (&gt;133 months).

---------------------------------------------------------
Title: Disequilibria between <SUP>226</SUP>Ra, <SUP>210</SUP>Pb
    and <SUP>210</SUP>Po in the Arctic Ocean and the implications for
    chemical modification of the Pacific water inflow
Authors: Moore, R. M.; Smith, J. N.
1986E&PSL..77..285M    Altcode:
  Measurements have been made of <SUP>226</SUP>Ra and both dissolved
  and particulate forms of <SUP>210</SUP>Pb and <SUP>210</SUP>Po in
  a vertical profile at 85°50'N, 108°50'W in the Arctic Ocean. In
  the upper water column <SUP>226</SUP>Ra shows a concentration
  maximum that is coincident with one in the nutrients, silicate,
  phosphate, and nitrate, while at the same depth, dissolved and
  particulate <SUP>210</SUP>Pb and <SUP>210</SUP>Po all show minimum
  concentrations. It is suggested that the concentration maxima are
  partly due to sources of the respective elements in the continental
  shelf sediments, the shelf waters being subsequently advected into
  the Arctic Ocean basins. The <SUP>210</SUP>Pb and <SUP>210</SUP>Po
  minima have similarly been explained by interaction between the shelf
  sediments and overlying waters. An estimate is made of the possible
  contributions of shelf sediments to the layer of silica-rich water which
  covers the Canada Basin at a depth of 100-150 m. Residence times have
  been calculated for dissolved <SUP>210</SUP>Pb and <SUP>210</SUP>Po at
  various depths in the water column. Surface water residence times of
  dissolved and particulate forms of these radionuclides are longer than
  in surface Atlantic waters, probably due to lower biological activity
  in the surface waters of the Canada Basin. An estimatee has been made
  of the average sinking velocity of particulate material.

---------------------------------------------------------
Title: Observations of the low-luminosity broad-line radio galaxy
    1717+49.
Authors: Puschell, J. J.; Moore, R.; Cohen, R. D.; Owen, F. N.;
   Phillips, A. C.
1986AJ.....91..751P    Altcode:
  The elliptical galaxy 1717 + 49 (= A1718 + 49A = Arp 102B = VV 10= K508)
  contains an active nucleus characterized by a compact radio source,
  nonstellar visual-infrared emission, variable optical polarization,
  and strong broad emission lines. The luminosity of the active source
  is ∼l0<SUP>43</SUP> erg/s in the visual-infrared. The emission at
  6 cm includes a structure whose position angle is nearly coincident
  with the mean position angle of the optical polarization. in terms
  of its visual-infrared and radio core characteristics, the object is
  similar to 3C 390.3, except that its luminosity is a factor of ∼20
  lower. However, there is no evidence from our work or from previously
  published radio observations for the extended radio lobes which might
  be expected in an object like this. it is conceivable that the radio
  lobes are projected onto the core source. Scattering in the broad-line
  region or synchrotron radiation are both plausible explanations for
  the optical polarization.

---------------------------------------------------------
Title: Effect of Magnetic Constriction on Coronal Energy Losses and
    the Energy Balance of the Transition Region
Authors: Dowdy, J. F.; Emslie, A. G.; Moore, R. L.
1986BAAS...18..703D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: 2-D Magnetohydrostatic Configurations Leading to Flares and
    Quiescent Filament Eruptions
Authors: An, C. -H.; Suess, S. T.; Moore, R. L.
1986BAAS...18Q.709A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Filament Eruption Speed at the Onset of the Impulsive Phase
    of Solar Flares
Authors: Moore, R. L.; Kahler, S. W.; Kane, S. R.; Zirin, H.
1986BAAS...18R.708M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Non-Potential Features Observed in the Magnetic Field of an
    Active Region
Authors: Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, B. M.
1986BAAS...18..709G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Ultraviolet Excess of Quasars. III. The Highly Polarized
    Quasars PKS 0736+017 and PKS 1510-089
Authors: Malkan, M. A.; Moore, R. L.
1986ApJ...300..216M    Altcode:
  Ultraviolet/optical/infrared spectrophotometry of the highly-polarized
  quasars (HPQ's) PKS 0736 + 047 and PKS 1510 089 is analyzed. A blazer
  continuum component like that in BL Lac objects (e.g. with violent
  variability, high polarization, and a steep power-law shape) contributes
  about half the visual light of 1510 - 089, and at least three-quarters
  of that in 0736 + 017. The remaining light has the same spectrum as
  normal (low-polarization) quasars, including an ultraviolet excess
  or blue bump, which is easily detected in the IUE spectra of 1510 -
  089, and weakly detected in 0736 + 017. The line fluxes do vary, but
  not as much as the continuum. The ratios of the broad emission lines,
  and the Balmer continuum are normal in both quasars.

---------------------------------------------------------
Title: Evolution of the Compact Radio Source 3c 345
Authors: Cohen, J. Biretta. M.; Moore, R.
1986IAUS..119..157C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Chromospheric explosions.
Authors: Doschek, G. A.; Antiochos, S. K.; Antonucci, E.; Cheng,
   C. -C.; Culhane, J. L.; Fisher, G. H.; Jordan, C.; Leibacher, J. W.;
   MacNiece, P.; McWhirter, R. W. P.; Moore, R. L.; Rabin, D. M.; Rust,
   D. M.; Shine, R. A.
1986NASCP2439....4D    Altcode:
  The work of this team addressed the question of the response and
  relationship of the flare chromosphere and transition region to the
  hot coronal loops that reach temperatures of about 10<SUP>7</SUP>K
  and higher. Flare related phenomena such as surges and sprays are
  also discussed. The team members debated three main topics: 1. whether
  the blue-shifted components of X-ray spectral lines are signatures of
  "chromospheric evaporation"; 2. whether the excess line broadening of UV
  and X-ray lines is accounted for by "convective velocity distribution"
  in evaporation; and 3. whether most chromospheric heating is driven
  by electron beams.

---------------------------------------------------------
Title: High Resolution Telescope and Spectrograph (HRTS)
Authors: Moore, R.
1986stos.work....6M    Altcode:
  The major objectives of the high resolution telescope and spectrograph
  (HRTS) are: (1) the investigation of the energy balance and mass balance
  of the temperature minimum, chromosphere, transition zone, and corona
  in quiet regions on the Sun as well as in plages, flares, and sunspots;
  (2) the investigation of the velocity field of the lower corona to study
  the origin of the solar wind; and (3) the investigation of preflare
  and flare phenomena. The HRTS instruments consists of a telescope,
  an ultraviolet spectrograph, an ultraviolet spectroheliograph, and an
  H alpha slit display system, all housed in a thermal control cannister
  mounted on an instrument pointing system.

---------------------------------------------------------
Title: Observed form and action of the magnetic energy release
    in flares
Authors: Machado, Marcos E.; Moore, Ronald L.
1986AdSpR...6f.217M    Altcode: 1986AdSpR...6..217M
  We review the observable spatio-temporal characteristics of the energy
  release in flares, and their association with the magnetic environment
  and tracers of field dynamics. The observations indicate that impulsive
  phase manifestations, like particle acceleration, may be related to
  the formation of neutral sheets at the interface between interacting
  bipoles, but that the site for the bulk of the energy release is within
  closed loops rather than at the interaction site.

---------------------------------------------------------
Title: Soft X-ray telescope (SXRT)
Authors: Moore, R.
1986stos.work....3M    Altcode:
  The soft X-ray telescope (SXRT) will provide direct images of the solar
  corona with spatial resolution of about 1 arcsecond. These images will
  show the global structure of the corona, the location and area of
  coronal holes, and the presence of even the smallest active regions
  and flares. The good spatial resolution will show the fine scale
  magnetic structure and changes in these phenomena. These observations
  are essential for monitoring, predicting, and understanding the solar
  magnetic cycle, coronal heating, solar flares, coronal mass ejections,
  and the solar wind. These observations complement those of the White
  Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will
  detect active regions and coronal holes near the east limb, thereby
  giving a week or more of advanced warning for disturbed geomagnetic
  conditions at Earth. The instrument consists of a grazing incidence
  collecting mirror with a full-disk film camera at the primary focus,
  and a secondary relay optic that feeds a CCD camera with a field of
  view about the size of an average active region.

---------------------------------------------------------
Title: Wave speeds in the corona and the dynamics of mass ejections.
Authors: Suess, S. T.; Moore, R. L.
1986NASCP2421..262S    Altcode:
  A disturbance or coronal mass ejection being advected by the solar
  wind will expand at the fastest local characteristic speed - typically
  approximately the fast-mode speed. To estimate this characteristic wave
  speed and the velocity field in the ambient corona, it is necessary
  to know the magnetic field, temperature, and density. Only the density
  is known from coronal observations. The authors estimate the magnetic
  field, solar wind velocity, and characteristic speeds using an MHD
  model of coronal expansion between 1 and 5 R_sun; with a dipole
  magnetic field at the base. This model suggests that the outer edge
  of a mass ejection will appear to move at a nearly constant rate of
  400 to 500 km/s between 2 and 5 R_sun;. This result is in agreement
  with the observations by MacQueen and Fisher (1983) and implies that
  the acceleration mechanism for coronal mass ejections is other than
  simple entrainment in the solar wind.

---------------------------------------------------------
Title: Active Cavity Radiometer (ACR)
Authors: Moore, R.
1986stos.work....7M    Altcode:
  The active cavity radiometer (ACR) measures the total solar irradiance
  to determine the magnitude and direction of variations in the total
  solar radiative output. The ACR is an electrically self calibrating
  cavity pyroheliometer capable of measuring the total solar irradiance
  with an absolute accuracy better than 0.2% and capable of detecting
  changes in the total irradiance smaller than 0.001%. The data will be
  used to study the physical behavior of the Sun and the Earth's climate.

---------------------------------------------------------
Title: Evolution of the compact radio source 3C 345.
Authors: Biretta, J.; Cohen, M.; Moore, R.
1986IAUS..119..157B    Altcode:
  The quasar 3C 345 is recognized as a strong, variable, superluminal
  radio source, an optically violent variable, and a weak X-ray
  source. The authors present results of VLBI monitoring between 1979
  and 1984 at 2.3, 5.0, 10.7, and 22.2 GHz. These results are interpreted
  in terms of a relativistic jet model.

---------------------------------------------------------
Title: Associations of Compact C IV Events, He I 10830 A Dark Points,
    and Magnetic Structures
Authors: Porter, J. G.; Reichmann, E. J.; Moore, R. L.; Harvey, K. L.
1985BAAS...17..842P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Filament Eruptions in the Impulsive Phase of Solar Flares
Authors: Moore, R. L.; Kahler, S. W.; Kane, S. R.; Zirin, H.
1985BAAS...17..905M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Inhibition of Conductive Heat Flow by Magnetic Construction
    in the Corona and Transition Region - Dependence on the Shape of
    the Construction
Authors: Dowdy, J. F., Jr.; Moore, R. L.; Wu, S. T.
1985SoPh...99...79D    Altcode:
  The magnetic field that fills the corona is rooted in a small fraction
  of the solar surface. The consequent constriction of the field lines
  inhibits the conduction of heat down from the corona, thereby strongly
  affecting the energy balance in the corona and transition region. In
  this paper, we clarify how the shape of the constriction acts together
  with the amount of constriction to inhibit the heat flow.

---------------------------------------------------------
Title: Evidence for submergencew of magnetic flux in a growing
    active region
Authors: Rabin, D. M.; Moore, R. L.; Hagyard, M. J.
1985svmf.nasa..437R    Altcode:
  In NOAA Active Region 2372 (April 1980), 4 x 10 to the 20th power
  maxwell of magnetic flux concentrated within a 30" circular area
  disappeared overnight. Vector magnetograms show that all components of
  the magnetic field weakened together. If the field had weakened through
  diffusion or fluid flow, 80% of the original flux would still have been
  detected by the magnetograph within a suitably enlarged area. In fact
  there was at least a threefold decrease in detected flux. Evidently,
  magnetic field was removed from the photosphere. Since the disappearing
  flux was located in a region of low magnetic shear and low activity,
  it is unlikely that the field dissipated through reconnection. The most
  likely possibility is that flux submerged. Observations suggest that
  even in the growth phase of active regions, submergence is a strong
  process comparable in magnitude to emergence.

---------------------------------------------------------
Title: Magnetic Constriction and Energy Balance in the Upper
    Transition Region
Authors: Dowdy, J. F.; Emslie, A. G.; Moore, R. L.
1985BAAS...17Q.633D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Extended Range X-Ray Telescope center director's
    discretionary fund report
Authors: Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.;
   Tandberg-Hanssen, E. A.
1985msfc.reptQ....H    Altcode:
  An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and
  spatial resolution capable of functioning over a broad region of the
  X-ray/XUV portion of the spectrum has been designed and analyzed. This
  system has been configured around the glancing-incidence Wolter Type
  I X-ray mirror system which was flown on the Skylab Apollo Telescope
  Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly
  broader spectral range can be realized by the utilization of a thinned,
  back-illuminated, buried-channel Charge Coupled Device (CCD) as the
  X-ray/XUV detector rather than photographic film. However, to maintain
  the high spatial resolution inherent in the X-ray optics when a CCD of
  30 micron pixel size is used, it is necessary to increase the telescope
  plate scale. This can be accomplished by use of a glancing-incidence
  X-ray microscope to enlarge and re-focus the primary image onto the
  focal surface of the CCD.

---------------------------------------------------------
Title: Wave Speeds in the Corona and the Dynamics of Mass Ejections
Authors: Suess, S. T.; Moore, R. L.
1985BAAS...17R.636S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Active Cavity Radiometer (ACR)
Authors: Moore, R. L.
1985tpss.procU....M    Altcode:
  The active cavity radiometer (ACR) measures the total solar irradiance
  to determine the magnitude and direction of variations in the total
  solar radiative output. The ACR is an electrically self calibrating
  cavity pyroheliometer capable of measuring the total solar irradiance
  with an absolute accuracy better than 0.2% and capable of detecting
  changes in the total irradiance smaller than 0.001%. The data will be
  used to study the physical behavior of the Sun and the Earth's climate.

---------------------------------------------------------
Title: White Light Coronograph (WLC) and Ultra-Violet Coronal
    Spectrometer (UVCS)
Authors: Moore, R. L.
1985tpss.procS....M    Altcode:
  The white light coronagraph (WLC) and ultraviolet coronal spectrometer
  (UVCS) together reveal the corona and the roots of the solar wind
  from 1.5 to 6 solar radii from Sun center. The WLC measures the plasma
  density and spatial structure of the corona and coronal mass ejections
  at a resolution of about 20 arcseconds. The UVCS, in combination with
  the WLC, measures the temperature and radial outflow speed of the
  coronal plasma. These instruments will detect mass ejections from
  active regions and high speed solar wind streams from coronal holes
  a few days before the source regions rotate onto the face of the Sun,
  thus giving a week or more of advanced warning for disturbed geomagnetic
  conditions at Earth.

---------------------------------------------------------
Title: Anticipated scientific return of the Advanced Solar Observatory
Authors: Moore, Ron; Bohlin, David
1985aso..conf.....M    Altcode:
  The scientific importance of the Advanced Solar Observatory (ASO) is
  discussed with emphasis on its soft X-ray, XUV, and EUV facilities. The
  principal achievement expected from the ASO's SXR/XUV and EUV
  telescope is a greatly improved resolution of the magnetic structure
  and activity in the transition region and corona. Observations from
  these facilities, combined with complementary observations of the
  photosphere and chromosphere from Solar Optical Telescope and of
  the higher corona from the Pinhole/Occulter Facility, are expectecd
  to yield significant advances in all major areas of solar physics
  concerning the causes and effects of solar magnetic fields.

---------------------------------------------------------
Title: High Resolution Telescope and Spectrograph (HRTS)
Authors: Moore, R. L.
1985tpss.procT....M    Altcode:
  The major objectives of the high resolution telescope and spectrograph
  (HRTS) are: (1) the investigation of the energy balance and mass balance
  of the temperature minimum, chromosphere, transition zone, and corona
  in quiet regions on the Sun as well as in plages, flares, and sunspots;
  (2) the investigation of the velocity field of the lower corona to
  study the origin of the solar wind; (3) the investigation of preflare
  and flare phenomena. The HRTS instruments consists of a telescope,
  an ultraviolet spectrograph, and ultraviolet spectroheliograph, and an
  H alpha slit display system, all housed in a thermal control canister
  mounted on an instrument pointing system.

---------------------------------------------------------
Title: Sunspots.
Authors: Moore, R.; Rabin, D.
1985ARA&A..23..239M    Altcode:
  It is pointed out that the sun provides a close-up view of many
  astrophysically important phenomena, nearly all connected with the
  causes and effects of solar magnetic fields. The present article
  provides a review of the role of sunspots in a number of new areas
  of research. Connections with other solar phenomena are examined,
  taking into account flares, the solar magnetic cycle, global flows,
  luminosity variation, and global oscillations. A selective review of
  the structure and dynamic phenomena observed within sunspots is also
  presented. It is found that sunspots are usually contorted during the
  growth phase of an active region as magnetic field rapidly emerges
  and sunspots form, coalesce, and move past or even through each
  other. Attention is given to structure and flows, oscillations and
  waves, and plans for future studies.

---------------------------------------------------------
Title: Evidence for submergence of magnetic flux in a growing
    active region.
Authors: Rabin, D. M.; Moore, R. L.; Hagyard, M. J.
1985NASCP2374..437R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The ultraviolet excess of quasars 3: The highly polarized
    quasars PKS 0736+017 and PKS 1510-089
Authors: Malkan, M. A.; Moore, R. L.
1985STIN...8522268M    Altcode:
  Ultraviolet/optical/infrared spectrophotometry of the highly-polarized
  quasars (HPQ's) PKS 0736+017 and PKS 1510-089 is analyzed. A blazar
  continuum component like that in BL Lac objects (e.g. with violent
  variability, high polarization, and a steep power-law shape) contributes
  about half the visual light of 1510-089, and at least three-quarters
  of that in 0736+017. The remaining light has the same spectrum as
  normal (low-polarization) quasars, including an ultraviolet excess or
  blue bump, which is easily detected in the IUE spectra of 1510-089,
  and weakly detected in 0736+017. The line fluxes do vary, but not
  as much as the continuum. The ratios of the broad emission lines,
  and the Balmer continuum are normal in both quasars.

---------------------------------------------------------
Title: Soft X-Ray Telescope (SXRT)
Authors: Moore, R. L.
1985tpss.procQ....M    Altcode:
  The soft X-ray telescope (SXRT) will provide direct images of the solar
  corona with spatial resolution of about 1 arcsecond. These images will
  show the global structure of the corona, the location and area of
  coronal holes, and the presence of even the smallest active regions
  and flares. The good spatial resolution will show the fine scale
  magnetic structure and changes in these phenomena. These observations
  are essential for monitoring, predicting, and understanding the solar
  magnetic cycle, coronal heating, solar flares, coronal mass ejections,
  and the solar wind. These observations complement those of the White
  Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will
  detect active regions and coronal holes near the east limb, thereby
  giving a week or more of advanced warning for disturbed geomagnetic
  conditions at Earth. The instrument consists of a grazing incidence
  collecting mirror with a full disk film camera at the primary focus,
  and a secondary relay optic that feeds a CCD camera with a field of
  view about the size of an average active region.

---------------------------------------------------------
Title: A case for submergence of magnetic flux in a solar active
    region
Authors: Rabin, D.; Moore, R.; Hagyard, M. J.
1984ApJ...287..404R    Altcode:
  In NOAA Active Region 2372 (April 1980), 4 x 10 to the 20th maxwells
  of magnetic flux concentrated in an area 30 arcsec across disappeared
  overnight. Vector magnetograms show that all components of the magnetic
  field weakened together. If the field had weakened through diffusion
  or fluid flow, 90 percent of the original flux would still have been
  detected by the magnetograph within a suitably enlarged area. In fact
  there was a threefold decrease in detected flux. Evidently, magnetic
  field was removed from the photosphere. Since the disappearing flux
  was located in a region of low magnetic shear and low activity in
  H-alpha and Ly-alpha, it is unlikely that the field dissipated through
  reconnection. It is argued that the most likely possibility is that
  flux submerged. The observations suggest that even during the growth
  phase of active regions, submergence is a strong process comparable
  in magnitude to emergence.

---------------------------------------------------------
Title: Implications of solar flare dynamics for reconnection in
    magnetospheric substorms
Authors: Moore, R. L.; Horwitz, J. L.; Green, J. L.
1984P&SS...32.1439M    Altcode:
  From observations of two-ribbon solar flares, we present a new
  line of evidence that magnetic reconnection is of key importance in
  magnetospheric substorms. We infer that in substorms reconnection of
  closed field lines in the near-Earth thinned plasma sheet both initiates
  and is driven by the overall MHD instability that drives the tailward
  expulsion of the reconnected closed field (0 loops). The general basis
  for this inference is the longstanding notion that two-ribbon flares
  and substorms are essentially similar phenomena, driven by similar
  processes. We give an array of observed similarities that substantiate
  this view. More specifically, our inference for substorms is drawn
  from observations of filament eruptions in two-ribbon flares, from
  which we conclude that the heart of the overall instability consists
  of reconnection and eruption of the closed magnetic field in and
  around the filament. We propose that essentially the same overall
  instability operates in substorms. Our point is not that the magnetic
  field configuration or the microphysics in substorms is identical to
  that in two-ribbon flares, but that the overall instability results
  from essentially the same combination of reconnection and eruption of
  closed magnetic field.

---------------------------------------------------------
Title: Vertical profile of artificial radionuclide concentrations
    in the Central Arctic Ocean
Authors: Livingston, Hugh D.; Kupferman, Stuart L.; Bowen, Vaughan T.;
   Moore, R. M.
1984GeCoA..48.2195L    Altcode:
  The artificial radionuclides <SUP>90</SUP>Sr, <SUP>137</SUP>Cs,
  <SUP>238</SUP>Pu, <SUP>239,240</SUP>Pu and <SUP>241</SUP>Am have been
  measured in eight water samples collected in 1979, at intervals from
  surface to bottom, through the ice at the LOREX satellite camp SS
  near the North Pole. Differences in the concentrations and ratios
  of these nuclides, compared with values measured, over time, in the
  various water masses that flow into the Arctic Ocean, can be used as
  semi-independent checks on rates of flow to the LOREX stations and on
  residence times in the Arctic Ocean. An unexpected finding was that
  water labelled with low-level liquid waste from the Windscale plant
  on the Irish Sea is a major component of the 1500 m LOREX sample,
  and has reached there in no more than eight to ten years. Even from
  this one station in the Polar Ocean, estimation of the inventories of
  the various radionuclides is good enough to emphasize the importance
  of horizontal advection of the various supply terms to the Arctic.

---------------------------------------------------------
Title: Heating the sun's lower transition region with fine-scale
    electric currents
Authors: Rabin, D.; Moore, R.
1984ApJ...285..359R    Altcode:
  This paper discusses the hypothesis that the lower transition region is
  locally heated by the dissipation of electric currents. It proposes a
  model based on ohmic heating by filamentary electric currents that flow
  along the magnetic field. The current filaments must be of fine scale,
  with a narrow dimension in the range 1 cm to 1 km, and the ambient
  magnetic field must be greater than about 10 gauss. An ensemble
  of filamentary currents that agree in sign across the horizontal
  scale of a photospheric granule can generate enough heat to match
  observations without the need for anomalous resistivity. Thermal
  conduction perpendicular to the axis of a current filament produces
  a distribution of emission measure over temperature that is in good
  agreement with observations.

---------------------------------------------------------
Title: Energy Release in Solar Flares
Authors: Sturrock, P. A.; Kaufman, P.; Moore, R. L.; Smith, D. F.
1984SoPh...94..341S    Altcode:
  We examine observational evidence concerning energy release in solar
  flares. We propose that different processes may be operative on four
  different time scales: (a) on the sub-second time scale of `sub-bursts'
  which are a prominent feature of mm-wave microwave records; (b) on the
  few-seconds time scale of `elementary bursts' which are a prominent
  feature of hard X-ray records; (c) on the few-minutes time scale of
  the impulsive phase; and (d) on the tens-of-minutes or longer time
  scale of the gradual phase.

---------------------------------------------------------
Title: Bimodality of the Solar Cycle
Authors: Rabin, D. M.; Moore, R. L.; Wilson, R. M.
1984BAAS...16Q.993R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: High-Speed Polarimetry of BL Lac
Authors: Moore, R. L.; Schmidt, G. D.; West, S. C.
1984BAAS...16..951M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Energy Release in Solar Flares
Authors: Sturrock, P. A.; Kaufmann, P.; Moore, R. L.; Smith, D. F.
1984BAAS...16..890S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Sunspot Oscillations and the Short-Period Cutoff for Global
    p-Mode Oscillations
Authors: Moore, R.; Rabin, D.
1984BAAS...16..978M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Structure and Heating of the Upper and Lower
    Transition Region
Authors: Dowdy, J. F., Jr.; Wu, S. T.; Moore, R. L.
1984BAAS...16..729D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Photospheric Electric Current and Transition Region Brightness
    Within an Active Region
Authors: Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.;
   Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.
1984SoPh...91..235D    Altcode:
  Distributions of vertical electric current density (J<SUB>z</SUB>)
  calculated from vector measurements of the photospheric magnetic
  field are compared with ultraviolet spectroheliograms to investigate
  whether resistive heating is an important source of enhanced emission
  in the transition region. The photospheric magnetic fields in Active
  Region 2372 were measured on 6 and 7 April, 1980 with the MSFC vector
  magnetograph; ultraviolet wavelength spectroheliograms (Lα and Nv
  1239 Å) were obtained with the UVSP experiment aboard the Solar
  Maximum Mission satellite. Spatial registration of the J<SUB>z</SUB>
  (5 arc sec resolution) and UV (3 arc sec resolution) maps indicates that
  the maximum current density is cospatial with a minor but persistent UV
  enhancement, but there is little detected current associated with other
  nearby bright areas. We conclude that although resistive heating may be
  important in the transition region, the currents responsible for the
  heating are largely unresolved in our measurements and have no simple
  correlation with the residual current measured on 5 arc sec scales.

---------------------------------------------------------
Title: The optical polarization properties of "normal" quasars.
Authors: Stockman, H. S.; Moore, R. L.; Angel, J. R. P.
1984ApJ...279..485S    Altcode:
  In 1977, a linear polarization survey of bright QSOs from the catalog of
  Burbidge et al. (1977) was begun. Stockman and Angel (1978) and Stockman
  (1978) have reported preliminary results of this survey. Since these
  reports, the bright QSO survey has been completed and an extended
  survey of fainter QSOs with known variability and/or spectral
  indices has been conducted. This paper presents the final report of
  the results of the surveys. The selection criteria for the bright
  QSO survey are defined, the observational techniques are described,
  and the polarization data for the entire sample are presented. An
  analysis of the data is performed, taking into account the probability
  distribution of polarization, the variability of polarization, and the
  color dependence of polarization. Models for the origin of polarization
  are also discussed.

---------------------------------------------------------
Title: A comparison of the properties of highly polarized QSOs versus
    low-polarization QSOs.
Authors: Moore, R. L.; Stockman, H. S.
1984ApJ...279..465M    Altcode:
  An optical linear-polarization survey testing the relationships between
  polarization and other properties of QSOs is presented. Polarimetric
  observations of 239 QSOs have been made. Data from the literature
  are used to analyze the relationships between polarization and
  radio, optical, and X-ray properties. The highly polarized QSOs are
  generally compact radio sources, are associated with radio properties
  such as low-frequency variability and superluminal motion, exhibit
  large-amplitude rapid photometric variability, have steep nonthermal
  optical continua, and may show excess X-ray emission. No relationship
  is seen between polarization and redshift, optical luminosity, or
  the equivalent width of emission lines. The results are discussed in
  the context of both isotropic and anisotropic (beaming) models. While
  the associations between the optical and radio properties of highly
  polarized QSOs provide strong motivation for the anisotropic model,
  the lack of associations with redshift, optical luminosity, and
  emission-line strength is inconsistent with this model. It is concluded
  that the highly polarized QSOs are probably fundamentally different
  in their physical properties from low-polarization QSOs.

---------------------------------------------------------
Title: The radio morphology of blazars and relationships to optical
    polarization and to normal radio galaxies.
Authors: Wardle, J. F. C.; Moore, R. L.; Angel, J. R. P.
1984ApJ...279...93W    Altcode:
  The authors present high dynamic range VLA maps of 16 BL Lac objects
  and highly polarized quasars. Extended radio structure with a variety
  of morphologies is common in the sample. There is weak evidence for a
  connection between preferred position angles of optical polarization and
  radio morphology. Preferred-angle objects are more likely to exhibit
  two-sided radio structure than random-angle objects. A much stronger
  correlation is found for random-angle objects between the prominence
  of the radio core and the rms scatter in the position angle of the
  optical polarization. There is remarkably good agreement between the
  position angle of the small-scale radio structure and the characteristic
  angle of optical polarization. Four of five sources are aligned within
  15°. The luminosity of the extended radio emission from BL Lac objects
  is compared with that of "normal" radio galaxies. It is concluded that
  the results of this study can be successfully interpreted within the
  context of the relativistic jet model.

---------------------------------------------------------
Title: On the Formation of Magnetic Shear: Clues from a Well-Observed
    Active Region
Authors: Moore, R. L.; Rabin, D. M.
1984BAAS...16..528M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Case for Submergence of Magnetic Flux in a Solar Active
    Region
Authors: Rabin, D. M.; Moore, R. L.
1984BAAS...16..528R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Dissolved-particulate interactions of aluminium in ocean waters
Authors: Moore, R. M.; Millward, G. E.
1984GeCoA..48..235M    Altcode:
  Two N. Atlantic profiles of dissolved Al are reported, they show an
  increase in Al concentration with depth as reported previously for the
  central Arctic Ocean ( MOORE, 1981) and for the N.W. Atlantic below 1000
  m ( HYDES, 1979). Laboratory experiments were carried out to investigate
  the effect of pressure on the equilibrium between dissolved Al and
  pelagic, red clays. These studies showed an increase in dissolved
  Al with increasing pressure; e.g. at 1000 atm. the concentration
  of Al in solution increased by about 30% in two days. It was also
  observed that when the pressure was released the excess dissolved
  Al was rapidly removed from solution onto the clays. Calculations
  of the effect of pressure on the equilibrium concentration of Al in
  the presence of Gibbsite show that the dissolution should be favoured
  by a pressure increase. Laboratory leaching experiments using dilute
  acid were also undertaken to assess the mobility of Al in atmospheric
  particulates. The results suggest that a significant proportion, up to
  20%, of the Al is not strongly bound in mineral lattices: this figure
  represents the upper limit for the leachable fraction which greatly
  exceeds earlier estimates. These results improve our understanding of
  Al marine geochemistry by emphasising the importance of inorganic rather
  than biological processes in determining its oceanic distribution.

---------------------------------------------------------
Title: Superluminal Acceleration of the New Component in 3C345
Authors: Moore, R. L.; Biretta, J. A.; Readhead, A. C. S.; Baath, L. B.
1984IAUS..110..109M    Altcode:
  VLBI observations of 3C 345 at 10.8 GHz and 22.2 GHz show that the
  position angle of the new component is increasing as it separates
  from the core. Also, the apparent velocity of the component is
  increasing. This is the first clear evidence for non-radial motion
  and acceleration of an individual component in an extragalactic
  radio source.

---------------------------------------------------------
Title: The role of magnetic field shear in solar flares
Authors: Hagyard, M. J.; Moore, R. L.; Emslie, A. G.
1984AdSpR...4g..71H    Altcode: 1984AdSpR...4...71H
  We present observational results and their physical implications
  garnered from the deliberations of the FBS Magnetic Shear Study Group on
  magnetic field shear in relation to flares. The observed character of
  magnetic shear and its involvement in the buildup and release of flare
  energy are reviewed and illustrated with emphasis on recent results from
  the Marshall Space Flight Center vector magnetograph. It is pointed out
  that the magnetic field in active regions can become sheared by several
  processes, including shear flow in the photosphere, flux emergence,
  magnetic reconnection, and flux submergence. Modeling studies of the
  buildup of stored magnetic energy by shearing are reported which show
  ample energy storage for flares. Observational evidence is presented
  that flares are triggered when the field shear reaches a critical
  degree, in qualitative agreement with some theoretical analyses of
  sheared force-free fields. Finally, a scenario is outlined for the
  class of flares resulting from large-scale magnetic shear; the overall
  instability driving the energy release results from positive feedback
  between reconnection and eruption of the sheared field.

---------------------------------------------------------
Title: Magnetic changes observed in a solar flare
Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R.
1984ApJ...276..379M    Altcode:
  The authors present observations of a large impulsive flare (1B/M4,
  1980 April 10). Observations of the microwave/hard X-ray burst show
  the time development of the impulsive energy release. Chromospheric
  (Hα) and photospheric (Fe I λ5324) filtergrams and photospheric (Fe I
  λ8688) magnetograms, intensitygrams, and velocitygrams show magnetic
  structure, flare emission, mass motion, and magnetic changes. These
  observations show that strong flare-wrought magnetic changes in the
  chromosphere and corona produce observable, sudden, permanent changes
  in the photospheric magnetic field. The observations also show that one
  of the changes was initiated by transient brightening in Fe I λ5324 and
  λ8688 in step with the impulsive energy release and filament eruption.

---------------------------------------------------------
Title: Observation of the impulsive phase of a simple flare.
Authors: Tandberg-Hanssen, E.; Kaufmann, P.; Reichmann, E. J.; Teuber,
   D. L.; Moore, R. L.; Orwig, L. E.; Zirin, H.
1984SoPh...90...41T    Altcode: 1984SoPh...90...41B; 1984SoPh...90...41H
  We present a broad range of complementary observations of the onset
  and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon
  flare. The observations consist of hard X-ray flux measured by the
  SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz
  from Itapetinga Radio Observatory, sequences of spectroheliograms in
  UV emission lines from Ov (T ≈ 2 × 10<SUP>5</SUP> K) and FeXXI (T
  ≈ 1 × 10<SUP>7</SUP> K) from the SMM UVSP, Hα and HeI D<SUB>3</SUB>
  cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of
  the flare region from the MSFC Solar Observatory. From these data we
  conclude: The overall magnetic field configuration in which the flare
  occurred was a fairly simple, closed arch containing nonpotential
  substructure.

---------------------------------------------------------
Title: Energy release in solar flares
Authors: Sturrock, P. A.; Kaufmann, P.; Moore, R. L.; Smith, D. F.
1984ersf.rept.....S    Altcode:
  This document presents observational evidence concerning energy
  release in solar flares. It is proposed that a different process may
  be operative on four different time scales: (1) on the sub-second time
  scale of sub-bursts which are a prominent feature of mm-wave microwave
  records; (2) on the few-seconds time scale of elementary bursts which
  are a prominent feature of hard X-ray records; (3) on the few-minutes
  time scale of the impulsive phase; and (4) on the tens-of-minutes
  or longer time scale of the gradual phase. It is proposed that the
  concentration of magnetic field into magnetic knots at the photosphere
  has important consequences for the coronal magnetic-field structure
  such that the magnetic field in this region may be viewed as an array
  of elementary flux tubes. The release of the free energy of one such
  tube may produce an elementary burst. The development of magnetic
  islands during this process may be responsible for the sub-bursts. The
  impulsive phase may be simply the composite effect of many elementary
  bursts. It is also proposed that the gradual phase of energy release,
  with which flares typically begin and with which many flares end,
  involves a steady process of reconnection, whereas the impulsive phase
  involves a more rapid stochastic process of reconnection which is
  a consequence of mode interaction. In the case of two-ribbon flares,
  the late part of the gradual phase may be attributed to reconnection of
  a large current sheet which is being produced as a result of filament
  eruption. A similar process may be operative in smaller flares.

---------------------------------------------------------
Title: Anomalous neon-helium ratios in the Arctic Ocean
Authors: Top, Zafer; Clarke, W. B.; Moore, R. M.
1983GeoRL..10.1168T    Altcode:
  Measurements of dissolved helium and neon were made on seawater samples
  collected at the Lomonosov Ridge Experiment site (LOREX, 1979) and
  at the FRAM III drifting ice station (1981) in the Arctic Ocean. The
  most striking feature of the results is the high values of Ne/He in
  the shallow depths compared to previous results in other oceans. Ice
  formation and refreezing of meltwater appear to be the mechanisms
  which could explain the observed Ne/He anomaly.

---------------------------------------------------------
Title: Superluminal acceleration in 3C345
Authors: Moore, R. L.; Readhead, A. C. S.; Baath, L.
1983Natur.306...44M    Altcode: 1983Nat...306...44M
  The superluminal quasar 3C345 has a curved, one-sided jet-like
  radio structure<SUP>1,2</SUP>. Ejected material has been observed
  travelling at apparent speeds of 13-17c (ref. 3). We report here
  new observations at 22 GHz which show that the most recently ejected
  component<SUP>4</SUP> is not moving radially away from the compact
  radio core, but along a trajectory which could be interpreted as
  either a curved path originating in the compact core, or a straight
  line, in which case the origin of ejection is not coincident with the
  compact radio core. The observations provide evidence of acceleration
  of this component.

---------------------------------------------------------
Title: Optical polarimetry of broad-line radio galaxies.
Authors: Rudy, R. J.; Schmidt, G. D.; Stockman, H. S.; Moore, R. L.
1983ApJ...271...59R    Altcode:
  The authors have observed the linear polarization of 13 broad-line
  radio galaxies drawn from the list of Grandi and Osterbrock. Two of
  the objects, 3C 109 and 3C 234, are strongly polarized. As a class,
  these active galaxies display larger polarizations than both Seyfert
  1 galaxies and quasars. The polarizations are attributed primarily
  to extinction and scattering by dust, though nonthermal components
  may contribute at a secondary level. The existence of dust affords a
  partial explanation for two of the spectral signatures of broad-line
  radio galaxies: steep Balmer decrements and strong forbidden lines
  relative to the permitted lines.

---------------------------------------------------------
Title: On Heating the Lower Transition Region with Fine-Scale Currents
Authors: Rabin, D. M.; Moore, R. L.
1983BAAS...15..700R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Impulsive Phase of a Simple Flare
Authors: Moore, R. L.; Tandberg-Hanssen, E.; Reichmann, E. J.; Teuber,
   D. L.; Kaufmann, P.; Orwig, L. E.; Zirin, H.
1983BAAS...15..697M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GHz Observations of X-Ray Selected Active Galactic Nuclei:
    Evidence for Inverse Compton Boosting
Authors: Edelson, R.; Moore, R.; Maccacaro, T.; Gioia, I.
1983BAAS...15..649E    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Inhibition of Heat Conduction by Magnetic Constriction in
the Transition Region: Dependence on Tube Shape
Authors: Dowdy, J. F., Jr.; Moore, R. L.; Wu, S. T.
1983BAAS...15Q.700D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Book-Review - Microwave Remote Sensing - Active and Passive
Authors: Ulaby, F. T.; Moore, R. K.; Fung, A. K.; Rasool, S. I.
1983SSRv...35..295U    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Structure of the Lower Transition Zone in an Active Region
Authors: Rabin, D. M.; Moore, R. L.
1982BAAS...14..925R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic Changes Observed in a Flare: True and Flase Transients
    and True Permanent Changes
Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R.
1982BAAS...14..899M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The noise of BL Lacertae
Authors: Moore, R. L.; Angel, J. R. P.; Duerr, R.; Lebofsky, M. J.;
   Wisniewski, W. Z.; Rieke, G. H.; Axon, D. J.; Bailey, J.; Hough,
   J. M.; McGraw, J. T.
1982ApJ...260..415M    Altcode:
  Results are presented from an intensive optical and IR monitoring
  program of the flux and polarization characteristics of BL Lac. It
  is found that the polarization variations increase in amplitude
  with increasing time interval, and that the path traced out by the
  polarization vector in the Q-U plane is a random walk. In view of
  earlier measurements of BL Lac, the polarization fluctuations can be
  represented at low frequencies by the flat power spectrum of white
  noise, up to a frequency of 0.05 cycles/day. Above this frequency,
  the spectrum steepens to that of a random walk. A model for BL Lac
  suggested by the polarimetric noise can be constructed from independent
  sources of light with randomly oriented, strong polarization. Small
  random differences in spectral index from source to source could also
  explain the variable wavelength dependence of polarization.

---------------------------------------------------------
Title: A Comparison of the Position Angles of Radio Structure and
    Optical Polarization in BL Lac Objects
Authors: Moore, R. L.; Wardle, J. F. C.; Angel, J. R. P.
1982BAAS...14..934M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: VLA Observations of BLLac Objects
Authors: Wardle, J. F. C.; Moore, R. L.; Angel, J. R. P.
1982BAAS...14..934W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Evidence for a Poleward Meridional Flow on the Sun
Authors: Topka, K.; Moore, R.; Labonte, B. J.; Howard, R.
1982SoPh...79..231T    Altcode:
  We define for observational study two subsets of all polar zone
  filaments, which we call polemost filaments and polar filament
  bands. The behavior of the mean latitude of both the polemost filaments
  and the polar filament bands is examined and compared with the evolution
  of the polar magnetic field over an activity cycle as recently distilled
  by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson
  full-disk magnetograms. The magnetic data reveal that the polar
  magnetic fields are built up and maintained by the episodic arrival of
  discrete f-polarity regions that originate in active region latitudes
  and subsequently drift to the poles. After leaving the active-region
  latitudes, these unipolar f-polarity regions do not spread equatorward
  even though there is less net flux equatorward; this indicates that
  the f-polarity regions are carried poleward by a meridional flow,
  rather than by diffusion. The polar zone filaments are an independent
  tracer which confirms both the episodic polar field formation and the
  meridional flow. We find: The mean latitude of the polemost filaments
  tracks the boundary of the polar field cap and undergoes an equatorward
  dip during each arrival of additional polar field.

---------------------------------------------------------
Title: Finite-n ballooning mode theory for axisymmetric toroidal
    plasmas
Authors: Moore, R. W.; Dobrott, D.
1982JPlPh..28..103M    Altcode:
  Ballooning mode theory for finite toroidal mode number n is derived
  for shearfree and sheared axisymmetric toroidal plasmas. The resulting
  finite-n theory is applicable for both compressible and incompressible
  perturbations. The inclusion of finite compressibility changes the
  ballooning mode eigenfunctions and eigenvalues, but not the form of
  the finite-n correction.

---------------------------------------------------------
Title: Study of the Post-Flare Loops on 1973JUL29 - Part Four -
    Revision of T and NE Values and Comparison with the Flare of 1980MAY21
Authors: Švestka, Z.; Dodson-Prince, H. W.; Martin, S. F.; Mohler,
   O. C.; Moore, R. L.; Nolte, J. T.; Petrasso, R. D.
1982SoPh...78..271S    Altcode:
  We present revised values of temperature and density for the flare
  loops of 29 July 1973 and compare the revised parameters with those
  obtained aboard the SMM for the two-ribbon flare of 21 May 1980. The 21
  May flare occurred in a developed sunspot group; the 29 July event was a
  spotless two-ribbon flare. We find that the loops in the spotless flare
  extended higher (by a factor of 1.4-2.2), were less dense (by a factor
  of 5 or more in the first hour of development), were generally hotter,
  and the whole loop system decayed much slower than in the spotted flare
  (i.e. staying at higher temperature for a longer time). We also align
  the hot X-ray loops of the 29 July flare with the bright Hα ribbons
  and show that the Hα emission is brightest at the places where the
  spatial density of the hot elementary loops is enhanced.

---------------------------------------------------------
Title: Remote Flare Brightenings and Type-Iii Reverse Slope Bursts
Authors: Tang, F.; Moore, R. L.
1982SoPh...77..263T    Altcode:
  We present two large flares which were exceptional in that each produced
  an extensive chain of Hα emission patches in remote quiet regions
  more than 10<SUP>5</SUP> km away from the main flare site. They were
  also unusual in that a large group of the rare type III reverse slope
  bursts accompanied each flare.

---------------------------------------------------------
Title: The Relationship Between Low Frequency Variability and Optical
    Polarization of QSOS
Authors: Moore, R. L.
1982lfve.conf...49M    Altcode:
  The author reports on an extensive survey of the optical linear
  polarization of QSOs. The results of this survey show that there are
  two basic types of QSOs which can be distinguished on the basis of
  their optical polarization. The majority of radio-loud QSOs (≡85%) and
  essentially all radio-quiet QSOs have relatively stable low polarization
  (P &gt; 2%). A small fraction of radio-loud QSOs (≡15%) exhibit high
  polarization (P ≡ 4-20%) which is rapidly variable on time scales
  of days.

---------------------------------------------------------
Title: The optical polarization of QSOs
Authors: Moore, R. L.
1982IAUS...97..341M    Altcode:
  A description is presented of an extensive survey of the optical
  linear polarization of QSOs. A primary conclusion from the survey
  is that the great majority of QSO's have very low (but significant)
  intrinsic optical polarization. The distribution of polarization is
  dominated by QSOs with P less than 1.5%. Among the low polarization
  ('normal') QSOs, there are no significant polarimetric differences
  between radio-loud and radio-quiet QSOs. A small fraction of QSOs
  exhibit distinctly higher polarization with P in the range from 4
  to 20%. Essentially no QSOs have intermediate polarizations with P
  in the range from 2% to 4%. The discontinuity in the distribution
  of polarization suggests that there are two basic types of QSOs,
  including the normal QSOs and the highly polarized QSOs (HPQs).

---------------------------------------------------------
Title: Observations of sudden changes of magnetic structure in
    a flare.
Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R.
1982BAAS...14Q.572M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Residence Hall Rental Rates
Authors: Moore, R. K.
1982NRAON...5....8M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Dynamic Phenomena in the Visible Layers of Sunspots
Authors: Moore, R. L.
1981SSRv...28..387M    Altcode:
  The empirical properties of the various dynamic phenomena are reviewed
  and interrelated with emphasis on recent observational results. The
  topics covered are: <P />1. <P />Introduction <P />2. <P />Aperiodic
  Phenomena <P />2.1. <P />Externally Driven Phenomena <P />2.1.1. <P
  />Umbral Flares <P />2.1.2. <P />Inverse Evershed Flow <P />2.2. <P
  />Internally Driven Phenomena <P />2.2.1 <P />Penumbra <P />2.2.1.1. <P
  />Penumbral Grains <P />2.2.1.2. <P />Evershed Flow <P />2.2.2. <P
  />Umbra <P />2.2.2.1. <P />Umbral Dots <P />2.2.2.2. <P />Inhomogeneity
  of the Umbral Magnetic Field <P />2.2.2.3. <P />Umbral Turbulence
  <P />3. <P />Oscillations and Waves <P />3.1. <P />Chromosphere <P
  />3.1.1. <P />Umbra: Oscillations and Flashes <P />3.1.2. <P />Penumbra:
  Running Waves and Dark Puffs <P />3.2. <P />Photosphere <P />4. <P
  />Overview It is proposed from the observations that umbral dots and
  penumbral grains are essentially the same phenomenon, and that the
  observational goal of highest priority with respect to both the origin
  of the periodic phenomena and the problem of the missing heat flux is
  to better determine the nature of these elementary bright features.

---------------------------------------------------------
Title: Oceanographic distributions of zinc, cadmium, copper and
    aluminium in waters of the central arctic
Authors: Moore, R. M.
1981GeCoA..45.2475M    Altcode:
  Vertical profiles are presented of dissolved cadmium, zinc, copper
  and aluminium at the LOREX 79 site in the central Arctic Ocean. Cd,
  Zn and Cu show unusually high surface concentrations of 0.3, 3
  and 5 nmoll<SUP>-1</SUP> respectively; these levels are related to
  contributions from surface run-off and from the underlying nutrient-rich
  Bering Sea winter water. Al has lower surface concentrations than
  observed elsewhere and shows no correlation with the nutrients; the
  importance of aeolian supply is questioned and the results point to
  a major role for inorganic removal of Al at least in the Arctic Ocean.

---------------------------------------------------------
Title: Structure of the sunspot penumbra
Authors: Moore, R. L.
1981ApJ...249..390M    Altcode:
  An exceptionally highly resolved sunspot photograph is presented which
  reveals the fine-scale structure of the photospheric penumbra down to
  0.2 arcsec. The photograph was taken through a glass filter in a 170-A
  FWHM band centered on 4660 A on the 65-cm vacuum Gregorian telescope
  at Big Bear Solar Observatory during practically perfect seeing. The
  photograph reveals the penumbra to be full of extremely fine-scale
  fibril structures, with apparent widths near the resolution limit. The
  three-dimensional structure of the photospheric penumbra is seen to be
  similar to that of the chromospheric penumbra and superpenumbra, with
  dark fibrils arching above a lower brighter structure and many of the
  bright fibrils representing portions of wider bright structures shining
  through the narrow spaces between the elevated dark fibrils. Thus,
  in contrast to previous pictures, much of the dark component of the
  photospheric penumbra is not physically analogous to the intergranular
  dark lanes in the normal photosphere.

---------------------------------------------------------
Title: X-Ray and Hα Observations of a Filament / Disappearance
    Flare - an Empirical Analysis of the Magnetic Field Configuration
Authors: Kahler, S. W.; Webb, D. F.; Moore, R. L.
1981SoPh...70..335K    Altcode:
  A flare event occurred which involved the disappearance of a filament
  near central meridian on 29 August 1973. The event was well observed in
  X-rays with the AS &amp; E telescope on Skylab and in Hα at BBSO. It
  was a four-ribbon flare involving both new and old magnetic inversion
  lines which were roughly parallel. The Hα, X-ray, and magnetic
  field data are used to deduce the magnetic polarities of the Hα
  brightenings at the footpoints of the brightest X-ray loops. These
  magnetic structures and the preflare history of the region are then
  used to argue that the event involved a reconnection of magnetic field
  lines rather than a brightening in place of pre-existing loops. The
  simultaneity of the Hα brightening onsets in the four ribbons and
  the apparent lack of an eruption of the filament are consistent with
  this interpretation. These observations are compared to other studies
  of filament disappearances. The preflare structures and the alignment
  of the early X-ray flare loops with the Hα filament are consistent
  with the schematic picture of a filament presented first by Canfield
  et al. (1974).

---------------------------------------------------------
Title: Inhibition of Heat Conduction into the Transition Region by
    Magnetic Construction
Authors: Dowdy, J.; Moore, R.; Wu, S. T.
1981BAAS...13..835D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-Ray Observations of Two Different Systems of "Post Flare"
    Loops
Authors: Svestka, Z.; Dodson-Prince, H. W.; Mohler, O. C.; Martin,
   S. F.; Moore, R. L.; Nolte, J. T.; Petrasso, R. D.
1981BAAS...13R.542S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Optical Polarization of Quasi-Stellar and BL Lacertae
    Objects.
Authors: Moore, R. L.
1981PhDT.........2M    Altcode:
  In this dissertation, I examine the optical linear polarization of
  quasi-stellar objects (QSOs) and BL Lacertae objects. I present
  extensive polarimetric observations of a large sample of QSOs,
  systematically analyze the correlations between polarization and
  other properties of QSOs, compare the properties of QSOs and BL
  Lac objects, and discuss the implications of these results for
  theoretical models. The large high-accuracy polarization survey which
  is presented establishes that the majority of radio-loud QSOs ((TURN)
  85%) and essentially all radio-quiet QSOs have low polarization (P
  &lt; 2%), and that there is a discontinuity in the distribution of
  polarization between these QSOs and the rare highly polarized (P &gt;
  3%) QSOs. A physical distinction between "normal" low polarization
  QSOs and highly polarized QSOs (HPQs) is apparent not only in the
  polarization distribution, but also in the polarimetric variability
  and wavelength dependence. Normal QSOs exhibit little evidence of
  polarimetric variability over time scales of years, and the polarization
  appears to increase at shorter wavelengths. In contrast, the HPQs show
  strong rapid ((tau) (TURN) days) variability and the polarization
  is more nearly wavelength independent. Systematic analyses of the
  correlations between polarization and other properties of QSOs also
  indicate a physical distinction between normal QSOs and HPQs. It is
  shown that high polarization is correlated with rapid, large-amplitude
  photometric variability, relatively steep, smooth optical/infrared
  continua, a high ratio of X-ray to optical emission, compact radio
  structure, and extreme properties such as low-frequency variability
  and superluminal expansion. Other correlation analyses demonstrate that
  normal QSOs and HPQs are still related phenomena; the distributions of
  redshift, optical luminosity, and emission line equivalent width are
  similar for normal QSOs and HPQs. The characteristics established for
  the class of HPQs clearly demonstrate that HPQs and BL Lac objects
  are intimately related. However, HPQs also exhibit some properties
  (e.g. strong emission lines) characteristic of normal QSOs. Thus, the
  HPQs represent a crucial link between the QSO and BL Lac phenomena. The
  origins of the optical polarized emission in BL Lac objects, HPQs, and
  normal QSOs are examined. The high, wavelength-independent polarization
  and power law energy distribution observed in HPQs and BL Lac objects
  suggest that the continuum is synchrotron radiation. Scattering in an
  asymmetric geometry may be responsible for the polarization of normal
  QSOs. I discuss the implications of these results for two types of
  theoretical models. In the first model it is assumed that the emission
  is isotropic and not relativistically enhanced. This implies that the
  tremendous luminosities (L (LESSTHEQ) 10('15)L(,(CIRCLE))) from the
  rapidly variable HPQs (and BL Lac objects) are produced in a central
  engine only light-days across. In normal QSOs, this central emission
  must be obscured and reprocessed by surrounding material. Theoretical
  constraints concerning the central engine are presented, and it is
  shown that rapid reacceleration of electrons to relativistic energies
  is required. Although the "isotropic" model described above cannot
  be ruled out, the characteristics of the HPQs suggest an alternative
  "anisotropic" model in which the variable highly polarized emission
  is produced in a jet oriented along our line-of-sight. Relativistic
  enhancement of this emission eases restrictions imposed by the
  high apparent luminosity and rapid variability of HPQs and BL
  Lac objects. In normal QSOs, the jet is oriented away from us and
  only the isotropic component of QSO emission (e.g. low polarization
  continuum and emission lines) is visible. This model readily accounts
  for many of the observed properties of normal QSOs, HPQs, and BL Lac
  objects. However, two important predictions of this model, that the
  HPQs should be systematically more luminous and have weaker emission
  lines than normal QSOs, are not supported by my results.

---------------------------------------------------------
Title: Dynamic phenomena in sunspots
Authors: Moore, R. L.
1981phss.conf..259M    Altcode:
  A detailed summary of observed dynamic phenomena associated with
  sunspots is presented, together with a description of the observational
  techniques and available analytical formulations for the processes under
  study. The phenomena detected thus far are grouped into aperiodic
  events and oscillations and waves. Aperiodic phenomena comprise
  umbral flares, the superpenumbra, and inverse Evershed flow. Internal,
  aperiodic manifestations include penumbral grains, the photospheric
  penumbral dark fibrils, Evershed flow, umbral dots, the inhomogeneity
  of the umbral magnetic field, and umbral turbulence. Oscillations and
  flashes are seen in the umbra, while running waves and dark puffs have
  been detected in the penumbra, and oscillations are located in the
  photosphere. All the observed features are evidence of mass motion
  and change on time scales of less than an hour.

---------------------------------------------------------
Title: Closure of the Greenbank Airstrip
Authors: Moore, R. K.
1981NRAON...3....4M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The class of highly polarized quasars : observations and
    description.
Authors: Moore, R. L.; Stockman, H. S.
1981ApJ...243...60M    Altcode:
  The properties of the class of quasars whose optical continua are
  highly polarized are presented and discussed. A recent polarization
  survey of quasars has discovered ten new definite members of this
  class and eight possible members. There are now 17 highly polarized
  quasars known and an additional nine quasars which are possibly highly
  polarized. This represents a dramatic increase in the size of the
  class and allows a much better description of their properties. In
  general, highly polarized quasars are compact, flat-spectrum radio
  sources, have steep optical continua, and exhibit rapid large-amplitude
  variability. While their continua are very similar to BL Lac objects,
  their typical luminosities and emission line strengths appear to be
  similar to those of normal low-polarization quasars. As a link between
  normal quasars and BL Lac objects, the highly polarized quasars are
  a key test for theoretical models.

---------------------------------------------------------
Title: Room and Board Expenses at Greenbank
Authors: Moore, R. K.
1981NRAON...2....6M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Anomalous crustal structures in ocean basins: Continental
    fragments and oceanic plateaus
Authors: Carlson, R. L.; Christensen, N. I.; Moore, R. P.
1980E&PSL..51..171C    Altcode:
  Plateau-like features in ocean basins exhibit crustal structures which
  differ markedly from the relatively simple, three-layer model which
  applies to most of the oceanic crust. While some plateaus are known
  or thought to be fragments of continental crust (e.g. Rockall Bank,
  Lord Howe Rise), others appear to be of oceanic origin (e.g. Shatsky
  Rise, Broken Ridge), and their seismic structures, though variable, are
  significantly different. Continental fragments are similar in structure
  to continental shield areas: Depth to Moho is typically about 30 km,
  and the lower crust consists of a 6.8-7.0 km/s layer, 14-18 km thick,
  overlain by a 5.8-6.4 km/s layer of variable thickness, while velocity
  structures are variable at upper crustal levels. By contrast, the Moho
  apparently occurs at shallower levels beneath oceanic plateaus, which
  are characterized by the presence of a 7.3-7.6 km/s layer, 6-15 km thick
  at the base of the crust. This basal layer is commonly overlain by units
  having velocities typical of oceanic layers 2 and 3. Refractors having
  velocities which correspond to layer 3 tend to occur at deeper levels
  in continental fragments than they do beneath oceanic plateaus. That
  high-velocity basal layers have been detected at the base of normal
  oceanic crust and in some ophiolites suggests that oceanic plateaus
  are truly marine in origin. Upper and middle crustal levels probably
  consist of basaltic and gabbroic rocks, respectively. The nature
  of the basal layer is difficult to assess. Olivine gabbro, mafic
  garnet granulite, and epidote amphibolite all exhibit velocities in
  the appropriate ranges, as does a mixture of mafic and ultramafic
  lithologies. Partially serpentinized peridotite cannot be ruled out
  on the basis of shear and compressional wave velocities alone.

---------------------------------------------------------
Title: Coronal holes, the height of the chromosphere,and the origin
    of spicules.
Authors: Rabin, D.; Moore, R. L.
1980ApJ...241..394R    Altcode:
  Analysis of 650 microphotometric scans across the solar limb reveals
  that the H(alpha) chromosphere is slightly taller inside coronal holes
  than in quiet regions outside holes. The change in height occurs as
  a step at the hole boundaries; this suggests that the increase with
  latitude in the average height of spicules found by Lippincott and
  by Athay was the average result of upward steps at the polar hole
  boundaries rather than a gradual latitude trend. It is estimated that
  the power consumed by spicules is of the same order as that returning
  by conduction from the corona, but the bulk of the spicules (which
  sets the height of the chromosphere) shows almost no response. It is
  concluded that spicules are not caused by heat conduction from the
  corona but are driven from below, suggesting that spicules are more
  closely connected with the heating of the corona than with its cooling.

---------------------------------------------------------
Title: The Magnetic Evolution of Active Regions: Disappearance of
    Photospheric Magnetic Flux
Authors: Topka, K.; Moore, R. L.
1980BAAS...12..792T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A New Heuristic Model of the Solar Cycle
Authors: Moore, R. L.
1980BAAS...12..893M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Hα Activity in X-Ray Bright Points and the Origin of Spicules
Authors: Moore, R. L.; Golub, L.
1980BAAS...12..817M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Polar Crown Filaments and the Polar Magnetic Field
Authors: Topka, K.; Moore, R. L.; Labonte, B. J.; Howard, R.
1980BAAS...12..893T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Coordinated Worldwide Monitoring of BL Lacertae
Authors: Moore, R.; McGraw, J.; Angel, R.; Duerr, R.; Lebofsky, M.;
   Rieke, G.; Wiesniewski, W.; Axon, D.; Bailey, J.; Hough, J.; Breger,
   M.; Clayton, J.; Martin, P.; Miller, J.; Schmidt, G.; Schulz, H.;
   Thompson, I.
1980BAAS...12..808M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Continuum Bright Point at the Penumbral Edge
Authors: Zirin, H.; Moore, R. L.
1980SoPh...67...79Z    Altcode:
  A small continuum bright point, observed at the outer edge of the
  penumbra of a small spot in a large complex spot group, is related to
  an occurrence beneath the Sun's surface. The characteristics of the
  point appear to be unique, and the name `penumbra-periphery bright
  point' is proposed.

---------------------------------------------------------
Title: Structure of the Penumbra
Authors: Moore, R. L.
1980BAAS...12..476M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Optical and infrared variability of B2 1308+326.
Authors: Moore, R. L.; Angel, J. R. P.; Rieke, G. H.; Lebofsky, M. J.;
   Wisniewski, W. Z.; Mufson, S. L.; Vrba, F. J.; Miller, H. R.; McGimsey,
   B. Q.; Williamon, R. M.
1980ApJ...235..717M    Altcode:
  Optical and infrared polarimetric and photometric observations of the
  BL Lacertae object B2 1308+326 during its high-luminosity outburst in
  the spring of 1978 are reported. The energy distribution, polarization
  at 0.6 and 2.2 microns, flux and polarization variability and position
  angle and strength of polarization variations of B2 1308+326, which
  has a luminosity greater than 10 to the 48th ergs/sec, are observed
  to be similar to those of BL Lac objects of much lower luminosity,
  suggesting the same emission process. Models of BL Lac object emission
  accounting for the high luminosity of B2 1308+326 are examined, and
  the isotropic synchrotron model is found to be more applicable to the
  optical and infrared emission of BL Lac objects than a model invoking
  relativistically enhanced emission.

---------------------------------------------------------
Title: Implications of the Variability and Polarization of BL
    Lac Objects
Authors: Angel, J. R. P.; Moore, R. L.
1980NYASA.336...55A    Altcode: 1980txra.symp...55A
  No abstract at ADS

---------------------------------------------------------
Title: The thermal X-ray flare plasma
Authors: Moore, R.; McKenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere,
   K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.;
   Krieger, A. S.
1980sfsl.work..341M    Altcode: 1980sofl.symp..341M
  Following a review of current observational and theoretical knowledge
  of the approximately 10 to the 7th K plasma emitting the thermal soft
  X-ray bursts accompanying every H alpha solar flare, the fundamental
  physical problem of the plasma, namely the formation and evolution of
  the observed X-ray arches, is examined. Extensive Skylab observations
  of the thermal X-ray plasmas in two large flares, a large subflare and
  several compact subflares are analyzed to determine plasma physical
  properties, deduce the dominant physical processes governing the plasma
  and compare large and small flare characteristics. Results indicate
  the density of the thermal X-ray plasma to be higher than previously
  thought (from 10 to the 10th to 10 to the 12th/cu cm for large to
  small flares), cooling to occur radiatively as much as conductively,
  heating to continue into the decay phase of large flares, and the
  mass of the thermal X-ray plasma to be supplied primarily through
  chromospheric evaporation. Implications of the results for the basic
  flare mechanism are indicated.

---------------------------------------------------------
Title: The filament eruption in the 3B flare of July 29, 1973 -
    Onset and magnetic field configuration
Authors: Moore, R. L.; Labonte, B. J.
1980IAUS...91..207M    Altcode:
  The filament eruption in the large expanding two-ribbon solar flare
  which occurred July 29, 1973 is discussed. Observational evidence is
  presented for the preflare magnetic field configuration, the nature
  of the filament destabilization and triggering of the flare, and
  the magnetic field configuration after the filament eruption. The
  observations show that the filament is under an arcade of closed
  magnetic field lines prior to the eruption. The eruption of the filament
  and the onset of the two-ribbon H-alpha flare are preceded by precursor
  activity in the form of small H-alpha brightenings and mass motion along
  the neutral line and well below the bottom edge of the filament. The
  precursor H-alpha brightenings and the first brightenings in the flare
  ribbons are in the vicinity of the steepest magnetic field gradient
  in the flare region.

---------------------------------------------------------
Title: X-ray and Hα Observations of a Filament-Disappearance Flare:
    An Empirical Analysis of the Magnetic Field Configuration
Authors: Kahler, S. W.; Webb, D. F.; Moore, R. L.
1979BAAS...11..659K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Empirical studies of solar flares: Comparison of X-ray and H
    alpha filtergrams and analysis of the energy balance of the X-ray
    plasma
Authors: Moore, R. L.
1979cait.reptR....M    Altcode:
  The physics of solar flares was investigated through a combined analysis
  of X-ray filtergrams of the high temperature coronal component of
  flares and H alpha filtergrams of the low temperature chromospheric
  component. The data were used to study the magnetic field configuration
  and its changes in solar flares, and to examine the chromospheric
  location and structure of X-ray bright points (XPB) and XPB flares. Each
  topic and the germane data are discussed. The energy balance of the
  thermal X-ray plasma in flares, while not studied, is addressed.

---------------------------------------------------------
Title: The behaviour of dissolved organic material, iron and manganese
    in estuarine mixing
Authors: Moore, R. M.; Burton, J. D.; Williams, P. J. LeB.; Young,
   M. L.
1979GeCoA..43..919M    Altcode:
  Fractionation by ultra-filtration of the dissolved organic material
  (DOM) in the River Beaulieu, with typical concentrations of dissolved
  organic carbon (DOC) of 7-8 mg C/l, showed it to be mainly in the
  nominal molecular weight range of 10 <SUP>3</SUP>-10 <SUP>5</SUP>,
  with 16-23% of the total DOC in the fraction &gt; 10 <SUP>5</SUP>. The
  molecular weight distribution of DOM in the more alkaline River Test
  (average DOC, 2 mg C/l) was similar. In the River Beaulieu water,
  containing 136-314 βg Fe/l in 'dissolved' forms, 90% or more
  of this Fe was in the nominal molecular weight fraction &gt; 10
  <SUP>5</SUP>. Experiments showed that DOM of nominal molecular weight
  &lt;10 <SUP>5</SUP> could stabilize Fe(III) in 'dissolved' forms. The
  concentrations of 'dissolved' Fe in the river water probably reflect the
  presence of colloidal Fe stabilized by organic material and this process
  may influence the apparent molecular weight of the DOM. Dissolved. Mn
  (100-136 βg/l) in the River Beaulieu was mainly in true solution,
  probably as Mn(II), with some 30% in forms of molecular weight greater
  than ca 10 <SUP>4</SUP>. During mi xing in the Beaulieu Estuary, DOC
  and dissolved Mn behave essentially conservatively. This contrasts with
  the removal of a large fraction of the dissolved Fe (Holliday and LISS,
  1976, Est. Coastal Mar. Sci. 4, 349-353). Concentrations of lattice-held
  Fe and Mn in suspended particulate material were essentially uniform in
  the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice
  held fractions decreased markedly with increase in salinity. For Mn
  the decrease was linear and could be most simply accounted for by the
  physical mixing of riverborne and marine participates, although the
  possibility that some desorption occurs is not excluded. The non-linear
  decrease in the concentration of non-lattice held Fe in particulates
  reflected the more complex situation in which physical mixing is
  accompanied by removal of material from the 'dissolved' fraction.

---------------------------------------------------------
Title: Nonequilibrium ionization in solar and stellar winds.
Authors: Dupree, A. K.; Moore, R. T.; Shapiro, P. R.
1979ApJ...229L.101D    Altcode:
  Substantial and systematic departures from ionization equilibrium can
  occur in the solar transition region and corona when mass outflows are
  present. Modeling calculations illustrate the general characteristics of
  the ionization balance in such regions. The presence of nonequilibrium
  conditions suggests a natural explanation for the extended region of EUV
  line emission that is observed above the solar limb. Comparison with
  observations of a coronal hole on the disk indicates that outflow may
  not start until temperatures of about 250,000 K are reached. Additional
  consequences include a diminution of the density discrepancy between
  ultraviolet and radio observations of coronal holes, and potential
  effects on the energy balance in solar and stellar atmospheres
  undergoing mass loss.

---------------------------------------------------------
Title: LP 131-66: a color class "m" white dwarf.
Authors: Liebert, J.; Dahn, C. C.; Gresham, M.; Hege, E. K.; Moore,
   R. L.; Romanishin, W.; Strittmatter, P. A.
1979ApJ...229..196L    Altcode:
  A cool degenerate star with very red colors is reported. The colors are
  V = 17.77, B-V = 1.47, (V-R)<SUB>J</SUB> = 1.15, and (V-I)<SUB>KM</SUB>
  = 1.29. The B-V color is substantially redder than in any previous
  low-luminosity degenerate except the blanketed LP 701-29; yet in this
  case there are no obvious features in the optical spectrum. Comparison
  is made with BVI colors presented for other cool white dwarfs and
  with model-atmosphere predictions. Considerable scatter and evidence
  for blanketing are noted in the colors of the very cool stars. One
  interpretation of the extreme colors of LP 131-66 is that it has a
  temperature substantially below 4000 K, probably with a helium-rich
  atmosphere. An alternative possibility is that peculiar blanketing,
  not apparent in the spectroscopic observations, reddens the optical
  energy distribution, with the star having a somewhat higher temperature.

---------------------------------------------------------
Title: The local nature of the anticenter anomalous-velocity streams
    and their focus.
Authors: Burton, W. B.; Moore, R. L.
1979AJ.....84..189B    Altcode:
  We discuss the phenomenological aspects of a complex of associated H I
  features in the anticenter region of the Galaxy. We show that spatially
  extended streams comprised of high- and intermediate-velocity hydrogen
  clouds culminate in a focus of activity where there is a disruption and
  localized density minimum in the permitted-velocity material. We argue
  that the region of activity, and by association the forbidden-velocity
  material, are located within the Galaxy. This suggests constraints for
  the interpretation of at least the anticenter anomalous-velocity clouds.

---------------------------------------------------------
Title: Physics of the Sun - Synoptic Observations at MT.WILSON
    Rotation of the Sun - Large-Scale Velocity Fields - Active Regions
    Regions - Solar Axis Elements - Big Bear Solar Observatory -
    Instruments - Blue Continuum in Flares - Thermal X-Ray Plasma in
    Solar Flares
Authors: Howard, R.; Goeden, R.; Eaton, S.; Labonte, B.; Patterson,
   A.; Zirin, H.; Tanaka, H.; Moore, R.
1979haob.rept..716H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Anticenter High-Velocity Stream as a Galactic Phenomenon
Authors: Moore, R. L.; Burton, W. B.
1979IAUS...84..535M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Short-Term Optical Variability of B2 1308+326
Authors: Moore, R. L.; Angel, J. R. P.; Miller, H. R.; McGimsey, B. Q.
1978BAAS...10..662M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The shell around Nova DQ Herculis 1934.
Authors: Williams, R. E.; Woolf, N. J.; Hege, E. K.; Moore, R. L.;
   Kopriva, D. A.
1978ApJ...224..171W    Altcode:
  Spectral scans have been obtained of different regions of the
  extended nova shell surrounding DQ Her, using an intensified Reticon
  detector. The spectra show unusually strong recombination lines of
  ionized carbon, nitrogen, and oxygen, which indicate enhancements of
  CNO with respect to H over solar values of roughly a factor of 100
  in parts of the shell. In addition, a strong broad emission feature
  at 3644-A is identified as the Balmer continuum, formed at a very low
  temperature (not exceeding about 500 K). Most of the hydrogen emission
  and CNO recombination lines originate in the cold ionized gas. However,
  forbidden lines of N II and O II are also observed which indicate the
  presence of a hotter component of gas.

---------------------------------------------------------
Title: Evidence that the Mass of the Thermal X-Ray Plasma in Solar
    Flares is Supplied by Conduction-Driven Evaporation.
Authors: Moore, R. L.
1978BAAS...10..442M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Polar Coronal Holes and the Variation with Latitude of the
    Height of the Hα Chromosphere.
Authors: Rabin, D. M.; Moore, R. L.
1978BAAS...10..430R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: On the polarization and mass of BL Lac objects.
Authors: Angel, J. R. P.; Boroson, T. A.; Adams, M. T.; Duerr, R.;
   Giampapa, M. S.; Gresham, M. S.; Gural, P. S.; Hubbard, E. N.; Kopriva,
   D. A.; Moore, R. L.; Peterson, B. M.; Schmidt, G. D.; Turnshek, D. A.;
   Wilkerson, M. S.; Zotov, N. V.; Maza, J.; Kinman, T. D.
1978bllo.conf..117A    Altcode: 1978blo..conf..117A
  Optical polarization measurements have been obtained for 12 BL Lac
  objects, including many repeated observations during a night. It
  is found that the shortest time scale for substantial changes in
  polarization is about 10 hours. Fluctuations with a 1-day characteristic
  time are common. This time is identified with the dynamical time
  scale of the most luminous material close to a black hole. It follows
  that the typical mass is about 2 billion solar masses. Observations
  over several years show that five out of 12 objects have a preferred
  orientation of position angle, perhaps defined by the angular-momentum
  vector of accreted material.

---------------------------------------------------------
Title: The Thermal X-Ray Plasma in Solar Flares
Authors: Moore, R. L.
1978BBSOP.174....1M    Altcode:
  The observational knowledge of the thermal x-ray plasma in solar
  flares and its physical interpretation are reviewed, including results
  from Skylab prior to the Skylab Solar Workshop on Solar Flares. The
  review covers the main results and ideas in the published literature
  through 1977.

---------------------------------------------------------
Title: Cenozoic igneous rocks of the Colorado Plateau
Authors: Moore, R. B.
1978LPICo.329...28M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Interstellar bubbles. II. Structure and evolution.
Authors: Weaver, R.; McCray, R.; Castor, J.; Shapiro, P.; Moore, R.
1977ApJ...218..377W    Altcode:
  The detailed structure of the interaction of a strong stellar wind with
  the interstellar medium is presented. First, an adiabatic similarity
  solution is given which is applicable at early times. Second, a
  similarity solution is derived which includes the effects of thermal
  conduction between the hot (about 1 million K) interior and the cold
  shell of swept-up interstellar matter. This solution is then modified
  to include the effects of radiative energy losses. The evolution of an
  interstellar bubble is calculated, including the radiative losses. The
  quantitative results for the outer-shell radius and velocity and the
  column density of highly ionized species such as O VI are within a
  factor 2 of the approximate results of Castor, McCray, and Weaver
  (1975). The effect of stellar motion on the structure of a bubble,
  the hydrodynamic stability of the outer shell, and the observable
  properties of the hot region and the outer shell are discussed.

---------------------------------------------------------
Title: A very large optical telescope array linked with fused
    silica fibers.
Authors: Angel, J. R. P.; Adams, M. T.; Boroson, T. A.; Moore, R. L.
1977ApJ...218..776A    Altcode:
  An approach to the problem of building a very large optical array
  telescope (aperture of 500 sq m) is proposed which makes use of single
  fused-silica fibers to bring together light from about 100 mirrors,
  each having a diameter of approximately 2.5 m. The properties of
  fused-silica fibers are examined, particularly their transmission as
  a function of wavelength in the optical and IR regions as well as the
  effect of fiber propagation on focal ratio. A design for a fiber-linked
  optical array telescope (FLOAT) which would work well with currently
  available fibers is presented in which single fibers are located at the
  prime focus of each mirror. Mounting of the mirror array and accurate
  pointing of each telescope are considered, and the properties of a
  FLOAT intended for spectroscopic observations are compared with those
  of more conventional telescopes. It is noted that a FLOAT is ideally
  suited for spectrophotometric observations of stellar objects in the
  wavelength range from 0.3 to 2.5 microns.

---------------------------------------------------------
Title: Halpha macrospicules: identification with EUV macrospicules
    and with flares in X-ray bright points.
Authors: Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L.
1977ApJ...218..286M    Altcode:
  The paper presents observational evidence that two newly observed
  transient solar phenomena, EUV macrospicules and X-ray bright-point
  flares, are closely related. Time-lapse H-alpha filtergram observations
  of the limb in quiet regions show small surgelike eruptions called
  H-alpha macrospicules. From the similarity of H-alpha macrospicules
  and EUV macrospicules, and from comparison of simultaneous H-alpha and
  He II 304 A observations, we conclude that H-alpha macrospicules are
  EUV macrospicules viewed in H-alpha, although most EUV macrospicules
  are too faint in H-alpha to appear on H-alpha filtergrams of normal
  exposure. From comparison of simultaneous X-ray and H-alpha observations
  of flares in X-ray bright points situated on the limb, we show that
  flares in X-ray bright points often produce H-alpha macrospicules.

---------------------------------------------------------
Title: The nonequilibrium ionization of solar flare coronal plasma
    and the emergent X-ray spectrum.
Authors: Shapiro, P. R.; Moore, R. T.
1977ApJ...217..621S    Altcode:
  Consequences of a lack of equilibrium between the ionization and
  recombination of ions in the coronal plasma responsible for the thermal
  X-ray emission spectrum of solar flares are considered. A model of
  an impulsively heated nonequilibrium flare plasma is investigated in
  which a preflare coronal loop is 'instantaneously' heated, with rapid
  thermalization of the loop electrons occurring at a temperature of the
  order of 100 million K. It is shown that since the plasma is out of
  ionization equilibrium during the first few seconds before the onset
  of some energy-releasing instability, the emergent X-ray spectrum is a
  superposition of the thermal bremsstrahlung spectrum of hot electrons
  and the X-ray line and enhanced two-photon continuous spectra of
  the nonequilibrium ionization structure. Soft X-ray emission from
  this plasma is therefore burstlike, jumping to a significantly higher
  level when the electron temperature jumps and decaying dramatically as
  the gas becomes more ionized. The plasma model is used in a detailed
  calculation of the ionization structure of and the X-ray emission from
  the coronal flare plasma during the impulsive phase of solar flares.

---------------------------------------------------------
Title: Umbral Flares.
Authors: Tang, F.; Moore, R. L.
1977BAAS....9..329T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Diagnostic Diagram for the Heating and Cooling of the
    Thermal X-Ray Plasma in Solar Flares.
Authors: Moore, R. L.
1977BAAS....9..311M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Calculation of Saturn's Gravitational Contraction History.
Authors: Pollack, J. B.; Grossman, A. S.; Moore, R.; Graboske,
   H. C., Jr.
1977Icar...30..111P    Altcode:
  A calculation has been made of the gravitational contraction of a
  homogeneous, quasi-equilibrium Saturn model of solar composition. The
  calculations begin at a time when the planet's radius is ten times
  larger than its present size, and the subsequent gravitational
  contraction is followed for 4.5 × 10 <SUP>9</SUP> years. For the first
  million years of evolution, the Saturn model contracts rapidly like a
  pre-main sequence star and has a much higher luminosity and effective
  temperature than at present. Later stages of contraction occur more
  slowly and are analogous to the cooling phase of a degenerate white
  dwarf star. Examination of the interior structure of the models
  indicates the presence of a metallic hydrogen region near the center
  of the planet. Differences in the size of this region for Jupiter
  and Saturn may, in part, be responsible for Saturn having a weaker
  magnetic field. While the interior temperatures are much too high for
  the fluids in the molecular and metallic regions to become solids
  by the current epoch, the temperature in the outer portion of the
  metallic zone falls below Stevenson's [ Phys. Rev. J. (1975)] phase
  separation curve for helium after 1.2 billion years of evolution. This
  would lead to a sinking of helium from the outer to the inner portion
  of the metallic region, as described by Salpeter [ Astrophys. J.181,
  L83-L86 (1973)]. At the current epoch, the radius of the model is
  about 9% larger, while its excess luminosity is comparable to the
  observed value of Rieke [ Icarus26, 37-44 (1975)], as refined by Wright
  [Harvard College Obs. Preprint No. 480 (1976)]. This behavior of the
  Saturn model may be compared to the good agreement with both Jupiter's
  observed radius and excess luminosity shown by an analogous model
  of Jupiter [Graboske et al., Astrophys. J.199, 255-264 (1975)]. The
  discrepancy in radius of our Saturn model may be due to errors in
  the equations of state and/or our neglect of a rocky core. However,
  arguments are presented which indicate that helium separation may cause
  an expansion of the model and thus lead to an even bigger discrepancy
  in radius. Improvement in the radius may also foster a somewhat larger
  predicted luminosity. At least part and perhaps most of Saturn's excess
  luminosity is due to the loss of internal thermal energy that was built
  up during the early rapid contraction, with a minor contribution coming
  from Saturn's present rate of contraction. These two sources dominate
  Jupiter's excess luminosity. If helium separation makes an important
  contribution to Saturn's excess luminosity, then planetwide segregation
  is required. Finally, because Saturn's early high luminosity was about
  an order of magnitude smaller than Jupiter's, water-ice satellites
  may have been able to form closer to Saturn to Jupiter.

---------------------------------------------------------
Title: Information on Heating and Cooling in Solar Flares from
    Broad-Band Observations of the X-Ray and EUV Spectrum.
Authors: Moore, R. L.
1976BAAS....8Q.549M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Formation of Saturn's Satellites and Rings, as Influenced
    by Saturn's Contraction History
Authors: Pollack, J. B.; Grossman, A. S.; Moore, R.; Graboske,
   H. C., Jr.
1976Icar...29...35P    Altcode:
  We have used Pollack et al.'s 1976 calculations of the quasi-equilibrium
  contraction of Saturn to study the influence of the planet's early
  high luminosity on the formation of its satellites and rings. Assuming
  that the condensation of ices ceased at the same time within Jupiter's
  and Saturn's primordial nebulae, and using limits for the time of
  cessation derived for Jupiter's system by Pollack and Reynolds (1974)
  and Cameron and Pollack (1975), we arrive at the following tentative
  conclusions. Titan is the innermost satellite at whose position a
  methane-containing ice could condense, a result consistent with the
  presence of methane in this satellite's atmosphere. Water ice may
  have been able to condense at the position of all the satellites,
  a result consistent with the occurrence of low-density satellites
  close to Saturn. The systematic decrease in the mass of Saturn's
  regular satellites with decreasing distance from Saturn may have
  been caused partially by the larger time intervals for the closer
  satellites between the start of contraction and the first condensation
  of ices at their positions and between the start of contraction and the
  time at which Saturn's radius became less than a satellite's orbital
  radius. Ammonia ices, principally NH <SUB>4</SUB>SH, were able to
  condense at the positions of all but the innermost satellites. Water
  ice may bave been able to condense in the region of the rings close
  to the end of the condensation period. We speculate that the rings
  are unique to Saturn because on the one hand, temperatures within
  Jupiter's Roche limit never became cool enough for ice particles to
  form before the end of the condensation period and on the other hand,
  ice particles formed only very early within Uranus' and Neptune's
  Roche limits, and were eliminated by gas drag effects that caused
  them to spiral into the planet before the gas of these planets'
  nebula was eliminated. Gas drag would also have eliminated any rocky
  particles initially present inside the Roche limit. We also derive an
  independent estimate of several million years for the time between
  the start of the quasi-equilibrium contraction of Saturn and the
  cessation of condensation. This estimate is based on the density
  and mass characteristics of Saturn's satellites. Using this value
  rather than the one found for Jupiter's satellites, we find that the
  above conclusions about the rings and the condensation of methane-and
  ammonia-containing ices remain valid.

---------------------------------------------------------
Title: Time-dependent radiative cooling of a hot, diffuse cosmic gas,
    and the emergent X-ray spectrum.
Authors: Shapiro, P. R.; Moore, R. T.
1976ApJ...207..460S    Altcode:
  A new, detailed calculation is presented of the nonequilibrium
  radiative cooling of an optically thin low-density (n &lt; lO cm-3)
  interstellar gas which is suddenly shock-heated to 106 K and cools to
  1O K. Results include the ionization structure, radiative energy-loss,
  and X-ray spectrum from 0.5 to 70 A for the cooling gas under a variety
  of initial conditions. It is found that the initial condition of the
  gas is unimportant only if the gas is preionized. These results are
  relevant to the diffuse galactic soft X-ray background at 0.25 keV,
  the observation by Copernicus of interstellar 0 vi, and studies of
  the late radiative phase of supernova remnants. Subject headings:
  interstellar: matter - nebulae: supernova remnants - X-rays: general

---------------------------------------------------------
Title: Identification of Hα Macrospicules with EUV Macrospicules
    and with Flares in X-Ray Bright Points
Authors: Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L.
1976BAAS....8..333M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Absence of Center-to-Limb Variations in Solar Hard X-Ray
    Emission
Authors: Datlowe, D. W.; Moore, R. L.
1976BAAS....8..318D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Proceedings of the workshop: the solar constant and the earth's
    atmosphere. held at Big Bear Solar Observatory, North Shore Drive,
    Big Bear City, Calif., 19 - 21 May 1975.
Authors: Zirin, H.; Moore, R. L.; Walter, J.
1976SoPh...46..377Z    Altcode:
  The paper summarizes the chief points made at an interdisciplinary
  workshop on the solar constant and the earth's climate, at which
  the main sessions covered the solar background, the climate record
  background, solar constant measurements, the effects of solar constant
  variations on the atmosphere, and future observational programs. Some
  data and graphs are presented showing the principal features of the
  earth's climatic history in the past million years, causal factors in
  climatic change during the earth's history, the variance spectrum of
  climatic change, potential origins of climatic change as a function of
  time scale of the change, direct measurements of the solar constant,
  relations between the solar constant, the earth's surface temperature,
  and the percentage of ice cover for Seller's global-averaged models,
  and experiments proposed for the NASA program of measuring the total
  and spectral irradiance of the sun from spacecraft.

---------------------------------------------------------
Title: Solar XUV Spectral Irradiance Monitor
Authors: Moore, R. L.
1976BBSOP.158....1M    Altcode:
  Scientific uses for an XUV (A &lt; 3000 A) spectral flux monitor on
  the Solar Physics Spacelab and the performance requirements for these
  uses are defined for the disciplines of solar physics and aeronomy. The
  study emphasizes solar physics uses with particular emphasis on solar
  flares. It is concluded that: 1. An XUV monitor which meets the needs of
  solar physics will also be very useful for aeronomy. 2. The observation
  of solar flares is the scientific use of greatest potential. 3. The
  measurement of the XUV flux of a significant number of flares during
  a Spacelab mission requires a sensitivity of 0.1%. Some basic design
  questions posed by the results of the study are briefly discussed.

---------------------------------------------------------
Title: Cooperative studies of chromospheric structure and magnetic
    fields
Authors: Zirin, H.; Moore, R. L.
1975cait.rept.....Z    Altcode:
  This report concentrates on chromospheric phenomena and their associated
  magnetic fields. The following three areas of research are discussed:
  (1) Morphology of active regions, i.e. relations between magnetic field
  structure and plages, filaments, and flares; (2) Sunspot phenomena,
  especially umbral flashes and running penumbral waves; (3) Structure
  and dynamics of quiet regions, e.g. chromospheric network, spicules
  and oscillations.

---------------------------------------------------------
Title: Heating and Cooling of the Thermal X-Ray Plasma in Solar Flares
Authors: Moore, R. L.; Datlowe, D. W.
1975SoPh...43..189M    Altcode:
  Characteristic times for heating and cooling of the thermal X-ray plasma
  in solar flares are estimated from the time profile of the thermal
  X-ray burst and from the temperature, emission measure and over-all
  length scale of the flare-heated plasma at thermal X-ray maximum. The
  heating is assumed to be due to magnetic field reconnection, and the
  cooling is assumed to be due to heat conduction and radiation.

---------------------------------------------------------
Title: A superfluid helium system for an LST IR experiment
Authors: Breckenridge, R. W., Jr.; Moore, R. W., Jr.
1975ladi.reptS....B    Altcode:
  The results are presented of a study program directed toward evaluating
  the problems associated with cooling an LST instrument to 2 K for a year
  by using superfluid helium as the cooling means. The results include
  the parametric analysis of systems using helium only, and systems
  using helium plus a shield cryogen. A baseline system, using helium
  only is described. The baseline system is sized for an instrument
  heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a
  total, filled weight of 217 Kg. A brief assessment of the technical
  problems associated with a long life, spaceborne superfluid helium
  storage system is also made. It is concluded that a one year life,
  superfluid helium cooling system is feasible, pending experimental
  verification of a suitable low g vent system.

---------------------------------------------------------
Title: Flares in Ephemeral Active Regions.
Authors: Moore, R. L.; Tang, F.
1975BAAS....7..423M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Nature of Magnetic Field Reconnection in Solar Flares:
    Implications of Recent Observational Evidence
Authors: Moore, R. L.
1975BAAS....7R.351M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Umbral Oscillations and Penumbral Waves in H&amp;alpha
Authors: Moore, R. L.; Tang, F.
1975SoPh...41...81M    Altcode:
  We present examples of umbral oscillations observed on Big Bear
  Hα filtergram movies and investigate the relation between umbral
  oscillations and running penumbral waves occurring in the same
  sunspot. Umbral oscillations near the center of the umbra are probably
  physically independent of the penumbral waves because the period of
  these umbral oscillations (150 s) is shorter than the penumbral wave
  period (270 s) but not a harmonic. We also report `dark puffs' which
  emerge from the edge of the umbra and move outward across the penumbra,
  and which have the same period as the running penumbral waves. We
  interpret these dark puffs to be the extension of chromospheric
  umbral oscillations at the edge of the umbra. It is suggested that
  the dark puffs and the running penumbral waves have a common source:
  photospheric oscillations just inside the umbra.

---------------------------------------------------------
Title: Analysis of OGO-5 and OSO-7 X-ray data
Authors: Moore, R. L.
1975cait.reptQ....M    Altcode:
  The physical nature of solar flares implied by the data was studied. The
  empirical results were obtained primarily from the OGO-5 and OSO-7
  X-ray data in combination with optical data. The principal conclusions
  regarding the physics of flares are the following. (1) Flares are
  produced by magnetic field reconnection. (2) The resulting thermal X-ray
  plasma is cooled primarily by heat conduction rather than by radiative
  cooling. (3) The heating and cooling of the thermal X-ray plasma are
  approximately in balance during the maximum phase of the flare.

---------------------------------------------------------
Title: Analysis of OGO-5 and OGO-7 X-ray data. Final report.
Authors: Moore, R. L.
1975aoox.book.....M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Response of an Isothermal Atmosphere to Pressure
    Fluctuations at Its Base and the Five-Minute Oscillations in the
    Solar Photosphere
Authors: Moore, R. L.
1974SoPh...36..321M    Altcode:
  The steady-state vertical-velocity response of an isothermal atmosphere
  to pressure fluctuations of arbitrary period and horizontal wavelength
  at its base is derived in the approximation of dissipationless
  polytropic motion in the atmosphere. It is pointed out that, since only
  upward modes can be excited in an isothermal atmosphere perturbed from
  below, the infinite response found by Worrall (1972) at the critical
  frequency ω<SUB>g</SUB> does not occur. The correct behavior of the
  response is presented in some detail.

---------------------------------------------------------
Title: Heating and Cooling of the Thermal Plasma in Solar Flares.
Authors: Moore, R. L.
1974BAAS....6R.347M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Response of an Isothermal Atmosphere to Pressure
    Fluctuations at its Base and the Five-Minute Oscillations in the
    Solar Photosphere
Authors: Moore, R. L.
1974BAAS....6R.292M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: On the Generation of Umbral Flashes and Running Penumbral Waves
Authors: Moore, R. L.
1973SoPh...30..403M    Altcode:
  From a review of the observed properties of umbral flashes and
  running penumbral waves it is proposed that the source of these
  periodic phenomena is the oscillatory convection which Danielson and
  Savage (1968) and Savage (1969) ave shown is likely to occur in the
  superadiabatic subphotospheric layers of sunspot umbras. Periods and
  growth rates are computed for oscillatory modes arising in a simple
  two-layer model umbra. The results suggest that umbral flashes result
  from disturbances produced by oscillatory convection occurring in
  the upper subphotospheric layer of the umbra where the superadiabatic
  temperature gradient is much enhanced over that in lower layers, while
  running penumbral waves are due to oscillations in a layer just below
  this upper layer.

---------------------------------------------------------
Title: Generation of Umbral Flashes and Running Penumbral Waves.
Authors: Moore, R. L.
1973BAAS....5....1M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Electron Microprobe Analyses of Lithic Fragments and Their
    Minerals from Luna 20 Fines
Authors: Conrad, George H.; Hlava, Paul F.; Green, Jonathan A.;
   Moore, R. B.; Moreland, Grover; Dowty, Eric; Prinz, Martin; Keil,
   Klaus; Nehru, C. E.; Bunch, T. E.
1973unm..rept...12C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Structure of the Chromosphere-Corona Transition Region
Authors: Moore, R. L.; Fung, P. C. W.
1972SoPh...23...78M    Altcode:
  The structure and energy balance of the chromosphere-corona transition
  region is investigated by means of a static, planar model which is
  compared with the results of XUV-resonance-line observations. In this
  model, the transition region is heated by thermal conduction from
  the corona and cooled by radiative losses. Comparison of the model
  with observational results implies that this is the dominant process
  in the energy balance of the transition region, and that the base of
  the transition region is inherently non-static and/or non-planar. The
  model explains the observational finding of Noyes et al. (1970) that
  the number density and the downward heat flux both increase by the
  same factor from quiet regions to active regions. The implications of
  these results are discussed with regard to spicules.

---------------------------------------------------------
Title: The perihelion of Mercury.
Authors: Moore, R. E.; Greenspan, D.
1972BAAS....4R.421M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The structure and heating of the chromosphere-corona transition
    region
Authors: Moore, Ronald Lee
1972PhDT.........4M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Structure and energy balance of the chromosphere-corona
    transition region.
Authors: Moore, R. L.; Fung, P. C. W.
1971BAAS....3..501M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Erratum: Lithium in chondritic meteorites. W. Nichiporuk and
    Moore, Earth Planet. Sci. Letters 9 (1970) 280-286 W. Nichiporuk
    and Moore, Earth Planet. Sci. Letters 9 (1970) 280-286
Authors: Nichiporuk, W.; Moore
1971E&PSL..10..380N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Mechanism for Pulsar Radio Emission
Authors: Sturrock, P. A.; Moore, R. L.
1969BAAS....1T.206S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: High-dispersion spectroscopic observations of Mars from 8700
    Å to 1.22 microns.
Authors: Barker, E. S.; Schorn, R. A.; Gray, L.; Moore, R.
1969BAAS....1Q.213B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Notes on Backscattering and Depolarization by Gently Undulating
    Surfaces
Authors: Fung, A. K.; Moore, R. K.; Parkins, B. E.
1965JGR....70.1559F    Altcode:
  In this letter we show that backscattered radar signals can be obtained
  from a gently undulating surface which has no regions normal to the
  incident wave. We further show that the depolarization of circularly
  polarized waves is predicted by the Kirchhoff, or physical optics,
  method and that edge effect as defined by Beckmann and Spizzichino
  [1963] for gently undulating surfaces is not always negligible and can
  contribute to depolarization. In recent work, Hagfors [1964] claims that
  only those regions which are normal to the incident wave are effective
  in backscattering and that the reflection coefficient to be used is the
  one for normal incidence. From this it was concluded that the scattering
  properties of the surface for the two principal linear polarizations
  are the same and that the depolarization of circularly polarized
  waves, which has been observed experimentally [Evans and Pettengill,
  1963], [Cosgriff et al., 1960], is not predicted by the Kirchhoff
  method. Beckmann, considering the case of scattering in the plane of
  incidence from a perfectly conducting surface, shows that depolarization
  does not occur because edge effect is always negligible. Upon close
  examination of these two conclusions, we find that the Kirchhoff method
  predicts depolarization of waves backscattered from a gently undulating
  surface and that edge effect is not always negligible.

---------------------------------------------------------
Title: Effects of Structure Size on Moon and Earth Radar Returns at
    Various Angles
Authors: Fung, A. K.; Moore, R. K.
1964JGR....69.1075F    Altcode:
  Radar scatter from lunar and terrestrial surfaces is compared with
  theoretical calculations based on a novel autocorrelation function for
  surface-height deviation from the mean. A very close fit is obtained
  with the lunar experimental return curves of Evans and Pettengill
  over the entire range from normal incidence to 85° from normal. The
  correlation function approaches different exponentials for different
  lag distances. Most of the contribution near normal incidence is
  due to that range of the autocorrelation that approximates the
  slowly varying exponential found alone in several theories, whereas
  the part of the autocorrelation near the origin that approximates a
  more rapidly varying exponential governs return at large angles. The
  autocorrelation differs from the slowly varying exponential only near
  the origin. Thus it appears, as is intuitively evident, that large-scale
  features determine the return at near-normal incidence and small-scale
  features determine that from nearer grazing incidence.

---------------------------------------------------------
Title: Radiofrequency Radiation and Particle Acceleration From
    Solar Flare Filaments Due to Collective Motion at Multiples of the
    Cyclotron Frequency
Authors: Moore, R. L.; Johnston, J. R.
1964NASSP..50..371M    Altcode: 1964psf..conf..371M
  No abstract at ADS

---------------------------------------------------------
Title: a V. H. F. Propagation Phenomenon Associated with Aurora
Authors: Moore, R. K.
1951JGR....56...97M    Altcode:
  Anomalous propagation observed by radio amateurs at frequencies of
  28 to 148 Mc during displays of aurora polaris is described. This
  phenomenon, first correlated with aurora in 1939, is characterized by
  the following features: (1) A very high fading rate, such that voice
  modulation is rendered unintelligible (2) Directional antennas give best
  results when pointed north (toward the aurora) (3) Lack of skip effect
  (4) Little change in polarization Comparison of reports of the radio
  phenomenon with visual observations of aurora indicates this effect
  is most common with auroral displays extending below 56° geomagnetic
  latitude, although the lack of amateur stations at high latitudes may
  influence these data. Until more precise fading data are available,
  development of a suitable theory is deferred.

---------------------------------------------------------
Title: Southern Extent of Aurora Borealis in North America
Authors: Gartlein, C. W.; Moore, R. K.
1951JGR....56...85G    Altcode:
  Results are presented for the first 11 years of a study of the frequency
  of overhead auroras in North America as a function of latitude in
  a region south of the auroral zone. The data have been averaged in
  various ways so that monthly and annual variations are demonstrated. It
  appears that there is a relatively constant level of auroral activity
  throughout the year in the region 58° to 60° geomagnetic latitude,
  while auroras appearing overhead south of these latitudes are more
  frequent during equinoctial periods. Auroras have been seen as far
  south as 52° during this period every month of the year. Correlation
  of auroral frequency with sunspot number is not high on a month-by-month
  or three-month running-mean basis.

---------------------------------------------------------
Title: Erratum: The Ultraviolet Solar Spectrum λλ2935-3060
Authors: Babcock, H. D.; Moore; Coffeen
1949ApJ...110..104B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: New Comet
Authors: Shapley, H.; van Maanen; Moore; Nagata, M.
1931IAUC..327....1S    Altcode:
  A telegram from Professor Shapley announces that van Maanen has
  telegraphed the photographic confirmation by Moore, Mt. Wilson, of
  a comet found by Nagata. The following position was given: 1931 UT
  R.A. Decl. July 17 16h26m 10 41 + 9 48

---------------------------------------------------------
Title: The Spectrum of Radium Emanation
Authors: Nyswander, R. E.; Lind, S. C.; Moore, R. B.
1921ApJ....54..285N    Altcode:
  No abstract at ADS