explanation      blue bibcodes open ADS page with paths to full text
Author name code: ren
ADS astronomy entries on 2022-09-14
author:"Ren, Deqing" 

---------------------------------------------------------
Title: A high-speed and high-efficiency imaging polarimeter based
on ferroelectric liquid crystal retarders: Design and test
Authors: Guo, Jing; Ren, Deqing; Zhu, Yongtian; Zhang, Xi
2021PASJ...73..405G    Altcode: 2021PASJ..tmp...19G
  Polarimeters play a key role in investigating solar magnetic fields. In
  this paper, a High speed and high efficiency Imaging POlarimeter
  (HIPO) is proposed based on a pair of ferroelectric liquid crystal
  retarders (FLCs), with the ultimate goal of measuring magnetic
  fields of prominences and filaments from the ground. A unique
  feature of the HIPO is that it enables high cadence polarization
  measurements covering a wide field of view (FOV); the modulation
  frequency of the HIPO is able to achieve ∼100 Hz, which greatly
  suppresses the seeing-induced crosstalk, and the maximum FOV can reach
  62<SUP>″</SUP> × 525<SUP>″</SUP>. Additionally, FLC retardances
  under low and high states were calibrated individually and found to
  have a slight discrepancy, which is neglected in most works. Based
  on FLC calibration results, an optimization was performed using a
  constrained nonlinear minimization approach to obtain the maximum
  polarimetric efficiency. Specifically, optimized efficiencies of the
  Stokes Q, U, and V are well balanced and determined as (ξ<SUB>Q</SUB>,
  ξ<SUB>U</SUB>, ξ<SUB>V</SUB>) = (0.5957, 0.5534, 0.5777), yielding a
  total efficiency of 0.9974. Their practical efficiencies are measured as
  (ξ<SUB>Q</SUB>', ξ<SUB>U</SUB>', ξ<SUB>V</SUB>') = (0.5934, 0.5385,
  0.5747), slightly below the optimized values but still resulting
  in a high total efficiency of 0.9861. The HIPO shows advantages in
  terms of modulation frequency and polarimetric efficiency compared
  with most other representative ground-based solar polarimeters. In
  the observations, measurement accuracy is found to be better than 2.7
  × 10<SUP>-3</SUP> by evaluating full Stokes Hα polarimetry results
  of the chromosphere. This work lays a foundation for the development
  of high-speed and high-accuracy polarimeters for our next-generation
  solar instruments.

---------------------------------------------------------
Title: Global optimization-based reference star differential imaging
    for high-contrast exoplanet imaging survey
Authors: Ren, Deqing; Chen, Yili
2021MNRAS.502.2158R    Altcode: 2021MNRAS.tmp...64R
  We propose a data reduction approach called global optimization-based
  reference star differential imaging (G-RDI), which can be used for
  exoplanet imaging survey, where large numbers of target stars from
  the same young stellar association are imaged and where no field
  rotation is needed. One of the unique features of our G-RDI is that
  we select reference stars from other scientific target stars in the
  same stellar association to optimize for high-contrast imaging with
  a target star, which maximizes the observational efficiency and also
  delivers good performance to remove the speckle noise so that high
  contrast is achievable even at a small inner working angle (IWA) to
  the host star of being imaged. We proposed the G-RDI that is optimized
  for high-contrast exoplanet imaging at a small IWA and to provide a
  contrast that is significantly better than the current reference star
  differential imaging (RDI) method. In addition, we also propose the
  use of multiple reference stars and found that our G-RDI can further
  deliver better performance in that case. The result was compared with
  other exoplanet data reduction techniques, including the traditional
  RDI, and it indicated that our G-RDI with two reference stars can
  significantly improve the contrast performance at a small IWA with
  a high observational efficiency - two critical features that current
  data reduction techniques cannot offer. This approach could be used
  with both equatorial and alt-azimuth mount telescopes, and provides a
  new option for future exoplanet imaging surveys with high observational
  efficiency at a small IWA.

---------------------------------------------------------
Title: Persistence of the long-duration daytime TEC enhancements at
    different longitudinal sectors during the August 2018 geomagnetic
    storm
Authors: Li, Q.; Huang, F.; Zhong, J.; Zhang, R.; Kuai, J.; Lei, J.;
   Liu, L.; Ren, D.; Guo, J.; Ma, H.; Yoshikawa, A.; Hu, L.; Cui, J.
2020AGUFMSA0350013L    Altcode:
  In this study, the ionospheric responses around the Asian-Australian,
  American, and African sectors during the August 2018 geomagnetic storm
  were investigated based on the Beidou GEO satellite and MIT Madrigal
  total electron contents (TECs), combined with measurements from
  ionosondes, magnetometers, and Global Ultraviolet Imager (GUVI). The
  mid and low latitude TECs were dominated by positive responses over
  the three longitudinal sectors during the storm on August 26-29. It is
  unique that all TECs at the Asian-Australian, American, and African
  sectors displayed large daytime enhancements larger than 10 TECu on
  August 27-29, during the recovery phase, when the ionosphere is usually
  dominated by plasma depletions due to the ionospheric disturbance
  dynamo and/or disturbed thermospheric compositions. The combination and
  competition of the disturbed vertical plasma drifts through the solar
  wind-magnetosphere-ionosphere (SW-M-I) coupling, and disturbed neutral
  composition contribute significantly to the daytime TEC responses at
  different longitudinal sectors on August 26 during the main and early
  recovery phases. The eastward equatorial electrojet and O/N2 are larger
  than the quiet reference during the recovery phase on August 27-29,
  which suggest the enhanced upward vertical plasma drifts combined with
  higher O/N2 make an important contribution on the daytime positive
  ionospheric storm during the recovery phase. The enhanced vertical
  plasma drifts could not be driven by the SW-M-I coupling or ionospheric
  disturbance dynamo associated with geomagnetic storm. Further studies
  should be untaken to explore the dominant sources for the enhanced
  upward vertical drifts during the recovery phase.

---------------------------------------------------------
Title: A High-Efficiency and High-Accuracy Polarimeter for Solar
    Magnetic Field Measurements
Authors: Ren, Deqing; Han, Zijian; Guo, Jing
2020SoPh..295..109R    Altcode:
  Solar activity is dominated by the magnetic field. Nowadays, a
  polarimeter is a mandatory tool to measure solar magnetic fields,
  which are generally faint and correspond to a polarization of an
  order of 10<SUP>−2</SUP>-10<SUP>−4</SUP>. As such, polarization
  measurements of high efficiency with a high accuracy are crucial to
  investigate faint magnetic fields. Here we propose a high-efficiency
  and high-accuracy polarimeter, which is based on a pair of nematic
  liquid crystal variable retarders (LCVRs) and a Wollaston prism
  (WP). It uses a dedicated Stokes modulation strategy to achieve
  high efficiency. A calibration unit (CU) is developed to measure the
  polarimeter response matrix, which provides a high-precision calibration
  to correct possible systematic errors. Compared with other traditional
  polarimeters, the modulation scheme of our polarimeter is flexible. In
  addition to be able to measure all the three Stokes polarization
  components (Q , U , or V ) simultaneously, it can also measure one
  or two of these polarization components alone, with high polarization
  efficiency. Dedicated alignment and calibration techniques optimized
  for our polarimeter are developed and high measurement accuracy is
  achieved. In our laboratory experimental test, our two-image based
  polarization measurement delivers an overall measurement accuracy
  of the order of 10<SUP>−4</SUP>, which is about 10 times better,
  compared with our previous polarimeters that use the traditional
  four-image polarization modulation. This work provides a new option
  for high-efficiency and high-accuracy polarization measurement for
  future solar synoptic observations.

---------------------------------------------------------
Title: A low-cost and duplicable portable solar adaptive optics
    system based on LabVIEW hybrid programming
Authors: Ren, Deqing; Wang, Gang
2020PASJ...72...30R    Altcode:
  We have developed a portable solar adaptive optics (PSAO) for
  diffraction-limited imaging based on today's multi-core personal
  computer. Our PSAO software is written in LabVIEW code, which features
  block-diagram function based programming and can dramatically speed
  up the software development. The PSAO can achieve a ~1000 Hz open-loop
  correction speed with a Shack-Hartmann Wave-front Sensor (SH-WFS) in 11
  × 11 sub-aperture configuration. The image shift measurements for solar
  wave-front sensing are the most time-consuming computations in a solar
  adaptive optics (AO) system. Since our current LabVIEW program does not
  fully support multi-core techniques for the image shift measurements,
  it cannot fully take advantage of the multi-core computer's power for
  parallel computation. In order to accelerate the AO system's running
  speed, a dedicated message passing interface/open multi-processing
  parallel programming technique is developed for our LabVIEW-based
  AO program, which fully supports multi-core parallel computation
  in LabVIEW programming. Our experiments demonstrate that the hybrid
  parallel technique can significantly improve the running speed of the
  solar AO system, and this work paves the way for the applications of
  a low-cost and duplicable PSAO system for large solar telescopes.

---------------------------------------------------------
Title: A Host-star Calibration Based Polarimeter for Earth-like
    Exoplanet Imaging
Authors: Ren, Deqing; Ranganathan, Mohanakrishna; Christian, Damian J.
2019PASP..131k5004R    Altcode:
  We propose a polarimeter, which is dedicated to Earth-like
  exoplanet imaging for future space missions. We adopt a
  minimum-polarization-component design philosophy, which makes a
  compact and robust system as well as high-performance achievable
  in the real world. Our polarimeter consists of two polarization
  components of a liquid crystal variable retarders (LCVR) and a
  Wollaston prism. The polarimeter can deliver an extra contrast
  better than 10<SUP>-4.5</SUP>. Combined with one of the currently
  available coronagraphs that are delivering a contrast on the order of
  10<SUP>-6.5</SUP>, the coronagraph and polarimeter system can deliver a
  contrast better than 10<SUP>-11</SUP> at a small inner working angle in
  the visible over the entire imaging plane. We discuss the polarimeter
  design concept and dedicated data-reduction technique. Our unique
  host-star calibration algorithm allows the starlight to be totally
  removed, regardless of whether the host-star image is intrinsically
  polarized or whether the light is polarized by preoptics, such as the
  telescope that is located before the polarimeter, which makes exoplanet
  polarization imaging feasible with any telescope, optical system, and
  target star. Using minimum-polarization components with a solid-state
  image LCVR as the key polarization component, our polarimeter is
  less sensitive to the wavefront phase and amplitude errors than
  other exoplanet imaging techniques. Based on commercial-grade optical
  components, we demonstrated for the first time that by combining our
  polarimeter with a currently available coronagraph, the polarimeter and
  coronagraph system can deliver a contrast better than 10<SUP>-11</SUP>
  at a small inner working angle in the visible wavelengths, which paves
  the way for Earth-like exoplanet imaging for a future space mission.

---------------------------------------------------------
Title: Numerical Simulation Research of Advanced Multiple Aperture
    Seeing Profiler
Authors: Yang, F.; Zhao, G.; Ren, D. Q.
2019AcASn..60...51Y    Altcode:
  The Advanced Multiple Aperture Seeing Profiler (A-MASP) consists
  of two small telescopes, and it could measure the daytime turbulence
  profile by observing the granulation of the solar surface. The advanced
  formula used to measure the turbulence profile could eliminate the
  relative pointing error between the two telescopes. The method of
  numerical simulation is used to study the detection performance
  of this instrument. The A-MASP is insensitive to turbulence near
  the earth's surface after the calculation formula of turbulence
  profile for eliminating jitter is used. When the distance of the two
  telescopes is 0.4 meter, turbulence below 400 meters could not be
  measured. In A-MASP, the sample height is not uniform, which will
  cause the distortion of the measurement result. Thus a method for
  calculating the equivalent sampling height is proposed, which could
  correct this distortion effectively. 100 layers of phase screens were
  used to simulate the atmospheric turbulence profile. The results show
  that when the distance of the telescopes is different, the results
  of turbulent profile measurements have their own focuses. When the
  distance is relatively close (0.4 m), A-MASP has a high accuracy for
  measuring the turbulence profile from 0.4 km to 5 km. When the distance
  is 1.2 meters and 2.0 meters, the measurement of turbulence profile
  above 5 km is more accurate. Turbulent profiles could be obtained at
  different heights by changing the distance of the telescopes.

---------------------------------------------------------
Title: The First Solar Seeing Profile Measurement with Two Apertures
    and Multiple Guide Regions
Authors: Ren, Deqing; Zhao, Gang; Wang, Xin; Beck, Christian;
   Broadfoot, Robert
2019SoPh..294....1R    Altcode: 2018SoPh..294....1R
  Ground-based observations suffer from atmospheric turbulence
  perturbations, which seriously degrade the image quality. The seeing
  profile associated with the turbulence is critical to characterize an
  astronomical site. The optimal design and performance estimation of
  future solar ground-layer adaptive optics (GLAO) and multi-conjugate
  adaptive optics (MCAO) heavily rely on our knowledge of the seeing
  profile at a specific site. Many current optical seeing profile
  measurement techniques require one to use a large solar telescope for
  that purpose. The development of a portable instrument to measure and
  characterize the seeing profile is thus highly needed, in particular
  for testing potential new sites or for the regularly monitoring of
  the seeing condition at existing sites. Recently, we proposed the
  Advanced Multiple Aperture Seeing Profiler (A-MASP), which uses multiple
  small telescopes and multiple regions of interest (ROIs) on the solar
  surface to measure the seeing profile up to an altitude of 30 km. Here,
  we report our recent proof-of-concept observation run of the A-MASP
  technique with the Dunn Solar Telescope (DST) of the National Solar
  Observatory (NSO). We found that the Fried parameter, r<SUB>0</SUB>, was
  about 12 cm at the observed wavelength of 630 nm in the early morning
  and that there were three main turbulence layers. The strongest one
  was the mix layer near the ground. We observed the evolution of the
  top of the mix layer and found that it can rise to about 1.5 km in
  about 18 min, which is consistent with the theory of daytime boundary
  layer evolution. Another turbulence layer was observed from 8 to 15 km,
  which is at the top of the convective layer. Comparing an instrument
  with two sub-apertures with a real A-MASP instrument, we found that
  they should lead to similar results except for the altitude h =0.

---------------------------------------------------------
Title: A simulation study of the equatorial ionospheric response to
    the October 2013 geomagnetic storm
Authors: Lei, J.; Ren, D.
2017AGUFMSA34A..06L    Altcode:
  The ionospheric observation from ionosonde at Sao Luis (2.5S, 44.2W;
  7S dip latitude) around the magnetic equator showed that the nighttime
  ionospheric F2 peak height (hmF2) was uplifted by more than 150 km
  during the October 2013 geomagnetic storm. The changes of hmF2 at
  the magnetic equator were generally attributed to the variations of
  vertical drift associated with zonal electric field. In this paper,
  the Thermosphere Ionosphere Electrodynamics General Circulation Model
  (TIEGCM) simulation results are utilized to explore the possible
  physical mechanisms responsible for the observed increase of hmF2 at
  Sao Luis. The TIEGCM reproduced the changes of F2 peak electron density
  (NmF2) and its height (hmF2) during the main and recovery phases of the
  October 2013 storm. A series of controlled simulations revealed that,
  besides the enhancement of vertical plasma drift, the convergence of
  horizontal neutral winds and thermospheric expansion also contributed
  significantly to the profound increase of nighttime hmF2 observed at
  Sao Luis on 2 October. Moreover, the changes of neutral winds and
  neutral temperature in the equatorial region are associated with
  the interference of storm time travelling atmospheric disturbances
  originating from high latitudes.

---------------------------------------------------------
Title: Phase Quantization Study of Spatial Light Modulator for
    Extreme High-contrast Imaging
Authors: Dou, Jiangpei; Ren, Deqing
2016ApJ...832...84D    Altcode: 2016arXiv160904870D
  Direct imaging of exoplanets by reflected starlight is extremely
  challenging due to the large luminosity ratio to the primary
  star. Wave-front control is a critical technique to attenuate the
  speckle noise in order to achieve an extremely high contrast. We
  present a phase quantization study of a spatial light modulator (SLM)
  for wave-front control to meet the contrast requirement of detection
  of a terrestrial planet in the habitable zone of a solar-type star. We
  perform the numerical simulation by employing the SLM with different
  phase accuracy and actuator numbers, which are related to the achievable
  contrast. We use an optimization algorithm to solve the quantization
  problems that is matched to the controllable phase step of the SLM. Two
  optical configurations are discussed with the SLM located before and
  after the coronagraph focal plane mask. The simulation result has
  constrained the specification for SLM phase accuracy in the above two
  optical configurations, which gives us a phase accuracy of 0.4/1000
  and 1/1000 waves to achieve a contrast of 10<SUP>-10</SUP>. Finally,
  we have demonstrated that an SLM with more actuators can deliver a
  competitive contrast performance on the order of 10<SUP>-10</SUP>
  in comparison to that by using a deformable mirror.

---------------------------------------------------------
Title: Advanced Multiple Aperture Seeing Profiler
Authors: Ren, Deqing; Zhao, Gang
2016PASP..128j5002R    Altcode:
  Measurements of the seeing profile of the atmospheric turbulence
  as a function of altitude are crucial for solar astronomical
  site characterization, as well as the optimized design and
  performance estimation of solar Multi-Conjugate Adaptive Optics
  (MCAO). Knowledge of the seeing distribution, up to 30 km, with
  a potential new solar observation site, is required for future
  solar MCAO developments. Current optical seeing profile measurement
  techniques are limited by the need to use a large facility solar
  telescope for such seeing profile measurements, which is a serious
  limitation on characterizing a site's seeing conditions in terms of
  the seeing profile. Based on our previous work, we propose a compact
  solar seeing profiler called the Advanced Multiple Aperture Seeing
  Profile (A-MASP). A-MASP consists of two small telescopes, each with
  a 100 mm aperture. The two small telescopes can be installed on a
  commercial computerized tripod to track solar granule structures for
  seeing profile measurement. A-MASP is extreme simple and portable,
  which makes it an ideal system to bring to a potential new site for
  seeing profile measurements.

---------------------------------------------------------
Title: Feasibility of hydrogen density estimation from tomographic
    sensing of Lyman alpha emission
Authors: Waldrop, L.; Kamalabadi, F.; Ren, D.
2015AGUFMSA32A..07W    Altcode:
  In this work, we describe the scientific motivation, basic principles,
  and feasibility of a new approach to the estimation of neutral hydrogen
  (H) density in the terrestrial exosphere based on the 3-D tomographic
  sensing of optically thin H emission at 121.6 nm (Lyman alpha). In
  contrast to existing techniques, Lyman alpha tomography allows for
  model-independent reconstruction of the underlying H distribution in
  support of investigations regarding the origin and time-dependent
  evolution of exospheric structure. We quantitatively describe the
  trade-off space between the measurement sampling rate, viewing geometry,
  and the spatial and temporal resolution of the reconstruction that is
  supported by the data. We demonstrate that this approach is feasible
  from either earth-orbiting satellites such as the stereoscopic NASA
  TWINS mission or from a CubeSat platform along a trans-exosphere
  trajectory such as that enabled by the upcoming Exploration Mission
  1 launch.

---------------------------------------------------------
Title: Multiple-Aperture-Based Solar Seeing Profiler
Authors: Ren, Deqing; Zhao, Gang; Zhang, Xi; Dou, Jiangpei; Chen,
   Rui; Zhu, Yongtian; Yang, Feng
2015PASP..127..870R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Direct Imaging Search of Exoplanets from Ground and Space
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian
2015IAUGA..2255996D    Altcode:
  Exoplanets search is one of the hottest topics in both modern astronomy
  and public domain. Until now over 1990 exoplanets have been confirmed
  mostly by the indirect radial velocity and transiting approaches,
  yielding several important physical information such as masses and
  radius. The study of the physics of planet formation and evolution will
  focus on giant planets through the direct imaging.However, the direct
  imaging of exoplanets remains challenging, due to the large flux ratio
  difference and the nearby angular distance. In recent years, the extreme
  adaptive optics (Ex-AO) coronagraphic instrumentation has been proposed
  and developed on 8-meter class telescopes, which is optimized for the
  high-contrast imaging observation from ground, for the giant exoplanets
  and other faint stellar companions. Gemini Planet Imager (GPI) has
  recently come to its first light, with a development period over 10
  years. The contrast level has been pushed to 10<SUP>-6</SUP>. Due to the
  space limitation or this or other reasons, none professional adaptive
  optics is available for most of current 3~4 meter class telescopes,
  which will limit its observation power to some extent, especially in the
  research of high-contrast imaging of exoplanets.In this presentation,
  we will report the latest observation results by using our Extreme
  Adaptive Optics (Ex-AO) as a visiting instrument for high-contrast
  imaging on ESO’s 3.58-meter NTT telescope at LSO, and on 3.5-meter ARC
  telescope at Apache Point Observatory, respectively. It has demonstrated
  the Ex-AO can be used for the scientific research of exoplanets and
  brown dwarfs. With a update of the currect configuration with critical
  hardware, the dedicated instrument called as EDICT for imaging research
  of young giant exoplanets will be presented. Meanwhile, we have fully
  demonstrated in the lab a contrast on the order of 10<SUP>-9</SUP>
  in a large detection area, which is a critical technique for future
  Earth-like exoplanets imaging space missions. And a space program of
  JEEEDIS will also be presented in this talk.

---------------------------------------------------------
Title: Multiple-Aperture Based Solar Seeing Profiler
Authors: Zhao, Gang; Ren, Deqing
2015IAUGA..2256161Z    Altcode:
  Characterization of daytime atmospheric turbulence profile up to 30 km
  above the telescope is crucial for designs and performance estimations
  of solar Multi-Conjugate Adaptive Optics (MCAO) systems. To measure
  seeing profiles up to 30km, we introduce the Multiple Aperture Seeing
  Profiler (MASP). It bases on the principle of S-DIMM+ and consists of
  two portable small telescopes similar to SHABAR. Thus the MASP take
  the advantages of both S-DIMM+ and SHABAR. It is portable and can be
  used without big telescope, while it has ability to measure turbulence
  profile up to 30km. Numerical simulations are carried out to evaluate
  the performance of MASP. We find that for one layer case, MASP can
  retrieve the seeing with error ~5% using 800 frames of WFS data,
  which is quite similar with the results of a telescope with diameter
  of 1120mm. We also simulate profiles with four turbulence layers, and
  find that our MASP can well retrieve the strengths and heights of the
  four turbulence layers. Since previous measurements at BBSO showed
  that daytime turbulence profile typically consists of four layers,
  MASP we introduced is sufficient for actual seeing measurement.

---------------------------------------------------------
Title: Solar Ground-Layer Adaptive Optics
Authors: Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei;
   Chen, Rui; Zhao, Gang; Zhu, Yongtian
2015PASP..127..469R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A High-contrast Imaging Algorithm: Optimized Image Rotation
    and Subtraction
Authors: Dou, Jiangpei; Ren, Deqing; Zhao, Gang; Zhang, Xi; Chen,
   Rui; Zhu, Yongtian
2015ApJ...802...12D    Altcode: 2015arXiv150103893D
  Image Rotation and Subtraction (IRS) is a high-contrast imaging
  technique that can be used to suppress the speckle noise and facilitate
  the direct detection of exoplanets. IRS is different from Angular
  Differential Imaging (ADI), in that it will subtract a copy of the image
  with 180° rotated around its point-spread function (PSF) center, rather
  than the subtraction of the median of all of the PSF images. Since
  the planet itself will be rotated to the other side of the PSF, IRS
  does not suffer from planet self-subtraction. In this paper, we have
  introduced an optimization algorithm to IRS (OIRS), that can provide
  an extra contrast gain at small angular separations. The performance
  of OIRS has been demonstrated with ADI data. We then made a comparison
  of the signal-to-noise ratio (S/N) achieved by algorithms of locally
  optimized combinations of images and OIRS. Finally, we found that the
  OIRS algorithm can deliver a better S/N for small angular separations.

---------------------------------------------------------
Title: A coronagraph based on two spatial light modulators for active
    amplitude apodizing and phase corrections
Authors: Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao,
   Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao
2014SPIE.9147E..8OD    Altcode:
  Almost all high-contrast imaging coronagraphs proposed until now are
  based on passive coronagraph optical components. Recently, Ren and Zhu
  proposed for the first time a coronagraph that integrates a liquid
  crystal array (LCA) for the active pupil apodizing and a deformable
  mirror (DM) for the phase corrections. Here, for demonstration
  purpose, we present the initial test result of a coronagraphic
  system that is based on two liquid crystal spatial light modulators
  (SLM). In the system, one SLM is served as active pupil apodizing and
  amplitude correction to suppress the diffraction light; another SLM
  is used to correct the speckle noise that is caused by the wave-front
  distortions. In this way, both amplitude and phase error can be actively
  and efficiently compensated. In the test, we use the stochastic parallel
  gradient descent (SPGD) algorithm to control two SLMs, which is based on
  the point spread function (PSF) sensing and evaluation and optimized for
  a maximum contrast in the discovery area. Finally, it has demonstrated
  a contrast of 10<SUP>-6</SUP> at an inner working angular distance of
  ~6.2 λ/D, which is a promising technique to be used for the direct
  imaging of young exoplanets on ground-based telescopes.

---------------------------------------------------------
Title: Period variation and four color light curves investigation
    of AB And
Authors: Li, K.; Hu, S. -M.; Jiang, Y. -G.; Chen, X.; Ren, D. -Y.
2014NewA...30...64L    Altcode:
  New determined B, V, R and I light curves of AB And have been analyzed
  by the fourth version of the Wilson-Devinney code. This is the first
  time to obtain four color light curves of AB And simultaneously. It
  is found that AB And is a middle mass ratio W-type contact binary
  system with a degree of contact factor f=25.2%±0.2%. One dark
  spot on the primary component is introduced to explain the unequal
  height of the two maxima. The orbital period investigation based
  on all the visual, photographic, photoelectric and CCD times of
  light minimum shows that the period of AB And includes a long-term
  increase (dP/dt=1.46×10<SUP>-7</SUP> days yr) and an oscillation
  (A<SUB>3</SUB>=0.121 days; T<SUB>3</SUB>=98.3 years). These may be
  caused by mass transfer and the light time effect of a third compact
  companion.

---------------------------------------------------------
Title: The first portable solar and stellar adaptive optics
Authors: Ren, Deqing; Li, Rong; Zhang, Xi; Dou, Jiangpei; Zhu,
   Yiangtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang,
   Feng; Yang, Chao
2014SPIE.9148E..2WR    Altcode:
  We have developed a portable solar and stellar adaptive optics (PSSAO)
  system, which is optimized for solar and stellar high-resolution
  imaging in the near infrared wavelength range. Our PSSAO features
  compact physical size, low cost and high performance. The AO
  software is based on LabVIEW programing and the mechanical and
  optical components are based on off-the-shelf commercial components,
  which make a high quality, duplicable and rapid developed AO system
  possible. In addition, our AO software is flexible, and can be used
  with different telescopes with or without central obstruction. We
  discuss our portable AO design philosophy, and present our recent
  on-site observation results. According to our knowledge, this is the
  first portable adaptive optics in the world that is able to work for
  solar and stellar high-resolution imaging with good performances.

---------------------------------------------------------
Title: A high-contrast coronagraph for earth-like exoplanet direct
imaging: design and test
Authors: Liu, C. C.; Ren, D. Q.; Dou, J. P.; Zhu, Y. T.; Zhang, X.;
   Zhao, G.; Wu, Zh.; Chen, R.
2014arXiv1406.2364L    Altcode:
  The high-contrast coronagraph for direct imaging earth-like exoplanet at
  the visible needs a contrast of 10^(-10) at a small angular separation
  of 4 lambda/D or less. Here we report our recent laboratory experiment
  that is close to the limits. The test of the high-contrast imaging
  coronagraph is based on our step-transmission apodized filter. To
  achieve the goal, we use a liquid crystal array (LCA) as a phase
  corrector to create a dark hole based on our dedicated focal dark
  algorithm. We have suppressed the diffracted and speckle noise near
  the star point image to a level of 1.68 x 10^(-9) at 4 lambda/D,
  which can be immediately used for the direct imaging of Jupiter like
  exoplanets. This demonstrates that high-contrast coronagraph telescope
  in space has the potentiality to detect and characterize earth-like
  planets.

---------------------------------------------------------
Title: GRB 130822A: weihai optical upper limit.
Authors: Xu, D.; Ren, D. -Y.; Cao, C.; Hu, S. -M.
2013GCN.15114....1X    Altcode: 2013GCN..15114...1X
  No abstract at ADS

---------------------------------------------------------
Title: GRB 130821A: weihai optical upper limit.
Authors: Xu, D.; Ren, D. -Y.; Cao, C.; Hu, S. -M.
2013GCN.15124....1X    Altcode: 2013GCN..15124...1X
  No abstract at ADS

---------------------------------------------------------
Title: GRB 130420B: weihai optical upper limit.
Authors: Xu, D.; Cao, C.; Hu, S.; Ren, D.
2013GCN.14426....1X    Altcode: 2013GCN..14426...1X
  No abstract at ADS

---------------------------------------------------------
Title: A dark-hole correction test for the step-transmission filter
    based coronagraphic system
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong
2012SPIE.8442E..0DD    Altcode:
  We present the initial test of the dark-hole correction for the
  high-contrast imaging coronagraph that is based on the step-transmission
  filter. The dark hole is created by a 12x12 actuator deformable mirror
  (DM) that has been put in the conjugate plane of the pupil image of
  the coronagraph. In this test, we use the stochastic parallel gradient
  descent (SPGD) optimization algorithm to directly control the DM to
  provide an optimal phase to minimize the intensity in target regions,
  where the dark hole is created and the contrast can be enhanced. For
  demonstration purpose, the test is carried out in a single wavelength
  and should be improved in next step for broad-band high-contrast
  imaging. Finally, it is shown in the test that an extra contrast ~50
  times improvement has reached in the dark hole in the coronagraphic
  image plane. Such a technique could be used for a future space-based
  high-contrast observation and is promising for the direct imaging of
  an Earth-like exoplanet.

---------------------------------------------------------
Title: Laboratory test of a polarimetry imaging subtraction system
    for the high-contrast imaging
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong
2012SPIE.8446E..8DD    Altcode:
  We propose a polarimetry imaging subtraction test system that can be
  used for the direct imaging of the reflected light from exoplanets. Such
  a system will be able to remove the speckle noise scattered by the
  wave-front error and thus can enhance the high-contrast imaging. In this
  system, we use a Wollaston Prism (WP) to divide the incoming light into
  two simultaneous images with perpendicular linear polarizations. One
  of the images is used as the reference image. Then both the phase
  and geometric distortion corrections have been performed on the other
  image. The corrected image is subtracted with the reference image to
  remove the speckles. The whole procedure is based on an optimization
  algorithm and the target function is to minimize the residual speckles
  after subtraction. For demonstration purpose, here we only use a
  circular pupil in the test without integrating of our apodized-pupil
  coronagraph. It is shown that best result can be gained by inducing
  both phase and distortion corrections. Finally, it has reached an extra
  contrast gain of 50-times improvement in average, which is promising
  to be used for the direct imaging of exoplanets.

---------------------------------------------------------
Title: A demonstration test of the dual-beam polarimetry differential
    imaging system for the high-contrast observation
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Wang, Xue; Zhang,
   Xi; Li, Rong
2012SPIE.8446E..1XD    Altcode:
  We propose a dual-beam polarimetry differential imaging test system that
  can be used for the direct imaging of the exoplanets. The system is
  composed of a liquid crystal variable retarder (LCVR) in the pupil to
  switch between two orthogonal polarized states, and a Wollaston prism
  (WP) that will be inserted before the final focal focus of the system
  to create two polarized images for the differential subtraction. Such a
  system can work separately or be integrated in the coronagraph system
  to enhance the high-contrast imaging. To demonstrate the feasibility
  of the proposed system, here we show the initial test result both with
  and without integrating our developed coronagraph. A unique feature
  for this system is that each channel can subtract with itself by using
  the retarder to rotate the planet's polarization orientation, which
  has the best performance according to our lab test results. Finally,
  it is shown that the polarimetry differential imaging system is a
  promising technique and can be used for the direct imaging observation
  of reflected lights from the exoplanets.

---------------------------------------------------------
Title: Recent progress on the portable solar adaptive optics
Authors: Ren, Deqing; Zhang, Xi; Penn, Matt; Wang, Haimin; Dou,
   Jiangpei; Zhu, Yongtian; Rong, Li; Wang, Xue
2012SPIE.8447E..3KR    Altcode:
  The portable solar adaptive optics is a compact adaptive optics system
  that will be the first visitor solar instrument in the world. As so,
  it will be able to work with any solar telescope with a aperture
  size up to ~ 2.0 meters, which will cover the largest solar telescope
  currently operational. The portable AO features small physical size,
  high-flexibility and high-performance, and is a duplicable and
  affordable system. It will provide wave-front correction down to
  the 0.5-μm wavelength, and will be used for solar high-resolution
  imaging in the near infrared and the visible. It will be the first AO
  system that uses LabVIEW based high quality parallel and block-diagram
  programming, which fully takes advantage of today's multi-core CPUs, and
  makes a rapid development of an AO system possible. In this publication,
  we report our recent progress on the portable adaptive optics, which
  includes the laboratory test for performance characterization, and
  initial on-site scientific observations.

---------------------------------------------------------
Title: Speckle Noise Subtraction and Suppression with Adaptive Optics
    Coronagraphic Imaging
Authors: Ren, Deqing; Dou, Jiangpei; Zhang, Xi; Zhu, Yongtian
2012ApJ...753...99R    Altcode:
  Future ground-based direct imaging of exoplanets depends critically on
  high-contrast coronagraph and wave-front manipulation. A coronagraph
  is designed to remove most of the unaberrated starlight. Because of
  the wave-front error, which is inherit from the atmospheric turbulence
  from ground observations, a coronagraph cannot deliver its theoretical
  performance, and speckle noise will limit the high-contrast imaging
  performance. Recently, extreme adaptive optics, which can deliver an
  extremely high Strehl ratio, is being developed for such a challenging
  mission. In this publication, we show that barely taking a long-exposure
  image does not provide much gain for coronagraphic imaging with adaptive
  optics. We further discuss a speckle subtraction and suppression
  technique that fully takes advantage of the high contrast provided by
  the coronagraph, as well as the wave front corrected by the adaptive
  optics. This technique works well for coronagraphic imaging with
  conventional adaptive optics with a moderate Strehl ratio, as well
  as for extreme adaptive optics with a high Strehl ratio. We show
  how to substrate and suppress speckle noise efficiently up to the
  third order, which is critical for future ground-based high-contrast
  imaging. Numerical simulations are conducted to fully demonstrate
  this technique.

---------------------------------------------------------
Title: Correction of Non-Common-Path Error for Extreme Adaptive Optics
Authors: Ren, Deqing; Dong, Bing; Zhu, Yongtian; Christian, Damian J.
2012PASP..124..247R    Altcode:
  The future direct imaging of exoplanets depends critically on
  wave-front corrections. Extreme adaptive optics is being proposed to
  meet such a critical requirement. One limitation to the performance of
  adaptive optics is the differential wave-front aberration that is not
  measured by a conventional wave-front sensor because of the so-called
  non-common-path error. In this article, we propose a simple approach
  that can be used to eliminate differential aberration with extreme
  adaptive optics and is optimized for best image performance or directly
  optimized for high-contrast coronagraphic imaging. The approach that
  we propose can correct differential aberration in a single step, which
  guarantees high accuracy and allows adaptive optics to correct the
  differential aberration on a real-time scale. This approach is based
  on an iterative optimization algorithm that commands the deformable
  mirror directly and uses the focal-plane point-spread function as a
  metric function to evaluate the correction performance.

---------------------------------------------------------
Title: Isotopic Composition of Light Nuclei in Cosmic Rays: Results
    from AMS-01
Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.;
   Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile,
   M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker,
   R.; Becker, U.; Bellagamba, L.; Berdugo, J.; Berges, P.; Bertucci, B.;
   Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni,
   G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa,
   P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.;
   Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov,
   N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin,
   A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela
   Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.;
   Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.;
   Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge,
   G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.;
   Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter,
   K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.;
   Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.;
   Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.;
   Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen,
   T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.;
   Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.;
   Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.;
   Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.;
   Mujunen, A.; Natale, S.; Oliva, A.; Palmonari, F.; Paniccia, M.; Park,
   H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.;
   Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl,
   M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.;
   Ren, Z.; Ribordy, M.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser,
   U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Saouter, P.; Sbarra,
   C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.;
   Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling,
   R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun,
   G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.;
   Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht,
   J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat,
   B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.;
   Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik,
   K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.;
   Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.;
   Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.;
   Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2011ApJ...736..105A    Altcode: 2011arXiv1106.2269T
  The variety of isotopes in cosmic rays allows us to
  study different aspects of the processes that cosmic rays
  undergo between the time they are produced and the time of
  their arrival in the heliosphere. In this paper, we present
  measurements of the isotopic ratios <SUP>2</SUP>H/<SUP>4</SUP>He,
  <SUP>3</SUP>He/<SUP>4</SUP>He, <SUP>6</SUP>Li/<SUP>7</SUP>Li,
  <SUP>7</SUP>Be/(<SUP>9</SUP>Be+<SUP>10</SUP>Be), and
  <SUP>10</SUP>B/<SUP>11</SUP>B in the range 0.2-1.4 GeV of kinetic
  energy per nucleon. The measurements are based on the data collected
  by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight
  in 1998 June.

---------------------------------------------------------
Title: A Coronagraph Using a Liquid Crystal Array and a Deformable
    Mirror for Active Apodizing and Phase Corrections
Authors: Ren, Deqing; Zhu, Yongtian
2011PASP..123..341R    Altcode:
  Almost all high-contrast imaging coronagraphs proposed until now
  are based on passive coronagraph optical components. That is, the
  coronagraph cannot be actively controlled to be optimized for best
  performance. Pupil apodizing, which modifies the light transmission
  on the pupil, is one of the promising techniques for high-contrast
  imaging. Here, we propose, for the first time, a high-contrast imaging
  coronagraph that integrates a liquid crystal array for active pupil
  apodizing and a deformable mirror for active phase correction. In
  such a way, source errors such as the initial transmission error and
  wavefront error can be actively and efficiently compensated based on
  an optimized algorithm, which is optimized for maximum contrast in
  the discovery area. In addition, the use of a liquid crystal array
  makes this system more flexible and able to create any apodizing
  pupil, including square or circle aperture with or without central
  obstruction. In this article, we discuss the working principle and
  estimated performance of the coronagraph. We also demonstrate that the
  chromatic aberration induced by a liquid crystal array is sufficiently
  small, which makes it suitable to be used for ground-based near-infrared
  coronagraphic Extreme-AO systems.

---------------------------------------------------------
Title: Relative Composition and Energy Spectra of Light Nuclei in
Cosmic Rays: Results from AMS-01
Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi,
   G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.;
   Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.;
   Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.;
   Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini,
   M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger,
   W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus,
   J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen,
   H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.;
   Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.;
   Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco,
   S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg,
   J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini,
   E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi,
   M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.;
   Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford,
   W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney,
   G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.;
   Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.;
   Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc,
   C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu,
   G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña,
   C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul,
   A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.;
   Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo,
   F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.;
   Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy,
   M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.;
   Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.;
   Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.;
   Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.;
   Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter,
   H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.;
   Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.;
   Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky,
   I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.;
   Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams,
   C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.;
   Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang,
   Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.;
   Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2010ApJ...724..329A    Altcode:
  Measurement of the chemical and isotopic composition of cosmic rays
  is essential for the precise understanding of their propagation in
  the galaxy. While the model parameters are mainly determined using
  the B/C ratio, the study of extended sets of ratios can provide
  stronger constraints on the propagation models. In this paper, the
  relative abundances of light-nuclei lithium, beryllium, boron, and
  carbon are presented. The secondary-to-primary ratios Li/C, Be/C,
  and B/C have been measured in the kinetic energy range 0.35-45 GeV
  nucleon<SUP>-1</SUP>. The isotopic ratio <SUP>7</SUP>Li/<SUP>6</SUP>Li
  is also determined in the magnetic rigidity interval 2.5-6.3
  GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also
  reported. These measurements are based on the data collected by the
  Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle
  flight in 1998 June. Our experimental results are in substantial
  agreement with other measurements, where they exist. We describe our
  light-nuclei data with a diffusive-reacceleration model. A 10%-15%
  overproduction of Be is found in the model predictions and can be
  attributed to uncertainties in the production cross-section data.

---------------------------------------------------------
Title: A portable solar adaptive optics system: software and
    laboratory developments
Authors: Ren, Deqing; Penn, Matt; Plymate, Claude; Wang, Haimin;
   Zhang, Xi; Dong, Bing; Brown, Nathan; Denio, Andrew
2010SPIE.7736E..3PR    Altcode: 2010SPIE.7736E.124R
  We present our recent process on a portable solar adaptive Optics
  system, which is aimed for diffraction-limited imaging in the 1.0 ~
  5.0-μm infrared wavelength range with any solar telescope with an
  aperture size up to 1.6 meters. The realtime wave-front sensing, image
  processing and computation are based on a commercial multi-core personal
  computer. The software is developed in LabVIEW. Combining the power of
  multi-core imaging processing and LabVIEW parallel programming, we show
  that our solar adaptive optics can achieve excellent performance that
  is competitive with other systems. In addition, the LabVIEW's block
  diagram based programming is especially suitable for rapid development
  of a prototype system, which makes a low-cost and high-performance
  system possible. Our adaptive optics system is flexible; it can
  work with any telescope with or without central obstruction with
  any aperture size in the range of 0.6~1.6 meters. In addition, the
  whole system is compact and can be brought to a solar observatory to
  perform associated scientific observations. According to our knowledge,
  this is the first adaptive optics that adopts the LabVIEW high-level
  programming language with a multi-core commercial personal computer,
  and includes the unique features discussed above.

---------------------------------------------------------
Title: Testing of a transmission-filter coronagraph for ground-based
    imaging of exoplanets
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi;
   Wang, Xue
2010SPIE.7735E..8ED    Altcode: 2010SPIE.7735E.273D
  We present the latest laboratory test of a new coronagraph using one
  step-transmission filter at the visible wavelength. The primary goal of
  this work is to test the feasibility and stability of the coronagraph,
  which is designed for the ground-based telescope especially with a
  central obstruction and spider structures. The transmission filter
  is circular symmetrically coated with inconel film on one surface
  and manufactured with a precisely position-controlled physical mask
  during the coating procedure. At first, the transmission tolerance of
  the filter is controlled within 5% for each circular step. The target
  contrast of the coronagraph is set to be 10<SUP>-5</SUP>~10<SUP>-7</SUP>
  at an inner working angle around 5λ/D. Based on the high-contrast
  imaging test-bed in the laboratory, the point spread function image
  of the coronagraph is obtained and it has delivered a contrast better
  than 10<SUP>-6</SUP> at 5λ/D. As a follow-up effort, the transmission
  error should be controlled in 2% and the transmission for such filter
  will be optimized in the near infrared wavelength, which should deliver
  better performances. Finally, it is shown that the transmission-filter
  coronagraph is a promising technique to be used for the direct imaging
  of exoplanets from the ground.

---------------------------------------------------------
Title: A Transmission-Filter Coronagraph: Design and Test
Authors: Ren, Deqing; Dou, Jiangpei; Zhu, Yongtian
2010PASP..122..590R    Altcode: 2015arXiv151003796R
  We propose a transmission-filter coronagraph for direct imaging of
  Jupiter-like exoplanets with ground-based telescopes. The coronagraph
  is based on a transmission filter that consists of finite number of
  transmission steps. A discrete optimization algorithm is proposed for
  the design of the transmission filter that is optimized for ground-based
  telescopes with central obstructions and spider structures. We discussed
  the algorithm that is applied for our coronagraph design. To demonstrate
  the performance of the coronagraph, a filter was manufactured and
  laboratory tests were conducted. The test results show that the
  coronagraph can achieve a high contrast of 10<SUP>-6.5</SUP> at an
  inner working angle of 5λ/D, which indicates that our coronagraph can
  be immediately used for the direct imaging of Jupiter-like exoplanets
  with ground-based telescopes.

---------------------------------------------------------
Title: A portable solar adaptive optics system
Authors: Ren, Deqing; Penn, Matt; Wang, Haimin; Chapman, Gary;
   Plymate, Claude
2009SPIE.7438E..0PR    Altcode:
  We are developing a portable adaptive optics system for solar
  telescopes. The adaptive optics has a small physical size and is
  optimized for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared
  wavelength range for 1.5-m class solar telescopes. By replacing a
  few optical components, it can be used with a solar telescope of any
  aperture size that is currently available. The software is developed by
  LabVIEW. LabVIEW's block diagram based programming makes it suitable for
  rapid development of a prototype system. The portable adaptive optics
  will be used with a 1.5-meter solar telescope for high-resolution
  magnetic field investigation in the infrared. We discuss the design
  philosophy for such a portable, low-cost, and high-performance
  system. Estimated performances are also presented.

---------------------------------------------------------
Title: Focal plane wave-front sensing algorithm for high-contrast
    imaging
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi
2009ScChG..52.1284D    Altcode: 2015arXiv151003791D
  High-contrast imaging provided by a coronagraph is critical for the
  direction imaging of the Earth-like planet orbiting its bright parent
  star. A major limitation for such direct imaging is the speckle noise
  that is induced from the wave-front error of an optical system. We
  derive an algorithm for the wave-front measurement directly from 3
  focal plane images. The 3 images are achieved through a deformable
  mirror to provide specific phases for the optics system. We introduce
  an extra amplitude modulation on one deformable mirror configuration
  to create an uncorrelated wave-front, which is a critical procedure
  for wave-front sensing. The simulation shows that the reconstructed
  wave-front is consistent with the original wave-front theoretically,
  which indicates that such an algorithm is a promising technique for
  the wave-front measurement for the high-contrast imaging.

---------------------------------------------------------
Title: An IFU for diffraction-limited 3D spectroscopic imaging:
    laboratory and on-site tests
Authors: Ren, Deqing; Keller, Christoph; Plymate, Claude
2009SPIE.7438E..18R    Altcode: 2009SPIE.7438E..35R
  We have developed a state-of-the-art image slicer Integral Field Unit
  (IFU) for the McMath-Pierce Solar Telescope (McMP) located at Kitt Peak
  National Solar Observatory. The IFU will be used for high-resolution
  3-dimensional spectroscopy and polarimetry over a small field of
  view that is well corrected by adaptive optics. It consists of 19
  effective slices that correspond to a field of view of 6.27"x 7". The
  IFU delivers a 152" long slit to an existing spectrograph producing
  diffraction-limited 3-dimensional spectroscopy. The 3-D instrument is
  being used for highspatial and high-temporal resolution imaging of the
  Sun, which is crucial for the magnetic field and spectroscopic studies
  of 2-dimensional solar fine structures. We discuss the instrument
  construction, laboratory test and on-site trial observations with
  the McMP.

---------------------------------------------------------
Title: Wave-front sensing and correction for 4-meter LAMOST
Authors: Zhang, Xi; Ren, Deqing; Zhu, Yongtian; Dou, Jiangpei
2009SPIE.7439E..0VZ    Altcode: 2009SPIE.7439E..20Z
  LAMOST is a 4m spectroscopic telescope recently operational at Xinglong,
  China. Several active optics are being used to remove optical aberration
  of the telescope, but large residual aberration exists since the
  active optics actuators on the telescope's segmented mirrors cannot
  provide enough precision. We proposed a wave-front sensing system and
  the corresponding algorithm to measure this low frequency residual
  aberration. We developed a compact Shack-Hartmann wave-front sensor
  that can use point source as well as extended structure images for
  wave-front sensing and can achieve good measurement accuracy. The
  wave-front sensing algorithm is realized by LabVIEW that is based
  on block-diagram programming and is suitable for rapid prototype
  development. Combined with deformable mirrors, the system will be able
  to provide a fine wave-front correction and therefore eventually remove
  the residual aberration for LAMOST. The wave-front sensor and the DMs
  will also be used for our high-contrast imaging coronagraph to remove
  speckle noise for the direct imaging of exoplanets.

---------------------------------------------------------
Title: Laboratory experiment of a high-contrast imaging coronagraph
    with new step-transmission filters
Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi
2009SPIE.7440E..19D    Altcode: 2009SPIE.7440E..37D
  We present the latest results of our laboratory experiment of the
  coronagraph with step-transmission filters. The primary goal of
  this work is to test the stability of the coronagraph and identify
  the main factors that limit its performance. At present, a series
  of step-transmission filters has been designed. These filters were
  manufactured with Cr film on a glass substrate with a high surface
  quality. During the process of the experiment of each filter, we
  have identified several contrast limiting factors, which includes
  the non-symmetry of the coating film, transmission error, scattered
  light and the optical aberration caused by the thickness difference
  of coating film. To eliminate these factors, we developed a procedure
  for the correct test of the coronagraph and finally it delivered a
  contrast in the order of 10<SUP>-6</SUP>~10<SUP>-7</SUP> at an angular
  distance of 4λD, which is well consistent with theoretical design. As a
  follow-up effort, a deformable mirror has been manufactured to correct
  the wave-front error of the optical system, which should deliver
  better performance with an extra contrast improvement in the order of
  10<SUP>-2</SUP>~10<SUP>-3</SUP>. It is shown that the step-transmission
  filter based coronagraph is promising for the high-contrast imaging
  of earth-like planets.

---------------------------------------------------------
Title: The eruption of a small filament in the quiet Sun
Authors: Ren, D. B.; Jiang, Y. C.; Yang, J. Y.; Zheng, R. S.; Bi,
   Y.; Wang, M.
2008Ap&SS.318..141R    Altcode: 2008Ap&SS.tmp..216R
  We analyzed multi-wavelength observations of the eruption of a
  small-scale filament on the quiet Sun. The filament first became
  thicker, then broke into two, and eventually underwent a partial
  eruption with possible rotating motion. The eruption was followed by a
  small flare with three bright kernels on either side of the eruptive
  section in H α and a small coronal dimming near one end of this
  section in EUV and soft X-ray. On the photosphere, MDI magnetograms
  show the flux emergence or motions and cancellation between opposite
  polarities before and during the filament eruption. We find that this
  small-scale filament shows the similar characteristics as the previous
  findings in the large-scale filament eruptions on the multi-wavelength,
  indicating the common nature.

---------------------------------------------------------
Title: Study of the solar anisotropy of cosmic ray primaries of
    about 200 GeV energy with the L3+C muon detector
Authors: L3 Collaboration; Achard, P.; Adriani, O.; Aguilar-Benitez,
   M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio,
   A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev,
   A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay,
   L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.;
   Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston,
   R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.;
   Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.;
   Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.;
   Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.;
   Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu,
   F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo,
   G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo,
   N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin,
   M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.;
   Chiarusi, T.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.;
   Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.;
   Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré,
   A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.;
   DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding,
   L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau,
   D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Mamouni, H.;
   Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.;
   Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson,
   T.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, W.; Forconi,
   G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.;
   Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.;
   Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald,
   M. W.; Guo, Y. N.; Gupta, S.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.;
   Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.;
   Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hoferjun, H.;
   Hohlmann, M.; Holzner, G.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.;
   Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría,
   I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.;
   Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.;
   Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang,
   H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; Ladron
   de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.;
   Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.;
   Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li,
   C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde,
   F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci,
   C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.;
   Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano,
   F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Meng, X. W.; Merola, L.;
   Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.;
   Mirabelli, G.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs,
   A. J. M.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale,
   S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak,
   T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares,
   C.; Paolucci, P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.;
   Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace,
   M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.;
   Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.;
   Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.;
   Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.;
   Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran,
   K. C.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft,
   S.; Rewiersma, P.; Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.;
   Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.;
   Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.;
   Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.;
   Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca,
   C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko,
   V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.;
   Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar,
   K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Suter, H.; Swain, J. D.;
   Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.;
   Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting,
   S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung,
   K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; Van de
   Walle, R. T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel,
   G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt,
   H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.;
   Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen,
   T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu,
   Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.;
   Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite,
   Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao,
   J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.;
   Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M.
2008A&A...488.1093L    Altcode:
  Context: Primary cosmic rays experience multiple deflections in
  the non-uniform galactic and heliospheric magnetic fields which may
  generate anisotropies. <BR />Aims: A study of anisotropies in the
  energy range between 100 and 500 GeV is performed. This energy range
  is not yet well explored. <BR />Methods: The L3 detector at the CERN
  electron-positron collider, LEP, is used for a study of the angular
  distribution of atmospheric muons with energies above 20 GeV. This
  distribution is used to investigate the isotropy of the time-dependent
  intensity of the primary cosmic-ray flux with a Fourier analysis. <BR
  />Results: A small deviation from isotropy at energies around 200
  GeV is observed for the second harmonics at the solar frequency. No
  sidereal anisotropy is found at a level above 10<SUP>-4</SUP>. The
  measurements were performed in the years 1999 and 2000.

---------------------------------------------------------
Title: Observations of Comets
Authors: Sanner, J.; Hellmann, D.; Idel, B.; Niedermayer, C.;
   Kupper, R.; Martin, P. M.; Rumpel, N.; Kubitscheck, L.; Stamm,
   L.; Ivanov, V.; Kryachko, T.; Korotkiy, S.; Casali, M.; Marinello,
   W.; Micheli, M.; Pizzetti, G.; Soffiantini, A.; Buzzi, L.; Naves,
   R.; Campas, M.; Hasubick, W.; Reina, E.; Ligustri, R.; Kadota, K.;
   Herald, D.; McAndrew, S. G.; Sanchez, A.; Rodriguez, D.; Christie,
   G. W.; Natusch, T.; Donato, L.; Gonano, M.; Gonano, V.; Guido, E.;
   Santini, V.; Sostero, G.; Gilmore, A. C.; Kilmartin, P. M.; Lai, L.;
   Baransky, A.; Aleksakhina, E.; Csak, B.; Santa, G.; Haja, O.; Kozak,
   M.; Young, J.; Hill, R. E.; Beshore, E. C.; Boattini, A.; Gibbs,
   A. R.; Grauer, A. D.; Kowalski, R. A.; Larson, S. M.; Bezpalko, M.;
   Torres, D.; Kracke, R.; Spitz, G.; Kistler, J.; Stuart, J.; Scruggs,
   S.; Moritz, N.; Elliott, R.; Salvo, R.; Durig, D. T.; Lin, S. M.;
   Whang, U.; Ren, D.; Kabir, N. K.; Phillips, R. M.; Owuor, B. R.;
   Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.; Solano, J. P.; Payne,
   D. R.; Paz, J. M.; Ikari, Y.; Castellano, J.; Ferrando, R.; Vidal,
   J. R.; Baldris, F.; Cortes, E.; Kocher, P.; Rinner, C.; Kugel, F.;
   Franco, L.; Vollmann, W.; Bacci, P.; Villegas, J. M.; Aymami, J. M.;
   Piludu, P.; Biasci, F.; Garrigos S., A.; Nevski, V.; Camarasa,
   J.; Bel, J.; Overhaus, C.; Borghini, W.; Sommacal, D.; Ohshima,
   Y.; Sugiyama, Y.; McNaught, R. H.; Garradd, G. J.; McCormick, J.;
   Sherrod, P. C.; Sanchez, J. L.; Buso, V. A.; Mazalan, G. D.; Diez,
   E. J.; Tifner, F.; Hernandez, J. F.; Garcia, F.; Moreno Q., J. A.;
   Ruiz M., J. M.; Rodriguez R., F. A.; Piret, C.; Muler, G.; Henriquez,
   J. A.; Canales, O.; Benavides, R.; Temprano, J.; Navarro P., J. P.;
   Lacruz, J.; Birtwhistle, P.; Climent, T.; Marsden, B. G.
2008MPEC....N...31S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Laboratory experiment of a coronagraph based on
    step-transmission filters
Authors: Dou, Jiangpei; Zhu, Yongtian; Ren, Deqing; Zhang, Xi
2008SPIE.7010E..4JD    Altcode: 2008SPIE.7010E.130D
  This paper presents the first results of a step-transmission-filter
  based coronagraph in the visible wavelengths. The primary goal of
  this work is to demonstrate the feasibility of the coronagraph that
  employs step-transmission filters, with a required contrast in the
  order of better than 10<SUP>-5</SUP> at an angular distance larger
  than 4λ/D. Two 13-step-transmission filters were manufactured with 5%
  transmission accuracy. The precision of the transmitted wave distortion
  and the coating surface quality were not strictly controlled at this
  time. Although in perfect case the coronagraph can achieve theoretical
  contrast of 10<SUP>-10</SUP>, it only delivers 10<SUP>-5</SUP> contrast
  because of the transmission error, poor surface quality and wave-front
  aberration stated above, which is in our estimation. Based on current
  techniques, step-transmission filters with better coating surface
  quality and high-precision transmission can be made. As a follow-up
  effort, high-quality step-transmission filters are being manufactured,
  which should deliver better performance. The step-transmission-filter
  based coronagraph has the potential applications for future
  high-contrast direct imaging of earth-like planets.

---------------------------------------------------------
Title: Minor Planet Observations [850 Cordell-Lorenz Observatory,
    Sewanee]
Authors: Durig, D. T.; Lin, S. M.; Whang, U.; Parrish, T. L.; Carter,
   A. L.; Mitchell, W. M.; Kong, N. E.; Ren, D.; Kabir, N. K.; Thompson,
   A. W.; Hubbard, M. A.; Searvance, S. M.; Weber, L. M.; Phillips,
   R. M.; Owuor, B. R.; Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.;
   Solano, J. P.; Payne, D. R.; Paz, J. M.; Veselovskyi, S.
2008MPC..63370...1D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Comet Observations [850 Cordell-Lorenz Observatory, Sewanee]
Authors: Durig, D. T.; Lin, S. M.; Whang, U.; Parrish, T. L.; Carter,
   A. L.; Mitchell, W. M.; Kong, N. E.; Ren, D.; Kabir, N. K.; Thompson,
   A. W.; Hubbard, M. A.; Searvance, S. M.; Weber, L. M.; Phillips,
   R. M.; Owuor, B. R.; Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.;
   Solano, J. P.; Payne, D. R.; Paz, J. M.; Veselovskyi, S.
2008MPC..63321..20D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Coronagraph Based on Stepped-Transmission Filters
Authors: Ren, Deqing; Zhu, Yongtian
2007PASP..119.1063R    Altcode:
  We propose a coronagraph for direct imaging of Earth-like planets
  orbiting nearby bright stars. The coronagraph is based on an apodization
  pupil composed of two stepped-transmission filters. We show that the
  coronagraph can achieve 10<SUP>-10</SUP> high-contrast imaging at an
  angular distance larger than (2-3)λ/D theoretically. The employment
  of the stepped-transmission filters significantly simplifies the
  manufacturing of the transmission pupil, making it possible to be used
  for high-contrast imaging in practice.

---------------------------------------------------------
Title: Cosmic-ray positron fraction measurement from 1 to 30 GeV
    with AMS-01
Authors: AMS-01 Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.;
   Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello,
   P.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier,
   G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba,
   L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.;
   Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni,
   G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps,
   C.; Cannarsa, P.; Capell, M.; Cardano, F.; Casadei, D.; Casaus, J.;
   Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.;
   Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.;
   Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani,
   M.; Dai, T. S.; Delgado, C.; Difalco, S.; Djambazov, L.; D'Antone,
   I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen,
   T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher,
   P. H.; Flügge, G.; Fouque, N.; Galaktionov, Yu.; Gast, H.; Gervasi,
   M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.;
   Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Jongmanns, M.;
   Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.;
   Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Kounine,
   A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna,
   G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.;
   Lee, M. W.; Lee, S. C.; Levi, G.; Liu, C. L.; Liu, H. T.; Lu, G.;
   Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.;
   Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.;
   Mihul, A.; Mujunen, A.; Oliva, A.; Olzem, J.; Palmonari, F.; Park,
   H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.;
   Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl,
   M.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.;
   Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.;
   Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli,
   G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.;
   Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg,
   T.; Siedling, R.; Son, D.; Song, T.; Spinella, F.; Steuer, M.; Sun,
   G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.;
   Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.;
   Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky,
   I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten,
   H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.;
   Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Yan, J. L.;
   Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Xu, Z. Z.;
   Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, Y.; Zhu, G. Y.; Zhu,
   W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2007PhLB..646..145A    Altcode: 2007astro.ph..3154A
  A measurement of the cosmic ray positron fraction
  e<SUP></SUP>/(e<SUP></SUP>+e<SUP></SUP>) in the energy range of 1 30
  GeV is presented. The measurement is based on data taken by the AMS-01
  experiment during its 10 day Space Shuttle flight in June 1998. A proton
  background suppression on the order of 10<SUP>6</SUP> is reached by
  identifying converted bremsstrahlung photons emitted from positrons.

---------------------------------------------------------
Title: The evolution of a complex solar radio burst corresponding
    to special configuration of microwave sources
Authors: Xie, R. X.; Ren, D. B.; Liu, Y. Y.
2007AdSpR..39.1474X    Altcode:
  A complex radio burst associated with periodic (∼1 and 6 min)
  pulsations and several kinds fine structures, e.g., normal- and
  reverse-drifting type III bursts, zebra patterns, and slowly drifting
  structure was observed with the radio spectrometers (1.0-2.0, 2.6-3.8,
  5.2-7.6, and 0.65-1.5 GHz) at the National Astronomical Observatories
  of China (NAOC) in Beijing and Yunnan on 19 October 2001. In combination
  with the images of 17 and 34 GHz from NoRH and the magnetograms from MDI
  we reveal the existence and evolution of preexisting and new emerging
  sources, and find the horseshoe-shaped structure of microwave sources
  intensity during the late phase of the burst. Through the detailed
  comparison of the evolution of each source with the time profiles
  of radio bursts corresponding to these sources we indicate that the
  intimate correlation between the microwave sources evolution and the
  generation of the radio burst associated fine structures. Some fine
  structures can be considered as the MHD turbulence and plasma emission
  mechanism, based on the anisotropic beam instability and hybrid waves
  generations. From the characteristics of observations we may presume
  that the coronal magnetic structures should contain an extended coronal
  loop system and multiple discrete electrons acceleration/injection
  sites. The mechanisms of this complex radio burst are deal with the
  incoherent gyrosynchrotron emission from the trapped electrons and
  the coherent plasma emission from the non trapped electrons.

---------------------------------------------------------
Title: The solar flare of the 14th of July 2000 (L3+C detector
    results)
Authors: Achard, P.; Adrian, O.; Aguilar-Benitez, M.; van den Akker,
   M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.;
   Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.;
   Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.;
   Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère,
   R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.;
   Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.;
   Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.;
   Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink,
   G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov,
   D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger,
   J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino,
   G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.;
   Cerrada, M.; Chamizo, M.; Chiarusi, T.; Chang, Y. H.; Chemarin, M.;
   Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari,
   G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.;
   Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de
   Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.;
   Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani,
   F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi,
   C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.;
   Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.;
   Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.;
   Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson,
   T.; Fesefeldt, H; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher,
   W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.;
   Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu,
   S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege,
   H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.; Gupta, S. K.; Gupta,
   V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou,
   D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder,
   J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, A.; Hou, S. R.; Huo,
   A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.;
   de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami,
   S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.;
   Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko,
   V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers,
   J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau,
   M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre,
   P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.;
   Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.;
   Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo,
   E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.;
   Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.;
   Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Meng, X. W.;
   Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.;
   Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Monteleoni,
   B.; Muanza, G. S.; Muijs, A. J. M.; Musy, M.; Nagy, S.; Nahnhauer,
   R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.;
   Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.;
   Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.;
   Parriaud, J. -F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi,
   M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix,
   D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.;
   Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.;
   Pothier, J.; Prokofiev, D.; Qing, C. R.; Rahal-Callot, G.; Rahaman,
   M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri,
   R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Rembeczki, S.; Ren,
   D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Rojkov,
   A.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees,
   S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov,
   A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer,
   C.; Schegelsky, V.; Schoeneich, B.; Schotanus, D. J.; Sciacca, C.;
   Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko,
   V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.;
   Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar,
   K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.;
   Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.;
   Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting,
   S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung,
   K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; Van de
   Walle, R. T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel,
   G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt,
   H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang,
   Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.;
   Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu,
   Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.;
   Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang,
   C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou,
   S. J.; Zhu, G. Y.; Zhu, R. Y; Zhu, Q. Q.; Zhuang, H. L.; Zichichi,
   A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M.; L3 Collaboration
2006A&A...456..351A    Altcode: 2006A&A...456..351L
  Aims.Several experiments have reported observations on possible
  correlations between the flux of high energy muons and intense solar
  flares. If confirmed, these observations would have significant
  implications for acceleration processes in the heliosphere able
  to accelerate protons and other ions to energies of at least
  tens of GeV. Methods: The solar flare of the 14 of July 2000
  offered a unique opportunity for the L3+C experiment to search for
  a correlated enhancement in the flux of muons using the L3 precision
  muon spectrometer. Its capabilities for observing a directional excess
  in the flux of muons above 15 GeV (corresponding to primary proton
  energies above 40 GeV) are presented along with observations made on
  the 14th of July 2000. Results: We report an excess which appeared at
  a time coincident with the peak increase of solar protons observed
  at lower energies. The probability that the excess is a background
  fluctuation is estimated to be 1%. No similar excess of the muon flux
  was observed up to 1.5 h after the solar flare time.

---------------------------------------------------------
Title: Progress on the 1.6-meter New Solar Telescope at Big Bear
    Solar Observatory
Authors: Denker, C.; Goode, P. R.; Ren, D.; Saadeghvaziri, M. A.;
   Verdoni, A. P.; Wang, H.; Yang, G.; Abramenko, V.; Cao, W.; Coulter,
   R.; Fear, R.; Nenow, J.; Shoumko, S.; Spirock, T. J.; Varsik, J. R.;
   Chae, J.; Kuhn, J. R.; Moon, Y.; Park, Y. D.; Tritschler, A.
2006SPIE.6267E..0AD    Altcode: 2006SPIE.6267E..10D
  The New Solar Telescope (NST) project at Big Bear Solar Observatory
  (BBSO) now has all major contracts for design and fabrication in place
  and construction of components is well underway. NST is a collaboration
  between BBSO, the Korean Astronomical Observatory (KAO) and Institute
  for Astronomy (IfA) at the University of Hawaii. The project will
  install a 1.6-meter, off-axis telescope at BBSO, replacing a number
  of older solar telescopes. The NST will be located in a recently
  refurbished dome on the BBSO causeway, which projects 300 meters into
  the Big Bear Lake. Recent site surveys have confirmed that BBSO is
  one of the premier solar observing sites in the world. NST will be
  uniquely equipped to take advantage of the long periods of excellent
  seeing common at the lake site. An up-to-date progress report will
  be presented including an overview of the project and details on the
  current state of the design. The report provides a detailed description
  of the optical design, the thermal control of the new dome, the optical
  support structure, the telescope control systems, active and adaptive
  optics systems, and the post-focus instrumentation for high-resolution
  spectro-polarimetry.

---------------------------------------------------------
Title: Estimated performance of a symmetric nulling coronagraph for
    exoplanet imaging
Authors: Ren, D.; Serabyn, E.
2006SPIE.6265E..3XR    Altcode: 2006SPIE.6265E.119R
  The direct detection of the earth-similar planets nearby bright stars
  needs high-contrast imaging. We proposed a nulling coronagraph that can,
  in principle, totally cancel the on-axis point-source starlight for
  broadband high-contrast imaging. The nulling coronagraph also features
  close angular distance imaging and high throughput. Equipped with a
  telescope with only 1.5-m aperture size, it has the potentiality to be
  able to resolving and directly detecting earth-similar planets at 0.1"
  (1 λ/D) close-distance in the visible wavelength range. The requirement
  for a small telescope is a significant advantage for future space
  missions. We discuss the working principle, instrument realization,
  error and sensitivity analysis, and the estimated performance of the
  nulling coronagraph.

---------------------------------------------------------
Title: Development of an IFU for diffraction-limited 3D
    spectropolarimetry
Authors: Ren, Deqing; Keller, Christoph; Plymate, Claude
2006SPIE.6269E..5ZR    Altcode: 2006SPIE.6269E.191R
  Ground-based telescopes can achieve diffraction-limited images when
  equipped with adaptive optics (AO). A major limitation of AO is the
  small field of view, which is due to the limited isoplanatic patch
  size. Nevertheless, conventional long-slit spectrographs cannot sample
  the entire AO-corrected field of view in a single exposure. However,
  equipped with a modern, large detector array, the Integral Field
  Unit (IFU) technique will allow a 3-dimensional (3-D) data cube to
  be recorded simultaneously over the entire AO corrected field of
  view, with a conventional long-slit spectrographs. We are building a
  state-of-the-art image slicer IFU for the National Solar Observatory's
  (NSO) McMath-Pierce Solar Telescope (McMP). This will be the first time
  that an advanced image slicer IFU is used for 3-D spectroscopy and
  polarimetry at a solar telescope. The IFU consists of 25 slices that
  will sample a 6.25" x 8" AO corrected field of view simultaneously,
  and produces a 200" long slit for diffraction-limited 3-D spectroscopy
  and polarimetry. This IFU 3-D technique will provide the most high
  spatial, high temporal resolution with high throughput for solar
  spectroscopy and polarimetry. This is critical for state-of-the-art
  spectral diagnosis of solar velocity and magnetic fields. We discuss
  the design, construction, and testing of this new IFU.

---------------------------------------------------------
Title: A search for flaring very-high-energy cosmic γ-ray sources
    with the L3+C muon spectrometer
Authors: L3 Collaboration; Adriani, O.; Aguilar-Benitez, M.; van
   den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.;
   Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev,
   A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay,
   L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.;
   Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.;
   Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco,
   R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.;
   Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink,
   G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov,
   D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger,
   J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino,
   G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.;
   Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen,
   G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiarusi, T.; Chiefari, G.;
   Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino,
   N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de Asmundis,
   R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters,
   K.; Della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani, F.;
   de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi,
   C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.;
   Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.;
   Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.;
   Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson,
   T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher,
   P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta,
   C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.;
   Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.;
   Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.;
   Gupta, S. K.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller,
   Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé,
   A.; Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, G.;
   Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.;
   Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur,
   M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.;
   Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal,
   M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger,
   A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.;
   Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq,
   P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.;
   Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded,
   S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.;
   Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann,
   W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña,
   C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.;
   Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul,
   A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.;
   Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy,
   M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano,
   M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.;
   Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci,
   P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.;
   Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti,
   S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.;
   Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.;
   Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Quartieri, J.;
   Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.;
   Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran,
   K. C.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.;
   Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.;
   Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.;
   Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.;
   Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.;
   Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca,
   C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko,
   V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.;
   Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar,
   K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.;
   Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.;
   Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel
   C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully,
   C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen,
   H.; van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi,
   G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent,
   M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.;
   Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.;
   Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.;
   Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.;
   Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao,
   Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.;
   Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.;
   Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.;
   Zimmermann, B.; Zöller, M.; Zwart, A. N. M.
2006APh....25..298A    Altcode: 2006APh....25..298L; 2006APh....25..298T
  The L3+C muon detector at the CERN electron positron collider, LEP,
  is used for the detection of very-high-energy cosmic γ-ray sources
  through the observation of muons of energies above 20, 30, 50 and
  100 GeV. Daily or monthly excesses in the rate of single-muon events
  pointing to some particular direction in the sky are searched for. The
  periods from mid July to November 1999, and April to November 2000 are
  considered. Special attention is also given to a selection of known
  γ-ray sources. No statistically significant excess is observed for
  any direction or any particular source.

---------------------------------------------------------
Title: Spectral Subtraction: A New Approach to Remove Low- and
    High-Order Speckle Noise
Authors: Ren, Deqing; Wang, Haimin
2006ApJ...640..530R    Altcode:
  We present a novel “spectral subtraction algorithm” (SSA) technique
  to remove speckle noise. It consists of a low-order and a high-order
  SSA and is based on a three-dimensional image spectroscopy in which
  the three-dimensional data cube is available and thus the speckle noise
  introduced by the wave-front error can be efficiently subtracted. For
  the low-order SSA, speckles up to the second or third order can be
  totally subtracted, leaving the residual speckles dominated only by the
  third or fourth order, respectively, and imaging contrast is increased
  consequently; for the high-order SSA, speckles up to the fourth or fifth
  order can be subtracted, leaving the residual speckles dominated only by
  the fifth or sixth order, respectively, and the performance is further
  improved. This is the first demonstration that such high-order speckles
  could be subtracted. Since the SSAs are conducted over a wide spectral
  band, a white-light image can be re-assembled from the three-dimensional
  data cube. The white-light image would increase the single-to-noise
  ratio and reduce the exposure time, which are crucial for the search
  of faint companion objects. Combined with a coronagraph, the SSA can
  provide an extra contrast gain for the coronagraph imaging, relax the
  requirement for the wave-front quality (no adaptive optics correction is
  required for a space-borne imaging system), and significantly increase
  the performance of exoplanet imaging and biomarker spectroscopy.

---------------------------------------------------------
Title: Symmetric nulling coronagraph based on a rotational shearing
    interferometer
Authors: Ren, Deqing; Serabyn, Eugene
2005ApOpt..44.7070R    Altcode:
  We describe a fully symmetric nulling coronagraph for single-aperture
  telescopes that is based on a rotational shearing interferometer
  (RSI) and that is intended for the imaging of faint companions to
  nearby bright stars. In the proposed layout, all asymmetries inherent
  in previous single-aperture RSI-based nulling coronagraphs have been
  eliminated, and the bright and dark outputs are both accessible. As
  a result, deep, broadband, dual-polarization rejection of on-axis
  starlight should be possible with this system.

---------------------------------------------------------
Title: A study of cosmic ray secondaries induced by the Mir space
    station using AMS-01
Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi,
   G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.;
   Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.;
   Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba,
   L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.;
   Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.;
   Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.;
   Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Carosi, G.; Casadei,
   D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.; Chen, H. F.;
   Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.;
   Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.; Commichau, V.;
   Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha, J. P.; Dai,
   T. S.; Delgado, C.; Demirköz, B.; Deus, J. D.; Dinu, N.; Djambazov,
   L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling,
   F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini,
   E.; Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi,
   M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.; Hasan,
   A.; Henning, R.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford,
   W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski,
   W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim,
   M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.;
   Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.;
   Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.;
   Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.;
   Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti,
   A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul,
   A.; Monreal, B.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.;
   Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci,
   A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.;
   Postolache, V.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach,
   F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.;
   Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos,
   D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.;
   Schwering, G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.;
   Shoutko, V.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.;
   Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski,
   M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.;
   Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky,
   I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten,
   H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.;
   Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan,
   J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh,
   P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.;
   Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2005NIMPB.234..321A    Altcode: 2004hep.ex....6065T; 2004hep.ex....6065C
  The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle
  physics experiment that will study cosmic rays in the ∼100 MeV to
  1 TeV range and will be installed on the International Space Station
  (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew
  aboard the space shuttle Discovery from June 2 to June 12, 1998,
  and collected 10<SUP>8</SUP> cosmic ray triggers. Part of the Mir
  space station was within the AMS-01 field of view during the four day
  Mir docking phase of this flight. We have reconstructed an image of
  this part of the Mir space station using secondary π<SUP>-</SUP>
  and μ<SUP>-</SUP> emissions from primary cosmic rays interacting
  with Mir. This is the first time this reconstruction was performed in
  AMS-01, and it is important for understanding potential backgrounds
  during the 3 year AMS-02 mission.

---------------------------------------------------------
Title: The New Solar Telescope at Big Bear Solar Observatory -
    A Progress Report
Authors: Denker, C.; Cao, W.; Chae, J.; Coulter, R.; Kuhn, J. R.;
   Marquette, W. H.; Moon, Y.; Park, Y.; Ren, D.; Tritschler, A.; Varsik,
   J. R.; Wang, H.; Yang, G.; Shoumko, S.; Goode, P. R.
2005AGUSMSP43A..07D    Altcode:
  The New Solar Telescope (NST) is a new 1.6-meter, off-axis telescope
  for the Big Bear Solar Observatory (BBSO) in California. The NST is
  collaboration between BBSO, the Korean Astronomical Observatory (KAO)
  and Institute for Astronomy (IfA) at the University of Hawaii. BBSO
  is an ideal site for high-spatial resolution observations, since this
  mountain-lake site provides consistent seeing conditions with extended
  periods of excellent seeing from sunrise to sunset. These unique seeing
  characteristics make BBSO ideally suited for combined high-resolution
  campaigns and synoptic observations, which are essential for studies
  of solar activity and space weather. In this progress report, we
  present the latest information on the optical design, the optical
  support structure, the telescope control system and the requisite
  instrumentation for the telescope. Acknowledgements: This work has been
  supported by NSF under grants ATM-0236945, ATM-0342560, MRI-0320540,
  and Air Force DURIP F-49620-03-1-0271.

---------------------------------------------------------
Title: Measurement of the shadowing of high-energy cosmic rays by
the Moon: A search for TeV-energy antiprotons
Authors: L3 Collaboration; Achard, P.; Adriani, O.; Aguilar-Benitez,
   M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio,
   A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev,
   A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay,
   L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.;
   Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.;
   Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco,
   R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.;
   Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink,
   G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov,
   D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger,
   J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino,
   G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.;
   Cerrada, M.; Chamizo, M.; Chiarusi, T.; Chang, Y. H.; Chemarin, M.;
   Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari,
   G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.;
   Colino, N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de
   Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.;
   Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani,
   F.; de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi,
   C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.;
   Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.;
   Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.;
   Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson,
   T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher,
   P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta,
   C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin,
   M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier,
   G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo,
   Y. N.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.;
   Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.;
   Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, G.;
   Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.;
   Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur,
   M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.;
   Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal,
   M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger,
   A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.;
   Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq,
   P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.;
   Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded,
   S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.;
   Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann,
   W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña,
   C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.;
   Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul,
   A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.;
   Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy,
   M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano,
   M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.;
   Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci,
   P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.;
   Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti,
   S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.;
   Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.;
   Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Quartieri, J.;
   Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.;
   Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran,
   K. C.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.;
   Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.;
   Rosemann, C.; Rosier-Lees, S.; Rosenbleck, C.; Roth, S.; Rubio, J. A.;
   Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.;
   Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.;
   Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca,
   C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko,
   V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.;
   Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar,
   K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.;
   Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.;
   Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel
   C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully,
   C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen,
   H.; van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi,
   G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent,
   M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.;
   Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang,
   X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens,
   H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yamamoto,
   J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.;
   Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang,
   C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou,
   S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi,
   A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M.
2005APh....23..411L    Altcode: 2005astro.ph..3472L
  The shadowing of high-energy cosmic rays by the Moon has been observed
  with a significance of 9.4 standard deviations with the L3 + C muon
  spectrometer at CERN. A significant effect of the Earth magnetic field
  is observed. Since no event deficit on the east side of the Moon has
  been observed, an upper limit at 90% confidence level on the antiproton
  to proton ratio of 0.11 is obtained for primary energies around 1 TeV.

---------------------------------------------------------
Title: Optimal Designs, Mask Manufacture, and Experimental Results
    for Shaped Pupil Coronagraphs
Authors: Kasdin, N. J.; Vanderbei, R. J.; Littman, M. G.; Ren, D.;
   Carr, M.; Spergel, D. N.
2004AAS...205.0514K    Altcode: 2004AAS...205..514K; 2004BAAS...36.1343K
  Recently, NASA has settled on a coronagraphic “Terrestrial Planet
  Finder” as its next flagship observatory. This monolithic space
  telescope will be equipped with a coronagraph for finding planets. As
  a result, the current research being done into coronagraphic concepts
  and wavefront control is of great importance. At Princeton, we have
  been studying optimal shaped pupils as a means of achieving the needed
  high contrast for terrestrial planet detection and characterization. In
  this paper, we present our most promising optimal shaped pupil designs,
  discuss design tradeoffs, and explore manufacturing sensitivities. We
  then present our recent laboratory results using shaped pupils. We
  present our most recent pupils manufactured via a variety of methods and
  show the imaged point spread functions where we have achieved between
  10<SUP>-6</SUP> and 10<SUP>-7</SUP> contrast at better than 5 λ /D. We
  gratefully acknowledge the support of the Jet Propulsion Laboratory
  of the National Aeronautics and Space Administration for this work.

---------------------------------------------------------
Title: All-sky extrasolar planet searches with multi-object dispersed
    fixed-delay interferometer in optical and near IR
Authors: Ge, Jian; Mahadevan, Suvrath; van Eyken, Julian C.; DeWitt,
   Curtis; Friedman, Jerry; Ren, Deqing
2004SPIE.5492..711G    Altcode:
  An all sky survey for extrasolar planets with wide field telescopes,
  Sloan 2.5m and WIYN 3.5 telescopes, is being developed. This survey
  will use a multi-object version of current Exoplanet Tracker (ET)
  Doppler instrument commissioned at the KPNO 2.1m telescope in June
  2004. This instrument is based on dispersed fixed-delay interferometer,
  a combination of a Michelson interferometer with a moderate dispersion
  spectrometer (Ge 2002). This custom designed instrument (f/2 optics)
  has a wavelength coverage of ~ 600 Å with a 4kx4k CCD camera at a
  spectral resolution of R = 5,000. The measured instrument detection
  efficiency, including telescope, fiber, interferometer, spectrometer
  and detector losses, has ~ 18% (or 50% throughput from the fiber
  input to the detector), more than 4 times higher than current echelle
  instruments being used for planet detection. ET has been able to
  routinely obtain S/N ~ 80 data for V ~ 8 mag. stars in 15 min exposures
  with the KPNO 2.1m. It allows us to reach ~ 3.5 m/s Doppler precision
  for radial velocity (RV) stable stars with S/N ~ 120 per pixel. It
  also allows us to confirm an exoplanet curve of HD 130322 (V = 8.05)
  with rms Doppler error of 12.3 m/s (preliminary results). We are in
  the middle of design of two prototype multiple object RV instrument
  for the Sloan and WIYN telescopes, which are capable of observing 50
  stars (V ~ 8-13) in a single exposure. We plan to conduct the all sky
  survey for planets around ~ 1 millions of stars with Sloan starting
  in 2008. Our goal is to identify ~ 100,000 extrasolar planets with ~
  1,000 solar analogues through this survey.

---------------------------------------------------------
Title: Results from upgrades to the radial velocity instrument, ET,
    at the KPNO 2.1 m
Authors: van Eyken, Julian C.; Ge, Jian; Mahadevan, Suvrath; DeWitt,
   Curtis; Friedman, Jerry; Finnerty, Padraic; Ren, Deqing; Zugger, Mike
2004SPIE.5492..445V    Altcode:
  A radial velocity (RV) survey instrument, Exoplanet Tracker (ET), has
  been commissioned at the Kitt Peak 2.1m telescope. It is a fiber-fed,
  fixed-delay Michelson interferometer followed by a medium resolution
  volume phase holographic spectrograph (operating at ~5000) for the
  visual band, and is planned to be opened to the public for RV related
  research in 2005. Since 2002 the measured total throughput of ET from
  above the atmosphere to the detector has been improved to about 18%
  (or 50% for the instrument itself from the fiber input to the detector),
  ~5 times higher than the current cross-dispersed echelle spectrometers
  for Doppler planet searches. We present new preliminary results from our
  improved version of ET, with 600 Angstrom wavelength coverage, showing
  RV measurements for HD 130322 (V=8.05), a known planet-bearing star,
  using 15 min exposures. A best short-term Doppler precision of 2.9
  m/s has been achieved with this new instrument. We will start a pilot
  planet search of around 500 V=8--9 mag. stars with the 2.1m telescope
  in the Spring of 2005, and a multiple object RV feasibility study will
  also be conducted at the Sloan 2.5m wide field telescope in Spring 2005.

---------------------------------------------------------
Title: An Image Slicer Integral Field Unit with Diffraction-limited
    Performance for Three-Dimensional Imaging Spectroscopy
Authors: Ren, Deqing; Ge, Jian
2004PASP..116...46R    Altcode:
  We have designed and constructed an advanced image slicer (AIS)
  integral field unit (IFU). The IFU employs an all-mirror design and
  will be installed in the Penn State near-IR Imager and Spectrograph
  (PIRIS) for three-dimensional integral field spectroscopy at various
  astronomical telescopes. Using the AIS technique, the slicer IFU can
  preserve the telescope's focal ratio and pupil (both position and size)
  while maximizing the packing efficiency for three-dimensional data on
  the detector. Compared to other existing AIS IFU designs, our design,
  which uses monolithic optical components for both pupil and field mirror
  arrays, provides a convenient engineering solution for manufacturing,
  using the state-of-the-art diamond-turning machines and alignment
  of the IFU optics. Our slicer mirror array was also manufactured by
  diamond turning, with all the mirrors simultaneously machined, which
  also simplifies the procedure for the manufacture and the assembly of
  the mirrors. We present the IFU optical description, component test
  results, and overall IFU system performance. We also discuss possible
  science applications using the IFU.

---------------------------------------------------------
Title: HXMT satellite for space hard X-ray observation
Authors: Wu, Y. P.; Ren, D. H.; You, Z.
2004AdSpR..34.2667W    Altcode:
  In this paper, the Hard X-ray Modulation Telescope mission is
  introduced. Its primary objective is to perform the hard X-ray all sky
  survey of high resolution and high sensitivity. The expected angular
  resolution and position accuracy of the satellite are better than 10
  <SUP>'</SUP> and 2 <SUP>'</SUP>, respectively. The preliminary mission
  design is analyzed. And a new attitude subsystem scheme is presented to
  meet the high precision demand of attitude determination. A conclusion
  is drawn that the mission design is feasible. The possible launch of
  it will significantly advance the astrophysical study.

---------------------------------------------------------
Title: New Results from the RV instrument, Exoplanet Tracker, at
    the KPNO 2.1m
Authors: DeWitt, C.; Ge, J.; Mahadevan, S.; Van Eyken, J.; Ren, D.;
   Friedman, G.
2003AAS...203.1702D    Altcode: 2003BAAS...35.1234D
  This poster presents preliminary results from the commissioning of
  the radial velocity survey instrument, Exoplanet Tracker (ET), at the
  Kitt Peak 2.1m telescope. ET is a fiber-fed, fixed-delay Michelson
  interferometer followed by a medium resolution (R=10000) volume phase
  holographic spectrograph for the visual band. It will be open to
  the public for RV related research. ET's total throughput from above
  the atmosphere to the detector is about 30%, 5-10 times higher than
  the current cross-dispersed echelle spectrometers for Doppler planet
  searches. In this instrument, Doppler shifts are tracked by measuring
  phase changes in the interference fringes of the stellar lines against
  the interferometer comb, instead of measuring line shifts directly
  as in the echelle approach. <P />A prototype of this instrument
  has also already confirmed 2 extra-solar planet curves (51 Peg and
  upsilon Andromeda), detected by previous surveys with echelles. Our
  Doppler precision with the prototype is 7.9 m/s measuring for a RV
  standard star, eta Cas. Our goal is to reach 1-3 m/s with the survey
  instrument. <P />This work has been supported by the NSF with grant
  AST-0243090, the Penn State Eberly College of Sciences and JPL.

---------------------------------------------------------
Title: Remote Sensing and In Situ Information: Looking at the Potrillo
    Volcanic Field of the Southern Rio Grande Rift in a more Spatially
    Integrated Way
Authors: Williams, W. J.; Abdelsalam, M. G.; McMillan, M. E.; Thurmond,
   A. K.; Ren, D.
2003AGUFM.V51G0362W    Altcode:
  Studies of the Potrillo volcanic field in the southern Rio Grande
  rift have resulted in robust datasets for volcanic stratigraphy,
  geochemistry and both <SUP>3</SUP>He surface exposure and
  <SUP>40</SUP>Ar/<SUP>39</SUP>Ar geochronology to produce a magma
  dynamics model. Williams' model incorporates the physical, spatial,
  temporal, chemical, and emplacement mechanisms for this Pleistocene
  age field. Volcanic activity was not continuous throughout its ~1
  Ma - 20 ka history. Rather, there has been punctuated activity with
  frequent shifts of foci and some reoccupation of edifices after 50 ka
  upwards to 100 ka of quiescence. At least five eruptive phases have been
  documented and field-wide polycyclicity on the order of 10<SUP>3</SUP>
  to 10<SUP>5</SUP> years now quantified. Our current study uses remote
  sensing techniques that include Enhanced Thematic Mapper Plus (ETM+)
  and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER)
  integration along with Digital Elevation Map (DEM) analyses. Evaluation
  of the remote sensing imagery with in situ information allows for
  correlation of geologic field relationships to spectral response,
  evaluation of deposit age versus deposit degradation (e.g. hematite
  development and/or spectral response), and better recognition of
  temporal-spatial volcanic center distributions in relationship to
  structural control. We also demonstrate an effective method for using
  ASTER data for geological mapping and other field studies in arid
  regions. ASTER has 14 bands, hence allowing for 364 red-green-blue
  (RGB) color combinations. Therefore, we apply a statistical approach
  including the Optimum Index Factor (OIF) to assist in selecting the most
  effective RGB color combinations for discriminating different geological
  materials. Small volume basaltic centers such as found in the Potrillo
  volcanic field do display a broad range of morphologic features,
  with several similar to those interpreted from the Mars Orbital
  Lander Altimeter (MOLA) topographic data: shields and flows (lava-tube
  and fissure-fed). A better understanding of Mars planetary volcanism
  through terrestrial analogs can be gained by integrating remote sensing,
  temporal, geochemical and geologic spatial information. Therefore,
  presented are preliminary observations of the Potrillo deposits for
  use as a terrestrial analog, with emphasis on phreatomagmatic centers
  (e.g. Kilbourne Hole and Malpais maar) in order to draw comparisons
  with martian landforms influenced by water (ice) during eruptions.

---------------------------------------------------------
Title: First planet confirmation with the exoplanet tracker
Authors: van Eyken, Julian C.; Ge, Jian C.; Mahadevan, Suvrath;
   DeWitt, Curtis; Ren, Deqing
2003SPIE.5170..250V    Altcode:
  The Exoplanet Tracker (ET) is a new concept of instrument for
  measuring stellar radial velocity variations. ET is based on a
  dispersed fixed-delay interferometer, a combination of Michelson
  interferometer and medium resolution (R~6700) spectrograph which
  overlays interferometer fringes on a long-slit stellar spectrum. By
  measuring shifts in the fringes rather than the Doppler shifts in the
  absorption lines themselves, we are able to make accurate stellar
  radial velocity measurements with a high throughput and low cost
  instrument. The single-order operation of the instrument can also
  in principle allow multi-object observations. We plan eventually to
  conduct deep large scale surveys for extra-solar planets using this
  technique. We present confirmation of the planetary companion to 51Peg
  from our first stellar observations at the Kitt Peak 2.1m telescope,
  showing results consistent with previous observations. We outline the
  fundamentals of the instrument, and summarize our current progress in
  terms of accuracy and throughput.

---------------------------------------------------------
Title: A Single-Mode Fiber Interferometer for the Adaptive Optics
    Wave-Front Test
Authors: Ren, D.; Rimmele, T. R.; Hegwer, S.; Murray, L.
2003PASP..115..355R    Altcode:
  A new and innovative single-mode fiber interferometer is proposed for
  the wave-front test of the adaptive optics (AO) system. It is based
  on a modified Mach-Zehnder interferometer with the two arms replaced
  by optical fibers. It avoids the difficulty of fringe interpretation
  of the conventional Mach-Zehnder interferometer. As fibers are used,
  the whole instrument is compact, flexible, and suitable for the AO
  on-site test. Furthermore, as minimum optical components are used,
  the interferometer is free of calibration and has high measurement
  accuracy. The operation of the interferometer is also very simple,
  and wave front can be tested quickly. We discuss the working principle,
  experiment setup, fringe analysis, and its application for an existing
  AO system. The interferometer can also be used to test wave aberrations
  of a single lens or an optical system.

---------------------------------------------------------
Title: Design and Performance of a Versatile Penn State near IR
    Imager and Spectrograph
Authors: Ge, Jian; Chakraborty, Abhijit; Debes, John H.; Ren, Deqing;
   Friedman, Jerry
2003SPIE.4841.1503G    Altcode:
  A versatile near IR instrument called Penn State near IR Imager and
  Spectrograph (PIRIS) with a 256 x 256 PICNIC IR array has been developed
  at Penn State and saw its first light at the Mt. Wilson 100 inch in
  October 2001. The optical design consists of five optical subsystems
  including (1) the slit aperture wheel, (2) an achromat collimator optic,
  (3) a grism/filter and pupil assembly, (4) a pupil imaging optic, and
  (5) achromat camera optics. This instrument has imaging, spectroscopy
  and coronagraph modes. It is being updated to have an integral field
  3-D imaging spectroscopy mode and a very high IR spectroscopy mode (R
  ~ 150,000) with an anamorphic silicon immersion grating in 2003. The
  instrument is designed to take full advantage of high Strehl ratio
  images delivered by high order adaptive optics systems. Its imaging
  mode has f/37 and f/51 optics to allow diffraction-limited imaging in H
  and K bands, respectively. Its spectroscopy mode has R = 20, 180, 400,
  2000, and 5000. The lowest resolution is obtained with a non-deviation
  prism. The medium resolution spectroscopy mode is conducted with three
  commercial fused-silica grisms. They can be either used in long slit
  spectroscopy mode with a blocking filter or used as a cross-disperser
  for a high resolution silicon grism. High resolution spectroscopy
  is done with silicon grisms and cross-disperser grisms, which are
  designed to work on high orders (~ 80) to completely cover H and K
  bands for R = 5000 separately, or simultaneously cover H and K bands
  for R = 2000. Coronagraphy is done by inserting an apodizing mask,
  held in the slit aperture wheel, in the focal plane and a Lyot stop
  (pupil mask) at a reimaged pupil inside the dewar. Image contrast can
  be enhanced by using different combinations of the apodizing mask and
  pupil mask. Several of Gaussian pupil masks have also been installed
  in the pupil wheel for high contrast imaging. We have successfully
  detected two substellar companions during our first light at Mt. Wilson
  100 inch telescope. We were also able to evaluate our cononagraphy
  and gaussion pupil mask modes, which demonstrate 10<SUP>-3</SUP> -
  10<SUP>-4</SUP> contrast 1 arcsec region around a bright point source. A
  hybrid coronagraph mode, a combination of an apodizing focal plane
  mask with a Gaussian shaped pupil mask, has been tested and produces
  10<SUP>-5</SUP> - 10<SUP>-6</SUP> deep contrast as close as 4 λ/D
  at 2.2 μm in the lab. Low resolution spectroscopy modes including
  a vision prism (R = 20) and three fused silicon grisms (R = 200 400)
  have been tested in the lab. The spectroscopy results are reported here.

---------------------------------------------------------
Title: Optical design of high-order adaptive optics for the NSO Dunn
    Solar Telescope and the Big Bear Solar Observatory
Authors: Ren, Deqing; Hegwer, Steven L.; Rimmele, Thomas; Didkovsky,
   Leonid V.; Goode, Philip R.
2003SPIE.4853..593R    Altcode:
  The National Solar Observatory (NSO) and the New Jersey Institute of
  Technology are jointly developing high order solar Adaptive Optics (AO)
  to be deployed at both the Dunn Solar Telescope (DST) and the Big Bear
  Solar Telescope (BBST). These AO systems are expected to deliver first
  light at the end of 2003. We discuss the AO optical designs for both
  the DST and the BBST. The requirements for the optical design of the
  AO system are as follows: the optics must deliver diffraction-limited
  imaging at visible and near infrared over a 190"×190" field of
  view. The focal plane image must be flat over the entire field of view
  to accommodate a long slit and fast spectrograph. The wave-front sensor
  must be able to lock on solar structure such as granulation. Finally,
  the cost for the optical system must fit the limited budget. Additional
  design considerations are the desired high bandwidth for tip/tilt
  correction, which leads to a small, fast and off-the-shelf tilt-tip
  mirror system and high throughput, i.e., a minimal number of optical
  surfaces. In order to eliminate pupil image wander on the wave-front
  sensor, both the deformable mirror and tip-tilt mirror are located on
  the conjugation images of the telescope pupil. We discuss the details
  of the optical design for the high order AO system, which will deliver
  high resolution image at the 0.39 - 1.6 μm wavelength range.

---------------------------------------------------------
Title: The design and construction of a Multiple-Integral-Field-Unit
    for 8-meter Telescopes
Authors: Ren, Deqing; Allington-Smith, Jeremy R.; Sharples, Ray M.;
   Dodsworth, George N.
2003SPIE.4842..384R    Altcode:
  Integral Field Spectroscopy (IFS) is a powerful tool for astronomy, of
  particular importance to large aperture telescopes. We have designed and
  constructed a prototype integral field unit (IFU) for multiple-IFS which
  may be deployed to any desired position in a 30' diameter field of view
  and will deliver a good image quality simultaneously at visible (0.45 -
  1.0 μm) and near infrared (1.0 - 1.8 μm) wavelength ranges. The design
  and construction of the multiple-IFU for the prime focus of an 8-meter
  telescope is discussed in this paper. The IFU uses optical fibers whose
  flexibility is an important advantage for a multiple-IFU. Simple and
  compact optics is essential for the design of the IFU. Key design
  issues, such as the fore-optics, microlens array and fiber bundle,
  are described in detail. Finally the achievable performance of the
  IFU is estimated.

---------------------------------------------------------
Title: Compact high-resolution 3D imaging spectrometer for discovering
    oases on Mars
Authors: Ge, Jian; Ren, Deqing; Lunine, Jonathan I.; Brown, Robert H.;
   Yelle, Roger V.; Soderblom, Laurence A.
2003SPIE.4859...45G    Altcode:
  Two key infrared instrument components, high resolution silicon
  grisms and cryogenic image slicers, are being developed at Penn
  State under NASA support for potential applications in future Mars
  missions. These new instrument components are planned to be used
  in a new kind of instrument called a CUBE Machine for detecting and
  characterizing possible organic compounds on the martian surface through
  spectroscopically observing martian rocks, soil, and organic matter
  in IR wavelengths (1-5 μm). It is a compact, robust and light-weight
  3D near-IR imaging spectrometer and takes full advantage of these new
  instrument components to enable an order of magnitude improvement in
  spectral resolution and observing efficiency and also large simultaneous
  wavelength coverage (~1-5 μm). Due to high dispersion (n = 3.4),
  silicon grisms provide at least 2 times higher spectral dispersion
  than any commercially made grisms. These silicon grisms will be the
  key elements for making the instrument compact enough to fit into
  spacecrafts and simultaneously provide high enough spectral resolution
  to resolve the weak spectral features from organic materials. The
  reflective imaging slicers enable us to collect spectral information
  from the Mars surface in three dimensional form - two spatial dimensions
  and one spectral dimension. This unique capability obviates the need to
  make many scans to build up the data cube as traditional instruments
  such as spot scanned spectrometers, or slit scanned spectrometers,
  resulting in an order of magnitude increase in observing efficiency. In
  addition, use of the Cube Machine to produce spectral maps of a target
  body will result in dramatically reduced operational complexity,
  data processing complexity, and increased geometric fidelity of the
  final data. With current available large IR arrays such as 2kx2k
  HgCdTe arrays this new instrument will provide large simultaneous
  wavelength coverage at high spectral resolution. We have successfully
  developed silicon grisms with 1 inch in dimension and 54.7 degree in
  blaze angle. These grisms can provide a diffraction-limited spectral
  resolution of R~20,000 at 2 μm, which is already high enough for most
  astrobiology space mission applications. The grisms have very smooth
  grating facets, with typical rms roughness of ~9 nm, indicating a
  total integrated scattered light level less than 1% in the entire IR
  wavelengths to allow high precision spectroscopy. The optical design
  of the image slicers has been finished. The optics required to assemble
  a prototype image slicer is being procured.

---------------------------------------------------------
Title: Image Slicer Integral Field Unit for Solar Telescope
Authors: Ren, Deqing; Hegwer, Steven L.
2003SPIE.4853..551R    Altcode:
  Integral Field Spectroscopy (IFS) can provide two-dimensional
  spatial and one spectral information for spectroscopic observation
  simultaneously. This is important for solar observatory because of
  the nature of the extended object of the solar observatory. Integrated
  Field Unit (IFU) is the key and basic tool for IFS. An innovative IFU
  was designed at National Solar Observatory which will deliver good
  image quality at visible (0.39 - 1.0 mm) and near infrared (1.0-1.6 mm)
  wavelength ranges simultaneously. The IFU is realized by using image
  slicer and will take the full advantage of the excellent corrected
  image of a high order Adaptive Optics (AO) and provide powerful image
  spectroscopic ability for a spectrograph/ polarimeter. This may be the
  first time that advanced IFU will achieve at visible and near infrared
  simultaneously and be used for solar observatory. A unique design is a
  key importance to ensure that the IFU image slicer can work at visible
  and near infrared wavelengths with excellent optical performance. The
  IFU design is discussed in detail in this paper. It is demonstrated
  that the IFU image slicer technique is suitable for both visible and
  near infrared solar observatories and will be particularly useful for
  4 or 8-meter telescopes.

---------------------------------------------------------
Title: Solar adaptive optics: a progress report
Authors: Rimmele, Thomas R.; Richards, Kit; Hegwer, Steven L.; Ren,
   Deqing; Fletcher, S.; Gregory, Scott; Didkovsky, Leonid V.; Denker,
   Carsten J.; Marquette, William; Marino, J.; Goode, Philip R.
2003SPIE.4839..635R    Altcode:
  We present a progress report of the solar adaptive optics (AO)
  development program at the National Solar Observatory (NSO) and the
  Big Bear Solar Observatory (BBSO). Examples of diffraction-limited
  observations obtained with the NSO low-order solar adaptive optics
  system at the Dunn Solar Telescope (DST) are presented. The design
  of the high order adaptive optics systems that will be deployed at
  the DST and the BBSO is discussed. The high order systems will provide
  diffraction-limited observations of the Sun in median seeing conditions
  at both sites.

---------------------------------------------------------
Title: Technical challenges of the Advanced Technology Solar Telescope
Authors: Rimmele, Thomas R.; Keil, Stephen L.; Keller, Christoph
   U.; Hill, Frank; Briggs, John; Dalrymple, Nathan E.; Goodrich, Bret
   D.; Hegwer, Steven L.; Hubbard, Rob; Oschmann, Jacobus M.; Radick,
   Richard R.; Ren, Deqing; Wagner, Jeremy; Wampler, Stephen; Warner, Mark
2003SPIE.4837...94R    Altcode:
  The 4m Advance Technology Solar Telescope (ATST) will be the most
  powerful solar telescope in the world, providing a unique scientific
  tool to study the Sun and possibly other astronomical objects, such
  as solar system planets. We briefly summarize the science drivers and
  observational requirements of ATST. The main focus of this paper is on
  the many technical challenges involved in designing a large aperture
  solar telescope. The ATST project has entered the design and development
  phase. Development of a 4-m solar telescope presents many technical
  challenges. Most existing high-resolution solar telescopes are designed
  as vacuum telescopes to avoid internal seeing caused by the solar heat
  load. The large aperture drives the ATST to an open-air design, similar
  to night-time telescope designs, and makes thermal control of optics
  and telescope structure a paramount consideration. A heat stop must
  reject most of the energy (13 kW) at prime focus without introducing
  internal seeing. To achieve diffraction-limited observations at visible
  and infrared wavelengths, ATST will have a high order (order 1000
  DoF) adaptive optics system using solar granulation as the wavefront
  sensing target. Coronal observations require occulting in prime focus,
  a Lyot stop and contamination control of the primary. An initial set of
  instruments will be designed as integral part of the telescope. First
  telescope design and instrument concepts will be presented.

---------------------------------------------------------
Title: High-order adaptive optical system for Big Bear Solar
    Observatory
Authors: Didkovsky, Leonid V.; Dolgushyn, Alexander; Marquette,
   William; Nenow, Jeff; Varsik, John; Goode, Philip R.; Hegwer, Steven
   L.; Ren, Deqing; Fletcher, Steve; Richards, Kit; Rimmele, Thomas;
   Denker, Carsten J.; Wang, Haimin
2003SPIE.4853..630D    Altcode:
  We present a high-order adaptive optical system for the 26-inch vacuum
  solar telescope of Big Bear Solar Observatory. A small elliptical
  tip/tilt mirror is installed at the end of the existing coude
  optical path on the fast two-axis tip/tilt platform with its resonant
  frequency around 3.3 kHz. A 77 mm diameter deformable mirror with 76
  subapertures as well as wave-front sensors (correlation tracker and
  Shack-Hartman) and scientific channels for visible and IR polarimetry
  are installed on an optical table. The correlation tracker sensor
  can detect differences at 2 kHz between a 32×32 reference frame
  and real time frames. The WFS channel detects 2.5 kHz (in binned
  mode) high-order wave-front atmosphere aberrations to improve solar
  images for two imaging magnetographs based on Fabry-Perot etalons in
  telecentric configurations. The imaging magnetograph channels may work
  simultaneously in a visible and IR spectral windows with FOVs of about
  180×180 arc sec, spatial resolution of about 0.2 arc sec/pixel and
  SNR of about 400 and 600 accordingly for 0.25 sec integration time.

---------------------------------------------------------
Title: Design and construction of the prototype synchrotron radiation
    detector
Authors: This Paper Is Dedicated To The Memory Of Johannes
   `Jos'kuipers; Anderhub, H.; Bates, J. R.; Bätzner, D.; Baumgartner,
   S.; Biland, A.; Camps, C.; Capell, M.; Commichau, V.; Djambazov, L.;
   Fanchiang, Y. -J.; Flügge, G.; Fritschi, M.; Grimm, O.; Hangarter,
   K.; Hofer, H.; Horisberger, U.; Kan, R.; Kästli, W.; Kenney, G. P.;
   Kim, G. N.; Kim, K. S.; Koutsenko, V.; Kräber, M.; Kuipers, J.;
   Lebedev, A.; Lee, M. W.; Lee, S. -C.; Lewis, R.; Lustermann, W.;
   Pauss, F.; Rauber, T.; Ren, D.; Ren, Z. L.; Röser, U.; Son, D.;
   Ting, Samuel C. C.; Tiwari, A. N.; Viertel, G. M.; von Gunten, H.;
   Wicki, S. Waldmeier; Wang, T. -S.; Yang, J.; Zimmermann, B.
2002NIMPA.491...98T    Altcode:
  The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale
  experiment designed to measure the rate of low-energy charged
  particles and photons in near the Earth's orbit. It is a precursor
  to the Synchrotron Radiation Detector (SRD), a proposed addition to
  the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The
  SRD will use the Earth's magnetic field to identify the charge sign
  of electrons and positrons with energies above 1TeV by detecting
  the synchrotron radiation they emit in this field. The differential
  energy spectrum of these particles is astrophysically interesting
  and not well covered by the remaining components of AMS-02. Precise
  measurements of this spectrum offer the possibility to gain information
  on the acceleration mechanism and characteristics of all cosmic rays
  in our galactic neighbourhood. The SRD will discriminate against
  protons as they radiate only weakly. Both the number and energy of
  the synchrotron photons that the SRD needs to detect are small. The
  identification is complicated by the presence of a large particle
  and photon background. Existing measurements of these backgrounds
  are insufficient for the construction of the large-scale SRD, so a
  measurement in space was indispensable. The PSRD was designed to fly as
  a Space Shuttle secondary payload, within the Shuttle Small Payloads
  Project. The flight on board the Space Shuttle Endeavour took place
  from 5 to 17 December 2001. The scientific goal, hardware and the
  flight of the PSRD are described in this report.

---------------------------------------------------------
Title: On the Application of Integral Field Unit Design Theory for
    Imaging Spectroscopy
Authors: Ren, Deqing; Allington-Smith, Jeremy
2002PASP..114..866R    Altcode:
  Integral field spectroscopy is a powerful tool for astronomical
  observation, of particular importance to large telescopes. In this
  paper, different techniques for the design and construction of
  integral field units (IFUs) are described, concentrating on the use
  of lenslet arrays coupled to fibers. The theory of the design of
  the foreoptics, lenslets, and fibers is presented. The effects of
  the fiber oversizing and focal ratio degradation on IFU performance
  are described. A mathematical model is developed that can be used to
  calculate the optimized fiber core size according to the required
  coupling efficiency. A figure of merit for the IFU system is also
  derived, which can be used to estimate and compare the performance of
  different IFU systems. Finally, a design example is given to demonstrate
  the applications of this theory.

---------------------------------------------------------
Title: The Alpha Magnetic Spectrometer (AMS) on the International
Space Station: Part I - results from the test flight on the space
    shuttle
Authors: AMS Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.;
   Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello,
   P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao,
   F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker,
   U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci,
   B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.;
   Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.;
   Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.;
   Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.;
   Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh,
   T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.;
   Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha,
   J. P.; Dai, T. S.; Delgado, C.; Deus, J. D.; Dinu, N.; Djambazov, L.;
   D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.;
   Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.;
   Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi,
   M.; Giusti, P.; Grandi, D.; Grimms, O.; Gu, W. Q.; Hangarter, K.;
   Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.;
   Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski,
   W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim,
   M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.;
   Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.;
   Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.;
   Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.;
   Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti,
   A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.;
   Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, H. B.; Park,
   W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.;
   Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Postolache, V.;
   Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren,
   Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro,
   S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli,
   G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering,
   G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoutko, V.; Shoumilov,
   E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter,
   H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.;
   Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.;
   Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky,
   I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten,
   H.; Wicki, S. Waldmeier; Wallraff, W.; Wang, B. C.; Wang, J. Z.;
   Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan,
   J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh,
   P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.;
   Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2002PhR...366..331A    Altcode:
  The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
  Discovery during flight STS-91 (June 1998) in a 51.7° orbit at
  altitudes between 320 and 390km. <P />A search for antihelium nuclei
  in the rigidity range 1-140GV was performed. No antihelium nuclei
  were detected at any rigidity. An upper limit on the flux ratio of
  antihelium to helium of &lt;1.1×10<SUP>-6</SUP> was obtained. <P
  />The high energy proton, electron, positron, helium, antiproton and
  deuterium spectra were accurately measured. <P />For each particle and
  nuclei two distinct spectra were observed: a higher energy spectrum and
  a substantial second spectrum. Positrons in the second spectrum were
  found to be much more abundant than electrons. Tracing particles from
  the second spectra shows that most of them travel for an extended period
  of time in the geomagnetic field, and that the positive particles (p
  and e<SUP>+</SUP>) and negative ones (e<SUP>-</SUP>) originate from
  two complementary geographic regions. The second helium spectrum
  flux over the energy range 0.1-1.2GeV/nucleon was measured to be
  (6.3+/-0.9)×10<SUP>-3</SUP>(m<SUP>2</SUP>ssr)<SUP>-1</SUP>. Over 90
  percent of the helium flux was determined to be <SUP>3</SUP>He at the
  90% confidence level.

---------------------------------------------------------
Title: HXMT satellite for space hard X-ray observation
Authors: Wu, Y.; Ren, D.; You, Z.
2002cosp...34E..16W    Altcode: 2002cosp.meetE..16W
  Space hard X-ray in the energy band from 10Kev to 250KeV is very
  important to the research of high energy astrophysical processes,
  especially some of the fundamental problems in astrophysics. Due to
  imaging difficulty in the hard X-ray band, Observations made over this
  band is comparatively less than other bands such as soft X-ray and
  gamma -ray. Up to now, there has been no hard X ray all sky- survey
  of high sensitivity. Based on the Direct Demodulation imaging method
  recently developed, the Hard X- ray Modulation Telescope(HXMT) mission
  is proposed under the Major State Basic Research Development Program of
  China. The scientific objective of HXMT mission is to realize the first
  hard X-ray all sky survey of high sensitivy and angular resolution
  in the world, and to present the first detailed sky map of hard X r
  a y - distribution. In this article, the physical basis, the imaging
  principle and the basic structure of HXMT are briefly introduced. The
  expected angular resolution of observation and position accuracy of
  radiant source are 2' and 0.2' respectively. Based on the analysis of
  the mission requirement of HXMT, the mission design of HXMT satellite
  is presented in which the concept of integrative design approach is
  presented and implemented. The design of spacecraft subsystems such
  as strcuture,C&amp;DH and energy are also introduced. To meet the high
  precision demand of the attitude determination of HXMT, a new Attitude
  Determination &amp;Control Subsystem(ADCS) scheme is presented in
  which the Microminiature Inertial Measurement Unit(MIMU) is employed
  as one of the key attitude sensors. Combined with star tracker, the
  expected attitude measurement accuracy is 0.01° in the normal mission
  mode. Based on all these thoughts, the ADCS is analyzed and its general
  design is presented in the paper. As the first chinese space hard X-ray
  observatory, the design approach of HXMT satellite is also helpful for
  other space exploration missions such as solar activity inspection etc.

---------------------------------------------------------
Title: Design and construction of a fiber bundle connector using
    microlenses
Authors: Ren, Deqing; Sharples, Ray M.; Allington-Smith, Jeremy R.;
   Dodsworth, George N.; Robertson, David J.; Dalton, Gavin B.
2001OptEn..40.2709R    Altcode:
  A prototype of a multiway fibre bundle connector for astronomical
  applications is described. The connector provides for connection
  and disconnection in the fiber trains that feed an astronomical
  spectrograph. It also provides the more important function of converting
  the focal ratio from f/2 to f/5 because f/2 is too fast either for
  good transmission of light along a substantial length of fiber or
  for the input to typical astronomical spectrographs. The fiber bundle
  connector consists of 100 coupling fibers. It works over the full 0.9-
  to 1.8-micrometers wavelength range, and the chromatic aberration is
  well corrected in the design. The design principle and the construction
  of the connector are discussed. The measured coupling efficiency is
  up to 88%. The coupling efficiency is compared with a theoretical
  estimate, and good agreement is achieved. Possible further improvement
  is discussed.

---------------------------------------------------------
Title: Characterization of Lenslet Arrays for Astronomical
    Spectroscopy
Authors: Lee, David; Haynes, Roger; Ren, Deqing; Allington-Smith,
   Jeremy
2001PASP..113.1406L    Altcode:
  Microlens arrays are now widely used in a variety of astronomical
  instruments that require high performance. This paper describes the
  applications of microlenses in astronomical spectroscopy and discusses
  the necessary performance requirements. A variety of optical tests,
  including high dynamic range point-spread function measurements and
  determination of encircled energy, were developed to characterize
  the performance of a variety of lenslet arrays. Results are presented
  that indicate the best types of lenslet array for use for astronomical
  spectroscopy.

---------------------------------------------------------
Title: Integral field spectroscopy with the GEMINI multi-object
    spectrographs
Authors: Allington-Smith, Jeremy R.; Content, Robert; Dodsworth,
   George N.; Murray, Graham J.; Ren, Deqing; Robertson, David J.;
   Turner, James E.; Webster, John
2000SPIE.4008.1172A    Altcode:
  The GEMINI Multiobject Spectrograph (GMOS), due for delivery in
  late 2000, will include a powerful integral field spectroscopic
  capability. The instrument scan switch to this mode by the remote
  insertion of an integral field unit (IFU) into the focal plane in
  place of multiobject masks. The initial implementation of the GMOS
  IFU will cover a field in excess of 50 square arcsec with a sampling
  of 0.2 arcsec via 1500 spatial elements with spectra covering up to
  3000 pixels. The spectrum length may also be doubled by halving the
  field. A separate field is provided at fixed offset to facilitate
  accurate background subtraction. The system employs a fiber-lenslet
  technique that provides significant benefits over unlensed fiber
  reformatters and fiberless lenslet arrays. The specific advantages
  are unit filling factor, high throughput and long spectra. The IFU has
  been designed in the light of our experience with two other successful
  devices of this type. We summarize the design of the device and discuss
  how the IFU will be operated within the context of GMOS and the GEMINI
  telescopes. Finally, we present options for implementing IFUs with
  finer spatial resolution on GMOS.

---------------------------------------------------------
Title: Fiber multi-object spectrograph (FMOS) for the Subaru Telescope
Authors: Maihara, Toshinori; Ohta, Kouji; Tamura, Naoyuki; Ohtani,
   Hiroshi; Akiyama, Masayuki; Noumaru, Junichi; Kaifu, Norio; Karoji,
   Hiroshi; Iye, Masanori; Dalton, Gavin B.; Parry, Ian R.; Robertson,
   David J.; Sharples, Ray M.; Ren, Deqing; Allington-Smith, Jeremy R.;
   Taylor, Keith; Gillingham, Peter R.
2000SPIE.4008.1111M    Altcode:
  Design concept of the fiber multi-object spectrograph (FMOS)
  for Subaru Telescope together with innovative ideas of optical and
  structural components is presented. Main features are; i) wide field
  coverage of 30 arcmin in diameter, ii) 400 target multiplicity,
  iii) 0.9 to 1.8 micrometers near-IR wavelengths, and iv) OH-airglow
  suppression capability. The instrument is proposed to be built under
  the Japan-UK-Australia international collaboration scheme.

---------------------------------------------------------
Title: Protons in near earth orbit
Authors: Alcaraz, J.; Alvisi, D.; Alpat, B.; Ambrosi, G.; Anderhub,
   H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.;
   Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.;
   Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné,
   P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia,
   S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.;
   Buenerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cavalletti,
   R.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.;
   Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.;
   Chernoplekov, N. A.; Chiarini, A.; Chiueh, T. H.; Chuang, Y. L.;
   Cindolo, F.; Commichau, V.; Contin, A.; Cotta-Ramusino, A.; Crespo,
   P.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Deus, J. D.; Dinu,
   N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg,
   J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier,
   J.; Feng, C. C.; Fiandrini, E.; Finelli, F.; Fisher, P. H.; Flaminio,
   R.; Fluegge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giusti,
   P.; Grandi, D.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.;
   Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.;
   Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.;
   Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Laborie, G.;
   Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S. C.; Levi,
   G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lolli, M.; Lopes, I.; Lu,
   G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña,
   C.; Margotti, A.; Massera, F.; Mayet, F.; McNeil, R. R.; Meillon, B.;
   Menichelli, M.; Mezzanotte, F.; Mezzenga, R.; Mihul, A.; Molinari, G.;
   Mourao, A.; Mujunen, A.; Palmonari, F.; Pancaldi, G.; Papi, A.; Park,
   I. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.;
   Pilastrini, R.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postema, H.;
   Postolache, V.; Prati, E.; Produit, N.; Rancoita, P. G.; Rapin, D.;
   Raupach, F.; Recupero, S.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux,
   J. P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev,
   R.; Santos, D.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.;
   Seo, E. S.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song,
   T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, S. C. C.;
   Ting, S. M.; Tornikoski, M.; Torromeo, G.; Torsti, J.; Trümper,
   J.; Ulbricht, J.; Urpo, S.; Usoskin, I.; Valtonen, E.; Vandenhirtz,
   J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.;
   Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki,
   S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.;
   Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang,
   C. G.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang,
   Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.
2000PhLB..472..215A    Altcode: 2000hep.ex....2049A; 2000hep.ex....2049C
  The proton spectrum in the kinetic energy range 0.1 to 200 GeV
  was measured by the Alpha Magnetic Spectrometer (AMS) during
  space shuttle flight STS-91 at an altitude of 380km. Above the
  geomagnetic cutoff the observed spectrum is parameterized by a power
  law. Below the geomagnetic cutoff a substantial second spectrum
  was observed concentrated at equatorial latitudes with a flux
  /~70m<SUP>-2</SUP>s<SUP>-1</SUP>sr<SUP>-1</SUP>. Most of these second
  spectrum protons follow a complicated trajectory and originate from
  a restricted geographic region.

---------------------------------------------------------
Title: A silicon microstrip tracker in space: experience with the
    AMS silicon tracker on STS-91.
Authors: Alcaraz, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston,
   R.; Bene, P.; Berdugo, J.; Bertucci, B.; Biland, A.; Blasko, S.;
   Bourquin, M.; Burger, W. J.; Cai, X. D.; Capell, M.; Casaus, J.;
   Cristinziani, M.; Dai, T. S.; Emonet, P.; Eronen, T.; Extermann, P.;
   Fiandrini, E.; Hasan, A.; Hofer, H.; Klimentov, A.; Laitinen, T.;
   Lamanna, G.; Lebedev, A.; Levtchenko, P.; Lubelsmeyer, K.; Lustermann,
   W.; Menichelli, M.; Pauluzzi, M.; Perrin, E.; Produit, N.; Rapin,
   D.; Raupach, F.; Ren, D.; Ribordy, M.; Richeux, J. -P.; Riihonen,
   E.; Shoutko, V.; Suter, H.; Torsti, J.; Ulbricht, J.; Vandenhirtz,
   J.; Viertel, G.; Vite, D.; Wallraff, W.; Weisgerber, M.; Wu, S. X.
1999NCimA.112.1325A    Altcode:
  The Alpha Magnetic Spectrometer (AMS) is designed as an independent
  module for installation on the International Space Station (ISS) in
  the year 2003 for an operational period of three years. The principal
  scientific objectives include searches for antimatter and dark matter
  in cosmic rays. The AMS tracker uses silicon microstrip sensors to
  reconstruct charged-particle trajectories. A first version of the AMS,
  equipped with 2.1 m<SUP>2</SUP> of silicon sensors and a permanent
  magnet, was flown on the NASA space shuttle Discovery during June 2 -
  12, 1998. The authors describe the detector and present results of
  the tracker performance during the flight.

---------------------------------------------------------
Title: Search for antihelium in cosmic rays.
Authors: Alcaraz, J.; Alvisi, D.; Alpat, B.; Ambrosi, G.; Anderhub, H.;
   Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile,
   M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston,
   R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.;
   Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.;
   Boella, G.; Bourquin, M.; Bruni, G.; Buenerd, M.; Burger, J. D.;
   Burger, W. J.; Cai, X. D.; Cavalletti, R.; Camps, C.; Cannarsa, P.;
   Capell, M.; Casadei, D.; Casaus, J.; Catellini, G.; Chang, Y. H.; Chen,
   H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiarini, A.; Chiueh, T. H.;
   Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cotta-Ramusino,
   A.; Crespo, P.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Deus,
   J. D.; Ding, L. K.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.;
   Emonet, P.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.;
   Favier, J.; Feng, C. C.; Fiandrini, E.; Finelli, F.; Fisher, P. H.;
   Flaminio, R.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.;
   Giusti, P.; Gu, W. Q.; Guzik, T. G.; Hangarter, K.; Hasan, A.; Hermel,
   V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica,
   R.; Isbert, J.; Jongmanns, M.; Karpinski, W.; Kenney, G.; Kenny, J.;
   Kim, W.; Klimentov, A.; Krieger, J.; Kossakowski, R.; Koutsenko, V.;
   Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.;
   Lee, S. C.; Levi, G.; Levtchenko, P.; Li, T. P.; Liu, H. T.; Lolli,
   M.; Lopes, I.; Lu, G.; Lu, Y. S.; Lubelsmeyer, K.; Luckey, D.;
   Lustermann, W.; Maehlum, G.; Mana, C.; Margotti, A.; Massera, F.;
   Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mezzanotte,
   F.; Mezzenga, R.; Mihul, A.; Molinari, G.; Mourao, A.; Mujunen,
   A.; Palmonari, F.; Pancaldi, G.; Papi, A.; Park, I. H.; Pauluzzi,
   M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilastrini, R.;
   Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postema, H.; Prati, E.;
   Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Recupero, S.;
   Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari,
   J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.;
   Schultz von Dratzig, A.; Schwering, G.; Shoutko, V.; Shoumilov, E.;
   Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.;
   Tang, X. W.; Ting, S. C. C.; Ting, S. M.; Tenbusch, F.; Torromeo,
   G.; Torsti, J.; Trumper, J.; Ulbricht, J.; Urpo, S.; Usoskin, I.;
   Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky,
   I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vite, D.; von Gunten, H.;
   Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang,
   Y. H.; Wefel, J. P.; Werner, E. A.; Williams, C.; Wu, S. X.; Xia,
   P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, M.; Yeh, P.; Zhang,
   H. Y.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.
1999PhLB..461..387A    Altcode: 2000hep.ex....2048C; 2000hep.ex....2048A
  The alpha magnetic spectrometer (AMS) was flown on the space shuttle
  Discovery during flight STS-91 in a 51.7° orbit at altitudes between
  320 and 390 km. A total of 2.86×10<SUP>6</SUP> helium nuclei were
  observed in the rigidity range 1 to 140 GV. No antihelium nuclei were
  detected at any rigidity. An upper limit on the flux ratio of antihelium
  to helium of &lt;1.1×10<SUP>-6</SUP> is obtained.

---------------------------------------------------------
Title: Apochromatic lenses for near-infrared astronomical instruments
Authors: Ren, Deqing; Allington-Smith, Jeremy R.
1999OptEn..38..537R    Altcode:
  A method based on the Herzberger approach has been investigated for the
  selection of glasses for the apochromatic correction at near-infrared
  (NIR) wavelength. The method avoids the algebraic complexity and
  simplifies the glass selection processes. Doublet and triplet glass
  combinations can be chosen directly from the plot of partial dispersion
  versus V number. Good combinations of NIR doublets and triplets are
  given. Design examples show that the method is practical and efficient.

---------------------------------------------------------
Title: Multiobject spectroscopy with optical fibers on the 2.1m
    telescope at Observatorio “Guillermo Haro"
Authors: Carrasco, B. E.; Vazquez, S.; Escobedo, G.; Ren, D.;
   Langarica, R.
1998larm.confE.170C    Altcode:
  Within a collaborative programme between I.N.A.O.E. and Durham
  University, we present a project to adapt the fibre positioning
  system Autofib-1.5 (Af-1.5) to the 2.1m telescope at the Observatorio
  “Guillermo Haro" in Cananea, Son., Mexico. Af-1.5 is a robot that
  moves on the x,y &amp; z direction to position 55 fibres across a
  field plate. It was built at Durham University as a prototype for the
  William Herschel Telescope (WHT) prime focus fibre positioning system
  Autofib-2. Af-1.5 has been used on the WHT during two observing runs and
  its performance has been extensively evaluated in the laboratory. The
  2.1m Cananea telescope with a new corrector system will provide a 47.8
  arcmin field of view. The corrector mounting is also the mechanical
  interface between the telescope and the fibre positioner. Af-1.5 fibres
  diameter are equivalent to 2.1 arcsec, the positioning accuracy to
  0.2 arcsec and the minimun fibre separation to 16 arcsec. In the first
  stage the multifibre system will be used with a low resolution fibre
  bench spectrograph to study the satellite dynamics around elliptical
  galaxies to determine the mas s and extension of dark galactic halos.

---------------------------------------------------------
Title: Multi-Fiber Spectroscopy at the Observatorio "Guillermo Haro"
Authors: Carrasco, B. E.; Vazquez, S.; Ren, D.; Sharples, R. M.;
   Langarica, R.; Lewis, I. J.; Parry, I. R.
1998ASPC..152..117C    Altcode: 1998fopa.proc..117C
  No abstract at ADS

---------------------------------------------------------
Title: Compact all-reflective near-infrared spectrograph and imager
Authors: Ren, Deqing; Allington-Smith, Jeremy R.; Rauscher, Bernard J.
1997SPIE.3122..280R    Altcode:
  We have designed a compact all-reflective near infrared (1 - 2.5
  micrometer) long slit spectrograph and imager (CAIRS) for the UK
  infrared telescope (UKIRT). CAIRS will provide a comprehensive
  spectroscopic and imaging capability in the near infrared. In
  spectrograph mode, it uses one slit or two slits for use with image
  slicers so that it can be used to provide two-dimensional spectroscopy
  over an extended field. Different gratings can be used in order to
  reach resolving powers up to 5000. As the instrument uses only mirrors,
  there is no chromatic aberration and all primary aberrations are almost
  completely eliminated over a large field of view.

---------------------------------------------------------
Title: A search for the neutral Higgs boson at LEP
Authors: Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz,
   J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.;
   Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Antonov, L.; Antreasyan,
   D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.;
   Baba, P. V. K. S.; Bachmann, S.; Bagnaia, P.; Bakken, J. A.; Baksay,
   L.; Ball, R. C.; Banerjee, S.; Bao, J.; Barillére, R.; Barone, L.;
   Baschirotto, A.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.;
   Behner, F.; Behrens, J.; Bencze, Gy. L.; Berdugo, J.; Berges, P.;
   Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.;
   Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.;
   Borgia, B.; Bosetti, M.; Bourilkov, D.; Bourquin, M.; Boutigny, D.;
   Bouwens, B.; Brambilla, E.; Branson, J. G.; Brock, I. C.; Brooks, M.;
   Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs,
   A.; Cai, X. D.; Capell, M.; Caria, M.; Carlino, G.; Cartacci, A. M.;
   Castello, R.; Cerrada, M.; Cesaroni, F.; Chang, Y. H.; Chaturvedi,
   U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G. M.; Chen, H. F.;
   Chen, H. S.; Chen, M.; Chen, W. Y.; Chiefari, G.; Chien, C. Y.; Choi,
   M. T.; Chung, S.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.;
   Cohn, H. O.; Coignet, G.; Colino, N.; Contin, A.; Cui, X. T.; Cui,
   X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.;
   Deiters, K.; Dénes, E.; Denes, P.; Denotaristefani, F.; Dhina, M.;
   Dibitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Djambazov,
   L.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.;
   Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.;
   Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Fan, S. J.;
   Fackler, O.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.;
   Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J.;
   Filthaut, F.; Finocchiaro, G.; Fisher, P. H.; Forconi, G.; Foreman,
   T.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.;
   Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gele,
   D.; Gentile, S.; Goldfarb, S.; Gong, Z. F.; Gonzalez, E.; Gougas,
   A.; Goujon, D.; Gratta, G.; Gruenewald, M.; Gu, C.; Guanziroli,
   M.; Guo, J. K.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay,
   L. J.; Hangarter, K.; Hasan, A.; Hauschildt, D.; He, C. F.; He, J. T.;
   Hebbeker, T.; Hebert, M.; Herten, G.; Hervé, A.; Hilgers, K.; Hofer,
   H.; Hoorani, H.; Hu, G.; Hu, G. Q.; Ille, B.; Ilyas, M. M.; Innocente,
   V.; Janssen, H.; Jezequel, S.; Jin, B. N.; Jones, L. W.; Kasser,
   A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.;
   Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim,
   J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, D.; Kirsch,
   S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt,
   O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev,
   V. R.; Krenz, W.; Krivshich, A.; Kuijten, H.; Kumar, K. S.; Kunin, A.;
   Landi, G.; Lanske, D.; Lanzano, S.; Lebrun, P.; Lecomte, P.; Lecoq,
   P.; Le Coultre, P.; Lee, D. M.; Leedom, I.; Leggett, C.; Le Goff,
   J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Leytens, X.; Li, C.; Li,
   H. T.; Li, P. J.; Liao, J. Y.; Lin, W. T.; Lin, Z. Y.; Linde, F. L.;
   Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, Y. S.;
   Lubbers, J. M.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.;
   Luminari, L.; Lustermann, W.; Ma, J. M.; Ma, W. G.; MacDermott, M.;
   Malhotra, P. K.; Malik, R.; Malinin, A.; Maña, C.; Maolinbay, M.;
   Marchesini, P.; Marion, F.; Marin, A.; Martin, J. P.; Martinez-Laso,
   L.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McBride, P.;
   McMahon, T.; McNally, D.; Merk, M.; Merola, L.; Meschini, M.;
   Metzger, W. J.; Mi, Y.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich,
   J.; Möller, M.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai,
   N. E.; Mount, R.; Müller, S.; Nadtochy, A.; Nagy, E.; Napolitano,
   M.; Nessi-Tedaldi, F.; Newman, H.; Neyer, C.; Niaz, M. A.; Nippe, A.;
   Nowak, H.; Organtini, G.; Pandoulas, D.; Paoletti, S.; Paolucci, P.;
   Pascala, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.;
   Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.;
   Perrier, J.; Pevsner, A.; Piccolo, D.; Pieri, M.; Piroué, P. A.;
   Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Qi,
   Z. D.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot,
   G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.;
   Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann,
   S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Rodriguez,
   F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rose, J.;
   Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth,
   S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Sachwitz, M.; Salicio,
   J.; Salicio, J. M.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. S.;
   Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky,
   V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schopper, H.; Schotanus,
   D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schulte,
   S.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Scott,
   I.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.;
   Shen, D. Z.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.;
   Son, D.; Sopczak, A.; Spartiotis, C.; Spickerman, T.; Spillantini, P.;
   Starosta, R.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.;
   Strauch, K.; Stringfellow, B. C.; Sudhakar, K.; Sultanov, G.; Sun,
   L. Z.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor,
   L.; Terzi, G.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar,
   S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tung,
   K. L.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; van de Walle,
   R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent,
   M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vuilleumier,
   L.; Wadhwa, M.; Wallraff, W.; Wang, C.; Wang, C. R.; Wang, G. H.;
   Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weber, J.; Weill, R.;
   Wenaus, T. J.; Wenninger, J.; White, M.; Willmout, C.; Wittgenstein,
   F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Wyslouch, B.; Xie, Y. Y.; Xu,
   J. G.; Xu, Z. Z.; Xue, Z. L.; Yan, D. S.; Yang, B. Z.; Yang, C. G.;
   Yang, G.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; Yin, Z. W.; You,
   J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zemp, P.; Zeng, M.;
   Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou,
   J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.
1993PhLB..303..391A    Altcode:
  We update the results of a search for the Standard Model neutral
  Higgs boson using a data sample corresponding to 1 062 000 hadronic Z
  decays. We exclude the existence of the Minimal Standard Model Higgs
  boson in the mass range 0 &lt;= m<SUB>H</SUB> &lt; 57.7 GeV at the
  95% confidence level. <P />Supported by the Hungarian OTKA fund under
  contract number 2970.

---------------------------------------------------------
Title: Possible mode conversion between Love and Rayleigh waves at
    a continental margin
Authors: Gregersen, Sø; Ren
1978GeoJ...54..121G    Altcode: 1978GeoJI..54..121G
  No abstract at ADS